

 apical

 v0.2.1

 Table of contents

 	Using Apical for Testing OpenAPI requests

 	Modules

 	Apical

 	Apical.Plug.Controller

 	Apical.Plug.Router

 	Apical.Plugs.RequestBody.Source

 	Apical.Plugs.Cookie

 	Apical.Plugs.Header

 	Apical.Plugs.Path

 	Apical.Plugs.Query

 	Apical.Plugs.RequestBody

 	Apical.Plugs.SetOperationId

 	Apical.Plugs.SetVersion

 	Apical.Plugs.RequestBody.Default

 	Apical.Plugs.RequestBody.FormEncoded

 	Apical.Plugs.RequestBody.Json

 	Apical.Exceptions.InvalidContentLengthError

 	Apical.Exceptions.InvalidContentTypeError

 	Apical.Exceptions.MissingContentLengthError

 	Apical.Exceptions.MissingContentTypeError

 	Apical.Exceptions.MultipleContentLengthError

 	Apical.Exceptions.MultipleContentTypeError

 	Apical.Exceptions.ParameterError

 	Apical.Exceptions.RequestBodyTooLargeError

Using Apical for Testing OpenAPI requests

You may use Apical in your test environment to make sure that client requests
you perform against a 3rd party OpenAPI server are well-formed.
Often times, tests for API compliance are not performed because they can look
like your tests are merely duplicative of the code that you already have.
Moreover, if the API changes, then you will have to rewrite all of the tests
to remain in compliance with API.
With Apical, you have an easy way of testing that the parameter requirements
are fulfilled and that they should not cause 400 or 404 errors when you
make the request. You can also use this to test that the parameters you're
assigning are correctly bound into the OpenAPI parameters.
Prerequisites
In "test" mode, Apical expects that you are using the following two Elixir
libraries:
	Mox to mock out the API controllers.
	Bypass to stand up transient http servers.

Installation
	Add dependenciecs:
 In your mix.exs file, add the following dependencies:
 defp deps do
 [
 ...
 {:apical, "~> 0.2", only: :test},
 {:mox, "~> 1.0", only: :test},
 {:bypass, "~> 2.1", only: :test},
]
 end

	If you haven't already, set up your elixir compilers to compile to a support directory:
 In mix.exs, project function
 def project do
 [
 ...
 elixirc_paths: elixirc_paths(Mix.env()),
]
 end
 In mix.exs module top level:
 def elixirc_paths(:test), do: ["lib", "test/support"]
 def elixirc_paths(_), do: ["lib"]

	Make sure mox and bypass are running when tests are running:
 In test/test_helper.exs:
 Application.ensure_all_started(:bypass)
 Application.ensure_all_started(:mox)

Router setup
Create a router in your test/support directory.
For example:
defmodule MyAppTest.SomeSAAS do
 use Phoenix.Router

 require Apical

 Apical.router_from_file("path/to/some_saas.yaml", encoding: "application/yaml", testing: :auto)
end
Note that this macro creates MyAppTest.SomeSAAS.Mock which is the mock for controller serviced
by the some_saas OpenAPI schema, as well as the bypass/1,2 function which configures bypass
to use the router.
For details on how to set up more fine-grained testing settings, see documentation for Apical module.
Testing module setup
In your test module, start with the following code:
defmodule MyAppTest.SaasRequestTest do
 # tests using Apical in "test" mode where it creates a bypass server.

 use ExUnit.Case, async: true

 alias MyAppTest.SomeSAAS
 alias MyAppTest.SomeSAAS.Mock

 alias MyApp.ClientModule

 setup do
 bypass = Bypass.open()
 SomeSAAS.bypass(bypass)
 {:ok, bypass: bypass}
 end
This sets up bypass to serve an http server on its own port for each test
run in the test module. Since it's async, the Mox expectations are set
up to work with the bypass server.
Testing your API consumer
Required for your API consumer
In order to use this feature, your API consumer functions MUST be able to
use a host other than the API's "normal" host.

