

 alarmist

 v0.4.0

 Table of contents

 	Alarmist

 	Changelog

 	
 Modules

 	Alarmist

 	Alarmist.Alarm

 	Alarmist.Event

 	Alarmist.Handler

 	Alarmist.Ops

 	Alarmist.RemedyWorker

 Alarmist

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: REUSE status]
Alarmist builds on Erlang’s
alarm_handler by adding support
for subscriptions, conditional logic, and other advanced features. It is
designed to be non-intrusive and adheres to existing conventions for naming and
using alarms. Only the end user's application needs to depend on Alarmist.
What are alarms
Alarms are different from events. While events can convey any information, an
alarm conveys a boolean state. The alarm can either be set or clear. At it's
core, here are the calls:
iex> :alarm_handler.set_alarm({SomethingIsWrong, "Some optional description"})

Sometime later when Something is no longer wrong.
iex> :alarm_handler.clear_alarm(SomethingIsWrong)
When you're at the IEx prompt, you can see the current alarm state in a few
ways, but an easy way is to run Alarmist.info/1:
iex> Alarmist.info
 Set Alarms
SEVERITY ALARM ID LAST CHANGE DESCRIPTION
Warning SomethingIsWrong 2025-05-26 20:08:48 (2s) Some optional description
Likewise, code should always be able to know the state of the alarm. If your
code started after the event was sent, then it would be missed. Of course,
you can work around this, but with alarms there's an expectation that the alarm
state is always accessible.
Alarmist builds on this and can build off alarms you have to make new ones that
summarize or reflect actual situations of concern.
When to use alarms
Alarms are one tool in the fault management toolbox. They give a name to
persistent conditions that are involved with non-local remediation to clear.
Persistent in this sense means that the alarm continues to exist until reported
otherwise. It is not transient. For example, a supervised GenServer that
crashes is a transient fault since its supervisor is going to restart it. An
issue like a remote server no longer being reachable is persistent. It may
become reachable in a few seconds or hours or more.
Non-local remediation means that the code that sets the alarm does so to either
help or get help from somewhere else like another library or a person. For
example, code that monitors a network connection could set an alarm when the
internet is unreachable so that UI code could show the issue to a nearby human.
Alarm IDs
Erlang's Alarm Handler allows AlarmIds to be any Erlang term. While very
flexible, structure helps and Alarmist supports two AlarmId styles:
	Atoms - InternetDown or :disk_full
	Tagged tuples - {NetworkBroken, "eth0"} or {FancyAlarm, :something, 1}

Alarmist refers to the atom in atom-only AlarmIds or the first element of the
tuple as the alarm type. Picking the style to use is simple - does the alarm
need parameters? No, then atom; yes, then tagged tuple. In practice, avoiding
parameters seems to end up being enough simpler that if you're unsure, try that
first.
As a quick reminder, everything in the AlarmId is the important part when it
comes to subscribing to and working with alarms. The AlarmDescription is
informational.
Alarms are public API. Alarmist recommends using Elixir modules for alarms
where the module name is the alarm type. The module is a good place for
documentation and helper functions related to the alarm. This also ensures that
the alarm can be documented in Hex docs and the like.
Managed alarms
One of the major features of Alarmist is the ability to compose alarms via
boolean logic and add callback functions to fix (remediate) issues causing the
alarms. This can simplify alarm handling code by removing boilerplate, removing
hard-to-test conditional logic, and simplifying the triggering conditions to
where visual inspection is possible.
As before, networking issues make good examples. Home and business networks
have some normal hiccups that don't require remediation. Sometimes just waiting
a bit makes the network start working again. Code that detects a network outage
can simply set an alarm stating it is down. Alarmist provides primitives for
creating a managed alarm that doesn't get set until the network is down longer
than a user-specified duration. Alarmist can also raise that alarm if the
network bounces up and down frequently since that's also problematic, but in a
way that the minimum time criteria wouldn't detect.
To compose alarms using boolean logic, Alarmist provides the alarm_if
macro. The general form is to create an Elixir module with the name of the
managed alarm and then use alarm_if to express the criteria for it being set:
defmodule MyNewAlarm do
 use Alarmist.Alarm

 alarm_if do
 InterestingAlarm1 and InterestingAlarm2
 end
end
In this example, Alarmist will set MyNewAlarm only when both
InterestingAlarm1 and InterestingAlarm2 are set.
Alarm options
Alarmist provides the following options for managed alarms:
	:level - the severity of the alarm
	:style - how the alarm message is constructed. :atom or :tagged_tuple
	:parameters - a list of atom keys that define a :tagged_tuple alarm
	:remedy - a callback function to handle the alarm when set

Alarm severity
Alarmist supports labeling managed alarms with severity levels matching those
in Logger.level/0. Alarms default to the :warning level and intermediate
alarms created internally by Alarmist default to :debug.
The following example shows how to set an alarm's severity.
defmodule MyNewAlarm do
 use Alarmist.Alarm, level: :info

 alarm_if do
 ...
 end
end
Alarmist includes the severity in alarm status change events and also lets you
filter active alarms with Alarmist.get_alarms/1 and
Alarmist.get_alarm_ids/1.
Alarm styles
The way alarms are represented is called their style. These are either atoms
like MyNewAlarm or tagged tuples like {NetworkDown, "eth0"}. Alarmist needs
to know how managed alarms are represented especially in the tagged tuple case
so that it handles alarm parameters correctly. Alarms following the :atom
style don't need any special handling since those are the default.
An example of a :tagged_tuple alarm is the following:
defmodule NetworkDownAlarm do
 use Alarmist.Alarm, style: :tagged_tuple, parameters: [:ifname]

