

 Alkali

 v0.2.0

 Table of contents

 	Alkali

 	
 Modules

 	Alkali

 	Alkali.Application

 	Alkali.Application.Behaviours.BuildCacheBehaviour

 	Alkali.Application.Behaviours.CollectionRendererBehaviour

 	Alkali.Application.Behaviours.ConfigLoaderBehaviour

 	Alkali.Application.Behaviours.CryptoServiceBehaviour

 	Alkali.Application.Behaviours.FileSystemBehaviour

 	Alkali.Application.Behaviours.FrontmatterParserBehaviour

 	Alkali.Application.Behaviours.LayoutResolverBehaviour

 	Alkali.Application.Behaviours.MarkdownParserBehaviour

 	Alkali.Application.Behaviours.RssRendererBehaviour

 	Alkali.Application.Helpers.Paginate

 	Alkali.Application.UseCases.BuildSite

 	Alkali.Application.UseCases.CleanOutput

 	Alkali.Application.UseCases.CreateNewPost

 	Alkali.Application.UseCases.GenerateCollections

 	Alkali.Application.UseCases.GenerateRssFeed

 	Alkali.Application.UseCases.ParseContent

 	Alkali.Application.UseCases.ProcessAssets

 	Alkali.Application.UseCases.ScaffoldNewSite

 	Alkali.Domain

 	Alkali.Domain.Entities.Asset

 	Alkali.Domain.Entities.Collection

 	Alkali.Domain.Entities.Page

 	Alkali.Domain.Entities.Site

 	Alkali.Domain.Policies.FrontmatterPolicy

 	Alkali.Domain.Policies.SlugPolicy

 	Alkali.Domain.Policies.UrlPolicy

 	Alkali.Infrastructure

 	Alkali.Infrastructure.BuildCache

 	Alkali.Infrastructure.ConfigLoader

 	Alkali.Infrastructure.CryptoService

 	Alkali.Infrastructure.FileSystem

 	Alkali.Infrastructure.LayoutResolver

 	Alkali.Infrastructure.Parsers.FrontmatterParser

 	Alkali.Infrastructure.Parsers.MarkdownParser

 	Alkali.Infrastructure.Renderers.CollectionRenderer

 	Alkali.Infrastructure.Renderers.RssRenderer

 	Alkali.Infrastructure.Renderers.TemplateRenderer

 	
 Mix Tasks

 	mix alkali.build

 	mix alkali.clean

 	mix alkali.new

 	mix alkali.new.post

 	mix alkali.post

Alkali

Public API for Static Site Generator.
This module provides high-level functions for working with the static site generator.
It delegates to the application layer use cases for most operations.
Architecture Boundaries
This application follows Clean Architecture with the following layers:
	Domain (Alkali.Domain) - Entities and policies, no dependencies
	Application (Alkali.Application) - Use cases and behaviours, depends on domain
	Infrastructure (Alkali.Infrastructure) - External concerns, implements behaviours
	Interface (Mix.Tasks.Alkali.*) - CLI, depends on public API only

 Summary

 Functions

 build_site(site_path, opts \\ [])

 Builds the complete static site.

 clean_output(site_path, opts \\ [])

 Cleans the output directory.

 generate_collections(pages, opts \\ [])

 Generates collections from pages.

 hello()

 Hello world function for testing.

 new_post(title, opts \\ [])

 Creates a new post.

 new_site(site_path, opts \\ [])

 Creates a new static site project.

 parse_content(path, opts \\ [])

 Parses content files.

 process_assets(assets, opts \\ [])

 Processes assets.

 Functions

 build_site(site_path, opts \\ [])

Builds the complete static site.
See Alkali.Application.UseCases.BuildSite.execute/2 for options.

 clean_output(site_path, opts \\ [])

Cleans the output directory.
See Alkali.Application.UseCases.CleanOutput.execute/2 for options.

 generate_collections(pages, opts \\ [])

Generates collections from pages.
See Alkali.Application.UseCases.GenerateCollections.execute/2 for options.

 hello()

Hello world function for testing.
Examples
iex> Alkali.hello()
:world

 new_post(title, opts \\ [])

Creates a new post.
See Alkali.Application.UseCases.CreateNewPost.execute/2 for options.

 new_site(site_path, opts \\ [])

Creates a new static site project.
See Alkali.Application.UseCases.ScaffoldNewSite.execute/2 for options.

 parse_content(path, opts \\ [])

Parses content files.
See Alkali.Application.UseCases.ParseContent.execute/2 for options.

 process_assets(assets, opts \\ [])

Processes assets.
See Alkali.Application.UseCases.ProcessAssets.execute/2 for options.

Alkali.Application

Application layer boundary for the Alkali static site generator.
This module serves dual purposes:
	OTP Application supervision tree
	Boundary definition for the application layer

Contains orchestration logic that coordinates domain and infrastructure:
Behaviours (Interfaces for Infrastructure)
	Alkali.Application.Behaviours.BuildCacheBehaviour - Build cache operations
	Alkali.Application.Behaviours.ConfigLoaderBehaviour - Configuration loading
	Alkali.Application.Behaviours.FileSystemBehaviour - File system operations
	Alkali.Application.Behaviours.LayoutResolverBehaviour - Layout resolution

Helpers
	Alkali.Application.Helpers.Paginate - Pagination utilities

Use Cases
	Alkali.Application.UseCases.BuildSite - Full site build orchestration
	Alkali.Application.UseCases.CleanOutput - Output directory cleanup
	Alkali.Application.UseCases.CreateNewPost - New post creation
	Alkali.Application.UseCases.GenerateCollections - Collection generation
	Alkali.Application.UseCases.GenerateRssFeed - RSS feed generation
	Alkali.Application.UseCases.ParseContent - Content file parsing
	Alkali.Application.UseCases.ProcessAssets - Asset processing
	Alkali.Application.UseCases.ScaffoldNewSite - New site scaffolding

Dependency Rule
The Application layer may only depend on:
	Domain layer (same context)

It cannot import:
	Infrastructure layer (repos, file system, parsers)
	Other contexts directly (use dependency injection)

Alkali.Application.Behaviours.BuildCacheBehaviour behaviour

Behaviour defining the build cache interface.
This behaviour abstracts build caching operations for incremental builds,
allowing the application layer to depend on abstractions rather than
concrete infrastructure implementations.
Usage
Infrastructure implementations should implement this behaviour:
defmodule Alkali.Infrastructure.BuildCache do
 @behaviour Alkali.Application.Behaviours.BuildCacheBehaviour

 @impl true
 def load(site_path), do: # implementation
 # ... other implementations
end
Use cases should accept the implementation via options:
def execute(site_path, opts \\ []) do
 build_cache = Keyword.get(opts, :build_cache, Alkali.Infrastructure.BuildCache)
 cache = build_cache.load(site_path)
end

 Summary

 Types

 cache()

 file_info()

 Callbacks

 file_changed?(t, cache, keyword)

 Checks if a file has been modified since the last build.

 get_file_info(t, keyword)

 Gets the modification time and size of a file.

 load(t, keyword)

 Loads the build cache from disk.

 save(t, cache, keyword)

 Saves the build cache to disk.

 update_cache(cache, list, keyword)

 Updates the cache with current file info (mtime and size).

