

 Redix

 v1.5.0

 Table of contents

 	Redix

 	Reconnections

 	Real-world usage

 	Telemetry

 	Changelog

 	License

 	

 	Modules

 	Redix

 	Redix.Protocol

 	Redix.PubSub

 	Redix.Telemetry

 	Redix.URI

 	Exceptions

 	Redix.ConnectionError

 	Redix.Error

 	Redix.Protocol.ParseError

Redix

[image: hex.pm badge]
[image: Documentation badge]
[image: CI]
[image: Coverage Status]
Fast, pipelined, resilient Redis client for Elixir.

[image: dalle]
Redix is a Redis and Valkey client written in pure Elixir with focus on speed, correctness, and resiliency (that is, being able to automatically reconnect to Redis in case of network errors).
This README refers to the main branch of Redix, not the latest released version on Hex. Make sure to check the documentation for the version you're using.

 Features

	Idiomatic interface for sending commands to Redis
	Pipelining
	Resiliency (automatic reconnections)
	Pub/Sub
	SSL
	Redis Sentinel

 Installation

Add the :redix dependency to your mix.exs file. If you plan on connecting to a Redis server over SSL you may want to add the optional :castore dependency as well:
defp deps do
 [
 {:redix, "~> 1.1"},
 {:castore, ">= 0.0.0"}
]
end
Then, run mix deps.get in your shell to fetch the new dependencies.

 Usage

Redix is simple: it doesn't wrap Redis commands with Elixir functions. It only provides functions to send any Redis command to the Redis server. A Redis command is expressed as a list of strings making up the command and its arguments.
Connections are started via start_link/0,1,2:
{:ok, conn} = Redix.start_link(host: "example.com", port: 5000)
{:ok, conn} = Redix.start_link("redis://localhost:6379/3", name: :redix)
Commands can be sent using Redix.command/2,3:
Redix.command(conn, ["SET", "mykey", "foo"])
#=> {:ok, "OK"}
Redix.command(conn, ["GET", "mykey"])
#=> {:ok, "foo"}
Pipelines are just lists of commands sent all at once to Redis for which Redis replies with a list of responses. They can be used in Redix via Redix.pipeline/2,3:
Redix.pipeline(conn, [["INCR", "foo"], ["INCR", "foo"], ["INCRBY", "foo", "2"]])
#=> {:ok, [1, 2, 4]}
Redix.command/2,3 and Redix.pipeline/2,3 always return {:ok, result} or {:error, reason}. If you want to access the result directly and raise in case there's an error, bang! variants are provided:
Redix.command!(conn, ["PING"])
#=> "PONG"

Redix.pipeline!(conn, [["SET", "mykey", "foo"], ["GET", "mykey"]])
#=> ["OK", "foo"]
Resiliency
Redix is resilient against network errors. For example, if the connection to Redis drops, Redix will automatically try to reconnect periodically at a given "backoff" interval. Look at the documentation for the Redix module and at the "Reconnections" page in the documentation for more information on the available options and on the exact reconnection behaviour.
Redis Sentinel
Redix supports Redis Sentinel out of the box. You can specify a list of sentinels to connect to when starting a Redix (or Redix.PubSub) connection. Every time that connection will need to connect to a Redis server (the first time or after a disconnection), it will try to connect to one of the sentinels in order to ask that sentinel for the current primary or a replica.
sentinels = ["redis://sent1.example.com:26379", "redis://sent2.example.com:26379"]
{:ok, primary} = Redix.start_link(sentinel: [sentinels: sentinels, group: "main"])
Terminology
Redix doesn't support the use of the terms "master" and "slave" that are usually used with Redis Sentinel. I don't think those are good terms to use, period. Instead, Redix uses the terms "primary" and "replica". If you're interested in the discussions around this, this issue in the Redis repository might be interesting to you.
Pub/Sub
A Redix.PubSub process can be started via Redix.PubSub.start_link/2:
{:ok, pubsub} = Redix.PubSub.start_link()
Most communication with the Redix.PubSub process happens via Elixir messages (that simulate a Pub/Sub interaction with the pub/sub server).
{:ok, pubsub} = Redix.PubSub.start_link()

Redix.PubSub.subscribe(pubsub, "my_channel", self())
#=> {:ok, ref}
Confirmation of subscriptions is delivered as an Elixir message:
receive do
 {:redix_pubsub, ^pubsub, ^ref, :subscribed, %{channel: "my_channel"}} -> :ok
end
If someone publishes a message on a channel we're subscribed to:
receive do
 {:redix_pubsub, ^pubsub, ^ref, :message, %{channel: "my_channel", payload: "hello"}} ->
 IO.puts("Received a message!")
end

 Using Redix in the Real World™

Redix is low-level, but it's still built to handle most things thrown at it. For many applications, you can avoid pooling with little to no impact on performance. Read the "Real world usage" page in the documentation for more information on this and pooling strategies that work better with Redix.

 Contributing

To run the Redix test suite you will have to have Redis running locally. Redix requires a somewhat complex setup for running tests (because it needs a few instances running, for pub/sub and sentinel). For this reason, in this repository you'll find a docker-compose.yml file so that you can use Docker and docker-compose to spin up all the necessary Redis instances with just one command. Make sure you have Docker installed and then just run:
docker-compose up

Now, you're ready to run tests with the $ mix test command.

 License

Redix is released under the MIT license. See the license file.

Reconnections

Redix tries to be as resilient as possible. When the connection to Redis drops for some reason, a Redix process will try to reconnect to the Redis server.
If there are pending requests to Redix when a disconnection happens, the Redix functions will return {:error, %Redix.ConnectionError{reason: :disconnected}} to the caller. The caller is responsible to retry the request if interested.
The first reconnection attempts happens after a backoff interval decided by the :backoff_initial option. If this attempt succeeds, then Redix will start to function normally again. If this attempt fails, then subsequent reconnection attempts are made until one of them succeeds. The backoff interval between these subsequent reconnection attempts is increased exponentially (with a fixed factor of 1.5). This means that the first attempt will be made after n milliseconds, the second one after n * 1.5 milliseconds, the third one after n * 1.5 * 1.5 milliseconds, and so on. Since this growth is exponential, it won't take many attempts before this backoff interval becomes large: because of this, Redix.start_link/2 also accepts a :backoff_max option. which specifies the maximum backoff interval that should be used. The :backoff_max option can be used to simulate constant backoff after some exponential backoff attempts: for example, by passing backoff_max: 5_000 and backoff_initial: 5_000, attempts will be made regularly every 5 seconds.

 Synchronous or asynchronous connection

The :sync_connect option passed to Redix.start_link/2 decides whether Redix should initiate the TCP connection to the Redis server before or after Redix.start_link/2 returns. This option also changes the behaviour of Redix when the TCP connection can't be initiated at all.
When :sync_connect is false, then a failed attempt to initially connect to the Redis server is treated exactly as a disconnection: attempts to reconnect are made as described above. This behaviour should be used when Redix is not a vital part of your application: your application should be prepared to handle Redis being down (for example, using the non "bang" variants to issue commands to Redis and handling {:error, _} tuples).
When :sync_connect is true, then a failed attempt to initiate the connection to Redis will cause the Redix process to fail and exit. This might be what you want if Redis is vital to your application.

 If Redis is vital to your application

You should use sync_connect: true if Redis is a vital part of your application: for example, if you plan to use a Redix process under your application's supervision tree, placed before the parts of your application that depend on it in the tree (so that this way, the application won't be started until a connection to Redis has been established). With sync_connect: true, disconnections after the TCP connection has been established will behave exactly as above (with reconnection attempts at given intervals). However, if your application can't function properly without Redix, then you want to use exit_on_disconnection: true. With this option, the connection will crash when a disconnection happens. With :sync_connect and :exit_on_disconnection, you can isolate the part of your application that can't work without Redis under a supervisor and bring that part down when Redix crashes:
isolated_children = [
 {Redix, sync_connect: true, exit_on_disconnection: true},
 MyApp.MyGenServer
]

isolated_supervisor = %{
 id: MyChildSupervisor,
 type: :supervisor,
 start: {Supervisor, :start_link, [isolated_children, [strategy: :rest_for_one]]},
}

children = [
 MyApp.Child1,
 isolated_supervisor,
 MyApp.Child2
]

Supervisor.start_link(children, strategy: :one_for_one)

Real-world usage

Redix is a low-level driver, but it's still built to handle most stuff thrown at it.
Redix is built to handle multiple Elixir processes sending commands to Redis through it at the same time. It takes advantage of TCP being a full-duplex protocol (bytes are sent in both directions, often at the same time) so that the TCP stream has bytes flowing in both directions (to and from Redis). For example, if two Elixir processes send a PING command to Redis via Redix.command/2, Redix will send both commands to Redis but will concurrently start listening for the reply to these commands; at a given point, both a PING command as well as the PONG response to a previous PING could be flowing in the TCP stream of the socket that Redix is using.
There's a few different ways to use Redix and to pool connections for better high-load support.

 Single named Redix instance

For many applications, a single global Redix instance is enough. This is true especially for applications where requests to Redis are not mapping one-to-one to things like user requests (that is, a request for each user). A common pattern in these cases is to have a named Redix process started under the supervision tree:
children = [
 {Redix, name: :redix}
]
Once Redix is started and registered, you can use it with the given name from anywhere:
Redix.command(:redix, ["PING"])
#=> {:ok, "PONG"}
Note that this pattern extends to more than one global (named) Redix: for example, you could have a Redix process for handling big and infrequent requests and another one to handle short and frequent requests.

