

 TypedStructCtor

 v0.1.1

 Table of contents

 	TypedStructCtor

 	License

 	Modules

 	TypedStructCtor

TypedStructCtor

A TypedStruct plugin to add validating constructors to a TypedStruct module
The TypedStruct macro wraps field definitions to reduce boilerplate
needed to define elixir structs and provides a
plugin system for clients to extend the DSL.
TypedStructCtor uses the __changeset__ "reflection" function added by the plugin
TypedStructEctoChangeset which enables
Ecto.Changeset.cast on fields defined within the TypedStruct macro.

 Try it out in Livebook

Try the macro out in real time without having to install or write any of your own code
To get started you need a running instance of Livebook
[image: Run in Livebook]

 Rationale

Ecto.Changeset is a great way to create validated
structs. However, if you've many validated structs they quickly become "noise", where writing
these functions can be tedious, and bugs are easily introduced as struct changes are easily overlooked.
When the effort needed to write boilerplate tests for boilerplate code is factored in, it can be tempting to skip
struct validation altogether.

 Simple Examples

 defmodule AStruct do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 # A required field with a default value provided by MFA tuple to return a UUID
 field :id, :string, default_apply: {Ecto.UUID, :generate, []}

 # A required field with no default, meaning it must be provided to the constructor.
 # It's an `integer` with known `Ecto.cast` behavior, so for instance, string values are cast
 # for example string to integer
 field :integer_field, :integer

 # An optional field with no default, meaning it will only have a value if provided to the
 # constructor
 field :some_string, :string, required: false
 end
 end

 iex()> AStruct.new(%{some_string: "foo"})
 {:error,
 #Ecto.Changeset<
 action: :new,
 changes: %{id: "36153915-bfd7-4067-85e1-03c9b0662582", some_string: "foo"},
 errors: [integer_field: {"can't be blank", [validation: :required]}],
 data: #AStruct<>,
 valid?: false
 >}

 # With `bang` notation and demonstrating Ecto's field cast (string to integer)
 iex()> AStruct.new!(%{some_string: "bar", integer_field: "42"})
 %AStruct{
 some_string: "bar",
 integer_field: 42,
 id: "2e28df41-c024-465e-901d-22c974f1d356"
 }
The TypedStruct macro makes it much easier to define structs. The TypedStructEctoChangeset plugin uses the field
definitions to generate an Ecto.Changeset.cast function for fields in the struct. And this plugin, TypedStructCtor,
uses those cast functions to generate validating constructors for the enclosing struct created by TypedStruct.
This plugin adds 5 constructors, new/0, new/1, new!/1, from/2, and from!/2 to the given module.
Ecto cast is called for all attributes provided to the constructors, defaults are applied where needed, and
validation is performed.
The new functions return {:ok, struct} or {:error, changeset}, while the new! functions return the struct, or
raises if there were issues with cast or validation.
The new function takes an optional map of attributes, does
Changeset.cast of all values matching the defined
fields, adds defaults for fields missing values, validates any required fields, and finally does
Changeset.apply_action to validate the changeset.
Returns {:ok, <struct>} if everything is OK, {:error, <changeset>} if there were issues with cast or validation.
Because it's necessary to properly handle mappable fields, if a struct is passed to the new function,
{:error, :attributes_must_be_a_map} is returned; use one of the from functions for that use case as described below.
The from functions are useful in messaging environments where a new message is created from a some set of
values from a source message. They are similar to the new functions but accept a "base struct" as the first argument
and a map of attributes as the second argument. The base struct is mapped first to the field values, and the attributes
are merged on top.

 Required Fields

By default, all fields are required when calling the constructors. Meaning you'll get a changeset error if the
field does not have a default, and you don't provide an attribute value for it in the constructor.
You can override this by passing required: false to the plugin
 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor, required: false)

 field :this_field_is_not_required, :string
 end
Or by passing required: false to the field definition.
 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field :this_field_is_not_required, :string, required: false
 end

 Field-level Defaults

default and default_apply can be provided to the field definition to specify a default value for the field.
Though you can specify both default and default_apply (an MFA tuple), only one will be used.
default will be used with Elixir's struct syntax (e.g. %AStruct{}).
default_apply will be invoked when one of the 5 constructor functions is used (e.g. AStruct.new!())
The default_apply function is short-circuited and will only be invoked if the given field was not present in the
attributes.
 defmodule AStructWithDefaulting do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field :field, :integer, default: 42, default_apply: {SomeModule, :some_function, ["55"]}
 end
 end

