

 nerves_key

 v1.2.0

 Table of contents

 	NervesKey

 	Hardware

 	Modules

 	NervesKey

 	NervesKey.Config

 	NervesKey.Data

 	NervesKey.OTP

 	NervesKey.ProvisioningInfo

 	Mix Tasks

 	mix nerves_key.device

 	mix nerves_key.signer

NervesKey

[image: CircleCI]
[image: Hex version]
The NervesKey is a configured ATECC508A or ATECC608A Crypto
Authentication chip that's
used for authenticating devices with NervesHub and other cloud services. At a
high level, it is a simple hardware security module (HSM) that protects one
private key by requiring all operations on that key to occur inside chip. The
project provides access to the chip from Elixir and makes configuration
decisions to make working with the device easier. It has the following features:
	Provision blank ATECC508A/608A devices - this includes private key generation
	Storage for serial number and one-time calibration data (useful if primary
storage is on a removable MicroSD card)
	Support for Microchip's compressed X.509 certificate format to work with
Microchip's C libraries
	Support for signing device certificates so that devices can be included in a
PKI
	Support for storing a small amount of run-time configuration in unused data
EEPROM slots
	Support auxillary device/signer certificate storage to support pre-production
experimentation without needing to lock down certificates

It cannot be stressed enough that the NervesKey library locks down the
ATECC508A/608A during the provisioning process. This is a feature and is
required for normal operation, but if you're getting started, make sure that you
have a few extra parts just in case you make a mistake.
See NervesHub documentation for end-user
NervesKey and NervesHub documentation.
See hw/hw.md for hardware information or go to
Tindie/NervesKey for a
prebuilt-one.
There are a few options for purchase as breakout boards with STEMMA QT / Qwiic 4-Pin JST SH connectors
	Adafruit ATECC608 - https://www.adafruit.com/product/4314
	Sparkfun ATECC508A - https://www.sparkfun.com/products/15573
	Sparkfun ATECC608A - https://www.sparkfun.com/products/15838

Since many of us had a hard time buying ATECC parts, but had a much easier time
buying ATECC608B Trust and Go
parts, this library supports these. The Trust and Go parts come provisioned.
You can still get their serial number and device certificates, though.
Installation
The package can be installed by adding nerves_key to your list of dependencies in mix.exs:
def deps do
 [
 {:nerves_key, "~> 1.1"}
]
end
The docs can be found at https://hexdocs.pm/nerves_key.
General use
NervesKeys need to be provisioned before they can be used. That's a one-time
step that could already have been done for you. If not, see subsequent sections
for how that works.
To use any of the NervesKey APIs, you will need a "transport" to communicate
with the ATECC508A/608A that's doing all of the work. Currently the only
supported transport is I2C. The following line would be run on your Nerves
device (like a Raspberry Pi, BeagleBone or your own custom hardware):
iex> {:ok, i2c} = ATECC508A.Transport.I2C.init([])
Check if your NervesKey has been provisioned:
iex> NervesKey.provisioned?(i2c)
true
If you get false, go to the provisioning sections. If you received an error,
check that the NervesKey has a good connection to your hardware. If you have a
custom board, you may need to pass parameters to
ATECC508A.Transport.I2C.init/1 to set the correct I2C bus.
NervesKeys are provisioned with serial numbers. In production, these can be of
your choosing.
iex> NervesKey.manufacturer_sn(i2c)
"ABC12345"
Of course, the more interesting part of the NervesKeys are its storage of device
private keys and their certificates. For the common case, it stores two X.509
certificates: one for the device and one for the certificate that signed the
device certificate. The signer certificate is usually uploaded to the servers
that the device will connect to so that it can authenticate the device. Here's
how to get both of the certificates:
iex> NervesKey.device_cert(i2c)
{:OTPCertificate, ...}

Put this in a convenient form:
iex> X509.Certificate.to_pem(v()) |> IO.puts
-----BEGIN CERTIFICATE-----
stuff
stuff
stuff
-----END CERTIFICATE-----

iex> NervesKey.signer_cert(i2c)
{:OTPCertificate, ...}
The next step is to tell Erlang's SSL library that you want to use the NervesKey
when connecting to the server. For that, you'll need
nerves_key_pkcs11 which is
included as a dependency of this library. This code is somewhat tedious but
hopefully the following code fragment will help:
 {:ok, engine} = NervesKey.PKCS11.load_engine()
 {:ok, i2c} = ATECC508A.Transport.I2C.init([])

 signer_cert = X509.Certificate.to_der(NervesKey.signer_cert(i2c))
 cert = X509.Certificate.to_der(NervesKey.device_cert(i2c))
 key = NervesKey.PKCS11.private_key(engine, {:i2c, 1})
 cacerts = [signer_cert] ++ Keyword.get(opts, :trusted_certs, [])

