

 AppSignal

 v2.9.2

 [image: Logo]

 Table of contents

 	AppSignal for Elixir

 	AppSignal for Elixir changelog

 	Modules

 	Appsignal

 	Appsignal.Ecto

 	Appsignal.Ecto.Repo

 	Appsignal.Instrumentation

 	Appsignal.Instrumentation.Helpers

 	Appsignal.IntegrationLogger

 	Appsignal.Logger

 	Appsignal.Logger.Backend

 	Appsignal.Logger.Handler

 	Appsignal.Metadata

 	Appsignal.Span

 	Appsignal.Tracer

 	Appsignal.Transaction

 	Appsignal.TransactionRegistry

 	Appsignal.Utils.ArgumentCleaner

 	Appsignal.Utils.Literal

 	Mix Tasks

 	mix appsignal.demo

 	mix appsignal.diagnose

 	mix appsignal.install

AppSignal for Elixir

[image: Build Status]
[image: Hex pm]
AppSignal for Elixir monitors errors, performance and servers for Elixir
applications.
	AppSignal.com website
	AppSignal for Elixir documentation
	Package documentation
	Support

Installation
Please follow the installation
guide on how to install
and use this library.
Then, add custom instrumentation or use one of the framework integrations to
automatically gain performance insights and error notifications. Currently,
AppSignal has framework integrations for
Plug and
Phoenix and
applications.
Usage
AppSignal will automatically monitor requests, report any exceptions that are
thrown and any performance issues that might have occurred.
You can also add extra information to requests by adding custom
instrumentation. Read more in our instrumentation
guide.
Configuration
A complete list of all configurable options for AppSignal for Elixir is
available in our
documentation.
Development
Setup
Before you can start developing on the AppSignal for Elixir project make sure
you have Elixir installed.
This repository is managed by mono.
Install mono on your local machine by following the mono installation
steps.
Then make sure you have all the project's dependencies installed by running the
following command:
$ mono bootstrap

Testing
Testing is done with ExUnit and can be run with the mix test command. You can
also supply a path to a specific file path you want to test and even a specific
line on which the test you want to run is defined.
$ mono test
The original command can still be used
$ mix test
$ mix test test/appsignal/some_test.ex:123

This project has several different test suites defined with different mix
environments. You can run them by specifying the specific type of test suite in
the MIX_ENV environment variable.
Default
$ MIX_ENV=test mix test

Run the test suite with the NIF inoperational. This will generate errors
because the NIF is not active, but should run without failures.
$ MIX_ENV=test_no_nif mix test
Benchmarking
This package uses benchee to benchmark code. To run the benchmarker:
$ MIX_ENV=bench mix run bench/<file>.exs

AddressSanitizer
A memory testing setup is included to detect memory errors in the NIF.
It's set up in a Docker container to ensure reproducability.
To run the tests, build the container, which will build a version of the NIF with AddressSanitizer enabled.
Then, run it with an APPSIGNAL_PUSH_API_KEY and APPSIGNAL_APP_NAME set to ensure AppSignal is enabled, and to be able to verify that data appears in AppSignal after running the test:
docker build --platform linux/amd64 -t appsignal-elixir-asan .
docker run \
 --env APPSIGNAL_PUSH_API_KEY=00000000-0000-0000-0000-000000000000 \
 --env APPSIGNAL_APP_NAME="appsignal-elixir" \
 --rm \
 -- \
 appsignal-elixir-asan
This test runs spans.exs, which is a script that calls most functions in the NIF.
Branches and versions
The main branch corresponds to the current release of the
library. The develop branch is used for development of features that
will end up in the next minor release. If you fix a bug open a pull
request on main, if it's a new feature on develop.
Making changes
When making changes to the project that require a release, add a
changeset that will be used
to update the generated CHANGELOG.md file upon
release.
$ mono changeset add

Publishing new versions
	Merge the develop branch to main if necessary.

	 Run mono publish and follow
the instructions.

Updating the CI build matrix
	Update .semaphore/versions.rb to add or remove Elixir/OTP versions, or .semaphore/semaphore.yml.erb.
	Run script/generate_ci_matrix.

Contributing
Thinking of contributing to our Elixir package? Awesome! 🚀
Please follow our Contributing guide in our
documentation and follow our Code of Conduct.
Also, we would be very happy to send you Stroopwafles. Have look at everyone
we send a package to so far on our Stroopwafles page.
Support
Contact us and speak directly with the engineers working on
AppSignal. They will help you get set up, tweak your code and make sure you get
the most out of using AppSignal.
Also see our SUPPORT.md file.
License
The AppSignal for Elixir package source code is released under the MIT License.
Check the LICENSE file for more information.

AppSignal for Elixir changelog

2.9.2
Published on 2024-03-22.
Fixed
	4567ce04 patch - Drop non-500 Plug errors in add_error/3

2.9.1
Published on 2024-03-20.
Added
	c833c8a4 patch - Implement CPU count configuration option. Use it to override the auto-detected, cgroups-provided number of CPUs that is used to calculate CPU usage percentages.
To set it, use the cpu_count configuration option, or the APPSIGNAL_CPU_COUNT environment variable.

2.9.0
Published on 2024-03-06.
Added
	be785ea9 patch - Add histogram support to the OpenTelemetry HTTP server. This allows OpenTelemetry-based instrumentations to report histogram data to AppSignal as distribution metrics.

Changed
	2d3130fd minor - Breaking change: Normalize CPU metrics for cgroups v1 systems. When we can detect how many CPUs are configured in the container's limits, we will normalize the CPU percentages to a maximum of 100%. This is a breaking change. Triggers for CPU percentages that are configured for a CPU percentage higher than 100% will no longer trigger after this update. Please configure triggers to a percentage with a maximum of 100% CPU percentage.
	1566a4a8 patch - Update the Mix config import in the config/appsignal.exs file to use import Config, rather than the deprecated use Mix.Config.
	2d3130fd patch - Support fractional CPUs for cgroups v2 metrics. Previously a CPU count of 0.5 would be interpreted as 1 CPU. Now it will be correctly seen as half a CPU and calculate CPU percentages accordingly.
	fb7568ac patch - Update bundled trusted root certificates.

Fixed
	ad0fdb0c patch - Fix (sub)traces not being reported in their entirety when the OpenTelemetry exporter sends one trace in multiple export requests. This would be an issue for long running traces, that are exported in several requests.

2.8.3
Published on 2024-02-01.
Added
	e685b22f patch - Set data on spans with the custom_on_create_fun hook. This hook is called upon the creation of every span. This can be useful to add tags to internal traces and otherwise difficult to access traces.
This won't be necessary for most scenarios. We recommend following our tagging guide instead.
defmodule MyApp.Appsignal do
 def custom_on_create_fun(_span) do
 Appsignal.Span.set_sample_data(Appsignal.Tracer.root_span, "tags", %{"locale": "en"})
 end
end
config/config.exs
config :appsignal, custom_on_create_fun: &MyApp.Appsignal.custom_on_create_fun/1

Changed
	924a3ffa patch - Make the debug log message for OpenTelemetry spans from libraries we don't automatically recognize more clear. Mention the span id and the instrumentation library.
	924a3ffa patch - Fix an issue where queries containing a MySQL leading type indicator would only be partially sanitised.

2.8.2
Added
	47f4a8df patch - Add Appsignal.Ecto.Repo to support parallel preloads.
For AppSignal to be able to instrument parallel preloads, the current instrumentation context needs to be passed from the Elixir process that spawns the preload to the short-lived processes that run each of the parallel queries.
By replacing use Ecto.Repo with use Appsignal.Ecto.Repo, the appropriate telemetry context will be passed so that AppSignal can correctly instrument these queries:
defmodule MyApp.Repo do
 # replace `use Ecto.Repo` with `use Appsignal.Ecto.Repo`
 use Appsignal.Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end

2.8.1
Changed
	40dc85ef patch - Fix disk usage returning a Vec with no entries on Alpine Linux when the df --local command fails.

	92d948fa patch - Add support for lists in the sample data as root values on spans, as shown below. Previously we only supported lists as nested objects in maps.
Appsignal.Span.set_sample_data(
 Appsignal.Tracer.root_span,
 "custom_data",
 [
 "value 1",
 "value 2"
]
)

Removed
	40dc85ef patch - Remove the appsignal_set_host_gauge and appsignal_set_process_gauge extension functions. These functions were already deprecated and did not report any metrics.

Fixed
	9ec351a7 patch - Fix missing error metrics for the error rate and error count graphs in some scenarios, like with Node.js Koa apps.

	a339fc1d patch - Add support for keywords lists in sample data on spans. These would previously be shown an empty list.
Appsignal.Span.set_sample_data(
 Appsignal.Tracer.root_span,
 "custom_data",
 %{"keyword_list": [foo: "some value", "bar": "other value"]}
)

2.8.0
Changed
	8e8911f0 minor - Always use Jason to encode JSON. This removes the need to install either Jason or Poison alongside AppSignal, simplifying our installation instructions.
	9dbf8d82 patch - Filter more disk mountpoints for disk usage and disk IO stats. This helps reduce noise in the host metrics by focussing on more important mountpoints.The following mountpoint are ignored. Any mountpoint containing:	/etc/hostname
	/etc/hosts
	/etc/resolv.conf
	/snap/
	/proc/

Fixed
	9dbf8d82 patch - - Support disk usage reporting (using df) on Alpine Linux. This host metric would report an error on Alpine Linux.	When a disk mountpoint has no inodes usage percentage, skip the mountpoint, and report the inodes information successfully for the inodes that do have an inodes usage percentage.