 Name-based pool

When you want to have a pool of connections, you can start many connections and register them by name. Say you want to have a pool of five Redis connections. You can start these connections in a supervisor under your supervision tree and then create a wrapper module that calls connections from the pool. The wrapper can use any strategy to choose which connection to use, for example a random strategy.
defmodule MyApp.Redix do
 @pool_size 5

 def child_spec(_args) do
 # Specs for the Redix connections.
 children =
 for index <- 0..(@pool_size - 1) do
 Supervisor.child_spec({Redix, name: :"redix_#{index}"}, id: {Redix, index})
 end

 # Spec for the supervisor that will supervise the Redix connections.
 %{
 id: RedixSupervisor,
 type: :supervisor,
 start: {Supervisor, :start_link, [children, [strategy: :one_for_one]]}
 }
 end

 def command(command) do
 Redix.command(:"redix_#{random_index()}", command)
 end

 defp random_index do
 Enum.random(0..@pool_size - 1)
 end
end
You can then start the Redix connections and their supervisor in the application's supervision tree:
def start(_type, _args) do
 children = [
 MyApp.Redix,
 # ...other children
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
And then use the new wrapper in your application:
MyApp.Redix.command(["PING"])
#=> {:ok, "PONG"}

 Caveats of the name-based pool

The name-based pool works well enough for many use cases but it has a few caveats.
The first one is that the load of requests to Redis is distributed fairly among the connections in the pool, but is not distributed in a "smart" way. For example, you might want to send less requests to connections that are behaving in a worse way, such as slower connections. This avoids bottling up connections that are already slow by sending more requests to them and distributes the load more evenly.
The other caveat is that you need to think about possible race conditions when using this kind of pool since every time you issue a command you could be using a different connections. If you issue commands from the same process, things will work since the process will block until it receives a reply so we know that Redis received and processed the command before we can issue a new one. However, if you issue commands from different processes, you can't be sure of the order that they get processed by Redis. After all, this is often true when doing things from different processes and is not particularly Redix specific.

Telemetry

Since version v0.10.0, Redix uses Telemetry for instrumentation and for having an extensible way of doing logging. Telemetry is a metrics and instrumentation library for Erlang and Elixir applications that is based on publishing events through a common interface and attaching handlers to handle those events. For more information about the library itself, see its README.
Before version v0.10.0, Redix.start_link/1 and Redix.PubSub.start_link/1 supported a :log option to control logging. For example, if you wanted to log disconnections at the :error level and reconnections and the :debug level, you would do:
Redix.start_link(log: [disconnection: :error, reconnection: :debug])
The :log option is now removed in favour of either using the default Redix event handler or writing your own.
For information on the Telemetry events that Redix emits, see Redix.Telemetry.

 Writing your own handler

If you want control on how Redix events are logged or on what level they're logged at, you can use your own event handler. For example, you can create a module to handle these events:
defmodule MyApp.RedixTelemetryHandler do
 require Logger

 def handle_event([:redix, event], _measurements, metadata, _config) do
 case event do
 :disconnection ->
 human_reason = Exception.message(metadata.reason)
 Logger.warn("Disconnected from #{metadata.address}: #{human_reason}")

 :failed_connection ->
 human_reason = Exception.message(metadata.reason)
 Logger.warn("Failed to connect to #{metadata.address}: #{human_reason}")

 :connection ->
 Logger.debug("Connected/reconnected to #{metadata.address}")
 end
 end
end
Once you have a module like this, you can attach it when your application starts:
events = [
 [:redix, :disconnection],
 [:redix, :failed_connection],
 [:redix, :connection]
]

:telemetry.attach_many(
 "my-redix-log-handler",
 events,
 &MyApp.RedixTelemetryHandler.handle_event/4,
 :config_not_needed_here
)

Changelog

 v1.5.0

 New features

	Add support for the valkey:// scheme when using URIs.

 v1.4.2

 Bug fixes and improvements

	Speed up Redix.Protocol a little bit for common responses ("OK" and friends).
	Fix a bug where :tcp_closed/:ssl_closed and :tcp_error/:ssl_error messages wouldn't arrive to the socket owner, and Redix would get stuck in a disconnected state when sending would error out. See the discussion in #265.

 v1.4.1

 Bug fixes and improvements

	Redix.PubSub.get_client_id/1 is not available only behind the :fetch_client_id_on_connect option that you can pass to Redix.PubSub.start_link/1. This option defaults to false, so that this version of Redix is compatible with Redis v4 or earlier out of the box. To opt in into the behavior desired for client-side caching and use Redix.PubSub.get_client_id/1, pass fetch_client_id_on_connect: true to Redix.PubSub.start_link/1.

 v1.4.0

 Bug fixes and improvements

	Introduce Redix.PubSub.get_client/1, which can be used to implement client-side caching.

 v1.3.0

 Bug fixes and improvements

	Improve EXITs that happen during calls to Redix functions.
	Remove call to deprecated Logger.warn/2.
	Support MFA for :password in the :sentinel option.
	Add the Redix.password/0 type.
	Add the Redix.sentinel_role/0 type.

 v1.2.4

 Bug fixes and improvements

	Remove Dialyzer PLTs from the Hex package. This has no functional impact whatsoever on the library. The PLTs were accidentally published together with the Hex package, which just results in an unnecessarily large Hex package.

 v1.2.3

 Bug fixes and improvements

	Fix a bug with validating the :socket_opts option, which required a keyword list and thus wouldn't support valid options such as :inet6.

 v1.2.2

 Bug fixes and improvements

	Make parsing large bulk strings a lot faster. See the pull request for benchmarks. This causes no functional changes, just a speed improvement.

 v1.2.1

 Bug fixes and improvements

	Relaxed the version requirement for the :castore dependency to support ~> 1.0.

 v1.2.0

 New features

	Add :telemetry_metadata option to Redis calls. This can be used to provide custom metadata for Telemetry events.
	Mark Redis sentinel support as not-experimental anymore.
	Make Redix.URI part of the public API.

 Bug fixes and improvements

	Handle Redis servers that disable the CLIENT command.
	Bump Elixir requirement to 1.11+.
	Raise an error if the :timeout option (supported by many of the function in the Redix module) is something other than a non-negative integer or :infinity. Before, timeout: nil was accidentally supported (but not documented) and would use a default timeout.

 v1.1.5

 Bug fixes and improvements

	Fix formatting of Unix domain sockets when logging
	Use Logger instead of IO.warn/2 when warning about ACLs, so that it can be silenced more easily.
	Allow the :port option to be set explicitly to 0 when using Unix domain sockets
	Support empty string as database when using Redis URIs due to changes to how URIs are handled in Elixir

 v1.1.4

 Bug fixes and improvements

	Support version 1.0 and over for the Telemetry dependency.

 v1.1.3

 Bug fixes and improvements

	The .formatter.exs file included in this repo had some filesystem permission problems. This version fixes those.

 v1.1.2

Version v1.1.1 was accidentally published with local code (from the maintainer's machine) in it instead of the code from the main Git branch. We're all humans! Version v1.1.1 has been retired.

 v1.1.1

 Bug fixes and improvements

	Version v1.1.0 started using ACLs and issuing AUTH <username> <password> when a username was provided (either via options or via URI). This broke previous documented behavior, where Redix used to ignore usernames. With this bug fix, Redix now falls back to AUTH <password> if AUTH <username> <password> fails because of the wrong number of arguments, which indicates a version of Redis earlier than version 6 (when ACLs were introduced).

 v1.1.0

 Bug fixes and improvements

	Improve handling of databases in URIs.
	Add support for ACL, introduced in Redis 6.

 v1.0.0

No bug fixes or improvements. Just enough years passed for this to become 1.0.0!

 v0.11.2

 Bug fixes and improvements

	Fix a connection process crash that would very rarely happen when connecting to sentinel nodes with the wrong password or wrong database would fail to due a TCP/SSL connection issue.

 v0.11.1

 Bug fixes and improvements

	Allow nil as a valid value for the :password start option again. v0.11.0 broke this feature.

 v0.11.0

 Breaking changes

	Use the new Telemetry event conventions for pipeline-related events. The new events are [:redix, :pipeline, :start] and [:redix, :pipeline, :stop]. They both have new measurements associated with them.
	Remove the [:redix, :reconnection] Telemetry event in favor or [:redix, :connection], which is emitted anytime there's a successful connection to a Redis server.
	Remove support for the deprecated :log start option (which was deprecated on v0.10.0).

 Bug fixes and improvements

	Add the :connection_metadata name to all connection/disconnection-related Telemetry events.
	Allow a {module, function, arguments} tuple as the value of the :password start option. This is useful to avoid password leaks in case of process crashes (and crash reports).
	Bump minimum Elixir requirement to Elixir ~> 1.7.

 v0.10.7

 Bug fixes and improvements

	Fix a crash in Redix.PubSub when non-subscribed processes attempted to unsubscribe.

 v0.10.6

 Bug fixes and improvements

	Fix a bug that caused a memory leak in some cases for Redix pub/sub connections.

 v0.10.5

 Bug fixes and improvements

	Fix default option replacement for SSL in OTP 22.2.
	Allow :gen_statem.start_link/3,4 options in Redix.start_link/2 and Redix.PubSub.start_link/2.
	Change default SSL depth from 2 to 3 (see this issue).

 v0.10.4

 Bug fixes and improvements

	Fix the default Telemetry handler for Redis Sentinel events (wasn't properly fixed in v0.10.3).
	Fix a compile-time warning about the castore library.

 v0.10.3

 Bug fixes and improvements

	Use more secure SSL default options and optionally use castore if available as a certificate store.
	Fix the default Telemetry handler for Redis Sentinel events.

 v0.10.2

 Bug fixes and improvements

	Allow a discarded username when using Redis URIs.
	Fix the Redix.command/0 type which was [binary()] but which should have been [String.Chars.t()] since we call to_string/1 on each command.

 v0.10.1

 Bug fixes and improvements

	Improve password checking in Redis URIs.
	Fix a bug when naming Redix connections with something other than a local name.

 v0.10.0

 Bug fixes and improvements

	Add support for Telemetry and publish the following events: [:redix, :pipeline], [:redix, :pipeline, :error], [:redix, :disconnection], [:redix, :reconnection], [:redix, failed_connection].
	Deprecate the :log option in Redix.start_link/1 and Redix.PubSub.start_link/1 in favour of Telemetry events and a default log handler that can be activated with Redix.Telemetry.attach_default_handler/0. See the documentation for Redix.Telemetry. This is a hard deprecation that shows a warning. Support for the :log option will be removed in the next version.
	Fix a few minor bugs in Redix.PubSub.

 v0.9.3

 Bug fixes and improvements

	Fix a bug related to quickly reconnecting PIDs in Redix.PubSub.
	Improve error messages here and there.

 v0.9.2

 Bug fixes and improvements

	Add support for URLs with the rediss scheme.
	Fix a bug where we used the wrong logging level in some places.

 v0.9.1

 Bug fixes and improvements

	Fix a bad return type from a gen_statem callback (#120).
	Improve logging for Redis Sentinel.

 v0.9.0

 Breaking changes

	Bring Redix.PubSub into Redix. Pub/Sub functionality lived in a separate library, redix_pubsub. Now, that functionality has been moved into Redix. This means that if you use redix_pubsub and upgrade your Redix version to 0.9, you will use the redix_pubsub version of Redix.PubSub. If you also upgrade your redix_pubsub version, redix_pubsub will warn and avoid compiling Redix.PubSub so you can use the latest version in Redix. In general, if you upgrade Redix to 0.9 or later just drop the redix_pubsub dependency and make sure your application works with the latest Redix.PubSub API (the message format changed slightly in recent versions).