 Tortoise.Supervisor.start_child(
 server: {
 Tortoise.Transport.SSL,
 verify: :verify_peer,
 host: Keyword.get(opts, :host),
 cert: cert,
 key: key,
 cacerts: cacerts,
 versions: [:"tlsv1.2"],
 })
Connecting to Google Cloud Platform IoT Core
While the prior Tortoise code snippet works well with services like AWS, Google Cloud Platform (GCP) requires that a device must create a JWT token in order to connect to the broker. NervesKey provides the NervesKey.sign_digest function to assist with the JWT signature portion of Google's documentation. The following code fragment can help with creating the JWT that is required as the MQTT password:
@doc """
Generate a JSON Web Token used to sign into the Google Cloud Platform
IoT Core MQTT broker.
"""
@spec generate_jwt() :: String.t()
def generate_jwt do
 jwt_expiration_in_hours = 4
 iat = System.os_time(:second)
 exp = iat + jwt_expiration_in_hours * 60 * 60
 aud = Application.get_env(:__my_project__, :gcp_project_id)

 header = %{"alg" => "ES256", "typ" => "JWT"}
 payload = %{"iat" => iat, "exp" => exp, "aud" => aud}

 sign(header, payload)
end

@doc """
Sign a JSON Web Token.
"""
@spec sign(header :: map, payload :: map) :: String.t()
def sign(header, payload) do
 {:ok, transport} = ATECC508A.Transport.I2C.init([])

 encoded_header =
 header
 |> Jason.encode!()
 |> Base.url_encode64(padding: false)

 encoded_payload =
 payload
 |> Jason.encode!()
 |> Base.url_encode64(padding: false)

 digest = :crypto.hash(:sha256, "#{encoded_header}.#{encoded_payload}")
 {:ok, signature} = NervesKey.sign_digest(transport, digest)
 encoded_signature = Base.url_encode64(signature, padding: false)

 "#{encoded_header}.#{encoded_payload}.#{encoded_signature}"
end
This fragment can allow for the dependency injection of sign if the firmware needs to run both with and without the ATECC crypto chip (i.e. on the target and on the host). JOSE.JWT.sign can be used for a host implementation.
Preparing for provisioning
The ATECC508A/608A in the NervesKey needs to be provisioned before it can be
used. Before you can do that, you'll need the following:
	A signer certificate and its private certificate (in other contexts, this is
called a certificate authority)
	A serial number for your device
	A name for the device

The signer certificate and serial number are very important. After the
provisioning process, they are locked down and cannot be changed without
replacing the ATECC508A/608A. The device name is purely informational unless you
choose to use it in your software.
NervesKeys support an auxillary set of certificates that identify the device.
These are writable after the provisioning process. Since they're writable, they
can be provisioned and updated at any time. As such, they're not programmed in
the first-time provisioning process.
Signer certificates
Part of the provisioning process creates an X.509 certificate for the NervesKey
that can be used to authenticate TLS connections. This certificate is signed by
a "signer certificate". You will eventually need to upload the signer
certificate to NervesHub or AWS IoT or wherever you would like to authenticate
devices.
Due to memory limitations, the ATECC508A/608A has a way to compress X.509
certificates on chip. See ATECC Compressed Certificate
Definition.
To comply with the limitations of compressible certificates, NervesKey provides
a mix task to create them:
$ mix nerves_key.signer create nerveskey_prod_signer1
Created signer cert, nerveskey_prod_signer1.cert and private key, nerveskey_prod_signer1.key.

Please store nerveskey_prod_signer1.key in a safe place.

nerveskey_prod_signer1.cert is ready to be uploaded to the servers that need
to authenticate devices signed by the private key.