2.7.13
Changed
	c883847a patch - Bump agent to eec7f7b
Updated the probes dependency to 0.5.2. CPU usage is now normalized to the number of CPUs available to the container. This means that a container with 2 CPUs will have its CPU usage reported as 50% when using 1 CPU instead of 100%. This is a breaking change for anyone using the cpu probe.
If you have CPU triggers set up based on the old behaviour, you might need to update those to these new normalized values to get the same behaviour. Note that this is needed only if the AppSignal integration package you're using includes this change.

2.7.12
Changed
	33f08759 patch - Improve Ecto transaction instrumentation. Queries performed as part of an
Ecto.Multi or an Ecto.Repo.transaction were already individually
instrumented, but now they are displayed in the event timeline as child events
of a broader transaction event. An additional event is added at the end of the
transaction, to denote whether the transaction was committed or rolled back.

2.7.11
Changed
	dae88280 patch - Bump agent to b604345.	Add an exponential backoff to the retry sleep time to bind to the StatsD, NGINX and OpenTelemetry exporter ports. This gives the agent a longer time to connect to the ports if they become available within a 4 minute window.
	Changes to the agent logger:	Logs from the agent and extension now use a more consistent format in logs for spans and transactions.
	Logs that are for more internal use are moved to the trace log level and logs that are useful for debugging most support issues are moved to the debug log level. It should not be necessary to use log level 'trace' as often anymore. The 'debug' log level should be enough.

	Add running_in_container to agent diagnose report, to be used primarily by the Python package as a way to detect if an app's host is a container or not.

	e6c4c79f patch - Bump agent to 1dd2a18.	When adding an SQL body attribute via the extension, instead of truncating the body first and sanitising it later, sanitise it first and truncate it later. This prevents an issue where queries containing very big values result in truncated sanitisations.

Fixed
	197e3610 patch - Avoid reporting an Oban insert job event as a new incident. This should fix an issue where "insert job" events with little information show up in AppSignal as their own incidents when Oban jobs are inserted from an uninstrumented context that has no parent spans.

2.7.10
Added
	68ec699e patch - Implement an Erlang :logger handler for sending logs from AppSignal, in
preparation for the eventual deprecation of Elixir logger backends.
Add a convenience method to configure this logger handler automatically,
with the right settings for AppSignal:
Appsignal.Logger.Handler.add("my_app", :plaintext)
To remove the logging handler, call the .remove method:
Appsignal.Logger.Handler.remove()

Changed
	cc526cb6 patch - Bump agent to e8207c1.	Add memory_in_percentages and swap_in_percentages host metrics that represents metrics in percentages.
	Ignore /snap/ disk mountpoints.
	Fix issue with the open span count in logs being logged as a negative number.
	Fix agent's TCP server getting stuck when two requests are made within the same fraction of a second.

Fixed
	bcbc1c6a patch - Fix configuration options set with atoms. The options log and log_level can now be set as an Atom, and we'll cast them to a string internally to avoid any ArgumentError from the Nif.
	92a7e886 patch - Fix support for warning log_level. Only warn would work, now warning also works as documented.

2.7.9
Fixed
	ebd39c39 patch - Bump agent to 6133900.	Fix disk_inode_usage metric name format to not be interpreted as a JSON object.

2.7.8
Added
	489615ae patch - Add the host_role config option. This config option can be set per host to generate some metrics automatically per host and possibly do things like grouping in the future.

Changed
	7b3875b2 patch - Bump agent to 6bec691.	Upgrade sql_lexer to v0.9.5. It adds sanitization support for the THEN and ELSE logical operators.

	7781f405 patch - Bump agent to version d789895.	Increase short data truncation from 2000 to 10000 characters.

2.7.7
Added
	75e70db2 patch - Use RENDER_GIT_COMMIT environment variable as revision if no revision is specified.
	7c3103ae patch - Allow JSON and Logfmt log messages
	2b3eab1d patch - Allow configuration of the agent's TCP and UDP servers using the bind_address config option. This is by default set to 127.0.0.1, which only makes it accessible from the same host. If you want it to be accessible from other machines, use 0.0.0.0 or a specific IP address.
	08aedeef patch - Report total CPU usage host metric for VMs. This change adds another state tag value on the cpu metric called total_usage, which reports the VM's total CPU usage in percentages.

Changed
	ece48144 patch - Bump agent to 32590eb.	Only ignore disk metrics that start with "loop", not all mounted disks that end with a number to report metrics for more disks.

Fixed
	b7089a8e patch - Handle atoms for categories in transaction_event decorator

2.7.6
Added
	be411435 patch - Add set_sample_data_if_nil function to Appsignal.Span, allowing for parameters to be set only if they would not override other parameters.
	be411435 patch - Use RENDER_GIT_COMMIT environment variable as revision if no revision is specified.

2.7.5
Changed
	5e5918f5 patch - Improve argument cleaning.
The output should appear in a more familiar format for Elixir developers. Potentially personally identifiable data is removed and the output is truncated to make it easier to understand, while attempting to provide enough information to differentiate between different function clauses.

Fixed
	af402113 patch - Improve Tracer performance by removing duplicate runtime configuration and storage checks

2.7.4
Fixed
	dcdac33e patch - Add handling for cowboy error edge cases to prevent error backend crashes

2.7.3
Added
	37810e11 patch - Allow configuration of the agent's StatsD server port through the statsd_port option.
	0caf8330 patch - Add automatic instrumentation for Tesla.

Changed
	7e7c097d patch - Bump agent to fd8ee9e.	Rely on APPSIGNAL_RUNNING_IN_CONTAINER config option value before other environment factors to determine if the app is running in a container.
	Fix container detection for hosts running Docker itself.
	Add APPSIGNAL_STATSD_PORT config option.

2.7.2
Changed
	49467767 patch - Update agent to v-f9b0c15	Add more span API logging.

2.7.1
Fixed
	8b8d06fa patch - Trim SQL attributes in spans. This fixes an issue where very big payloads are sent from the Elixir integration.

2.7.0
Changed
	885c3618 patch - Update agent to version 6f29190.	Log revision config in boot debug log.
	Update internal agent CLI start command.
	Rename internal _APPSIGNAL_ENVIRONMENT variable to _APPSIGNAL_APP_ENV to be consistent with the public version.

	87946896 patch - Update bundled trusted root certificates.
	704da7a9 patch - Bump agent to 4a0a036. Fix a transmission requeueing problem with queued payloads.

2.7.0-beta.1
Added
	45deeedd minor - Add Absinthe instrumentation

2.6.1
Fixed
	2bc1346f patch - Handle unexpected events in Logger backend

2.6.0
Added
	6462f802 minor - Add Logger backend to redirect Elixir logs to AppSignal.

Changed
	2d424448 patch - Bump agent to 8d042e2.	Support multiple log formats.

	a886a2b7 patch - Bump agent to dee4fcb.	Support cgroups v2. Used by newer Docker engines to report host metrics. Upgrade if you receive no host metrics for Docker containers.
	Remove trailing comments in SQL queries, ensuring queries are grouped consistently.

2.5.3
Changed
	a4a23ded patch - Bump agent to 0d593d5	Report shared memory metric state.

2.5.2
Added
	63adf596 patch - Add NGINX metrics support. See our documentation for details.

2.5.1
Added
	837e0285 patch - Add config options to disable automatic Ecto, Finch and Oban instrumentations.
Set instrument_ecto, instrument_finch or instrument_oban to false in
order to disable that instrumentation.
	b3a77a73 patch - Add a report_oban_errors config option to decide when to report Oban errors. When set to "all", all errors will be reported; when set to "none", no errors will be reported. Set it to "discard" to only report errors when the job is discarded due to the error and won't be re-attempted.
	e52997c8 patch - Add metadata functions for Plug/Phoenix apps

Fixed
	837e0285 patch - Fix the default value of enable_error_backend so it defaults to true when
the config option is not set.

2.5.0
Added
	bc14f302 minor - Add Oban instrumentation. Jobs processed by your Oban workers will now be instrumented with AppSignal, and job insertions will appear as events in your performance samples' event timelines.
	65107c60 patch - Track the Operating System release/distro in the diagnose report. This helps us with debugging what exact version of Linux an app is running on, for example.

2.4.3
Fixed
	1b69bf4e patch - Fix an issue where user configuration enabling metrics for Hackney would cause the AppSignal Agent installation to fail.

2.4.2
Fixed
	a5c810d4 patch - Fix an issue where reporting an exception for a function call whose arguments contain a map of PID would raise a second exception instead.

2.4.1
Changed
	4473ffee patch - Add enable_error_backend configuration option

2.4.0
Added
	beb0c43b minor - Support log collection from Elixir apps using the new AppSignal Logging feature. Learn more about AppSignal's Logging on our docs.

Changed
	b2dddb11 patch - Replace arguments in stack traces with sanitized versions instead of stripping them out completely

2.3.1
Fixed
	5a9b4b6c patch - Fix FunctionClauseError for old Finch versions. This change explicitly ignores events from old Finch versions, meaning only Finch versions 0.12 and above will be instrumented, but using Finch versions 0.11 and below won't cause an event handler crash.

2.3.0
Added
	2aaf55be minor - Add Finch integration. HTTP requests performed with Finch will show up as events in the sample view.

2.2.19
Fixed
	be7825e1 patch - Fix extension linking on Alpine Linux ARM64 systems.

2.2.18
Fixed
	05f59d31 patch - Fix compile-time error about symbol names starting with a comma. Updated the linking script to not include the comma.

2.2.17
Fixed
	b600e85a patch - Fix compile-time warning about an unused funtion in the extension. The _set_span_attribute_sql_string function wasn't hooked up, which didn't produce any issues since the SQL queries coming from Ecto don't need to be sanitized any further (sensitive data is already stripped out). This patch still runs them through AppSignal's SQL sanitizer to fix the warning and behave as promised, theoretically.
	910ad1dd patch - Fix compile-time error that broke linking on macOS 12.6, more specifically the latest Xcode at this time (version 14.0 14A309).