	Add support for Redis Sentinel.

	Don't raise Redix.Error errors on non-bang variants of functions. This means that for example Redix.command/3 won't raise a Redix.Error exception in case of Redis errors (like wrong typing) and will return that error instead. In general, if you're pattern matching on {:error, _} to handle connection errors (for example, to retry after a while), now specifically match on {:error, %Redix.ConnectionError{}}. If you want to handle all possible errors the same way, keep matching on {:error, _}.

 Bug fixes and improvements

	Fix a bug that wouldn't let you use Redis URIs without host or port.
	Don't ignore the :timeout option when connecting to Redis.

 v0.8.2

 Bug fixes and improvements

	Fix an error when setting up SSL buffers (#106).

 v0.8.1

 Bug fixes and improvements

	Re-introduce start_link/2 with two lists of options, but deprecate it. It will be removed in the next Redix version.

 v0.8.0

 Breaking changes

	Drop support for Elixir < 1.6.

	Unify start_link options: there's no more separation between "Redis options" and "connection options". Now, all the options are passed in together. You can still pass a Redis URI as the first argument. This is a breaking change because now calling start_link/2 with two kewyord lists breaks. Note that start_link/2 with two keyword lists still works, but emits a warning and is deprecated.

 Bug fixes and improvements

	Rewrite the connection using gen_statem in order to drop the dependency to Connection.

	Add Redix.transaction_pipeline/3 and Redix.transaction_pipeline!/3.

	Use a timeout when connecting to Redis (which sometimes could get stuck).

	Add support for SSL 🔐

	Add Redix.noreply_command/3 and Redix.noreply_pipeline/3 (plus their bang ! variants).

 v0.7.1

	Add support for Unix domain sockets by passing host: {:local, path}.

 v0.7.0

 Breaking changes

	Drop support for Elixir < 1.3.

	Remove Redix.format_error/1.

 Bug fixes and improvements

	Add Redix.child_spec/1 for use with the child spec changes in Elixir 1.5.

 v0.6.1

	Fix some deprecation warnings around String.to_char_list/1.

 v0.6.0

 Breaking changes

	Start using Redix.ConnectionError when returning errors instead of just an atom. This is a breaking change since now Redix.command/2 and the other functions return {:error, %Redix.ConnectionError{reason: reason}} instead of {:error, reason}. If you're matching on specific error reasons, make sure to update your code; if you're formatting errors through Redix.format_error/1, you can now use Exception.message/1 on the Redix.ConnectionError structs.

 v0.5.2

	Fix some TCP error handling during the connection setup phase.

 v0.5.1

	Fix Redix.stop/1 to be synchronous and not leave zombie processes.

 v0.5.0

	Drop support for Elixir < 1.2 and OTP 17 or earlier.

 v0.4.0

	Add @lexmag to the maintainers :tada:

	Handle timeouts nicely by returning {:error, :timeout} instead of exiting (which is the default GenServer behaviour).

	Remove support for specifying a maximum number of reconnection attempts when connecting to Redis (it was the :max_reconnection_attempts option).

	Use exponential backoff when reconnecting.

	Don't reconnect right away after the connection to Redis is lost, but wait for a cooldown time first.

	Add support for :backoff_initial and :backoff_max options in Redix.start_link/2. These options are used for controlling the backoff behaviour of a Redix connection.

	Add support for the :sync_connect option when connecting to Redis.

	Add support for the :exit_on_disconnection option when connecting to Redis.

	Add support for the :log option when connecting to Redis.

	Raise ArgumentError exceptions instead of Redix.ConnectionError exceptions for stuff like empty commands.

	Raise Redix.Error exceptions from Redix.command/3 instead of returning them wrapped in {:error, _}.

	Expose Redix.format_error/1.

	Add a "Reconnections" page in the documentation.

	Extract the Pub/Sub functionality into a separate project.

 v0.3.6

	Fixed a bug in the integer parsing in Redix.Protocol.

 v0.3.5

	Redix.Protocol now uses continuations under the hood for a faster parsing experience.

	A bug in Redix.Protocol that caused massive memory leaks was fixed. This bug originated upstream in Elixir itself, and I submitted a fix for it here.

	Some improvements were made to error reporting in the Redix logging.

 v0.3.4

	Fix a bug in the connection that was replacing the provided Redis password with :redacted upon successful connection, making it impossible to reconnect in case of failure (because of the original password now being unavailable).

 v0.3.3

	Fix basically the same bug that was almost fixed in v0.3.2, but this time for real!

 v0.3.2

	Fix a bug in the protocol that failed to parse integers in some cases.

 v0.3.1

	Restructure the Redix architecture to use two Elixir processes per connection instead of one (a process that packs commands and sends them on the socket and a process that listens from the socket and replies to waiting clients); this should speed up Redix when it comes to multiple clients concurrently issuing requests to Redis.

 v0.3.0

 Breaking changes

	Change the behaviour for an empty list of command passed to Redix.pipeline/2 (Redix.pipeline(conn, [])), which now raises a Redix.ConnectionError complaining about the empty command. Before this release, the behaviour was just a connection timeout.

	Change the behaviour of empty commands passed to Redix.command/2 or Redix.pipeline/2 (for example, Redix.command(conn, []) or Redix.pipeline(conn, [["PING"], []])); empty commands now return {:error, :empty_command}. The previous behaviour was just a connection timeout.

	Remove Redix.start_link/1 in favour of just Redix.start_link/2: now Redis options are separated from the connection options. Redis options can be passed as a Redis URI as well.

 Bug fixes and improvements

	Change the error messages for most of the Redix.ConnectionError exceptions from simple atoms to more meaningful messages.

 v0.2.1

	Fix a bug with single-element lists, that were parsed as single elements (and not lists with a single element in them) by Redix.Protocol.parse_multi/2. See whatyouhide/redix#11.

 v0.2.0

	Rename Redix.NetworkError to Redix.ConnectionError (as it's more generic and more flexible).

	Add support for PubSub. The following functions have been added to the Redix module:
	Redix.subscribe/4
	Redix.subscribe!/4
	Redix.psubscribe/4
	Redix.psubscribe!/4
	Redix.unsubscribe/4
	Redix.unsubscribe!/4
	Redix.punsubscribe/4
	Redix.punsubscribe!/4
	Redix.pubsub?/2

 v0.1.0

Initial release.

License

The MIT License (MIT)

Copyright (c) 2015 Andrea Leopardi

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Redix

This module provides the main API to interface with Redis and
Valkey.

 Overview

start_link/2 starts a process that connects to Redis. Each Elixir process
started with this function maps to a client TCP connection to the specified
Redis server.
The architecture is very simple: when you issue commands to Redis (via
command/3 or pipeline/3), the Redix process sends the command to Redis right
away and is immediately able to send new commands. When a response arrives
from Redis, only then the Redix process replies to the caller with the
response. This pattern avoids blocking the Redix process for each request (until
a response arrives), increasing the performance of this driver.

 Reconnections

Redix tries to be as resilient as possible: it tries to recover automatically
from most network errors.
If there's a network error when sending data to Redis or if the connection to Redis
drops, Redix tries to reconnect. The first reconnection attempt will happen
after a fixed time interval; if this attempt fails, reconnections are
attempted until successful, and the time interval between reconnections is
increased exponentially. Some aspects of this behaviour can be configured; see
start_link/2 and the "Reconnections" page in the docs for more information.

 Sentinel

Redix supports Redis Sentinel by passing a :sentinel
option to start_link/1 (or start_link/2) instead of :host and :port. In :sentinel,
you'll specify a list of sentinel nodes to try when connecting and the name of a primary group
(see start_link/1 for more detailed information on these options). When connecting, Redix will
attempt to connect to each of the specified sentinels in the given order. When it manages to
connect to a sentinel, it will ask that sentinel for the address of the primary for the given
primary group. Then, it will connect to that primary and ask it for confirmation that it is
indeed a primary. If anything in this process doesn't go right, the next sentinel in the list
will be tried.
All of this happens in case of disconnections as well. If there's a disconnection, the whole
process of asking sentinels for a primary is executed again.
You should only care about Redis Sentinel when starting a Redix connection: once started,
using the connection will be exactly the same as the non-sentinel scenario.

 Transactions or pipelining?

Pipelining and transactions have things in common but they're fundamentally different.
With a pipeline, you're sending all commands in the pipeline at once on the connection
to Redis. This means Redis receives all commands at once, but the Redis server is not
guaranteed to process all those commands at once.
On the other hand, a MULTI/EXEC transaction guarantees that when EXEC is called
all the queued commands in the transaction are executed atomically. However, you don't
need to send all the commands in the transaction at once. If you want to combine
pipelining with MULTI/EXEC transactions, use transaction_pipeline/3.

 Skipping replies

Redis provides commands to control whether you want replies to your commands or not.
These commands are CLIENT REPLY ON, CLIENT REPLY SKIP, and CLIENT REPLY OFF.
When you use CLIENT REPLY SKIP, only the command that follows will not get a reply.
When you use CLIENT REPLY OFF, all the commands that follow will not get replies until
CLIENT REPLY ON is issued. Redix does not support these commands directly because they
would change the whole state of the connection. To skip replies, use noreply_pipeline/3
or noreply_command/3.
Skipping replies is useful to improve performance when you want to issue many commands
but are not interested in the responses to those commands.

 Blocked CLIENT commands

Some servers may block CLIENT commands. For example, Google Memorystorage is does
this.
If this is the case, the noreply_* functions mentioned above won't work.

