A.RBMap (Aja v0.4.6) View Source
A Red-Black tree implementation of a map. It keeps keys sorted in ascending order.
Erlang's :gb_trees offer similar functionalities and performance.
However A.RBMap:
- is a better Elixir citizen: pipe-friendliness,
Accessbehaviour,Enum/Inspect/Collectableprotocols - is more convenient and safer to use: no unsafe functions like
:gb_trees.from_orddict/1 - keeps the tree balanced on deletion unlike
:gb_trees - optionally implements the
Jason.Encoderprotocol ifJasonis installed
Examples
A.RBMap offers the same API as Map :
iex> rb_map = A.RBMap.new([b: "Bat", a: "Ant", c: "Cat"])
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
iex> A.RBMap.get(rb_map, :c)
"Cat"
iex> A.RBMap.put(rb_map, :d, "Dinosaur")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat", d: "Dinosaur"}>
iex> A.RBMap.delete(rb_map, :b)
#A.RBMap<%{a: "Ant", c: "Cat"}>
iex> Enum.to_list(rb_map)
[a: "Ant", b: "Bat", c: "Cat"]
iex> [c: "Cat", b: "Buffalo"] |> Enum.into(A.RBMap.new([a: "Ant", b: "Bat", d: "Dinosaur"]))
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat", d: "Dinosaur"}>Tree-specific functions
Due to its sorted nature, A.RBMap also offers some extra methods not present in Map, like:
first/1andlast/1to efficiently retrieve the first (smallest) / last (largest) key-value pairpop_first/1andpop_last/1to efficiently pop the first (smallest) / last (largest) key-value pairfoldl/3andfoldr/3to efficiently fold (reduce) from left-to-right or right-to-left
Examples:
iex> rb_map = A.RBMap.new(%{1 => "一", 2 => "二", 3 => "三"})
iex> A.RBMap.first(rb_map)
{1, "一"}
iex> {3, "三", updated} = A.RBMap.pop_last(rb_map)
iex> updated
#A.RBMap<%{1 => "一", 2 => "二"}>
iex> A.RBMap.foldr(rb_map, [], fn _key, value, acc -> [value | acc] end)
["一", "二", "三"]Access behaviour
A.RBMap implements the Access behaviour.
iex> rb_map = A.RBMap.new([b: "Bat", a: "Ant", c: "Cat"])
iex> rb_map[:a]
"Ant"
iex> put_in(rb_map[:b], "Buffalo")
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> put_in(rb_map[:d], "Dinosaur")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat", d: "Dinosaur"}>
iex> {"Cat", updated} = pop_in(rb_map[:c])
iex> updated
#A.RBMap<%{a: "Ant", b: "Bat"}>
With Jason
iex> A.RBMap.new(%{1 => "一", 2 => "二", 11 => "十一"}) |> Jason.encode!()
"{\"1\":\"一\",\"2\":\"二\",\"11\":\"十一\"}"It also preserves the key order.
Limitations: pattern-matching and equality
Like :gb_trees, A.RBMaps face two strong limitations:
- pattern-matching on key-values like maps is NOT POSSIBLE
- comparisons based on
==/2,===/2or the pin operator^are UNRELIABLE
In Elixir, pattern-matching and equality for structs work based on their internal representation. While this is a pragmatic design choice that simplifies the language, it means that we cannot rededine how they work for custom data structures.
Tree-based maps that are semantically equal (same key-value pairs in the same order) might be considered non-equal when comparing their internals, because there is not a unique way of representing one same map.
A.RBMap.equal?/2 should be used instead:
iex> rb_map1 = A.RBMap.new([a: "Ant", b: "Bat"])
#A.RBMap<%{a: "Ant", b: "Bat"}>
iex> rb_map2 = A.RBMap.new([b: "Bat", a: "Ant"])
#A.RBMap<%{a: "Ant", b: "Bat"}>
iex> rb_map1 == rb_map2
false
iex> A.RBMap.equal?(rb_map1, rb_map2)
true
iex> match?(^rb_map1, rb_map2)
falseAn A.RBMap is represented internally using the %A.RBMap{} struct. This struct
can be used whenever there's a need to pattern match on something being an A.RBMap:
iex> match?(%A.RBMap{}, A.RBMap.new(a: "Ant"))
trueNote, however, than A.RBMap is an opaque type:
its struct internal fields must not be accessed directly.
Note about numbers
Unlike regular maps, A.RBMaps only uses ordering for key comparisons,
not strict comparisons. Integers and floats are indistiguinshable as keys.
iex> %{1 => "一", 2 => "二"} |> Map.fetch(2.0)
:error
iex> A.RBMap.new(%{1 => "一", 2 => "二"}) |> A.RBMap.fetch(2.0)
{:ok, "二"}Erlang's :gb_trees module works the same.
