

 Finitomata

 v0.20.2

 [image: Logo]

 Table of contents

 	Finitomata

 	Finite Automata

 	Finitomata Compiler

 	

 	Modules

 	FSM

 	Finitomata

 	Finitomata.ExUnit

 	Finitomata.Pool

 	Finitomata.Throttler

 	Infinitomata

 	Internals

 	Finitomata.ClusterInfo

 	Finitomata.Listener

 	Finitomata.Parser

 	Finitomata.Pool.Actor

 	Finitomata.State

 	Finitomata.Transition

 	Finitomata.Transition.Path

 	Persistence

 	Finitomata.Persistency

 	Finitomata.Persistency.Persistable

 	Finitomata.Persistency.Protocol

 	Exceptions

 	Finitomata.TestTransitionError

 Finitomata

The FSM boilerplate based on callbacks

 Bird View

Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format.

 Syntax Definition

Mermaid state diagram format is literally the same as PlantUML, so if you want to use it, specify syntax: :state_diagram and
if you want to use mermaid graph, specify syntax: :flowchart. The latter is the default.

Basically, it looks more or less like this

 PlantUML / :state_diagram

[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok

 Mermaid / :flowchart

s1 --> |to_s2| s2
s1 --> |to_s3| s3

 Using syntax: :flowchart

Mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.

Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement six callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.

 Special Events

If the event name is ended with a bang (e. g. idle --> |start!| started) and
this event is the only one allowed from this state (there might be several transitions though,)
it’d be considered as determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.

 FSM Tuning and Configuration

 Recurrent Callback

If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.

 Automatic FSM Termination

If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.

 Ensuring State Entry

If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.

 Example

Let’s define the FSM instance
defmodule MyFSM do
 @fsm """
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 """
 use Finitomata, fsm: @fsm, syntax: :flowchart

 ## or uncomment lines below for `:state_diagram` syntax
 # @fsm """
 # [*] --> s1 : to_s1
 # s1 --> s2 : to_s2
 # s1 --> s3 : to_s3
 # s2 --> [*] : __end__
 # s3 --> [*] : __end__
 # """
 # use Finitomata, fsm: @fsm, syntax: :state_diagram

 @impl Finitomata
 def on_transition(:s1, :to_s2, _event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
or embed into supervision tree using `Finitomata.child_spec()`
{:ok, _pid} = Finitomata.start_link()

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:__end__, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

 Installation

def deps do
 [
 {:finitomata, "~> 0.20"}
]
end

 Changelog

	0.20.2 — [UPD] allow guard matches in the RHO of ~> operator in assert_transition/3
	0.20.0 — [FIX] starting pool on distribution, re-synch on :badrpc failure
	0.19.0 — [UPD] Finitomata.ExUnit lighten options check (compile-time module dependencies suck in >=1.16)
	0.18.0 — [UPD] asynchronous Finitomata.Pool on top of Infinitomata
	0.17.0 — [UPD] careful naming and Finitomata.Throttler
	0.16.0 — [UPD] Infinitomata as a self-contained distributed implementation leveraging :pg
	0.15.0 — [UPD] support snippet formatting for modern Elixir
	0.14.6 — [FIX] persistency flaw when loading [credits @peaceful-james]
	0.14.5 — [FIX] require Logger in Hook
	0.14.4 — [FIX] Docs cleanup (credits: @TwistingTwists), PlantUML proper entry
	0.14.3 — [FIX] Draw diagram in docs
	0.14.2 — [FIX] Stop Events process
	0.14.1 — [FIX] Incorrect detection of superfluous determined transitions
	0.14.0 — Finitomata.ExUnit improvements
	0.13.0 — compile-time helpers for FSM, Finitomata.ExUnit
	0.12.1 — Finitomata.on_start/1 callback
	0.11.3 — [FIX] better error message for options (credits @ray-sh)
	0.11.2 — [DEBT] exported Finitomata.fqn/2
	0.11.1 — Inspect, :flowchart/:state_diagram as default parsers, behaviour Parser
	0.11.0 — {:ok, state_payload} return from on_timer/2, :persistent_term to cache state
	0.10.0 — support for several supervision trees with ids, experimental support for persistence scaffold
	0.9.0 — [FIX] malformed callbacks had the FSM broken
	0.8.2 — last error is now kept in the state (credits to @egidijusz)
	0.8.1 — improvements to :finitomata compiler
	0.8.0 — :finitomata compiler to warn/hint about not implemented ambiguous transitions
	0.7.2 — [FIX] banged! transitions must not be determined
	0.6.3 — soft? events which do not call on_failure/2 and do not log errors
	0.6.2 — ensure_entry: option to retry a transition
	0.6.1 — code cleanup + auto_terminate: option to make :__end__ transition imminent
	0.6.0 — on_timer/2 and banged imminent transitions
	0.5.2 — state() type on generated FSMs
	0.5.1 — fixed specs [credits @egidijusz]
	0.5.0 — all callbacks but on_transition/4 are optional, accept impl_for: param to use Finitomata
	0.4.0 — allow anonymous FSM instances
	0.3.0 — en_entry/2 and on_exit/2 optional callbacks
	0.2.0 — Mermaid support

Documentation.

Finite Automata

 Above and Beyound

If you have issues fully understanding Finite Automata aka FSM, here is a one-sentence explanation that might clarify everything.
FSM consists of states, transitions, and events, where the state is an adjective (or noun,) the event is a verb and the transition is an adverbial participle.

This definition, while being mathematically lax, shallow, cursory, and maybe even perfunctory, reveals the whole and allows to grasp the very core thing about FSM nature: it describes a life in the same way the human language desribes it.

 Yet Another Library

I’m a big fan of Finite Automata. Always have been. Whenever we deal with a long-lived objects, they eventually have states and FSM does an enormously great job by attesting consistency, eliminating human errors and leaving the implementation with a business logic only. In a mediocre project, fifty if-then-else conditionals might perform as well as one FSM, but unless you are paid for the number of LoCs, FSM is drastically easier to carry on.

 Internals

This library leverages the power of callbacks to not only completely cover the FSM implementation, but also provide a compile-time proof the FSM is valid and functional. One of the most important things this library provides is the FSM description itself, that is fault-tolerant, not error-prone, and easy to grasp. The FSM definition, which is currently supported in both PlantUML and Mermaid syntaxes, would be drawn in the generated docs of the project using this library.
The consumer of this library initiates a transition by calling somewhat like transition(object, event), then the GenServer does its magic and the callback on_transition/4 gets called. From inside this callback, the consumer implements the business logic and returns the result (the next state to move the FSM to.) There are also syntactic sugar callbacks on_enter/2, on_exit/2, on_failure/3, and on_terminate/1 to allow easy state change reactions, handling of errors, and a final cleanup respectively.
All the callbacks do have a default implementation, which would perfectly handle transitions having a single to state and not requiring any additional business logic attached. When needed, this might be turned off.
Upon start, FSM moves to its initial state and sits there awaiting for the transition request. Upon this request, it’d call on_transition/4 callback and either move to the next state, or remain in the current one, according to the response from the callback. Upon reaching a final state, it would terminate itself, that’s where on_terminate/1 callback is called from. The process also keeps all the history of states it went through, and might have a payload in its state.

 Cool stuff

This library has a compilation-time guarantee the FSM is valid, e. g. has the only one begin state, has at least one end state, all states can be reached, and all the necessary callbacks are defined. That said, if we an FSM has an event initiating transitions from the same state to two different states, and there is no on_transition/4 clause covering that case, the compile-time error would be raised. On the other hand, if the transition is predetermined and might lead to the only one state, the callback implementation is not mandatory, because there is no trolley problem between these two states.
The FSM definition allows event names, terminated with bangs and/or question marks. If the event name is terminated with a bang (init!,) and this event is the only one possible from this state, the event will be called automatically once FSM enters this state. This is handy for moving through initialization or through states which do not require a consumer intervention and might be done immediately after FSM reaches the respective state. If the transition failed in any way (the state has not been left either due to {:error, any()} response received from on_transition/4 or due to other unexpected issue, like if on_transition/4 raised,) the on_failure/3 callback would be called and the warning would be printed to the log. To suppress this behaviour and to allow a transition silently fail, the event should have ended with a question mark (try_call?.) The event cannot have both a bang and a question mark in its name.