 SSL

Redix supports SSL by passing ssl: true in start_link/1. You can use the :socket_opts
option to pass options that will be used by the SSL socket, like certificates.
If the CAStore dependency is available, Redix will pick
up its CA certificate store file automatically. You can select a different CA certificate
store by passing in the :cacertfile or :cacerts socket options. If the server uses a
self-signed certificate, such as for testing purposes, disable certificate verification by
passing verify: :verify_none in the socket options.
Some Redis servers, notably Amazon ElastiCache, use wildcard certificates that require
additional socket options for successful verification (requires OTP 21.0 or later):
Redix.start_link(
 host: "example.com", port: 9999, ssl: true,
 socket_opts: [
 customize_hostname_check: [
 match_fun: :public_key.pkix_verify_hostname_match_fun(:https)
]
]
)

 Telemetry

Redix uses Telemetry for instrumentation and logging. See Redix.Telemetry.

 Summary

 Types

 command()

 A command, which is a list of things that can be converted to strings.

 connection()

 The reference to a Redix connection.

 password()

 Passwords that can be passed to the :password option (see start_link/1).

 sentinel_role()

 The possible role of a Redis sentinel (see start_link/1).

 Functions

 child_spec(uri_or_options)

 Returns a child spec to use Redix in supervision trees.

 command(conn, command, options \\ [])

 Issues a command on the Redis server.

 command!(conn, command, options \\ [])

 Issues a command on the Redis server, raising if there's an error.

 noreply_command(conn, command, options \\ [])

 Same as command/3 but tells the Redis server to not return a response.

 noreply_command!(conn, command, options \\ [])

 Same as noreply_command/3 but raises in case of errors.

 noreply_pipeline(conn, commands, options \\ [])

 Issues a pipeline of commands to the Redis server, asking the server to not send responses.

 noreply_pipeline!(conn, commands, options \\ [])

 Same as noreply_pipeline/3 but raises in case of errors.

 pipeline(conn, commands, options \\ [])

 Issues a pipeline of commands on the Redis server.

 pipeline!(conn, commands, options \\ [])

 Issues a pipeline of commands to the Redis server, raising if there's an error.

 start_link(uri_or_options \\ [])

 Starts a connection to Redis.

 start_link(uri, other_options)

 Starts a connection to Redis.

 stop(conn, timeout \\ :infinity)

 Closes the connection to the Redis server.

 transaction_pipeline(conn, commands, options \\ [])

 Executes a MULTI/EXEC transaction.

 transaction_pipeline!(conn, commands, options \\ [])

 Executes a MULTI/EXEC transaction.

 Types

 Link to this type

 command()

 View Source

 @type command() :: [String.Chars.t()]

A command, which is a list of things that can be converted to strings.
For example, this is a valid command:
["INCR", :my_key, 1]
We recommend using strings directly to avoid needless conversions.

 Link to this type

 connection()

 View Source

 @type connection() :: GenServer.server()

The reference to a Redix connection.

 Link to this type

 password()

 View Source

 (since 1.3.0)

 @type password() ::
 String.t() | {module(), function_name :: atom(), arguments :: [term()]}

Passwords that can be passed to the :password option (see start_link/1).

 Link to this type

 sentinel_role()

 View Source

 (since 1.3.0)

 @type sentinel_role() :: :primary | :replica

The possible role of a Redis sentinel (see start_link/1).

 Functions

 Link to this function

 child_spec(uri_or_options)

 View Source

 @spec child_spec(uri | keyword() | {uri, keyword()}) :: Supervisor.child_spec()
when uri: binary()

Returns a child spec to use Redix in supervision trees.
To use Redix with the default options (same as calling Redix.start_link()):
children = [
 Redix,
 # ...
]
You can pass options:
children = [
 {Redix, host: "redix.example.com", name: :redix},
 # ...
]
You can also pass a URI:
children = [
 {Redix, "redis://redix.example.com:6380"}
]
If you want to pass both a URI and options, you can do it by passing a tuple with the URI as the
first element and the list of options (make sure it has brackets around if using literals) as
the second element:
children = [
 {Redix, {"redis://redix.example.com", [name: :redix]}}
]

 Link to this function

 command(conn, command, options \\ [])

 View Source

 @spec command(connection(), command(), keyword()) ::
 {:ok, Redix.Protocol.redis_value()}
 | {:error, atom() | Redix.Error.t() | Redix.ConnectionError.t()}

Issues a command on the Redis server.
This function sends command to the Redis server and returns the response
returned by Redis. pid must be the pid of a Redix connection. command must
be a list of strings making up the Redis command and its arguments.
The return value is {:ok, response} if the request is successful and the
response is not a Redis error. {:error, reason} is returned in case there's
an error in the request (such as losing the connection to Redis in between the
request). reason can also be a Redix.Error exception in case Redis is
reachable but returns an error (such as a type error).
If the given command is an empty command ([]), an ArgumentError
exception is raised.
This function accepts the same options as pipeline/3.

 Examples

iex> Redix.command(conn, ["SET", "mykey", "foo"])
{:ok, "OK"}
iex> Redix.command(conn, ["GET", "mykey"])
{:ok, "foo"}

iex> Redix.command(conn, ["INCR", "mykey"])
{:error, "ERR value is not an integer or out of range"}
If Redis goes down (before a reconnection happens):
iex> {:error, error} = Redix.command(conn, ["GET", "mykey"])
iex> error.reason
:closed

 Link to this function

 command!(conn, command, options \\ [])

 View Source

 @spec command!(connection(), command(), keyword()) :: Redix.Protocol.redis_value()

Issues a command on the Redis server, raising if there's an error.
This function works exactly like command/3 but:
	if the command is successful, then the result is returned directly (not wrapped in a
{:ok, result} tuple).
	if there's a Redis error or a connection error, a Redix.Error or Redix.ConnectionError
error is raised.

This function accepts the same options as command/3.

 Examples

iex> Redix.command!(conn, ["SET", "mykey", "foo"])
"OK"

iex> Redix.command!(conn, ["INCR", "mykey"])
** (Redix.Error) ERR value is not an integer or out of range
If Redis goes down (before a reconnection happens):
iex> Redix.command!(conn, ["GET", "mykey"])
** (Redix.ConnectionError) :closed

 Link to this function

 noreply_command(conn, command, options \\ [])

 View Source

 (since 0.8.0)

 @spec noreply_command(connection(), command(), keyword()) ::
 :ok | {:error, atom() | Redix.Error.t() | Redix.ConnectionError.t()}

Same as command/3 but tells the Redis server to not return a response.
This function is useful when you want to send a command but you don't care about the response.
Since the response is not returned, the return value of this function in case the command
is successfully sent to Redis is :ok.
Not receiving a response means saving traffic on the network and memory allocation for the
response. See also noreply_pipeline/3.
This function accepts the same options as pipeline/3.

 Examples

iex> Redix.noreply_command(conn, ["INCR", "mykey"])
:ok
iex> Redix.command(conn, ["GET", "mykey"])
{:ok, "1"}

 Link to this function

 noreply_command!(conn, command, options \\ [])

 View Source

 (since 0.8.0)

 @spec noreply_command!(connection(), command(), keyword()) :: :ok

Same as noreply_command/3 but raises in case of errors.

 Link to this function

 noreply_pipeline(conn, commands, options \\ [])

 View Source

 (since 0.8.0)

 @spec noreply_pipeline(connection(), [command()], keyword()) ::
 :ok | {:error, atom() | Redix.Error.t() | Redix.ConnectionError.t()}

Issues a pipeline of commands to the Redis server, asking the server to not send responses.
This function is useful when you want to issue commands to the Redis server but you don't
care about the responses. For example, you might want to set a bunch of keys but you don't
care for a confirmation that they were set. In these cases, you can save bandwidth by asking
Redis to not send replies to your commands.
Since no replies are sent back, this function returns :ok in case there are no network
errors, or {:error, reason} otherwise.any()
This function accepts the same options as pipeline/3.

 Examples

iex> commands = [["INCR", "mykey"], ["INCR", "meykey"]]
iex> Redix.noreply_pipeline(conn, commands)
:ok
iex> Redix.command(conn, ["GET", "mykey"])
{:ok, "2"}

 Link to this function

 noreply_pipeline!(conn, commands, options \\ [])

 View Source

 (since 0.8.0)

 @spec noreply_pipeline!(connection(), [command()], keyword()) :: :ok

Same as noreply_pipeline/3 but raises in case of errors.

 Link to this function

 pipeline(conn, commands, options \\ [])

 View Source

 @spec pipeline(connection(), [command()], keyword()) ::
 {:ok, [Redix.Protocol.redis_value()]}
 | {:error, atom() | Redix.Error.t() | Redix.ConnectionError.t()}

Issues a pipeline of commands on the Redis server.
commands must be a list of commands, where each command is a list of strings
making up the command and its arguments. The commands will be sent as a single
"block" to Redis, and a list of ordered responses (one for each command) will
be returned.
The return value is {:ok, results} if the request is successful, {:error, reason} otherwise.
Note that {:ok, results} is returned even if results contains one or more
Redis errors (Redix.Error structs). This is done to avoid having to walk the
list of results (a O(n) operation) to look for errors, leaving the
responsibility to the user. That said, errors other than Redis errors (like
network errors) always cause the return value to be {:error, reason}.
If commands is an empty list ([]) or any of the commands in commands is
an empty command ([]) then an ArgumentError exception is raised right
away.
Pipelining is not the same as a transaction. For more information, see the
module documentation.

 Options

	:timeout (timeout/0) - request timeout (in milliseconds). If the Redis server doesn't reply within this timeout,
{:error, %Redix.ConnectionError{reason: :timeout}} is returned. The default value is 5000.

	:telemetry_metadata (map of term/0 keys and term/0 values) - extra metadata to add to the [:redix, :pipeline, *] Telemetry events.
These end up in the :extra_metadata metadata key of these events. See Redix.Telemetry. The default value is %{}.

 Examples

iex> Redix.pipeline(conn, [["INCR", "mykey"], ["INCR", "mykey"], ["DECR", "mykey"]])
{:ok, [1, 2, 1]}

iex> Redix.pipeline(conn, [["SET", "k", "foo"], ["INCR", "k"], ["GET", "k"]])
{:ok, ["OK", %Redix.Error{message: "ERR value is not an integer or out of range"}, "foo"]}
If Redis goes down (before a reconnection happens):
iex> {:error, error} = Redix.pipeline(conn, [["SET", "mykey", "foo"], ["GET", "mykey"]])
iex> error.reason
:closed
Extra Telemetry metadata:
iex> Redix.pipeline(conn, [["PING"]], telemetry_metadata: %{connection: "My conn"})

 Link to this function

 pipeline!(conn, commands, options \\ [])

 View Source

 @spec pipeline!(connection(), [command()], keyword()) :: [
 Redix.Protocol.redis_value()
]

Issues a pipeline of commands to the Redis server, raising if there's an error.
This function works similarly to pipeline/3, except:
	if there are no errors in issuing the commands (even if there are one or
more Redis errors in the results), the results are returned directly (not
wrapped in a {:ok, results} tuple).
	if there's a connection error then a Redix.ConnectionError exception is raised.