There is no magic in the compressible certificates. They're just limited in what
they can contain. You can inspect them with openssl x509 -in nerveskey_prod_signer1.cert -text.
Check with your IoT service on how the signer certificate is used. If it's only
used for first-time device registration, then the signer certificate may not
need a long expiration time. You may also be interested in creating more than
one signer certificate if you have more than one manufacturing facility.
Manufacturer serial numbers
Be aware that there are a lot of things called serial numbers. In an attempt to
minimize confusion, we'll refer to the serial number that identifies the device
to humans and other machines as the "manufacturer serial number". This string
(it need not be a number) is commonly printed on a label on a device. It may be
embedded in a barcode. Other serial numbers exist - the ATECC508A/608A has a 9
byte one and X.509 certificates have ones. Those serial numbers have guarantees
on uniqueness. It is up to the device manufacturer to make sure that the
"manufacturer serial number" is unique. People generally want to do this for
their own sanity.
The NervesKey saves the manufacturing serial number in the one-time programmable
memory on the ATECC508A/608A and also in the device's X.509 certificate. The
device's X.509 certificate is signed, so cloud servers can trust the
manufacturer serial number.
At this point, you're the manufacturer. Decide how you'd like your serial
numbers to look. Whatever you pick, it must fit in 48-bytes. Representing the
serial number is ASCII is commonly done. If you don't want to deal with this, do
what we do (Base32-encode the ATECC508A/608A's globally unique identifier):
iex> {:ok, i2c} = ATECC508A.Transport.I2C.init([])
{:ok, {ATECC508A.Transport.I2C, {#Reference<0.879310498.269090821.27261>, 96}}}
iex> NervesKey.default_info(i2c)
%NervesKey.ProvisioningInfo{
 board_name: "NervesKey",
 manufacturer_sn: "AER245UNQOY4T3Q"
}
Provisioning
Now that you have a signer certificate, the signer's private key, and a
manufacturer serial number, you can provision a NervesKey or the ATECC508A/608A
acting as a NervesKey in your device. Usually there's some custom manufacturing
support software that performs this step. We'll provision at the iex prompt.
Use sftp to copy the signer certificate and private key to your device. We'll
put them /tmp so that they disappear on reboot:
$ sftp nerves.local
Connected to nerves.local.
sftp> cd /tmp
sftp> put nerveskey_prod_signer1.*
Uploading nerveskey_prod_signer1.cert to /tmp/nerveskey_prod_signer1.cert
nerveskey_prod_signer1.cert 100% 636 78.3KB/s 00:00
Uploading nerveskey_prod_signer1.key to /tmp/nerveskey_prod_signer1.key
nerveskey_prod_signer1.key 100% 228 78.3KB/s 00:00
sftp> exit

Next, go to the IEx prompt on the device and run the following:
Customize these or use `NervesKey.default_info/1` for defaults
cert_name="nerveskey_prod_signer1"
manufacturer_sn = "N1234"
board_name = "NervesKey"

These lines should be copy/paste
signer_cert = File.read!("/tmp/#{cert_name}.cert") |> X509.Certificate.from_pem!;true
signer_key = File.read!("/tmp/#{cert_name}.key") |> X509.PrivateKey.from_pem!();true

{:ok, i2c} = ATECC508A.Transport.I2C.init([])
provision_info = %NervesKey.ProvisioningInfo{manufacturer_sn: manufacturer_sn, board_name: board_name}

Double-check what you typed above before running this
NervesKey.provision(i2c, provision_info, signer_cert, signer_key)
If the last line returns :ok after about 2 seconds, then celebrate. You
successfully programmed a NervesKey. You can't program it again. If you try,
you'll get an error.
Provisioning an auxiliary certificate
If a situation arises where the originally provisioned certificate can't be
used, it's possible to store a second certificate on the device. This second
certificate uses the same private key as the first certificate. (It is assumed
that the algorithmic and physical protections on the first private key are
sufficient that storing two different private keys doesn't add value.) Use cases
include:
	Recovering from expiration or loss of the original signer key
	Experimentation
	Fixing errors in the original certificates

The auxiliary certificate is stored in writable memory on the ATECC508A/608A.
The NervesKey must be provisioned before the auxiliary certificate can be
written. Assuming that's been done, copy the signer certificate and private key
to your device similar to what you did before. Then run the following at the IEx
prompt:
Customize these
cert_name="nerveskey_prod_signer1"

These lines should be copy/paste
signer_cert = File.read!("/tmp/#{cert_name}.cert") |> X509.Certificate.from_pem!;true
signer_key = File.read!("/tmp/#{cert_name}.key") |> X509.PrivateKey.from_pem!();true