we'll assume that some ClientModule has
	Testing to see that the issued request is compliant (no 400/404 errors)
 In this case, we have function some_operation is compliant and doesn't
 issue a request to an incorrect path or present invalid parameters.
 test "someOperation" %{bypass: bypass} do
 Mox.expect(Mock, :someOperation, fn conn, _params ->
 send_resp(conn, 200, @dummy_result)
 end)

 ClientModule.some_operation(host: "localhost:#{bypass.port}")
 end

	Testing to see that parameters are serialized as expected
 This test is an example verification that content issued through a client
 module into a OpenAPI operation is serialized as expected.
Scope of parameters
Keep in mind that parameters can be in cookies, headers, query string, path,
or content serialized from the body of the http request
parameters taken from the body have lower precedence than taken from the
request, if you could potentially have a collision in keys, use the
nest_all_json option in your Apical router configuration.

 @test_parameter 47

 test "someOperation" %{bypass: bypass} do
 Mox.expect(Mock, :someOperation, fn conn, %{"parameter-name" => parameter} ->
 assert parameter == @test_parameter
 send_resp(conn, 201, @dummy_result)
 end)

 ClientModule.some_operation(@test_parameter, host: "localhost:#{bypass.port}")
 end
Json Encoding
note that your client function input parameter might have atom keys (or might
be a struct), in which case, strict equality might not be the correct test
inside your mox expectation, as Apical will typically render it as a JSON with
string keys.

Apical

Generates a web router from an OpenAPI document.
Building an OpenAPI-compliant Phoenix router can be as simple as:
defmodule MyRouter do
 require Apical

 Apical.router_from_file(
 "path/to/openapi.yaml",
 controller: MyProjectWeb.ApiController
)
end
See https://spec.openapis.org/oas/v3.1.0 for details on how to compose an OpenAPI
schema.
Using the macros router_from_string/2 or router_from_file/2 you may generate a
Phoenix.Router or an Apical.Plug.Router (for Plug-only deployments) that
corresponds to OpenAPI document.
Tip
In general, using router_from_file/2 is should be preferred, especially if you
must maintain multiple versions of the schema, though you may find it easier to
iterate using router_from_string/2 during early development. In that case, it
is possible to switch to router_from_file/2 when you are ready to finalize your
API design or start versioning

The following activities are performed by the router generated by the macros:
	Tagging inbound requests with API version
	Constructing route and http verb matches in the router
	Parameter operations	Supports:	Cookie parameters
	Header parameters
	Path parameters
	Query parameters

	Features:	Style decoding based on parameter styles (see https://spec.openapis.org/oas/v3.1.0#style-values)
	Custom style decoding
	Parameter marshalling (converting strings to types)
	Parameter validation

	Request body validation	content-length and content-type validation
	matching content-type with request body plugs
	Automatic json and form-encoded request body parsing
	Parameter marshalling for form-encoded requests

Options
The following options are common to router_from_string/2 and router_from_file/2.
Global options
	for: allows you to select which framework you would like to generate the router
for. Select one of:
	Phoenix: (default) generates the interior code for a Phoenix.Router module

	Plug: generates the interior code for an Apical.Plug.Router module.
Warning
The Apical.Plug.Router module does not have the same interface as
Plug.Router, though it is a plug.

	encoding: mimetype which describes how the schema is encoded.
required in router_from_string/2, deduced from filename in router_from_file/2.

	decoders: A proplist of mimetype to decoders.
If you use an encoding that isn't application/json or application/yaml you
should provide this proplist, which, at a minimum, contains
[{encoding_mimetype, {module, function}}]. The call module.function(string)
should return a map representing the OpenAPI schema, and should raise in the
case that the content is not decodable.

	root: the root path for the router.
Defaults to /v{major} where major is the major version of the API, as declared
under info.version in the schema.

	testing: lets you generate additional modules to assist with testing. This
is a keyword list with the following sub-options:
	behaviour: builds a behaviour module with the behaviour name that has
callbacks that match the operationIds in the schema. Defaults to
<router>.Api. If false, skips this step.
	controller: builds a controller module with the controller name that
has functions that match the operationIds in the schema. This controller
will delegate its functions to the mock module. Defaults to
<router>.Controller. If false, skips this step.
	mock: builds a mock module using Mox that mocks the behaviour.
Defaults to <router>.Mock. If false, skips this step.
	bypass: if true, generates a bypass/1 function that sets up Bypass
for use in tests. Defaults to false. Can not be true if any of the
above options are set to false.

you may also pass :auto to testing to set everything up automatically.

	dump: (For debugging), sends formatted code of the router to stdout.
Defaults to false. If set to :all, will also pass dump: true to Exonerate.