Difference with A.OrdMap
A.OrdMapkeeps track of key insertion orderA.RBMapkeeps keys sorted in ascending order whatever the insertion order is
Memory overhead
A.RBMap takes roughly 1.4x more memory than a regular map depending on the type of data:
iex> key_values = Enum.map(1..100, fn i -> {i, <<i>>} end)
iex> map_size = Map.new(key_values) |> :erts_debug.size()
658
iex> rb_map_size = A.RBMap.new(key_values) |> :erts_debug.size()
910
iex> :gb_trees.from_orddict(key_values) |> :erts_debug.size()
803
iex> div(100 * rb_map_size, map_size)
138
Link to this section Summary
Functions
Deletes the entry in rb_map for a specific key.
Drops the given keys from rb_map.
Checks if two maps are equal.
Fetches the value for a specific key and returns it in a ok-tuple.
If the key does not exist, returns :error.
Fetches the value for a specific key and returns it in a ok-tuple.
If the key does not exist, returns :error.
Finds the {key, value} pair corresponding to the smallest key in rb_map.
Returns nil for empty maps.
Folds (reduces) the given rb_map from the left with the function fun.
Requires an accumulator acc.
Folds (reduces) the given rb_map from the right with the function fun.
Requires an accumulator acc.
Converts a struct to a A.RBMap.
Gets the value for a specific key in rb_map.
Gets the value from key and updates it, all in one pass.
Gets the value from key and updates it, all in one pass.
Gets the value for a specific key in rb_map.
Returns whether the given key exists in rb_map.
Returns all keys from rb_map.
Finds the {key, value} pair corresponding to the largest key in rb_map.
Returns nil for empty maps.
Merges two maps into one.
Returns a new empty map.
Creates a map from an enumerable.
Creates a map from an enumerable via the given transform function.
Returns the value for key and the updated map without key.
Returns the value for key and the updated map without key.
Finds and pops the {key, value} pair corresponding to the smallest key in rb_map.
Finds and pops the {key, value} pair corresponding to the largest key in rb_map.
Lazily returns and removes the value associated with key in rb_map.
Puts the given value under key in rb_map.
Puts the given value under key unless the entry key
already exists in rb_map.
Evaluates fun and puts the result under key
in rb_map unless key is already present.
Puts a value under key only if the key already exists in rb_map.
Puts a value under key only if the key already exists in rb_map.
Returns the number of keys in rb_map.
Returns a new map with all the key-value pairs in rb_map where the key
is in keys.
Returns all values from rb_map.
Updates the key in rb_map with the given function.
Puts a value under key only if the key already exists in rb_map.
Returns all values from rb_map.
Link to this section Types
Link to this section Functions
Specs
Deletes the entry in rb_map for a specific key.
If the key does not exist, returns rb_map unchanged.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.delete(rb_map, :b)
#A.RBMap<%{a: "Ant", c: "Cat"}>
iex> A.RBMap.delete(rb_map, :z)
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Drops the given keys from rb_map.
If keys contains keys that are not in rb_map, they're simply ignored.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.drop(rb_map, [:b, :d])
#A.RBMap<%{a: "Ant", c: "Cat"}>
Specs
Checks if two maps are equal.
The comparison between keys is done using ==/2, the comparison between values with strict equality ===/2.
Examples
iex> A.RBMap.equal?(A.RBMap.new(a: 1, b: 2), A.RBMap.new(b: 2, a: 1))
true
iex> A.RBMap.equal?(A.RBMap.new([{1, "一"}, {2, "二"}]), A.RBMap.new([{1, "一"}, {2, "二"}]))
true
iex> A.RBMap.equal?(A.RBMap.new(a: 1, b: 2), A.RBMap.new(a: 3, b: 2))
false
iex> A.RBMap.equal?(A.RBMap.new(a: 1, b: 2), A.RBMap.new(a: 1.0, b: 2.0))
false
Specs
Fetches the value for a specific key and returns it in a ok-tuple.
If the key does not exist, returns :error.
Examples
iex> rb_map = A.RBMap.new(a: "A", b: "B", c: "C")
iex> A.RBMap.fetch(rb_map, :c)
{:ok, "C"}
iex> A.RBMap.fetch(rb_map, :z)
:error
Specs
Fetches the value for a specific key and returns it in a ok-tuple.
If the key does not exist, returns :error.