 Wiki Example

Wikipedia provides a turnstile as an example of FSM.
[image: Turnile State Machine]
Below is the Finitomata take on this FSM.
defmodule Turnstile do
 @fsm """
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed
 """

 use Finitomata, @fsm, auto_terminate: true

 def on_transition(state, :push, _event_payload, state_payload) do
 if state == :locked, do: electrocute!()
 {:ok, :locked, state_payload}
 end

 def on_transition(:locked, :coin?, _event_payload, state_payload) do
 {:ok, :unlocked, state_payload}
 end

 def on_transition(:unlocked, :coin, _event_payload, state_payload) do
 Logger.info("Thanks, this coin will be donated to the animal shelter!")
 {:error, :unexpected_coin}
 end

 def on_transition(_, :off, _, state_payload),
 do: {:ok, :destroyed, state_payload}

 # def on_failure(…), do: …

 # def on_terminate(…), do: …
end
The docs for this module would have the following diagram contained (see the ex_doc for how to enable Mermaid.)
graph TD
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed

Finitomata Compiler

Elixir provides an ability to introduce a custom compiler for any mix project. Finitomata leverages this feature, providing a set of diagnostics for modules declaring the FSM.

 Overview

Consider the following FSM.
graph TD
 idle --> |to_s1!| s1
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 s2 --> |to_s1| s3
 s2 --> |ambiguous| s3
 s2 --> |ambiguous| s4
 s3 --> |determined| s3
 s3 --> |determined| s4
 s4 --> |determined| s4
 s4 --> |determined| s5
Here we have transitions which do not require a handler (events to_s1!, to_s1, to_s2, and to_s3 define the target state, so just sending the event to the FSM in the respective state would be enough.) Also we have ambiguous and determined events (don’t ask about the name of the latter,) which wouldn’t succeed without the respective Finitomata.on_transition/4 handler declared. This handler must route the event to one of two possible states, conditionally returning {:ok, :s3, state} or {:ok, :s4, state} based on the state, the payload, or the event payload.
An attempt to call ambiguous event from state s2 without this handler defined would result in runtime error of the shape
{:error, {:ambiguous_transition, {:s2, :ambiguous}, [:s3. :s4]}}
but we can do better. Here is the custom compiler shining. Let’s see how the editor would have the code highlighted.
[image: Editor window with the module using Finitomata]

 Warnings, Infos, Hints

There are three different types of diagnostics provided by :finitomata compiler.

 Warning

Warning is reported both to the language server and to console during project compilation. It says “this module declares some ambiguous transitions not handled in the code.” Here is how it looks in the editor.
[image: Finitomata Warning]

 Info

Info is reported in cases when the compiler is not able to determine whether the ambiguous transition has been covered or not.
[image: Finitomata Warning]

 Hint

Hint is emitted when the compiler is positive about the ambiguous transition has been covered, just for the sake of better user experience.
[image: Finitomata Warning]

 WIP

This compiler is very much WIP, but it’s already fully functional, and, despite it is not able yet to report complicated cases when the transition seems to be handled, but one or more branches are unreachable, it could be a very handy tool for the additional self-check on whether the FSM is covered or the application might suffer the ambiguous, or not reachable, or not allowed runtime errors.

Finitomata behaviour

 Bird View

Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format.

 Syntax Definition

Mermaid state diagram format is literally the same as PlantUML, so if you want to use it, specify syntax: :state_diagram and
if you want to use mermaid graph, specify syntax: :flowchart. The latter is the default.

Basically, it looks more or less like this

 PlantUML / :state_diagram

[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok

 Mermaid / :flowchart

s1 --> |to_s2| s2
s1 --> |to_s3| s3

 Using syntax: :flowchart

Mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.

Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement six callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.

 Special Events

If the event name is ended with a bang (e. g. idle --> |start!| started) and
this event is the only one allowed from this state (there might be several transitions though,)
it’d be considered as determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.

 FSM Tuning and Configuration

 Recurrent Callback

If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.

 Automatic FSM Termination

If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.

 Ensuring State Entry

If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.

 Example

Let’s define the FSM instance
defmodule MyFSM do
 @fsm """
 s1 --> |to_s2| s2
 s1 --> |to_s3| s3
 """
 use Finitomata, fsm: @fsm, syntax: :flowchart

 ## or uncomment lines below for `:state_diagram` syntax
 # @fsm """
 # [*] --> s1 : to_s1
 # s1 --> s2 : to_s2
 # s1 --> s3 : to_s3
 # s2 --> [*] : __end__
 # s3 --> [*] : __end__
 # """
 # use Finitomata, fsm: @fsm, syntax: :state_diagram

 @impl Finitomata
 def on_transition(:s1, :to_s2, _event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
or embed into supervision tree using `Finitomata.child_spec()`
{:ok, _pid} = Finitomata.start_link()

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:__end__, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

 use Finitomata

When you use Finitomata, the Finitomata module will
do the following things for your module:
	set @behaviour Finitomata
	compile and validate FSM declaration, passed as fsm: keyword argument
	turn the module into GenServer
	inject default implementations of optional callbacks specified with
impl_for: keyword argument (default: :all)
	expose a bunch of functions to query FSM which would be visible in docs
	leaves on_transition/4 mandatory callback to be implemeneted by
the calling module and injects before_compile callback to validate
the implementation (this option required :finitomata to be included
in the list of compilers in mix.exs)

 Options to use Finitomata

	:fsm (String.t/0) - Required. The FSM declaration with the syntax defined by syntax option.

	:syntax - The FSM dialect parser to convert the declaration to internal FSM representation. The default value is :flowchart.

	:impl_for - The list of transitions to inject default implementation for. The default value is :all.

	:timer (pos_integer/0) - The interval to call on_timer/2 recurrent event. The default value is 5000.

	:auto_terminate - When true, the transition to the end state is initiated automatically. The default value is false.

	:ensure_entry - The list of states to retry transition to until succeeded. The default value is [].

	:shutdown (pos_integer/0) - The shutdown interval for the GenServer behind the FSM. The default value is 5000.

	:persistency - The implementation of Finitomata.Persistency behaviour to backup FSM with a persistent storage. The default value is nil.

	:listener - The implementation of Finitomata.Listener behaviour or a GenServer.name() to receive notification after transitions. The default value is nil.

 Summary

 Types

 event_payload()

 The payload that can be passed to each call to transition/3

 fsm_name()

 The name of the FSM (might be any term, but it must be unique)

 id()

 The ID of the Finitomata supervision tree, useful for the concurrent
 using of different Finitomata supervision trees.

 transition_resolution()

 The resolution of transition, when {:error, _} tuple, the transition is aborted

 validation_error()

 Error types of FSM validation

 Callbacks

 on_enter(current_state, state)

 This callback will be called on entering the state.

 on_exit(current_state, state)

 This callback will be called on exiting the state.

 on_failure(event, event_payload, state)

 This callback will be called if the transition failed to complete to allow
the consumer to take an action upon failure.

 on_start(state)

 This callback will be called from the underlying GenServer.init/1.

 on_terminate(state)

 This callback will be called on transition to the final state to allow
the consumer to perform some cleanup, or like.

 on_timer(current_state, state)

 This callback will be called recurrently if timer: pos_integer()
 option has been given to use Finitomata.

 on_transition(current_state, event, event_payload, state_payload)

 This callback will be called from each transition processor.

 Functions

 alive?(id \\ nil, target)

 Returns true if the FSM specified is alive, false otherwise.

 allowed?(id \\ nil, target, state)

 Returns true if the transition to the state state is possible, false otherwise.

 fqn(id, name)

 Fully qualified name of the FSM backed by Finitonata

 lookup(id \\ nil, target)

 Fast check to validate the FSM process with such id and target exists.

 responds?(id \\ nil, target, event)

 Returns true if the transition by the event event is possible, false otherwise.

 start_fsm(id \\ nil, impl, name, payload)

 Starts the FSM instance.

 state(id \\ nil, target, reload? \\ :full)

 The state of the FSM.

 sup_alive?(id \\ nil)

 Returns true if the supervision tree is alive, false otherwise.

 sup_tree(id \\ nil)

 Returns supervision tree of Finitomata. The healthy tree has all three pids.

 transition(id \\ nil, target, event_payload, delay \\ 0)

 Initiates the transition.

 Types

 Link to this type

 event_payload()

 View Source

 @type event_payload() :: any()

The payload that can be passed to each call to transition/3

 Link to this type

 fsm_name()

 View Source

 @type fsm_name() :: any()

The name of the FSM (might be any term, but it must be unique)

 Link to this type

 id()

 View Source

 @type id() :: any()

The ID of the Finitomata supervision tree, useful for the concurrent
 using of different Finitomata supervision trees.

