

 AgentSessionManager

 v0.1.1

 [image: Logo]

 Table of contents

 	Introduction

 	README

 	Getting Started

 	Architecture

 	Configuration

 	Core Concepts

 	Sessions and Runs

 	Events and Streaming

 	Capabilities

 	Integration

 	Provider Adapters

 	Concurrency

 	Telemetry and Observability

 	Reference

 	Error Handling

 	Testing

 	Changelog

 	LICENSE

 	
 Modules

 	Core Domain

 	AgentSessionManager

 	AgentSessionManager.Core.Capability

 	AgentSessionManager.Core.Error

 	AgentSessionManager.Core.Event

 	AgentSessionManager.Core.Manifest

 	AgentSessionManager.Core.NormalizedEvent

 	AgentSessionManager.Core.Run

 	AgentSessionManager.Core.Session

 	Event Pipeline

 	AgentSessionManager.Core.EventNormalizer

 	AgentSessionManager.Core.EventStream

 	Capability System

 	AgentSessionManager.Core.CapabilityResolver

 	AgentSessionManager.Core.CapabilityResolver.NegotiationResult

 	AgentSessionManager.Core.Registry

 	Orchestration

 	AgentSessionManager.SessionManager

 	Ports (Interfaces)

 	AgentSessionManager.Ports.ProviderAdapter

 	AgentSessionManager.Ports.SessionStore

 	Adapters (Implementations)

 	AgentSessionManager.Adapters.ClaudeAdapter

 	AgentSessionManager.Adapters.CodexAdapter

 	AgentSessionManager.Adapters.InMemorySessionStore

 	Concurrency

 	AgentSessionManager.Concurrency.ConcurrencyLimiter

 	AgentSessionManager.Concurrency.ControlOperations

 	Observability

 	AgentSessionManager.AuditLogger

 	AgentSessionManager.Config

 	AgentSessionManager.Telemetry

AgentSessionManager

A comprehensive Elixir library for managing AI agent sessions, state persistence,
conversation context, and multi-agent orchestration workflows.
Core Domain Types
This library provides the following core domain types:
	AgentSessionManager.Core.Session - Represents an AI agent session
	AgentSessionManager.Core.Run - Represents a single execution run within a session
	AgentSessionManager.Core.Event - Represents events in the session lifecycle
	AgentSessionManager.Core.Capability - Represents agent capabilities
	AgentSessionManager.Core.Manifest - Represents an agent manifest
	AgentSessionManager.Core.CapabilityResolver - Negotiates capabilities between requirements and providers
	AgentSessionManager.Core.Registry - Thread-safe registry for provider manifests
	AgentSessionManager.Core.Error - Normalized error taxonomy

Quick Start
Create a session
alias AgentSessionManager.Core.Session

{:ok, session} = Session.new(%{agent_id: "my-agent"})
{:ok, active} = Session.update_status(session, :active)

Create a run
alias AgentSessionManager.Core.Run

{:ok, run} = Run.new(%{session_id: session.id})
{:ok, completed} = Run.set_output(run, %{response: "Hello!"})

Create an event
alias AgentSessionManager.Core.Event

{:ok, event} = Event.new(%{
 type: :message_received,
 session_id: session.id,
 run_id: run.id,
 data: %{content: "Hello!"}
})

Define a manifest
alias AgentSessionManager.Core.Manifest

{:ok, manifest} = Manifest.new(%{
 name: "my-agent",
 version: "1.0.0",
 capabilities: [
 %{name: "web_search", type: :tool}
]
})
Error Handling
All operations return tagged tuples {:ok, result} or {:error, error}.
Errors are normalized using AgentSessionManager.Core.Error:
alias AgentSessionManager.Core.Error

case Session.new(%{}) do
 {:ok, session} -> session
 {:error, %Error{code: :validation_error, message: msg}} ->
 IO.puts("Validation failed: #{msg}")
end
Errors support machine-readable codes, provider-specific details, and
are classified into categories (validation, provider, storage, etc.).

 Summary

 Functions

 new_capability(attrs)

 See AgentSessionManager.Core.Capability.new/1.

 new_capability_resolver(opts)

 See AgentSessionManager.Core.CapabilityResolver.new/1.

 new_event(attrs)

 See AgentSessionManager.Core.Event.new/1.

 new_manifest(attrs)

 See AgentSessionManager.Core.Manifest.new/1.

 new_registry()

 See AgentSessionManager.Core.Registry.new/0.

 new_run(attrs)

 See AgentSessionManager.Core.Run.new/1.

 new_session(attrs)

 See AgentSessionManager.Core.Session.new/1.

 Functions

 new_capability(attrs)

See AgentSessionManager.Core.Capability.new/1.

 new_capability_resolver(opts)

See AgentSessionManager.Core.CapabilityResolver.new/1.

 new_event(attrs)

See AgentSessionManager.Core.Event.new/1.

 new_manifest(attrs)

See AgentSessionManager.Core.Manifest.new/1.

 new_registry()

See AgentSessionManager.Core.Registry.new/0.

 new_run(attrs)

See AgentSessionManager.Core.Run.new/1.

 new_session(attrs)

See AgentSessionManager.Core.Session.new/1.

AgentSessionManager.Core.Capability

Represents a capability that can be assigned to an agent.
Capabilities define what an agent can do, including tools,
resources, prompts, and various access permissions.
Capability Types
	:tool - A tool the agent can invoke
	:resource - A resource the agent can access
	:prompt - A prompt template
	:sampling - Sampling/generation capability
	:file_access - File system access
	:network_access - Network/HTTP access
	:code_execution - Code execution capability

Fields
	name - Unique capability name
	type - The capability type
	enabled - Whether the capability is currently enabled
	description - Optional description
	config - Capability-specific configuration
	permissions - List of permissions required/granted

Usage
Create a capability
{:ok, cap} = Capability.new(%{
 name: "web_search",
 type: :tool,
 description: "Search the web for information"
})

Disable a capability
disabled = Capability.disable(cap)

 Summary

 Types

 capability_type()

 t()

 Functions

 all_types()

 Returns all valid capability types.

 disable(capability)

 Disables a capability.

 enable(capability)

 Enables a capability.

 from_map(map)

 Reconstructs a capability from a map.

 new(attrs)

 Creates a new capability with the given attributes.

 to_map(capability)

 Converts a capability to a map suitable for JSON serialization.

 valid_type?(type)

 Checks if the given type is a valid capability type.

 Types

 capability_type()

 @type capability_type() ::
 :tool
 | :resource
 | :prompt
 | :sampling
 | :file_access
 | :network_access
 | :code_execution

 t()

 @type t() :: %AgentSessionManager.Core.Capability{
 config: map(),
 description: String.t() | nil,
 enabled: boolean(),
 name: String.t() | nil,
 permissions: [String.t()],
 type: capability_type() | nil
}

 Functions

 all_types()

 @spec all_types() :: [capability_type()]

Returns all valid capability types.

 disable(capability)

 @spec disable(t()) :: t()

Disables a capability.

 enable(capability)

 @spec enable(t()) :: t()

Enables a capability.

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a capability from a map.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new capability with the given attributes.
Required
	:name - The capability name
	:type - The capability type

Optional
	:enabled - Whether enabled (default: true)
	:description - Description of the capability
	:config - Configuration map
	:permissions - List of permission strings

Examples
iex> Capability.new(%{name: "web_search", type: :tool})
{:ok, %Capability{name: "web_search", type: :tool, enabled: true}}

iex> Capability.new(%{name: "", type: :tool})
{:error, %Error{code: :validation_error}}

 to_map(capability)

 @spec to_map(t()) :: map()

Converts a capability to a map suitable for JSON serialization.

 valid_type?(type)

 @spec valid_type?(atom()) :: boolean()

Checks if the given type is a valid capability type.

AgentSessionManager.Core.Error exception

Normalized error taxonomy for Agent Session Manager.
Provides machine-readable error codes organized into categories,
with support for provider-specific error details and context.
Error Categories
	Validation: Input and format validation errors
	Resource: Not found, already exists, duplicates
	Provider: External AI provider errors (rate limits, timeouts, auth)
	Storage: Persistence layer errors
	Runtime: Timeouts, cancellations, internal errors
	Tool: Tool execution errors

Usage
Create a basic error
error = Error.new(:validation_error, "Invalid input provided")

Create with details and context
error = Error.new(:session_not_found, "Session not found",
 details: %{session_id: "session-123"},
 context: %{operation: "get"}
)

Wrap a provider error
error = Error.new(:provider_rate_limited, "Rate limited",
 provider_error: %{status_code: 429, body: "Too many requests"}
)

Check if error is retryable
Error.retryable?(error) # => true

Raise an error
raise Error, code: :validation_error, message: "Invalid input"

 Summary

 Types

 error_category()

 error_code()

 t()

 Functions

 all_codes()

 Returns all valid error codes.

 category(code)

 Returns the category of an error code.

 concurrency_codes()

 Returns concurrency error codes.

 from_map(map)

 Reconstructs an Error from a map.

 new(code)

 Creates a new error with the given code and an optional message.

 new(code, message)

 new(code, message, opts)

 provider_codes()

 Returns provider error codes.

 resource_codes()

 Returns resource error codes.

 retryable?(code)

 Checks if an error is retryable.

 runtime_codes()

 Returns runtime error codes.

 storage_codes()

 Returns storage error codes.

 to_map(error)

 Converts an Error to a map suitable for JSON serialization.

 tool_codes()

 Returns tool error codes.

 valid_code?(code)

 Checks if the given error code is valid.

 validation_codes()

 Returns validation error codes.

 wrap(code, exception, opts \\ [])

 Wraps an existing exception into an Error struct.

 Types

 error_category()

 @type error_category() ::
 :validation
 | :state
 | :resource
 | :provider
 | :storage
 | :runtime
 | :concurrency
 | :tool
 | :unknown

 error_code()

 @type error_code() ::
 :validation_error
 | :invalid_input
 | :missing_required_field
 | :invalid_format
 | :invalid_status
 | :invalid_transition
 | :invalid_event_type
 | :invalid_capability_type
 | :missing_required_capability
 | :not_found
 | :session_not_found
 | :run_not_found
 | :capability_not_found
 | :already_exists
 | :duplicate_capability
 | :provider_error
 | :provider_unavailable
 | :provider_rate_limited
 | :provider_timeout
 | :provider_authentication_failed
 | :provider_quota_exceeded
 | :storage_error
 | :storage_connection_failed
 | :storage_write_failed
 | :storage_read_failed
 | :timeout
 | :cancelled
 | :internal_error
 | :unknown_error
 | :tool_error
 | :tool_not_found
 | :tool_execution_failed
 | :tool_permission_denied
 | :max_sessions_exceeded
 | :max_runs_exceeded
 | :capability_not_supported
 | :invalid_operation

 t()

 @type t() :: %AgentSessionManager.Core.Error{
 __exception__: true,
 code: error_code(),
 context: map(),
 details: map(),
 message: String.t(),
 provider_error: map() | nil,
 stacktrace: list() | nil,
 timestamp: DateTime.t()
}

 Functions

 all_codes()

 @spec all_codes() :: [error_code()]

Returns all valid error codes.

 category(code)

 @spec category(error_code() | atom()) :: error_category()

Returns the category of an error code.

 concurrency_codes()

 @spec concurrency_codes() :: [error_code()]

Returns concurrency error codes.