 iex()> %AStructWithDefaulting{}
 %AStructWithDefaulting{field: 42}

 iex()> AStructWithDefaulting.new!()
 %AStructWithDefaulting{field: 55}

 Mappable Fields

As mentioned above, when using from and from! functions, the first argument is a "source" struct whose matching-name
fields will be copied first into the struct being constructed. By default, all matching-name fields are copied, but
the mappable? boolean attribute can be used to specify which fields are not copied. This is useful when you want the
newly constructed struct to have different values for a field than the source struct such as created_at or id.
Not mapping over the source struct values will mean the newly constructed struct will leave the new fields empty
unless defaulted or provided as attributes to the constructor.
 defmodule AStructWithMappableFields do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field(:id, :string, mappable?: false, default_apply: {Ecto.UUID, :generate, []})
 field(:created_at, :utc_datetime_usec, mappable?: false, default_apply: {DateTime, :utc_now, []})
 field(:reason, :string)
 end
 end

 # In the example below, the `id` and `created_at` fields are `mappable?: false` so they are not
 # copied from the source struct. So in the new struct, `:reason` is copied from the source
 # struct, `:id` is provided in the attributes map, and `:created_at`, being nil after all the
 # copying is done, causes its default to be used instead, resulting in a new date.
 iex()> source_struct = AStructWithMappableFields.new!(%{reason: "because"})
 %AStructWithMappableFields{
 reason: "because",
 created_at: ~U[2023-11-18 04:57:16.754681Z],
 id: "ffe94776-5d6e-4d84-9aeb-2862d874577f"
 }

 iex()> Process.sleep(5)
 iex()> mapped = AStructWithMappableFields.from!(source_struct, %{id: "id from attributes"})
 %AStructWithMappableFields{
 reason: "because",
 created_at: ~U[2023-11-18 04:57:16.766353Z],
 id: "id from attributes"
 }

 iex()> Process.sleep(5)
 iex()> mapped = AStructWithMappableFields.from!(source_struct, %{reason: "I said so"})
 %AStructWithMappableFields{
 reason: "I said so",
 created_at: ~U[2023-11-18 04:57:16.772312Z],
 id: "a09be86b-373a-48f0-9d74-faee10037421"
 }

 Installation

Because this plugin supports the interface defined by the TypedStruct macro, installation assumes you've already
added that dependency.
While you can use the original typed_struct library, it seems to no longer be
maintained. However, there is a fork here that is quite active.
The package can be installed by adding typed_struct_ctor to your list of dependencies in mix.exs:
def deps do
 [
 # Choose either of the following `TypedStruct` libraries
 # both use the same name for the macro - `typedstruct` but
 # but are mutually exclusive:

 # The original, but no longer maintained library
 {:typed_struct, "~> 0.3.0"},

 # Or the newer forked library
 {:typedstruct, "~> 0.5.2"},

 # And add this library
 {:typed_struct_ctor, "~> 0.1.0"}
]
end

MIT License

Copyright © 2018-2022 Lee Eggebroten and Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

TypedStructCtor

TypedStructCtor
A TypedStruct plugin to add validating constructors to a TypedStruct module
The TypedStruct macro wraps field definitions to reduce boilerplate
needed to define elixir structs and provides a
plugin system for clients to extend the DSL.
TypedStructCtor uses the __changeset__ "reflection" function added by the plugin
TypedStructEctoChangeset which enables
Ecto.Changeset.cast on fields defined within the TypedStruct macro.

 Try it out in Livebook

Try the macro out in real time without having to install or write any of your own code
To get started you need a running instance of Livebook
[image: Run in Livebook]

 Rationale

Ecto.Changeset is a great way to create validated
structs. However, if you've many validated structs they quickly become "noise", where writing
these functions can be tedious, and bugs are easily introduced as struct changes are easily overlooked.
When the effort needed to write boilerplate tests for boilerplate code is factored in, it can be tempting to skip
struct validation altogether.

 Simple Examples

 defmodule AStruct do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 # A required field with a default value provided by MFA tuple to return a UUID
 field :id, :string, default_apply: {Ecto.UUID, :generate, []}

 # A required field with no default, meaning it must be provided to the constructor.
 # It's an `integer` with known `Ecto.cast` behavior, so for instance, string values are cast
 # for example string to integer
 field :integer_field, :integer

 # An optional field with no default, meaning it will only have a value if provided to the
 # constructor
 field :some_string, :string, required: false
 end
 end

 iex()> AStruct.new(%{some_string: "foo"})
 {:error,
 #Ecto.Changeset<
 action: :new,
 changes: %{id: "36153915-bfd7-4067-85e1-03c9b0662582", some_string: "foo"},
 errors: [integer_field: {"can't be blank", [validation: :required]}],
 data: #AStruct<>,
 valid?: false
 >}

