

 airbrake_client

 v2.2.0

 Table of contents

 	Airbrake Client

 	Changelog

 	

 	Modules

 	Airbrake

 	Airbrake.Channel

 	Airbrake.GenServer

 	Airbrake.Plug

Airbrake Client

Capture exceptions and send them to Airbrake or to
your Errbit installation.
This library was originally forked from the
airbrake Hex package. Development and
support for that library seems to have lapsed, but we (the devs at
CityBase) had changes and updates we wanted to make.
So we decided to publish our own fork of the library.

 Installation

Add airbrake_client to your dependencies:
defp deps do
 [
 {:airbrake_client, "~> 2.1"}
]
end

 Configuration

config :airbrake_client,
 api_key: System.get_env("AIRBRAKE_API_KEY"),
 project_id: System.get_env("AIRBRAKE_PROJECT_ID"),
 context_environment: System.get_env("KUBERNETES_CLUSTER"),
 filter_parameters: ["password"],
 filter_headers: ["authorization"],
 session: :include_logger_metadata,
 json_encoder: Jason,
 production_aliases: ["prod"],
 host: "https://api.airbrake.io"

config :logger,
 backends: [{Airbrake.LoggerBackend, :error}, :console]
Split this config across your config/*.exs files (especially the runtime
setting in config/runtime.exs).
Required configuration arguments:
	:api_key - (binary) the token needed to access the Airbrake
API. You can find it in User
Settings.
	:project_id - (integer) the id of your project at Airbrake.

Optional configuration arguments:
	:context_environment - (binary or function returning binary) the
deployment environment; used to set notice.context.environment. See the
"Setting the environment in the context" section below.	This was formerly :environment, and this can still be used.

	:filter_parameters - (list of strings) filters parameters that may map to
sensitive data such as passwords and tokens.
	:filter_headers - (list of strings) filters HTTP headers.
	:host - (string) the URL of the HTTP host; defaults to
https://api.airbrake.io.
	:json_encoder - (module) payload sent to Airbrake is JSON encoded by
calling module.encode!/1.	You can use Jason from the jason
library or Poison from the poison
library.
	Poison is used by default.

	:ignore - (MapSet of binary or function returning boolean or :all)
ignore some or all exceptions. See examples below.
	:options - (keyword list or function returning keyword list) values that
are included in all reports to Airbrake.io. See examples below.
	:production_aliases - (list of strings) a list of "production" aliases.
See the "Setting the environment in the context" section below.
	:session - can be set to :include_logger_metadata to include Logger
metadata in the session field of the report; omit this option if you do
not want Logger metadata. See below for more information.

See the "Create notice
v3" section
in the Airbrake API docs to understand some of these options better.

 Setting the environment in the context

The value for notice.context.environment when creating a
notice can be
set with the :context_environment config.
Often it is easiest to configure :context_environment with some environment
variable. However, to get production notifications, the environment must be
set to "production" (case independent). Maybe your environment variable
returns the value "prod". Set :production_aliases to a list of strings that
should be converted into "production". The config example above will turn
"prod" into "production".

 Logger metadata in the session

If you set the :session config to :include_logger_metadata, the Logger
metadata from the process that invokes Airbrake.report/2 will be the initial
session data for the session field. The values passed as :session in the
options parameter of Airbrake.report/2 are added to the session value,
overwriting any Logger metadata values.
If you do not set the :session config, only the :session value passed as the
options to Airbrake.report/2 will be used for the session field in the
report.
If the session turns out to be empty (for whatever reason), it is instead set
to nil (and should not show up in the report).

 Ignoring some exceptions

To ignore some exceptions use the :ignore config key. The value can be a
MapSet:
config :airbrake_client,
 ignore: MapSet.new(["Custom.Error"])
The value can also be a two-argument function:
config :airbrake_client,
 ignore: fn type, message ->
 type == "Custom.Error" && String.contains?(message, "silent error")
 end
Or the value can be the atom :all to ignore all errors (and effectively
turning off all reporting):
config :airbrake_client,
 ignore: :all

 Shared options for reporting data to Airbrake

If you have data that should always be reported, they can be included in the
config with the :options key. Its value should be a keyword list with any of
these keys: :context, :params, :session, and :env.
config :airbrake_client,
 options: [env: %{"SOME_ENVIRONMENT_VARIABLE" => "environment variable"}]
Alternatively, you can specify a function (as a tuple) which returns a keyword
list (with the same keys):
config :airbrake_client,
 options: {Web, :airbrake_options, 1}
The function takes a keyword list as its only parameter; the function arity is
always 1.