2.2.16
Changed
	03b8306a patch - Bump agent to 06391fb	Accept "warning" value for the log_level config option.
	Add aarch64 Linux musl build.
	Improve debug logging from the extension.
	Fix high CPU issue for appsignal-agent when nothing could be read from the socket.

Fixed
	4d72d791 patch - Always return :ok from Appsignal.config_change/3
	914f013b patch - Always return the Span from span setter functions, to allow for chaining setter calls with optional values

2.2.15
Changed
	ab876253 patch - Bump agent to v-d573c9b	Clean up payload storage before sending. Should fix issues with locally queued payloads blocking data from being sent.
	Add OpenTelemetry support for the Span API. Not currently implemented in this package's extension.

Fixed
	d66ad2d8 patch - Always return the Span from Span.set_attribute/3, making it easier to chain this function call.

2.2.14
Fixed
	ffb3ab29 patch - Fix compile-time error with empty configurations
	c3599ae9 patch - Improve the error message on extension load failure. The error message will now print more details about the installed and expected architecture when they mismatch. This is most common on apps mounted on a container after first being installed on the host with a different architecture than the container.
	4ac415f1 patch - Don't crash at compile time when AppSignal is not configured

2.2.13
Fixed
	26be6e58 patch - Fix session data by reverting the sample data key change

2.2.12
Added
	65c5d716 patch - Don't set session data when the send_session_data configuration is set to false

2.2.11
Added
	e287e58c patch - Allow ignoring specific pids through Tracer.ignore/1
	c325114a patch - Log messages are now sent through a centralised logger, defaulting to logging
to the /tmp/appsignal.log file.
To log to standard output instead, set the log config property to "stdout".
	96c60363 patch - Don't set parameters when the send_params configuration is set to false

Changed
	bb6c7a65 patch - Add the config "override" source to better communicate and help debug when certain config options are set. This is used by the diagnose report. The override source is used to set the new config option value when a config option has been renamed, like send_session_data.
	003a2edd patch - The extension installation will no longer fail when the CA certificate file is not accessible.
	db97b2f6 patch - Bump agent to v-bbc830a	Support batched statsd messages
	Set start times for spans with traceparents
	Check duration in transactions for negative and too high values

	709224ad patch - Bump agent to v-f57e6cb	Enable process metrics on Heroku and Dokku

2.2.10
Added
	0469f4b2 patch - Add send_session_data option to configure if session data is automatically included in
spans. By default this is turned on. It can be disabled by configuring
send_session_data to false.

Changed
	ffe65216 patch - Remove Ruby exclusive headers from request_headers defaults.
	c0a98928 patch - Bump AppSignal agent version to 15ee07b. Add internal tracking of transmission duration.
	8c14f827 patch - The diagnose library report now reports the agent version from the committed agent file,
rather than the downloaded version, which is reported in the installation report.

Deprecated
	0469f4b2 patch - Deprecate skip_session_data option in favor of the newly introduced send_session_data option.
If it is configured, it will print a warning on AppSignal load, but will also retain its
functionality until the config option is fully removed in the next major release.

Fixed
	e4ec8e68 patch - Prefer the value of the log_level config option, instead of the deprecated debug config option, when deciding whether to log a debug message. If log_level does not have a value, or its value is invalid, the values of the deprecated debug and transaction_debug_mode config options are taken into account.

2.2.9
Fixed
	2b78e1e2 patch - Fix debug and transaction_debug_mode log options. If set, previously the log_level would remain "info", since version 2.2.8.

2.2.8
Added
	4a9bcca3 patch - Add "log_level" config option. This new option allows you to select the type of messages
AppSignal's logger will log and up. The "debug" option will log all "debug", "info", "warning"
and "error" log messages. The default value is: "info"The allowed values are:	error
	warning
	info
	debug

	10078177 patch - Add send_environment_metadata config option to configure the environment metadata collection. For more information, see our environment metadata docs.
	10078177 patch - Add the Erlang scheduler utilization to the metrics reported by the minutely probes. The metric is reported as a percentage value with the name erlang_scheduler_utilization, with the tag type set to "normal" and the tag id set to the ID of the scheduler in the Erlang VM.

Changed
	10078177 patch - Bump agent to v-5b63505	Only filter parameters with the filter_parameters config option.
	Only filter session data with the filter_session_data config option.

	10078177 patch - Remove the valid key from the diagnose output. It's not a configuration option that
can be configured, but an internal state check if the configuration was considered valid.
	10078177 patch - Print the extension installation dependencies and flags in the diagnose report output.
	10078177 patch - Standardize diagnose validation failure message. Explain the diagnose request failed and why.
	f3bb8546 patch - Bump agent to v-0db01c2	Add log_level config option in extension.
	Deprecate debug and transaction_debug_mode option in extension.

Deprecated
	4a9bcca3 patch - Deprecate "debug" and "transaction_debug_mode" config options in favor of the new "log_level"
config option.

Removed
	f40ead99 patch - Remove the unused allocation tracking config option.

Fixed
	10078177 patch - Fix a bug where setting the :phoenix, :filter_parameters configuration key to an allow-list of the form {:keep, [keys]} would apply this filtering to all sample data maps. The filtering is now only applied to the params sample data map.
	10078177 patch - Fix the Push API key validator request query params encoding.
	10078177 patch - When the Push API key config option value is an empty string,
or a string with only whitespace characters, it is not considered valid anymore.
	10078177 patch - Transmit the path file modes in the diagnose report as an octal number. Previously it send values like 33188 and now it transmits 100644, which is a bit more human readable.
	10078177 patch - Improve parameter and session data filtering options. Previously all filtering was done with one combined denylist of parameters and session data. Now filter_parameters only applies to parameters, and filter_session_data only applies to session data.
	10078177 patch - Fix the download of the agent during installation when Erlang is
using an OpenSSL version that does not support TLS 1.3, such as versions below OpenSSL 1.1.1.
	ad0b00f1 patch - Suppress a warning emitted by Telemetry 1.0.0, regarding the performance penalty of using local functions as event handlers, by specifying the module of the captured function.

2.2.7
	f07f9cf9 patch - Bump agent to 09308fb.	Update sql_lexer dependency with support for reversed operators in queries.
	Add debug level logging to custom metrics in transaction_debug_mode.
	Add hostname config option to standalone agent.

2.2.6
	acb7295 patch - Print String values in the diagnose report surrounded by quotes, and booleans as "true" and "false", rather than "yes" and "no". Makes it more clear that it's a value and not a label we print.

	e71792f patch - Fix diagnose output rendering an additional empty line for the appsignal.log file. It appeared that only 9 lines were printed instead of the 10 expected lines.

	422cbd1 patch - Render the install report errors in the diagnose CLI output fewer times. A missing download and/or install report could sometimes be displayed up to two times, in total four errors.

	f7c0b1e patch - Support mix task diagnose arguments. When an app is released with mix release CLI arguments cannot normally be passed to the diagnose task. Use the eval command pass along the CLI arguments as function arguments.
mix format
Without arguments
bin/your_app eval ':appsignal_tasks.diagnose()'
With arguments
bin/your_app eval ':appsignal_tasks.diagnose(["--send-report"])'

	c51c065 patch - Update diagnose output labels to be similar to our other language integrations.

	9d3e253 patch - Add new config option to enable/disable StatsD server in the AppSignal agent. This new config option is called enable_statsd and is set to false by default. If set to true, the AppSignal agent will start a StatsD server on port 8125 on the host.

2.2.5
	e7d676a9 patch - Update SSL configuration for OTP 23 and newer to fix the Cloudfront mirror download during installation.
	7ccf75ce patch - Fix install result message to no longer show a success message when an installation failure occurred.

2.2.4
	787684bf patch - Installation report improved for download errors. Download errors are more descriptive in the installation result of the diagnose report.

2.2.3
	b89ab7bc patch - Bump agent to 7376537	Support JSON PostgreSQL operator in sql_lexer.
	Do not strip comments from SQL queries.

2.2.2
	c6772da3 patch - Fix extension installer from cached source in /tmp directory. This would cause installation errors of the package if the AppSignal package was reinstalled again on a host that already installed it once.

2.2.1
	a7987f3 patch - Add mirrors to download the agent

2.2.0
	1d7b7a3 minor - Use underscores instead of slashes in spans created from decorators. This will change action naming from Module.function/1 to Module.function_1.
	7927a3f patch - Bump agent to v-0318770.	Improve Dokku platform detection. Do not disable host metrics on
Dokku.
	Report CPU steal metric.

2.1.15
	325c985 patch - Add support for telemetry 1.0.0

2.1.14
	231abb13 patch - Bump agent to 0f40689	Add Apple Darwin ARM alias.
	Improve appsignal.h documentation.
	Improve transaction debug log for errors.
	Fix agent zombie/defunct issue on containers without process reaping.

2.1.13
	2531288d patch - Fix Apple ARM detection. It wasn't properly detected as an Apple ARM host because the installer did not account for an architecture String a without 32/64-bit indicator.

2.1.12
	0e2cd629 patch - Only create root spans from transaction and channel action decorators, as they're meant to only be used when no span exists yet.

2.1.11
	4ba38f9 patch - Bump agent to v-891c6b0. Add experimental Apple Silicon M1 ARM64 build.

2.1.10
	523e229e patch - Bump agent to version that is compatible with different error grouping
types.