{:ok, i2c} = ATECC508A.Transport.I2C.init([])
NervesKey.provision_aux_certificates(i2c, signer_cert, signer_key)
Debugging without an ATECC508A/608A
Before hardware is available or if you're debugging connections to a service
(like AWS IoT) and having no luck, it can be useful to manually generate
device certificates. The nerves_key.device helper can be used for this and
does not require a NervesKey at all. Certificates generated using this helper
will look like ones stored on the NervesKey except for the important feature of
the private key part being private.
Here's an example:
mix nerves_key.device create <serial number> --signer-cert ca.cert --signer-key ca.key

Just like the signer certs, you can inspect the generated certs with openssl x509. Services that work with these certificates should work with real
NervesKeys.
Settings
The NervesKey has bytes left over for storing a few settings. The
NervesKey.put_settings/2 and NervesKey.get_settings/1 APIs let you store and
retrieve a map. Since the storage is limited and relatively slow, this is
intended for settings that rarely change or may be tightly coupled with
certificates already being stored in the NervesKey.
Internally, NervesKey calls :erlang.term_to_binary to convert the map to raw
bytes and then it spreads it across ATECC508A slots for storage. This means that
the keys used in the map take up space too.
Support
If you run into problems, please help us improve this project by filing an
issue.
ATECC508A configuration
This section describes the ATECC508A/608A configuration used for the
NervesKey. This information isn't
needed for using the library.
See Table 2-5 in the ATECC508A data sheet for documentation on the configuration
zone. This software expects the following configuration to be programmed
(unspecified bytes are either not programmable or kept as their defaults):
	Bytes	Name	Value	Description
	14	I2C_Enable	01	I2C mode
	16	I2C_Address	C0	I2C address of the module (default)
	18	OTPmode	AA	OTP is in read-only mode
	19	ChipMode	00	Default mode
	20-51	SlotConfig	N/A	See the next table
	92-95	X509Format	00..00	Unused
	96-127	KeyConfig	N/A	See next table

The slots are programmed as follows. This definition is organized to be similar
to the Microchip Standard TLS Configuration to minimize changes to other
software. Unused slots are configured so that applications can use them as they
would an EEPROM.
	Slot	Description	SlotConfig	KeyConfig	Primary properties
	0	Device private key	87 20	33 00	Private key, read only; lockable
	1	Unused	0F 0F	1C 00	Clear read/write; not lockable
	2	Unused	0F 0F	1C 00	Clear read/write; not lockable
	3	Unused	0F 0F	1C 00	Clear read/write; not lockable
	4	Unused	0F 0F	1C 00	Clear read/write; not lockable
	5	Settings (Part 3)	0F 0F	1C 00	Clear read/write; not lockable
	6	Settings (Part 2)	0F 0F	1C 00	Clear read/write; not lockable
	7	Settings (Part 1)	0F 0F	1C 00	Clear read/write; not lockable
	8	Settings (Part 0)	0F 0F	3C 00	Clear read/write; lockable
	9	Aux device certificate	0F 0F	3C 00	Clear read/write; lockable
	10	Device certificate	0F 2F	3C 00	Clear read only; lockable
	11	Signer public key	0F 2F	30 00	P256; Clear read only; lockable
	12	Signer certificate	0F 2F	3C 00	Clear read only; lockable
	13	Signer serial number +	0F 2F	3C 00	Clear read only; lockable
	14	Aux signer public key	0F 0F	3C 00	Clear read/write; lockable
	15	Aux signer certificate	0F 0F	3C 00	Clear read/write; lockable

	The signer serial number slot is currently unused since the signer's cert is
computed from the public key

The ATECC508A includes a 64 byte OTP (one-time programmable) memory. It has the
following layout:
	Bytes	Name	Contents
	0-3	Magic	4e 72 76 73
	4	Flags_MSB	0
	5	Flags_LSB	0 = 16 byte serial number, 1 = 32 byte serial number
	6-15	Board name	10 byte name for the board in ASCII (set unused bytes to 0)
	16-31	Mfg serial number	Serial number in ASCII (set unused bytes to 0)
	32-63	Serial# or User	If Flags == 1, then the rest of the serial number