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, t()}

Reconstructs an Error from a map.

 new(code)

 @spec new(error_code()) :: t()

Creates a new error with the given code and an optional message.
Examples
iex> Error.new(:validation_error, "Invalid input")
%Error{code: :validation_error, message: "Invalid input", ...}

iex> Error.new(:validation_error)
%Error{code: :validation_error, message: "Validation error occurred", ...}

 new(code, message)

 @spec new(error_code(), String.t()) :: t()

 new(code, message, opts)

 @spec new(error_code(), String.t(), keyword()) :: t()

 provider_codes()

 @spec provider_codes() :: [error_code()]

Returns provider error codes.

 resource_codes()

 @spec resource_codes() :: [error_code()]

Returns resource error codes.

 retryable?(code)

 @spec retryable?(error_code() | t()) :: boolean()

Checks if an error is retryable.
Accepts either an error code atom or an Error struct.

 runtime_codes()

 @spec runtime_codes() :: [error_code()]

Returns runtime error codes.

 storage_codes()

 @spec storage_codes() :: [error_code()]

Returns storage error codes.

 to_map(error)

 @spec to_map(t()) :: map()

Converts an Error to a map suitable for JSON serialization.

 tool_codes()

 @spec tool_codes() :: [error_code()]

Returns tool error codes.

 valid_code?(code)

 @spec valid_code?(atom()) :: boolean()

Checks if the given error code is valid.

 validation_codes()

 @spec validation_codes() :: [error_code()]

Returns validation error codes.

 wrap(code, exception, opts \\ [])

 @spec wrap(error_code(), Exception.t(), keyword()) :: t()

Wraps an existing exception into an Error struct.
Examples
iex> Error.wrap(:internal_error, RuntimeError.exception("Something broke"))
%Error{code: :internal_error, ...}

AgentSessionManager.Core.Event

Represents an event in the agent session lifecycle.
Events are immutable records of things that happened during
session and run execution. They provide an audit trail and
can be used for debugging, analytics, and state reconstruction.
Event Categories
Session Lifecycle Events
	:session_created - A new session was created
	:session_started - Session execution began
	:session_paused - Session was paused
	:session_resumed - Session was resumed from pause
	:session_completed - Session completed successfully
	:session_failed - Session failed with an error
	:session_cancelled - Session was cancelled

Run Lifecycle Events
	:run_started - A run began execution
	:run_completed - A run completed successfully
	:run_failed - A run failed with an error
	:run_cancelled - A run was cancelled
	:run_timeout - A run timed out

Message Events
	:message_sent - A message was sent to the agent
	:message_received - A message was received from the agent
	:message_streamed - A streaming message chunk was received

Tool Events
	:tool_call_started - A tool call began
	:tool_call_completed - A tool call completed
	:tool_call_failed - A tool call failed

Error Events
	:error_occurred - An error occurred
	:error_recovered - Recovered from an error

Usage Events
	:token_usage_updated - Token usage was updated
	:turn_completed - A conversation turn completed

Usage
Create an event
{:ok, event} = Event.new(%{
 type: :message_received,
 session_id: "session-123",
 run_id: "run-456",
 data: %{content: "Hello!"}
})

Serialize for storage
map = Event.to_map(event)

 Summary

 Types

 event_type()

 t()

 Functions

 all_types()

 Returns all valid event types.

 error_events()

 Returns error event types.

 from_map(map)

 Reconstructs an event from a map.

 message_events()

 Returns message event types.

 new(attrs)

 Creates a new event with the given attributes.

 run_events()

 Returns run lifecycle event types.

 session_events()

 Returns session lifecycle event types.

 to_map(event)

 Converts an event to a map suitable for JSON serialization.

 tool_events()

 Returns tool event types.

 valid_type?(type)

 Checks if the given type is a valid event type.

 Types

 event_type()

 @type event_type() ::
 :session_created
 | :session_started
 | :session_paused
 | :session_resumed
 | :session_completed
 | :session_failed
 | :session_cancelled
 | :run_started
 | :run_completed
 | :run_failed
 | :run_cancelled
 | :run_timeout
 | :message_sent
 | :message_received
 | :message_streamed
 | :tool_call_started
 | :tool_call_completed
 | :tool_call_failed
 | :error_occurred
 | :error_recovered
 | :token_usage_updated
 | :turn_completed

 t()

 @type t() :: %AgentSessionManager.Core.Event{
 data: map(),
 id: String.t() | nil,
 metadata: map(),
 run_id: String.t() | nil,
 sequence_number: non_neg_integer() | nil,
 session_id: String.t() | nil,
 timestamp: DateTime.t() | nil,
 type: event_type() | nil
}

 Functions

 all_types()

 @spec all_types() :: [event_type()]

Returns all valid event types.

 error_events()

 @spec error_events() :: [event_type()]

Returns error event types.

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs an event from a map.

 message_events()

 @spec message_events() :: [event_type()]

Returns message event types.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new event with the given attributes.
Required
	:type - The event type (must be a valid event type)
	:session_id - The session this event belongs to

Optional
	:id - Custom ID (auto-generated if not provided)
	:run_id - The run this event belongs to (for run-scoped events)
	:data - Event payload data
	:metadata - Arbitrary metadata
	:sequence_number - Sequence number for ordering

Examples
iex> Event.new(%{type: :session_created, session_id: "session-123"})
{:ok, %Event{type: :session_created, ...}}

iex> Event.new(%{type: :invalid_type, session_id: "session-123"})
{:error, %Error{code: :invalid_event_type}}

 run_events()

 @spec run_events() :: [event_type()]

Returns run lifecycle event types.

 session_events()

 @spec session_events() :: [event_type()]

Returns session lifecycle event types.

 to_map(event)

 @spec to_map(t()) :: map()

Converts an event to a map suitable for JSON serialization.

 tool_events()

 @spec tool_events() :: [event_type()]

Returns tool event types.

 valid_type?(type)

 @spec valid_type?(atom()) :: boolean()

Checks if the given type is a valid event type.

AgentSessionManager.Core.Manifest

Represents an agent manifest that defines the agent's configuration and capabilities.
The manifest is a declarative description of an agent, including
its name, version, provider, and the capabilities it supports.
Fields
	name - The agent name
	version - The manifest version (semver)
	description - Optional description
	provider - The AI provider (e.g., "anthropic", "openai")
	capabilities - List of Capability structs
	config - Agent-specific configuration
	metadata - Arbitrary metadata

Usage
Create a manifest
{:ok, manifest} = Manifest.new(%{
 name: "my-agent",
 version: "1.0.0",
 provider: "anthropic",
 capabilities: [
 %{name: "web_search", type: :tool}
]
})

Add a capability
{:ok, updated} = Manifest.add_capability(manifest, %{
 name: "file_read",
 type: :file_access
})

Get enabled capabilities
enabled = Manifest.enabled_capabilities(manifest)

 Summary

 Types

 t()

 Functions

 add_capability(manifest, capability)

 Adds a capability to the manifest.

 enabled_capabilities(manifest)

 Returns only enabled capabilities.

 from_map(map)

 Reconstructs a manifest from a map.

 get_capability(manifest, name)

 Gets a capability by name.

 new(attrs)

 Creates a new manifest with the given attributes.

 remove_capability(manifest, name)

 Removes a capability by name.

 to_map(manifest)

 Converts a manifest to a map suitable for JSON serialization.

 Types

 t()

 @type t() :: %AgentSessionManager.Core.Manifest{
 capabilities: [AgentSessionManager.Core.Capability.t()],
 config: map(),
 description: String.t() | nil,
 metadata: map(),
 name: String.t() | nil,
 provider: String.t() | nil,
 version: String.t() | nil
}

 Functions

 add_capability(manifest, capability)

 @spec add_capability(t(), AgentSessionManager.Core.Capability.t() | map()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Adds a capability to the manifest.
Returns an error if a capability with the same name already exists.

 enabled_capabilities(manifest)

 @spec enabled_capabilities(t()) :: [AgentSessionManager.Core.Capability.t()]

Returns only enabled capabilities.

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a manifest from a map.

 get_capability(manifest, name)

 @spec get_capability(t(), String.t()) ::
 {:ok, AgentSessionManager.Core.Capability.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Gets a capability by name.
Returns an error if the capability is not found.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new manifest with the given attributes.
Required
	:name - The agent name
	:version - The manifest version

Optional
	:description - Description of the agent
	:provider - The AI provider
	:capabilities - List of capabilities (as Capability structs or maps)
	:config - Agent configuration
	:metadata - Arbitrary metadata

Examples
iex> Manifest.new(%{name: "my-agent", version: "1.0.0"})
{:ok, %Manifest{name: "my-agent", version: "1.0.0"}}

iex> Manifest.new(%{name: ""})
{:error, %Error{code: :validation_error}}

 remove_capability(manifest, name)

 @spec remove_capability(t(), String.t()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Removes a capability by name.
Returns an error if the capability is not found.

 to_map(manifest)

 @spec to_map(t()) :: map()

Converts a manifest to a map suitable for JSON serialization.

AgentSessionManager.Core.NormalizedEvent

Represents a normalized event in the event stream.
NormalizedEvent is the canonical representation that all provider-specific
events are transformed into. This ensures consistent handling across
different AI providers (Anthropic, OpenAI, etc.) and provides strong
ordering guarantees.
Required Fields
	id - Unique event identifier (auto-generated if not provided)
	type - Event type (must be a valid event type)
	timestamp - When the event occurred
	session_id - The session this event belongs to
	run_id - The run this event belongs to

Ordering Fields
	sequence_number - Monotonically increasing number for ordering
	parent_event_id - Optional reference to a parent event (for causal ordering)

Source Tracking
	provider - The source provider (:anthropic, :openai, :generic, etc.)
	provider_event_id - Original event ID from the provider

Usage
Create a normalized event
{:ok, event} = NormalizedEvent.new(%{
 type: :message_received,
 session_id: "ses_123",
 run_id: "run_456",
 data: %{content: "Hello!"},
 provider: :anthropic
})

Serialize for storage/transmission
map = NormalizedEvent.to_map(event)

Reconstruct from storage
{:ok, restored} = NormalizedEvent.from_map(map)

 Summary

 Types

 t()

 Functions

 from_map(map)

 Reconstructs a normalized event from a map.

 new(attrs)

 Creates a new normalized event with the given attributes.

 same_context?(event1, event2)

 Checks if two events belong to the same context (session and run).

 to_map(event)

 Converts a normalized event to a map suitable for JSON serialization.

 valid?(event)

 Checks if a normalized event is valid (has all required fields populated).

 Types

 t()

 @type t() :: %AgentSessionManager.Core.NormalizedEvent{
 data: map(),
 id: String.t() | nil,
 metadata: map(),
 parent_event_id: String.t() | nil,
 provider: atom() | nil,
 provider_event_id: String.t() | nil,
 run_id: String.t() | nil,
 sequence_number: non_neg_integer() | nil,
 session_id: String.t() | nil,
 timestamp: DateTime.t() | nil,
 type: AgentSessionManager.Core.Event.event_type() | nil
}

 Functions

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a normalized event from a map.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new normalized event with the given attributes.
Required
	:type - The event type (must be a valid event type)
	:session_id - The session this event belongs to
	:run_id - The run this event belongs to

Optional
	:id - Custom ID (auto-generated if not provided)
	:sequence_number - Sequence number for ordering
	:parent_event_id - Parent event ID for causal ordering
	:data - Event payload data
	:metadata - Arbitrary metadata
	:provider - Source provider atom
	:provider_event_id - Original provider event ID

Examples
iex> NormalizedEvent.new(%{type: :message_received, session_id: "ses_123", run_id: "run_456"})
{:ok, %NormalizedEvent{type: :message_received, ...}}

iex> NormalizedEvent.new(%{type: :invalid_type, session_id: "ses_123", run_id: "run_456"})
{:error, %Error{code: :invalid_event_type}}

 same_context?(event1, event2)

 @spec same_context?(t(), t()) :: boolean()

Checks if two events belong to the same context (session and run).

 to_map(event)

 @spec to_map(t()) :: map()

Converts a normalized event to a map suitable for JSON serialization.

 valid?(event)

 @spec valid?(t()) :: boolean()

Checks if a normalized event is valid (has all required fields populated).

AgentSessionManager.Core.Run

Represents a single execution run within a session.
A run represents one complete interaction with the AI agent,
including input, output, and any intermediate steps (turns).
Run Lifecycle
Runs follow this state machine:
pending -> running -> completed
 -> failed
 -> cancelled
 -> timeout
Fields
	id - Unique run identifier
	session_id - Parent session identifier
	status - Current run status
	input - Input data for the run
	output - Output data from the run
	error - Error information if the run failed
	metadata - Arbitrary metadata
	turn_count - Number of turns in this run
	token_usage - Token usage statistics
	started_at - Run start timestamp
	ended_at - Run end timestamp

Usage
Create a new run
{:ok, run} = Run.new(%{session_id: "session-123"})

Start the run
{:ok, running} = Run.update_status(run, :running)

Set output and complete
{:ok, completed} = Run.set_output(running, %{response: "Hello!"})

 Summary

 Types

 status()

 t()

 Functions

 from_map(map)

 Reconstructs a run from a map.

 increment_turn(run)

 Increments the turn count by 1.

 new(attrs)

 Creates a new run with the given attributes.

 set_error(run, error)

 Sets the error and marks the run as failed.

 set_output(run, output)

 Sets the output and marks the run as completed.

 to_map(run)

 Converts a run to a map suitable for JSON serialization.

 update_status(run, status)

 Updates the run status.

 update_token_usage(run, usage)

 Updates token usage statistics.