 # With `bang` notation and demonstrating Ecto's field cast (string to integer)
 iex()> AStruct.new!(%{some_string: "bar", integer_field: "42"})
 %AStruct{
 some_string: "bar",
 integer_field: 42,
 id: "2e28df41-c024-465e-901d-22c974f1d356"
 }
The TypedStruct macro makes it much easier to define structs. The TypedStructEctoChangeset plugin uses the field
definitions to generate an Ecto.Changeset.cast function for fields in the struct. And this plugin, TypedStructCtor,
uses those cast functions to generate validating constructors for the enclosing struct created by TypedStruct.
This plugin adds 5 constructors, new/0, new/1, new!/1, from/2, and from!/2 to the given module.
Ecto cast is called for all attributes provided to the constructors, defaults are applied where needed, and
validation is performed.
The new functions return {:ok, struct} or {:error, changeset}, while the new! functions return the struct, or
raises if there were issues with cast or validation.
The new function takes an optional map of attributes, does
Changeset.cast of all values matching the defined
fields, adds defaults for fields missing values, validates any required fields, and finally does
Changeset.apply_action to validate the changeset.
Returns {:ok, <struct>} if everything is OK, {:error, <changeset>} if there were issues with cast or validation.
Because it's necessary to properly handle mappable fields, if a struct is passed to the new function,
{:error, :attributes_must_be_a_map} is returned; use one of the from functions for that use case as described below.
The from functions are useful in messaging environments where a new message is created from a some set of
values from a source message. They are similar to the new functions but accept a "base struct" as the first argument
and a map of attributes as the second argument. The base struct is mapped first to the field values, and the attributes
are merged on top.

 Required Fields

By default, all fields are required when calling the constructors. Meaning you'll get a changeset error if the
field does not have a default, and you don't provide an attribute value for it in the constructor.
You can override this by passing required: false to the plugin
 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor, required: false)

 field :this_field_is_not_required, :string
 end
Or by passing required: false to the field definition.
 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field :this_field_is_not_required, :string, required: false
 end

 Field-level Defaults

default and default_apply can be provided to the field definition to specify a default value for the field.
Though you can specify both default and default_apply (an MFA tuple), only one will be used.
default will be used with Elixir's struct syntax (e.g. %AStruct{}).
default_apply will be invoked when one of the 5 constructor functions is used (e.g. AStruct.new!())
The default_apply function is short-circuited and will only be invoked if the given field was not present in the
attributes.
 defmodule AStructWithDefaulting do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field :field, :integer, default: 42, default_apply: {SomeModule, :some_function, ["55"]}
 end
 end

 iex()> %AStructWithDefaulting{}
 %AStructWithDefaulting{field: 42}

 iex()> AStructWithDefaulting.new!()
 %AStructWithDefaulting{field: 55}

 Mappable Fields

As mentioned above, when using from and from! functions, the first argument is a "source" struct whose matching-name
fields will be copied first into the struct being constructed. By default, all matching-name fields are copied, but
the mappable? boolean attribute can be used to specify which fields are not copied. This is useful when you want the
newly constructed struct to have different values for a field than the source struct such as created_at or id.
Not mapping over the source struct values will mean the newly constructed struct will leave the new fields empty
unless defaulted or provided as attributes to the constructor.
 defmodule AStructWithMappableFields do
 use TypedStruct

 typedstruct do
 plugin(TypedStructEctoChangeset)
 plugin(TypedStructCtor)

 field(:id, :string, mappable?: false, default_apply: {Ecto.UUID, :generate, []})
 field(:created_at, :utc_datetime_usec, mappable?: false, default_apply: {DateTime, :utc_now, []})
 field(:reason, :string)
 end
 end

 # In the example below, the `id` and `created_at` fields are `mappable?: false` so they are not
 # copied from the source struct. So in the new struct, `:reason` is copied from the source
 # struct, `:id` is provided in the attributes map, and `:created_at`, being nil after all the
 # copying is done, causes its default to be used instead, resulting in a new date.
 iex()> source_struct = AStructWithMappableFields.new!(%{reason: "because"})
 %AStructWithMappableFields{
 reason: "because",
 created_at: ~U[2023-11-18 04:57:16.754681Z],
 id: "ffe94776-5d6e-4d84-9aeb-2862d874577f"
 }

 iex()> Process.sleep(5)
 iex()> mapped = AStructWithMappableFields.from!(source_struct, %{id: "id from attributes"})
 %AStructWithMappableFields{
 reason: "because",
 created_at: ~U[2023-11-18 04:57:16.766353Z],
 id: "id from attributes"
 }

 iex()> Process.sleep(5)
 iex()> mapped = AStructWithMappableFields.from!(source_struct, %{reason: "I said so"})
 %AStructWithMappableFields{
 reason: "I said so",
 created_at: ~U[2023-11-18 04:57:16.772312Z],
 id: "a09be86b-373a-48f0-9d74-faee10037421"
 }