Hardware

The NervesKey is a tiny circuit board with an ATECC608A cryptographic chip from
Microchip Technology. It is an inexpensive
addition to the Raspberry Pi and other embedded computing platforms that include
an I2C bus.
[image: NervesKey assembled]
The production NervesKey board contains the tiny 'UDFN' version of the part
ATECC608A-MAHDA
and a 0.1uF 0402 size capacitor. These boards are not easily assembled, so they
are professionally manufactured in high quantity for the Nerves project and
offered for sale at Tindie /
NervesKey.
Mounting to a Raspberry Pi
The easiest way to outfit a Raspberry Pi with a NervesKey is to solder it to the
'hat' expansion header on the bottom of the board as shown below. This will
connect the appropriate signals and keep the board out of the way of other uses
of the hat header. The NervesKey board is thin to support this application.
[image: NervesKey application]
Schematics
See the schematic for additional
hardware details, notes, and examples.
Links
	Microchip's ATECC508A
website
	Microchip's ATECC608A
website
	cryptoauthlib - a different,
but official C library for the ATECC508A/608A

NervesKey

This is a high level interface to provisioning and using the NervesKey
or any ATECC508A/608A that can be configured similarly.

 Anchor for this section

 Summary

 Types

 certificate_pair()

 Which device/signer certificate pair to use

 device_type()

 Which type of device to use

 Functions

 clear_aux_certificates(transport)

 Clear out the auxiliary certificates

 create_signing_key_pair(opts \\ [])

 Create a signing key pair

 default_info(transport)

 Return default provisioning info for a NervesKey

 detected?(transport)

 Detect if a NervesKey is available on the transport

 device_cert(transport, which \\ :primary, type \\ :nerves_key)

 Read the device certificate from the slot

 get_raw_settings(transport, device_type \\ :nerves_key)

 Return the settings block as a binary

 get_settings(transport, device_type \\ :nerves_key)

 Return all of the setting stored in the NervesKey as a map

 has_aux_certificates?(transport)

 Check whether the auxiliary certificates were programmed

 manufacturer_mac(transport, atom)

 IEEE EUI-48 MAC address that can be used as a unique identifier in LAN networking
This is only available on :trust_and_go

 manufacturer_sn(transport, type \\ :nerves_key)

 Read the manufacturer's serial number

 max_settings_len(atom)

 Return the max length of settings

 provision(transport, info, signer_cert, signer_key)

 Provision a NervesKey in one step.

 provision_aux_certificates(transport, signer_cert, signer_key, type \\ :nerves_key)

 Provision the auxiliary device/signer certificates on a NervesKey.

 provisioned?(transport)

 Check whether the NervesKey has been provisioned

 put_raw_settings(transport, raw_settings, device_type)

 Store raw settings on the Nerves Key

 put_settings(transport, settings, device_type \\ :nerves_key)

 Store settings on the NervesKey

 sign_digest(transport, digest)

 Sign a SHA256 digest

 signer_cert(transport, which \\ :primary, type \\ :nerves_key)

 Read the signer certificate from the slot

 ssl_opts(transport, which \\ :primary, type \\ :nerves_key)

 Return ssl_opts for using the NervesKey

 Anchor for this section

Types

 Link to this type

 certificate_pair()

 View Source

 @type certificate_pair() :: :primary | :aux

Which device/signer certificate pair to use

 Link to this type

 device_type()

 View Source

 @type device_type() :: :nerves_key | :trust_and_go

Which type of device to use

 Anchor for this section

Functions

 Link to this function

 clear_aux_certificates(transport)

 View Source

 @spec clear_aux_certificates(ATECC508A.Transport.t()) :: :ok

Clear out the auxiliary certificates
This function overwrites the auxiliary certificate slots with

 Link to this function

 create_signing_key_pair(opts \\ [])

 View Source

 @spec create_signing_key_pair(keyword()) ::
 {X509.Certificate.t(), X509.PrivateKey.t()}

Create a signing key pair
This returns a tuple that contains a new signer certificate and private key.
It is compatible with the ATECC508A certificate compression.
Options:
	:years_valid - how many years this key is valid for

 Link to this function

 default_info(transport)

 View Source

 @spec default_info(ATECC508A.Transport.t()) :: NervesKey.ProvisioningInfo.t()

Return default provisioning info for a NervesKey
This function is used for pre-programmed NervesKey devices. The
serial number is a Base32-encoded version of the ATECC508A/608A's globally unique
serial number. No additional care is needed to keep the number unique.