 ...
end
The use of the :style and :parameters options is used by Alarmist to
represent this alarm as {NetworkDownAlarm, ifname} where ifname gets
replaced with the network interface name of interest. Of course, Alarmist
doesn't know what network interfaces are available, so application code needs
to call Alarmist.add_managed_alarm/1 with each possibility. I.e.,
Alarmist.add_managed_alarm({NetworkDownAlarm, "eth0"})
Remedies
Remedies are callback functions that are run when alarms get set. They may be
manually registered on any alarm using Alarmist.add_remedy/3. Registration is
automatic when including them with a managed alarm specification. The callback
may take zero or one arguments. If 1-arity, then the alarm ID is passed.
The following example shows a managed alarm that monitors a hypothetical
SensorNotResponding alarm. Once that alarm is set for 5 minutes straight, it
does a hardware reset of the sensor to try to fix it. Hopefully after the
hardware reset, it will work again.
defmodule SensorAlarm do
 use Alarmist.Alarm, remedy: {__MODULE__, :fix, 1}

 alarm_if do
 debounce(SensorNotResponding, to_timeout(minute: 5))
 end

 def fix(_alarm_id) do
 SensorDriver.hardware_reset()
 end
end
Callbacks have the following options:
	:retry_timeout — time to wait for the alarm to be cleared before calling
 the callback again (default: :infinity)
	:callback_timeout — time to wait for the callback to run (default: 60 seconds)

In this example, Sensor.hardware_reset/0 is only called once. You could call
it every minute that the sensor continues to not respond. E.g., the following
change would call it at the 5 minute mark, 6 minute, 7 minute, etc.
 use Alarmist.Alarm, remedy: {{__MODULE__, :fix, 1}, retry_timeout: to_timeout(minute: 1)}

 ...
Alarmist takes care when invoking remedy callbacks and handles crashes and
hangs. The default time to wait before unceremoniously killing the process
that's running callback is specified using the :callback_timeout option.
For flapping alarms, Alarmist ensures that only one callback is running at
a time per alarm ID. No callback queuing happens. I.e., if a callback is
running when an alarm transitions to clear and then back to set, Alarmist
skips running the callback on that second set.
For stateful callback handling or when you have a convenient GenServer for
which to receive alarm messages, it's better to subscribe to alarm events via
Alarmist.subscribe/1. The primary benefit of using the :remedy option is to
avoid writing somewhat nontrivial boilerplate code to execute a short function.
Unknown alarm handling
Alarm IDs that haven't been set or cleared yet are reported as :unknown.
These alarms could just be due to initialization order where the code that
reports them hasn't run yet. They could also be due to an Alarm ID being
misspelled.
Managed alarms treat unknown alarms as cleared in alarm_if expressions. To
change this behavior, call unknown_as_set/1 on the alarm.
Lastly, Alarmist transitions managed alarm IDs to the :unknown state in
Alarmist.remove_managed_alarm/1. While it's not common for managed alarms to
be removed in production use, if they were, any code listening for events from
them would notice it.
Managed alarm operators
Managed alarms defined with alarm_if support boolean operators and a few
special purpose operators. The following sections document each of these.
Identity
Specifying an AlarmId by itself creates a new alarm whose state mirrors the
original one. If the alarm state is unknown, the resulting alarm state is clear. It is useful for creating aliases that decouple alarm naming between
projects.
defmodule AliasedAlarm do
 use Alarmist.Alarm

 alarm_if do
 SomeOtherAlarmName
 end
end
Unknown as set
The unknown_as_set/1 function returns an alarm as set whenever its state is
unknown. It is useful when the lack of an alarm being cleared indicates an
initialization failure.
defmodule AliasedAlarm2 do
 use Alarmist.Alarm

 alarm_if do
 unknown_as_set(SomeOtherAlarmName)
 end
end
Debounce
The debounce/2 function specifies a minimum amount of time for another alarm
to be set before it is set. This can be used to delay remediation if there's a
chance that the alarm goes away on its own.
defmodule RealProblemAlarm do
 use Alarmist.Alarm

 alarm_if do
 # Set this module's alarm when FlakyAlarm has been set for at for 5 seconds
 debounce(FlakyAlarm, 5_000)
 end
end
Hold
The hold/2 function specifies a minimum amount of time for the new alarm to
be set. For example, if an alarm triggers an indicator on a UI, then it may
need to stay on for a minimum duration. While the UI could have the timer,
creating an alarm lets other code or alarms change their behavior as well.
defmodule LongerAlarm do
 use Alarmist.Alarm

 alarm_if do
 # Set the alarm for at least 3 seconds whenever FlakyAlarm
 hold(FlakyAlarm, 3_000)
 end
end
Intensity
The intensity/3 function sets an alarm when another has been set and cleared
too many times in a row. The metric is set/cleared x times in y milliseconds
similar to OTP's supervisor restart intensity parameters. It can be useful to
combine intensity/3 with hold/2 to create an alarm that disables a feature
for a short time when it flaps too much. Some people call this a penalty box.
defmodule IntensityThresholdAlarm do
 use Alarmist.Alarm

 alarm_if do
 # Set when raised and cleared >= 5 times in 3 seconds
 intensity(FlakyAlarm, 5, 3_000)
 end
end
OnTime
The on_time/3 function sets an alarm when another has been accumulates over a
certain amount of time being on over the course of an interval. An example of
this is to handle an alarm that glitches on for short periods of time. Ignoring
isolated glitches is the right thing to do, but if the accumulated alarm state
exceeds a total amount of time in a period, then it's desirable to take action.
Compare this with intensity/3. For intensity/3, it's the number of glitches
in a period of time that matters. Long duration glitches (not really a glitch
any more) don't affect the calculation. For on_time/3, it's the accumulated
duration.
defmodule OnTimeThresholdAlarm do
 use Alarmist.Alarm