 Link to this type

 transition_resolution()

 View Source

 @type transition_resolution() ::
 {:ok, Finitomata.Transition.state(), Finitomata.State.payload()}
 | {:error, any()}

The resolution of transition, when {:error, _} tuple, the transition is aborted

 Link to this type

 validation_error()

 View Source

 @type validation_error() ::
 :initial_state | :final_state | :orphan_from_state | :orphan_to_state

Error types of FSM validation

 Callbacks

 Link to this callback

 on_enter(current_state, state)

 View Source

 (optional)

 @callback on_enter(
 current_state :: Finitomata.Transition.state(),
 state :: Finitomata.State.t()
) :: :ok

This callback will be called on entering the state.

 Link to this callback

 on_exit(current_state, state)

 View Source

 (optional)

 @callback on_exit(
 current_state :: Finitomata.Transition.state(),
 state :: Finitomata.State.t()
) :: :ok

This callback will be called on exiting the state.

 Link to this callback

 on_failure(event, event_payload, state)

 View Source

 (optional)

 @callback on_failure(
 event :: Finitomata.Transition.event(),
 event_payload :: event_payload(),
 state :: Finitomata.State.t()
) :: :ok

This callback will be called if the transition failed to complete to allow
the consumer to take an action upon failure.

 Link to this callback

 on_start(state)

 View Source

 (optional)

 @callback on_start(state :: Finitomata.State.payload()) ::
 {:continue, Finitomata.State.payload()}
 | {:ok, Finitomata.State.payload()}
 | :ignore

This callback will be called from the underlying GenServer.init/1.
Unlike other callbacks, this one might raise preventing the whole FSM from start.
When :ignore, or {:continues, new_payload} tuple is returned from the callback,
 the normal initalization continues through continuing to the next state.
{:ok, new_payload} prevents the FSM from automatically getting into start state,
 and the respective transition must be called manually.

 Link to this callback

 on_terminate(state)

 View Source

 (optional)

 @callback on_terminate(state :: Finitomata.State.t()) :: :ok

This callback will be called on transition to the final state to allow
the consumer to perform some cleanup, or like.

 Link to this callback

 on_timer(current_state, state)

 View Source

 (optional)

 @callback on_timer(
 current_state :: Finitomata.Transition.state(),
 state :: Finitomata.State.t()
) ::
 :ok
 | {:ok, Finitomata.State.payload()}
 | {:transition, {Finitomata.Transition.event(), event_payload()},
 Finitomata.State.payload()}
 | {:transition, Finitomata.Transition.event(), Finitomata.State.payload()}
 | {:reschedule, non_neg_integer()}

This callback will be called recurrently if timer: pos_integer()
 option has been given to use Finitomata.

 Link to this callback

 on_transition(current_state, event, event_payload, state_payload)

 View Source

 @callback on_transition(
 current_state :: Finitomata.Transition.state(),
 event :: Finitomata.Transition.event(),
 event_payload :: event_payload(),
 state_payload :: Finitomata.State.payload()
) :: transition_resolution()

This callback will be called from each transition processor.

 Functions

 Link to this function

 alive?(id \\ nil, target)

 View Source

 @spec alive?(any(), fsm_name()) :: boolean()

Returns true if the FSM specified is alive, false otherwise.

 Link to this function

 allowed?(id \\ nil, target, state)

 View Source

 @spec allowed?(id(), fsm_name(), Finitomata.Transition.state()) :: boolean()

Returns true if the transition to the state state is possible, false otherwise.

 Link to this function

 fqn(id, name)

 View Source

 @spec fqn(any(), fsm_name()) :: {:via, module(), {module(), any()}}

Fully qualified name of the FSM backed by Finitonata

 Link to this function

 lookup(id \\ nil, target)

 View Source

 @spec lookup(id(), fsm_name()) :: pid() | nil

Fast check to validate the FSM process with such id and target exists.
The arguments are
	the id of the FSM (optional)
	the name of the FSM

 Link to this function

 responds?(id \\ nil, target, event)

 View Source

 @spec responds?(id(), fsm_name(), Finitomata.Transition.event()) :: boolean()

Returns true if the transition by the event event is possible, false otherwise.

 Link to this function

 start_fsm(id \\ nil, impl, name, payload)

 View Source

 @spec start_fsm(id(), module(), any(), any()) :: DynamicSupervisor.on_start_child()

Starts the FSM instance.
The arguments are
	the global name of Finitomata instance (optional, defaults to Finitomata)
	the name of the FSM (might be any term, but it must be unique)
	the implementation of FSM (the module, having use Finitomata)
	the payload to be carried in the FSM state during the lifecycle

Before v0.15.0 the second and third parameters were expected in different order.
This is deprecated and will be removed in v1.0.0.
The FSM is started supervised. If the global name/id is given, it should be passed
 to all calls like transition/4

 Link to this function

 state(id \\ nil, target, reload? \\ :full)

 View Source

 @spec state(id(), fsm_name(), reload? :: :cached | :payload | :full) ::
 nil | Finitomata.State.t() | Finitomata.State.payload()

The state of the FSM.
The arguments are
	the id of the FSM (optional)
	the name of the FSM
	defines whether the cached state might be returned or should be reloaded

 Link to this function

 sup_alive?(id \\ nil)

 View Source

 @spec sup_alive?(id()) :: boolean()

Returns true if the supervision tree is alive, false otherwise.

 Link to this function

 sup_tree(id \\ nil)

 View Source

 @spec sup_tree(id()) :: [
 supervisor: nil | pid(),
 manager: nil | pid(),
 registry: nil | pid()
]

Returns supervision tree of Finitomata. The healthy tree has all three pids.

 Link to this function

 transition(id \\ nil, target, event_payload, delay \\ 0)

 View Source

 @spec transition(
 id(),
 fsm_name(),
 Finitomata.Transition.event()
 | {Finitomata.Transition.event(), Finitomata.State.payload()},
 non_neg_integer()
) :: :ok

Initiates the transition.
The arguments are
	the id of the FSM (optional)
	the name of the FSM
	event atom or {event, event_payload} tuple; the payload will be passed to the respective
on_transition/4 call, payload is nil by default
	delay (optional) the interval in milliseconds to apply transition after

Finitomata.ExUnit

Helpers and assertions to make Finitomata implementation easily testable.

 Summary

 Functions

 assert_transition(ctx, event_payload, list)

 Convenience macro to assert a transition initiated by event_payload
 argument on the FSM defined by the test context previously setup
 with a call to setup_finitomata/1.

 assert_transition(id \\ nil, impl, name, event_payload, list)

 Convenience macro to assert a transition initiated by event_payload
 argument on the FSM defined by first three arguments.

 init_finitomata(id \\ nil, impl, name, payload, options \\ [])

 This macro initiates the FSM implementation specified by arguments passed.

 setup_finitomata(list)

 Setups Finitomata for testing in the case and/or in ExUnit.Case.describe/2 block.

 test_path(test_name, ctx \\ quote do
 _
end, list)

 Convenience macro to test the whole Finitomata path,
 from starting to ending state.

 Functions

 Link to this macro

 assert_transition(ctx, event_payload, list)

 View Source

 (macro)

Convenience macro to assert a transition initiated by event_payload
 argument on the FSM defined by the test context previously setup
 with a call to setup_finitomata/1.
Last regular argument in a call to assert_transition/3 would be an
 event_payload in a form of {event, payload}, or just event
 for no payload.
to_state argument would be matched to the resulting state of the transition,
 and block accepts validation of the payload after transition in a form of
test "some", ctx do
 assert_transition ctx, {:increase, 1} do
 :counted ->
 assert_payload do
 user_data.counter ~> 2
 internals.pid ~> ^parent
 end
 # or: assert_payload %{user_data: %{counter: 2}, internals: %{pid: ^parent}}

 assert_receive {:increased, 2}
 end
end
Any matchers should be available on the right side of ~> operator in the same way as the first
 argument of match?/2.
Each argument might be matched several times.
 ...
 assert_payload do
 user_data.counter ~> {:foo, _}
 internals.pid ~> pid when is_pid(pid)
 end

 Link to this macro

 assert_transition(id \\ nil, impl, name, event_payload, list)

 View Source

 (macro)

Convenience macro to assert a transition initiated by event_payload
 argument on the FSM defined by first three arguments.
NB it’s not recommended to use low-level helpers, normally one should
 define an FSM in setup_finitomata/1 block and use assert_transition/3
 or even better test_path/3.
parent = self()

assert_transition id, impl, name, {:increase, 1} do
 :counted ->
 assert_payload do
 user_data.counter ~> 2
 internals.pid ~> ^parent
 end
 # or: assert_payload %{user_data: %{counter: 2}, internals: %{pid: ^parent}}
 assert_receive {:increased, 2}
end
See: assert_transition/3 for examples of matches and arguments

 Link to this macro

 init_finitomata(id \\ nil, impl, name, payload, options \\ [])

 View Source

 (macro)

This macro initiates the FSM implementation specified by arguments passed.
NB it’s not recommended to use low-level helpers, normally one should
 define an FSM in setup_finitomata/1 block, which would initiate
 the FSM amongs other things.
Arguments:
	id — a Finitomata instance, carrying multiple _FSM_s
	impl — the module implementing FSM (having use Finitomata clause)
	name — the name of the FSM
	payload — the initial payload for this FSM
	options — the options to control the test, such as	transition_count — the number of expectations to declare (defaults to number of states)

Once called, this macro will start Finitomata.Suprevisor with the id given,
 define a mox for impl unless already efined,
 Mox.allow/3 the FSM to call testing process,
 and expectations as a listener to after_transition/3 callback,
 sending a message of a shape {:on_transition, id, state, payload} to test process.
Then it’ll start FSM and ensure it has entered Finitomata.Transition.entry/2 state.