 Types

 status()

 @type status() :: :pending | :running | :completed | :failed | :cancelled | :timeout

 t()

 @type t() :: %AgentSessionManager.Core.Run{
 ended_at: DateTime.t() | nil,
 error: map() | nil,
 id: String.t() | nil,
 input: map() | nil,
 metadata: map(),
 output: map() | nil,
 session_id: String.t() | nil,
 started_at: DateTime.t() | nil,
 status: status(),
 token_usage: map(),
 turn_count: non_neg_integer()
}

 Functions

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a run from a map.

 increment_turn(run)

 @spec increment_turn(t()) :: {:ok, t()}

Increments the turn count by 1.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new run with the given attributes.
Required
	:session_id - The parent session identifier

Optional
	:id - Custom ID (auto-generated if not provided)
	:input - Input data for the run
	:metadata - Arbitrary metadata map

Examples
iex> Run.new(%{session_id: "session-123"})
{:ok, %Run{session_id: "session-123", status: :pending, ...}}

iex> Run.new(%{})
{:error, %Error{code: :validation_error, ...}}

 set_error(run, error)

 @spec set_error(t(), map()) :: {:ok, t()}

Sets the error and marks the run as failed.

 set_output(run, output)

 @spec set_output(t(), map()) :: {:ok, t()}

Sets the output and marks the run as completed.

 to_map(run)

 @spec to_map(t()) :: map()

Converts a run to a map suitable for JSON serialization.

 update_status(run, status)

 @spec update_status(t(), status()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Updates the run status.
Valid statuses
	:pending - Run created but not started
	:running - Run is currently executing
	:completed - Run completed successfully
	:failed - Run failed
	:cancelled - Run was cancelled
	:timeout - Run timed out

Terminal statuses (:completed, :failed, :cancelled, :timeout) will
automatically set the ended_at timestamp.
Examples
iex> {:ok, run} = Run.new(%{session_id: "session"})
iex> Run.update_status(run, :running)
{:ok, %Run{status: :running, ended_at: nil, ...}}

iex> Run.update_status(run, :completed)
{:ok, %Run{status: :completed, ended_at: %DateTime{}, ...}}

 update_token_usage(run, usage)

 @spec update_token_usage(t(), map()) :: {:ok, t()}

Updates token usage statistics.
Token usage is accumulated across multiple updates.

AgentSessionManager.Core.Session

Represents an AI agent session.
A session is a logical container for a series of runs (interactions)
with an AI agent. It maintains state, context, and metadata across
multiple runs.
Session Lifecycle
Sessions follow this state machine:
pending -> active -> completed
 -> failed
 -> cancelled
 -> paused -> active (resumed)
Fields
	id - Unique session identifier
	agent_id - Identifier for the agent type/configuration
	status - Current session status (:pending, :active, :paused, :completed, :failed, :cancelled)
	parent_session_id - Optional parent session for hierarchical sessions
	metadata - Arbitrary metadata associated with the session
	context - Shared context data (system prompts, configuration)
	tags - List of tags for categorization
	created_at - Session creation timestamp
	updated_at - Last update timestamp

Usage
Create a new session
{:ok, session} = Session.new(%{agent_id: "my-agent"})

Update status
{:ok, active} = Session.update_status(session, :active)

Serialize for storage
map = Session.to_map(session)

 Summary

 Types

 status()

 t()

 Functions

 from_map(map)

 Reconstructs a session from a map.

 new(attrs)

 Creates a new session with the given attributes.

 to_map(session)

 Converts a session to a map suitable for JSON serialization.

 update_status(session, status)

 Updates the session status.

 Types

 status()

 @type status() :: :pending | :active | :paused | :completed | :failed | :cancelled

 t()

 @type t() :: %AgentSessionManager.Core.Session{
 agent_id: String.t() | nil,
 context: map(),
 created_at: DateTime.t() | nil,
 id: String.t() | nil,
 metadata: map(),
 parent_session_id: String.t() | nil,
 status: status(),
 tags: [String.t()],
 updated_at: DateTime.t() | nil
}

 Functions

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a session from a map.

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new session with the given attributes.
Required
	:agent_id - The agent identifier

Optional
	:id - Custom ID (auto-generated if not provided)
	:parent_session_id - Parent session for hierarchical sessions
	:metadata - Arbitrary metadata map
	:context - Shared context data
	:tags - List of string tags

Examples
iex> Session.new(%{agent_id: "my-agent"})
{:ok, %Session{agent_id: "my-agent", status: :pending, ...}}

iex> Session.new(%{})
{:error, %Error{code: :validation_error, ...}}

 to_map(session)

 @spec to_map(t()) :: map()

Converts a session to a map suitable for JSON serialization.

 update_status(session, status)

 @spec update_status(t(), status()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Updates the session status.
Valid statuses
	:pending - Session created but not started
	:active - Session is currently active
	:paused - Session is paused
	:completed - Session completed successfully
	:failed - Session failed
	:cancelled - Session was cancelled

Examples
iex> {:ok, session} = Session.new(%{agent_id: "agent"})
iex> Session.update_status(session, :active)
{:ok, %Session{status: :active, ...}}

iex> Session.update_status(session, :invalid)
{:error, %Error{code: :invalid_status}}

AgentSessionManager.Core.EventNormalizer

Event normalization pipeline for transforming provider events into normalized events.
This module provides adapter helpers to map provider-specific events into
the canonical NormalizedEvent format, ensuring consistent handling across
different AI providers.
Responsibilities
	Transform raw provider events into NormalizedEvent structs
	Assign sequence numbers for ordering
	Map provider-specific event types to canonical types
	Provide sorting and filtering utilities

Event Type Mapping
The normalizer maps common provider event patterns to canonical types:
	User messages -> :message_sent
	Assistant messages -> :message_received
	Streaming chunks -> :message_streamed
	Tool invocations -> :tool_call_started/:tool_call_completed/:tool_call_failed
	Run lifecycle -> :run_started/:run_completed/:run_failed

Usage
Normalize a single event
{:ok, normalized} = EventNormalizer.normalize(raw_event, context)

Normalize a batch with automatic sequencing
{:ok, events} = EventNormalizer.normalize_batch(raw_events, context)

Sort events deterministically
sorted = EventNormalizer.sort_events(events)

 Summary

 Functions

 filter_by_run(events, run_id)

 Filters events by run_id.

 filter_by_session(events, session_id)

 Filters events by session_id.

 filter_by_type(events, type)

 Filters events by type or list of types.

 normalize(raw_event, context)

 Normalizes a raw event map into a NormalizedEvent.

 normalize_batch(raw_events, context)

 Normalizes a batch of raw events with automatic sequence numbering.

 sort_events(events)

 Sorts events in deterministic order.

 Functions

 filter_by_run(events, run_id)

 @spec filter_by_run([AgentSessionManager.Core.NormalizedEvent.t()], String.t()) :: [
 AgentSessionManager.Core.NormalizedEvent.t()
]

Filters events by run_id.

 filter_by_session(events, session_id)

 @spec filter_by_session([AgentSessionManager.Core.NormalizedEvent.t()], String.t()) ::
 [
 AgentSessionManager.Core.NormalizedEvent.t()
]

Filters events by session_id.

 filter_by_type(events, type)

 @spec filter_by_type(
 [AgentSessionManager.Core.NormalizedEvent.t()],
 atom() | [atom()]
) :: [
 AgentSessionManager.Core.NormalizedEvent.t()
]

Filters events by type or list of types.

 normalize(raw_event, context)

 @spec normalize(map(), map()) ::
 {:ok, AgentSessionManager.Core.NormalizedEvent.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Normalizes a raw event map into a NormalizedEvent.
Parameters
	raw_event - The raw event data from a provider
	context - Context map with required :session_id, :run_id, and optional :provider

Examples
iex> EventNormalizer.normalize(%{"type" => "message"}, %{session_id: "s1", run_id: "r1"})
{:ok, %NormalizedEvent{type: :message_received, ...}}

 normalize_batch(raw_events, context)

 @spec normalize_batch([map()], map()) ::
 {:ok, [AgentSessionManager.Core.NormalizedEvent.t()]}
 | {:error, %{errors: list(), successful: list()}}

Normalizes a batch of raw events with automatic sequence numbering.
Events are processed in order and assigned sequential sequence numbers
starting from the offset (default 0).
Returns {:ok, events} if all succeed, or {:error, %{errors: [...], successful: [...]}}
if any fail.
Options in context
	:sequence_offset - Starting sequence number (default: 0)

 sort_events(events)

 @spec sort_events([AgentSessionManager.Core.NormalizedEvent.t()]) :: [
 AgentSessionManager.Core.NormalizedEvent.t()
]

Sorts events in deterministic order.
Sorting priority:
	sequence_number (ascending, nil values last)
	timestamp (ascending)
	id (lexicographic, as tiebreaker)

This ensures stable, reproducible ordering regardless of input order.

AgentSessionManager.Core.EventStream

Manages incremental consumption of normalized event streams.
EventStream provides a cursor-based mechanism for consuming events
incrementally, supporting both batch and streaming consumption patterns.
Features
	Cursor-based navigation for resumable consumption
	Buffer management with configurable size limits
	Context validation (session_id, run_id matching)
	Enumerable support for functional operations

Usage
Create a new stream
{:ok, stream} = EventStream.new(%{session_id: "ses_123", run_id: "run_456"})

Push events
{:ok, stream} = EventStream.push(stream, event)
{:ok, stream} = EventStream.push_batch(stream, events)

Consume events
events = EventStream.peek(stream, 5) # Non-consuming read
{:ok, events, stream} = EventStream.take(stream, 5) # Consuming read

Get all events (sorted)
all_events = EventStream.get_events(stream)

Close when done
{:ok, stream} = EventStream.close(stream)

 Summary

 Types

 status()

 t()

 Functions

 advance_cursor(stream, position)

 Advances the cursor to the specified position.

 close(stream)

 Closes the stream, preventing further pushes.

 closed?(event_stream)

 Returns whether the stream is closed.

 count(event_stream)

 Returns the total number of events in the stream.

 get_events(stream, opts \\ [])

 Returns all events in the stream, sorted by sequence number.

 new(context)

 Creates a new event stream for the given context.

 peek(stream, count)

 Returns the next count events without advancing the cursor.

 push(stream, event)

 Pushes a single event to the stream.

 push_batch(stream, events)

 Pushes a batch of events to the stream atomically.

 remaining(stream)

 Returns the number of unread events (from cursor to end).

 take(stream, count)

 Returns the next count events and advances the cursor.

 to_enumerable(stream)

 Returns an enumerable view of the stream's remaining events.

 Types

 status()

 @type status() :: :open | :closed

 t()

 @type t() :: %AgentSessionManager.Core.EventStream{
 buffer_size: pos_integer(),
 cursor: non_neg_integer(),
 events: [AgentSessionManager.Core.NormalizedEvent.t()],
 next_sequence: non_neg_integer(),
 run_id: String.t(),
 session_id: String.t(),
 status: status()
}

 Functions

 advance_cursor(stream, position)

 @spec advance_cursor(t(), non_neg_integer()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Advances the cursor to the specified position.
The cursor can only move forward, never backward.

 close(stream)

 @spec close(t()) :: {:ok, t()}

Closes the stream, preventing further pushes.
The cursor is advanced to the end position.

 closed?(event_stream)

 @spec closed?(t()) :: boolean()

Returns whether the stream is closed.

 count(event_stream)

 @spec count(t()) :: non_neg_integer()

Returns the total number of events in the stream.

 get_events(stream, opts \\ [])

 @spec get_events(
 t(),
 keyword()
) :: [AgentSessionManager.Core.NormalizedEvent.t()]

Returns all events in the stream, sorted by sequence number.
Options
	:from_cursor - If true, only return events from cursor position onwards
	:limit - Maximum number of events to return
	:type - Filter by event type (atom or list of atoms)

 new(context)

 @spec new(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new event stream for the given context.
Required
	:session_id - The session ID for this stream
	:run_id - The run ID for this stream

Optional
	:buffer_size - Maximum number of events to keep in memory (default: 1000)

 peek(stream, count)

 @spec peek(t(), non_neg_integer()) :: [AgentSessionManager.Core.NormalizedEvent.t()]

Returns the next count events without advancing the cursor.

 push(stream, event)

 @spec push(t(), AgentSessionManager.Core.NormalizedEvent.t()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Pushes a single event to the stream.
The event must have matching session_id and run_id. If the event
doesn't have a sequence_number, one will be assigned automatically.

 push_batch(stream, events)

 @spec push_batch(t(), [AgentSessionManager.Core.NormalizedEvent.t()]) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Pushes a batch of events to the stream atomically.
All events must have matching session_id and run_id. If any event
fails validation, the entire batch is rejected.

 remaining(stream)

 @spec remaining(t()) :: non_neg_integer()

Returns the number of unread events (from cursor to end).

 take(stream, count)

 @spec take(t(), non_neg_integer()) ::
 {:ok, [AgentSessionManager.Core.NormalizedEvent.t()], t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Returns the next count events and advances the cursor.
Returns {:ok, events, updated_stream}.

 to_enumerable(stream)

 @spec to_enumerable(t()) :: Enumerable.t()

Returns an enumerable view of the stream's remaining events.
This allows using Enum functions on the stream's events.