 alarm_if do
 # Set when 1 seconds of alarm time has accumulated in 3 seconds
 on_time(FlakyAlarm, 1_000, 3_000)
 end
end
Boolean logic
Standard Elixir boolean operators like and, or, and not can be used to
combine and group multiple alarms. This is an easy way to create an alarm that
tracks exactly what you want.
defmodule IntensityThresholdAlarm do
 use Alarmist.Alarm

 alarm_if do
 (Alarm1 or Alarm2) and intensity(FlakyAlarm, 5, 10_000)
 end
end
Example
The following example shows how to define an alarm that WiFi is unstable based
on a alarm that says when WiFi is down. This is a real life example of an
embedded device with an expensive backup cellular connection. WiFi can be
flaky, though, so you wouldn't want to turn on the cellular connection right
when WiFi goes down since that might be a hiccup.
The following code defines a managed alarm for unstable WiFi,
Demo.WiFiUnstable. The timeouts are short to make it easier to copy/paste
into an IEx prompt and manually run.
defmodule Demo.WiFiUnstable do
 @moduledoc """
 Alarm for when WiFi bounces too frequently
 """
 use Alarmist.Alarm

 # WiFi must be down for at least 15 seconds or flapped 2 times in 60 seconds
 alarm_if do
 debounce(Demo.WiFiDown, :timer.seconds(15)) or
 intensity(Demo.WiFiDown, 2, :timer.seconds(60))
 end
end

defmodule Demo do
 @moduledoc """
 Helpers for setting and clearing alarms
 """
 def wifi_down() do
 :alarm_handler.set_alarm({Demo.WiFiDown, nil})
 end

 def wifi_up() do
 :alarm_handler.clear_alarm(Demo.WiFiDown)
 end

 def wifi_flap() do
 wifi_down()
 wifi_up()
 wifi_down()
 wifi_up()
 end
end
Now that we have alarm logic and helpers defined the managed alarm needs to be
registered:
 # ... normally in an Application.start or other code that runs on init ...
 Alarmist.add_managed_alarm(Demo.WiFiUnstable)
Then subscribe for notifications:
 # ... normally in the GenServer with the remediation code...
 Alarmist.subscribe(Demo.WiFiUnstable)
Finally, we can exercise setting and clearing the alarm:
iex> Demo.wifi_flap
:ok
iex> flush
%Alarmist.Event{
 id: Demo.WiFiUnstable,
 state: :set,
 description: nil,
 timestamp: -576460712978320952,
 previous_state: :unknown,
 previous_timestamp: -576460751417398083
}
:ok
Wait ~60 seconds
iex> flush
%Alarmist.Event{
 id: Demo.WiFiUnstable,
 state: :clear,
 timestamp: -576460652977733801,
 previous_state: :set,
 previous_timestamp: -576460712978320952
}
Configuration via the application environment
It's possible to define managed alarms to add when the Alarmist application
starts. This has some convenience if you'd prefer to list all managed alarms in
your config.exs rather than distribute their registration to runtime.
config :alarmist,
 managed_alarms: [FirstManagedAlarm, SecondManagedAlarm],
 alarm_levels: %{{:disk_almost_full, ~c"/"} => :debug}
When Alarmist starts, it will force those modules to be loaded. Alarmist skips
any alarm modules that have issues and just logs an error.
License
Alarmist is licensed under the Apache License, Version 2.0.

 Changelog

This project follows Semantic Versioning.
v0.4.0 - 2025-09-01
This update has many changes that are intended to be backwards compatible. The
minor version bump is made out of an abundance of caution due to the alarm
description change noted below.
	New features
	Support registering callback functions, called remedies, to alarm IDs to fix
the issue that caused the alarm to be set. Managed alarms support automatic
registration of remedies. This feature doesn't add anything that couldn't
have been done before, but it reduces boilerplate and some subtle error
handling code.

	Add unknown_as_set/1 function for use in alarm_if expressions to assume
an alarm is set if it hasn't been set or cleared yet. This is useful since
unknown alarms are assumed to be cleared everywhere else.

	Add Alarmist.alarm_state/1 for getting the state of a single alarm. This
function can return :unknown if Alarmist doesn't know anything about the
alarm.

	Add Alarmist.Event.timestamp_to_utc/2 helper function for converting the
monotonic timestamps in event messages to UTC.

	Add on_time/3 function for use in alarm_if expressions. This function
tracks the cumulative time that an alarm has been set in an interval. If
that exceeds a threshold, it returns that a set status.

	Add sustain_window/3 function for use in alarm_if expressions. This
function tracks the longest continuous interval that an alarm has been set
within an interval. If it is above a threshold, then it returns a set status.

	Changes
	Always send alarm events when managed alarms are added or removed. On
removal, the alarm transitions to the :unknown state. Previously unknown
and clear were considered equivalent so they did not trigger an event.

	For internally generated :set events, always set the description to nil.
Previously, some sets had empty list descriptions.

	Change Alarmist.info/1 to only show set alarms by default. Cleared alarms
can be shown as well via an option, but they were removed since they could
make the set alarms scroll off the terminal in production systems.

	Fixes
	Fix exception that's raised when an Alarmist call times out. Thanks to
@jjcarstens for this fix.

v0.3.1 - 2025-06-10
	Updates	Loosen :tablet dependency to allow updates to latest version
	Fix Elixir 1.19 warning

v0.3.0 - 2025-05-30
This is a breaking update that renames terminology and begins feature updates
based on experiences over the past year. Here's a summary of the terminology
changes:
	Synthetic alarms are now called managed alarms since they are managed by
Alarmist.
	Alarmist.Definition is now Alarmist.Alarm to signify that you're
defining alarms.
	defalarm is now alarm_if. The way to read this is "[Alarmist] sets an
alarm IF the following condition is true". Future releases will have other
ways of indicating when alarms should be set.