 Link to this function

 detected?(transport)

 View Source

 @spec detected?(ATECC508A.Transport.t()) :: boolean()

Detect if a NervesKey is available on the transport

 Link to this function

 device_cert(transport, which \\ :primary, type \\ :nerves_key)

 View Source

 @spec device_cert(ATECC508A.Transport.t(), certificate_pair(), device_type()) ::
 X509.Certificate.t()

Read the device certificate from the slot
The device must be programmed for this to work.
Examples:
iex> NervesKey.device_cert(transport, :primary, :nerves_key)
{:OTPCertificate, ...}

iex> NervesKey.device_cert(transport, :primary, :trust_and_go)
{:OTPCertificate, ...}

 Link to this function

 get_raw_settings(transport, device_type \\ :nerves_key)

 View Source

 @spec get_raw_settings(ATECC508A.Transport.t(), device_type()) ::
 {:ok, binary()} | {:error, atom()}

Return the settings block as a binary

 Link to this function

 get_settings(transport, device_type \\ :nerves_key)

 View Source

 @spec get_settings(ATECC508A.Transport.t(), device_type()) ::
 {:ok, map()} | {:error, atom()}

Return all of the setting stored in the NervesKey as a map

 Link to this function

 has_aux_certificates?(transport)

 View Source

 @spec has_aux_certificates?(ATECC508A.Transport.t()) :: boolean()

Check whether the auxiliary certificates were programmed

 Link to this function

 manufacturer_mac(transport, atom)

 View Source

IEEE EUI-48 MAC address that can be used as a unique identifier in LAN networking
This is only available on :trust_and_go

 Link to this function

 manufacturer_sn(transport, type \\ :nerves_key)

 View Source

 @spec manufacturer_sn(ATECC508A.Transport.t(), device_type()) :: binary()

Read the manufacturer's serial number

 Link to this function

 max_settings_len(atom)

 View Source

 @spec max_settings_len(device_type()) :: integer()

Return the max length of settings

 Link to this function

 provision(transport, info, signer_cert, signer_key)

 View Source

 @spec provision(
 ATECC508A.Transport.t(),
 NervesKey.ProvisioningInfo.t(),
 X509.Certificate.t(),
 X509.PrivateKey.t()
) :: :ok

Provision a NervesKey in one step.
See the README.md for how to use this. This function locks the
ATECC508A down, so you'll want to be sure what you pass it is
correct.
This function does it all. It requires the signer's private key so
handle that with care. Alternatively, please consider sending a PR
for supporting off-device signatures so that HSMs can be used.

 Link to this function

 provision_aux_certificates(transport, signer_cert, signer_key, type \\ :nerves_key)

 View Source

 @spec provision_aux_certificates(
 ATECC508A.Transport.t(),
 X509.Certificate.t(),
 X509.PrivateKey.t(),
 device_type()
) :: :ok

Provision the auxiliary device/signer certificates on a NervesKey.
This function creates and saves the auxiliary certificates. These
are only needed if the ones written by provision/4 are not
usable. They are not used unless explicitly requested. See the
README.md for details.
You may call this function multiple times after the ATECC508A
has been provisioned.

 Link to this function

 provisioned?(transport)

 View Source

 @spec provisioned?(ATECC508A.Transport.t()) :: boolean()

Check whether the NervesKey has been provisioned

 Link to this function

 put_raw_settings(transport, raw_settings, device_type)

 View Source

 @spec put_raw_settings(ATECC508A.Transport.t(), binary(), device_type()) :: :ok

Store raw settings on the Nerves Key
This overwrites all of the settings and should be used with care since there's
no protection against race conditions with other users of this API.

 Link to this function

 put_settings(transport, settings, device_type \\ :nerves_key)

 View Source

 @spec put_settings(ATECC508A.Transport.t(), map(), device_type()) :: :ok

Store settings on the NervesKey
This overwrites all of the settings that are currently on the key and should
be used with care since there's no protection against a race condition with
other NervesKey users.

 Link to this function

 sign_digest(transport, digest)

 View Source

 @spec sign_digest(ATECC508A.Transport.t(), binary()) ::
 {:ok, binary()} | {:error, atom()}

Sign a SHA256 digest

 Link to this function

 signer_cert(transport, which \\ :primary, type \\ :nerves_key)

 View Source

 @spec signer_cert(ATECC508A.Transport.t(), certificate_pair(), device_type()) ::
 X509.Certificate.t()

Read the signer certificate from the slot

 Link to this function

 ssl_opts(transport, which \\ :primary, type \\ :nerves_key)

 View Source

 @spec ssl_opts(ATECC508A.Transport.t(), certificate_pair(), device_type()) ::
 keyword()

Return ssl_opts for using the NervesKey
Pass an engine and optionally which certificate that you'd like to use.

NervesKey.Config

This is a high level interface to provisioning and using the NervesKey
or any ATECC508A/608A that can be configured similarly.