 Types

 cache()

 @type cache() :: map()

 file_info()

 @type file_info() :: {integer(), integer()}

 Callbacks

 file_changed?(t, cache, keyword)

 @callback file_changed?(String.t(), cache(), keyword()) :: boolean()

Checks if a file has been modified since the last build.
Compares both modification time and file size for better change detection
within the same second.
Returns true if the file has changed or is new, false otherwise.
Options
	:file_system - Module for file operations (default: File)

 get_file_info(t, keyword)

 @callback get_file_info(
 String.t(),
 keyword()
) :: file_info() | nil

Gets the modification time and size of a file.
Returns a tuple of {mtime, size} for change detection,
or nil if the file doesn't exist.
Options
	:file_system - Module for file operations (default: File)

 load(t, keyword)

 @callback load(
 String.t(),
 keyword()
) :: cache()

Loads the build cache from disk.
Returns a map of file paths to their last modification info {mtime, size}.
Returns an empty map if the cache doesn't exist or is invalid.
Options
	:file_system - Module for file operations (default: File)

 save(t, cache, keyword)

 @callback save(String.t(), cache(), keyword()) :: :ok | {:error, term()}

Saves the build cache to disk.
Returns :ok on success or {:error, term} on failure.
Options
	:file_system - Module for file operations (default: File)

 update_cache(cache, list, keyword)

 @callback update_cache(cache(), [String.t()], keyword()) :: cache()

Updates the cache with current file info (mtime and size).
Returns the updated cache map.
Options
	:file_system - Module for file operations (default: File)

Alkali.Application.Behaviours.CollectionRendererBehaviour behaviour

Behaviour for collection page rendering operations.
Defines the contract for renderers that generate HTML for collection
pages including post lists, pagination controls, and collection metadata.

 Summary

 Callbacks

 render_collection_content(map, arg2, keyword)

 Renders complete collection content with metadata.

 Callbacks

 render_collection_content(map, arg2, keyword)

 @callback render_collection_content(map(), map() | nil, keyword()) ::
 {String.t(), String.t()}

Renders complete collection content with metadata.
Parameters
	collection - Collection struct with type, name, and pages
	pagination - Pagination struct (or nil for non-paginated)
	opts - Rendering options (reserved for future use)

Returns
A tuple of {title, content} where title is the page title
and content is the HTML string.

Alkali.Application.Behaviours.ConfigLoaderBehaviour behaviour

Behaviour defining the configuration loader interface.
This behaviour abstracts configuration loading operations, allowing the
application layer to depend on abstractions rather than concrete
infrastructure implementations.
Usage
Infrastructure implementations should implement this behaviour:
defmodule Alkali.Infrastructure.ConfigLoader do
 @behaviour Alkali.Application.Behaviours.ConfigLoaderBehaviour

 @impl true
 def load(site_path), do: # implementation
end
Use cases should accept the implementation via options:
def execute(site_path, opts \\ []) do
 config_loader = Keyword.get(opts, :config_loader, Alkali.Infrastructure.ConfigLoader)
 config_loader.load(site_path)
end

 Summary

 Types

 config()

 Callbacks

 load(t, keyword)

 Loads site configuration from the config file.

 Types

 config()

 @type config() :: map()

 Callbacks

 load(t, keyword)

 @callback load(
 String.t(),
 keyword()
) :: {:ok, config()} | {:error, String.t()}

Loads site configuration from the config file.
Parameters
	site_path - Path to the site directory containing config/alkali.exs
	opts - Optional keyword list with:	:file_system - Module for file operations (default: File)

Returns
	{:ok, map()} with configuration on success
	{:error, String.t()} on failure

Alkali.Application.Behaviours.CryptoServiceBehaviour behaviour

Behaviour for cryptographic operations.
Defines the contract for services that provide cryptographic utilities
like hashing, keeping these concerns isolated from the domain layer.

 Summary

 Callbacks

 sha256_fingerprint(binary)

 Calculates SHA256 fingerprint from content.

 Callbacks

 sha256_fingerprint(binary)

 @callback sha256_fingerprint(binary()) :: String.t()

Calculates SHA256 fingerprint from content.
Returns a 64-character hexadecimal string (lowercase).
Parameters
	content - Binary content to hash

Returns
A 64-character lowercase hex string representing the SHA256 hash.

Alkali.Application.Behaviours.FileSystemBehaviour behaviour

Behaviour defining the file system interface.
This behaviour abstracts file system operations, allowing the application layer
to depend on abstractions rather than concrete infrastructure implementations.
This follows the Dependency Inversion Principle of Clean Architecture.
Usage
Infrastructure implementations should implement this behaviour:
defmodule Alkali.Infrastructure.FileSystem do
 @behaviour Alkali.Application.Behaviours.FileSystemBehaviour

 @impl true
 def read(path), do: File.read(path)
 # ... other implementations
end
Use cases should accept the implementation via options:
def execute(path, opts \\ []) do
 file_system = Keyword.get(opts, :file_system, Alkali.Infrastructure.FileSystem)
 file_system.read(path)
end

 Summary

 Types

 path()

 posix_error()

 Callbacks

 dir?(path)

 Checks if a path is a directory.

 exists?(path)

 Checks if a path exists.

 load_markdown_files(path)

 Loads markdown content files from a directory.

 ls(path)

 Lists files in a directory.

 mkdir_p(path)

 Creates a directory and all parent directories.

 mkdir_p!(path)

 Creates a directory and all parents, raising on error.

 mkdir_p_with_path(path)

 Creates a directory and returns the path on success.

 read(path)

 Reads content from a file.

 regular?(path)

 Checks if a path is a regular file.

 rm_rf(path)

 Removes a file or directory recursively.

 stat(path)

 Gets file stats.

 stat!(path)

 Gets file stats, raising on error.

 wildcard(path)

 Finds all files matching a glob pattern.

 write(path, iodata)

 Writes content to a file.

 write_with_path(path, iodata)

 Writes content to a file and returns the path on success.

 Types

 path()

 @type path() :: Path.t()

 posix_error()

 @type posix_error() :: File.posix()

 Callbacks

 dir?(path)

 @callback dir?(path()) :: boolean()

Checks if a path is a directory.
Returns true if the path is a directory, false otherwise.

 exists?(path)

 @callback exists?(path()) :: boolean()

Checks if a path exists.
Returns true if the path exists, false otherwise.

 load_markdown_files(path)

 @callback load_markdown_files(path()) ::
 {:ok, [{path(), binary(), NaiveDateTime.t()}]} | {:error, String.t()}

Loads markdown content files from a directory.
Returns a list of tuples containing file path, content, and modification time.
Returns {:ok, [{path, content, mtime}]} on success or {:error, reason} on failure.

 ls(path)

 @callback ls(path()) :: {:ok, [path()]} | {:error, posix_error()}

Lists files in a directory.
Returns {:ok, [path]} on success or {:error, posix} on failure.

 mkdir_p(path)

 @callback mkdir_p(path()) :: :ok | {:error, posix_error()}

Creates a directory and all parent directories.
Returns :ok on success or {:error, posix} on failure.

 mkdir_p!(path)

 @callback mkdir_p!(path()) :: :ok

Creates a directory and all parents, raising on error.
Returns :ok on success.

 mkdir_p_with_path(path)

 @callback mkdir_p_with_path(path()) :: {:ok, path()} | {:error, posix_error()}

Creates a directory and returns the path on success.
Returns {:ok, path} on success or {:error, posix} on failure.

 read(path)

 @callback read(path()) :: {:ok, binary()} | {:error, posix_error()}

Reads content from a file.
Returns {:ok, binary} on success or {:error, posix} on failure.

 regular?(path)

 @callback regular?(path()) :: boolean()

Checks if a path is a regular file.
Returns true if the path is a regular file, false otherwise.

 rm_rf(path)

 @callback rm_rf(path()) :: :ok | {:error, posix_error()}

Removes a file or directory recursively.
Returns :ok on success or {:error, posix} on failure.

 stat(path)

 @callback stat(path()) :: {:ok, File.Stat.t()} | {:error, posix_error()}

Gets file stats.
Returns {:ok, File.Stat.t()} on success or {:error, posix} on failure.

 stat!(path)

 @callback stat!(path()) :: File.Stat.t()

Gets file stats, raising on error.
Returns File.Stat.t() on success.

 wildcard(path)

 @callback wildcard(path()) :: [path()]

Finds all files matching a glob pattern.
Returns a list of matching paths.

 write(path, iodata)

 @callback write(path(), iodata()) :: :ok | {:error, posix_error()}

Writes content to a file.
Returns :ok on success or {:error, posix} on failure.

 write_with_path(path, iodata)

 @callback write_with_path(path(), iodata()) :: {:ok, path()} | {:error, posix_error()}

Writes content to a file and returns the path on success.
Creates parent directories if they don't exist.
Returns {:ok, path} on success or {:error, posix} on failure.