2.1.9
	76a31400 patch - Add Linux ARM override value to diagnose report. This was omitted from the original implementation of the APPSIGNAL_BUILD_FOR_LINUX_ARM flag.
	07d1ea17 patch - Bump agent to c2024bf with appsignal-agent diagnose timing issue fix when reading the report and improved filtering for HTTP request transmission logs.

2.1.8
	b2c888dc patch - Update APPSIGNAL_BUILD_FOR_MUSL behavior to only listen to the values 1 and true. This way APPSIGNAL_BUILD_FOR_MUSL=false is not interpreted to install the musl build.
	f467daf9 patch - Add Linux ARM 64-bit experimental build, available behind a feature flag. To test this set the APPSIGNAL_BUILD_FOR_LINUX_ARM flag before compiling your apps: export APPSIGNAL_BUILD_FOR_LINUX_ARM=1 <command>. Please be aware this is an experimental build. Please report any issue you may encounter at our support email.
	b8075176 patch - Use MapSets for Monitor's internal monitor list. As uniqueness is guaranteed (you can't monitor a particular pid more than once), MapSet is a better data structure to store this information, since all its operations are constant-time instead of linear-time.
	Track erlang_atoms gauge in erlang probe. This reports the atom_limit and atom_count metrics. PR #651

2.1.7
	Keep internal list of monitors in Appsignal.Monitor process. PR 648

2.1.6
	Fix Appsignal.logger debug level issue on no config present. PR #644
	Bump agent to d08ae6c. PR #645. Fix span API related issues with empty events
for error samples and missing incidents.

2.1.5
	Add Appsignal.Logger to only log debug messages when the :debug configuration is turned on. PR #642

2.1.4
	Ensure the :request_headers config returns an empty list by default. PR #637

2.1.3
	Use pid from conn in Error.Backend if available. PR #631

2.1.2
	Make sure Appsignal.se(nd|t)_error is properly delegated. PR #629

2.1.1
	Probes.handle_info/2 handles non-exception errors. PR #626

2.1.0
	Pass functions to set error PR #622
	Pass Elixir exceptions to Appsignal.Instrumentation.se(t|nd)_error/2. PR #620

2.0.8
	Clear warnings. PR #623

2.0.7
	Let set error use root span. PR (#611)
	Bump agent to v-44e4d97	Implement ignore namespaces for spans. PR #645

2.0.6
	Monitor all registered spans. PR #608
	Switch to reference-based child Span API, fixes memory leak when using
child spans. PR #607

2.0.5
	Don't register query spans without parents. PR #600

2.0.4
	Bump agent to v-c55fb2c	Fix ignore actions and spans without names bugs. PR #639

2.0.3
	Bump agent to v-f9d2b57	Add error counts to map for spans. PR #638

2.0.2
	Use "channel" namespace in channel_action decorator. PR #596

2.0.1
	Ignore unhandled info, code_change and terminate in Error.Backend. PR #594
	Explicitly ignore returns from Span functions. PR #593

2.0.0
	Set categories from transaction_event/3 decorator fallback. PR #583
	Remove Plug and Phoenix fallbacks in favour of post-install message. PR #582
	Bump agent to v-881e3b3	Agent writes diagnose to file, extension reads from file. PR #628
	Ignore actions when creating span payload. PR #630
	Update Cargo.lock after bumping probes-rs and running cargo update. PR #633

	Bump agent to v-5b16a75	Fixed a version mismatch issue in the agent which caused no samples to be processed

	Bump agent to v-38010f3	Use Rust 1.46.0 and spawn agent without waiting for it. PR #618

	Set category names in demo command
Commit dd5a4c019f403a5c55be0f4f07bda8d85385aef4
	Add Repo configuration. PR #578
	Link AppSignal config when config/config.exs does not exist. PR #577
	Set category from Appsignal.Instrumentation.instrument/3
Commit c8a789e9ff5dfe0d5a522448a923f94a1f54b63d
	Add debug log lines on handler attachment
Commit 44f594dc6c4fa00b0ecb329aea16907cb106a67a
Commit 23a9cd0bf063e96c9b87ca2b2cf797ab96d4f96b
Commit a0ac8566f1d200152748b98f938ba78813767f9e
	Bump agent to v-c8f8185. PR #575
	Implement _set_span_namespace. PR #576
	Tracer handles registry being down
Commit 86e433e42ebfd080d5a1f8450f9a29784ef2d4d9
	Handle nil-spans in span.set_namespace/2
Commit d0f5d9d96890f0caaa80c58c7a34a343b722591e
	Restore Appsignal.send_error/3 and Appsignal.set_error/3. PR #574
	Remove unused module attributes from Appsignal module
	Switch to span-based API
	Reimplement error handling
	Reimplement Ecto integration
	Split out Plug integration into separate library
	Split out Phoenix integration into separate library
	Bump agent to v-a21a12a

1.13.5
	Bump agent to v-20f7d0d	Spawn agent without waiting for it. PR #618
	Agent writes diagnose to file, extension reads from file. PR #628

1.13.4
	Bump agent to v-4548c88	Fix issue with host metrics values being reported as "Infinity". PR #572

1.13.3
	Add callback for TransactionBehaviour.set_sample_data/2. PR #560
	Use tls 1.3 cipher suites on OTP 23. PR #571

1.13.2
	Handle non-string-non-atom-non-iteger values in Transaction.to_s/1
Commit 772cb943b6d545942a50042a268d441973adab23

1.13.1
	Use __STACKTRACE__ /0 on Elixir >= 1.7. PR 559
	Relax live_view dependency to allow versions over 0.9. PR #558
	Bump agent to v-96b684b	Check if queued payloads are for correct app and not expired

1.13.0
	Add LiveView instrumentation helpers. PR #549
	Fix typespec for Appsignal.Phoenix.Channel.channel_action/4. PR #553
	Add record event callback to TransactionBehaviour. PR #555

1.12.1
	EventHandler handles router_dispatch events with plug_opts #547

1.12.0
	Add explicit error handling for Phoenix channels. PR #527

	Add Phoenix Telemetry event handler to add Phoenix 1.5 instrumentation. PR #528 & #538
Before version Phoenix version 1.5. AppSignal’s Phoenix instrumentation
depended on data from the Phoenix instrumenter, and the installation
instructions included a step to attach AppSignal’s instrumenter to your
application in your app’s configuration:
config :appsignal_phoenix_example, AppsignalPhoenixExampleWeb.Endpoint,
 #...
 instrumenters: [Appsignal.Phoenix.Instrumenter]
From Phoenix 1.5 on, the old Phoenix instrumentation is deprecated and
removed in favor of the new Telemetry-based instrumentation. When upgrading
to Phoenix 1.5, you’ll see a warning during compilation when using the old
instrumenters:
[warn] :instrumenters configuration for
AppsignalPhoenixExampleWeb.Endpoint is deprecated and has no effect
To switch to the new instrumentation, make sure you're running version 1.12.0
of the AppSignal integration or higher. Then, remove the instrumenters
configuration option from your endpoint configuration. The new
instrumentation should appear automatically in your samples as an event named
call.phoenix_endpoint.

1.11.8
	Reduce calls to pids_and_monitor_references/1 and :ets.match/1 #543. PR #543

1.11.7
	Return the Ecto.LogEntry even if the transaction is nil. PR #542

1.11.6
	Call pids_and_monitor_references/1 from TransactionRegistry. PR #541

1.11.5
	Use a complete set of ssl_options for Hackney. PR #534

1.11.4
	Add transaction_debug configuration option. PR #526
	Bump agent to v-c348132	Improve transmitter logging on timeout
	Improve queued payloads transmitter. Should prevent payloads being
sent multiple times.
	Add transaction debug mode
	Wrap Option in Mutex in TransactionInProgess

1.11.3
	Transaction.set_action/2 returns the Transaction on failure. commit 16e5ecbc90aece993177da7e1b2486fa477e25e8
	Don't match on :ok on Appsignal.Plug.finish_with_conn/2. commit ebc7dd968a9bbeff3447e8f84dab181205f976ed

1.11.2
	Run receiver monitors in receiver process. PR #525.
	Move action nil-check to Appsignal.Transaction.set_action/2. PR #523.

1.11.1
	Don't match on return from Transaction.complete/1. PR #521

1.11.0
	Convert time units for all Ecto callbacks. PR #481
	Deactivate AppSignal when not active. PR #478
	Fix FreeBSD compilation. PR #484
	Extract ETS and Receiver logic from TransactionRegistry. PR #505
	Add support for both Jason and Poison. PR #506
	Add Erlang Run Queue length metric. PR #492
	Filter structs in MapFilter. PR #507

1.10.13
	OTP 22.1 hackney workaround for honor_cipher_order. PR #516
	Bump agent to v-690f4b8 - commit 5245f919d975135d553a89b019c421e1fe27edd3	Validate transmission_interval option.

1.10.12
	Bump agent to v-e1c9363	Better detect zombie/defunct processes on containers and consider the
processes dead. This should improve the appsignal-agent start behavior.
	Detect revision from Heroku dynos automatically when Dyno Metadata is
turned on.

1.10.11
	Bump agent to v-a718022	Fix container CPU runtime metrics.
See https://github.com/appsignal/probes-rs/pull/38 for more information.
	Improve host metrics calculations accuracy for counter metrics.
See https://github.com/appsignal/probes-rs/pull/40 for more information.
	Support Kernel 4.18+ format of /proc/diskstats file parsing.
See https://github.com/appsignal/probes-rs/pull/39 for more information.