 Installation

Because this plugin supports the interface defined by the TypedStruct macro, installation assumes you've already
added that dependency.
While you can use the original typed_struct library, it seems to no longer be
maintained. However, there is a fork here that is quite active.
The package can be installed by adding typed_struct_ctor to your list of dependencies in mix.exs:
def deps do
 [
 # Choose either of the following `TypedStruct` libraries
 # both use the same name for the macro - `typedstruct` but
 # but are mutually exclusive:

 # The original, but no longer maintained library
 {:typed_struct, "~> 0.3.0"},

 # Or the newer forked library
 {:typedstruct, "~> 0.5.2"},

 # And add this library
 {:typed_struct_ctor, "~> 0.1.0"}
]
end

 Summary

 Functions

 from(base_struct)

 Create a new struct where values from fields in the provided struct are copied.

 from(base_struct, attrs)

 Create a new struct where values from fields in the provided struct are copied, then values
from the provided attributes map are copied to like-named fields in the struct; overwriting
any values copied from the base_struct.

 from!(base_struct)

 Create a new struct where values from fields in the provided struct are copied. Raising if the new struct
cannot be validated.

 from!(base_struct, attrs)

 Create a new struct where values from fields in the provided struct are copied, then values
from the provided attributes map are copied to like-named fields in the struct; overwriting
any values copied from the base_struct. Raising if the new struct cannot be validated.

 new()

 Create a new struct with default values

 new(attrs)

 Create a new struct where values from keys in the provided attributes map are copied
to like-named fields in the struct.

 new!()

 Create a new struct with default values. Raises if the new struct cannot be validated.

 new!(attrs)

 Create a new struct where values from keys in the provided attributes map are copied
to like-named fields in the struct. Raises if the new struct cannot be validated.

 Functions

 Link to this function

 from(base_struct)

 @spec from(base_struct :: struct()) :: {:ok, struct()} | {:error, Ecto.Changeset.t()}

Create a new struct where values from fields in the provided struct are copied.
The from/1 constructor is useful for event driven systems where it is common to create
a new event from a given "triggering" event
	Provided values from base_struct will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not provided map will
be set to their default values.
	Required fields that are nil will result in a Ecto.Changeset error

 Link to this function

 from(base_struct, attrs)

 @spec from(base_struct :: struct(), attrs :: map()) ::
 {:ok, struct()} | {:error, Ecto.Changeset.t()}

Create a new struct where values from fields in the provided struct are copied, then values
from the provided attributes map are copied to like-named fields in the struct; overwriting
any values copied from the base_struct.
The from/2 constructor is useful for event driven systems where it is common to create
a new event from a given "triggering" event
	Provided values from base_struct will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not provided map will
be set to their default values.
	Required fields that are nil will result in a Ecto.Changeset error

 Link to this function

 from!(base_struct)

 @spec from!(base_struct :: struct()) :: struct()

Create a new struct where values from fields in the provided struct are copied. Raising if the new struct
cannot be validated.
The from!/1 constructor is useful for event driven systems where it is common to create
a new event from a given "triggering" event
	Provided values from base_struct will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not provided map will
be set to their default values.
	Any cast error or missing required field will result in a raise

 Link to this function

 from!(base_struct, attrs)

 @spec from!(base_struct :: struct(), attrs :: map()) :: struct()

Create a new struct where values from fields in the provided struct are copied, then values
from the provided attributes map are copied to like-named fields in the struct; overwriting
any values copied from the base_struct. Raising if the new struct cannot be validated.
The from!/2 constructor is useful for event driven systems where it is common to create
a new event from a given "triggering" event
	Provided values from base_struct will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not provided map will
be set to their default values.
	Any cast error or missing required field will result in a raise

 Link to this function

 new()

 @spec new() :: {:ok, struct()} | {:error, Ecto.Changeset.t()}

Create a new struct with default values

 Link to this function

 new(attrs)

 @spec new(attrs :: map()) :: {:ok, struct()} | {:error, Ecto.Changeset.t()}

Create a new struct where values from keys in the provided attributes map are copied
to like-named fields in the struct.
	Provided values will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not in the provided map will
be set to their default values.
	Required fields that are nil will result in a Ecto.Changeset error

 Link to this function

 new!()

 @spec new!() :: struct()

Create a new struct with default values. Raises if the new struct cannot be validated.

 Link to this function

 new!(attrs)

 @spec new!(attrs :: map()) :: struct()

Create a new struct where values from keys in the provided attributes map are copied
to like-named fields in the struct. Raises if the new struct cannot be validated.
	Provided values will be cast to the appropriate field type.
	Fields in the newly constructed struct that are not in the provided map will
be set to their default values.
	Any cast error or missing required field will result in a raise

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