 Usage

 Phoenix app

defmodule YourApp.Router do
 use Phoenix.Router
 use Airbrake.Plug # <- put this line to your router.ex

 # ...
end
 def channel do
 quote do
 use Phoenix.Channel
 use Airbrake.Channel # <- put this line to your web.ex
 # ...

 Report an exception

try do
 String.upcase(nil)
rescue
 exception -> Airbrake.report(exception)
end

 GenServer

Use Airbrake.GenServer instead of GenServer:
defmodule MyServer do
 use Airbrake.GenServer
 # ...
end

 Any Elixir process

By pid:
Airbrake.monitor(pid)
By name:
Airbrake.monitor(Registered.Process.Name)

 Integration Apps

The Elixir apps defined in integration_test_apps are used for testing
different dependency scenarios. If you make changes to the way jason or
poison is used this library, you should consider adding tests to those apps.

 Migrating from airbrake

If you are switching from the original airbrake library:
	Replace the :airbrake dependency with the :airbrake_client dependency
above.	You may want to start with version ~> 0.8.0 for maximum backwards
compatibility.

	Remove the airbrake dependency in your lockfile.	Command: mix deps.unlock --unused
	If the dependency remains in the lockfile, check all of your apps and
all of your dependencies.

	Update your config/*.exs files to configure :airbrake_client instead of
:airbrake.	A search-and-replace-in-project on config :airbrake can work really well.
	When you run your project(even running the tests), you should get a
complaint if you're still configuring :airbrake.

Changelog

 v2.2.0 (2024-05-10)

 Enhancements

	Better config name: :context_environment replaces :environment in the
configuration. :environment will continue to work for backwards compatibility.
	New config option: :production_aliases can be set to a list of names that
should be translated to "production" for notice.context.environment. See
README for more details.
	New documentation for config option: :json_encoder is documented in the
README.
	New JSON encoder protections:	If the JSON encoder module does not exist at compile time, the library
will compile with an error.
	If the JSON encoder module does not exist when Airbrake.Worker is
started, the process will not start.
	If the JSON encoder module does exist but does not define encode!/1
when a report is made, a warning will be output to stderr and a very
simple Airbrake notice about the missing encode!/1 function will be
sent. Previously, the Airbrake.Worker would crash and take the app down
with it without sending any Airbrake notices.

 v2.1.0 (??????????)

 Enhancements

	New config option: if :session is set to :include_logger_metadata, the
Logger metadata from Logger.metadata/0 is added to the session field of
the report. (If the option is not set, the metadata is not included.)

 v2.0.0 (2024-03-11)

 Enhancements

	[Airbrake.Utils] Add detuple/1 to support CBRelay in parsing Airbrake params before transmitting
	[Airbrake.Utils] Add destruct/1 to support CBRelay in parsing Airbrake params before transmitting

 Breaking Change

	Drop support for Elixir <1.12

 v1.0.0 (2023-10-12)

 Enhancements

	[Airbrake.Worker] use only Application.compile_env/3, drop use of Application.get_env/3.
	Formatting changes.
	Allow version 1.X or 2.X for httpoison; drop support for 0.9.

 Breaking Change

	Drop support for Elixir <1.10. Use must use earlier version to compile with earlier versions of Elixir.

 v0.11.0 (2022-12-05)

	[Airbrake.Plug] Exposes handle_errors/2 as private
	Fixes credo warnings

 v0.10.0 (2021-07-14)

	[Airbrake.Payload] Support logging structs in payload.
	[Airbrake.Payload] Filter atom keys from maps in payload.

 v0.9.1 (2021-06-08)

 Enhancements

	[Airbrake] Updates default URL to https://api.airbrake.io.

 Bug fixes

	[Airbrake] Add :filter_headers option to filter HTTP headers included in :environment.
	[Airbrake.Payload] Conditionally derive Jason.Encoder if Jason.Encoder is defined (i.e., jason is a dependency).
	[Airbrake.Payload] Add fields context, environment, params, and session to Airbrake.Payload.
	[Airbrake.Worker] Generate a useable stacktrace when one isn't provided in the options.

 v0.9.0 (2021-06-04)

Fixes deprecations and improves testing.

 Enhancements

	[Airbrake.Worker] Abstract HTTP client for better testing using mox.
	[Airbrake.Worker] Add tests.
	[Airbrake.LoggerBackend] Add tests.
	[Airbrake.LoggerBackend] Use @behaviour :gen_event instead of use GenEvent.
	[mix.exs] Start dependency applications automatically.