Alkali.Application.Behaviours.FrontmatterParserBehaviour behaviour

Behaviour for frontmatter parsing operations.
Defines the contract for parsers that extract YAML metadata
from markdown files.

 Summary

 Callbacks

 parse(t)

 Extracts frontmatter YAML and content from a markdown file.

 Callbacks

 parse(t)

 @callback parse(String.t()) :: {:ok, {map(), String.t()}} | {:error, String.t()}

Extracts frontmatter YAML and content from a markdown file.
Parameters
	content - The raw file content string

Returns
	{:ok, {frontmatter_map, content_string}} on success
	{:error, reason} on parsing failure

Alkali.Application.Behaviours.LayoutResolverBehaviour behaviour

Behaviour defining the layout resolver interface.
This behaviour abstracts layout resolution and rendering operations,
allowing the application layer to depend on abstractions rather than
concrete infrastructure implementations.
Usage
Infrastructure implementations should implement this behaviour:
defmodule Alkali.Infrastructure.LayoutResolver do
 @behaviour Alkali.Application.Behaviours.LayoutResolverBehaviour

 @impl true
 def resolve_layout(page, config, opts), do: # implementation
 # ... other implementations
end
Use cases should accept the implementation via options:
def execute(page, opts \\ []) do
 layout_resolver = Keyword.get(opts, :layout_resolver, Alkali.Infrastructure.LayoutResolver)
 layout_resolver.resolve_layout(page, config, opts)
end

 Summary

 Callbacks

 extract_folder_from_url(t)

 Extracts the top-level folder name from a URL.

 render_with_layout(map, t, map, keyword)

 Renders a page with its layout template.

 resolve_layout(map, map, keyword)

 Resolves the layout file path for a given page.

 Callbacks

 extract_folder_from_url(t)

 @callback extract_folder_from_url(String.t()) :: String.t()

Extracts the top-level folder name from a URL.
Used for folder-based layout resolution.
Examples
iex> extract_folder_from_url("/posts/2024/my-post")
"posts"

iex> extract_folder_from_url("/about")
"page"

 render_with_layout(map, t, map, keyword)

 @callback render_with_layout(map(), String.t(), map(), keyword()) ::
 {:ok, String.t()} | {:error, String.t()}

Renders a page with its layout template.
Parameters
	page - Page struct/map with content and metadata
	layout_path - Full path to layout file
	config - Site configuration map
	opts - Additional rendering options

Returns
	{:ok, html} - Rendered HTML string
	{:error, reason} - Error message

 resolve_layout(map, map, keyword)

 @callback resolve_layout(map(), map(), keyword()) ::
 {:ok, String.t()} | {:error, String.t()}

Resolves the layout file path for a given page.
Resolution Priority
	If page has layout in frontmatter, use layouts/{layout}.html.heex
	If no layout specified, extract folder from URL and try layouts/{folder}.html.heex
	If folder-based layout doesn't exist, use layouts/default.html.heex
	Return error if resolved layout doesn't exist

Returns
	{:ok, layout_path} on success
	{:error, reason} on failure

Alkali.Application.Behaviours.MarkdownParserBehaviour behaviour

Behaviour for markdown parsing operations.
Defines the contract for parsers that convert markdown
content to HTML.

 Summary

 Callbacks

 parse(t)

 Parses markdown content to HTML.

 Callbacks

 parse(t)

 @callback parse(String.t()) :: String.t()

Parses markdown content to HTML.
Parameters
	markdown - The markdown string to parse

Returns
An HTML string representation of the markdown content.

Alkali.Application.Behaviours.RssRendererBehaviour behaviour

Behaviour for RSS feed rendering operations.
Defines the contract for renderers that generate XML for RSS 2.0 feeds
including feed channel metadata, individual feed items, and XML formatting.

 Summary

 Callbacks

 render_feed(t, t, t, t, list, keyword)

 Renders a complete RSS 2.0 feed as XML.

 Callbacks

 render_feed(t, t, t, t, list, keyword)

 @callback render_feed(String.t(), String.t(), String.t(), String.t(), [map()], keyword()) ::
 String.t()

Renders a complete RSS 2.0 feed as XML.
Parameters
	feed_title - Title of the feed
	feed_description - Description of the feed
	site_url - Base URL of the site
	feed_url - URL of the feed itself
	items - List of page maps to include as items
	opts - Rendering options (reserved for future use)

Returns
An XML string representing the complete RSS feed.

Alkali.Application.Helpers.Paginate

Paginate helper module for splitting collections into pages.
This module provides utilities for paginating lists of items and
generating pagination metadata for navigation.

 Summary

 Types

 page()

 pagination_meta()

 Functions

 build_page_url(page_number, url_template, replacements \\ [])

 Builds URL for a specific page number.

 build_pagination_meta(current_page, total_pages, per_page, total_items, url_template)

 Builds pagination metadata for a specific page.

 calculate_total_pages(total_items, per_page)

 Calculates total number of pages needed for given items and per_page.

 page_file_path(base_path, page_number)

 Generates file path for a paginated page.

 paginate(items, opts \\ [])

 Paginates a list of items into pages.

 Types

 page()

 @type page() :: %{
 items: [any()],
 page_number: pos_integer(),
 pagination: pagination_meta()
}

 pagination_meta()

 @type pagination_meta() :: %{
 current_page: pos_integer(),
 total_pages: pos_integer(),
 per_page: pos_integer(),
 total_items: non_neg_integer(),
 has_prev: boolean(),
 has_next: boolean(),
 prev_url: String.t() | nil,
 next_url: String.t() | nil,
 page_numbers: [pos_integer()]
}

 Functions

 build_page_url(page_number, url_template, replacements \\ [])

 @spec build_page_url(pos_integer(), String.t(), keyword()) :: String.t() | nil

Builds URL for a specific page number.
Returns nil for page 1 (index page), otherwise replaces :page placeholder.
Examples
iex> Paginate.build_page_url(1, "/posts/page/:page")
nil
iex> Paginate.build_page_url(2, "/posts/page/:page")
"/posts/page/2"
iex> Paginate.build_page_url(5, "/categories/:category/page/:page", category: "elixir")
"/categories/elixir/page/5"

 build_pagination_meta(current_page, total_pages, per_page, total_items, url_template)

 @spec build_pagination_meta(
 pos_integer(),
 pos_integer(),
 pos_integer(),
 non_neg_integer(),
 String.t()
) :: pagination_meta()

Builds pagination metadata for a specific page.
Examples
iex> Paginate.build_pagination_meta(1, 3, 10, 25, "/posts/page/:page")
%{
 current_page: 1,
 total_pages: 3,
 per_page: 10,
 total_items: 25,
 has_prev: false,
 has_next: true,
 prev_url: nil,
 next_url: "/posts/page/2",
 page_numbers: [1, 2, 3]
}

 calculate_total_pages(total_items, per_page)

 @spec calculate_total_pages(non_neg_integer(), pos_integer()) :: pos_integer()

Calculates total number of pages needed for given items and per_page.
Examples
iex> Paginate.calculate_total_pages(100, 10)
10
iex> Paginate.calculate_total_pages(95, 10)
10
iex> Paginate.calculate_total_pages(0, 10)
1

 page_file_path(base_path, page_number)

 @spec page_file_path(String.t(), pos_integer()) :: String.t()