Scopable options
The following options are scopable. They may be placed as top-level options
or under the scopes (see below)
	controller: Plug module which contains code implementing the API.
It is recommended to use Phoenix.Controller in this plug module, or the
functions may or may not be targeted as expected.
Controller modules should implement public functions corresponding to the
operationId of each operation in the schema. These functions must be
cased in the same fashion as the operationId, and like all Phoenix Controller
functions, take two arguments:
	conn: the Plug.Conn for the request
	params: a map containing the parameters for the operation. This is
identical to conn.params.

Important
Unlike standard Phoenix controller functions, parameters declared in the
parameters list of the operation are made available in the params
argument as well as in conn.params. These parameters will overwrite
any fields present in body parameters that happen to have the same name.

A single router may have its routes target more than one controller.

	extra_plugs: a list of plugs to execute after the route has matched
but before the parameter and body pipeline has been executed.
These plugs are defined using {atom, [args...]} where args is
a list of plug options to be applied to the plug, or atom which
is equivalent to {atom, []}. These may be either a function plug
or a module plug.
Route-level Security Plugs
Route-level security checks should be performed in plugs declared in
extra_plugs, until Apical provides direct support for security
schemes.

Global plugs
if you need plugs to be executed for all routes, declare those plugs
in the router module before the macro Exonerate.router_from_*.

Post-pipeline plugs
if you need plugs to be executed after the parameter and body pipeline,
for example, for row-level security checks, declare those plugs in the
controller module. Note that these plugs should be able to match on
the operationId atom using conn.private.operation_id.

	styles: a proplist of custom styles and their corresponding parsers.
 Each parser is represented as {module, function, [args...]} or
 {module, function} which is equivalent too {module, function []}.
 The parsers are functions that are called as
 module.function(string, args...), and return {:ok, value} or
 {:error, message}. The message should be a string describing the
 error.
 The following styles are supported by default and do not need to be
 included in the styles proplist:
	"matrix"
	"label"
	"simple"
	"form"
	"space_delimited"
	"pipe_delimited"
	"deep_object"

 see https://spec.openapis.org/oas/v3.1.0#style-values for description
 of these styles.
Custom styles
If you need to support a custom style, you must add it to the
styles proplist.

Form-exploded objects
Form-exploded style parameters with type object in their schema are
not supported due to ambiguity in their definition per the OpenAPI
specification.

	content_sources: A proplist of media-types (as string keys) and
functions to act as the source for request body. These should be
defined as {media_type, {module, [opts...]}}. These opts will be
passed into the Apical.Plugs.RequestBody.Source.fetch/3.

	nest_all_json: Analogous to the option in Plug.Parsers.JSON, this
option will nest all json request body payloads under the "_json" key.
if this is not true, objects payloads will be merged into conn.params.

Available scopes
The scopes have the following precedence:
operation_ids > groups > tags > parameters > global
	operation_ids: A keywordlist of operationIds (as atom keys) and options
to target to these operations.
The keys must be cased in the same fashion as the operationId in the
schema.

	tags: A keywordlist of tags (as atom keys) and options to target to those
tags.
The tag keys must be cased in the same fashion as their tags in the schema.

	parameters: A keywordlist of parameters (as atom keys) and options to
target to those parameters.
The parameter keys must be cased in the same fashion (including kebab-case)
Note that this scope may be further nested inside of tag and
operation_ids scopes.