 Link to this macro

 setup_finitomata(list)

 View Source

 (macro)

Setups Finitomata for testing in the case and/or in ExUnit.Case.describe/2 block.
It would effectively init the FSM with an underlying call to init_finitomata/5,
 and put finitomata key into context, assigning :test_pid subkey to the pid
 of the running test process, and mixing :context content into test context.
Although one might pass the name, it’s more convenient to avoid doing it, in this case
 the name would be assigned from the test name, which guarantees uniqueness of
 _FSM_s running in concurrent environment.
It should return the keyword which would be validated with NimbleOptions schema
	:fsm (non-empty keyword/0) - Required. The FSM declaration to be used in tests.
	:id (term/0) - The ID of the Finitomata tree. The default value is nil.

	:implementation - Required. The implementatoin of Finitomata (the module with use Finitomata.)

	:name (String.t/0) - The name of the Finitomata instance.

	:payload (term/0) - Required. The initial payload for the FSM to start with.

	:options (keyword/0) - Additional options to use in FSM initialization. The default value is [].
	:transition_count (non_neg_integer/0) - The expected by Mox number of transitions to handle.

	:context (keyword/0) - The additional context to be passed to actual ExUnit.Callbacks.setup/2 call.

Example:
describe "MyFSM tests" do
 setup_finitomata do
 parent = self()

 [
 fsm: [implementation: MyFSM, payload: %{}],
 context: [parent: parent]
]
 end

 …

 Link to this macro

 test_path(test_name, ctx \\ quote do
 _
end, list)

 View Source

 (macro)

Convenience macro to test the whole Finitomata path,
 from starting to ending state.
Must be used with a setup_finitomata/1 callback.
Example:
 test_path "The only path", %{finitomata: %{test_pid: parent}} do
 {:start, self()} ->
 assert_state :started do
 assert_payload do
 internals.counter ~> 1
 pid ~> ^parent
 end

 assert_receive {:on_start, ^parent}
 end

 :do ->
 assert_state :done do
 assert_receive :on_do
 end

 assert_state :* do
 assert_receive :on_end
 end
 end

Finitomata.Pool

The instance of FSM backed up by Finitomata.

 FSM representation

graph TD
 idle --> |init| ready
 idle --> |do| ready
 ready --> |do| ready
 ready --> |stop| done

Fully asynchronous pool to manage many similar processes, like connections.
The pool is to be started using start_pool/1 directly or with pool_spec/1 in the
 supervision tree.
initialize/2 is explicitly separated because usually this is to be done after some
 external service initialization. In a case of AMQP connection management, one
 would probably start the connection process and then a pool to manage channels.
Once initialize/2 has been called, the run/3 function might be invoked to
 asynchronously execute the function passed as actor to start_pool/1.
If the callbacks on_result/2 and/or on_error/2 are defined, they will be invoked
 respectively. Finally, the message to the calling process will be sent, unless
 the third argument in a call to run/3 is nil.

 Summary

 Types

 actor()

 The actor function in the pool

 handler()

 The handler function in the pool

 id()

 The ID of the Pool

 naive_actor()

 The simple actor function in the pool

 naive_handler()

 The simple handler of result/error in the pool

 responsive_actor()

 The actor function in the pool, receiving the state as a second argument

 responsive_handler()

 The actor function in the pool, receiving the state as a second argument

 state()

 Kind of event which might be send to initiate the transition.

 t()

 Functions

 __config__(key)

 Getter for the internal compiled-in FSM information.

 __generator__()

 See Finitomata.Pool.__generator__/1

 __generator__(this)

 Returns the generator to be used in StreamData-powered property testing, based
 on the specification given to use Estructura.Nested, which contained

 cast(content, options \\ [])

 Casts the map representation as given to Estructura.Nested.shape/1 to
 the nested Estructura instance.

 cast!(content, options \\ [])

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 config(key)

 The convenient macro to allow using states in guards, returns a compile-time
 list of states for Finitomata.Pool.

 get(data, key, default \\ nil)

 Gets the value for the given key from the structure

 initialize(id, payload_fun)

 Initializes the started _FSM_s with the same payload, or with what payload_fun/1
 would return as many times as the number of workers.

 parse(input)

 Safely parses the json, applying all the specified validations and coercions

 parse!(input)

 Same as parse/1 but either returns the result of successful parsing or raises

 pool_spec(opts \\ [])

 Child spec for Finitomata.Pool to embed the process into a supervision tree

 put(data, key, value)

 Puts the value for the given key into the structure, passing coercion and validation,
 returns {:ok, updated_struct} or {:error, reason} if there is no such key

 put!(data, key, value)

 Puts the value for the given key into the structure, passing coercion and validation,
 returns the value or raises if there is no such key

 recalculate_calculated(data)

 run(id, payload, pid \\ self())

 The runner for the actor function with the specified payload.

 start_link(payload)

 Starts an FSM alone with name and payload given.

 start_pool(opts \\ [])

 Starts a pool of asynchronous workers wrapped by an FSM.

 start_pool(id, count, state)

 Types

 Link to this type

 actor()

 View Source

 (since 0.18.0)

 @type actor() :: naive_actor() | responsive_actor()

The actor function in the pool

 Link to this type

 handler()

 View Source

 (since 0.18.0)

 @type handler() :: naive_handler() | responsive_handler()

The handler function in the pool

 Link to this type

 id()

 View Source

 (since 0.18.0)

 @type id() :: Finitomata.id()

The ID of the Pool

 Link to this type

 naive_actor()

 View Source

 (since 0.18.0)

 @type naive_actor() :: (term() -> {:ok, term()} | {:error, any()})

The simple actor function in the pool

 Link to this type

 naive_handler()

 View Source

 (since 0.18.0)

 @type naive_handler() :: (term() -> any())

The simple handler of result/error in the pool

 Link to this type

 responsive_actor()

 View Source

 (since 0.18.0)

 @type responsive_actor() ::
 (term(), Finitomata.State.payload() -> {:ok, term()} | {:error, any()})

The actor function in the pool, receiving the state as a second argument

 Link to this type

 responsive_handler()

 View Source

 (since 0.18.0)

 @type responsive_handler() :: (term(), id() -> any())

The actor function in the pool, receiving the state as a second argument

 Link to this type

 state()

 View Source

 (since 0.18.0)

 @type state() :: :done | :ready | :idle | :*

Kind of event which might be send to initiate the transition.

 FSM representation

graph TD
 idle --> |init| ready
 idle --> |do| ready
 ready --> |do| ready
 ready --> |stop| done

 Link to this type

 t()

 View Source

 (since 0.18.0)

 @type t() :: %Finitomata.Pool{
 id: any(),
 errors: list(),
 payload: any(),
 actor: any(),
 on_error: any(),
 on_result: any()
}

 Functions

 Link to this function

 __config__(key)

 View Source

 (since 0.18.0)

 @spec __config__(atom()) :: any()

Getter for the internal compiled-in FSM information.

 Link to this function

 __generator__()

 View Source

 (since 0.18.0)

 @spec __generator__() ::
 StreamData.t(%Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 })

See Finitomata.Pool.__generator__/1

 Link to this function

 __generator__(this)

 View Source

 (since 0.18.0)

 @spec __generator__(%Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
}) ::
 StreamData.t(%Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 })

Returns the generator to be used in StreamData-powered property testing, based
 on the specification given to use Estructura.Nested, which contained

 shape

%{
 id: {StreamData, :atom, [:alias]},
 errors: [:term],
 payload: :term,
 actor: {StreamData, :constant, [&Function.identity/1]},
 on_error: {Finitomata.Pool.Actor, :handler, [:error]},
 on_result: {Finitomata.Pool.Actor, :handler, [[]]}
}
The argument given would be used as a template to generate new values.