For more information on why nothing is raised if there are one or more Redis
errors (Redix.Error structs) in the list of results, look at the
documentation for pipeline/3.
This function accepts the same options as pipeline/3.

 Examples

iex> Redix.pipeline!(conn, [["INCR", "mykey"], ["INCR", "mykey"], ["DECR", "mykey"]])
[1, 2, 1]

iex> Redix.pipeline!(conn, [["SET", "k", "foo"], ["INCR", "k"], ["GET", "k"]])
["OK", %Redix.Error{message: "ERR value is not an integer or out of range"}, "foo"]
If Redis goes down (before a reconnection happens):
iex> Redix.pipeline!(conn, [["SET", "mykey", "foo"], ["GET", "mykey"]])
** (Redix.ConnectionError) :closed

 Link to this function

 start_link(uri_or_options \\ [])

 View Source

 @spec start_link(binary() | keyword()) :: {:ok, pid()} | :ignore | {:error, term()}

Starts a connection to Redis.
This function returns {:ok, pid} if the Redix process is started
successfully.
{:ok, pid} = Redix.start_link()
The actual TCP connection to the Redis server may happen either synchronously,
before start_link/2 returns, or asynchronously. This behaviour is decided by
the :sync_connect option (see below).
This function accepts one argument which can either be an string representing
a URI or a keyword list of options.

 Using in supervision trees

Redix supports child specs, so you can use it as part of a supervision tree:
children = [
 {Redix, host: "redix.myapp.com", name: :redix}
]
See child_spec/1 for more information.

 Using a Redis URI

In case uri_or_options is a Redis URI, it must be in the form:
redis://[username:password@]host[:port][/db]
Here are some examples of valid URIs:
	redis://localhost
	redis://:secret@localhost:6397
	redis://username:secret@localhost:6397
	redis://example.com:6380/1
	rediss://example.com:6380/1 (for SSL connections)
	valkey://example.com:6380/1 (for Valkey connections)

The only mandatory thing when using URIs is the host. All other elements are optional
and their default value can be found in the "Options" section below.
In earlier versions of Redix, the username in the URI was ignored. Redis 6 introduced ACL
support. Now, Redix supports usernames as well.
Valkey
The valkey:// schema is supported since Redix v1.5.0.

 Options

The following options can be used to specify the connection:
	:host (String.t/0) - the host where the Redis server is running. If you are using a Redis URI, you cannot
use this option. Defaults to "localhost".

	:port (non_neg_integer/0) - the port on which the Redis server is running. If you are using a Redis URI, you cannot
use this option. Defaults to 6379.

	:database (String.t/0 or non_neg_integer/0) - the database to connect to. Defaults to nil, meaning Redix doesn't connect to a
specific database (the default in this case is database 0). When this option is provided,
all Redix does is issue a SELECT command to Redis in order to select the given database.

	:username - the username to connect to Redis. Defaults to nil, meaning no username is used.
Redis supports usernames only since Redis 6 (see the ACL
documentation). If a username is provided (either via
options or via URIs) and the Redis version used doesn't support ACL, then Redix falls
back to using just the password and emits a warning. In future Redix versions, Redix
will raise if a username is passed and the Redis version used doesn't support ACL.

	:password (Redix.password/0) - the password used to connect to Redis. Defaults to
nil, meaning no password is used. When this option is provided, all Redix
does is issue an AUTH command to Redis in order to authenticate. MFAs are also
supported in the form of {module, function, arguments}. This can be used
to fetch the password dynamically on every reconnection but most importantly to
hide the password from crash reports in case the Redix connection crashes for
any reason. For example, you can set this option to:
{System, :fetch_env!, ["REDIX_PASSWORD"]}.

	:timeout (timeout/0) - connection timeout (in milliseconds) directly passed to the network layer. The default value is 5000.

	:sync_connect (boolean/0) - decides whether Redix should initiate the network connection to the Redis server before
or after returning from start_link/1. This option also changes some reconnection
semantics; read the "Reconnections" page in the documentation for more information. The default value is false.

	:exit_on_disconnection (boolean/0) - if true, the Redix server will exit if it fails to connect or disconnects from Redis.
Note that setting this option to true means that the :backoff_initial and
:backoff_max options will be ignored. The default value is false.

	:backoff_initial (non_neg_integer/0) - the initial backoff time (in milliseconds), which is the time that the Redix process
will wait before attempting to reconnect to Redis after a disconnection or failed first
connection. See the "Reconnections" page in the docs for more information. The default value is 500.

	:backoff_max (timeout/0) - the maximum length (in milliseconds) of the time interval used between reconnection
attempts. See the "Reconnections" page in the docs for more information. The default value is 30000.

	:ssl (boolean/0) - if true, connect through SSL, otherwise through TCP. The :socket_opts option applies
to both SSL and TCP, so it can be used for things like certificates. See :ssl.connect/4. The default value is false.

	:name (term/0) - Redix is bound to the same registration rules as a GenServer. See the GenServer
documentation for more information.

	:socket_opts (list of term/0) - specifies a list of options that are passed to the network layer when connecting to
the Redis server. Some socket options (like :active or :binary) will be
overridden by Redix so that it functions properly.
If ssl: true, then these are added to the default: [verify: :verify_peer, depth: 3].
If the CAStore dependency is available, the :cacertfile option is added
to the SSL options by default as well.
The default value is [].

	:hibernate_after (non_neg_integer/0) - if present, the Redix connection process awaits any message for the given number
of milliseconds and if no message is received, the process goes into hibernation
automatically (by calling :proc_lib.hibernate/3). See :gen_statem.start_opt/0.
Not present by default.

	:spawn_opt (keyword/0) - if present, its value is passed as options to the Redix connection process as in
Process.spawn/4. See :gen_statem.start_opt/0. Not present by default.

	:debug (keyword/0) - if present, the corresponding function in the
:sys module is invoked.

	:sentinel (keyword/0) - options to use Redis Sentinel. If this option is present, you cannot use the :host and
:port options. See the Sentinel Options section below.

 Sentinel Options

	:sentinels (list of String.t/0 or keyword/0) - Required. a list of sentinel addresses. Each element in this list is the address
of a sentinel to be contacted in order to obtain the address of a primary. The address of
a sentinel can be passed as a Redis URI (see the "Using a Redis URI" section) or
a keyword list with :host, :port, :password options (same as when connecting to a
Redis instance directly). Note that the password can either be passed in the sentinel
address or globally — see the :password option below.

	:group (String.t/0) - Required. the name of the group that identifies the primary in the sentinel configuration.

	:role (Redix.sentinel_role/0) - if :primary, the connection will be established
with the primary for the given group. If :replica, Redix will ask the sentinel for all
the available replicas for the given group and try to connect to one of them
at random. The default value is :primary.

	:socket_opts (keyword/0) - socket options for connecting to each sentinel. Same as the :socket_opts option
described above. The default value is [].

	:timeout (timeout/0) - the timeout (in milliseconds or :infinity) that will be used to
interact with the sentinels. This timeout will be used as the timeout when connecting to
each sentinel and when asking sentinels for a primary. The Redis documentation suggests
to keep this timeout short so that connection to Redis can happen quickly. The default value is 500.

	:ssl (boolean/0) - whether to use SSL to connect to each sentinel. The default value is false.

	:password (Redix.password/0) - if you don't want to specify a password for each sentinel you
list, you can use this option to specify a password that will be used to authenticate
on sentinels if they don't specify a password. This option is recommended over passing
a password for each sentinel because in the future we might do sentinel auto-discovery,
which means authentication can only be done through a global password that works for all
sentinels.

 Examples

iex> Redix.start_link()
{:ok, #PID<...>}

iex> Redix.start_link(host: "example.com", port: 9999, password: "secret")
{:ok, #PID<...>}

iex> Redix.start_link(database: 3, name: :redix_3)
{:ok, #PID<...>}

 Link to this function

 start_link(uri, other_options)

 View Source

 @spec start_link(
 binary(),
 keyword()
) :: {:ok, pid()} | :ignore | {:error, term()}

Starts a connection to Redis.
This is the same as start_link/1, but the URI and the options get merged. other_opts have
precedence over the things specified in uri. Take this code:
Redix.start_link("redis://localhost:6379", port: 6380)
In this example, port 6380 will be used.

 Link to this function

 stop(conn, timeout \\ :infinity)

 View Source

 @spec stop(connection(), timeout()) :: :ok

Closes the connection to the Redis server.
This function is synchronous and blocks until the given Redix connection frees
all its resources and disconnects from the Redis server. timeout can be
passed to limit the amount of time allowed for the connection to exit; if it
doesn't exit in the given interval, this call exits.

 Examples

iex> Redix.stop(conn)
:ok

 Link to this function

 transaction_pipeline(conn, commands, options \\ [])

 View Source

 (since 0.8.0)

 @spec transaction_pipeline(connection(), [command()], keyword()) ::
 {:ok, [Redix.Protocol.redis_value()]}
 | {:error, atom() | Redix.Error.t() | Redix.ConnectionError.t()}

Executes a MULTI/EXEC transaction.
Redis supports something akin to transactions. It works by sending a MULTI command,
then some commands, and then an EXEC command. All the commands after MULTI are
queued until EXEC is issued. When EXEC is issued, all the responses to the queued
commands are returned in a list.
This function accepts the same options as pipeline/3.

 Examples

To run a MULTI/EXEC transaction in one go, use this function and pass a list of
commands to use in the transaction:
iex> Redix.transaction_pipeline(conn, [["SET", "mykey", "foo"], ["GET", "mykey"]])
{:ok, ["OK", "foo"]}

 Problems with transactions

There's an inherent problem with Redix's architecture and MULTI/EXEC transaction.
A Redix process is a single connection to Redis that can be used by many clients. If
a client A sends MULTI and client B sends a command before client A sends EXEC,
client B's command will be part of the transaction. This is intended behaviour, but
it might not be what you expect. This is why transaction_pipeline/3 exists: this function
wraps commands in MULTI/EXEC but sends all in a pipeline. Since everything
is sent in the pipeline, it's sent at once on the connection and no commands can
end up in the middle of the transaction.