1.10.10
	Restore getfilter(parameters|session_data) to patch backwards compatibility. PR #500

1.10.9
	Support parameter filtering with {:keep, params}. PR #499

1.10.8
	Handle non-maps in Config.active?/0. PR #495
	Use Phoenix >= 1.2.0 and < 1.4.0 on Elixir 1.3. PR #496

1.10.7
	Fix musl detection on installation. PR #493

1.10.6
	Use the bundled certificate and ciphers when downloading agent (#491)
	Explicitly set ciphers in hackney https requests (#489)
	Remove log statements from TransactionRegisty (#490)
	Improve ldd version error handling (#487)

1.10.5
	Remove explicit ignore check in TransactionRegistry. PR #480
	Handle errors in Mix.Appsignal.Helper.uid/0. PR #479

1.10.4
	Handle atom keys in MapFilter.filter_values/2. PR #475

1.10.3
	Track memory metrics of the current process. PR #473

1.10.2
	Fix memory leak in custom metrics key names.
Commit 91c65e51cc949e66b3f504444f3570858a598352

1.10.1
	Add enable_minutely_probes config option. PR #470
	Tag hostnames in ErlangProbe. PR #469
	Don't use fetch_env!/2 in ErlangProbe. PR #471

1.10.0
	Store extension installation details in report. PR #433
	Fail AppSignal extension installation on warnings
Commit 7b17a0b86f87ea7097315d1247ccd52c78be8e97
	Rescue make command errors
Commit 69efc629eaa0a3f3a3e2d8c3871f3c7bba86c151
	Add response status codes to Plug samples. PR #453
	Use :logger instead of :error_logger on OTP >= 21. PR #454
	Allow Appsignal.Plug.call/2 to be overridden. PR #464
	Use proxy from system environment when downloading agent. PR #458
	Bump agent to 4a275d3
Commit 0635e043d4b299d7ec838f89ca4d36c3ed3792ce	Support container CPU host metrics.
	Support StatsD server in agent.
	Fix samples being reported for multiple namespaces.
	Report memory and swap usage in percent using the memory_usage and
swap_usage metrics.

	Add Erlang Probe. PR #466
	Minutely Probing for Custom Metrics. PR #461

1.9.4
	Update Ecto integration to support both Telemetry 0.3.x and 0.4.x. PR #459

1.9.3
	Support send_params option. PR #456

1.9.2
	Fix multi user permission issue for agent directories and files.
Commit fdd650097b702a8aa60ee90ee93ad4e3e3365d81

1.9.1
	Block on ignoring PIDs in TransactionRegistry. PR #448

1.9.0
	Add missing host OS field to diagnose report. PR #418
	Link back to AppSignal diagnose report page. PR #420
	Add Error.metadata/2 to extract error metadata. PR #423
	Format values printed in the diagnose. PR #426
	Update diagnose paths section. PR #427
	Add unified ErrorHandler. PR #425
	Fix appsignal.log default path. PR #429
	Support container memory host metrics better. PR #431
	Change files_world_accessible permissions to not make files executable. PR #431
	Make agent debug logging for disk IO metrics more robust. PR #431

1.8.2
	Add Appsignal.Ecto.handle_event/4 to support Ecto 3. PR #416
	Add diagnose command --[no-]send-report option. PR #414
	Group extension and agent tests in diagnose output. PR #413
	Add new agent & extension diagnose report keys. PR #412
	Pretty print lists in diagnose output. PR #408
	Add :poison to :applications. PR #404
	Add :hackney to :applications. PR #403
	Allow Appsignal.send_error/1-7 to be called without a stack trace. PR #400
	Use Mix.shell.info instead of Logger.info in mix helpers. PR #399

1.8.1
	Fix linking issues on multi-stage build setups. PR #406

1.8.0
	Add working_directory_path config option. PR #363
	Use doubles values in custom metrics functions. PR #384
	Support Elixir 1.7. PR #386

1.7.2
	Ensure ca_file_path is written to agent env. PR #381
	Use gmake over make when gmake executable exists. PR #382

1.7.1
	Fix absolute path to CA certificate file. PR #380

1.7.0
	Bundle CA certificate. PR #364
	Add Appsignal.Transaction.set_namespace/1-2. PR #361
	Use :hackney instead of cURL to download agent. PR #359

1.6.7
	Revert container memory metrics fixes. PR #370
	Fix _APP_REVISION read logic in extension. PR #370
	Fix _APPSIGNAL_PROCESS_NAME read logic in extension. PR #370

1.6.6
	Add container memory metrics fixes.
	Use local agent environment instead of system environment. PR #368

1.6.5
	Allow calling Transaction.register/1 and Transaction.complete/1 when the Registry is not alive. PR #356

1.6.4
	Overwrite message for Phoenix.ActionClauseError. PR #355

1.6.3
	Remove script_name, query_string and peer from Plug.extract_sample_data/1. PR #351

1.6.2
	Merge instead of ignore Phoenix's :filter_parameters if also configured in AppSignal. PR #349

1.6.1
	Remove request_headers warning and use sane default. PR #346
	Fix metrics format for internal agent metrics. PR #347

1.6.0
	Explicit header whitelist in configuration (#336)
	Add filter_session_data config option (#343)
	Log with :info level instead of :warn when AppSignal is disabled (#340)
	Remove default hostname (#339)
	Remove filter_parameters config for extension (#337)
	Demonitor processes when the transaction completes (#333)
	Hard-remove transactions from the Registry (#332)
	Accept tags for (custom) metrics (#331)
	Don't register Transactions created by Appsignal.send_error/7 (#330)
	Remove transaction when calling Transaction.complete (#329)
	Add :request_headers and APPSIGNAL_REQUEST_HEADERS configuration (#327)
	Filter arguments in backtraces (#326)
	Relax :httpoison dependency to allow ~> 1.0 (#322)

1.5.0
	Add agent.exs file to package in mix.exs (#323)
	Restore :revision config (#315)
	Underscored environment variables are always overwritten (#316)
	Move compilation helper functions to mix_helpers.exs (#314)
	Use "unknown" as action for Plug-only transactions, set action before call/2 (#311)
	Bump agent to ca32965 (#310, #315)	Underscore _APP_REVISION environment variable.
	Unset revision config option when the APP_REVISION environment
variable only contains an empty string.
	Fix locking issue on diagnose mode run
	Increase stored length of error messages

1.4.10
	Fix POST parameters in errors, take the Plug.Conn from Plug.Conn.WrapperErrors (#309)

1.4.9
	Add x-real-ip to request header whitelist (#308)
	ErrorHandler doesn't cause warnings for noise over handle_info (#304)

1.4.8
	Fix transaction metadata for send_error (#303)
	Use Application.load/1 in diagnose task (#297)
	Fix DataEncoder.encode error (#293)
	Update agent to fix locking issue in diagnose (#300)

1.4.7
	Fix compile errors on Elixir 1.6 (#298)

1.4.6
	Wrap WrapperError clause in Appsignal.plug? (#291)
	Don't use Plug.ErrorHandler.catch/4 in Appsignal.Plug (#287)

1.4.5
	Ensure the appsignal application is started when running diagnose (#286)

1.4.4
	ErrorHandler unwraps Plug.Conn.WrapperError (#281)
	Fetch request_id in Appsignal.Plug.extract_meta_data/1 (#283)

1.4.3
	Fix dialyzer linting violations. (#271)
	Fix logger error on failed installation. (#275)
	Reuse Appsignal.agent module by unloading it after use in mix.exs. (#277)

1.4.2
	Change log level from info to debug for value comparing failures.
Commit 76fafebba5e37cfd2c303c286271f4616cf63bd3
	Collect free memory host metric.
Commit 76fafebba5e37cfd2c303c286271f4616cf63bd3

1.4.1
	Use musl build for older systems (#274)

1.4.0
	Add separate GNU linux build. PR #265 and
Commit b9546cae01cd89d597586ad6c7dc4b5213fe2fca
	Add separate FreeBSD build
Commit b9546cae01cd89d597586ad6c7dc4b5213fe2fca
	Auto restart agent when none is running
Commit b9546cae01cd89d597586ad6c7dc4b5213fe2fca

1.3.6
	Fix crashes when using a transaction from multiple processes in an unsupported way.
Commit b9546cae01cd89d597586ad6c7dc4b5213fe2fca
	Allow string values in atom config fields (#269)

1.3.5
	Allow multiple calls to send_error in one Transaction (#260)

1.3.4
	Allow configuration of permissions of working directory. (#246)
	Fix locking bug that delayed extension shutdown.
Commit 1953b2abced8c477af3eb973cc71b98c20761b51
	Log extension start with app revision if present
Commit 1953b2abced8c477af3eb973cc71b98c20761b51

1.3.3
	No channel payloads in the channel_action decorator (#255)
	Add architecture for elixir:alpine Docker image (#256)

1.3.2
	Don't crash with unbound channel payloads (#253)

1.3.1
	Appsignal.Phoenix.Channel.channel_action/5 includes channel parameters (#251)
	Add files world accessible option to config (#246)

1.3.0
	Plug support without Phoenix
	Transaction.set_request_metadata sets path and method
	Add arch mapping for 32bit linux
	Check if curl is installed before calling it
	Add ignore_namespaces option
	Whitelist request headers

1.2.3
	Add architecture mappings for 32bit systems. (#229)

1.2.2
	Better backtraces for linked processes (#207)
	Backtrace.format_stacktrace handles lists of binaries (#214)

1.2.1
	Allow nil transaction in instrumentation (#198)
	ErrorHandler handles errors in tuples (#201)
	Set env: Mix.env in generated config.exs (#203)
	Improve registry lookup performance (#205)

1.2.0
	Catch and handle errors in the Plug using Plug.ErrorHandler instead of
in Appsignal.ErrorHandler (#187 & #193)

1.1.1
	Fix unpacking agent tar as root (#179)
	Add Instrumentation.Helpers.instrument/3
	Add Appsignal.Backtrace, deprecate ErrorHandler.format_stack/1