Generates file path for a paginated page.
Examples
iex> Paginate.page_file_path("/posts", 1)
"/posts/index.html"
iex> Paginate.page_file_path("/posts", 2)
"/posts/page/2.html"
iex> Paginate.page_file_path("/categories/elixir", 3)
"/categories/elixir/page/3.html"

 paginate(items, opts \\ [])

 @spec paginate(
 [any()],
 keyword()
) :: [page()]

Paginates a list of items into pages.
Options
	:per_page - Number of items per page (default: 10)
	:url_template - Template for generating page URLs (default: "/page/:page")	:page placeholder will be replaced with page number
	First page (1) returns nil for URL (uses index page)

Returns
List of page maps with items and pagination metadata.
Examples
iex> items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
iex> pages = Paginate.paginate(items, per_page: 5, url_template: "/posts/page/:page")
iex> length(pages)
3
iex> hd(pages).items
[1, 2, 3, 4, 5]
iex> hd(pages).pagination.current_page
1

Alkali.Application.UseCases.BuildSite

BuildSite use case orchestrates the full static site build process.
This use case depends on abstractions (behaviours) rather than concrete
infrastructure implementations, following Clean Architecture principles.
Infrastructure modules are injected via the opts keyword list.

 Summary

 Functions

 execute(site_path, opts \\ [])

 Orchestrates the complete build process for a static site.

 Functions

 execute(site_path, opts \\ [])

 @spec execute(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, String.t()}

Orchestrates the complete build process for a static site.
Steps
	Load site configuration
	Parse content files
	Generate collections
	Process assets
	Render pages
	Write output files

Options
	:config_loader - Function to load site configuration
	:content_parser - Function to parse content files
	:collections_generator - Function to generate collections
	:assets_processor - Function to process assets
	:template_renderer - Function to render templates
	:file_writer - Function to write HTML files
	:asset_writer - Function to write asset files
	:draft - Include draft posts (default: false)
	:verbose - Print progress messages (default: false)

Returns
	{:ok, map()} with build summary on success
	{:error, String.t()} on failure

Alkali.Application.UseCases.CleanOutput

CleanOutput use case handles deletion of the build output directory.
This use case orchestrates file system operations to clean up
the output directory before or after builds.
Dependencies are injected via the opts keyword list.

 Summary

 Functions

 execute(output_path \\ "_site", opts \\ [])

 Executes the clean output use case.

 Functions

 execute(output_path \\ "_site", opts \\ [])

 @spec execute(
 String.t() | keyword(),
 keyword()
) :: :ok | {:error, term()}

Executes the clean output use case.
Options
	:file_system - Function for file system operations (defaults to File module)

Examples
iex> CleanOutput.execute("_site", file_system: mock_fs)
:ok

iex> CleanOutput.execute() # Uses default "_site"
:ok

Alkali.Application.UseCases.CreateNewPost

CreateNewPost use case creates a new blog post with frontmatter template.

 Summary

 Functions

 execute(title, opts \\ [])

 Creates a new blog post file.

 Functions

 execute(title, opts \\ [])

 @spec execute(
 String.t(),
 keyword()
) :: {:ok, %{file_path: String.t()}} | {:error, String.t()}

Creates a new blog post file.
Options
	:site_path - Site root directory (defaults to current directory)
	:date - Post date (defaults to today)
	:file_system - Module implementing file operations (defaults to Infrastructure.FileSystem)
	:file_writer - Function for writing files
	:file_checker - Function to check if file exists

Returns
	{:ok, %{file_path: String.t()}} on success
	{:error, message} on failure

Alkali.Application.UseCases.GenerateCollections

GenerateCollections use case creates collections of pages grouped by tags and categories.
This use case organizes pages into collections for rendering navigation, archives,
and collection pages (e.g., all posts with a specific tag or in a category).

 Summary

 Functions

 execute(pages, opts \\ [])

 Generates collections from a list of pages.

 Functions

 execute(pages, opts \\ [])

 @spec execute(
 [Alkali.Domain.Entities.Page.t()],
 keyword()
) :: {:ok, [Alkali.Domain.Entities.Collection.t()]} | {:error, String.t()}

Generates collections from a list of pages.
Options
	:include_drafts - Include draft pages in collections (default: false)

Returns
	{:ok, list(Collection.t())} on success
	{:error, String.t()} on failure

Examples
iex> pages = [%Page{title: "Post", tags: ["elixir"], draft: false}]
iex> GenerateCollections.execute(pages)
{:ok, [%Collection{name: "elixir", type: :tag, pages: [%Page{...}]}]}

Alkali.Application.UseCases.GenerateRssFeed

GenerateRssFeed use case creates an RSS feed for blog posts.
This use case generates an RSS 2.0 compliant XML feed that can be used
by feed readers to subscribe to blog updates.
XML generation is delegated to the infrastructure layer (RssRenderer)
following Clean Architecture principles.

 Summary

 Functions

 execute(pages, opts \\ [])

 Generates an RSS feed from a list of pages.

 Functions

 execute(pages, opts \\ [])

 @spec execute(
 [Alkali.Domain.Entities.Page.t()],
 keyword()
) :: {:ok, String.t()} | {:error, String.t()}

Generates an RSS feed from a list of pages.
Options
	:feed_title - Title of the feed (default: "Blog")
	:feed_description - Description of the feed (default: "Latest posts")
	:site_url - Base URL of the site (required)
	:feed_url - URL of the feed itself (default: site_url/feed.xml)
	:max_items - Maximum number of items to include (default: 20)
	:rss_renderer - Module for rendering RSS XML (default: RssRenderer)

Returns
	{:ok, xml_string} on success
	{:error, String.t()} on failure

Examples
iex> pages = [%Page{title: "Post", url: "/post.html", date: ~D[2024-01-01]}]
iex> GenerateRssFeed.execute(pages, site_url: "https://example.com")
{:ok, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>..."}

Alkali.Application.UseCases.ParseContent

ParseContent use case parses markdown files and creates Page entities.

 Summary

 Functions

 execute(content_path, opts \\ [])

 Parses content files and generates Page entities.

 Functions

 execute(content_path, opts \\ [])

 @spec execute(
 String.t(),
 keyword()
) ::
 {:ok, %{pages: [Alkali.Domain.Entities.Page.t()], stats: map()}}
 | {:error, String.t()}

Parses content files and generates Page entities.
Options
	:content_loader - Function to load markdown files
	:frontmatter_parser - Function to parse frontmatter
	:markdown_parser - Function to render markdown to HTML

Returns
	{:ok, %{pages: list(Page.t()), stats: map()}} on success
	{:error, message} on validation failure or duplicate slugs

Alkali.Application.UseCases.ProcessAssets

ProcessAssets use case processes static assets (CSS, JS, binary files),
minifies them, generates fingerprints, and tracks mappings.

 Summary

 Functions

 execute(assets, opts \\ [])

 Processes a list of assets by minifying, fingerprinting, and tracking mappings.

 Functions

 execute(assets, opts \\ [])

 @spec execute(
 [map()],
 keyword()
) ::
 {:ok, %{assets: [Alkali.Domain.Entities.Asset.t()], mappings: map()}}
 | {:error, String.t()}

Processes a list of assets by minifying, fingerprinting, and tracking mappings.
Options
	:file_reader - Function to read file contents (for testing)
	:crypto_service - Module for cryptographic operations (for testing)

Returns
	{:ok, %{assets: list(Asset.t()), mappings: map()}} on success
	{:error, String.t()} on failure

Alkali.Application.UseCases.ScaffoldNewSite

ScaffoldNewSite use case creates a new static site with example content.
This use case generates the complete directory structure and example files
needed to start a new static site.

 Summary

 Functions

 execute(site_name, opts \\ [])

 Creates a new static site with directory structure and example files.