Examples
iex> rb_map = A.RBMap.new(a: "A", b: "B", c: "C")
iex> A.RBMap.fetch!(rb_map, :c)
"C"
iex> A.RBMap.fetch!(rb_map, :z)
** (KeyError) key :z not found in: #A.RBMap<%{a: "A", b: "B", c: "C"}>
Specs
Finds the {key, value} pair corresponding to the smallest key in rb_map.
Returns nil for empty maps.
This is very efficient and can be done in O(log(n)).
It should be preferred over Enum.min/3.
Examples
iex> A.RBMap.new([b: "B", d: "D", a: "A", c: "C"]) |> A.RBMap.first()
{:a, "A"}
iex> A.RBMap.new([]) |> A.RBMap.first()
nil
iex> A.RBMap.new([]) |> A.RBMap.first(:error)
:error
Folds (reduces) the given rb_map from the left with the function fun.
Requires an accumulator acc.
Examples
iex> rb_map = A.RBMap.new([b: 22, a: 11, c: 33])
iex> A.RBMap.foldl(rb_map, 0, fn _key, value, acc -> value + acc end)
66
iex> A.RBMap.foldl(rb_map, [], fn key, value, acc -> [{key, value * 2} | acc] end)
[c: 66, b: 44, a: 22]
Folds (reduces) the given rb_map from the right with the function fun.
Requires an accumulator acc.
Unlike linked lists, this is as efficient as foldl/3. This can typically save a call
to Enum.reverse/1 on the result when building a list.
Examples
iex> rb_map = A.RBMap.new([b: 22, a: 11, c: 33])
iex> A.RBMap.foldr(rb_map, 0, fn _key, value, acc -> value + acc end)
66
iex> A.RBMap.foldr(rb_map, [], fn key, value, acc -> [{key, value * 2} | acc] end)
[a: 22, b: 44, c: 66]
Specs
Converts a struct to a A.RBMap.
It accepts the struct module or a struct itself and
simply removes the __struct__ field from the given struct
or from a new struct generated from the given module.
Example
defmodule User do
defstruct [:name, :age]
end
A.RBMap.from_struct(User)
#A.RBMap<%{age: nil, name: nil}>
A.RBMap.from_struct(%User{name: "john", age: 44})
#A.RBMap<%{name: "john"}>
Specs
Gets the value for a specific key in rb_map.
If key is present in rb_map then its value value is
returned. Otherwise, default is returned.
If default is not provided, nil is used.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.get(rb_map, :a)
"Ant"
iex> A.RBMap.get(rb_map, :z)
nil
iex> A.RBMap.get(rb_map, :z, "Zebra")
"Zebra"
Specs
get_and_update(t(k, v), k, (v -> {returned, v} | :pop)) :: {returned, t(k, v)} when k: key(), v: value(), returned: term()
Gets the value from key and updates it, all in one pass.
Mirrors Map.get_and_update/3, see its documentation.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> {"bat", updated} = A.RBMap.get_and_update(rb_map, :b, fn current_value ->
...> {current_value && String.downcase(current_value), "Buffalo"}
...> end)
iex> updated
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> {nil, updated} = A.RBMap.get_and_update(rb_map, :z, fn current_value ->
...> {current_value && String.downcase(current_value), "Zebra"}
...> end)
iex> updated
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat", z: "Zebra"}>
iex> {"Bat", updated} = A.RBMap.get_and_update(rb_map, :b, fn _ -> :pop end)
iex> updated
#A.RBMap<%{a: "Ant", c: "Cat"}>
iex> {nil, updated} = A.RBMap.get_and_update(rb_map, :z, fn _ -> :pop end)
iex> updated
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
get_and_update!(t(k, v), k, (v -> {returned, v} | :pop)) :: {returned, t(k, v)} when k: key(), v: value(), returned: term()
Gets the value from key and updates it, all in one pass.
Mirrors Map.get_and_update!/3, see its documentation.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> {"bat", updated} = A.RBMap.get_and_update!(rb_map, :b, fn current_value ->
...> {current_value && String.downcase(current_value), "Buffalo"}
...> end)
iex> updated
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> A.RBMap.get_and_update!(rb_map, :z, fn current_value ->
...> {current_value && String.downcase(current_value), "Zebra"}
...> end)
** (KeyError) key :z not found in: #A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Gets the value for a specific key in rb_map.
If key is present in rb_map then its value value is
returned. Otherwise, fun is evaluated and its result is returned.