1.1.0
	Depend on Phoenix >= 1.2.0 instead of ~> 1.2.0 (#167)
	Reload the config in a separate process (#166)
	Add action names to exceptions (#162)

1.0.4
	Fix propagation of transaction decorator return value (#164)

1.0.3
	Force the agent to run in diagnostics mode even if the app's config doesn't
have AppSignal marked as active. (#132 and #160)
	Remove duplicate config file linking output in installer (#159)
	Upon install deactivate test env if available rather than activate any other
env (#159)
	Print missing APPSIGNAL_APP_ENV env var in installation instructions. (#161)

1.0.2
	Remove extra comma from generated config/appsignal.exs (#158)

1.0.1
	Remove (confusing revision logic) (#154)

1.0.0
	Bump to 1.0.0 🎉

0.13.0
	Send demo samples on install (#136)
	Make mix tasks available in releases (#146)
	Rename Phoenix framework event names (#148)
	Open and close Transactions in Appsignal.Phoenix.Plug.call/2 (#131)

0.12.3
	Move package version to a module attribute (#143)

0.12.2
	Bump agent to 5464697
	Check agent version in Mix.Appsignal.Helper.ensure_downloaded/1 (#141)

0.12.1
	Upgrade HTTPoison and allow more versions

0.12.0
	Add mix appsignal.diagnose task (#81)
	Auto activate when push_api_key in env, not always (#89)
	Bump agent to f81fe90
	Implement running_in_container detection.
	Fix DNS issue with musl and resolv.conf using "search" on the first line of configuration.
	Use agent.ex instead of agent.json, drop Poison dependency (#115)
	DataEncoder encodes bignums as strings (#88)
	Remove automatic :running_in_container setting (moved to agent)

0.11.6
	Send body->data instead of body to appsignal_finish_event

0.11.5
	Bump agent to version with extra null pointer protection

0.11.4
	Bump agent (360f06b)

0.11.3
	Update musl version to fix DNS search issue (a8e6f23)

0.11.2
	Add support for non-strings as map values in DataEncoder.encode/1 (#83)

0.11.1
	Add phoenix as optional dependency to :prod (#80)
	Add the module name to the transaction action while using decorators (#79)

0.11.0
	Re-initialize Appsignal's config after a hot code upgrade. (#71)
	Send all request headers (#75)
	Add ErrorHandler.normalize_reason (#78)
	Elixir 1.4 compatibility
	Add fix for grabbing filter_parameters from Phoenix (#73)
	Add Alpine linux (#77)
	Add appsignal.demo mix task (#69)
	Drop Phoenix dependency #61

0.10.0
	Check Appsignal.started?/1 in TransactionRegistry.lookup/2 (#54)
	Various configuration fixes (#55)
	Use APPSIGNAL_APP_ENV instead of APPSIGNAL_ENVIRONMENT (#56)
	The agent logs to STDOUT on Heroku (#60)
	Add a transcation decorator (#62)
	Update agent to 5f0c552 (#64)
	Enable host metrics by default (#66)
	DataEncoder.encode/2 handles tuples (#68)
	Registry.register/1 returns nil if Appsignal is not started (#70)
	Appsignal.Transaction.set_error/4 handles unformatted stacktraces (#72)
	Fix missing paren warnings in Elixir 1.4 (#59)
	Add support to refs and pids inside payloads (#57)
	Add centos/redhat support for agent installation (#48)

0.9.2
	Fix Makefile for spaces in path names
	Set APPSIGNAL_IGNORE_ACTIONS from config (#41)
	Send metadata in Appsignal.ErrorHandler.submit_transaction/6 (#40)
	Add a section suggesting active: false in test env (#35)

0.9.1
	Appsignal.Helpers has been moved to Appsignal.Instrumentation.Helpers

0.9.0
	Remove instrumentation macros, switch to decorators
	Update channel decorators documentation
	Documentation on instrumentation decorators
	Let Appsignal.{set_gauge, add_distribution_value} accept integers (#31)
	Implement Appsignal.send_error (#29)
	Add documentation for filtered parameters (#28)
	Appsignal.Utils.ParamsEncoder.preprocess/1 handles structs (#30)

0.8.0
	Experimental support for channels
	Add instrument_def macro for defining a single instrumented function
	Document that we are using a NIF and how it is used
	Simplified transaction functions no longer raise
	Don't warn about missing config when running tests
	remember original stacktrace in phoenix endpoint (#26)

0.7.0
	Allow Phoenix filter parameters and/or OS env variable to be used
	Send Phoenix session information
	Simplify Transaction API: Default to the current process transaction
	Add Transaction.filter_values/2
	Transaction.set_request_metadata/2 filters parameters
	Fix host metrics config key in GettingStarted

Appsignal

AppSignal for Elixir. Follow the installation
guide to install
AppSignal into your Elixir app.
This module contains the main AppSignal OTP application, as well as a few
helper functions for sending metrics to AppSignal.

 Anchor for this section

 Summary

 Functions

 add_distribution_value(key, value, tags \\ %{})

 Add a value to a distribution

 increment_counter(key, count \\ 1, tags \\ %{})

 Increment a counter of a metric.

 instrument(fun)

 See Appsignal.Instrumentation.instrument/1.

 instrument(name, fun)

 See Appsignal.Instrumentation.instrument/2.

 instrument(name, category, fun)

 See Appsignal.Instrumentation.instrument/3.

 send_error(exception, stacktrace)

 See Appsignal.Instrumentation.send_error/2.

 send_error(kind, reason, stacktrace)

 See Appsignal.Instrumentation.send_error/3.

 send_error(kind, reason, stacktrace, fun)

 See Appsignal.Instrumentation.send_error/4.

 set_error(exception, stacktrace)

 See Appsignal.Instrumentation.set_error/2.

 set_error(kind, reason, stacktrace)

 See Appsignal.Instrumentation.set_error/3.

 set_gauge(key, value, tags \\ %{})

 Set a gauge for a measurement of a metric.

 Anchor for this section

Functions

 Link to this function

 add_distribution_value(key, value, tags \\ %{})

 View Source

 @spec add_distribution_value(String.t(), float() | integer(), map()) :: :ok

Add a value to a distribution
Use this to collect multiple data points that will be merged into a graph.

 Link to this function

 increment_counter(key, count \\ 1, tags \\ %{})

 View Source

 @spec increment_counter(String.t(), number(), map()) :: :ok

Increment a counter of a metric.

 Link to this function

 instrument(fun)

 View Source

See Appsignal.Instrumentation.instrument/1.

 Link to this function

 instrument(name, fun)

 View Source

See Appsignal.Instrumentation.instrument/2.

 Link to this function

 instrument(name, category, fun)

 View Source

See Appsignal.Instrumentation.instrument/3.

 Link to this function

 send_error(exception, stacktrace)

 View Source

See Appsignal.Instrumentation.send_error/2.

 Link to this function

 send_error(kind, reason, stacktrace)

 View Source

See Appsignal.Instrumentation.send_error/3.

 Link to this function

 send_error(kind, reason, stacktrace, fun)

 View Source

See Appsignal.Instrumentation.send_error/4.

 Link to this function

 set_error(exception, stacktrace)

 View Source

See Appsignal.Instrumentation.set_error/2.

 Link to this function

 set_error(kind, reason, stacktrace)

 View Source

See Appsignal.Instrumentation.set_error/3.

 Link to this function

 set_gauge(key, value, tags \\ %{})

 View Source

 @spec set_gauge(String.t(), float() | integer(), map()) :: :ok

Set a gauge for a measurement of a metric.

Appsignal.Ecto

 Anchor for this section

 Summary

 Functions

 attach()

 Attaches Appsignal.Ecto to the Ecto telemetry channel configured in the
application's configuration.

 attach(otp_app, repo)

 Attaches Appsignal.Ecto to the Ecto telemetry channel based on the passed
otp_app and repo.

 Anchor for this section

Functions

 Link to this function

 attach()

 View Source

Attaches Appsignal.Ecto to the Ecto telemetry channel configured in the
application's configuration.

 Link to this function

 attach(otp_app, repo)

 View Source

Attaches Appsignal.Ecto to the Ecto telemetry channel based on the passed
otp_app and repo.

Appsignal.Ecto.Repo

 Anchor for this section

 Summary

 Functions

 default_options(atom)

 Anchor for this section

Functions

 Link to this function

 default_options(atom)

 View Source

Appsignal.Instrumentation

 Anchor for this section

 Summary

 Functions

 instrument(name, fun)

 Instrument a function.

 instrument(name, category, fun)

 Instrument a function, and set the "appsignal:category" attribute to the
value passed as the category argument.

 instrument(_, name, category, fun)

 deprecated

 send_error(exception, stacktrace)

 Send an error in a newly created Appsignal.Span.

 send_error(exception, stacktrace, fun)

 Send an error in a newly created Appsignal.Span. Calls the passed function
with the created Appsignal.Span before closing it.

 send_error(kind, reason, stacktrace, fun)

 set_error(exception, stacktrace)

 Set an error in the current root span.

 set_error(kind, reason, stacktrace)

 Set an error in the current root span by passing a kind and reason.

 Anchor for this section

Functions

 Link to this function

 instrument(name, fun)

 View Source

 @spec instrument(String.t(), function()) :: any()

Instrument a function.
def call do
 Appsignal.instrument("foo.bar", fn ->
 :timer.sleep(1000)
 end)
end
When passing a function that takes an argument, the function is called with
the created span to allow adding extra information.
def call(params) do
 Appsignal.instrument("foo.bar", fn span ->
 Appsignal.Span.set_sample_data(span, "params", params)
 :timer.sleep(1000)
 end)
end

 Link to this function

 instrument(name, category, fun)

 View Source

 @spec instrument(String.t(), String.t(), function()) :: any()

Instrument a function, and set the "appsignal:category" attribute to the
value passed as the category argument.