 Anchor for this section

 Summary

 Functions

 config_compatible?(transport)

 Check if the chip's configuration is compatible with the NervesKey. This only checks
what's important for the NervesKey.

 configure(transport)

 Configure an ATECC508A or ATECC608A as a NervesKey.

 configured?(transport)

 Check whether the ATECC508A has been configured or not.

 device_info(transport)

 Helper for getting information about the ATECC module.

 device_sn(transport)

 Helper for getting the ATECC508A's serial number.

 Anchor for this section

Functions

 Link to this function

 config_compatible?(transport)

 View Source

 @spec config_compatible?(ATECC508A.Transport.t()) ::
 {:error, atom()} | {:ok, boolean()}

Check if the chip's configuration is compatible with the NervesKey. This only checks
what's important for the NervesKey.

 Link to this function

 configure(transport)

 View Source

 @spec configure(ATECC508A.Transport.t()) :: {:error, atom()} | :ok

Configure an ATECC508A or ATECC608A as a NervesKey.
This can only be called once. Subsequent calls will fail.

 Link to this function

 configured?(transport)

 View Source

 @spec configured?(ATECC508A.Transport.t()) :: {:error, atom()} | {:ok, boolean()}

Check whether the ATECC508A has been configured or not.
If this returns {:ok, false}, then configure/1 can be called.

 Link to this function

 device_info(transport)

 View Source

 @spec device_info(ATECC508A.Transport.t()) :: {:error, atom()} | {:ok, map()}

Helper for getting information about the ATECC module.

 Link to this function

 device_sn(transport)

 View Source

 @spec device_sn(ATECC508A.Transport.t()) :: {:error, atom()} | {:ok, String.t()}

Helper for getting the ATECC508A's serial number.

NervesKey.Data

This module handles Data Zone data stored in the NervesKey.

 Anchor for this section

 Summary

 Functions

 clear_aux_certs(transport)

 Clear out the auxillary slots

 device_cert_slot(atom)

 Return the slot that stores the compressed device certificate.

 genkey(transport, create? \\ true)

 Create a public/private key pair

 genkey_raw(transport, create?)

 Run the genkey operation on the NervesKey private key slot

 lock(transport, otp_data, slot_data)

 signer_cert_slot(atom)

 Return the slot that stores the compressed signer certificate.

 signer_pubkey_slot(atom)

 Return the slot that stores the signer's public key.

 slot_data(device_sn, device_cert, signer_cert)

 Determine what's in all of the data slots

 write_aux_certs(transport, device_sn, device_cert, signer_cert)

 Write new device and signer certificates to the auxillary slots

 write_slots(transport, slot_data)

 Write all of the slots

 Anchor for this section

Functions

 Link to this function

 clear_aux_certs(transport)

 View Source

 @spec clear_aux_certs(ATECC508A.Transport.t()) :: :ok

Clear out the auxillary slots

 Link to this function

 device_cert_slot(atom)

 View Source

 @spec device_cert_slot(NervesKey.certificate_pair()) :: ATECC508A.Request.slot()

Return the slot that stores the compressed device certificate.

 Link to this function

 genkey(transport, create? \\ true)

 View Source

 @spec genkey(ATECC508A.Transport.t(), boolean()) ::
 {:ok, X509.PublicKey.t()} | {:error, atom()}

Create a public/private key pair
The public key is returned on success. This can only be called on devices that
have their configuration locked, but not their data.

 Link to this function

 genkey_raw(transport, create?)

 View Source

 @spec genkey_raw(ATECC508A.Transport.t(), boolean()) ::
 {:ok, ATECC508A.ecc_public_key()} | {:error, atom()}

Run the genkey operation on the NervesKey private key slot

 Link to this function

 lock(transport, otp_data, slot_data)

 View Source

 @spec lock(ATECC508A.Transport.t(), binary(), [{ATECC508A.Request.slot(), binary()}]) ::
 :ok | {:error, atom()}

 Link to this function

 signer_cert_slot(atom)

 View Source

 @spec signer_cert_slot(NervesKey.certificate_pair()) :: ATECC508A.Request.slot()

Return the slot that stores the compressed signer certificate.

 Link to this function

 signer_pubkey_slot(atom)

 View Source

 @spec signer_pubkey_slot(NervesKey.certificate_pair()) :: ATECC508A.Request.slot()

Return the slot that stores the signer's public key.