 Link to this function

 cast(content, options \\ [])

 View Source

 (since 0.18.0)

Casts the map representation as given to Estructura.Nested.shape/1 to
 the nested Estructura instance.
If split: true is passed as an option, it will attempt to put foo_bar into nested %{foo: %{bar: _}}

 Link to this function

 cast!(content, options \\ [])

 View Source

 (since 0.18.0)

 Link to this function

 child_spec(init_arg)

 View Source

 (since 0.18.0)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this macro

 config(key)

 View Source

 (since 0.18.0)

 (macro)

The convenient macro to allow using states in guards, returns a compile-time
 list of states for Finitomata.Pool.

 Link to this function

 get(data, key, default \\ nil)

 View Source

 (since 0.18.0)

 @spec get(
 %Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 },
 Estructura.Config.key(),
 any()
) :: any()

Gets the value for the given key from the structure

 Link to this function

 initialize(id, payload_fun)

 View Source

 (since 0.18.0)

 @spec initialize(Finitomata.id(), (pos_integer() -> any()) | any()) :: :ok

Initializes the started _FSM_s with the same payload, or with what payload_fun/1
 would return as many times as the number of workers.

 Link to this function

 parse(input)

 View Source

 (since 0.18.0)

 @spec parse(binary()) :: {:ok, struct()} | {:error, Exception.t()}

Safely parses the json, applying all the specified validations and coercions

 Link to this function

 parse!(input)

 View Source

 (since 0.18.0)

 @spec parse!(binary()) :: struct() | no_return()

Same as parse/1 but either returns the result of successful parsing or raises

 Link to this function

 pool_spec(opts \\ [])

 View Source

 (since 0.18.0)

 @spec pool_spec(keyword()) :: Supervisor.child_spec()

Child spec for Finitomata.Pool to embed the process into a supervision tree

 Link to this function

 put(data, key, value)

 View Source

 (since 0.18.0)

 @spec put(
 %Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 },
 Estructura.Config.key(),
 any()
) ::
 {:ok,
 %Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 }}
 | {:error, any()}

Puts the value for the given key into the structure, passing coercion and validation,
 returns {:ok, updated_struct} or {:error, reason} if there is no such key

 Link to this function

 put!(data, key, value)

 View Source

 (since 0.18.0)

 @spec put!(
 %Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 },
 Estructura.Config.key(),
 any()
) ::
 %Finitomata.Pool{
 actor: term(),
 errors: term(),
 id: term(),
 on_error: term(),
 on_result: term(),
 payload: term()
 }
 | no_return()

Puts the value for the given key into the structure, passing coercion and validation,
 returns the value or raises if there is no such key

 Link to this function

 recalculate_calculated(data)

 View Source

 (since 0.18.0)

 Link to this function

 run(id, payload, pid \\ self())

 View Source

 (since 0.18.0)

 @spec run(Finitomata.id(), Finitomata.event_payload(), pid()) :: :ok

The runner for the actor function with the specified payload.
Basically, upon calling run/3, the following chain of calls would have happened:
	actor.(payload, state) (or actor.(payload) if the function of arity one had been given)
	on_result(result, id) / on_error(result, id) if callbacks are specified
	the message of the shape {:transition, :success/:failure, self(), {payload, result, on_result/on_error}})
will be sent to pid unless nil given as a third argument

 Link to this function

 start_link(payload)

 View Source

 (since 0.18.0)

Starts an FSM alone with name and payload given.
Usually one does not want to call this directly, the most common way would be
to start a Finitomata supervision tree or even better embed it into
the existing supervision tree and start FSM with Finitomata.start_fsm/4
passing Finitomata.Pool as the first parameter.
For distributed applications, use Infinitomata.start_fsm/4 instead.

 Link to this function

 start_pool(opts \\ [])

 View Source

 (since 0.18.0)

 @spec start_pool(
 id: Finitomata.id(),
 payload: :term,
 count: pos_integer(),
 actor: actor(),
 on_error: handler(),
 on_result: handler()
) :: GenServer.on_start()

Starts a pool of asynchronous workers wrapped by an FSM.

 Link to this function

 start_pool(id, count, state)

 View Source

 (since 0.18.0)

 @spec start_pool(
 id :: Finitomata.id(),
 count :: pos_integer(),
 [actor: actor(), on_error: handler(), on_result: handler(), payload: :term]
 | %{
 :actor => actor(),
 optional(:on_error) => handler(),
 optional(:on_result) => handler(),
 optional(:payload) => :term
 }
 | [implementation: module(), payload: :term]
 | %{:implementation => module(), optional(:payload) => :term}
) :: GenServer.on_start()

Finitomata.Throttler

The internal definition of the call to throttle.
Finitomata.Throttler.call/3 is a blocking call similar to GenServer.call/3, but
 served by the underlying GenStage producer-consumer pair.
Despite this implementation of throttling based on GenStage is provided
 mostly for internal needs, it is generic enough to use wherever. Use the childspec
 {Finitomata.Throttler, name: name, initial: [], max_demand: 3, interval: 1_000}
 to start a throttling process and Finitomata.Throttler.call/3 to perform throttled
 synchronous calls from different processes.

 Usage

{:ok, pid} = Finitomata.Throttler.start_link(name: Throttler)

Finitomata.Throttler.call(Throttler, {IO, :inspect, [42]})
42

#⇒ %Finitomata.Throttler{
from: {#PID<0.335.0>, #Reference<0.3154300821.2643722246.59214>},
fun: {IO, :inspect},
args: ~c"*",
result: 42,
duration: 192402,
payload: nil
}

 Summary

 Types

 t()

 The in/out parameter for calls to Finitomata.Throttler.call/3

 throttlee()

 The simplified in parameter for calls to Finitomata.Throttler.call/3

 Functions

 call(name \\ nil, request, timeout \\ :infinity)

 Synchronously executes the function, using throttling based on GenStage.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the throttler with the underlying producer-consumer stages.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.Throttler{
 from: GenServer.from(),
 fun: (keyword() -> any()),
 args: keyword(),
 result: any(),
 duration: pos_integer(),
 payload: any()
}

The in/out parameter for calls to Finitomata.Throttler.call/3

 Link to this type

 throttlee()

 View Source

 @type throttlee() :: t() | {(keyword() -> any()), [any()]}

The simplified in parameter for calls to Finitomata.Throttler.call/3

 Functions

 Link to this function

 call(name \\ nil, request, timeout \\ :infinity)

 View Source

Synchronously executes the function, using throttling based on GenStage.
This function has a default timeout :infinity because of its nature
 (throttling is supposed to take a while,) but it might be passed as the third
 argument in a call to call/3.
If a list of functions is given, executes all of them in parallel,
 collects the results, and then returns them to the caller.
The function might be given as Finitomata.Throttler.t/0 or
 in a simplified form as {function_of_arity_1, arg} or {mod, fun, args}.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

Starts the throttler with the underlying producer-consumer stages.
Accepted options are:
	name the base name for the throttler to be used in calls to call/3
	initial the initial load of requests (avoid using it unless really needed)
	max_demand, initial the options to be passed directly to GenStage’s consumer

Infinitomata

The sibling of Finitomata, but runs transparently in the cluster.
If you want to use a stateful consistent hash ring like libring,
 implement the behaviour Finitomata.ClusterInfo wrapping calls to it and
 invoke Finitomata.ClusterInfo.init(Impl) before using Infinitomata.start_fsm/4.
The example of such an implementation for libring (assuming the named ring @ring
 has been started in the supervision tree) follows.
defmodule MyApp.ClusterInfo do
 @moduledoc false
 @behaviour Finitomata.ClusterInfo

 @impl Finitomata.ClusterInfo
 def nodes, do: HashRing.nodes(@ring)

 @impl Finitomata.ClusterInfo
 def whois(id), do: HashRing.key_to_node(@ring, id)
end

 Summary

 Functions

 all(id \\ nil)

 The full state with all te children, might be a heavy map

 child_spec(id \\ nil)

 count(id \\ nil)

 Count of children

 random(id \\ nil)

 Returns the random FSM from the pool

 start_fsm(id \\ nil, target, implementation, payload)

 Starts the FSM somewhere in the cluster.

 start_link(id \\ nil, nodes \\ Node.list())

 state(id \\ nil, target, reload? \\ :full)

 The state of the FSM in the cluster.

 synch(id \\ nil)

 Synchronizes the local Infinitomata instance with the cluster

 transition(id \\ nil, target, event_payload, delay \\ 0)

 Initiates the transition in the cluster.