 Link to this function

 instrument(_, name, category, fun)

 View Source

 This function is deprecated. Use Appsignal.instrument/3 instead..

 Link to this function

 send_error(exception, stacktrace)

 View Source

 @spec send_error(Exception.t(), Exception.stacktrace()) :: Appsignal.Span.t() | nil

Send an error in a newly created Appsignal.Span.

 Link to this function

 send_error(exception, stacktrace, fun)

 View Source

 @spec send_error(Exception.t(), Exception.stacktrace(), function()) ::
 Appsignal.Span.t() | nil

 @spec send_error(Exception.kind(), any(), Exception.stacktrace()) ::
 Appsignal.Span.t() | nil

Send an error in a newly created Appsignal.Span. Calls the passed function
with the created Appsignal.Span before closing it.

 Link to this function

 send_error(kind, reason, stacktrace, fun)

 View Source

 Link to this function

 set_error(exception, stacktrace)

 View Source

 @spec set_error(Exception.t(), Exception.stacktrace()) :: Appsignal.Span.t() | nil

Set an error in the current root span.

 Link to this function

 set_error(kind, reason, stacktrace)

 View Source

 @spec set_error(Exception.kind(), any(), Exception.stacktrace()) ::
 Appsignal.Span.t() | nil

Set an error in the current root span by passing a kind and reason.

Appsignal.Instrumentation.Helpers

 Anchor for this section

 Summary

 Functions

 instrument(fun)

 See Appsignal.Instrumentation.instrument/1.

 instrument(name, fun)

 See Appsignal.Instrumentation.instrument/2.

 instrument(name, title, fun)

 See Appsignal.Instrumentation.instrument/3.

 instrument(transaction, name, title, fun)

 deprecated

 Anchor for this section

Functions

 Link to this function

 instrument(fun)

 View Source

See Appsignal.Instrumentation.instrument/1.

 Link to this function

 instrument(name, fun)

 View Source

See Appsignal.Instrumentation.instrument/2.

 Link to this function

 instrument(name, title, fun)

 View Source

See Appsignal.Instrumentation.instrument/3.

 Link to this function

 instrument(transaction, name, title, fun)

 View Source

 This function is deprecated. Use Appsignal.instrument/3 instead..

Appsignal.IntegrationLogger

 Anchor for this section

 Summary

 Types

 device()

 log_level()

 Functions

 debug(message)

 error(message, options \\ [])

 info(message)

 trace(message)

 warn(message, options \\ [])

 Anchor for this section

Types

 Link to this type

 device()

 View Source

 @type device() :: :stdio | :stderr | :file

 Link to this type

 log_level()

 View Source

 @type log_level() :: :trace | :debug | :info | :warn | :error

 Anchor for this section

Functions

 Link to this function

 debug(message)

 View Source

 @spec debug(String.t()) :: :ok

 Link to this function

 error(message, options \\ [])

 View Source

 Link to this function

 info(message)

 View Source

 @spec info(String.t()) :: :ok

 Link to this function

 trace(message)

 View Source

 @spec trace(String.t()) :: :ok

 Link to this function

 warn(message, options \\ [])

 View Source

Appsignal.Logger

 Anchor for this section

 Summary

 Types

 format()

 log_level()

 Functions

 alert(group, message, metadata_or_format \\ %{})

 critical(group, message, metadata_or_format \\ %{})

 debug(group, message, metadata_or_format \\ %{})

 emergency(group, message, metadata_or_format \\ %{})

 error(group, message, metadata_or_format \\ %{})

 info(group, message, metadata_or_format \\ %{})

 log(log_level, group, message, metadata, format \\ :plaintext)

 notice(group, message, metadata_or_format \\ %{})

 warning(group, message, metadata_or_format \\ %{})

 Anchor for this section

Types

 Link to this type

 format()

 View Source

 @type format() :: :json | :logfmt | :plaintext

 Link to this type

 log_level()

 View Source

 @type log_level() ::
 :debug | :info | :notice | :warning | :error | :critical | :alert | :emergency

 Anchor for this section

Functions

 Link to this function

 alert(group, message, metadata_or_format \\ %{})

 View Source

 @spec alert(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 critical(group, message, metadata_or_format \\ %{})

 View Source

 @spec critical(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 debug(group, message, metadata_or_format \\ %{})

 View Source

 @spec debug(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 emergency(group, message, metadata_or_format \\ %{})

 View Source

 @spec emergency(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 error(group, message, metadata_or_format \\ %{})

 View Source

 @spec error(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 info(group, message, metadata_or_format \\ %{})

 View Source

 @spec info(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 log(log_level, group, message, metadata, format \\ :plaintext)

 View Source

 @spec log(log_level(), String.t(), String.t(), %{}, format()) :: :ok

 Link to this function

 notice(group, message, metadata_or_format \\ %{})

 View Source

 @spec notice(String.t(), String.t(), %{} | format()) :: :ok

 Link to this function

 warning(group, message, metadata_or_format \\ %{})

 View Source

 @spec warning(String.t(), String.t(), %{} | format()) :: :ok

Appsignal.Logger.Backend

 Anchor for this section

 Summary

 Functions

 handle_call(messsage, options)

 Callback implementation for :gen_event.handle_call/2.

 handle_event(arg1, options)

 Callback implementation for :gen_event.handle_event/2.

 init(arg)

 Callback implementation for :gen_event.init/1.

 Anchor for this section

Functions

 Link to this function

 handle_call(messsage, options)

 View Source

Callback implementation for :gen_event.handle_call/2.

 Link to this function

 handle_event(arg1, options)

 View Source

Callback implementation for :gen_event.handle_event/2.

 Link to this function

 init(arg)

 View Source

Callback implementation for :gen_event.init/1.

Appsignal.Logger.Handler

 Anchor for this section

 Summary

 Functions

 add(group, format \\ :plaintext)

 log(event, map)

 remove()

 Anchor for this section

Functions

 Link to this function

 add(group, format \\ :plaintext)

 View Source

 Link to this function

 log(event, map)

 View Source

 Link to this function

 remove()

 View Source

Appsignal.Metadata protocol

 Anchor for this section

 Summary

 Types

 t()

 Functions

 category(value)

 metadata(value)

 name(value)

 params(value)

 session(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 category(value)

 View Source

 @spec category(t()) :: nil | binary()

 Link to this function

 metadata(value)

 View Source

 @spec metadata(t()) :: map()

 Link to this function

 name(value)

 View Source

 @spec name(t()) :: nil | binary()

 Link to this function

 params(value)

 View Source

 @spec params(t()) :: map()

 Link to this function

 session(value)

 View Source

 @spec session(t()) :: map()

Appsignal.Span

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_error(span, exception, stacktrace)

 Add an error to an Appsignal.Span by passing an exception from a rescue
block, and a stack trace.

 add_error(span, kind, reason, stacktrace)

 Add an error to an Appsignal.Span by passing a kind and reason from a
catch block, and a stack trace.

 close(span)

 Close an Appsignal.Span.

 close(span, end_time)

 Close an Appsignal.Span with an explicit end time.

 create_child(span, pid)

 Create a child Appsignal.Span.

 create_child(span, pid, start_time)

 Create a child Appsignal.Span with an explicit start time.

 create_root(namespace, pid)

 Create a root Appsignal.Span with a namespace and a pid.

 create_root(namespace, pid, start_time)

 Create a root Appsignal.Span with a namespace, a pid and an explicit start time.

 set_attribute(span, key, value)

 Sets an Appsignal.Span attribute.

 set_name(span, name)

 Sets an Appsignal.Span's name.

 set_namespace(span, namespace)

 Sets an Appsignal.Span's namespace. The namespace is "http_request" or
"background_job' to add the span to the "web" and "background" namespaces
respectively. Passing another string creates a custom namespace to store the
Appsignal.Span's samples in.

 set_sample_data(span, key, value)

 Sets sample data for an Appsignal.Span.

 set_sample_data_if_nil(span, key, value)

 Sets sample data for an Appsignal.Span, unless it has already been set.

 set_sql(span, body)

 Sets the "appsignal:body" attribute with an SQL query string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Appsignal.Span{pid: pid(), reference: reference()}

 Anchor for this section

Functions

 Link to this function

 add_error(span, exception, stacktrace)

 View Source

 @spec add_error(t() | nil, Exception.t(), Exception.stacktrace()) :: t() | nil

Add an error to an Appsignal.Span by passing an exception from a rescue
block, and a stack trace.

 example

 Example

span = Appsignal.Tracer.root_span()

try
 raise "Exception!"
rescue
 exception ->
 Appsignal.Span.add_error(span, exception, __STACKTRACE__)
end

 Link to this function

 add_error(span, kind, reason, stacktrace)

 View Source

 @spec add_error(t() | nil, Exception.kind(), any(), Exception.stacktrace()) ::
 t() | nil

Add an error to an Appsignal.Span by passing a kind and reason from a
catch block, and a stack trace.

 example

 Example

span = Appsignal.Tracer.root_span()

try
 raise "Exception!"
catch
 kind, reason ->
 Appsignal.Span.add_error(span, kind, reason, __STACKTRACE__)
end

 Link to this function

 close(span)

 View Source

 @spec close(t() | nil) :: t() | nil

Close an Appsignal.Span.

 example

 Example

Appsignal.Tracer.root_span()
|> Span.close()

 Link to this function

 close(span, end_time)

 View Source

 @spec close(t() | nil, integer()) :: t() | nil

Close an Appsignal.Span with an explicit end time.