This is useful if the default value is very expensive to calculate or generally difficult to setup and teardown again.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> expensive_fun = fn -> "Zebra" end
iex> A.RBMap.get_lazy(rb_map, :a, expensive_fun)
"Ant"
iex> A.RBMap.get_lazy(rb_map, :z, expensive_fun)
"Zebra"
Specs
Returns whether the given key exists in rb_map.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.has_key?(rb_map, :a)
true
iex> A.RBMap.has_key?(rb_map, :d)
false
iex> A.RBMap.has_key?(A.RBMap.new(%{1.0 => "uno"}), 1)
true
Specs
Returns all keys from rb_map.
Examples
iex> rb_map = A.RBMap.new(b: "Bat", c: "Cat", a: "Ant")
iex> A.RBMap.keys(rb_map)
[:a, :b, :c]
Specs
Finds the {key, value} pair corresponding to the largest key in rb_map.
Returns nil for empty maps.
This is very efficient and can be done in O(log(n)).
It should be preferred over Enum.max/3.
Examples
iex> A.RBMap.new([b: "B", d: "D", a: "A", c: "C"]) |> A.RBMap.last()
{:d, "D"}
iex> A.RBMap.new([]) |> A.RBMap.last()
nil
iex> A.RBMap.new([]) |> A.RBMap.last(:error)
:error
Specs
Merges two maps into one.
All keys in rb_map2 will be added to rb_map1, overriding any existing one
(i.e., the keys in rb_map2 "have precedence" over the ones in rb_map1).
Examples
iex> A.RBMap.merge(A.RBMap.new(%{a: 1, b: 2}), A.RBMap.new(%{a: 3, d: 4}))
#A.RBMap<%{a: 3, b: 2, d: 4}>
Specs
new() :: t()
Returns a new empty map.
Examples
iex> A.RBMap.new()
#A.RBMap<%{}>
Specs
new(Enumerable.t()) :: t()
Creates a map from an enumerable.
Keys are sorted upon insertion, and duplicated keys are removed; the latest one prevails.
Examples
iex> A.RBMap.new(b: "Bat", a: "Ant", c: "Cat")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
iex> A.RBMap.new(b: "Bat", a: "Ant", b: "Buffalo", a: "Antelope")
#A.RBMap<%{a: "Antelope", b: "Buffalo"}>
Specs
new(Enumerable.t(), (term() -> {k, v})) :: t(k, v) when k: key(), v: value()
Creates a map from an enumerable via the given transform function.
Duplicated keys are removed; the latest one prevails.
Examples
iex> A.RBMap.new([:a, :b], fn x -> {x, x} end)
#A.RBMap<%{a: :a, b: :b}>
Specs
Returns the value for key and the updated map without key.
If key is present in the map with a value value,
{value, new_rb_map} is returned.
If key is not present in the map, {default, rb_map} is returned.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> {"Bat", updated} = A.RBMap.pop(rb_map, :b)
iex> updated
#A.RBMap<%{a: "Ant", c: "Cat"}>
iex> {nil, updated} = A.RBMap.pop(rb_map, :z)
iex> updated
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
iex> {"Z", updated} = A.RBMap.pop(rb_map, :z, "Z")
iex> updated
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Returns the value for key and the updated map without key.
Behaves the same as pop/3 but raises if key is not present in rb_map.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> {"Bat", updated} = A.RBMap.pop!(rb_map, :b)
iex> updated
#A.RBMap<%{a: "Ant", c: "Cat"}>
iex> A.RBMap.pop!(rb_map, :z)
** (KeyError) key :z not found in: #A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Finds and pops the {key, value} pair corresponding to the smallest key in rb_map.
Returns a {key, value, new_tree} tuple for non-empty maps, nil for empty maps
Examples
iex> rb_map = A.RBMap.new([b: "B", d: "D", a: "A", c: "C"])
#A.RBMap<%{a: "A", b: "B", c: "C", d: "D"}>
iex> {:a, "A", updated} = A.RBMap.pop_first(rb_map)
iex> updated
#A.RBMap<%{b: "B", c: "C", d: "D"}>
iex> A.RBMap.new() |> A.RBMap.pop_first()
nil
Specs
Finds and pops the {key, value} pair corresponding to the largest key in rb_map.
Returns a {key, value, new_tree} tuple for non-empty maps, nil for empty maps
Examples
iex> rb_map = A.RBMap.new([b: "B", d: "D", a: "A", c: "C"])
#A.RBMap<%{a: "A", b: "B", c: "C", d: "D"}>
iex> {:d, "D", updated} = A.RBMap.pop_last(rb_map)
iex> updated
#A.RBMap<%{a: "A", b: "B", c: "C"}>
iex> A.RBMap.new() |> A.RBMap.pop_last()
nil
Specs
Lazily returns and removes the value associated with key in rb_map.