	groups: A keywordlist of groups (as atom keys) and options to target to
those groups. The group definition should start off with the names of the
operationIds that are in the group (as atoms), followed by the options to
send to them (as keyword lists)

Scoped options
The following options are only valid in a single scope:
	alias: (scoped to :operation_ids) overrides the name of the function
pointed to by the operationId in the schema.

	marshal: (scoped to parameters) overrides the marshaller to use for
parameter. May be one of:
	false: to disable default marshalling and do nothing. Also disables
validation of the parameter.
	atom: to call a local function,
	{atom, list}: to call a local function with extra parameters,
	{module, atom}: to call a remote function
	{module, atom, list}: to call a remote function with extra parameters.
Note that the local function must be an exported function.
The called function must return {:ok, value} to marshal the string and
substitute the value as the parameter, or {:error, String.t} to return
a 400 error with the reason as described.

	validate: (scoped to parameters, boolean, defaults to true) if sets
to false, disables validation of the parameter. Note if marshal: false
is set, validation will automatically be disabled.

 Anchor for this section

 Summary

 Functions

 router_from_file(file, opts)

 Generates a web router from a String containing an OpenAPI document.

 router_from_string(string, opts)

 Generates a web router from a String containing an OpenAPI document.

 Anchor for this section

Functions

 Link to this macro

 router_from_file(file, opts)

 View Source

 (macro)

 @spec router_from_file(Path.t(), Keyword.t()) :: any()

Generates a web router from a String containing an OpenAPI document.

 example

 Example:

defmodule MyRouter do
 require Apical

 Apical.router_from_file(
 "path/to/openapi.yaml",
 controller: MyProjectWeb.ApiController
)
end
For options see Apical module docs.

 Link to this macro

 router_from_string(string, opts)

 View Source

 (macro)

 @spec router_from_string(String.t(), Keyword.t()) :: any()

Generates a web router from a String containing an OpenAPI document.

 example

 Example:

defmodule MyRouter do
 require Apical

 Apical.router_from_string(
 """
 openapi: 3.1.0
 info:
 title: My API
 version: 1.0.0
 paths:
 "/":
 get:
 operationId: getOperation
 responses:
 "200":
 description: OK
 """,
 controller: MyProjectWeb.ApiController,
 encoding: "application/yaml"
)
end
For options see Apical module docs.

Apical.Plug.Controller

Apical.Plug.Router

boilerplate code setting up a router using the Plug
framework without using Phoenix. Note that although
this reduces the needed dependencies, this doesn't provide
you with some Phoenix affordances such as route helpers.

 Anchor for this section

 Summary

 Functions

 match(conn, opts)

 returns a 404 error since none of the routes have matched

 Anchor for this section

Functions

 Link to this function

 match(conn, opts)

 View Source

returns a 404 error since none of the routes have matched

Apical.Plugs.RequestBody.Source behaviour

Behaviour for adapters that process request bodies and alter the conn.

 Anchor for this section

 Summary

 Types

 validator()

 Type for a function that encapsulates the logic for validating a request body.

 Callbacks

 fetch(t, validator, opts)

 validate!(subschema, operation_id)

 Compile-time check to see if the validator is valid for the given requestBody
subschema.

 Functions

 fetch_body(conn, opts)

 Utility function that grabs request bodies.

 Anchor for this section

Types

 Link to this type

 validator()

 View Source

 @type validator() :: nil | {module(), atom()} | {module(), atom(), keyword()}

Type for a function that encapsulates the logic for validating a request body.
The function should return :ok if the body is valid, or {:error, keyword}
In the generic case, keyword should contain the key :message which determines
what the request body error message will be.
For more specific cases, see the documentation for Exonerate which describes
the fields available.
The default validator (if no validation is to be performed) will return :ok
on any input.

 Anchor for this section

Callbacks

 Link to this callback

 fetch(t, validator, opts)

 View Source

 @callback fetch(Plug.Conn.t(), validator(), opts :: keyword()) ::
 {:ok, Plug.Conn.t()} | {:error, keyword()}

 Link to this callback

 validate!(subschema, operation_id)

 View Source

 @callback validate!(subschema :: map(), operation_id :: String.t()) :: :ok

Compile-time check to see if the validator is valid for the given requestBody
subschema.
This may reject for any reason and should raise a CompileError if the validator
cannot be used for that subschema.

