

 AI

 v0.3.4

 Table of contents

 	AI

 	CHANGELOG

 	Modules

 	AI

AI

Helpers for using AI in Elixir. Currently requires the OpenAI package.
Includes ~l sigil and chat/1 function for OpenAI generation.
iex> ~l"model:gpt-3.5-turbo user: how do I build an igloo in 10 words?"
[
 model: "gpt-3.5-turbo",
 messages: [%{role: "user", content: "how do I build an igloo in 10 words?"}]
]
iex> ~l"model:gpt-3.5-turbo user: how do I build an igloo in 10 words?" |> chat()
{:ok, "Stack snow blocks in circle, decreasing size upward, till enclosed"}

 Installation

If available in Hex, the package can be installed by adding ai to your list of dependencies in mix.exs:
def deps do
 [
 {:ai, "~> 0.3.4"},
]
end

 Why?

Here's why!

CHANGELOG

 [0.3.4] - 2022-01-01

 Changed

	Recommend using ~l instead of ~LLM, as it allows for interpolation.

AI

Documentation for AI.

 Summary

 Functions

 chat(text)

 Parses out OpenAI's chat completion response into a cleaner format.
Returns {:ok, text_content} or {:error, message}

 sigil_LLM(lines, opts)

 DEPRECATED: Use ~l instead. ~LLM doesn't work with string interpolation.

 sigil_l(lines, opts)

 Implements the ~l sigil, which parses text into an OpenAI friendly chat completion prompt.
~l works by parsing out the model, system, user and assistant keywords.

Functions

 Link to this function

 chat(text)

 View Source

Parses out OpenAI's chat completion response into a cleaner format.
Returns {:ok, text_content} or {:error, message}
Instead of:
{:ok,
%{
 id: "chatcmpl-7zSc1rsCXpyALMjM9MkaF077xYRot",
 usage: %{
 "completion_tokens" => 10,
 "prompt_tokens" => 19,
 "total_tokens" => 29
 },
 created: 1694882349,
 choices: [
 %{
 "finish_reason" => "stop",
 "index" => 0,
 "message" => %{
 "content" => "Compact and stack snow blocks in a dome shape.",
 "role" => "assistant"
 }
 }
],
 model: "gpt-3.5-turbo-0613",
 object: "chat.completion"
}}

 Link to this function

 sigil_LLM(lines, opts)

 View Source

DEPRECATED: Use ~l instead. ~LLM doesn't work with string interpolation.
Implements the ~LLM sigil, which parses text into an OpenAI friendly chat completion prompt.
~LLM works by parsing out the model, system, user and assistant keywords.

 Examples

iex> import AI
iex> ~LLM"model: gpt-3.5-turbo system: You are an expert at text to image prompts. Given a description, write a text-to-image prompt. user: sunset"
[
 model: "gpt-3.5-turbo",
 messages: [
%{
 content: "You are an expert at text to image prompts. Given a description, write a text-to-image prompt.",
 role: "system"
},
%{content: "sunset", role: "user"}
]
]

 Link to this function

 sigil_l(lines, opts)

 View Source

Implements the ~l sigil, which parses text into an OpenAI friendly chat completion prompt.
~l works by parsing out the model, system, user and assistant keywords.
Supports string interpolation.

 Examples

iex> import AI
iex> ~l"model: gpt-3.5-turbo system: You are an expert at text to image prompts. Given a description, write a text-to-image prompt. user: sunset"
[
 model: "gpt-3.5-turbo",
 messages: [
%{
 content: "You are an expert at text to image prompts. Given a description, write a text-to-image prompt.",
 role: "system"
},
%{content: "sunset", role: "user"}
]
]

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

