

 Arcana

 v1.3.0

 Table of contents

 	Arcana 🔮📚

 	Guides

 	Getting Started with Arcana 🔮📚

 	LLM Integration

 	Agentic RAG Pipeline

 	Re-ranking

 	Search Algorithms

 	Evaluation

 	Telemetry and Observability

 	Dashboard

 	
 Modules

 	Arcana.Agent

 	Arcana.Agent.Answerer

 	Arcana.Agent.Answerer.LLM

 	Arcana.Agent.Context

 	Arcana.Agent.Decomposer

 	Arcana.Agent.Decomposer.LLM

 	Arcana.Agent.Expander

 	Arcana.Agent.Expander.LLM

 	Arcana.Agent.Reranker

 	Arcana.Agent.Reranker.ColBERT

 	Arcana.Agent.Reranker.LLM

 	Arcana.Agent.Rewriter

 	Arcana.Agent.Rewriter.LLM

 	Arcana.Agent.Searcher

 	Arcana.Agent.Searcher.Arcana

 	Arcana.Agent.Selector

 	Arcana.Agent.Selector.LLM

 	Arcana.Ask

 	Arcana.Chunker.Custom

 	Arcana.Chunker.Default

 	Arcana.Collection

 	Arcana.Config

 	Arcana.Config.Redacted

 	Arcana.Embedder

 	Arcana.Embedder.Custom

 	Arcana.Embedder.Local

 	Arcana.Embedder.OpenAI

 	Arcana.Evaluation

 	Arcana.Evaluation.AnswerMetrics

 	Arcana.Evaluation.Generator

 	Arcana.Evaluation.Metrics

 	Arcana.Evaluation.Run

 	Arcana.Evaluation.TestCase

 	Arcana.FileParser.PDF

 	Arcana.FileParser.PDF.Poppler

 	Arcana.Graph

 	Arcana.Graph.Community

 	Arcana.Graph.CommunityDetector

 	Arcana.Graph.CommunityDetector.Leiden

 	Arcana.Graph.CommunitySummarizer

 	Arcana.Graph.CommunitySummarizer.LLM

 	Arcana.Graph.Entity

 	Arcana.Graph.EntityExtractor

 	Arcana.Graph.EntityExtractor.LLM

 	Arcana.Graph.EntityExtractor.NER

 	Arcana.Graph.EntityMention

 	Arcana.Graph.FusionSearch

 	Arcana.Graph.GraphBuilder

 	Arcana.Graph.GraphExtractor

 	Arcana.Graph.GraphExtractor.LLM

 	Arcana.Graph.GraphQuery

 	Arcana.Graph.GraphStore

 	Arcana.Graph.GraphStore.Ecto

 	Arcana.Graph.GraphStore.Memory

 	Arcana.Graph.NERServing

 	Arcana.Graph.Relationship

 	Arcana.Graph.RelationshipExtractor

 	Arcana.Graph.RelationshipExtractor.LLM

 	Arcana.Ingest

 	Arcana.LLM

 	Arcana.Maintenance

 	Arcana.Parser

 	Arcana.Search

 	Arcana.TaskSupervisor

 	Arcana.Telemetry

 	Arcana.Telemetry.Logger

 	Arcana.VectorStore

 	Arcana.VectorStore.Memory

 	Arcana.VectorStore.Pgvector

 	ArcanaWeb.AskLive

 	ArcanaWeb.CollectionsLive

 	ArcanaWeb.DashboardComponents

 	ArcanaWeb.DocumentsLive

 	ArcanaWeb.EvaluationLive

 	ArcanaWeb.GraphLive

 	ArcanaWeb.InfoLive

 	ArcanaWeb.MaintenanceLive

 	ArcanaWeb.Router

 	ArcanaWeb.SearchLive

 	Core

 	Arcana

 	Arcana.Chunk

 	Arcana.Document

 	Utilities

 	Arcana.Chunker

 	Arcana.Rewriters

 	Embeddings

 	Arcana.Embeddings.Serving

 	LiveView UI

 	ArcanaWeb.DashboardLive

 	
 Mix Tasks

 	mix arcana.eval.generate

 	mix arcana.eval.run

 	mix arcana.gen.embedding_migration

 	mix arcana.graph.detect_communities

 	mix arcana.graph.install

 	mix arcana.graph.rebuild

 	mix arcana.graph.summarize_communities

 	mix arcana.install

 	mix arcana.reembed_chunks

 Arcana 🔮📚

[image: Run in Livebook]
Embeddable RAG library for Elixir/Phoenix. Add vector search, document retrieval, and AI-powered question answering to any Phoenix application. Supports both simple RAG and agentic RAG with query expansion, self-correction, and more.