 Link to this function

 slot_data(device_sn, device_cert, signer_cert)

 View Source

 @spec slot_data(ATECC508A.serial_number(), X509.Certificate.t(), X509.Certificate.t()) ::
 [
 {ATECC508A.Request.slot(), binary()}
]

Determine what's in all of the data slots

 Link to this function

 write_aux_certs(transport, device_sn, device_cert, signer_cert)

 View Source

 @spec write_aux_certs(
 ATECC508A.Transport.t(),
 ATECC508A.serial_number(),
 X509.Certificate.t(),
 X509.Certificate.t()
) :: :ok

Write new device and signer certificates to the auxillary slots

 Link to this function

 write_slots(transport, slot_data)

 View Source

 @spec write_slots(ATECC508A.Transport.t(), [{ATECC508A.Request.slot(), binary()}]) ::
 :ok

Write all of the slots

NervesKey.OTP

This module handles OTP data stored in the NervesKey.

 Anchor for this section

 Summary

 Types

 raw()

 t()

 Functions

 from_raw(arg1)

 Convert a raw configuration to a nice map.

 from_raw!(raw)

 Convert a raw configuration to a nice map. Raise if there is an error.

 new(board_name, manufacturer_sn, user \\ nil)

 Create a NervesKey OTP data struct

 read(transport)

 Read NervesKey information from the OTP data.

 to_raw(info)

 Convert a nice config map back to a raw configuration

 write(transport, data)

 Write NervesKey information to the OTP zone.

 Anchor for this section

Types

 Link to this type

 raw()

 View Source

 @type raw() :: <<_::512>>

 Link to this type

 t()

 View Source

 @type t() :: %NervesKey.OTP{
 board_name: binary(),
 flags: 0..65535,
 manufacturer_sn: binary(),
 user: <<_::256>>
}

 Anchor for this section

Functions

 Link to this function

 from_raw(arg1)

 View Source

 @spec from_raw(raw()) :: {:ok, t()} | {:error, atom()}

Convert a raw configuration to a nice map.

 Link to this function

 from_raw!(raw)

 View Source

 @spec from_raw!(raw()) :: t()

Convert a raw configuration to a nice map. Raise if there is an error.

 Link to this function

 new(board_name, manufacturer_sn, user \\ nil)

 View Source

 @spec new(String.t(), String.t(), binary() | nil) :: t()

Create a NervesKey OTP data struct

 Link to this function

 read(transport)

 View Source

 @spec read(ATECC508A.Transport.t()) :: {:ok, t()} | {:error, atom()}

Read NervesKey information from the OTP data.

 Link to this function

 to_raw(info)

 View Source

 @spec to_raw(t()) :: raw()

Convert a nice config map back to a raw configuration

 Link to this function

 write(transport, data)

 View Source

 @spec write(ATECC508A.Transport.t(), raw()) :: :ok | {:error, atom()}

Write NervesKey information to the OTP zone.

NervesKey.ProvisioningInfo

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %NervesKey.ProvisioningInfo{
 board_name: binary(),
 manufacturer_sn: binary()
}

mix nerves_key.device

Create a device certificate without a NervesKey
create
This simulates certification creation if you don't have a NervesKey.
While this doesn't make any sense if you're using NervesKeys, it can
be handy in testing device certs that look like they're from NervesKeys.
 mix nerves_key.device create NAME --signer-cert <CERT> --signer-key <KEY>
If --years-valid is unspecified, the new certificate will be valid for
one year.

 Anchor for this section

 Summary

 Functions

 create(name, opts)

 run(args)

 Callback implementation for Mix.Task.run/1.

 usage()

 Anchor for this section

Functions

 Link to this function

 create(name, opts)

 View Source

 @spec create(
 String.t(),
 keyword()
) :: :ok

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 Link to this function

 usage()

 View Source

 @spec usage() :: no_return()

mix nerves_key.signer

Manages NervesKey signing keys
create
Create a new NervesKey signer certificate and private key pair. This
creates a compressible X.509 certificate that can be stored in the
ATECC508A's limited memory.
 mix nerves_key.signer create NAME --years-valid <YEARS>
If --years-valid is unspecified, the new certificate will be valid for
one year.

 Anchor for this section

 Summary

 Functions

 create(name, opts)

 run(args)

 Callback implementation for Mix.Task.run/1.

 usage()

 Anchor for this section

Functions

 Link to this function

 create(name, opts)

 View Source

 @spec create(
 String.t(),
 keyword()
) :: :ok

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 Link to this function

 usage()

 View Source

 @spec usage() :: no_return()

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