 Functions

 Link to this function

 all(id \\ nil)

 View Source

 (since 0.16.0)

The full state with all te children, might be a heavy map

 Link to this function

 child_spec(id \\ nil)

 View Source

 (since 0.16.0)

 Link to this function

 count(id \\ nil)

 View Source

 (since 0.16.0)

Count of children

 Link to this function

 random(id \\ nil)

 View Source

 (since 0.18.0)

Returns the random FSM from the pool

 Link to this function

 start_fsm(id \\ nil, target, implementation, payload)

 View Source

 (since 0.15.0)

 @spec start_fsm(Finitomata.id(), Finitomata.fsm_name(), module(), any()) ::
 DynamicSupervisor.on_start_child()

Starts the FSM somewhere in the cluster.
See Finitomata.start_fsm/4.

 Link to this function

 start_link(id \\ nil, nodes \\ Node.list())

 View Source

 (since 0.16.0)

 Link to this function

 state(id \\ nil, target, reload? \\ :full)

 View Source

 (since 0.15.0)

The state of the FSM in the cluster.
See Finitomata.state/3.

 Link to this function

 synch(id \\ nil)

 View Source

 (since 0.19.0)

Synchronizes the local Infinitomata instance with the cluster

 Link to this function

 transition(id \\ nil, target, event_payload, delay \\ 0)

 View Source

 (since 0.15.0)

 @spec transition(
 Finitomata.id(),
 Finitomata.fsm_name(),
 Finitomata.Transition.event()
 | {Finitomata.Transition.event(), Finitomata.State.payload()},
 non_neg_integer()
) :: :ok

Initiates the transition in the cluster.
See Finitomata.transition/4.

Finitomata.ClusterInfo behaviour

The behaviour to be implemented for locating the node across the cluster.
Infinitomata comes with a default naïve implementation, which simply responds
 with a determined random value for whois/1 and with all visible nodes list
 for nodes/0.
The call to Finitomata.ClusterInfo.init/1 passing the module implementing
 the desired behaviour is mandatory before any call to Infinitomata.start_fsm/4
 to preserve a determined consistency.

 Summary

 Callbacks

 nodes()

 Returns nodes available to select from

 whois(id)

 Returns the node “selected” for this particular id

 Functions

 init(impl)

 Call this function to select an implementation of a cluster lookup

 nodes()

 Delegates to the selected implementation of a cluster lookup

 whois(id)

 Delegates to the selected implementation of a cluster lookup

 Callbacks

 Link to this callback

 nodes()

 View Source

 @callback nodes() :: [node()]

Returns nodes available to select from

 Link to this callback

 whois(id)

 View Source

 @callback whois(id :: term()) :: node() | nil

Returns the node “selected” for this particular id

 Functions

 Link to this function

 init(impl)

 View Source

Call this function to select an implementation of a cluster lookup

 Link to this function

 nodes()

 View Source

Delegates to the selected implementation of a cluster lookup

 Link to this function

 whois(id)

 View Source

Delegates to the selected implementation of a cluster lookup

Finitomata.Listener behaviour

The behaviour to be implemented and passed to use Finitomata to receive
 all the state transitions notifications.

 Summary

 Callbacks

 after_transition(id, state, payload)

 To be called after a successful transition

 Callbacks

 Link to this callback

 after_transition(id, state, payload)

 View Source

 @callback after_transition(
 id :: Finitomata.fsm_name(),
 state :: Finitomata.Transition.state(),
 payload :: Finitomata.State.payload()
) :: :ok

To be called after a successful transition

Finitomata.Parser behaviour

The behaviour, defining the parser to produce FSM out of textual representation.

 Summary

 Types

 parse_error()

 The type representing the parsing error which might be passed through to raised CompileError.

 Callbacks

 lint(binary)

 Linter of the input, producing a well-formed representation of FSM understood by JS/markdown parsers.

 parse(binary)

 Parse function, producing the FSM definition as a list of Transition instances.

 validate(list)

 Validation of the input.

 Types

 Link to this type

 parse_error()

 View Source

 @type parse_error() ::
 {:error, String.t(), binary(), map(), {pos_integer(), pos_integer()},
 pos_integer()}

The type representing the parsing error which might be passed through to raised CompileError.

 Callbacks

 Link to this callback

 lint(binary)

 View Source

 @callback lint(binary()) :: binary()

Linter of the input, producing a well-formed representation of FSM understood by JS/markdown parsers.

 Link to this callback

 parse(binary)

 View Source

 @callback parse(binary()) ::
 {:ok, [Finitomata.Transition.t()]}
 | {:error, Finitomata.validation_error()}
 | parse_error()

Parse function, producing the FSM definition as a list of Transition instances.

 Link to this callback

 validate(list)

 View Source

 @callback validate([{:transition, [binary()]}]) ::
 {:ok, [Finitomata.Transition.t()]} | {:error, Finitomata.validation_error()}

Validation of the input.

Finitomata.Pool.Actor behaviour

The behaviour specifying the actor in the pool.

 Summary

 Callbacks

 actor(term, payload)

 The function which would be invoked in Finitomata.Pool.run/3,
 see Finitomata.Pool.responsive_actor/0

 on_error(error, id)

 The function which would be invoked in Finitomata.Pool.run/3
 after actor/2 failed with a failure message and the state
 of the Pool worker,
 see Finitomata.Pool.naive_handler/0.

 on_result(result, id)

 The function which would be invoked in Finitomata.Pool.run/3
 after actor/2 returned successfully with a result of invocation
 and the state of the Pool worker,
 see Finitomata.Pool.naive_handler/0.

 Functions

 handler()

 StreamData helper to produce on_error/2 and on_result/2 handlers

 handler(f)

 Callbacks

 Link to this callback

 actor(term, payload)

 View Source

 @callback actor(term(), Finitomata.State.payload()) :: {:ok, term()} | {:error, any()}

The function which would be invoked in Finitomata.Pool.run/3,
 see Finitomata.Pool.responsive_actor/0

 Link to this callback

 on_error(error, id)

 View Source

 (optional)

 @callback on_error(error :: term(), id :: Finitomata.Pool.id()) :: any()

The function which would be invoked in Finitomata.Pool.run/3
 after actor/2 failed with a failure message and the state
 of the Pool worker,
 see Finitomata.Pool.naive_handler/0.
The value returned from this call will be send as an last argument
 of the message to the caller of Finitomata.Pool.run/3 if the pid
 was passed.

 Link to this callback

 on_result(result, id)

 View Source

 (optional)

 @callback on_result(result :: term(), id :: Finitomata.Pool.id()) :: any()

The function which would be invoked in Finitomata.Pool.run/3
 after actor/2 returned successfully with a result of invocation
 and the state of the Pool worker,
 see Finitomata.Pool.naive_handler/0.
The value returned from this call will be send as an last argument
 of the message to the caller of Finitomata.Pool.run/3 if the pid
 was passed.

 Functions

 Link to this function

 handler()

 View Source

StreamData helper to produce on_error/2 and on_result/2 handlers

 Link to this function

 handler(f)

 View Source

Finitomata.State

Carries the state of the FSM.

 Summary

 Types

 last_error()

 The map that holds last error which happened on transition (at given state and event).

 payload()

 The payload that has been passed to the FSM instance on startup

 t()

 The internal representation of the FSM state

 Functions

 excerpt(state, payload? \\ true)

 Exposes the short excerpt from state of FSM which is log-friendly

 Types

 Link to this type

 last_error()

 View Source

 @type last_error() ::
 %{
 state: Finitomata.Transition.state(),
 event: Finitomata.Transition.event(),
 error: any()
 }
 | nil

The map that holds last error which happened on transition (at given state and event).

 Link to this type

 payload()

 View Source

 @type payload() :: any()

The payload that has been passed to the FSM instance on startup

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.State{
 name: Finitomata.fsm_name(),
 lifecycle: :loaded | :created | :unknown,
 persistency: nil | module(),
 listener: nil | module(),
 current: Finitomata.Transition.state(),
 payload: payload(),
 timer: non_neg_integer(),
 history: [Finitomata.Transition.state()],
 last_error: last_error()
}

The internal representation of the FSM state

 Functions

 Link to this function

 excerpt(state, payload? \\ true)

 View Source

Exposes the short excerpt from state of FSM which is log-friendly

Finitomata.Transition

The internal representation of Transition.
It includes from and to states, and the event, all represented as atoms.