If key is present in rb_map, it returns {value, new_map} where value is the value of
the key and new_map is the result of removing key from rb_map. If key
is not present in rb_map, {fun_result, rB_map} is returned, where fun_result
is the result of applying fun.
This is useful if the default value is very expensive to calculate or generally difficult to setup and teardown again.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> expensive_fun = fn -> "Zebra" end
iex> {"Ant", updated} = A.RBMap.pop_lazy(rb_map, :a, expensive_fun)
iex> updated
#A.RBMap<%{b: "Bat", c: "Cat"}>
iex> {"Zebra", not_updated} = A.RBMap.pop_lazy(rb_map, :z, expensive_fun)
iex> not_updated
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Puts the given value under key in rb_map.
If the key does exist, it overwrites the existing value.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.put(rb_map, :b, "Buffalo")
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> A.RBMap.put(rb_map, :d, "Dinosaur")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat", d: "Dinosaur"}>
Specs
Puts the given value under key unless the entry key
already exists in rb_map.
Examples
iex> rb_map = A.RBMap.new(b: "Bat", c: "Cat")
iex> A.RBMap.put_new(rb_map, :a, "Ant")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
iex> A.RBMap.put_new(rb_map, :b, "Buffalo")
#A.RBMap<%{b: "Bat", c: "Cat"}>
Specs
Evaluates fun and puts the result under key
in rb_map unless key is already present.
This function is useful in case you want to compute the value to put under
key only if key is not already present, as for example, when the value is expensive to
calculate or generally difficult to setup and teardown again.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", c: "Cat")
iex> expensive_fun = fn -> "Buffalo" end
iex> A.RBMap.put_new_lazy(rb_map, :b, expensive_fun)
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> A.RBMap.put_new_lazy(rb_map, :a, expensive_fun)
#A.RBMap<%{a: "Ant", c: "Cat"}>
Specs
Puts a value under key only if the key already exists in rb_map.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.replace(rb_map, :b, "Buffalo")
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> A.RBMap.replace(rb_map, :d, "Dinosaur")
#A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Puts a value under key only if the key already exists in rb_map.
If key is not present in rb_map, a KeyError exception is raised.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.replace!(rb_map, :b, "Buffalo")
#A.RBMap<%{a: "Ant", b: "Buffalo", c: "Cat"}>
iex> A.RBMap.replace!(rb_map, :d, "Dinosaur")
** (KeyError) key :d not found in: #A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
size(t()) :: non_neg_integer()
Returns the number of keys in rb_map.
Examples
iex> A.RBMap.size(A.RBMap.new(a: 1, b: 2, c: 3))
3
iex> A.RBMap.size(A.RBMap.new(a: 1, a: 2, a: 3))
1
Returns a new map with all the key-value pairs in rb_map where the key
is in keys.
If keys contains keys that are not in rb_map, they're simply ignored.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.take(rb_map, [:c, :e, :a])
#A.RBMap<%{a: "Ant", c: "Cat"}>
Specs
Returns all values from rb_map.
Examples
iex> rb_map = A.RBMap.new(b: "Bat", c: "Cat", a: "Ant")
iex> A.RBMap.to_list(rb_map)
[a: "Ant", b: "Bat", c: "Cat"]
Specs
Updates the key in rb_map with the given function.
If key is present in rb_map then the existing value is passed to fun and its result is
used as the updated value of key. If key is
not present in rb_map, default is inserted as the value of key. The default
value will not be passed through the update function.
Examples
iex> rb_map = A.RBMap.new(b: "Bat", c: "Cat")
iex>A.RBMap.update(rb_map, :b, "N/A", &String.upcase/1)
#A.RBMap<%{b: "BAT", c: "Cat"}>
iex>A.RBMap.update(rb_map, :a, "N/A", &String.upcase/1)
#A.RBMap<%{a: "N/A", b: "Bat", c: "Cat"}>
Specs
Puts a value under key only if the key already exists in rb_map.
If key is not present in rb_map, a KeyError exception is raised.
Examples
iex> rb_map = A.RBMap.new(a: "Ant", b: "Bat", c: "Cat")
iex> A.RBMap.update!(rb_map, :b, &String.upcase/1)
#A.RBMap<%{a: "Ant", b: "BAT", c: "Cat"}>
iex> A.RBMap.update!(rb_map, :d, &String.upcase/1)
** (KeyError) key :d not found in: #A.RBMap<%{a: "Ant", b: "Bat", c: "Cat"}>
Specs
Returns all values from rb_map.
Examples
iex> rb_map = A.RBMap.new(b: "Bat", c: "Cat", a: "Ant")
iex> A.RBMap.values(rb_map)
["Ant", "Bat", "Cat"]