AgentSessionManager.Core.CapabilityResolver

Negotiates capabilities between required/optional sets and available provider capabilities.
The CapabilityResolver accepts a set of required and optional capability types,
then negotiates against a list of provider capabilities to determine which
capabilities are supported, unsupported, and whether the negotiation succeeds.
Negotiation Behavior
	Required capabilities: If any required capability type is missing from the
provider, negotiation fails immediately with an error.
	Optional capabilities: Missing optional capabilities result in a degraded
status with warnings, but negotiation still succeeds.
	Full support: When all required and optional capabilities are satisfied,
the result status is full.

Usage
Create a resolver with required and optional capabilities
{:ok, resolver} = CapabilityResolver.new(
 required: [:tool, :resource],
 optional: [:sampling]
)

Negotiate against provider capabilities
provider_capabilities = [
 %Capability{name: "web_search", type: :tool, enabled: true},
 %Capability{name: "file_access", type: :resource, enabled: true}
]

case CapabilityResolver.negotiate(resolver, provider_capabilities) do
 {:ok, result} ->
 IO.puts("Status: #{result.status}")
 IO.puts("Supported: #{inspect(result.supported)}")
 IO.puts("Warnings: #{inspect(result.warnings)}")

 {:error, error} ->
 IO.puts("Negotiation failed: #{error.message}")
end
Helper Functions
The module also provides utilities for working with capability lists:
Check if a capability type is present
CapabilityResolver.has_capability_type?(capabilities, :tool)

Get all capabilities of a specific type
tools = CapabilityResolver.capabilities_of_type(capabilities, :tool)

 Summary

 Types

 t()

 Functions

 capabilities_of_type(capabilities, type)

 Returns all capabilities from the list that have the specified type.

 has_capability_type?(capabilities, type)

 Checks if the capability list contains at least one enabled capability of the given type.

 negotiate(resolver, capabilities)

 Negotiates capabilities between the resolver's requirements and provider capabilities.

 new(opts \\ [])

 Creates a new CapabilityResolver with the given required and optional capability types.

 Types

 t()

 @type t() :: %AgentSessionManager.Core.CapabilityResolver{
 optional: MapSet.t(atom()),
 required: MapSet.t(atom())
}

 Functions

 capabilities_of_type(capabilities, type)

 @spec capabilities_of_type([AgentSessionManager.Core.Capability.t()], atom()) :: [
 AgentSessionManager.Core.Capability.t()
]

Returns all capabilities from the list that have the specified type.
Only considers enabled capabilities.
Examples
iex> capabilities = [%Capability{name: "search", type: :tool, enabled: true}]
iex> CapabilityResolver.capabilities_of_type(capabilities, :tool)
[%Capability{name: "search", type: :tool, enabled: true}]

 has_capability_type?(capabilities, type)

 @spec has_capability_type?([AgentSessionManager.Core.Capability.t()], atom()) ::
 boolean()

Checks if the capability list contains at least one enabled capability of the given type.
Examples
iex> capabilities = [%Capability{name: "search", type: :tool, enabled: true}]
iex> CapabilityResolver.has_capability_type?(capabilities, :tool)
true

iex> CapabilityResolver.has_capability_type?(capabilities, :sampling)
false

 negotiate(resolver, capabilities)

 @spec negotiate(t(), [AgentSessionManager.Core.Capability.t()]) ::
 {:ok, AgentSessionManager.Core.CapabilityResolver.NegotiationResult.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Negotiates capabilities between the resolver's requirements and provider capabilities.
Returns {:ok, result} if all required capabilities are satisfied, or
{:error, error} if any required capability is missing.
Examples
iex> {:ok, resolver} = CapabilityResolver.new(required: [:tool])
iex> capabilities = [%Capability{name: "search", type: :tool, enabled: true}]
iex> {:ok, result} = CapabilityResolver.negotiate(resolver, capabilities)
iex> result.status
:full

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Creates a new CapabilityResolver with the given required and optional capability types.
Options
	:required - List of required capability types (atoms or strings)
	:optional - List of optional capability types (atoms or strings)

Examples
iex> CapabilityResolver.new(required: [:tool], optional: [:sampling])
{:ok, %CapabilityResolver{required: MapSet.new([:tool]), optional: MapSet.new([:sampling])}}

iex> CapabilityResolver.new(required: [:invalid_type])
{:error, %Error{code: :invalid_capability_type}}

AgentSessionManager.Core.CapabilityResolver.NegotiationResult

Represents the result of a capability negotiation.
Fields
	status - :full when all capabilities satisfied, :degraded when optional missing
	supported - MapSet of capability types that are supported
	unsupported - MapSet of capability types that are not supported (optional only)
	warnings - List of warning messages for missing optional capabilities

 Summary

 Types

 status()

 t()

 Types

 status()

 @type status() :: :full | :degraded | :unknown

 t()

 @type t() :: %AgentSessionManager.Core.CapabilityResolver.NegotiationResult{
 status: status(),
 supported: MapSet.t(atom()),
 unsupported: MapSet.t(atom()),
 warnings: [String.t()]
}

AgentSessionManager.Core.Registry

A thread-safe registry for storing and retrieving provider manifests.
The Registry provides deterministic operations for managing provider manifests,
including registration, retrieval, update, and filtering capabilities.
Thread Safety
The Registry uses immutable data structures, making all operations inherently
thread-safe. Each operation returns a new Registry struct without mutating
the original, enabling safe concurrent access patterns.
Determinism
All operations are deterministic - the same inputs will always produce the
same outputs. The list/1 function returns manifests in a consistent order
(sorted alphabetically by name).
Usage
Create a registry
registry = Registry.new()

Register a manifest
{:ok, manifest} = Manifest.new(%{name: "my-agent", version: "1.0.0"})
{:ok, registry} = Registry.register(registry, manifest)

Retrieve a manifest
{:ok, retrieved} = Registry.get(registry, "my-agent")

List all manifests
manifests = Registry.list(registry)

Filter by provider
anthropic_agents = Registry.filter_by_provider(registry, "anthropic")

Filter by capability
tool_agents = Registry.filter_by_capability(registry, :tool)
Validation
The Registry validates manifests before registration, providing helpful
error messages for common issues:
result = Registry.validate_manifest(manifest)
case result do
 :ok -> IO.puts("Valid!")
 {:error, error} -> IO.puts("Error: #{error.message}")
end

 Summary

 Types

 t()

 Functions

 count(registry)

 Returns the count of registered manifests.

 exists?(registry, name)

 Checks if a manifest with the given name exists in the registry.

 filter_by_capability(registry, capability_type)

 Filters manifests by capability type.

 filter_by_provider(registry, provider)

 Filters manifests by provider.

 from_map(map)

 Reconstructs a registry from a map.

 get(registry, name)

 Retrieves a manifest by name.

 list(registry)

 Lists all registered manifests in deterministic order (sorted by name).

 new()

 Creates a new empty registry.

 new(opts)

 Creates a new registry with the given options.

 register(registry, manifest)

 Registers a new manifest in the registry.

 to_map(registry)

 Converts the registry to a map suitable for JSON serialization.

 unregister(registry, name)

 Removes a manifest from the registry by name.

 update(registry, manifest)

 Updates an existing manifest in the registry.

 validate_manifest(manifest)

 Validates a manifest, returning :ok if valid or {:error, error} with
a helpful error message if invalid.

 Types

 t()

 @type t() :: %AgentSessionManager.Core.Registry{
 manifests: %{required(String.t()) => AgentSessionManager.Core.Manifest.t()},
 metadata: map()
}

 Functions

 count(registry)

 @spec count(t()) :: non_neg_integer()

Returns the count of registered manifests.
Examples
iex> Registry.count(registry)
3

 exists?(registry, name)

 @spec exists?(t(), String.t()) :: boolean()

Checks if a manifest with the given name exists in the registry.
Examples
iex> Registry.exists?(registry, "my-agent")
true

 filter_by_capability(registry, capability_type)

 @spec filter_by_capability(t(), atom()) :: [AgentSessionManager.Core.Manifest.t()]

Filters manifests by capability type.
Returns all manifests that have at least one enabled capability of the specified type.
Examples
iex> tool_agents = Registry.filter_by_capability(registry, :tool)

 filter_by_provider(registry, provider)

 @spec filter_by_provider(t(), String.t()) :: [AgentSessionManager.Core.Manifest.t()]

Filters manifests by provider.
Returns all manifests that have the specified provider.
Examples
iex> anthropic_agents = Registry.filter_by_provider(registry, "anthropic")

 from_map(map)

 @spec from_map(map()) :: {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Reconstructs a registry from a map.
Examples
iex> {:ok, registry} = Registry.from_map(map)

 get(registry, name)

 @spec get(t(), String.t()) ::
 {:ok, AgentSessionManager.Core.Manifest.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a manifest by name.
Returns an error if the manifest does not exist.
Examples
iex> {:ok, retrieved} = Registry.get(registry, "my-agent")
iex> retrieved.name
"my-agent"

 list(registry)

 @spec list(t()) :: [AgentSessionManager.Core.Manifest.t()]

Lists all registered manifests in deterministic order (sorted by name).
Examples
iex> manifests = Registry.list(registry)
iex> length(manifests)
2

 new()

 @spec new() :: t()

Creates a new empty registry.
Examples
iex> Registry.new()
%Registry{manifests: %{}, metadata: %{}}

 new(opts)

 @spec new(keyword()) :: t()

Creates a new registry with the given options.
Options
	:metadata - Optional metadata map for the registry

Examples
iex> Registry.new(metadata: %{version: "1.0"})
%Registry{manifests: %{}, metadata: %{version: "1.0"}}

 register(registry, manifest)

 @spec register(t(), AgentSessionManager.Core.Manifest.t()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Registers a new manifest in the registry.
Returns an error if:
	A manifest with the same name already exists
	The manifest fails validation

Examples
iex> registry = Registry.new()
iex> {:ok, manifest} = Manifest.new(%{name: "agent", version: "1.0.0"})
iex> {:ok, updated} = Registry.register(registry, manifest)
iex> Registry.exists?(updated, "agent")
true

 to_map(registry)

 @spec to_map(t()) :: map()

Converts the registry to a map suitable for JSON serialization.
Examples
iex> map = Registry.to_map(registry)
%{"manifests" => [...], "metadata" => %{}}

 unregister(registry, name)

 @spec unregister(t(), String.t()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Removes a manifest from the registry by name.
Returns an error if the manifest does not exist.
Examples
iex> {:ok, registry} = Registry.register(Registry.new(), manifest)
iex> {:ok, updated} = Registry.unregister(registry, "my-agent")
iex> Registry.exists?(updated, "my-agent")
false

 update(registry, manifest)

 @spec update(t(), AgentSessionManager.Core.Manifest.t()) ::
 {:ok, t()} | {:error, AgentSessionManager.Core.Error.t()}

Updates an existing manifest in the registry.
The manifest must already exist (matched by name).
Returns an error if the manifest does not exist.
Examples
iex> {:ok, updated_registry} = Registry.update(registry, updated_manifest)

 validate_manifest(manifest)

 @spec validate_manifest(AgentSessionManager.Core.Manifest.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Validates a manifest, returning :ok if valid or {:error, error} with
a helpful error message if invalid.
Validation Rules
	Name must be present and non-empty
	Version must be present and non-empty
	All capabilities must be valid

Examples
iex> Registry.validate_manifest(valid_manifest)
:ok

iex> Registry.validate_manifest(%Manifest{})
{:error, %Error{code: :validation_error, message: "Manifest name is required..."}}

AgentSessionManager.SessionManager

Orchestrates session lifecycle, run execution, and event handling.
The SessionManager is the central coordinator for managing AI agent sessions.
It handles:
	Session creation, activation, and completion
	Run creation and execution via provider adapters
	Event emission and persistence
	Capability requirement enforcement

Architecture
SessionManager sits between the application and the ports/adapters layer:
Application
 |
SessionManager <-- Orchestration layer
 |
+---+---+
| |
 Store Adapter <-- Ports (interfaces)
| |
 Impl Impl <-- Adapters (implementations)
Usage
Start a session
{:ok, store} = InMemorySessionStore.start_link()
{:ok, adapter} = AnthropicAdapter.start_link(api_key: "...")