 Running MULTI/EXEC transactions manually

There are still some cases where you might want to start a transaction with MULTI,
then send commands from different processes that you actively want to be in the
transaction, and then send an EXEC to run the transaction. It's still fine to do
this with command/3 or pipeline/3, but remember what explained in the section
above. If you do this, do it in an isolated connection (open a new one if necessary)
to avoid mixing things up.

 Link to this function

 transaction_pipeline!(conn, commands, options \\ [])

 View Source

 (since 0.8.0)

 @spec transaction_pipeline!(connection(), [command()], keyword()) :: [
 Redix.Protocol.redis_value()
]

Executes a MULTI/EXEC transaction.
Same as transaction_pipeline/3, but returns the result directly instead of wrapping it
in an {:ok, result} tuple or raises if there's an error.
This function accepts the same options as pipeline/3.

 Examples

iex> Redix.transaction_pipeline!(conn, [["SET", "mykey", "foo"], ["GET", "mykey"]])
["OK", "foo"]

Redix.Protocol

This module provides functions to work with the Redis binary
protocol.

 Summary

 Types

 on_parse(value)

 The return value of parsing functions in this module.

 redis_value()

 Represents a Redis value.

 Functions

 pack(items)

 Packs a list of Elixir terms to a Redis (RESP) array.

 parse(data)

 Parses a RESP-encoded value from the given data.

 parse_multi(data, nelems)

 Parses n RESP-encoded values from the given data.

 Types

 Link to this type

 on_parse(value)

 View Source

 @type on_parse(value) ::
 {:ok, value, binary()} | {:continuation, (binary() -> on_parse(value))}

The return value of parsing functions in this module.

 Link to this type

 redis_value()

 View Source

 @type redis_value() :: binary() | integer() | nil | Redix.Error.t() | [redis_value()]

Represents a Redis value.

 Functions

 Link to this function

 pack(items)

 View Source

 @spec pack([String.Chars.t()]) :: iodata()

Packs a list of Elixir terms to a Redis (RESP) array.
This function returns an iodata (instead of a binary) because the packed
result is usually sent to Redis through :gen_tcp.send/2 or similar. It can
be converted to a binary with IO.iodata_to_binary/1.
All elements of elems are converted to strings with to_string/1, hence
this function supports encoding everything that implements String.Chars.

 Examples

iex> iodata = Redix.Protocol.pack(["SET", "mykey", 1])
iex> IO.iodata_to_binary(iodata)
"*3\r\n$3\r\nSET\r\n$5\r\nmykey\r\n$1\r\n1\r\n"

 Link to this function

 parse(data)

 View Source

 @spec parse(binary()) :: on_parse(redis_value())

Parses a RESP-encoded value from the given data.
Returns {:ok, value, rest} if a value is parsed successfully, or a
continuation in the form {:continuation, fun} if the data is incomplete.

 Examples

iex> Redix.Protocol.parse("+OK\r\ncruft")
{:ok, "OK", "cruft"}

iex> Redix.Protocol.parse("-ERR wrong type\r\n")
{:ok, %Redix.Error{message: "ERR wrong type"}, ""}

iex> {:continuation, fun} = Redix.Protocol.parse("+OK")
iex> fun.("\r\n")
{:ok, "OK", ""}

 Link to this function

 parse_multi(data, nelems)

 View Source

 @spec parse_multi(binary(), non_neg_integer()) :: on_parse([redis_value()])

Parses n RESP-encoded values from the given data.
Each element is parsed as described in parse/1. If an element can't be fully
parsed or there are less than n elements encoded in data, then a
continuation in the form of {:continuation, fun} is returned. Otherwise,
{:ok, values, rest} is returned. If there's an error in decoding, a
Redix.Protocol.ParseError exception is raised.

 Examples

iex> Redix.Protocol.parse_multi("+OK\r\n+COOL\r\n", 2)
{:ok, ["OK", "COOL"], ""}

iex> {:continuation, fun} = Redix.Protocol.parse_multi("+OK\r\n", 2)
iex> fun.("+OK\r\n")
{:ok, ["OK", "OK"], ""}

Redix.PubSub

Interface for the Redis pub/sub functionality.
The rest of this documentation will assume the reader knows how pub/sub works
in Redis and knows the meaning of the following Redis commands:
	SUBSCRIBE and UNSUBSCRIBE
	PSUBSCRIBE and PUNSUBSCRIBE
	PUBLISH

 Usage

Each Redix.PubSub process is able to subscribe to/unsubscribe from multiple
Redis channels/patterns, and is able to handle multiple Elixir processes subscribing
each to different channels/patterns.
A Redix.PubSub process can be started via Redix.PubSub.start_link/2; such
a process holds a single TCP (or SSL) connection to the Redis server.
Redix.PubSub has a message-oriented API. Subscribe operations are synchronous and return
a reference that can then be used to match on all messages sent by the Redix.PubSub process.
When Redix.PubSub registers a subscriptions, the subscriber process will receive a
confirmation message:
{:ok, pubsub} = Redix.PubSub.start_link()
{:ok, ref} = Redix.PubSub.subscribe(pubsub, "my_channel", self())

receive do message -> message end
#=> {:redix_pubsub, ^pubsub, ^ref, :subscribed, %{channel: "my_channel"}}
When the :subscribed message is received, it's guaranteed that the Redix.PubSub process has
subscribed to the given channel. This means that after a subscription, messages published to
a channel are delivered to all Elixir processes subscribed to that channel via Redix.PubSub:
Someone publishes "hello" on "my_channel"
receive do message -> message end
#=> {:redix_pubsub, ^pubsub, ^ref, :message, %{channel: "my_channel", payload: "hello"}}
It's advised to wait for the subscription confirmation for a channel before doing any
other operation involving that channel.
Note that unsubscription confirmations are delivered right away even if the Redix.PubSub
process is still subscribed to the given channel: this is by design, as once a process
is unsubscribed from a channel it won't receive messages anyways, even if the Redix.PubSub
process still receives them.
Messages are also delivered as a confirmation of an unsubscription as well as when the
Redix.PubSub connection goes down. See the "Messages" section below.

 Messages

Most of the communication with a PubSub connection is done via (Elixir) messages: the
subscribers of these messages will be the processes specified at subscription time (in
subscribe/3 or psubscribe/3). All Redix.PubSub messages have the same form: they're a
five-element tuple that looks like this:
{:redix_pubsub, pubsub_pid, subscription_ref, message_type, message_properties}
where:
	pubsub_pid is the pid of the Redix.PubSub process that sent this message.

	subscription_ref is the reference returned by subscribe/3 or psubscribe/3.

	message_type is the type of this message, such as :subscribed for subscription
confirmations, :message for pub/sub messages, and so on.

	message_properties is a map of data related to that that varies based on message_type.

Given this format, it's easy to match on all Redix pub/sub messages for a subscription
as {:redix_pubsub, _, ^subscription_ref, _, _}.

 List of possible message types and properties

The following is a comprehensive list of possible message types alongside the properties
that each can have.
	:subscribe - sent as confirmation of subscription to a channel (via subscribe/3 or
after a disconnection and reconnection). One :subscribe message is received for every
channel a process subscribed to. :subscribe messages have the following properties:
	:channel - the channel the process has been subscribed to.

	:psubscribe - sent as confirmation of subscription to a pattern (via psubscribe/3 or
after a disconnection and reconnection). One :psubscribe message is received for every
pattern a process subscribed to. :psubscribe messages have the following properties:
	:pattern - the pattern the process has been subscribed to.

	:unsubscribe - sent as confirmation of unsubscription from a channel (via
unsubscribe/3). :unsubscribe messages are received for every channel a
process unsubscribes from. :unsubscribe messages havethe following properties:
	:channel - the channel the process has unsubscribed from.

	:punsubscribe - sent as confirmation of unsubscription from a pattern (via
unsubscribe/3). :unsubscribe messages are received for every pattern a
process unsubscribes from. :unsubscribe messages havethe following properties:
	:pattern - the pattern the process has unsubscribed from.

	:message - sent to subscribers to a given channel when a message is published on
that channel. :message messages have the following properties:
	:channel - the channel the message was published on
	:payload - the contents of the message

	:pmessage - sent to subscribers to a given pattern when a message is published on
a channel that matches that pattern. :pmessage messages have the following properties:
	:channel - the channel the message was published on
	:pattern - the original pattern that matched the channel
	:payload - the contents of the message

	:disconnected messages - sent to all subscribers to all channels/patterns when the
connection to Redis is interrupted. :disconnected messages have the following properties:
	:error - the reason for the disconnection, a Redix.ConnectionError
exception struct (that can be raised or turned into a message through
Exception.message/1).

 Reconnections

Redix.PubSub tries to be resilient to failures: when the connection with
Redis is interrupted (for whatever reason), it will try to reconnect to the
Redis server. When a disconnection happens, Redix.PubSub will notify all
clients subscribed to all channels with a {:redix_pubsub, pid, subscription_ref, :disconnected, _} message (more on the format of messages above). When the connection goes
back up, Redix.PubSub takes care of actually re-subscribing to the
appropriate channels on the Redis server and subscribers are notified with a
{:redix_pubsub, pid, subscription_ref, :subscribed | :psubscribed, _} message, the same as
when a client subscribes to a channel/pattern.
Note that if exit_on_disconnection: true is passed to
Redix.PubSub.start_link/2, the Redix.PubSub process will exit and not send
any :disconnected messages to subscribed clients.

 Sentinel support

Works exactly the same as for normal Redix connections. See the documentation for Redix
for more information.