 example

 Example

Appsignal.Tracer.root_span()
|> Span.close(span, :os.system_time())

 Link to this function

 create_child(span, pid)

 View Source

 @spec create_child(t() | nil, pid()) :: t() | nil

Create a child Appsignal.Span.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.create_child(self())

 Link to this function

 create_child(span, pid, start_time)

 View Source

 @spec create_child(t() | nil, pid(), integer() | nil) :: t() | nil

Create a child Appsignal.Span with an explicit start time.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.create_child(self(), :os.system_time())

 Link to this function

 create_root(namespace, pid)

 View Source

 @spec create_root(String.t(), pid()) :: t() | nil

Create a root Appsignal.Span with a namespace and a pid.
For a description of namespaces, see set_namespace/2.

 example

 Example

Appsignal.Span.create_root("http_request", self())

 Link to this function

 create_root(namespace, pid, start_time)

 View Source

 @spec create_root(String.t(), pid(), integer() | nil) :: t() | nil

Create a root Appsignal.Span with a namespace, a pid and an explicit start time.
For a description of namespaces, see set_namespace/2.

 example

 Example

Appsignal.Span.create_root("http_request", self(), :os.system_time())

 Link to this function

 set_attribute(span, key, value)

 View Source

 @spec set_attribute(
 t() | nil,
 String.t(),
 String.t() | integer() | boolean() | float()
) :: t() | nil

Sets an Appsignal.Span attribute.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_attribute("appsignal:category", "query.ecto")

 Link to this function

 set_name(span, name)

 View Source

 @spec set_name(t() | nil, String.t()) :: t() | nil

Sets an Appsignal.Span's name.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_name("PageController#index")

 Link to this function

 set_namespace(span, namespace)

 View Source

 @spec set_namespace(t() | nil, String.t()) :: t() | nil

Sets an Appsignal.Span's namespace. The namespace is "http_request" or
"background_job' to add the span to the "web" and "background" namespaces
respectively. Passing another string creates a custom namespace to store the
Appsignal.Span's samples in.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_namespace("http_request")

 Link to this function

 set_sample_data(span, key, value)

 View Source

 @spec set_sample_data(t() | nil, String.t(), map()) :: t() | nil

Sets sample data for an Appsignal.Span.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_sample_data("environment", %{"method" => "GET"})

 Link to this function

 set_sample_data_if_nil(span, key, value)

 View Source

 @spec set_sample_data_if_nil(t() | nil, String.t(), map()) :: t() | nil

Sets sample data for an Appsignal.Span, unless it has already been set.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_sample_data_if_nil("environment", %{"method" => "GET"})

 Link to this function

 set_sql(span, body)

 View Source

 @spec set_sql(t() | nil, String.t()) :: t() | nil

Sets the "appsignal:body" attribute with an SQL query string.

 example

 Example

Appsignal.Tracer.root_span()
|> Appsignal.Span.set_sql("SELECT * FROM users")

Appsignal.Tracer

 Anchor for this section

 Summary

 Types

 option()

 options()

 Functions

 close_span(span)

 Closes a span and deregisters it.

 close_span(span, options)

 Closes a span and deregisters it. Takes an options list, which currently only
accepts a List with an :end_time integer.

 create_span(namespace)

 Creates a new root span.

 create_span(namespace, parent)

 Creates a new child span.

 create_span(namespace, parent, options)

 Creates a new span, with an optional parent or pid.

 current_span()

 Returns the current span in the current process.

 current_span(pid)

 Returns the current span in the passed pid's process.

 custom_on_create_fun(span)

 This function can be defined by the user and will be executed on the
creation of the span after create_span/3 is executed. It can be used to add
custom_data to the span.

 delete(pid)

 Removes the process' spans from the registry.

 ignore()

 Ignores the current process.

 ignore(pid)

 Ignores the given process.

 lookup(pid)

 Finds the span in the registry table.

 root_span()

 Returns the root span in the current process.

 root_span(pid)

 Returns the root span in the passed pid's process.

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() :: {:pid, pid()} | {:start_time, integer()}

 Link to this type

 options()

 View Source

 @type options() :: [option()]

 Anchor for this section

Functions

 Link to this function

 close_span(span)

 View Source

 @spec close_span(Appsignal.Span.t() | nil) :: :ok | nil

Closes a span and deregisters it.

 example

 Example

Appsignal.Tracer.current_span()
|> Appsignal.Tracer.close_span()

 Link to this function

 close_span(span, options)

 View Source

 @spec close_span(Appsignal.Span.t() | nil, list()) :: :ok | nil

Closes a span and deregisters it. Takes an options list, which currently only
accepts a List with an :end_time integer.

 example

 Example

Appsignal.Tracer.current_span()
|> Appsignal.Tracer.close_span(end_time: :os.system_time())

 Link to this function

 create_span(namespace)

 View Source

 @spec create_span(String.t()) :: Appsignal.Span.t() | nil

Creates a new root span.

 example

 Example

Appsignal.Tracer.create_span("http_request")

 Link to this function

 create_span(namespace, parent)

 View Source

 @spec create_span(String.t(), Appsignal.Span.t() | nil) :: Appsignal.Span.t() | nil

Creates a new child span.

 example

 Example

parent = Appsignal.Tracer.current_span()

Appsignal.Tracer.create_span("http_request", parent)

 Link to this function

 create_span(namespace, parent, options)

 View Source

 @spec create_span(String.t(), Appsignal.Span.t() | nil, options()) ::
 Appsignal.Span.t() | nil

Creates a new span, with an optional parent or pid.

 example

 Example

parent = Appsignal.Tracer.current_span()

Appsignal.Tracer.create_span("http_request", parent, [start_time: :os.system_time(), pid: self()])

 Link to this function

 current_span()

 View Source

 @spec current_span() :: Appsignal.Span.t() | nil

Returns the current span in the current process.

 Link to this function

 current_span(pid)

 View Source

 @spec current_span(pid()) :: Appsignal.Span.t() | nil

Returns the current span in the passed pid's process.

 Link to this function

 custom_on_create_fun(span)

 View Source

 @spec custom_on_create_fun(Appsignal.Span.t() | nil) :: any()

This function can be defined by the user and will be executed on the
creation of the span after create_span/3 is executed. It can be used to add
custom_data to the span.
Example in your own application:
defmodule MyApp.Appsignal do
 def custom_on_create_fun(span) do
 Appsignal.Span.set_sample_data(span, "custom_data", %{"foo": "bar"})
 end
end
This can be added to the config with:
config :appsignal, custom_on_create_fun: &MyApp.Appsignal.custom_on_create_fun/1

 Link to this function

 delete(pid)

 View Source

 @spec delete(pid()) :: :ok

Removes the process' spans from the registry.

 Link to this function

 ignore()

 View Source

 @spec ignore() :: :ok

Ignores the current process.

 Link to this function

 ignore(pid)

 View Source

 @spec ignore(pid()) :: :ok

Ignores the given process.

 Link to this function

 lookup(pid)

 View Source

 @spec lookup(pid()) :: list() | []

Finds the span in the registry table.

 Link to this function

 root_span()

 View Source

 @spec root_span() :: Appsignal.Span.t() | nil

Returns the root span in the current process.

 Link to this function

 root_span(pid)

 View Source

 @spec root_span(pid()) :: Appsignal.Span.t() | nil

Returns the root span in the passed pid's process.

Appsignal.Transaction

 Anchor for this section

 Summary

 Functions

 complete(_)

 deprecated

 finish(_)

 deprecated

 generate_id()

 deprecated

 set_action(action)

 deprecated

 set_error(name, message, backtrace)

 deprecated

 set_error(transaction, name, message, backtrace)

 deprecated

 set_sample_data(key, values)

 deprecated

 Anchor for this section

Functions

 Link to this function

 complete(_)

 View Source

 This function is deprecated. Use Appsignal.Tracer instead..

 Link to this function

 finish(_)

 View Source

 This function is deprecated. Use Appsignal.Tracer instead..

 Link to this function

 generate_id()

 View Source

 This function is deprecated. .

 Link to this function

 set_action(action)

 View Source

 This function is deprecated. Use Appsignal.Span instead..

 Link to this function

 set_error(name, message, backtrace)

 View Source

 This function is deprecated. Use Appsignal.Span instead..

 Link to this function

 set_error(transaction, name, message, backtrace)

 View Source

 This function is deprecated. Use Appsignal.Span instead..

 Link to this function

 set_sample_data(key, values)

 View Source

 This function is deprecated. Use Appsignal.Span instead..

Appsignal.TransactionRegistry

 Anchor for this section

 Summary

 Functions

 lookup(pid)

 deprecated

 register(parent)

 deprecated

 Anchor for this section

Functions

 Link to this function

 lookup(pid)

 View Source

 This function is deprecated. Use Appsignal.Tracer.current_span/0-1 instead.

 Link to this function

 register(parent)

 View Source

 This function is deprecated. Use Appsignal.Tracer.create_span/1-3 instead.

Appsignal.Utils.ArgumentCleaner

 Anchor for this section

 Summary

 Functions

 clean(argument)

 clean(argument, recurse)

 clean_literal(argument)

 Anchor for this section

Functions

 Link to this function

 clean(argument)

 View Source

 Link to this function

 clean(argument, recurse)

 View Source

 Link to this function

 clean_literal(argument)

 View Source

Appsignal.Utils.Literal

mix appsignal.demo

 Anchor for this section

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(_)

 View Source

Callback implementation for Mix.Task.run/1.

mix appsignal.diagnose

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 send_report_to_appsignal(config, report)

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 Link to this function

 send_report_to_appsignal(config, report)

 View Source

mix appsignal.install

 Anchor for this section

 Summary

 Functions

 run(list)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(list)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