 Summary

 Types

 event()

 The event in FSM

 event_kind()

 The kind of event

 state()

 The state of FSM

 t()

 The transition is represented by from and to states and the event.

 Functions

 allowed(transitions, options \\ [])

 Returns the list of all the transitions, matching the options.

 allowed(transitions, from, event)

 Returns the list of all the transitions, matching the from state and the event.

 allowed?(transitions, from, to)

 Returns true if the transition from → to is allowed, false otherwise.

 ambiguous(transitions)

 Returns keyword list of
 {Finitomata.Transition.state(), [Finitomata.Transition.event()]} for transitions
 which do not have a determined to state.

 continuation(states \\ :states, from, transitions)

 Returns the continuation from the state given which inevitably lead to other state(s).

 determined(transitions)

 Returns keyword list of
 {Finitomata.Transition.state(), Finitomata.Transition.event()} tuples
 for determined transition from the current state.

 determined(transitions, state)

 Returns {:ok, {event(), state()}} tuple if there is a determined transition
 from the current state, :error otherwise.

 entry(what \\ :state, transitions)

 Returns the state after starting one, so-called entry state.

 event_kind(event)

 Returns the kind of event.

 events(transitions, purge_internal \\ false)

 Returns the not ordered list of events, including or excluding
 the internal starting and ending transitions :__start__ and __end__
 according to the second argument.

 exit(what \\ :states, transitions)

 Returns the states before ending one, so-called exit states.

 exiting(what \\ :states, transitions)

 Returns all the states which inevitably lead to the ending one.

 hard(states \\ :states, transitions)

 Returns all the hard transitions which inevitably lead to the next state
 (events ending with an exclamation sign,)
 which makes the FSM to go to the next state with :continue callback.

 loops(what \\ :states, transitions)

 Returns all the loops aka internal paths where starting and ending states are the same one.

 paths(what \\ :states, transitions, from \\ :*, to \\ :*)

 Returns all the paths from starting to ending state.

 responds?(transitions, from, event)

 Returns true if the state from hsa an outgoing transition with event, false otherwise.

 states(transitions, purge_internal \\ false)

 Returns the not ordered list of states, including or excluding
 the starting and ending states :* according to the second argument.

 Types

 Link to this type

 event()

 View Source

 @type event() :: atom()

The event in FSM

 Link to this type

 event_kind()

 View Source

 @type event_kind() :: :soft | :hard | :normal

The kind of event

 Link to this type

 state()

 View Source

 @type state() :: atom()

The state of FSM

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.Transition{
 from: state(),
 to: state() | [state()],
 event: event()
}

The transition is represented by from and to states and the event.

 Functions

 Link to this function

 allowed(transitions, options \\ [])

 View Source

 @spec allowed([t()],
 from: state(),
 to: state(),
 with: event(),
 as: :states | :transitions
) :: [
 {state(), state(), event()}
]

Returns the list of all the transitions, matching the options.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s3| s3")
...> Finitomata.Transition.allowed(transitions, to: [:idle, :*])
[{:*, :idle, :__start__}, {:s3, :*, :__end__}]
iex> Finitomata.Transition.allowed(transitions, from: :s1)
[{:s1, :s2, :to_s2}, {:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s1, to: :s3)
[{:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s1, with: :to_s3)
[{:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s2, with: :to_s2)
[]

 Link to this function

 allowed(transitions, from, event)

 View Source

 @spec allowed([t()], state(), event()) :: [state()]

Returns the list of all the transitions, matching the from state and the event.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.allowed(transitions, :s1, :foo)
[:s2]
...> Finitomata.Transition.allowed(transitions, :s1, :*)
[]

 Link to this function

 allowed?(transitions, from, to)

 View Source

 @spec allowed?([t()], state(), state()) :: boolean()

Returns true if the transition from → to is allowed, false otherwise.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.allowed?(transitions, :s1, :s2)
true
...> Finitomata.Transition.allowed?(transitions, :s1, :*)
false

 Link to this function

 ambiguous(transitions)

 View Source

 @spec ambiguous([t()]) :: [{state(), {event(), state()}}]

Returns keyword list of
 {Finitomata.Transition.state(), [Finitomata.Transition.event()]} for transitions
 which do not have a determined to state.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s1| s3\n" <>
...> "s2 --> |ambiguous| s3\n" <>
...> "s2 --> |ambiguous| s4\n" <>
...> "s3 --> |determined| s3\n" <>
...> "s3 --> |determined| s4\n")
...> Finitomata.Transition.ambiguous(transitions)
[s3: {:determined, [:s3, :s4]}, s2: {:ambiguous, [:s3, :s4]}]

 Link to this function

 continuation(states \\ :states, from, transitions)

 View Source

 @spec continuation(:states | :transitions, state(), [t()]) ::
 nil | Finitomata.Transition.Path.t() | [t()]

Returns the continuation from the state given which inevitably lead to other state(s).
All the transitions from this state are hard (ending with !,)
 which makes the FSM to go through all these states in :continue callbacks.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> entry : start\nentry --> exit : go!\nexit --> done : finish\ndone --> [*] : terminate")
...> Finitomata.Transition.continuation(:entry, Finitomata.Transition.hard(:transitions, transitions))
%Finitomata.Transition.Path{from: :entry, to: :exit, path: [go!: :exit]}

 Link to this function

 determined(transitions)

 View Source

 @spec determined([t()]) :: [{state(), {event(), state()}}]

Returns keyword list of
 {Finitomata.Transition.state(), Finitomata.Transition.event()} tuples
 for determined transition from the current state.
The transition is determined, if it is the only transition allowed from the state.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s1| s3\n" <>
...> "s2 --> |ambiguous| s3\n" <>
...> "s2 --> |ambiguous| s4\n" <>
...> "s3 --> |determined| s3\n" <>
...> "s3 --> |determined| s4\n")
...> Finitomata.Transition.determined(transitions)
[s4: :__end__, s3: :determined, idle: :to_s1]

 Link to this function

 determined(transitions, state)

 View Source

 @spec determined([t()], state()) :: {:ok, {event(), state()}} | :error

Returns {:ok, {event(), state()}} tuple if there is a determined transition
 from the current state, :error otherwise.
The transition is determined, if it is the only transition allowed from the state.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s3| s3")
...> Finitomata.Transition.determined(transitions, :s1)
:error
iex> Finitomata.Transition.determined(transitions, :s2)
{:ok, {:to_s3, :s3}}
iex> Finitomata.Transition.determined(transitions, :s3)
{:ok, {:__end__, :*}}

 Link to this function

 entry(what \\ :state, transitions)

 View Source

 @spec entry(:state | :transition, [t()]) :: state()

Returns the state after starting one, so-called entry state.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> entry : foo\nentry --> exit : go\nexit --> [*] : terminate")
...> Finitomata.Transition.entry(transitions)
:entry

 Link to this function

 event_kind(event)

 View Source

 @spec event_kind(event() | t()) :: event_kind()

Returns the kind of event.
If event ends up with an exclamation sign, it’s :hard, meaning the respective
 transition would be initiated automatically when the from state of such a transition
 is reached.
If event ends up with a question mark, it’s :soft, meaning no error would have
 been reported in a case transition fails.
Otherwise the event is :normal.
iex> {:ok, [_, hard, _]} =
...> Finitomata.PlantUML.parse("[*] --> entry : foo\nentry --> exit : go!\nexit --> [*] : terminate")
...> Finitomata.Transition.event_kind(hard)
:hard

 Link to this function

 events(transitions, purge_internal \\ false)

 View Source

 @spec events([t()], boolean()) :: [state()]

Returns the not ordered list of events, including or excluding
 the internal starting and ending transitions :__start__ and __end__
 according to the second argument.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse("s1 --> |ok| s2\ns1 --> |ko| s3")
...> Finitomata.Transition.events(transitions, true)
[:ok, :ko]
...> Finitomata.Transition.events(transitions)
[:__start__, :ok, :ko, :__end__]

 Link to this function

 exit(what \\ :states, transitions)

 View Source

 @spec exit(:states | :transitions, [t()]) :: [state()]

Returns the states before ending one, so-called exit states.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "entry --> |process| processing\nprocessing --> |ok| success\nprocessing --> |ko| error"
...>)
...> Finitomata.Transition.exit(transitions)
[:error, :success]

 Link to this function

 exiting(what \\ :states, transitions)

 View Source

 @spec exiting(:states | :transitions, [t()]) ::
 Enumerable.t([t()]) | [Finitomata.Transition.Path.t()]