{:ok, session} = SessionManager.start_session(store, adapter, %{
 agent_id: "my-agent",
 context: %{system_prompt: "You are helpful"}
})

Activate and run
{:ok, _} = SessionManager.activate_session(store, session.id)
{:ok, run} = SessionManager.start_run(store, adapter, session.id, %{prompt: "Hello"})
{:ok, result} = SessionManager.execute_run(store, adapter, run.id)

Complete session
{:ok, _} = SessionManager.complete_session(store, session.id)
Event Flow
The SessionManager emits normalized events through the session store:
	Session lifecycle: :session_created, :session_started, :session_completed, etc.
	Run lifecycle: :run_started, :run_completed, :run_failed, etc.
	Provider events: Adapter events are normalized and stored

 Summary

 Types

 adapter()

 store()

 Functions

 activate_session(store, session_id)

 Activates a pending session.

 cancel_run(store, adapter, run_id)

 Cancels an in-progress run.

 complete_session(store, session_id)

 Completes a session successfully.

 execute_run(store, adapter, run_id)

 Executes a run via the provider adapter.

 fail_session(store, session_id, error)

 Marks a session as failed.

 get_session(store, session_id)

 Retrieves a session by ID.

 get_session_events(store, session_id, opts \\ [])

 Gets all events for a session.

 get_session_runs(store, session_id)

 Gets all runs for a session.

 start_run(store, adapter, session_id, input, opts \\ [])

 Creates a new run for a session.

 start_session(store, adapter, attrs)

 Creates a new session with pending status.

 Types

 adapter()

 @type adapter() :: AgentSessionManager.Ports.ProviderAdapter.adapter()

 store()

 @type store() :: AgentSessionManager.Ports.SessionStore.store()

 Functions

 activate_session(store, session_id)

 @spec activate_session(store(), String.t()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Activates a pending session.
Transitions the session from :pending to :active status.
Returns
	{:ok, Session.t()} - The activated session
	{:error, Error.t()} - If session not found or update fails

 cancel_run(store, adapter, run_id)

 @spec cancel_run(store(), adapter(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Cancels an in-progress run.
Returns
	{:ok, run_id} - Run was cancelled
	{:error, Error.t()} - Cancellation failed

 complete_session(store, session_id)

 @spec complete_session(store(), String.t()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Completes a session successfully.
Transitions the session to :completed status.
Returns
	{:ok, Session.t()} - The completed session
	{:error, Error.t()} - If session not found or update fails

 execute_run(store, adapter, run_id)

 @spec execute_run(store(), adapter(), String.t()) ::
 {:ok, map()} | {:error, AgentSessionManager.Core.Error.t()}

Executes a run via the provider adapter.
This function:
	Updates the run status to :running
	Calls the adapter's execute/4 function
	Handles events emitted by the adapter
	Updates the run with results or error

Returns
	{:ok, result} - Execution completed successfully
	{:error, Error.t()} - Execution failed

 fail_session(store, session_id, error)

 @spec fail_session(store(), String.t(), AgentSessionManager.Core.Error.t()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Marks a session as failed.
Transitions the session to :failed status and records the error.
Parameters
	store - The session store
	session_id - The session ID
	error - The error that caused the failure

Returns
	{:ok, Session.t()} - The failed session
	{:error, Error.t()} - If session not found or update fails

 get_session(store, session_id)

 @spec get_session(store(), String.t()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a session by ID.
Returns
	{:ok, Session.t()} - The session
	{:error, Error.t()} - If not found

 get_session_events(store, session_id, opts \\ [])

 @spec get_session_events(store(), String.t(), keyword()) ::
 {:ok, [AgentSessionManager.Core.Event.t()]}

Gets all events for a session.
Options
	:run_id - Filter by run ID
	:type - Filter by event type
	:since - Events after this timestamp

 get_session_runs(store, session_id)

 @spec get_session_runs(store(), String.t()) ::
 {:ok, [AgentSessionManager.Core.Run.t()]}

Gets all runs for a session.

 start_run(store, adapter, session_id, input, opts \\ [])

 @spec start_run(store(), adapter(), String.t(), map(), keyword()) ::
 {:ok, AgentSessionManager.Core.Run.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Creates a new run for a session.
The run is created with :pending status. Use execute_run/3 to execute it.
Parameters
	store - The session store
	adapter - The provider adapter
	session_id - The parent session ID
	input - Input data for the run
	opts - Optional settings:	:required_capabilities - List of capability types that must be present
	:optional_capabilities - List of capability types that are nice to have

Returns
	{:ok, Run.t()} - The created run
	{:error, Error.t()} - If session not found or capability check fails

 start_session(store, adapter, attrs)

 @spec start_session(store(), adapter(), map()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Creates a new session with pending status.
Parameters
	store - The session store instance
	adapter - The provider adapter instance
	attrs - Session attributes:	:agent_id (required) - The agent identifier
	:metadata - Optional metadata map
	:context - Optional context map (system prompts, etc.)
	:tags - Optional list of tags

Returns
	{:ok, Session.t()} - The created session
	{:error, Error.t()} - If validation fails

Examples
{:ok, session} = SessionManager.start_session(store, adapter, %{
 agent_id: "my-agent",
 metadata: %{user_id: "user-123"}
})

AgentSessionManager.Ports.ProviderAdapter behaviour

Port (interface) for AI provider adapters.
This behaviour defines the contract that all provider adapter implementations
must fulfill. It follows the ports and adapters pattern, allowing different
AI providers (Anthropic, OpenAI, etc.) to be swapped without changing the
core business logic.
Design Principles
	Provider-agnostic: Core logic doesn't depend on provider specifics
	Capability-based: Adapters declare what they support
	Event-driven: Execution emits normalized events via callbacks
	Cancellable: Long-running operations can be cancelled

Implementation Requirements
Implementations must:
	Return a unique provider name
	Declare supported capabilities
	Execute runs and emit events via callback
	Support cancellation of in-progress runs
	Validate provider-specific configuration

Event Emission
During execute/4, adapters should call the :event_callback option (if provided)
with normalized event maps containing:
	:type - Event type (e.g., :run_started, :message_received)
	:session_id - The session ID
	:run_id - The run ID
	:data - Event-specific payload
	:timestamp - When the event occurred

Usage
Adapters are typically used through the SessionManager:
The SessionManager handles adapter lifecycle
{:ok, manager} = SessionManager.start_link(
 adapter: MyAdapter,
 adapter_opts: [api_key: "..."]
)

Or directly for testing
{:ok, adapter} = MyAdapter.start_link(api_key: "...")
{:ok, capabilities} = ProviderAdapter.capabilities(adapter)
{:ok, result} = ProviderAdapter.execute(adapter, run, session, event_callback: fn e -> ... end)

 Summary

 Types

 adapter()

 execute_opts()

 run_result()

 Callbacks

 cancel(adapter, t)

 Cancels an in-progress run.

 capabilities(adapter)

 Returns the list of capabilities supported by this provider.

 execute(adapter, t, t, execute_opts)

 Executes a run against the AI provider.

 name(adapter)

 Returns the unique name of this provider.

 validate_config(arg1, map)

 Validates provider-specific configuration.

 Functions

 cancel(adapter, run_id)

 Cancels a run.

 capabilities(adapter)

 Returns the list of capabilities.

 execute(adapter, run, session, opts \\ [])

 Executes a run.

 name(adapter)

 Returns the provider name.

 validate_config(adapter, config)

 Validates configuration.

 Types

 adapter()

 @type adapter() :: GenServer.server() | pid() | atom() | module()

 execute_opts()

 @type execute_opts() :: [event_callback: (map() -> any()), timeout: pos_integer()]

 run_result()

 @type run_result() :: %{output: map(), token_usage: map(), events: [map()]}

 Callbacks

 cancel(adapter, t)

 @callback cancel(adapter(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Cancels an in-progress run.
Providers should attempt to gracefully cancel the run. After cancellation,
the run should emit a :run_cancelled event.
Parameters
	adapter - The adapter instance
	run_id - The ID of the run to cancel

Returns
	{:ok, run_id} - Cancellation initiated (run will emit cancelled event)
	{:error, Error.t()} - Cancellation failed

Examples
iex> MyAdapter.cancel(adapter, "run_123")
{:ok, "run_123"}

 capabilities(adapter)

 @callback capabilities(adapter()) ::
 {:ok, [AgentSessionManager.Core.Capability.t()]}
 | {:error, AgentSessionManager.Core.Error.t()}

Returns the list of capabilities supported by this provider.
Capabilities define what the provider can do - tools, resources,
sampling modes, etc. The SessionManager uses this to validate
that required capabilities are available before starting runs.
Returns
	{:ok, [Capability.t()]} - List of supported capabilities
	{:error, Error.t()} - If capabilities cannot be determined

Examples
iex> MyAdapter.capabilities(adapter)
{:ok, [
 %Capability{name: "chat", type: :tool, enabled: true},
 %Capability{name: "sampling", type: :sampling, enabled: true}
]}

 execute(adapter, t, t, execute_opts)

 @callback execute(
 adapter(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 execute_opts()
) :: {:ok, run_result()} | {:error, AgentSessionManager.Core.Error.t()}

Executes a run against the AI provider.
This is the main execution entry point. The adapter should:
	Emit a :run_started event
	Send the request to the provider
	Emit events as responses come in (:message_received, :tool_call_started, etc.)
	Emit :run_completed or :run_failed when done
	Return the final result

Parameters
	adapter - The adapter instance
	run - The run to execute (contains input, session_id, etc.)
	session - The parent session (contains context, metadata)
	opts - Execution options:	:event_callback - Function called for each event emitted
	:timeout - Maximum execution time in milliseconds

Returns
	{:ok, result} - Execution completed successfully	result.output - The final output from the provider
	result.token_usage - Token usage statistics
	result.events - All events emitted during execution

	{:error, Error.t()} - Execution failed

Examples
iex> callback = fn event -> Logger.info("Event: #{inspect(event)}") end
iex> MyAdapter.execute(adapter, run, session, event_callback: callback)
{:ok, %{
 output: %{content: "Hello!"},
 token_usage: %{input_tokens: 10, output_tokens: 20},
 events: [...]
}}

 name(adapter)

 @callback name(adapter()) :: String.t()

Returns the unique name of this provider.
This name is used for logging, metrics, and identifying the provider
in multi-provider configurations.
Examples
iex> MyAdapter.name(adapter)
"anthropic"

 validate_config(arg1, map)

 @callback validate_config(adapter() | module(), map()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Validates provider-specific configuration.
This is called before the adapter starts to ensure all required
configuration is present and valid.
Parameters
	adapter - The adapter instance (or module for static validation)
	config - Configuration map to validate

Returns
	:ok - Configuration is valid
	{:error, Error.t()} - Configuration is invalid

Examples
iex> MyAdapter.validate_config(adapter, %{api_key: "sk-..."})
:ok

iex> MyAdapter.validate_config(adapter, %{})
{:error, %Error{code: :validation_error, message: "api_key is required"}}

 Functions

 cancel(adapter, run_id)

 @spec cancel(adapter(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Cancels a run.

 capabilities(adapter)

 @spec capabilities(adapter()) ::
 {:ok, [AgentSessionManager.Core.Capability.t()]}
 | {:error, AgentSessionManager.Core.Error.t()}

Returns the list of capabilities.

 execute(adapter, run, session, opts \\ [])

 @spec execute(
 adapter(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 execute_opts()
) :: {:ok, run_result()} | {:error, AgentSessionManager.Core.Error.t()}

Executes a run.

 name(adapter)

 @spec name(adapter()) :: String.t()

Returns the provider name.

 validate_config(adapter, config)

 @spec validate_config(adapter() | module(), map()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Validates configuration.