When upgrading, you'll get compiler errors to guide you on the renames.
In addition to the above breaking changes, there are quite a few updates from
v0.2.2:
	New features
	Support for tuple-based alarm IDs like {NetworkBroken, "eth0"} to allow
for generic alarm types. The boolean logic for combining alarms supports
variables now so that managed alarms don't need to know the
instance-specific pieces until registration.
	Support alarm severities. Alarm severities use the same atoms as Logger
severities (:error, :warning, :info, etc.) and may be set on both
managed and unmanaged alarms.
	Add Alarmist.info/1 for quickly getting a list of set and cleared alarms
when using the CLI
	Support registering alarms and setting levels using the application
environment via config :alarmist, ...

	Updates
	Internally created alarms when registering managed alarms are now all
:debug severity and won't display or be returned by default since most
alarm querying functions return :info and higher. You can still get to
them by passing level: :debug to affected functions.
	Fix silent failures of Alarmist API calls immediately after Alarmist is
started due to async gen_event handler registration. This seemed to only
affect unit tests in practice.
	Clean up state better when unregistering managed alarms and stopping the
Alarmist app.
	Many more unit tests for better code coverage of edge cases

v0.2.2 - 2025-04-24
	Updates	Fixed dropped alarm descriptions that were reported before Alarmist starts
	Fixed Alarmist.remove_synthetic_alarm/1 to actually work. It doesn't look
like this function is actually used in practice, but it will work now.
	Add Alarmist.synthetic_alarm_ids/0 to list what's been registered
	Add Alarmist.subscribe_all/0 and Alarmist.unsubscribe_all/0 for ease of
subscribing to all events
	Gracefully handle redundant alarm registrations. These can happen on
supervision tree restart. Extra notifications aren't sent and if alarm
conditions actually did change on the re-registration, the new ones would be
used.
	Alarm modules now have a __get_alarm_def__/0 function for getting the
alarm condition source code

v0.2.1 - 2025-03-27
	Updates	Fix serious issue with incorrect clearing of timers that affects synthetic
alarms that use timers such as Debounce, Intensity, and Hold. Timeouts could
be missed. Thanks to @x4lldux for reporting the issue.
	Improve compile-time checks for defalarm
	Various documentation improvements and an example
	Update licensing and copyright for REUSE compliance

v0.2.0 - 2024-12-09
This is a backwards incompatible update. The following changes are needed:
	Replace all calls to Alarmist.current_alarms/0 with
Alarmist.get_alarm_ids/0. This is a hard deprecation.
	Update all message handling on Alarmist events to expect and use the
Alarmist.Event.t(). In most usage, this means matching on :id and
:state and it should simplify the handling functions.

	Updates	Simplify the API by completely abstracting away the internal implementation
with uses the PropertyTables library. This will allow for further internal
improvements without forcing breaking changes.
	Align the API for getting alarms with :alarm_handler. This added the
Alarmist.get_alarms/0 function.
	Remove a race condition involving the use of alarm descriptions.
Descriptions are sent to subscribers with the alarm status change
notification now.
	Use one timestamp value for all alarms that were set at initialization time.
This removes the ambiguity of whether an alarm changed a few milliseconds
after Alarmist start up or was one of the original alarms.
	Report when alarms are in an :unknown state when no information is
available. This is useful for the :previous_state field in alarm events.

v0.1.3 - 2024-09-26
	Updates	Don't crash on non-atom Alarm IDs. Alarmist doesn't support these yet so
they're currently ignored.

v0.1.2 - 2024-03-04
First public release
v0.1.1 - 2024-02-29
	Updates	Delay swapping alarm handler until supervision tree started to fix possible
crash on startup

v0.1.0 - 2024-01-19
Initial release

Alarmist

Alarm handler and more
Alarmist provides an :alarm_handler implementation that allows you to check
what alarms are currently active and subscribe to alarm status changes.
It also provides a DSL for defining alarms based on other alarms. See
Alarmist.Alarm.

 Summary

 Types

 alarm()

 Alarm information

 alarm_description()

 Alarm description

 alarm_id()

 Alarm identifier

 alarm_pattern()

 Patterns for alarm subscriptions

 alarm_state()

 Alarm state

 alarm_type()

 Alarm type

 compiled_condition()

 info_options()

 See Alarmist.info/1

 remedy()

 Remedy callback with or without options

 remedy_fn()

 Callback function for fixing alarms

 remedy_options()

 Options for running the remedy callback

 rule()

 Functions

 add_managed_alarm(alarm_id)

 Add a managed alarm

 add_remedy(alarm_id, callback, options \\ [])

 Add a callback to fix an Alarm ID

 alarm_state(alarm_id)

 Get the current state of an alarm

 alarm_type(alarm_id)

 Extract the alarm type from an alarm ID

 clear_alarm_level(alarm_id)

 Clear knowledge of an alarm's level

 get_alarm_ids(options \\ [])

 Return a list of all active alarm IDs

 get_alarms(options \\ [])

 Return a list of all active alarms

 info(options \\ [])

 Print alarm status in a nice table

 is_alarm_id(id)

 managed_alarm_ids(timeout \\ 5000)

 Return all managed alarm IDs

 remove_managed_alarm(alarm_id)

 Remove a managed alarm

 remove_remedy(alarm_id)

 Remove a remedy callback

 set_alarm_level(alarm_id, level)