 Anchor for this section

Functions

 Link to this function

 fetch_body(conn, opts)

 View Source

 @spec fetch_body(
 Plug.Conn.t(),
 keyword()
) :: {:ok, body :: iodata(), Plug.Conn.t()} | {:error, any()}

Utility function that grabs request bodies.
Apical.Plugs.RequestBody.Source modules are expected to use this function
if they need the request body, since it conforms to the options keyword that
plug uses natively. This function will exhaust the ability of the conn to
have its body fetched. Thus, the use of this function is not required

 streaming-request-bodies

 Streaming request bodies

If the request body source plugin processes data in a streaming fashion, this
function should not be used, instead manually call Plug.Conn.read_body/2
in your plugin's fetch/3 function

 options

 options

:length (integer, default 8_000_000) - total maximum length of the request body.
:read_length (integer, default 1_000_000) - maximum length of each chunk.
:string (boolean, default false) - if true, the result will be a single binary,
 if false, the result may be an improper iolist.

Apical.Plugs.Cookie

Plug module for parsing cookie parameters and placing them into params.
init options
the plug initialization options are as follows:
[router_module, operation_id, parameters, plug_opts]
The router module is passed itself, the operation_id (as an atom),
a list of parameters maps from the OpenAPI schema, one for each cookie
parameter, and the plug_opts keyword list as elucidated by the router
compiler. Initialization will compile an optimized operations object
which is used to parse cookie parameters from the request.
conn output
The conn struct after calling this plug will have cookie parameters
declared in the OpenAPI schema placed into the params map. Cookie
parameters not declared in the OpenAPI schema are allowed.

Apical.Plugs.Header

Plug module for parsing header parameters and placing them into params.
init options
the plug initialization options are as follows:
[router_module, operation_id, parameters, plug_opts]
The router module is passed itself, the operation_id (as an atom),
a list of parameters maps from the OpenAPI schema, one for each cookie
parameter, and the plug_opts keyword list as elucidated by the router
compiler. Initialization will compile an optimized operations object
which is used to parse header parameters from the request.
conn output
The conn struct after calling this plug will have header parameters
declared in the OpenAPI schema placed into the params map. Header
parameters not declared in the OpenAPI schema are allowed.

Apical.Plugs.Path

Plug module for parsing path parameters and placing them into params.
init options
the plug initialization options are as follows:
[router_module, operation_id, parameters, plug_opts]
The router module is passed itself, the operation_id (as an atom),
a list of parameters maps from the OpenAPI schema, one for each cookie
parameter, and the plug_opts keyword list as elucidated by the router
compiler. Initialization will compile an optimized operations object
which is used to parse path parameters from the request.
conn output
The conn struct after calling this plug will have path parameters
declared in the OpenAPI schema placed into the params map.
Important
As part of the OpenAPI spec, path parameters must be declared in the
path key under the paths field of the schema.

Apical.Plugs.Query

Plug module for parsing query parameters and placing them into params.
init options
the plug initialization options are as follows:
[router_module, operation_id, parameters, plug_opts]
The router module is passed itself, the operation_id (as an atom),
a list of parameters maps from the OpenAPI schema, one for each cookie
parameter, and the plug_opts keyword list as elucidated by the router
compiler. Initialization will compile an optimized operations object
which is used to parse query parameters from the request.
conn output
The conn struct after calling this plug will have query parameters
declared in the OpenAPI schema placed into the params map.
Important
If the client produces a query parameter that is not a part of the
OpenAPI schema, the request will fail with a 400 error.

Apical.Plugs.RequestBody

Plug module for parsing request bodies and placing them into params.
init options
There are several forms that the RequestBody plug may take. The following
forms are recognized:
	[:match]
Prepare the conn object for parsing the RequestBody plugs by obtaining
the content-type and content-length header and setting private
:content_type and :content_length keys, respectively.
Raises appropriate errors early in the case that these headers are missing.