Returns all the states which inevitably lead to the ending one.
All the transitions from these states to the ending one are hard (ending with !,)
 which makes the FSM to go through all these states in :continue callbacks.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> entry : start\nentry --> exit : go!\nexit --> [*] : terminate")
...> Finitomata.Transition.exiting(transitions)
[%Finitomata.Transition.Path{from: :entry, to: :*, path: [go!: :exit, terminate: :*]}]

 Link to this function

 hard(states \\ :states, transitions)

 View Source

 @spec hard(:states | :transitions, [t()]) ::
 Enumerable.t(t()) | [Finitomata.Transition.Path.t()]

Returns all the hard transitions which inevitably lead to the next state
 (events ending with an exclamation sign,)
 which makes the FSM to go to the next state with :continue callback.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> entry : start\nentry --> exit : go!\nexit --> [*] : terminate")
...> Finitomata.Transition.hard(transitions)
[entry: :go!]
...> Finitomata.Transition.hard(:transitions, transitions)
[%Finitomata.Transition{from: :entry, to: :exit, event: :go!}]

 Link to this function

 loops(what \\ :states, transitions)

 View Source

 @spec loops(:states | :transitions, [t()]) ::
 Enumerable.t(t()) | [Finitomata.Transition.Path.t()]

Returns all the loops aka internal paths where starting and ending states are the same one.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> s1 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.loops(transitions)
[%Finitomata.Transition.Path{from: :s1, to: :s1, path: [ok: :s2, ok: :s1]},
 %Finitomata.Transition.Path{from: :s2, to: :s2, path: [ok: :s1, ok: :s2]}]

 Link to this function

 paths(what \\ :states, transitions, from \\ :*, to \\ :*)

 View Source

 @spec paths(:states | :transitions, [t()], state(), state()) ::
 Enumerable.t(t()) | [Finitomata.Transition.Path.t()]

Returns all the paths from starting to ending state.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns1 --> s3 : ok\ns2 --> [*] : ko\ns3 --> [*] : ko")
...> Finitomata.Transition.paths(transitions)
[%Finitomata.Transition.Path{from: :*, to: :*, path: [foo: :s1, ok: :s2, ko: :*]},
 %Finitomata.Transition.Path{from: :*, to: :*, path: [foo: :s1, ok: :s3, ko: :*]}]

 Link to this function

 responds?(transitions, from, event)

 View Source

 @spec responds?([t()], state(), event()) :: boolean()

Returns true if the state from hsa an outgoing transition with event, false otherwise.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.responds?(transitions, :s1, :ok)
true
...> Finitomata.Transition.responds?(transitions, :s1, :ko)
false

 Link to this function

 states(transitions, purge_internal \\ false)

 View Source

 @spec states([t()], boolean()) :: [state()]

Returns the not ordered list of states, including or excluding
 the starting and ending states :* according to the second argument.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.states(transitions, true)
[:s1, :s2]
...> Finitomata.Transition.states(transitions)
[:*, :s1, :s2]

Finitomata.Transition.Path

The path from one state to another one

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.Transition.Path{
 from: Finitomata.Transition.state(),
 to: Finitomata.Transition.state(),
 path: [{Finitomata.Transition.event(), Finitomata.Transition.state()}]
}

Finitomata.Persistency behaviour

The behaviour to be implemented by a persistent storage to be used
 with Finitomata (pass the implementation as persistency: Impl.Module.Name
 to use Finitomata.)
Once declared, the initial state would attempt to load the current state from
 the storage using load/1 funtcion which should return the {state, payload}
 tuple.

 Summary

 Types

 transition_info()

 Callbacks

 load(id)

 The function to be called from init/1 callback upon FSM start to load the state and payload
 from the persistent storage

 store(id, object, transition)

 The function to be called from on_transition/4 handler to allow storing the state
 and payload to the persistent storage

 store_error(id, object, reason, transition)

 The function to be called from on_transition/4 handler on non successful
 transition to allow storing the failed attempt to transition to the persistent storage

 Types

 Link to this type

 transition_info()

 View Source

 @type transition_info() :: %{
 from: Finitomata.Transition.state(),
 to: Finitomata.Transition.state(),
 event: Finitomata.Transition.event(),
 event_payload: Finitomata.event_payload(),
 object: Finitomata.State.payload()
}

 Callbacks

 Link to this callback

 load(id)

 View Source

 @callback load(id :: Finitomata.fsm_name()) ::
 {:loaded | :created | :unknown, Finitomata.State.payload()}

The function to be called from init/1 callback upon FSM start to load the state and payload
 from the persistent storage

 Link to this callback

 store(id, object, transition)

 View Source

 @callback store(
 id :: Finitomata.fsm_name(),
 object :: Finitomata.State.payload(),
 transition :: transition_info()
) :: :ok | {:ok, Finitomata.State.payload()} | {:error, any()}

The function to be called from on_transition/4 handler to allow storing the state
 and payload to the persistent storage

 Link to this callback

 store_error(id, object, reason, transition)

 View Source

 (optional)

 @callback store_error(
 id :: Finitomata.fsm_name(),
 object :: Finitomata.State.payload(),
 reason :: any(),
 transition :: transition_info()
) :: :ok | {:error, any()}

The function to be called from on_transition/4 handler on non successful
 transition to allow storing the failed attempt to transition to the persistent storage

Finitomata.Persistency.Persistable protocol

The protocol to be implemented for custom data to be used in pair with
 Finitomata.Persistency.Protocol persistency adapter.
For that combination, one should implement the protocol for that particular
 struct and specify Finitomata.Persistency.Protocol as a persistency
 in a call to use Finitomata.
use Finitomata, …, persistency: Finitomata.Persistency.Protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 load(data)

 Loads the entity from some external storage

 store(data, info)

 Persists the transitioned entity to some external storage

 store_error(data, reason, info)

 Persists the error happened while an attempt to transition the entity

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 load(data)

 View Source

Loads the entity from some external storage

 Link to this function

 store(data, info)

 View Source

Persists the transitioned entity to some external storage

 Link to this function

 store_error(data, reason, info)

 View Source

Persists the error happened while an attempt to transition the entity

Finitomata.Persistency.Protocol

Default implementation of persistency adapter that does nothing but routes
 to the implementation of Finitomata.Persistency.Persistable for the data.

 Summary

 Functions

 idfy(name)

 Functions

 Link to this function

 idfy(name)

 View Source

Finitomata.TestTransitionError exception

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

OEBPS/assets/logo.png

OEBPS/assets/compiler-2.png
iiz da:od U BT

Ambiguous transition I'<:s4 =4 :_event = [:s4, :s5]> seems to be :

Make sure all possible target states are reachable! finitomata

VerelproblemallNo hay comecciones rapidas disponibles

def on_transition(:
{:0k, :s4, payload}

end

ayload) do

OEBPS/assets/compiler-1.png
defmodule Siblings.Test.Finitomata do
amoduledoc false

afsm """

idle - [to_s1!| sl
sl -5 [to_s2| s2

sl - |to_s3| s3

s2 - |to_sl| s3

s2 - |ambiguous| s3
s2 -— |ambiguous| s4
s3 - |determined| s3
s3 - |determined| s4
s4 - |determined| s4
s4 - |determined| s5

use Finitomata, fsm: i‘lfsll auto_terminate: true

7 A entemmdtienlesd, serbbaes, —avarteylend), pailed) db
{:ok, :s4, payload}
end

def on_transition(:s3, :determined, _event_payload, payload) do
{:ok, :s4, payload}

end

def on_transition(:s4, _event, _event payload, payload) do
{:0k, :s4, payload}

end

Fnd

OEBPS/assets/compiler-3.png
This FSM declaration contains ambiguous transitions which are not
Ir<:s2 = :ambiguous = [:s3, :s4]1> must be handled
Ir<:s4 — :determined + [:s4, :s5]1> must be handled finitomata

Verelproblema No hay correcciones rapidas disponibles

use Finitomata, fsm: @fsm,auto_terminate: true

def on_transition(:s2, :ambiguous, _event_payload, payload) do
{:ok, :s4, payload}
end

def on_transition(:s3, :determined, _event payload, payload) do
{:0k, :s4, payload}
end

OEBPS/assets/compiler-4.png
Ambiguous transition I'<:s3 =4 :determined = [:s3, :s4]> seems to
Make sure all possible target states are reachable! finitomata
No hay correcciones rapidas disponibles

def on_transition(:s3, :determined, _event_payload, payload) do
{:ok, :s4, payload}
end