 Set or change the alarm level for an alarm

 subscribe(alarm_pattern)

 Subscribe to alarm status events

 subscribe_all()

 Subscribe to alarm status events for all alarms

 unsubscribe(alarm_pattern)

 Unsubscribe the current process from the specified alarm :set and :clear events

 unsubscribe_all()

 Unsubscribe from alarm status events for all alarms

 Types

 alarm()

 @type alarm() :: {alarm_id(), alarm_description()}

Alarm information
Calls to :alarm_handler.set_alarm/1 pass an alarm identifier and
description as a 2-tuple. Alarmist stores the description of the most recent
call.
:alarm_handler.set_alarm/1 doesn't enforce the use of 2-tuples. Alarmist
normalizes non-2-tuple alarms so that they have empty descriptions.

 alarm_description()

 @type alarm_description() :: any()

Alarm description
This is optional supplemental information about the alarm. It could contain
more information about why it was set. Don't use it to differentiate between
alarms. Use the alarm ID for that.

 alarm_id()

 @type alarm_id() ::
 alarm_type()
 | {alarm_type(), any()}
 | {alarm_type(), any(), any()}
 | {alarm_type(), any(), any(), any()}

Alarm identifier
Alarm identifiers are the unique identifiers of each alarm that can be
set or cleared.
While SASL alarm identifiers can be anything, Alarmist supplies conventions
so that it can interpret them. This typespec follows those conventions, but
you may come across codes that doesn't. Those cases may be ignored or
misinterpreted.

 alarm_pattern()

 @type alarm_pattern() ::
 alarm_type()
 | :_
 | {alarm_type() | :_, any() | :_}
 | {alarm_type() | :_, any() | :_, any() | :_}

Patterns for alarm subscriptions
Patterns can be exact matches or use :_ to match any value in a position.

 alarm_state()

 @type alarm_state() :: :set | :clear | :unknown

Alarm state
Alarms are in the :set state after a call to :alarm_handler.set_alarm/1
and in the :clear state after a call to :alarm_handler.clear_alarm/1.
Redundant calls to :alarm_handler.set_alarm/1 update the alarm description
and redundant calls to :alarm_handler.clear_alarm/1 are ignored.
The :unknown state is used for alarms that are unknown to Alarmist. These
alarms may have typos in the names or they simply may not have been set
or cleared yet.

 alarm_type()

 @type alarm_type() :: atom()

Alarm type
Alarm types are atoms and for Alarmist-managed alarms, they are
module names.

 compiled_condition()

 @type compiled_condition() :: %{
 rules: [rule()],
 temporaries: [alarm_id()],
 options: map()
}

 info_options()

 @type info_options() :: [
 level: Logger.level(),
 sort: :level | :alarm_id | :duration,
 ansi_enabled?: boolean()
]

See Alarmist.info/1

 remedy()

 @type remedy() :: remedy_fn() | {remedy_fn(), remedy_options()}

Remedy callback with or without options
See Alarmist.Alarm.__using__/1

 remedy_fn()

 @type remedy_fn() :: (-> any()) | (alarm_id() -> any()) | mfa()

Callback function for fixing alarms
This may be an MFA or function reference that takes zero or one
arguments. If it takes one argument, the alarm ID is passed.

 remedy_options()

 @type remedy_options() :: [retry_timeout: timeout(), callback_timeout: timeout()]

Options for running the remedy callback
	:retry_timeout — time to wait for the alarm to be cleared before calling the callback again (default: :infinity)
	:callback_timeout — time to wait for the callback to run (default: 60 seconds)

 rule()

 @opaque rule()

 Functions

 add_managed_alarm(alarm_id)

 @spec add_managed_alarm(alarm_id()) :: :ok

Add a managed alarm
After this call, Alarmist will watch for alarms to be set based on the
supplied module and set or clear the specified alarm ID. The module must
use Alarmist.Alarm.
Calling this function a multiple times with the same alarm results in
the previous alarm being replaced. Alarm subscribers won't receive
redundant events if the rules are the same.

 add_remedy(alarm_id, callback, options \\ [])

 @spec add_remedy(alarm_id(), remedy_fn(), remedy_options()) :: :ok | {:error, atom()}

Add a callback to fix an Alarm ID
This is a simple way of adding a callback function to deal with an alarm
being set. Conceptually it is similar to starting a GenServer, calling
subscribe/1, and running the callback on alarm set messages. It provides a
number of conveniences:
	Supervision is handled for you. If the callback crashes, you'll get a
message in the log, but it won't prevent future attempts
	Handles fast toggling of alarm states to prevent the callback runs from
queuing or running concurrently
	Can repeatedly call the callback after a retry delay for alarms that aren't
clearing
	Times out hung callbacks to allow for future invocations without violating
the guarantee that only one callback is run for an alarm ID at any one time.

Only one remedy callback can be registered per alarm ID. If you are running
the remedy on a managed alarm, see Alarmist.Alarm for specifying it there
and the remedy callback will be automatically added when the managed alarm
is.
Options:
	:retry_timeout — time to wait for the alarm to be cleared before calling
the callback again (default: :infinity)
	:callback_timeout — time to wait for the callback to run (default: 60 seconds)

Since there can only be one remedy per Alarm ID, subsequent calls replace. If
an alarm is already set, the new callback will be called the next time. This
means that crash/restarts of the process that adds the remedy does not cause
the callback to be invoked twice. In fact, if the callback and options are
the same, it will look like a no-op. If you don't want this behavior, call
remove_remedy/1 and then add_remedy/3 to force new calls to be made.

 alarm_state(alarm_id)

 @spec alarm_state(alarm_id()) :: alarm_state()

Get the current state of an alarm
Alarms get known by Alarmist when they're first set or cleared.