 Bug fixes

	[Airbrake.Channel] Use __STACKTRACE__ instead of deprecated System.stacktrace().
	[Airbrake.Worker] Use Process.info(self(), :current_stacktrace) instead of deprecated System.stacktrace().
	[Airbrake] Use child spec instead of deprecated Supervisor.Spec.worker/1.

 v0.8.2 (2021-06-03)

Renames the app to :airbrake_client.

 Bug fixes

	[mix.exs] Renames the app to :airbrake_client so that starting the app for this library is more natural.

 v0.8.1 (2021-06-02)

Quick documentation fix.

 Bug fixes

	[README.md] Use correct case when linking to readme.html.

 v0.8.0 (2021-06-02)

The first official release of airbrake_client (forked and disconnected from airbrake).

 Enhancements

	[README.md] Update for new maintainers and better instructions.

 Previous versions

The CityBase fork of airbrake had a v0.7.0 release, available only through GitHub.
Versions 0.6.x are available as the original airbrake library.

Airbrake

This module provides functions to report any kind of exception to
Airbrake or Errbit.
Airbrake.report/2 can be used to report directly to Airbrake.io.
Airbrake.Plug and Airbrake.Channel can be used to automatically report
errors from controllers or channels.
See README for configuration and usage instructions.

 Summary

 Functions

 destruct(value)

 Recursively turns structs into plain maps. Use this to clean up data for an
Airbrake report.

 detuple(value)

 Recursively turns tuples into lists. Use this to clean up data for an
Airbrake report.

 monitor(pid_or_reg_name)

 Monitor exceptions in the target process.

 report(exception, options \\ [])

 Send a report to Airbrake about given exception.

 Functions

 Link to this function

 destruct(value)

Recursively turns structs into plain maps. Use this to clean up data for an
Airbrake report.

 Link to this function

 detuple(value)

Recursively turns tuples into lists. Use this to clean up data for an
Airbrake report.

 Link to this function

 monitor(pid_or_reg_name)

Monitor exceptions in the target process.
If you don't want system-wide monitoring, but would like to monitor one specific process,
then you could use Airbrake.monitor/1
Examples:
With a given PID:
Airbrake.monitor(pid)
With a registered process:
Airbrake.monitor(Registered.Process.Name)
With spawn/1 and its counterparts:
spawn(fn ->
 :timer.sleep(500)
 String.upcase(nil)
end) |> Airbrake.monitor

 Link to this function

 report(exception, options \\ [])

 @spec report(Exception.t() | [type: String.t(), message: String.t()], Keyword.t()) ::
 :ok

Send a report to Airbrake about given exception.
exception could be Exception.t or a keywords list with two keys :type & :message
options is a keywords list with following keys:
	:params - use it to pass request params
	:context - use it to pass detailed information about the exceptional situation
	:session - use it to pass info about user session
	:env - use it to pass environment variables, headers and so on
	:stacktrace - use it when you would like send something different than System.stacktrace

This function will always return :ok right away and perform the reporting of the given exception in the background.

 Examples

Exceptions can be reported directly:
Airbrake.report(ArgumentError.exception("oops"))
#=> :ok
Often, you'll want to report something you either rescued or caught.
For rescued exceptions:
try do
 raise ArgumentError, "oops"
rescue
 exception ->
 Airbrake.report(exception)
 # You can also reraise the exception here with reraise/2
end
For caught exceptions:
try do
 throw(:oops)
 # or exit(:oops)
catch
 kind, value ->
 Airbrake.report([type: kind, message: inspect(value)])
end
Using custom data:
Airbrake.report(
 [type: "DebugInfo", message: "Something went wrong"],
 context: %{
 moon_phase: "eclipse"
 })

Airbrake.Channel

Reports errors encountered on a channel.
def YourApp.Web do
 # ...
 def channel do
 quote do
 use Phoenix.Channel
 use Airbrake.Channel
 # ...
 end
 end
 # ...
end
See the README for configuration options.

Airbrake.GenServer

This module provides the ability to monitor workers of your gen.servers,
just write use Airbrake.GenServer instead of use GenServer
and any time when GenServer would be terminated for a some reason you will know about it.
Could be used in case when you don't want a system-wide reporting.

 Summary

 Functions

 handle_terminate(reason, context)

 Implements a set of reporting rules based on process termination reason.
Could be overridden if you want to.

 Functions

 Link to this function

 handle_terminate(reason, context)

Implements a set of reporting rules based on process termination reason.
Could be overridden if you want to.

Airbrake.Plug

Reports any error encountered in the plug pipeline.
To use this plug, add it to your router:
defmodule YourApp.Router do
 use Phoenix.Router
 use Airbrake.Plug
 # ...
end
See the README for configuration options.

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