	[:not_matched]
Rejects request bodies with a 415 error since the supplied content-type
does not match any media-types declared in the OpenAPI schema.

	[router_module, operation_id, media_type_string, parameters, plug_opts]
The router module is passed itself, the operation_id (as an atom),
the media-type string for which the module applies, the requestBody
map from the OpenAPI schema, and the plug_opts keyword list as elucidated
by the router compiler.

conn output for media-type plugs
If the content-type header doesn't match the media-type string declared in
the OpenApi schema, it is untouched. Note that if it fails to match it
should be caught by a :not_matched variant of the plug downstream.
Depending on the RequestBody source plugin supplied, the conn struct after
calling this plug may have the request body placed into the params map.
It may or may not also trigger reading the conn's request body. Note that
fetching the request body may happen only once in the conn's lifecycle.
By default, the plugins are assigned to the media types as follows:
	application/json	Apical.Plugs.RequestBody.Json
	application/x-www-form-urlencoded	Apical.Plugs.RequestBody.FormEncoded
	/	Apical.Plugs.RequestBody.Default

See documentation for the respective source plugins for more information.

 Anchor for this section

 Summary

 Functions

 compare(same, same)

 make(pointer, schema, operation_id, plug_opts)

 validator_name(version, operation_id, mimetype)

 Anchor for this section

Functions

 Link to this function

 compare(same, same)

 View Source

 Link to this function

 make(pointer, schema, operation_id, plug_opts)

 View Source

 @spec make(
 JsonPtr.t(),
 schema :: map(),
 operation_id :: String.t(),
 plug_opts :: keyword()
) ::
 {plugs :: [Macro.t()], validations :: [Macro.t()]}

 Link to this function

 validator_name(version, operation_id, mimetype)

 View Source

Apical.Plugs.SetOperationId

Plug module which sets the private :operation_id key on the conn struct
to the operationId (as an atom) that was declared in the schema.

Apical.Plugs.SetVersion

Plug module which sets the :api_version key on the conn struct's
assigns to the version string that was declared in the schema.

Apical.Plugs.RequestBody.Default

Apical.Plugs.RequestBody.FormEncoded

Apical.Plugs.RequestBody.Json

Apical.Exceptions.InvalidContentLengthError exception

Error raised when the content-length header does not parse to a valid
integer.
This error should result in a http 411 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/411

 Anchor for this section

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(error)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.InvalidContentTypeError exception

Error raised when the content-type header does not parse to a valid
mimetype string.
This error should result in a http 400 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

 Anchor for this section

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(error)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.MissingContentLengthError exception

Error raised when the content-length header is missing from the request.
This error should result in a http 411 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/411

 Anchor for this section

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.MissingContentTypeError exception

Error raised when the content-type header is missing from the request.
This error should result in a http 400 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

 Anchor for this section

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.MultipleContentLengthError exception

Error raised multiple content-length headers are provided by the request.
This error should result in a http 411 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/411

 Anchor for this section

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.MultipleContentTypeError exception

Error raised multiple content-type headers are provided by the request.
This error should result in a http 400 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

 Anchor for this section

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.ParameterError exception

Error raised when parameters are invalid. Note that many of the fields
correspond to error parameters returned by Exonerate validators.
This error should result in a http 400 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

 Anchor for this section

 Summary

 Functions

 custom_fields_from(operation_id, where, style_name, property, message)

 describe_exonerate(exception)

 message(exception)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 custom_fields_from(operation_id, where, style_name, property, message)

 View Source

 Link to this function

 describe_exonerate(exception)

 View Source

 Link to this function

 message(exception)

 View Source

Callback implementation for Exception.message/1.

Apical.Exceptions.RequestBodyTooLargeError exception

Error raised when the request body is too large. This could be because the
payload is larger than the maximum allowed size as specified in configuration
or if the request body size doesn't match the content-length header.
This error should result in a http 413 status code.
see: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/413

 Anchor for this section

 Summary

 Functions

 message(_)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(_)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