 Functions

 execute(site_name, opts \\ [])

 @spec execute(
 String.t(),
 keyword()
) ::
 {:ok, %{created_dirs: list(), created_files: list()}} | {:error, String.t()}

Creates a new static site with directory structure and example files.
Options
	:target_path - Where to create the site (defaults to current directory)
	:dir_creator - Function for creating directories (for testing)
	:file_writer - Function for writing files (for testing)

Returns
	{:ok, %{created_dirs: list(), created_files: list()}} on success
	{:error, message} if directory already exists or creation fails

Examples
iex> ScaffoldNewSite.execute("my_blog", target_path: "/sites")
{:ok, %{created_dirs: [...], created_files: [...]}}

Alkali.Domain

Domain layer boundary for the Alkali static site generator.
Contains pure business logic with NO external dependencies:
Entities (Data Structures)
	Entities.Asset - Asset file representation
	Entities.Collection - Collection of pages (e.g., posts, tags)
	Entities.Page - Content page representation
	Entities.Site - Site configuration and metadata

Policies (Business Rules)
	Policies.FrontmatterPolicy - Frontmatter validation rules
	Policies.SlugPolicy - URL slug generation rules
	Policies.UrlPolicy - URL construction rules

Dependency Rule
The Domain layer has NO dependencies. It cannot import:
	Application layer (use cases, services)
	Infrastructure layer (parsers, renderers, file system)
	External libraries (File, IO, etc.)
	Other contexts

Alkali.Domain.Entities.Asset

Asset entity represents a static asset file (CSS, JS, or binary).
Assets can be fingerprinted for cache busting.

 Summary

 Types

 asset_type()

 t()

 Functions

 new(attrs)

 Creates a new Asset.

 with_fingerprint(asset, fingerprint)

 Adds fingerprint to asset and updates output path.

 Types

 asset_type()

 @type asset_type() :: :css | :js | :binary

 t()

 @type t() :: %Alkali.Domain.Entities.Asset{
 content: binary() | nil,
 fingerprint: String.t() | nil,
 original_path: String.t(),
 output_path: String.t(),
 type: asset_type()
}

 Functions

 new(attrs)

 @spec new(map()) :: t()

Creates a new Asset.
Examples
iex> Asset.new(%{original_path: "static/css/app.css", output_path: "_site/css/app.css", type: :css})
%Asset{original_path: "static/css/app.css", output_path: "_site/css/app.css", type: :css}

 with_fingerprint(asset, fingerprint)

 @spec with_fingerprint(t(), String.t()) :: t()

Adds fingerprint to asset and updates output path.
Inserts fingerprint before file extension in output path.
Examples
iex> asset = %Asset{output_path: "_site/css/app.css"}
iex> Asset.with_fingerprint(asset, "abc123")
%Asset{output_path: "_site/css/app-abc123.css", fingerprint: "abc123"}

Alkali.Domain.Entities.Collection

Collection entity represents a group of pages (by tag or category).
Collections are used to organize content and generate collection pages
(e.g., all posts tagged "elixir" or in category "tutorials").

 Summary

 Types

 collection_type()

 t()

 Functions

 add_page(collection, page)

 Adds a page to the collection.

 new(name, type)

 Creates a new Collection.

 sort_by_date(collection)

 Sorts pages by date descending (newest first).

 Types

 collection_type()

 @type collection_type() :: :tag | :category | :posts | :pages

 t()

 @type t() :: %Alkali.Domain.Entities.Collection{
 name: String.t(),
 pages: [Alkali.Domain.Entities.Page.t()],
 type: collection_type()
}

 Functions

 add_page(collection, page)

 @spec add_page(t(), Alkali.Domain.Entities.Page.t()) :: t()

Adds a page to the collection.
Examples
iex> collection = Collection.new("elixir", :tag)
iex> page = %Page{title: "My Post"}
iex> Collection.add_page(collection, page)
%Collection{pages: [%Page{title: "My Post"}]}

 new(name, type)

 @spec new(String.t(), collection_type()) :: t()

Creates a new Collection.
Examples
iex> Collection.new("elixir", :tag)
%Collection{name: "elixir", type: :tag, pages: []}

 sort_by_date(collection)

 @spec sort_by_date(t()) :: t()

Sorts pages by date descending (newest first).
Pages without dates are sorted to the end.
Examples
iex> collection = %Collection{pages: [old_page, new_page]}
iex> Collection.sort_by_date(collection)
%Collection{pages: [new_page, old_page]}

Alkali.Domain.Entities.Page

Page entity represents a single page or blog post.
This is a pure data structure with no business logic or I/O.
Pages can be created from frontmatter metadata and rendered content.

 Summary

 Types

 t()

 Functions

 from_frontmatter(frontmatter, content)

 Creates a Page struct from frontmatter map and rendered content.

 new(attrs)

 Creates a new Page struct from attributes.

 Types

 t()

 @type t() :: %Alkali.Domain.Entities.Page{
 category: String.t() | nil,
 content: String.t(),
 date: DateTime.t() | nil,
 draft: boolean(),
 file_path: String.t() | nil,
 frontmatter: map(),
 layout: String.t() | nil,
 slug: String.t() | nil,
 tags: [String.t()],
 title: String.t(),
 url: String.t() | nil
}

 Functions

 from_frontmatter(frontmatter, content)

 @spec from_frontmatter(map(), String.t()) :: t()

Creates a Page struct from frontmatter map and rendered content.
Parses frontmatter fields and converts them to appropriate types:
	date: ISO 8601 string -> DateTime
	tags: list of strings (defaults to [])
	draft: boolean (defaults to false)

Examples
iex> frontmatter = %{"title" => "Post", "date" => "2024-01-15T10:30:00Z"}
iex> Page.from_frontmatter(frontmatter, "<p>Content</p>")
%Page{title: "Post", date: ~U[2024-01-15 10:30:00Z], content: "<p>Content</p>"}

 new(attrs)

 @spec new(map()) :: t()

Creates a new Page struct from attributes.
Examples
iex> Page.new(%{title: "My Post", content: "<p>Hello</p>", slug: "my-post", url: "/my-post.html"})
%Page{title: "My Post", content: "<p>Hello</p>", slug: "my-post", url: "/my-post.html"}

Alkali.Domain.Entities.Site

Site entity represents site configuration.
This is a pure data structure containing all site-level configuration
such as title, URL, author, and layout defaults.

 Summary

 Types

 t()

 Functions

 new(attrs)

 Creates a new Site struct from attributes.

 validate(attrs)

 Validates site configuration.

 Types

 t()

 @type t() :: %Alkali.Domain.Entities.Site{
 author: String.t() | nil,
 output_dir: String.t(),
 page_layout: String.t(),
 post_layout: String.t(),
 title: String.t() | nil,
 url: String.t() | nil
}

 Functions

 new(attrs)

 @spec new(map()) :: t()

Creates a new Site struct from attributes.
Provides sensible defaults:
	output_dir: "_site"
	post_layout: "default"
	page_layout: "default"

Examples
iex> Site.new(%{title: "My Blog", url: "https://example.com"})
%Site{title: "My Blog", url: "https://example.com", output_dir: "_site"}

 validate(attrs)

 @spec validate(map()) :: {:ok, t()} | {:error, [String.t()]}

Validates site configuration.
Required fields:
	title: must be present
	url: must be present and valid URL format

Examples
iex> Site.validate(%{title: "Blog", url: "https://example.com"})
{:ok, %Site{title: "Blog", url: "https://example.com"}}

iex> Site.validate(%{})
{:error, ["title is required", "url is required"]}

Alkali.Domain.Policies.FrontmatterPolicy

FrontmatterPolicy defines business rules for validating frontmatter.
Pure function with no I/O or side effects.

 Summary

 Functions

 validate_frontmatter(frontmatter)

 Validates frontmatter fields.