AgentSessionManager.Ports.SessionStore behaviour

Port (interface) for session storage operations.
This behaviour defines the contract that all session store implementations
must fulfill. It follows the ports and adapters pattern, allowing different
storage backends (in-memory, PostgreSQL, Redis, etc.) to be swapped without
changing the core business logic.
Design Principles
	Append-only event log semantics: Events are immutable once stored
	Idempotent writes: Saving the same entity multiple times is safe
	Read-after-write consistency: Active run queries reflect latest writes
	Concurrent access safety: All operations must be thread-safe

Implementation Requirements
Implementations must:
	Handle concurrent access without race conditions
	Provide idempotent write operations (save_session, save_run)
	Maintain event append order
	Deduplicate events by ID
	Return proper error tuples for not-found cases

Usage
The SessionStore is typically accessed through a store instance (e.g., a GenServer pid
or an Agent reference):
Using the behaviour directly with a store instance
{:ok, store} = InMemorySessionStore.start_link([])
SessionStore.save_session(store, session)
{:ok, session} = SessionStore.get_session(store, session_id)

 Summary

 Types

 filter_opts()

 run_id()

 session_id()

 store()

 Callbacks

 append_event(store, t)

 Appends an event to the event log.

 delete_session(store, session_id)

 Deletes a session by its ID.

 get_active_run(store, session_id)

 Gets the currently active (running) run for a session.

 get_events(store, session_id, filter_opts)

 Retrieves events for a session with optional filtering.

 get_run(store, run_id)

 Retrieves a run by its ID.

 get_session(store, session_id)

 Retrieves a session by its ID.

 list_runs(store, session_id, filter_opts)

 Lists all runs for a given session.

 list_sessions(store, filter_opts)

 Lists sessions with optional filtering.

 save_run(store, t)

 Saves a run to the store.

 save_session(store, t)

 Saves a session to the store.

 Functions

 append_event(store, event)

 Appends an event to the store.

 delete_session(store, session_id)

 Deletes a session by ID.

 get_active_run(store, session_id)

 Gets the active run for a session.

 get_events(store, session_id, opts \\ [])

 Gets events for a session with optional filtering.

 get_run(store, run_id)

 Retrieves a run by ID.

 get_session(store, session_id)

 Retrieves a session by ID.

 list_runs(store, session_id, opts \\ [])

 Lists runs for a session.

 list_sessions(store, opts \\ [])

 Lists sessions with optional filtering.

 save_run(store, run)

 Saves a run to the store.

 save_session(store, session)

 Saves a session to the store.

 Types

 filter_opts()

 @type filter_opts() :: keyword()

 run_id()

 @type run_id() :: String.t()

 session_id()

 @type session_id() :: String.t()

 store()

 @type store() :: GenServer.server() | pid() | atom()

 Callbacks

 append_event(store, t)

 @callback append_event(store(), AgentSessionManager.Core.Event.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Appends an event to the event log.
Events are immutable - once appended, they cannot be modified or deleted.
This operation is idempotent - appending an event with the same ID
multiple times will not create duplicates.
Events must be stored in append order and returned in that same order
by get_events/3.
Parameters
	store - The store instance
	event - The event struct to append

Returns
	:ok on success
	{:error, Error.t()} on failure

Examples
{:ok, event} = Event.new(%{type: :session_created, session_id: session.id})
:ok = SessionStore.append_event(store, event)

 delete_session(store, session_id)

 @callback delete_session(store(), session_id()) :: :ok

Deletes a session by its ID.
This operation is idempotent - deleting a non-existent session returns :ok.
Parameters
	store - The store instance
	session_id - The session's unique identifier

Returns
	:ok on success (including when session doesn't exist)

Examples
:ok = SessionStore.delete_session(store, "ses_abc123")

 get_active_run(store, session_id)

 @callback get_active_run(store(), session_id()) ::
 {:ok, AgentSessionManager.Core.Run.t() | nil}

Gets the currently active (running) run for a session.
A run is considered active if its status is :running.
This operation must provide read-after-write consistency - if a run
was just saved with status :running, this function must return it
immediately.
Parameters
	store - The store instance
	session_id - The session's unique identifier

Returns
	{:ok, Run.t()} if there's an active run
	{:ok, nil} if there's no active run

Examples
{:ok, active_run} = SessionStore.get_active_run(store, session.id)

 get_events(store, session_id, filter_opts)

 @callback get_events(store(), session_id(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Event.t()]}

Retrieves events for a session with optional filtering.
Events are returned in append order (oldest first).
Parameters
	store - The store instance
	session_id - The session's unique identifier
	opts - Optional filter options:	:run_id - Filter by run ID
	:type - Filter by event type
	:since - Events after this timestamp
	:limit - Maximum number of results

Returns
	{:ok, [Event.t()]} - List of events in append order

Examples
{:ok, all_events} = SessionStore.get_events(store, session.id)
{:ok, run_events} = SessionStore.get_events(store, session.id, run_id: run.id)
{:ok, message_events} = SessionStore.get_events(store, session.id, type: :message_received)

 get_run(store, run_id)

 @callback get_run(store(), run_id()) ::
 {:ok, AgentSessionManager.Core.Run.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a run by its ID.
Parameters
	store - The store instance
	run_id - The run's unique identifier

Returns
	{:ok, Run.t()} if found
	{:error, %Error{code: :run_not_found}} if not found

Examples
{:ok, run} = SessionStore.get_run(store, "run_abc123")

 get_session(store, session_id)

 @callback get_session(store(), session_id()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a session by its ID.
Parameters
	store - The store instance
	session_id - The session's unique identifier

Returns
	{:ok, Session.t()} if found
	{:error, %Error{code: :session_not_found}} if not found

Examples
{:ok, session} = SessionStore.get_session(store, "ses_abc123")

 list_runs(store, session_id, filter_opts)

 @callback list_runs(store(), session_id(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Run.t()]}

Lists all runs for a given session.
Parameters
	store - The store instance
	session_id - The session's unique identifier
	opts - Optional filter options:	:status - Filter by run status
	:limit - Maximum number of results

Returns
	{:ok, [Run.t()]} - List of runs for the session

Examples
{:ok, runs} = SessionStore.list_runs(store, session.id)
{:ok, completed_runs} = SessionStore.list_runs(store, session.id, status: :completed)

 list_sessions(store, filter_opts)

 @callback list_sessions(store(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Session.t()]}

Lists sessions with optional filtering.
Parameters
	store - The store instance
	opts - Optional filter options:	:status - Filter by session status (e.g., :active, :pending)
	:agent_id - Filter by agent ID
	:limit - Maximum number of results
	:offset - Number of results to skip

Returns
	{:ok, [Session.t()]} - List of matching sessions

Examples
{:ok, all_sessions} = SessionStore.list_sessions(store)
{:ok, active_sessions} = SessionStore.list_sessions(store, status: :active)

 save_run(store, t)

 @callback save_run(store(), AgentSessionManager.Core.Run.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Saves a run to the store.
This operation is idempotent - saving the same run multiple times
should not create duplicates. If a run with the same ID exists,
it will be updated.
Parameters
	store - The store instance
	run - The run struct to save

Returns
	:ok on success
	{:error, Error.t()} on failure

Examples
{:ok, run} = Run.new(%{session_id: session.id})
:ok = SessionStore.save_run(store, run)

 save_session(store, t)

 @callback save_session(store(), AgentSessionManager.Core.Session.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Saves a session to the store.
This operation is idempotent - saving the same session multiple times
should not create duplicates. If a session with the same ID exists,
it will be updated.
Parameters
	store - The store instance
	session - The session struct to save

Returns
	:ok on success
	{:error, Error.t()} on failure

Examples
{:ok, session} = Session.new(%{agent_id: "agent-1"})
:ok = SessionStore.save_session(store, session)

 Functions

 append_event(store, event)

 @spec append_event(store(), AgentSessionManager.Core.Event.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Appends an event to the store.

 delete_session(store, session_id)

 @spec delete_session(store(), session_id()) :: :ok

Deletes a session by ID.

 get_active_run(store, session_id)

 @spec get_active_run(store(), session_id()) ::
 {:ok, AgentSessionManager.Core.Run.t() | nil}

Gets the active run for a session.

 get_events(store, session_id, opts \\ [])

 @spec get_events(store(), session_id(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Event.t()]}

Gets events for a session with optional filtering.

 get_run(store, run_id)

 @spec get_run(store(), run_id()) ::
 {:ok, AgentSessionManager.Core.Run.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a run by ID.

 get_session(store, session_id)

 @spec get_session(store(), session_id()) ::
 {:ok, AgentSessionManager.Core.Session.t()}
 | {:error, AgentSessionManager.Core.Error.t()}

Retrieves a session by ID.

 list_runs(store, session_id, opts \\ [])

 @spec list_runs(store(), session_id(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Run.t()]}

Lists runs for a session.

 list_sessions(store, opts \\ [])

 @spec list_sessions(store(), filter_opts()) ::
 {:ok, [AgentSessionManager.Core.Session.t()]}

Lists sessions with optional filtering.

 save_run(store, run)

 @spec save_run(store(), AgentSessionManager.Core.Run.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Saves a run to the store.

 save_session(store, session)

 @spec save_session(store(), AgentSessionManager.Core.Session.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Saves a session to the store.

AgentSessionManager.Adapters.ClaudeAdapter

Provider adapter for Claude (Anthropic) AI models.
This adapter implements the ProviderAdapter behaviour and provides:
	Streaming message execution with real-time event emission
	Tool use support with proper event mapping
	Interrupt/cancel capability
	Accurate capability advertisement

Event Mapping
Claude API events are mapped to normalized events as follows:
	Claude Event	Normalized Event	Notes
	message_start	run_started	Signals execution has begun
	content_block_start	(internal)	Tracked for content accumulation
	content_block_delta	message_streamed	Each text delta emits a stream
	content_block_stop	(internal/tool events)	May emit tool_call_completed
	message_delta	token_usage_updated	Final usage stats
	message_stop	message_received,	Emits full message then completion
		run_completed	

For tool use content blocks:
	content_block_start (tool_use) -> tool_call_started
	content_block_stop (tool_use) -> tool_call_completed

Usage
{:ok, adapter} = ClaudeAdapter.start_link(api_key: "sk-ant-api03-...")
{:ok, capabilities} = ClaudeAdapter.capabilities(adapter)

{:ok, session} = Session.new(%{agent_id: "my-agent"})
{:ok, run} = Run.new(%{session_id: session.id, input: %{messages: [...]}})

{:ok, result} = ClaudeAdapter.execute(adapter, run, session,
 event_callback: fn event -> IO.inspect(event) end
)
Configuration
Optional:
	:model - Model to use (default: "claude-sonnet-4-20250514")
	:api_key - Anthropic API key (optional; the SDK authenticates via
claude login session or the ANTHROPIC_API_KEY environment variable)
	:sdk_module - SDK module for testing (default: real SDK)
	:sdk_pid - SDK process for testing

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the Claude adapter.

 stop(server)

 Stops the adapter.

 Types

 state()

 @type state() :: %{
 api_key: String.t(),
 model: String.t(),
 sdk_module: module(),
 sdk_pid: pid() | nil,
 active_runs: %{required(String.t()) => map()},
 capabilities: [AgentSessionManager.Core.Capability.t()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the Claude adapter.
Options
	:model - Optional. The model to use (default: claude-sonnet-4-20250514)
	:api_key - Optional. Anthropic API key (SDK authenticates via claude login or env var).
	:sdk_module - Optional. Mock SDK module for testing.
	:sdk_pid - Optional. Mock SDK process for testing.
	:name - Optional. GenServer name for registration.

 stop(server)

 @spec stop(GenServer.server()) :: :ok

Stops the adapter.

AgentSessionManager.Adapters.CodexAdapter

Provider adapter for Codex (Claude Code CLI) integration.
This adapter implements the ProviderAdapter behaviour and provides:
	Streaming execution via Codex SDK's Thread.run_streamed/3
	Tool use support with proper event mapping
	Interrupt/cancel capability
	Accurate capability advertisement

Event Mapping
Codex SDK events are mapped to normalized events as follows:
	Codex Event	Normalized Event	Notes
	ThreadStarted	run_started	Signals execution has begun
	ItemAgentMessageDelta	message_streamed	Each delta emits a stream event
	ThreadTokenUsageUpdated	token_usage_updated	Usage statistics
	ToolCallRequested	tool_call_started	Tool invocation requested
	ToolCallCompleted	tool_call_completed	Tool finished with output
	TurnCompleted	message_received,	Emits full message then completion
		run_completed	
	Error / TurnFailed	error_occurred,	Error handling
		run_failed	

Usage
{:ok, adapter} = CodexAdapter.start_link(working_directory: "/path/to/project")
{:ok, capabilities} = CodexAdapter.capabilities(adapter)

{:ok, session} = Session.new(%{agent_id: "my-agent"})
{:ok, run} = Run.new(%{session_id: session.id, input: "Hello"})

{:ok, result} = CodexAdapter.execute(adapter, run, session,
 event_callback: fn event -> IO.inspect(event) end
)
Configuration
Required:
	:working_directory - Working directory for Codex operations

Optional:
	:model - Model to use (default: determined by Codex)
	:sdk_module - SDK module for testing (default: real Codex SDK)
	:sdk_pid - SDK process for testing

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the Codex adapter.

 stop(server)

 Stops the adapter.