 alarm_type(alarm_id)

 @spec alarm_type(alarm_id()) :: alarm_type()

Extract the alarm type from an alarm ID
Examples:
iex> Alarmist.alarm_type(MyAlarm)
MyAlarm
iex> Alarmist.alarm_type({NetworkBroken, "eth0"})
NetworkBroken

 clear_alarm_level(alarm_id)

 @spec clear_alarm_level(alarm_id()) :: :ok

Clear knowledge of an alarm's level
If the alarm gets reported after this call, it will be assigned the default
alarm level, :warning.

 get_alarm_ids(options \\ [])

 @spec get_alarm_ids([{:level, Logger.level()}]) :: [alarm_id()]

Return a list of all active alarm IDs
Options:
	:level - filter alarms by severity. Defaults to :info.

 get_alarms(options \\ [])

 @spec get_alarms([{:level, Logger.level()}]) :: [alarm()]

Return a list of all active alarms
This returns {id, description} tuples. Note that Alarmist normalizes
alarms that were not set as 2-tuples so this may not match calls to
:alarm_handler.set_alarm/1.
Options:
	:level - filter alarms by severity. Defaults to :info.

 info(options \\ [])

 @spec info(info_options()) :: :ok

Print alarm status in a nice table
Options:
	:ansi_enabled? - override the default ANSI setting. Defaults to true.
	:level - filter alarms by severity. Defaults to :info.
	:show_cleared? - show cleared alarms. Defaults to false.

 is_alarm_id(id)

 (macro)

 managed_alarm_ids(timeout \\ 5000)

 @spec managed_alarm_ids(timeout()) :: [alarm_id()]

Return all managed alarm IDs

 remove_managed_alarm(alarm_id)

 @spec remove_managed_alarm(alarm_id()) :: :ok

Remove a managed alarm

 remove_remedy(alarm_id)

 @spec remove_remedy(alarm_id()) :: :ok | {:error, :not_found}

Remove a remedy callback
If the callback is currently running, Alarmist brutally kills its worker
process.
There's generally no need to remove a remedy callback that's automatically
added as part of a managed alarm. Removing the managed alarm removes its
remedy.

 set_alarm_level(alarm_id, level)

 @spec set_alarm_level(alarm_id(), Logger.level()) :: :ok

Set or change the alarm level for an alarm
The alarm can be either for a managed or unmanaged alarm. Once set, that
alarm will be reported with the specified level.
While this can be used with managed alarms, you should normally pass the
desired level as an option to use Alarmist.Alarm so that it's handled for
you.
It's also possible to set levels for unmanaged alarms in the application
configuration:
config :alarmist, alarm_levels: %{MyUnmanagedAlarm => :critical}
NOTE: Changing the alarm level does not change the status of existing alarms
since there's no mechanism to go back in time and change reports. Future
events will be reported with the new level.

 subscribe(alarm_pattern)

 @spec subscribe(alarm_pattern()) :: :ok

Subscribe to alarm status events
Events will be delivered to the calling process as:
%Alarmist.Event{
 id: TheAlarmId,
 state: :set,
 description: nil,
 level: :warning,
 timestamp: -576460712978320952,
 previous_state: :unknown,
 previous_timestamp: -576460751417398083
}

 subscribe_all()

 @spec subscribe_all() :: :ok

Subscribe to alarm status events for all alarms
See subscribe/1 for the event format.

 unsubscribe(alarm_pattern)

 @spec unsubscribe(alarm_pattern()) :: :ok

Unsubscribe the current process from the specified alarm :set and :clear events

 unsubscribe_all()

 @spec unsubscribe_all() :: :ok

Unsubscribe from alarm status events for all alarms
NOTE: This will only remove subscriptions created via subscribe_all/0, not
subscriptions created for individual alarms via subscribe/1.

Alarmist.Alarm

DSL for defining managed alarms
The general form is:
defmodule MyAlarmModule do
 use Alarmist.Alarm, level: :warning

 alarm_if do
 AlarmId1 and AlarmId2
 end
end
See __using__/1 for options to pass to use Alarmist.Alarm. See
Alarmist.Ops for what operations can be included in alarm_if block.

 Summary

 Functions

 __using__(options)

 Define a managed alarm

 alarm_if(list)

 Define an alarm condition

 Functions

 __using__(options)

 (macro)

Define a managed alarm
The following options can be passed to use Alarmist.Alarm:
	:level - the alarm severity. See Logger.level/0. Defaults to
:warning and can be overridden by Alarmist.set_alarm_level/2.
	:parameters - a list of atom keys that refine the scope of the alarm. For
example, a networking alarm might specify [:ifname] to indicate that the
alarm pertains to a specific network interface.
	:remedy - a function or a {function, options} tuple. The function is
called when the alarm is set. The function can either be a reference or MFA
taking 0 or 1 arguments. If 1-arity, it is passed the alarm_id.
	:style - the alarm style when parameters are used. Defaults to
:tagged_tuple to indicate that alarms are tuples where the first element
is the alarm type and the subsequent elements are the parameters.

 alarm_if(list)

 (macro)

Define an alarm condition
See Alarmist.Ops for what operations can be included in alarm_if block.

Alarmist.Event

Struct sent to subscribers on property changes
	:id - which alarm
	:state - :set or :clear
	:description - alarm description or nil when the alarm has been cleared
	:level - alarm severity if known to Alarmist. Defaults to :warning
	:timestamp - the timestamp (System.monotonic_time/0) when the changed happened. See timestamp_to_utc/2 for UTC conversion.
	:previous_state - the previous alarm state (:unknown if no previous information).
	:previous_timestamp - the timestamp when the property changed to :previous_state. See timestamp_to_utc/2 for UTC conversion.