 Functions

 validate_frontmatter(frontmatter)

 @spec validate_frontmatter(map()) :: {:ok, map()} | {:error, [String.t()]}

Validates frontmatter fields.
Required fields:
	title: must be present and non-empty

Optional fields with type validation:
	date: must be valid ISO 8601 format if present
	tags: must be a list if present
	draft: must be boolean if present

Returns {:ok, frontmatter} if valid, {:error, reasons} otherwise.
Examples
iex> FrontmatterPolicy.validate_frontmatter(%{"title" => "My Post"})
{:ok, %{"title" => "My Post"}}

iex> FrontmatterPolicy.validate_frontmatter(%{})
{:error, ["title is required"]}

iex> FrontmatterPolicy.validate_frontmatter(%{"title" => "Post", "tags" => "not-list"})
{:error, ["tags must be a list"]}

Alkali.Domain.Policies.SlugPolicy

SlugPolicy defines business rules for generating URL-safe slugs.
Pure function with no I/O or side effects.

 Summary

 Functions

 generate_slug(text)

 Generates a URL-safe slug from a title or filename.

 Functions

 generate_slug(text)

 @spec generate_slug(String.t()) :: String.t()

Generates a URL-safe slug from a title or filename.
Rules:
	Converts to lowercase
	Replaces spaces with hyphens
	Removes special characters and punctuation
	Handles unicode (converts accented characters)
	Collapses multiple hyphens
	Trims leading/trailing hyphens

Examples
iex> SlugPolicy.generate_slug("My First Post")
"my-first-post"

iex> SlugPolicy.generate_slug("Post: Part 1 (Updated!)")
"post-part-1-updated"

iex> SlugPolicy.generate_slug("Café & Résumé")
"cafe-resume"

Alkali.Domain.Policies.UrlPolicy

UrlPolicy defines business rules for generating URLs from file paths.
Pure function with no I/O or side effects.

 Summary

 Functions

 generate_url(file_path, content_dir)

 Generates a URL from a file path.

 Functions

 generate_url(file_path, content_dir)

 @spec generate_url(String.t(), String.t()) :: String.t()

Generates a URL from a file path.
Rules:
	Removes content directory prefix
	Preserves folder hierarchy
	Slugifies the filename (but preserves folder names)
	Replaces .md extension with .html
	Ensures URL starts with /

Examples
iex> UrlPolicy.generate_url("content/posts/my-post.md", "content")
"/posts/my-post.html"

iex> UrlPolicy.generate_url("content/posts/2024/01/post.md", "content")
"/posts/2024/01/post.html"

iex> UrlPolicy.generate_url("content/posts/My First Blog Post.md", "content")
"/posts/my-first-blog-post.html"

Alkali.Infrastructure

Infrastructure layer boundary for the Alkali static site generator.
Contains implementations that interact with external systems:
Parsers
	Parsers.FrontmatterParser - YAML frontmatter parsing
	Parsers.MarkdownParser - Markdown to HTML conversion

Renderers
	Renderers.CollectionRenderer - Collection page rendering
	Renderers.RssRenderer - RSS feed rendering
	Renderers.TemplateRenderer - EEx template rendering

Services
	BuildCache - Incremental build caching
	ConfigLoader - Site configuration loading
	CryptoService - Cryptographic operations
	FileSystem - File system operations wrapper
	LayoutResolver - Layout file resolution and rendering

Dependency Rule
The Infrastructure layer may depend on:
	Domain layer (for entities and policies)
	Application layer (to implement service behaviours)

It can use external libraries (File, IO, YAML, Markdown, etc.)

Alkali.Infrastructure.BuildCache

Manages build cache for incremental builds.
Tracks file modification times to determine which files need rebuilding.
Implements the Alkali.Application.Behaviours.BuildCacheBehaviour to allow
dependency injection and testability in use cases.
All functions accept an optional opts keyword list with:
	:file_system - Module implementing file operations (defaults to File)

 Summary

 Functions

 file_changed?(file_path, cache, opts \\ [])

 Checks if a file has been modified since the last build.

 get_file_info(file_path, opts \\ [])

 Gets the modification time and size of a file.

 load(site_path, opts \\ [])

 Loads the build cache from disk.

 save(site_path, cache, opts \\ [])

 Saves the build cache to disk.

 update_cache(cache, file_paths, opts \\ [])

 Updates the cache with current file info (mtime and size).

 Functions

 file_changed?(file_path, cache, opts \\ [])

 @spec file_changed?(String.t(), map(), keyword()) :: boolean()

Checks if a file has been modified since the last build.
Compares both modification time and file size for better change detection
within the same second.
Options
	:file_system - Module for file operations (default: File)

 get_file_info(file_path, opts \\ [])

 @spec get_file_info(
 String.t(),
 keyword()
) :: {integer(), integer()} | nil

Gets the modification time and size of a file.
Returns a tuple of {mtime, size} for change detection.
Using both mtime (second precision) and size helps detect changes
that happen within the same second.
Options
	:file_system - Module for file operations (default: File)

 load(site_path, opts \\ [])

 @spec load(
 String.t(),
 keyword()
) :: map()

Loads the build cache from disk.
Returns a map of file paths to their last modification info {mtime, size}.
Options
	:file_system - Module for file operations (default: File)

 save(site_path, cache, opts \\ [])

 @spec save(String.t(), map(), keyword()) :: :ok | {:error, term()}

Saves the build cache to disk.
Options
	:file_system - Module for file operations (default: File)

 update_cache(cache, file_paths, opts \\ [])

 @spec update_cache(map(), [String.t()], keyword()) :: map()

Updates the cache with current file info (mtime and size).
Options
	:file_system - Module for file operations (default: File)

Alkali.Infrastructure.ConfigLoader

Loads site configuration from config/alkali.exs file.
Implements the Alkali.Application.Behaviours.ConfigLoaderBehaviour to allow
dependency injection and testability in use cases.
All functions accept an optional opts keyword list with:
	:file_system - Module implementing file operations (defaults to File)

 Summary

 Functions

 load(site_path, opts \\ [])

 Loads site configuration from the config file.

 Functions

 load(site_path, opts \\ [])

 @spec load(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, String.t()}

Loads site configuration from the config file.
Parameters
	site_path - Path to the site directory containing config/alkali.exs

Options
	:file_system - Module for file operations (default: File)

Returns
	{:ok, map()} with configuration on success
	{:error, String.t()} on failure

Alkali.Infrastructure.CryptoService

Infrastructure service for cryptographic operations.
This module provides cryptographic utilities like hashing,
keeping these concerns isolated from the domain layer.

 Summary

 Functions

 sha256_fingerprint(content)

 Calculates SHA256 fingerprint from content.

 Functions

 sha256_fingerprint(content)

 @spec sha256_fingerprint(binary()) :: String.t()

Calculates SHA256 fingerprint from content.
Returns a 64-character hexadecimal string (lowercase).
Examples
iex> CryptoService.sha256_fingerprint("body { margin: 0; }")
"a1b2c3d4..."

Alkali.Infrastructure.FileSystem

Infrastructure service for file system operations.
This module provides a clean interface for file system operations,
keeping I/O concerns isolated from the application and domain layers.
Implements the Alkali.Application.Behaviours.FileSystemBehaviour to allow
dependency injection and testability in use cases.

 Summary

 Functions

 dir?(path)

 Checks if a path is a directory.

 exists?(path)

 Checks if a path exists.

 load_markdown_files(path)

 Loads markdown content files from a directory.

 ls(path)

 Lists files in a directory.

 mkdir_p(path)

 Creates a directory and all parent directories.

 mkdir_p!(path)

 Creates a directory and all parents, raising on error.

 mkdir_p_with_path(path)

 Creates a directory and returns the path on success.

 read(path)

 Reads content from a file.

 regular?(path)

 Checks if a path is a regular file.

 rm_rf(path)

 Removes a file or directory recursively.

 stat(path)

 Gets file stats.

 stat!(path)

 Gets file stats, raising on error.

 wildcard(pattern)

 Finds all files matching a glob pattern.

 write(path, content)

 Writes content to a file.

 write_with_path(path, content)

 Writes content to a file and returns the path on success.