 Types

 state()

 @type state() :: %{
 working_directory: String.t(),
 model: String.t() | nil,
 sdk_module: module() | nil,
 sdk_pid: pid() | nil,
 active_runs: %{required(String.t()) => map()},
 capabilities: [AgentSessionManager.Core.Capability.t()]
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the Codex adapter.
Options
	:working_directory - Required. The working directory for Codex operations.
	:model - Optional. The model to use.
	:sdk_module - Optional. Mock SDK module for testing.
	:sdk_pid - Optional. Mock SDK process for testing.
	:name - Optional. GenServer name for registration.

 stop(server)

 @spec stop(GenServer.server()) :: :ok

Stops the adapter.

AgentSessionManager.Adapters.InMemorySessionStore

In-memory implementation of the SessionStore behaviour.
This adapter stores all session data in memory using a GenServer with
ETS tables for efficient concurrent reads. It is designed primarily
for testing and development environments.
Design
	Uses ETS tables for concurrent read access
	GenServer handles writes to ensure consistency
	Events are stored in an append-only log with preserved order
	All writes are idempotent (same ID updates, doesn't duplicate)
	Thread-safe for concurrent access

Data Structures
	Sessions: ETS table keyed by session_id
	Runs: ETS table keyed by run_id with session_id index
	Events: Append-only list stored in GenServer state (maintains order)	Also indexed in ETS by event_id for deduplication

Usage
{:ok, store} = InMemorySessionStore.start_link([])

Use via SessionStore port
SessionStore.save_session(store, session)
{:ok, session} = SessionStore.get_session(store, session_id)
Options
	:name - Optional name for the GenServer (default: none)

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Starts the in-memory session store.

 stop(server)

 Stops the session store.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the in-memory session store.
Options
	:name - Optional name to register the GenServer

Examples
{:ok, store} = InMemorySessionStore.start_link([])
{:ok, store} = InMemorySessionStore.start_link(name: :my_store)

 stop(server)

 @spec stop(GenServer.server()) :: :ok

Stops the session store.

AgentSessionManager.Concurrency.ConcurrencyLimiter

Enforces concurrency limits for sessions and runs.
This module provides centralized tracking and enforcement of concurrency
limits across the session manager. It ensures that:
	The maximum number of parallel sessions is not exceeded
	The maximum number of parallel runs (across all sessions) is not exceeded
	Resources are properly released when sessions/runs complete

Configuration
	:max_parallel_sessions - Maximum concurrent sessions (default: 100, or :infinity)
	:max_parallel_runs - Maximum concurrent runs globally (default: 50, or :infinity)

Design
The limiter uses a GenServer with ETS tables for efficient concurrent reads.
All write operations (acquire/release) go through the GenServer to ensure
consistency. Read operations (status checks) can be done directly from ETS.
Idempotency
All operations are idempotent:
	Acquiring the same session/run multiple times only counts once
	Releasing a non-existent session/run is a no-op

Usage
{:ok, limiter} = ConcurrencyLimiter.start_link(
 max_parallel_sessions: 10,
 max_parallel_runs: 20
)

Acquire slots before starting sessions/runs
:ok = ConcurrencyLimiter.acquire_session_slot(limiter, session_id)
:ok = ConcurrencyLimiter.acquire_run_slot(limiter, session_id, run_id)

Release when done
:ok = ConcurrencyLimiter.release_run_slot(limiter, run_id)
:ok = ConcurrencyLimiter.release_session_slot(limiter, session_id)

 Summary

 Types

 limits()

 status()

 Functions

 acquire_run_slot(limiter, session_id, run_id)

 Attempts to acquire a run slot.

 acquire_session_slot(limiter, session_id)

 Attempts to acquire a session slot.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_limits(limiter)

 Gets the configured limits.

 get_status(limiter)

 Gets the current status including active counts and available capacity.

 release_run_slot(limiter, run_id)

 Releases a run slot.

 release_session_slot(limiter, session_id)

 Releases a session slot.

 start_link(opts \\ [])

 Starts the concurrency limiter.

 Types

 limits()

 @type limits() :: %{
 max_parallel_sessions: pos_integer() | :infinity,
 max_parallel_runs: pos_integer() | :infinity
}

 status()

 @type status() :: %{
 active_sessions: non_neg_integer(),
 active_runs: non_neg_integer(),
 max_parallel_sessions: pos_integer() | :infinity,
 max_parallel_runs: pos_integer() | :infinity,
 available_session_slots: non_neg_integer() | :infinity,
 available_run_slots: non_neg_integer() | :infinity
}

 Functions

 acquire_run_slot(limiter, session_id, run_id)

 @spec acquire_run_slot(GenServer.server(), String.t(), String.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Attempts to acquire a run slot.
Returns :ok if successful, or an error if the limit would be exceeded.
This operation is idempotent - acquiring the same run_id multiple times
only counts as one slot.
Parameters
	limiter - The limiter server
	session_id - The parent session identifier
	run_id - The run identifier

Returns
	:ok - Run slot acquired
	{:error, %Error{code: :max_runs_exceeded}} - Limit exceeded

 acquire_session_slot(limiter, session_id)

 @spec acquire_session_slot(GenServer.server(), String.t()) ::
 :ok | {:error, AgentSessionManager.Core.Error.t()}

Attempts to acquire a session slot.
Returns :ok if successful, or an error if the limit would be exceeded.
This operation is idempotent - acquiring the same session_id multiple times
only counts as one slot.
Parameters
	limiter - The limiter server
	session_id - The session identifier

Returns
	:ok - Session slot acquired
	{:error, %Error{code: :max_sessions_exceeded}} - Limit exceeded

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_limits(limiter)

 @spec get_limits(GenServer.server()) :: limits()

Gets the configured limits.

 get_status(limiter)

 @spec get_status(GenServer.server()) :: status()

Gets the current status including active counts and available capacity.

 release_run_slot(limiter, run_id)

 @spec release_run_slot(GenServer.server(), String.t()) :: :ok

Releases a run slot.
This operation is idempotent - releasing a non-existent run is a no-op.
Parameters
	limiter - The limiter server
	run_id - The run identifier

Returns
	:ok - Always succeeds

 release_session_slot(limiter, session_id)

 @spec release_session_slot(GenServer.server(), String.t()) :: :ok

Releases a session slot.
This operation is idempotent - releasing a non-existent session is a no-op.
When a session is released, all of its associated runs are also released.
Parameters
	limiter - The limiter server
	session_id - The session identifier

Returns
	:ok - Always succeeds

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the concurrency limiter.
Options
	:max_parallel_sessions - Maximum concurrent sessions (default: 100)
	:max_parallel_runs - Maximum concurrent runs (default: 50)
	:name - Optional GenServer name

AgentSessionManager.Concurrency.ControlOperations

Manages control operations (interrupt, cancel, pause, resume) for runs.
This module provides a centralized way to manage control operations across
different adapters. It handles:
	Interrupt: Immediately stop a running operation
	Cancel: Permanently cancel an operation (terminal state)
	Pause: Temporarily pause an operation (requires capability)
	Resume: Resume a paused operation (requires capability)

Idempotency
All control operations are idempotent:
	Interrupting an already interrupted run succeeds
	Cancelling an already cancelled run succeeds
	Pausing an already paused run succeeds
	Resuming an already running run succeeds

Capability Checking
Pause and resume operations require the adapter to support these capabilities.
If the adapter doesn't have the required capability, an error is returned.
Terminal States
Once a run enters a terminal state (:cancelled, :completed, :failed), it
cannot be resumed or have further operations performed on it.
Usage
{:ok, ops} = ControlOperations.start_link(adapter: adapter)

Interrupt a running operation
{:ok, run_id} = ControlOperations.interrupt(ops, run_id)

Cancel an operation (terminal)
{:ok, run_id} = ControlOperations.cancel(ops, run_id)

Pause (if supported)
{:ok, run_id} = ControlOperations.pause(ops, run_id)

Resume (if supported)
{:ok, run_id} = ControlOperations.resume(ops, run_id)

 Summary

 Types

 operation()

 operation_record()

 operation_status()

 Functions

 cancel(server, run_id)

 Cancels an operation.

 cancel_all(server, run_ids)

 Cancels multiple runs at once.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_operation_history(server, run_id)

 Gets the full operation history for a run.

 get_operation_status(server, run_id)

 Gets the operation status for a run.

 interrupt(server, run_id)

 Interrupts a running operation.

 interrupt_session(server, session_id)

 Interrupts all runs for a given session.

 pause(server, run_id)

 Pauses a running operation.

 register_run(server, session_id, run_id)

 Registers a run as belonging to a session.

 resume(server, run_id)

 Resumes a paused operation.

 start_link(opts \\ [])

 Starts the control operations manager.

 terminal_state?(state)

 Checks if a state is a terminal state.

 Types

 operation()

 @type operation() :: :interrupt | :cancel | :pause | :resume

 operation_record()

 @type operation_record() :: %{
 operation: operation(),
 timestamp: DateTime.t(),
 result: :ok | {:error, AgentSessionManager.Core.Error.t()}
}

 operation_status()

 @type operation_status() :: %{
 last_operation: operation() | nil,
 state: atom(),
 history: [operation_record()]
}

 Functions

 cancel(server, run_id)

 @spec cancel(GenServer.server(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Cancels an operation.
This is an idempotent operation - cancelling an already cancelled run
will succeed. Cancel is a terminal operation - the run cannot be resumed.
Returns
	{:ok, run_id} - Cancel succeeded
	{:error, Error.t()} - Cancel failed

 cancel_all(server, run_ids)

 @spec cancel_all(GenServer.server(), [String.t()]) :: %{
 required(String.t()) => :ok | {:error, AgentSessionManager.Core.Error.t()}
}

Cancels multiple runs at once.
Returns a map of run_id => :ok | {:error, Error.t()}.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_operation_history(server, run_id)

 @spec get_operation_history(GenServer.server(), String.t()) :: [operation_record()]

Gets the full operation history for a run.

 get_operation_status(server, run_id)

 @spec get_operation_status(GenServer.server(), String.t()) :: operation_status()

Gets the operation status for a run.

 interrupt(server, run_id)

 @spec interrupt(GenServer.server(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Interrupts a running operation.
This is an idempotent operation - interrupting an already interrupted
run will succeed.
Returns
	{:ok, run_id} - Interrupt succeeded
	{:error, Error.t()} - Interrupt failed

 interrupt_session(server, session_id)

 @spec interrupt_session(GenServer.server(), String.t()) :: %{
 required(String.t()) => :ok | {:error, AgentSessionManager.Core.Error.t()}
}

Interrupts all runs for a given session.
Returns a map of run_id => :ok | {:error, Error.t()}.

 pause(server, run_id)

 @spec pause(GenServer.server(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Pauses a running operation.
This is an idempotent operation - pausing an already paused run will
succeed. Requires the adapter to have the "pause" capability.
Returns
	{:ok, run_id} - Pause succeeded
	{:error, %Error{code: :capability_not_supported}} - Adapter doesn't support pause
	{:error, Error.t()} - Pause failed

 register_run(server, session_id, run_id)

 @spec register_run(GenServer.server(), String.t(), String.t()) :: :ok

Registers a run as belonging to a session.
This is used for session-level operations like interrupt_session.

 resume(server, run_id)

 @spec resume(GenServer.server(), String.t()) ::
 {:ok, String.t()} | {:error, AgentSessionManager.Core.Error.t()}

Resumes a paused operation.
This is an idempotent operation - resuming an already running run will
succeed. Requires the adapter to have the "resume" capability.
Cannot resume a run in a terminal state.
Returns
	{:ok, run_id} - Resume succeeded
	{:error, %Error{code: :capability_not_supported}} - Adapter doesn't support resume
	{:error, %Error{code: :invalid_operation}} - Run is in a terminal state
	{:error, Error.t()} - Resume failed

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the control operations manager.
Options
	:adapter - The provider adapter to use for operations (required)
	:name - Optional GenServer name

 terminal_state?(state)

 @spec terminal_state?(atom()) :: boolean()

Checks if a state is a terminal state.
Terminal states are: :cancelled, :completed, :failed, :timeout

AgentSessionManager.AuditLogger

Audit log persistence for observability and compliance.
This module provides functions to persist audit events to the SessionStore
in append-only order. Events are immutable once stored and provide a
complete audit trail of all run lifecycle events.
Event Types
	:run_started - Logged when a run begins
	:run_completed - Logged when a run completes successfully
	:run_failed - Logged when a run fails
	:error_occurred - Logged when an error occurs during execution
	:token_usage_updated - Logged when usage metrics are reported

Configuration
Audit logging is enabled by default. Disable it via application config
(global baseline) or at runtime per-process:
Global baseline (config.exs)
config :agent_session_manager, audit_logging_enabled: false

Per-process override (safe in concurrent tests)
AgentSessionManager.AuditLogger.set_enabled(false)
Usage
alias AgentSessionManager.AuditLogger

Log lifecycle events
AuditLogger.log_run_started(store, run, session)
AuditLogger.log_run_completed(store, run, session, result)
AuditLogger.log_run_failed(store, run, session, error)

Query audit log
{:ok, events} = AuditLogger.get_audit_log(store, session_id)
Telemetry Integration
The AuditLogger can automatically log events from telemetry:
AuditLogger.attach_telemetry_handlers(store)
This will create audit log entries for all telemetry events emitted
by the Telemetry module.