 Examples

This is an example of a workflow using the PubSub functionality; it uses
Redix as a Redis client for publishing
messages.
{:ok, pubsub} = Redix.PubSub.start_link()
{:ok, client} = Redix.start_link()

Redix.PubSub.subscribe(pubsub, "my_channel", self())
#=> {:ok, ref}

We wait for the subscription confirmation
receive do
 {:redix_pubsub, ^pubsub, ^ref, :subscribed, %{channel: "my_channel"}} -> :ok
end

Redix.command!(client, ~w(PUBLISH my_channel hello)

receive do
 {:redix_pubsub, ^pubsub, ^ref, :message, %{channel: "my_channel"} = properties} ->
 properties.payload
end
#=> "hello"

Redix.PubSub.unsubscribe(pubsub, "foo", self())
#=> :ok

We wait for the unsubscription confirmation
receive do
 {:redix_pubsub, ^pubsub, ^ref, :unsubscribed, _} -> :ok
end

 Summary

 Types

 connection()

 subscriber()

 Functions

 get_client_id(conn)

 Gets the Redis CLIENT ID associated with a connection.

 psubscribe(conn, patterns, subscriber \\ self())

 Subscribes subscriber to the given pattern or list of patterns.

 punsubscribe(conn, patterns, subscriber \\ self())

 Unsubscribes subscriber from the given pattern or list of patterns.

 start_link(uri_or_opts \\ [])

 Starts a pub/sub connection to Redis.

 start_link(uri, opts)

 Same as start_link/1 but using both a Redis URI and a list of options.

 stop(conn, timeout \\ :infinity)

 Stops the given pub/sub process.

 subscribe(conn, channels, subscriber \\ self())

 Subscribes subscriber to the given channel or list of channels.

 unsubscribe(conn, channels, subscriber \\ self())

 Unsubscribes subscriber from the given channel or list of channels.

 Types

 Link to this type

 connection()

 View Source

 @type connection() :: GenServer.server()

 Link to this type

 subscriber()

 View Source

 @type subscriber() :: pid() | port() | atom() | {atom(), node()}

 Functions

 Link to this function

 get_client_id(conn)

 View Source

 (since 1.4.0)

 @spec get_client_id(connection()) ::
 {:ok, integer()} | {:error, Redix.ConnectionError.t()}

Gets the Redis CLIENT ID associated with a connection.
This is useful for implementing client-side
caching, where you can
subscribe your pub/sub connection to changes on keys.
If the pub/sub connection is currently disconnected, this function returns
{:error, error}.
This function requires the Redix.PubSub connection to have been started
with the fetch_client_id_on_connect: true option. This requires
Redis 5.0.0 or later, since that's where the
CLIENT ID command
was introduced.

 Examples

iex> Redix.PubSub.get_client_id(conn)
{:ok, 123}
If the connection is not currently connected:
iex> Redix.PubSub.get_client_id(conn)
{:error, %Redix.ConnectionError{reason: :disconnected}
If the connection was not storing the client ID:
iex> Redix.PubSub.get_client_id(conn)
{:error, %Redix.ConnectionError{reason: :client_id_not_stored}

 Link to this function

 psubscribe(conn, patterns, subscriber \\ self())

 View Source

 @spec psubscribe(connection(), String.t() | [String.t()], subscriber()) ::
 {:ok, reference()}

Subscribes subscriber to the given pattern or list of patterns.
Works like subscribe/3 but subscribing subscriber to a pattern (or list of
patterns) instead of regular channels.
Upon successful subscription to each of the patterns, a message will be sent
to subscriber with the following form:
{:redix_pubsub, pid, ^subscription_ref, :psubscribed, %{pattern: pattern}}
See the documentation for Redix.PubSub for more information about the format
of messages.

 Examples

iex> Redix.psubscribe(conn, "ba*", self())
:ok
iex> flush()
{:redix_pubsub, ^conn, ^subscription_ref, :psubscribe, %{pattern: "ba*"}}
:ok

 Link to this function

 punsubscribe(conn, patterns, subscriber \\ self())

 View Source

 @spec punsubscribe(connection(), String.t() | [String.t()], subscriber()) :: :ok

Unsubscribes subscriber from the given pattern or list of patterns.
This function basically "undoes" what psubscribe/3 does: it unsubscribes
subscriber from the given pattern or list of patterns.
Upon successful unsubscription from each of the patterns, a message will be
sent to subscriber with the following form:
{:redix_pubsub, pid, ^subscription_ref, :punsubscribed, %{pattern: pattern}}
See the documentation for Redix.PubSub for more information about the format
of messages.

 Examples

iex> Redix.punsubscribe(conn, "foo_*", self())
:ok
iex> flush()
{:redix_pubsub, ^conn, ^subscription_ref, :punsubscribed, %{pattern: "foo_*"}}
:ok

 Link to this function

 start_link(uri_or_opts \\ [])

 View Source

 @spec start_link(String.t() | keyword()) :: {:ok, pid()} | :ignore | {:error, term()}

Starts a pub/sub connection to Redis.
This function returns {:ok, pid} if the PubSub process is started successfully.
The actual TCP/SSL connection to the Redis server may happen either synchronously,
before start_link/2 returns, or asynchronously: this behaviour is decided by
the :sync_connect option (see below).
This function accepts one argument, either a Redis URI as a string or a list of options.

 Redis URI

In case uri_or_opts is a Redis URI, it must be in the form:
redis://[:password@]host[:port][/db]
Here are some examples of valid URIs:
redis://localhost
redis://:secret@localhost:6397
redis://username:secret@localhost:6397
redis://example.com:6380/1
The only mandatory thing when using URIs is the host. All other elements are optional
and their default value can be found in the "Options" section below.
In earlier versions of Redix, the username in the URI was ignored. Redis 6 introduced ACL
support. Now, Redix supports usernames as well.

 Options

The following options can be used to specify the connection:
	:host (String.t/0) - the host where the Redis server is running. If you are using a Redis URI, you cannot
use this option. Defaults to "localhost".

	:port (non_neg_integer/0) - the port on which the Redis server is running. If you are using a Redis URI, you cannot
use this option. Defaults to 6379.

	:database (String.t/0 or non_neg_integer/0) - the database to connect to. Defaults to nil, meaning Redix doesn't connect to a
specific database (the default in this case is database 0). When this option is provided,
all Redix does is issue a SELECT command to Redis in order to select the given database.

	:username - the username to connect to Redis. Defaults to nil, meaning no username is used.
Redis supports usernames only since Redis 6 (see the ACL
documentation). If a username is provided (either via
options or via URIs) and the Redis version used doesn't support ACL, then Redix falls
back to using just the password and emits a warning. In future Redix versions, Redix
will raise if a username is passed and the Redis version used doesn't support ACL.

	:password (Redix.password/0) - the password used to connect to Redis. Defaults to
nil, meaning no password is used. When this option is provided, all Redix
does is issue an AUTH command to Redis in order to authenticate. MFAs are also
supported in the form of {module, function, arguments}. This can be used
to fetch the password dynamically on every reconnection but most importantly to
hide the password from crash reports in case the Redix connection crashes for
any reason. For example, you can set this option to:
{System, :fetch_env!, ["REDIX_PASSWORD"]}.

	:timeout (timeout/0) - connection timeout (in milliseconds) directly passed to the network layer. The default value is 5000.

	:sync_connect (boolean/0) - decides whether Redix should initiate the network connection to the Redis server before
or after returning from start_link/1. This option also changes some reconnection
semantics; read the "Reconnections" page in the documentation for more information. The default value is false.

	:exit_on_disconnection (boolean/0) - if true, the Redix server will exit if it fails to connect or disconnects from Redis.
Note that setting this option to true means that the :backoff_initial and
:backoff_max options will be ignored. The default value is false.

	:backoff_initial (non_neg_integer/0) - the initial backoff time (in milliseconds), which is the time that the Redix process
will wait before attempting to reconnect to Redis after a disconnection or failed first
connection. See the "Reconnections" page in the docs for more information. The default value is 500.

	:backoff_max (timeout/0) - the maximum length (in milliseconds) of the time interval used between reconnection
attempts. See the "Reconnections" page in the docs for more information. The default value is 30000.

	:ssl (boolean/0) - if true, connect through SSL, otherwise through TCP. The :socket_opts option applies
to both SSL and TCP, so it can be used for things like certificates. See :ssl.connect/4. The default value is false.

	:name (term/0) - Redix is bound to the same registration rules as a GenServer. See the GenServer
documentation for more information.

	:socket_opts (list of term/0) - specifies a list of options that are passed to the network layer when connecting to
the Redis server. Some socket options (like :active or :binary) will be
overridden by Redix so that it functions properly.
If ssl: true, then these are added to the default: [verify: :verify_peer, depth: 3].
If the CAStore dependency is available, the :cacertfile option is added
to the SSL options by default as well.
The default value is [].

	:hibernate_after (non_neg_integer/0) - if present, the Redix connection process awaits any message for the given number
of milliseconds and if no message is received, the process goes into hibernation
automatically (by calling :proc_lib.hibernate/3). See :gen_statem.start_opt/0.
Not present by default.

	:spawn_opt (keyword/0) - if present, its value is passed as options to the Redix connection process as in
Process.spawn/4. See :gen_statem.start_opt/0. Not present by default.

	:debug (keyword/0) - if present, the corresponding function in the
:sys module is invoked.

	:fetch_client_id_on_connect (boolean/0) - if true, Redix will fetch the client ID after connecting to Redis and before
subscribing to any topic. You can then read the client ID of the pub/sub connection
with get_client_id/1. This option uses the CLIENT ID command under the hood,
which is available since Redis 5.0.0. This option is available since v1.4.1. The default value is false.

	:sentinel (keyword/0) - options to use Redis Sentinel. If this option is present, you cannot use the :host and
:port options. See the Sentinel Options section below.

 Sentinel Options

	:sentinels (list of String.t/0 or keyword/0) - Required. a list of sentinel addresses. Each element in this list is the address
of a sentinel to be contacted in order to obtain the address of a primary. The address of
a sentinel can be passed as a Redis URI (see the "Using a Redis URI" section) or
a keyword list with :host, :port, :password options (same as when connecting to a
Redis instance directly). Note that the password can either be passed in the sentinel
address or globally — see the :password option below.

	:group (String.t/0) - Required. the name of the group that identifies the primary in the sentinel configuration.

	:role (Redix.sentinel_role/0) - if :primary, the connection will be established
with the primary for the given group. If :replica, Redix will ask the sentinel for all
the available replicas for the given group and try to connect to one of them
at random. The default value is :primary.

	:socket_opts (keyword/0) - socket options for connecting to each sentinel. Same as the :socket_opts option
described above. The default value is [].