 Functions

 dir?(path)

 @spec dir?(Path.t()) :: boolean()

Checks if a path is a directory.
Examples
iex> FileSystem.dir?("path/to/dir")
true

 exists?(path)

 @spec exists?(Path.t()) :: boolean()

Checks if a path exists.
Examples
iex> FileSystem.exists?("path/to/file.txt")
true

 load_markdown_files(path)

 @spec load_markdown_files(Path.t()) ::
 {:ok, [{Path.t(), binary(), NaiveDateTime.t()}]} | {:error, String.t()}

Loads markdown content files from a directory.
Returns a list of tuples containing file path, content, and modification time.
Examples
iex> FileSystem.load_markdown_files("content/")
{:ok, [{"content/post.md", "# Title", ~N[2024-01-01 00:00:00]}]}

 ls(path)

 @spec ls(Path.t()) :: {:ok, [Path.t()]} | {:error, File.posix()}

Lists files in a directory.
Examples
iex> FileSystem.ls("path/to/dir")
{:ok, ["file1.txt", "file2.txt"]}

 mkdir_p(path)

 @spec mkdir_p(Path.t()) :: :ok | {:error, File.posix()}

Creates a directory and all parent directories.
Examples
iex> FileSystem.mkdir_p("path/to/dir")
:ok

 mkdir_p!(path)

 @spec mkdir_p!(Path.t()) :: :ok

Creates a directory and all parents, raising on error.
Examples
iex> FileSystem.mkdir_p!("path/to/dir")
:ok

 mkdir_p_with_path(path)

 @spec mkdir_p_with_path(Path.t()) :: {:ok, Path.t()} | {:error, File.posix()}

Creates a directory and returns the path on success.
Examples
iex> FileSystem.mkdir_p_with_path("path/to/dir")
{:ok, "path/to/dir"}

 read(path)

 @spec read(Path.t()) :: {:ok, binary()} | {:error, File.posix()}

Reads content from a file.
Examples
iex> FileSystem.read("path/to/file.txt")
{:ok, "content"}

iex> FileSystem.read("nonexistent.txt")
{:error, :enoent}

 regular?(path)

 @spec regular?(Path.t()) :: boolean()

Checks if a path is a regular file.
Examples
iex> FileSystem.regular?("path/to/file.txt")
true

 rm_rf(path)

 @spec rm_rf(Path.t()) :: :ok | {:error, File.posix()}

Removes a file or directory recursively.
Examples
iex> FileSystem.rm_rf("path/to/dir")
:ok

 stat(path)

 @spec stat(Path.t()) :: {:ok, File.Stat.t()} | {:error, File.posix()}

Gets file stats.
Examples
iex> FileSystem.stat("path/to/file.txt")
{:ok, %File.Stat{}}

 stat!(path)

 @spec stat!(Path.t()) :: File.Stat.t()

Gets file stats, raising on error.
Examples
iex> FileSystem.stat!("path/to/file.txt")
%File.Stat{}

 wildcard(pattern)

 @spec wildcard(Path.t()) :: [Path.t()]

Finds all files matching a glob pattern.
Examples
iex> FileSystem.wildcard("path/**/*.md")
["path/file1.md", "path/subdir/file2.md"]

 write(path, content)

 @spec write(Path.t(), iodata()) :: :ok | {:error, File.posix()}

Writes content to a file.
Examples
iex> FileSystem.write("path/to/file.txt", "content")
:ok

 write_with_path(path, content)

 @spec write_with_path(Path.t(), iodata()) :: {:ok, Path.t()} | {:error, File.posix()}

Writes content to a file and returns the path on success.
Creates parent directories if they don't exist.
Examples
iex> FileSystem.write_with_path("path/to/file.txt", "content")
{:ok, "path/to/file.txt"}

Alkali.Infrastructure.LayoutResolver

Resolves and renders layouts for pages.
Handles layout resolution with the following priority:
	Frontmatter layout field
	Folder-based default (e.g., posts → post.html.heex)
	Site default (default.html.heex)

Implements the Alkali.Application.Behaviours.LayoutResolverBehaviour to allow
dependency injection and testability in use cases.
All functions accept an optional opts keyword list with:
	:file_system - Module implementing file operations (defaults to File)

 Summary

 Functions

 extract_folder_from_url(url)

 Extracts the top-level folder name from a URL.

 render_with_layout(page, layout_path, config, opts \\ [])

 Renders a page with its layout template.

 resolve_layout(page, config, opts \\ [])

 Resolves the layout file path for a given page.

 Functions

 extract_folder_from_url(url)

 @spec extract_folder_from_url(String.t()) :: String.t()

Extracts the top-level folder name from a URL.
Used for folder-based layout resolution.
Examples
iex> extract_folder_from_url("/posts/2024/my-post")
"posts"

iex> extract_folder_from_url("/pages/about")
"pages"

iex> extract_folder_from_url("/about")
"page"

 render_with_layout(page, layout_path, config, opts \\ [])

 @spec render_with_layout(map(), String.t(), map(), keyword()) ::
 {:ok, String.t()} | {:error, String.t()}

Renders a page with its layout template.
Parameters
	page - Page struct/map with content and metadata
	layout_path - Full path to layout file
	config - Site configuration map
	opts - Additional rendering options

Returns
	{:ok, html} - Rendered HTML string
	{:error, reason} - Error message

Examples
iex> page = %{title: "My Post", content: "<p>Hello</p>"}
iex> layout_path = "/site/layouts/post.html.heex"
iex> config = %{site_name: "My Blog"}
iex> render_with_layout(page, layout_path, config, [])
{:ok, "<html>...</html>"}

 resolve_layout(page, config, opts \\ [])

 @spec resolve_layout(map(), map(), keyword()) ::
 {:ok, String.t()} | {:error, String.t()}

Resolves the layout file path for a given page.
Resolution Priority
	If page has layout in frontmatter, use layouts/{layout}.html.heex
	If no layout specified, extract folder from URL and try layouts/{folder}.html.heex
	If folder-based layout doesn't exist, use layouts/default.html.heex
	Return error if resolved layout doesn't exist

Examples
iex> page = %{layout: "custom", url: "/posts/my-post"}
iex> config = %{site_path: "/site", layouts_path: "layouts"}
iex> resolve_layout(page, config, [])
{:ok, "/site/layouts/custom.html.heex"}

iex> page = %{layout: nil, url: "/posts/2024/my-post"}
iex> config = %{site_path: "/site", layouts_path: "layouts"}
iex> resolve_layout(page, config, [])
{:ok, "/site/layouts/post.html.heex"} # if exists, else default

Alkali.Infrastructure.Parsers.FrontmatterParser

Frontmatter parser for extracting YAML metadata from markdown files.

 Summary

 Functions

 parse(content)

 Extracts frontmatter YAML and content from a markdown file.

 Functions

 parse(content)

 @spec parse(String.t()) :: {:ok, {map(), String.t()}} | {:error, String.t()}

Extracts frontmatter YAML and content from a markdown file.

Alkali.Infrastructure.Parsers.MarkdownParser

Markdown parser with basic HTML conversion.

 Summary

 Functions

 parse(markdown)

 Parses markdown to HTML with GFM extensions.

 Functions

 parse(markdown)

 @spec parse(String.t()) :: String.t()

Parses markdown to HTML with GFM extensions.

Alkali.Infrastructure.Renderers.CollectionRenderer

Infrastructure renderer for collection pages.
This module handles all HTML generation for collection pages including:
	Post list items
	Pagination controls
	Collection metadata

By extracting presentation logic to the infrastructure layer, we maintain
Clean Architecture boundaries where use cases orchestrate behavior without
containing presentation details.