 Summary

 Functions

 attach_telemetry_handlers(store)

 Attaches telemetry handlers to automatically log audit events.

 detach_telemetry_handlers()

 Detaches the telemetry handlers.

 enabled?()

 Returns whether audit logging is enabled.

 get_audit_log(store, session_id, opts \\ [])

 Retrieves audit events for a session.

 log_error(store, run, session, error)

 Logs an error_occurred audit event.

 log_run_completed(store, run, session, result)

 Logs a run_completed audit event.

 log_run_failed(store, run, session, error)

 Logs a run_failed audit event.

 log_run_started(store, run, session)

 Logs a run_started audit event.

 log_usage_metrics(store, session, metrics, opts \\ [])

 Logs a token_usage_updated audit event.

 set_enabled(enabled)

 Enables or disables audit logging for the current process.

 Functions

 attach_telemetry_handlers(store)

 @spec attach_telemetry_handlers(AgentSessionManager.Ports.SessionStore.store()) :: :ok

Attaches telemetry handlers to automatically log audit events.
When attached, telemetry events emitted by the Telemetry module
will automatically create corresponding audit log entries.
Parameters
	store - The session store instance to use for logging

 detach_telemetry_handlers()

 @spec detach_telemetry_handlers() :: :ok

Detaches the telemetry handlers.

 enabled?()

 @spec enabled?() :: boolean()

Returns whether audit logging is enabled.
Checks the process-local override first, then Application environment,
then defaults to true. See AgentSessionManager.Config for details.

 get_audit_log(store, session_id, opts \\ [])

 @spec get_audit_log(
 AgentSessionManager.Ports.SessionStore.store(),
 String.t(),
 keyword()
) ::
 {:ok, [AgentSessionManager.Core.Event.t()]}

Retrieves audit events for a session.
Parameters
	store - The session store instance
	session_id - The session ID to query
	opts - Optional filters:	:run_id - Filter by run ID
	:type - Filter by event type
	:since - Events after this timestamp

Returns
	{:ok, [Event.t()]} - List of events in append order

 log_error(store, run, session, error)

 @spec log_error(
 AgentSessionManager.Ports.SessionStore.store(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) :: :ok

Logs an error_occurred audit event.
Parameters
	store - The session store instance
	run - The run where the error occurred
	session - The session containing the run
	error - The error details

 log_run_completed(store, run, session, result)

 @spec log_run_completed(
 AgentSessionManager.Ports.SessionStore.store(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) :: :ok

Logs a run_completed audit event.
Parameters
	store - The session store instance
	run - The run that completed
	session - The session containing the run
	result - The result of the run including token_usage

 log_run_failed(store, run, session, error)

 @spec log_run_failed(
 AgentSessionManager.Ports.SessionStore.store(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) :: :ok

Logs a run_failed audit event.
Parameters
	store - The session store instance
	run - The run that failed
	session - The session containing the run
	error - The error that caused the failure

 log_run_started(store, run, session)

 @spec log_run_started(
 AgentSessionManager.Ports.SessionStore.store(),
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t()
) :: :ok

Logs a run_started audit event.
Parameters
	store - The session store instance
	run - The run that started
	session - The session containing the run

 log_usage_metrics(store, session, metrics, opts \\ [])

 @spec log_usage_metrics(
 AgentSessionManager.Ports.SessionStore.store(),
 AgentSessionManager.Core.Session.t(),
 map(),
 keyword()
) :: :ok

Logs a token_usage_updated audit event.
Parameters
	store - The session store instance
	session - The session for the usage metrics
	metrics - The usage metrics map
	opts - Optional keyword list:	:run_id - The run ID to associate with the metrics

 set_enabled(enabled)

 @spec set_enabled(boolean()) :: :ok

Enables or disables audit logging for the current process.
The override is process-local and automatically cleaned up when the
process exits. This is safe to call in concurrent tests.

AgentSessionManager.Config

Centralized configuration with process-local overrides.
Configuration values are resolved in priority order:
	Process-local override — set via put/2, scoped to the calling process.
Automatically cleaned up when the process exits.
	Application environment — set via config :agent_session_manager, key: value
or Application.put_env/3.
	Built-in default — hardcoded fallback per key.

This layering follows the same pattern as Elixir's Logger module for per-process
log levels. It enables fully concurrent (async: true) testing because each test
process can override configuration without affecting any other process.
Supported Keys
	Key	Type	Default
	:telemetry_enabled	boolean	true
	:audit_logging_enabled	boolean	true

Examples
Read (checks process-local first, then app env, then default)
AgentSessionManager.Config.get(:telemetry_enabled)
#=> true

Set process-local override
AgentSessionManager.Config.put(:telemetry_enabled, false)
AgentSessionManager.Config.get(:telemetry_enabled)
#=> false

Clear process-local override (falls back to app env / default)
AgentSessionManager.Config.delete(:telemetry_enabled)

 Summary

 Types

 key()

 Configuration keys supported by this module.

 Functions

 default(atom)

 Returns the built-in default for key.

 delete(key)

 Removes the process-local override for key.

 get(key)

 Returns the resolved value for key.

 put(key, value)

 Sets a process-local override for key.

 Types

 key()

 @type key() :: :telemetry_enabled | :audit_logging_enabled

Configuration keys supported by this module.

 Functions

 default(atom)

 @spec default(key()) :: term()

Returns the built-in default for key.

 delete(key)

 @spec delete(key()) :: :ok

Removes the process-local override for key.
After deletion, get/1 falls back to Application environment or the
built-in default.

 get(key)

 @spec get(key()) :: term()

Returns the resolved value for key.
Checks the process dictionary first, then Application environment,
then falls back to the built-in default.

 put(key, value)

 @spec put(key(), term()) :: :ok

Sets a process-local override for key.
This override is visible only to the calling process and is automatically
cleaned up when the process exits. It takes priority over Application
environment and built-in defaults.

AgentSessionManager.Telemetry

Telemetry event emission for observability.
This module provides functions to emit telemetry events for run lifecycle
and usage metrics. Events follow the :telemetry library conventions and
can be consumed by any telemetry handler (e.g., for metrics, logging, tracing).
Event Names
All events are prefixed with [:agent_session_manager, ...]:
	[:agent_session_manager, :run, :start] - Emitted when a run starts
	[:agent_session_manager, :run, :stop] - Emitted when a run completes successfully
	[:agent_session_manager, :run, :exception] - Emitted when a run fails with an error
	[:agent_session_manager, :usage, :report] - Emitted with usage metrics

Configuration
Telemetry is enabled by default. Disable it via application config
(global baseline) or at runtime per-process:
Global baseline (config.exs)
config :agent_session_manager, telemetry_enabled: false

Per-process override (safe in concurrent tests)
AgentSessionManager.Telemetry.set_enabled(false)
Usage
alias AgentSessionManager.Telemetry

Manual event emission
Telemetry.emit_run_start(run, session)
Telemetry.emit_run_end(run, session, result)
Telemetry.emit_error(run, session, error)

Or use the span helper for automatic start/stop/exception
Telemetry.span(run, session, fn ->
 # Do work
 {:ok, result}
end)
Attaching Handlers
:telemetry.attach_many(
 "my-handler",
 [
 [:agent_session_manager, :run, :start],
 [:agent_session_manager, :run, :stop],
 [:agent_session_manager, :run, :exception]
],
 &MyHandler.handle_event/4,
 nil
)

 Summary

 Functions

 emit_adapter_event(run, session, event_data)

 Emits an adapter event with the proper telemetry namespace.

 emit_error(run, session, error)

 Emits a [:agent_session_manager, :run, :exception] event.

 emit_run_end(run, session, result)

 Emits a [:agent_session_manager, :run, :stop] event.

 emit_run_start(run, session)

 Emits a [:agent_session_manager, :run, :start] event.

 emit_usage_metrics(session, metrics)

 Emits a [:agent_session_manager, :usage, :report] event.

 enabled?()

 Returns whether telemetry is enabled.

 set_enabled(enabled)

 Enables or disables telemetry for the current process.

 span(run, session, func)

 Wraps a function execution with telemetry events.

 Functions

 emit_adapter_event(run, session, event_data)

 @spec emit_adapter_event(
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) ::
 :ok

Emits an adapter event with the proper telemetry namespace.
Events are emitted as [:agent_session_manager, :adapter, event_type].
Event Types
Common adapter event types include:
	:run_started - Execution begins
	:message_streamed - Content chunk received
	:message_received - Full message ready
	:tool_call_started - Tool invocation begins
	:tool_call_completed - Tool completes
	:token_usage_updated - Usage stats update
	:run_completed - Execution finishes
	:error_occurred - Error during execution
	:run_failed - Execution failed
	:run_cancelled - Execution was cancelled

Measurements
Numeric values from the event data are included as measurements.
Metadata
	run_id - The run identifier
	session_id - The session identifier
	agent_id - The agent identifier
	provider - The provider name (:claude, :codex, etc.)
	tool_name - Tool name for tool events (if present)
	event_data - The full event data map

 emit_error(run, session, error)

 @spec emit_error(
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) :: :ok

Emits a [:agent_session_manager, :run, :exception] event.
Measurements
	duration - Duration in native time units (nanoseconds)
	system_time - System time when the error occurred

Metadata
	run_id - The run identifier
	session_id - The session identifier
	agent_id - The agent identifier
	error_code - The error code
	error_message - The error message
	run - The full Run struct
	session - The full Session struct

 emit_run_end(run, session, result)

 @spec emit_run_end(
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 map()
) :: :ok

Emits a [:agent_session_manager, :run, :stop] event.
Measurements
	duration - Duration in native time units (nanoseconds)
	input_tokens - Number of input tokens (if provided)
	output_tokens - Number of output tokens (if provided)
	total_tokens - Total tokens (if provided)

Metadata
	run_id - The run identifier
	session_id - The session identifier
	agent_id - The agent identifier
	status - The final run status
	run - The full Run struct
	session - The full Session struct

 emit_run_start(run, session)

 @spec emit_run_start(
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t()
) :: :ok

Emits a [:agent_session_manager, :run, :start] event.
Measurements
	system_time - System time in native units when the run started

Metadata
	run_id - The run identifier
	session_id - The session identifier
	agent_id - The agent identifier
	run - The full Run struct
	session - The full Session struct

 emit_usage_metrics(session, metrics)

 @spec emit_usage_metrics(AgentSessionManager.Core.Session.t(), map()) :: :ok

Emits a [:agent_session_manager, :usage, :report] event.
Measurements
All keys from the metrics map are included as measurements.
Common keys include:
	input_tokens
	output_tokens
	total_tokens
	cost_usd

Metadata
	session_id - The session identifier
	agent_id - The agent identifier
	session - The full Session struct

 enabled?()

 @spec enabled?() :: boolean()

Returns whether telemetry is enabled.
Checks the process-local override first, then Application environment,
then defaults to true. See AgentSessionManager.Config for details.

 set_enabled(enabled)

 @spec set_enabled(boolean()) :: :ok

Enables or disables telemetry for the current process.
The override is process-local and automatically cleaned up when the
process exits. This is safe to call in concurrent tests.

 span(run, session, func)

 @spec span(
 AgentSessionManager.Core.Run.t(),
 AgentSessionManager.Core.Session.t(),
 (-> {:ok, map()}
 | {:error, map()})
) ::
 {:ok, map()} | {:error, map()}

Wraps a function execution with telemetry events.
Automatically emits:
	[:agent_session_manager, :run, :start] before execution
	[:agent_session_manager, :run, :stop] on {:ok, result}
	[:agent_session_manager, :run, :exception] on {:error, error}

Example
Telemetry.span(run, session, fn ->
 # Perform the run
 {:ok, %{output: output, token_usage: usage}}
end)

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