	:timeout (timeout/0) - the timeout (in milliseconds or :infinity) that will be used to
interact with the sentinels. This timeout will be used as the timeout when connecting to
each sentinel and when asking sentinels for a primary. The Redis documentation suggests
to keep this timeout short so that connection to Redis can happen quickly. The default value is 500.

	:ssl (boolean/0) - whether to use SSL to connect to each sentinel. The default value is false.

	:password (Redix.password/0) - if you don't want to specify a password for each sentinel you
list, you can use this option to specify a password that will be used to authenticate
on sentinels if they don't specify a password. This option is recommended over passing
a password for each sentinel because in the future we might do sentinel auto-discovery,
which means authentication can only be done through a global password that works for all
sentinels.

 Examples

iex> Redix.PubSub.start_link()
{:ok, #PID<...>}

iex> Redix.PubSub.start_link(host: "example.com", port: 9999, password: "secret")
{:ok, #PID<...>}

iex> Redix.PubSub.start_link([database: 3], [name: :redix_3])
{:ok, #PID<...>}

 Link to this function

 start_link(uri, opts)

 View Source

 @spec start_link(
 String.t(),
 keyword()
) :: {:ok, pid()} | :ignore | {:error, term()}

Same as start_link/1 but using both a Redis URI and a list of options.
In this case, options specified in opts have precedence over values specified by uri.
For example, if uri is redix://example1.com but opts is [host: "example2.com"], then
example2.com will be used as the host when connecting.

 Link to this function

 stop(conn, timeout \\ :infinity)

 View Source

Stops the given pub/sub process.
This function is synchronous and blocks until the given pub/sub connection
frees all its resources and disconnects from the Redis server. timeout can
be passed to limit the amount of time allowed for the connection to exit; if
it doesn't exit in the given interval, this call exits.

 Examples

iex> Redix.PubSub.stop(conn)
:ok

 Link to this function

 subscribe(conn, channels, subscriber \\ self())

 View Source

 @spec subscribe(connection(), String.t() | [String.t()], subscriber()) ::
 {:ok, reference()}

Subscribes subscriber to the given channel or list of channels.
Subscribes subscriber (which can be anything that can be passed to send/2)
to channels, which can be a single channel or a list of channels.
For each of the channels in channels which subscriber successfully
subscribes to, a message will be sent to subscriber with this form:
{:redix_pubsub, pid, subscription_ref, :subscribed, %{channel: channel}}
See the documentation for Redix.PubSub for more information about the format
of messages.

 Examples

iex> Redix.PubSub.subscribe(conn, ["foo", "bar"], self())
{:ok, subscription_ref}
iex> flush()
{:redix_pubsub, ^conn, ^subscription_ref, :subscribed, %{channel: "foo"}}
{:redix_pubsub, ^conn, ^subscription_ref, :subscribed, %{channel: "bar"}}
:ok

 Link to this function

 unsubscribe(conn, channels, subscriber \\ self())

 View Source

 @spec unsubscribe(connection(), String.t() | [String.t()], subscriber()) :: :ok

Unsubscribes subscriber from the given channel or list of channels.
This function basically "undoes" what subscribe/3 does: it unsubscribes
subscriber from the given channel or list of channels.
Upon successful unsubscription from each of the channels, a message will be
sent to subscriber with the following form:
{:redix_pubsub, pid, ^subscription_ref, :unsubscribed, %{channel: channel}}
See the documentation for Redix.PubSub for more information about the format
of messages.

 Examples

iex> Redix.unsubscribe(conn, ["foo", "bar"], self())
:ok
iex> flush()
{:redix_pubsub, ^conn, ^subscription_ref, :unsubscribed, %{channel: "foo"}}
{:redix_pubsub, ^conn, ^subscription_ref, :unsubscribed, %{channel: "bar"}}
:ok

Redix.Telemetry

Telemetry integration for event tracing, metrics, and logging.
Redix connections (both Redix and Redix.PubSub) execute the
following Telemetry events:
	[:redix, :connection] - executed when a Redix connection establishes the
connection to Redis. There are no measurements associated with this event.
Metadata are:
	:connection - the PID of the Redix connection that emitted the event.
	:connection_name - the name (passed to the :name option when the
connection is started) of the Redix connection that emitted the event.
nil if the connection was not registered with a name.
	:address - the address the connection successfully connected to.
	:reconnection - a boolean that specifies whether this was a first
connection to Redis or a reconnection after a disconnection. This can
be useful for more granular logging.

	[:redix, :disconnection] - executed when the connection is lost
with the Redis server. There are no measurements associated with
this event. Metadata are:
	:connection - the PID of the Redix connection that emitted the event.
	:connection_name - the name (passed to the :name option when the
	:address - the address the connection was connected to.
connection is started) of the Redix connection that emitted the event.
nil if the connection was not registered with a name.
	:reason - the disconnection reason as a Redix.ConnectionError struct.

	[:redix, :failed_connection] - executed when Redix can't connect to
the specified Redis server, either when starting up the connection or
after a disconnection. There are no measurements associated with this event.
Metadata are:
	:connection - the PID of the Redix connection that emitted the event.
	:connection_name - the name (passed to the :name option when the
connection is started) of the Redix connection that emitted the event.
nil if the connection was not registered with a name.
	:address or :sentinel_address - the address the connection was trying
to connect to (either a Redis server or a Redis Sentinel instance).
	:reason - the disconnection reason as a Redix.ConnectionError struct.

Redix connections execute the following Telemetry events when commands or
pipelines of any kind are executed.
	[:redix, :pipeline, :start] - executed right before a pipeline (or command,
which is a pipeline with just one command) is sent to the Redis server.
Measurements are:
	:system_time (integer) - the system time (in the :native time unit)
at the time the event is emitted. See System.system_time/0.

Metadata are:
	:connection - the PID of the Redix connection used to send the pipeline.
	:connection_name - the name of the Redix connection used to sent the pipeline.
This is nil if the connection was not registered with a name or if the
pipeline function was called with a PID directly (for example, if you did
Process.whereis/1 manually).
	:commands - the commands sent to the server. This is always a list of
commands, so even if you do Redix.command(conn, ["PING"]) then the
list of commands will be [["PING"]].
	:extra_metadata - any term set by users via the :telemetry_metadata option
in Redix.pipeline/3 and other functions.

	[:redix, :pipeline, :stop] - executed a response to a pipeline returns
from the Redis server, regardless of whether it's an error response or a
successful response. Measurements are:
	:duration - the duration (in the :native time unit, see System.time_unit/0)
of back-and-forth between client and server.

Metadata are:
	:connection - the PID of the Redix connection used to send the pipeline.
	:connection_name - the name of the Redix connection used to sent the pipeline.
This is nil if the connection was not registered with a name or if the
pipeline function was called with a PID directly (for example, if you did
Process.whereis/1 manually).
	:commands - the commands sent to the server. This is always a list of
commands, so even if you do Redix.command(conn, ["PING"]) then the
list of commands will be [["PING"]].
	:extra_metadata - any term set by users via the :telemetry_metadata option
in Redix.pipeline/3 and other functions.

If the response is an error, the following metadata will also be present:
	:kind - the atom :error.
	:reason - the error reason (such as a Redix.ConnectionError struct).

More events might be added in the future and that won't be considered a breaking
change, so if you're writing a handler for Redix events be sure to ignore events
that are not known. All future Redix events will start with the :redix atom,
like the ones above.
A default handler that logs these events appropriately is provided, see
attach_default_handler/0. Otherwise, you can write your own handler to
instrument or log events, see the Telemetry page in the docs.

 Summary

 Functions

 attach_default_handler()

 Attaches the default Redix-provided Telemetry handler.

 Functions

 Link to this function

 attach_default_handler()

 View Source

 @spec attach_default_handler() :: :ok | {:error, :already_exists}

Attaches the default Redix-provided Telemetry handler.
This function attaches a default Redix-provided handler that logs
(using Elixir's Logger) the following events:
	[:redix, :disconnection] - logged at the :error level
	[:redix, :failed_connection] - logged at the :error level
	[:redix, :connection] - logged at the :info level if it's a
reconnection, not logged if it's the first connection.

See the module documentation for more information. If you want to
attach your own handler, look at the Telemetry page
in the documentation.

 Examples

:ok = Redix.Telemetry.attach_default_handler()

Redix.URI

This module provides functions to work with a Redis URI.
This is generally intended for library developers using Redix under the hood.

 Summary

 Functions

 to_start_options(uri)

 Returns start options from a Redis URI.

 Functions

 Link to this function

 to_start_options(uri)

 View Source

 (since 1.2.0)

 @spec to_start_options(binary()) :: Keyword.t()

Returns start options from a Redis URI.
A Redis URI looks like this:
redis://[username:password@]host[:port][/db]
Valkey
URIs also work with Valkey, a Redis-compatible in-memory key-value
store. Use valkey:// as the scheme instead of redis://.

 Examples

iex> Redix.URI.to_start_options("redis://example.com")
[host: "example.com"]

iex> Redix.URI.to_start_options("rediss://username:password@example.com:5000/3")
[ssl: true, database: 3, password: "password", username: "username", port: 5000, host: "example.com"]

Redix.ConnectionError exception

Error in the connection to Redis.
This exception represents errors in the connection to Redis: for example,
request timeouts, disconnections, and similar.

 Exception fields

See t/0.

 Error reasons

The :reason field can assume a few Redix-specific values:
	:closed: when the connection to Redis is closed (and Redix is
reconnecting) and the user attempts to talk to Redis

	:disconnected: when the connection drops while a request to Redis is in
flight.

	:timeout: when Redis doesn't reply to the request in time.

 Summary

 Types

 t()

 The type for this exception struct.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Redix.ConnectionError{__exception__: true, reason: atom()}

The type for this exception struct.
This exception has the following public fields:
	:reason - the error reason. It can be one of the Redix-specific
reasons described in the "Error reasons" section below, or any error
reason returned by functions in the :gen_tcp module (see the
:inet.posix/0 type) or
:ssl module.

Redix.Error exception

Error returned by Redis.
This exception represents semantic errors returned by Redis: for example,
non-existing commands or operations on keys with the wrong type (INCR not_an_integer).

 Summary

 Types

 t()

 The type for this exception struct.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Redix.Error{__exception__: true, message: binary()}

The type for this exception struct.

Redix.Protocol.ParseError exception

Error in parsing data according to the
RESP protocol.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