 Summary

 Types

 t()

 Functions

 timestamp_to_utc(timestamp, arg \\ utc_conversion())

 Convert the event's monotonic timestamp to UTC

 utc_conversion()

 Returns a monotonic time to UTC time mapping

 Types

 t()

 @type t() :: %Alarmist.Event{
 description: Alarmist.alarm_description(),
 id: Alarmist.alarm_id(),
 level: Logger.level(),
 previous_state: Alarmist.alarm_state(),
 previous_timestamp: integer(),
 state: Alarmist.alarm_state(),
 timestamp: integer()
}

 Functions

 timestamp_to_utc(timestamp, arg \\ utc_conversion())

 @spec timestamp_to_utc(
 integer(),
 {integer(), DateTime.t()}
) :: DateTime.t()

Convert the event's monotonic timestamp to UTC

 utc_conversion()

 @spec utc_conversion() :: {integer(), DateTime.t()}

Returns a monotonic time to UTC time mapping
This is used by timestamp_to_utc/2 by default, but it's possible to supply
a custom mapping for unit test or performance reasons.
The monotonic time is in native time units.

Alarmist.Handler

Alarm handler

 Summary

 Functions

 add_managed_alarm(alarm_id, compiled_rules)

 clear_alarm_level(alarm_id)

 handle_event(arg, state)

 Registers a new alarm rule at runtime, registering rules with application config is preferred over this.

 managed_alarm_ids(timeout)

 remove_managed_alarm(alarm_id)

 set_alarm_level(alarm_id, level)

 Functions

 add_managed_alarm(alarm_id, compiled_rules)

 @spec add_managed_alarm(Alarmist.alarm_id(), Alarmist.compiled_condition()) :: :ok

 clear_alarm_level(alarm_id)

 @spec clear_alarm_level(Alarmist.alarm_id()) :: :ok

 handle_event(arg, state)

Registers a new alarm rule at runtime, registering rules with application config is preferred over this.

 managed_alarm_ids(timeout)

 @spec managed_alarm_ids(timeout()) :: [Alarmist.alarm_id()]

 remove_managed_alarm(alarm_id)

 @spec remove_managed_alarm(Alarmist.alarm_id()) :: :ok

 set_alarm_level(alarm_id, level)

 @spec set_alarm_level(Alarmist.alarm_id(), Logger.level()) :: :ok

Alarmist.Ops

Alarm operations for use with alarm_if

 Summary

 Types

 engine()

 Functions

 copy(engine, list)

 Replicate an alarm status

 debounce(engine, list)

 Set an alarm when the input has been set for a specified duration

 hold(engine, list)

 Keep an alarm set for a guaranteed amount of time

 intensity(engine, list)

 Sets an alarm when the input alarm has been set and cleared too many times

 logical_and(engine, list)

 Set an alarm when all of the input alarms are set

 logical_not(engine, list)

 Set an alarm when the input alarm is cleared

 logical_or(engine, list)

 Set an alarm when one or more input alarms get set

 on_time(engine, list)

 Sets an alarm when the input has been set for too long in a given period

 sustain_window(engine, list)

 Sets an alarm when the input has been set for a minimum duration in a window

 unknown_as_set(engine, list)

 Return an alarm as set if it's unknown

 Types

 engine()

 @opaque engine()

 Functions

 copy(engine, list)

 @spec copy(engine(), [Alarmist.alarm_id()]) :: engine()

Replicate an alarm status
This is useful for aliasing alarm names. For example, if one library sets and
clears an alarm ID that's in its namespace, but another library wants to
listen on changes to an alarm ID in its namespace, a copy rule can glue them
together.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 OriginalAlarm
 end
end

 debounce(engine, list)

 @spec debounce(engine(), [Alarmist.alarm_id(), ...]) :: engine()

Set an alarm when the input has been set for a specified duration
This rule removes transient alarms from triggering remediation unnecessarily.
This is useful when remediation is expensive or service impacting and the
input alarm is somewhat glitchy.
Alarmist already provides some debouncing since alarms that get set and
cleared in one alarm processing pass are ignored already. This is unreliable,
though, and a debounce rule establishes a duration.
An example of when debouncing is useful is to delay remediation of higher
level alarms like being disconnected from a backend server. There are many
reasons that a TCP connection could be interrupted and client code probably
has some retry logic in it already to reestablish the connection. In this
case, it might be good to delay switching to an offline mode for a little bit
in the hopes that the problem will naturally go away.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 debounce(Alarm1, 1_000)
 end
end

 hold(engine, list)

 @spec hold(engine(), [Alarmist.alarm_id(), ...]) :: engine()

Keep an alarm set for a guaranteed amount of time
This sets an alarm for at least timeout milliseconds after it is set. Each
time the alarm is set, the timer is restarted.
Hold is useful for types of remediation that are time based. I.e., handling
an alarm means turning something off for a while since turning that feature
back on when the alarm gets cleared would likely just result in the alarm
being set again. Managing the timeout period via alarms rather than
programmatically lets you manually clear the alarm if you'd like that feature
enabled again immediately like if you're debugging.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 hold(Alarm1, 1_000)
 end
end

 intensity(engine, list)

 @spec intensity(engine(), [Alarmist.alarm_id(), ...]) :: engine()

Sets an alarm when the input alarm has been set and cleared too many times
This type of rule catches flapping alarms where it's desirable to take some
kind of remediation when they trigger too many times in a row. Intensity is
measured as count set/clears in period milliseconds. This is the same
as supervision restart intensity thresholds.
An example of an intensity-based alarm is to handle the case when multiple
network connections are available, but one that should be good is flakey.
This happens if a device has both a cellular and a WiFi connection. Normally
the WiFi connection is preferred, but if it keeps going up and down, it may
be desirable to raise an alarm. That alarm could disable WiFi for a while.
Combine this with hold/2 to manage the duration that WiFi is off.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 intensity(Alarm1, 3, 60_000)
 end
end

 logical_and(engine, list)