 Summary

 Functions

 render_collection_content(collection, pagination, opts \\ [])

 Renders complete collection content with metadata.

 render_pagination(pagination, opts \\ [])

 Renders pagination controls as HTML.

 render_post_item(page, opts \\ [])

 Renders a single post item as HTML.

 render_posts_list(pages, opts \\ [])

 Renders a list of posts as HTML.

 Functions

 render_collection_content(collection, pagination, opts \\ [])

 @spec render_collection_content(map(), map() | nil, keyword()) ::
 {String.t(), String.t()}

Renders complete collection content with metadata.
Parameters
	collection - Collection struct with type, name, and pages
	pagination - Pagination struct (optional, nil for non-paginated)
	opts - Rendering options (reserved for future use)

Returns
A tuple of {title, content} where title is the page title and content is the HTML.

 render_pagination(pagination, opts \\ [])

 @spec render_pagination(
 map(),
 keyword()
) :: String.t()

Renders pagination controls as HTML.
Parameters
	pagination - A pagination struct with:	has_prev - boolean
	has_next - boolean
	prev_url - previous page URL (optional)
	next_url - next page URL
	current_page - current page number
	page_numbers - list of page numbers

	opts - Rendering options (reserved for future use)

Returns
An HTML string containing pagination navigation.

 render_post_item(page, opts \\ [])

 @spec render_post_item(
 map(),
 keyword()
) :: String.t()

Renders a single post item as HTML.
Parameters
	page - A page map with title, url, date, and frontmatter
	opts - Rendering options (reserved for future use)

Returns
An HTML string representing the post item.
Examples
iex> page = %{title: "My Post", url: "/posts/my-post", date: ~D[2024-01-15]}
iex> CollectionRenderer.render_post_item(page)
"<article class=\"post-item\">..."

 render_posts_list(pages, opts \\ [])

 @spec render_posts_list(
 [map()],
 keyword()
) :: String.t()

Renders a list of posts as HTML.
Parameters
	pages - List of page maps
	opts - Rendering options (reserved for future use)

Returns
An HTML string containing all post items.

Alkali.Infrastructure.Renderers.RssRenderer

Infrastructure renderer for RSS feed generation.
This module handles all XML generation for RSS 2.0 feeds including:
	Feed channel metadata
	Individual feed items
	XML escaping and formatting

By extracting XML generation to the infrastructure layer, we maintain
Clean Architecture boundaries where use cases orchestrate behavior without
containing presentation details.

 Summary

 Functions

 escape_xml(text)

 Escapes special XML characters in a string.

 format_rfc822(date)

 Formats a date or datetime as RFC822 format for RSS.

 render_feed(feed_title, feed_description, site_url, feed_url, items, opts \\ [])

 Renders a complete RSS 2.0 feed as XML.

 render_item(page, site_url, opts \\ [])

 Renders a single RSS item as XML.

 Functions

 escape_xml(text)

 @spec escape_xml(String.t() | nil) :: String.t()

Escapes special XML characters in a string.
Parameters
	text - The string to escape

Returns
The escaped string safe for XML inclusion.

 format_rfc822(date)

 @spec format_rfc822(Date.t() | DateTime.t()) :: String.t()

Formats a date or datetime as RFC822 format for RSS.
Parameters
	date - A Date or DateTime struct

Returns
A string in RFC822 format (e.g., "Fri, 15 Jan 2024 10:30:00 +0000").

 render_feed(feed_title, feed_description, site_url, feed_url, items, opts \\ [])

 @spec render_feed(String.t(), String.t(), String.t(), String.t(), [map()], keyword()) ::
 String.t()

Renders a complete RSS 2.0 feed as XML.
Parameters
	feed_title - Title of the feed
	feed_description - Description of the feed
	site_url - Base URL of the site
	feed_url - URL of the feed itself
	items - List of page maps to include as items
	opts - Rendering options (reserved for future use)

Returns
An XML string representing the complete RSS feed.
Examples
iex> RssRenderer.render_feed("My Blog", "Latest posts", "https://example.com", "https://example.com/feed.xml", pages)
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>..."

 render_item(page, site_url, opts \\ [])

 @spec render_item(map(), String.t(), keyword()) :: String.t()

Renders a single RSS item as XML.
Parameters
	page - A page map with title, url, date, and content
	site_url - Base URL of the site
	opts - Rendering options (reserved for future use)

Returns
An XML string representing the RSS item.

Alkali.Infrastructure.Renderers.TemplateRenderer

Template renderer using EEx.
All functions accept an optional opts keyword list with:
	:file_system - Module implementing file operations (defaults to File)

 Summary

 Functions

 render(template, assigns, opts \\ [])

 Renders a template with given assigns.

 render_from_file(template_path, assigns, opts \\ [])

 Renders a template from a file.

 render_layout(layout, content, assigns, opts \\ [])

 Renders a layout with content slot.

 Functions

 render(template, assigns, opts \\ [])

 @spec render(String.t(), map(), keyword()) :: String.t()

Renders a template with given assigns.

 render_from_file(template_path, assigns, opts \\ [])

 @spec render_from_file(String.t(), map(), keyword()) ::
 String.t() | {:error, String.t()}

Renders a template from a file.
Options
	:file_system - Module for file operations (default: File)

 render_layout(layout, content, assigns, opts \\ [])

 @spec render_layout(String.t(), String.t(), map(), keyword()) :: String.t()

Renders a layout with content slot.

mix alkali.build

Builds the static site from content files.
mix alkali.build [options]
Options
	--draft or -d - Include draft posts
	--verbose or -v - Show detailed build output
	--clean or -c - Clean output directory before building
	--posts-per-page N - Enable pagination with N posts per page (default: no pagination)

Examples
mix alkali.build
mix alkali.build --draft
mix alkali.build -v --draft
mix alkali.build --clean
mix alkali.build --posts-per-page 10

mix alkali.clean

Removes the build output directory (_site by default).
mix alkali.clean [site_path]
Arguments
	site_path - Path to the site directory (defaults to current directory)

Examples
mix alkali.clean
mix alkali.clean "my_blog"
This is useful for forcing a complete rebuild from scratch.

mix alkali.new

Creates a new static site with starter templates and example content.
mix alkali.new my_blog
This will create a new directory my_blog with:
	config/alkali.exs - Site configuration
	content/ - Content directory with example files
	layouts/ - Layout templates
	static/ - Static assets (CSS, JS, images)

Options
	--path - Custom path for the new site (default: current directory)

Examples
mix alkali.new my_blog
mix alkali.new my_docs --path ~/projects

mix alkali.new.post

Creates a new blog post with frontmatter template.
mix alkali.new.post "Post Title" [site_path]
mix alkali.new.post "Post Title" --path site_path
The post will be created in content/posts/ with a filename based on
the current date and the slugified title.
Options
	--path - Path to the site directory (default: current directory)

Examples
mix alkali.new.post "Getting Started with Elixir"
Creates: content/posts/2024-01-15-getting-started-with-elixir.md

mix alkali.new.post "My Post" my_blog
Creates: my_blog/content/posts/2024-01-15-my-post.md

mix alkali.new.post "My Post" --path my_blog
Creates: my_blog/content/posts/2024-01-15-my-post.md
If a post with the same filename already exists, a number suffix will be
added automatically (e.g., -2, -3, etc.).

mix alkali.post

Creates a new blog post with frontmatter template.
mix alkali.post "My Post Title" [site_path] [options]
Options
	--path - Path to the site directory (default: current directory)
	--date - Post date (YYYY-MM-DD, defaults to today)
	--draft - Create as draft (default: true in template)

Examples
mix alkali.post "Getting Started"
mix alkali.post "Advanced Topics" --date 2024-03-15
mix alkali.post "My Post" my_blog
mix alkali.post "My Post" --path my_blog

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