 @spec logical_and(engine(), [Alarmist.alarm_id()]) :: engine()

Set an alarm when all of the input alarms are set
This is useful when remediation is only useful when a lot of things go wrong.
For example, if a device has more than one way of accomplishing a task, there
could be a specific remediation when one way stops working. However, if every
way is broken, the device could trigger a more significant remediation.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 Alarm1 and Alarm2
 end
end

 logical_not(engine, list)

 @spec logical_not(engine(), [Alarmist.alarm_id()]) :: engine()

Set an alarm when the input alarm is cleared
This is useful for "proof-of-life" alarms where the presence of an alarm is a
good thing.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 not OriginalAlarm
 end
end

 logical_or(engine, list)

 @spec logical_or(engine(), [Alarmist.alarm_id()]) :: engine()

Set an alarm when one or more input alarms get set
This is useful for triggering a generic remediation. An example of this for
setting an alarm that indicates that the device is "unhealthy" and needs to
reboot. There are usually many disastrous alarms that when raised really have
no great remediation other than reboot. This allows a handler to register for
a combined alarm so that it's decoupled from the alarms that trigger it.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 Alarm1 or Alarm2
 end
end

 on_time(engine, list)

 @spec on_time(engine(), [Alarmist.alarm_id(), ...]) :: engine()

Sets an alarm when the input has been set for too long in a given period
This records an alarms status over a period of time and accumulates the
total duration that the alarm has been set. If that duration exceeds on_time,
then the output alarm is set.
This is useful in situations where you may want to use debounce/2, but where
the input is flaky enough that it could bounce around and not trigger the
alarm. Using intensity/3 might help in this situation, but coming up with
a total time for on_time/3 is more intuitive.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 on_time(Alarm1, 30_000, 60_000)
 end
end

 sustain_window(engine, list)

 @spec sustain_window(engine(), [Alarmist.alarm_id(), ...]) :: engine()

Sets an alarm when the input has been set for a minimum duration in a window
This only looks for one occurrence of the alarm being set for on_time
duration in a time period. If that exists, then the output is set.
This is useful for "good" alarms where being set is the desired state. The
alarm may later be inverted to become a more typical alarm. For this case,
the system is viewed as functioning good enough if the input alarm is on for
a long enough period of time. For example, this could be a connection to a
control server where being connected long enough in a time period is good
enough for remotely fixing the device.
Compare this with debounce/2 followed by hold/2 which can implement
similar behavior with appropriate parameters. sustain_window/3 conveys
intent better and perhaps is easier to understand.
Example:
defmodule RemotelyFixableAlarm do
 use Alarmist.Alarm

 alarm_if do
 sustain_window(ConnectedToServer, 30_000, 60_000)
 end
end

 unknown_as_set(engine, list)

 @spec unknown_as_set(engine(), [Alarmist.alarm_id()]) :: engine()

Return an alarm as set if it's unknown
All Alarmist operations except this one treat unknown alarms as cleared. Use
this to treat unknown alarms as set. This is useful for detecting initialization
failures where the code that should be setting or clearing the alarm doesn't
run.
Example:
defmodule NewAlarm do
 use Alarmist.Alarm

 alarm_if do
 unknown_as_set(OriginalAlarm)
 end
end

Alarmist.RemedyWorker

Remedy callback runner
This module handles the common concerns with running the code that
fixes alarms. Users don't call this module directly, but how it
works can be useful. Callbacks should be registered in a module
that has use Alarmist.Alarm or by calling Alarmist.add_remedy/2.
You can think of this module as a supervised GenServer that listens
for an Alarm ID and runs a callback function when it's set. It has
a few more features, though:
	If the alarm toggles back and forth while a callback is running, the
events don't queue. The callback is run to completion.
	A timer can be set on the callback to kill the process if it hangs.
	If the alarm persists, the callback can be called again after a
configurable retry timeout.

One would hope to not need any of these features. Alarms usually don't
happen under normal operation, though, so some additional bulletproofing
can be nice.
The following options control the handling:
	:retry_timeout — time to wait for the alarm to be cleared before calling the callback again (default: :infinity)
	:callback_timeout — time to wait for the callback to run (default: 60 seconds)

Since the :retry_timeout defaults to :infinity, the callback is only called when
the alarm gets set or if the RemedyWorker gets restarted.
State Machine Diagram
stateDiagram-v2
 [*] --> clear : initial state

 clear --> running : alarm set

 running --> finishing_run : alarm cleared
 running --> waiting_to_retry : callback completes or times out

 waiting_to_retry --> running : retry delay timer expires
 waiting_to_retry --> clear : alarm cleared

 finishing_run --> clear : callback completes or timeouts
 finishing_run --> running : alarm set

 Summary

 Functions

 start_link(opts)

 Start the remedy worker

 stop(alarm_id)

 Stop a worker

 Functions

 start_link(opts)

 @spec start_link(Keyword.t()) :: GenServer.on_start()

Start the remedy worker
Options:
	:alarm_id — Alarm ID that the callback remedies (required)
	:task_supervisor — name or pid of Task.Supervisor
	:remedy — see Alarmist.Alarm.__using__/1

 stop(alarm_id)

 @spec stop(Alarmist.alarm_id()) :: :ok | {:error, :not_found}

Stop a worker
If the worker is in the process of calling a callback, it will kill the callback process
too.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