[!TIP]
See arcana-adept for a complete Phoenix app with a Doctor Who corpus ready to embed and query.

Features
	Simple API - ingest/2, search/2, ask/2 for basic RAG
	Agentic RAG - Pipeline with query expansion, decomposition, re-ranking, and self-correction
	Pluggable components - Replace any pipeline step with custom implementations
	Hybrid search - Vector, full-text, or combined with Reciprocal Rank Fusion
	GraphRAG - Optional knowledge graph with entity extraction, community detection, and fusion search
	Multiple backends - Swappable vector store (pgvector, in-memory HNSWLib) and graph store (Ecto, in-memory) backends
	Configurable embeddings - Local Bumblebee, OpenAI, or custom providers
	File ingestion - Text, Markdown, and PDF support
	Evaluation - Measure retrieval quality with MRR, Recall, Precision metrics
	Embeddable - Uses your existing Repo, no separate database
	LiveView Dashboard - Optional web UI for managing documents and searching
	Telemetry - Built-in observability for all operations

How it works
Basic RAG Pipeline
	Chunk: Text is split into overlapping segments (default 450 tokens, 50 overlap). Pluggable chunkers support custom splitting logic.
	Embed: Each chunk is embedded using configurable providers (local Bumblebee, OpenAI, or custom). E5 models automatically get query:/passage: prefixes.
	Store: Embeddings are stored via swappable vector backends (pgvector for production, HNSWLib in-memory for testing).
	Search: Query embedding is compared using cosine similarity. Supports semantic, full-text, and hybrid modes with Reciprocal Rank Fusion.

GraphRAG (Optional)
When graph: true is enabled:
	Extract: Named entities (people, orgs, technologies) are extracted via NER or LLM
	Link: Relationships between entities are detected and stored
	Community: Entities are clustered using the Leiden algorithm
	Fuse: Vector search and graph traversal results are combined with RRF

Agentic Pipeline
For complex questions, the Agent pipeline provides:
	Retrieval gating - decides if retrieval is needed or can answer from knowledge
	Query expansion - adds synonyms and related terms
	Decomposition - splits multi-part questions
	Multi-hop reasoning - evaluates results and searches again if needed
	Re-ranking - scores chunk relevance (0-10)

Installation
With Igniter (recommended):
mix igniter.install arcana
mix ecto.migrate

This adds the dependency, creates migrations, configures your repo, and sets up the dashboard route.
Without Igniter:
Add arcana to your dependencies:
def deps do
 [
 {:arcana, "~> 1.0"}
]
end
Then run:
mix deps.get
mix arcana.install
mix ecto.migrate

And follow the manual steps printed by the installer:
	Create the Postgrex types module:

lib/my_app/postgrex_types.ex
Postgrex.Types.define(
 MyApp.PostgrexTypes,
 [Pgvector.Extensions.Vector] ++ Ecto.Adapters.Postgres.extensions(),
 []
)
	Add to your repo config:

config/config.exs
config :my_app, MyApp.Repo,
 types: MyApp.PostgrexTypes
	(Optional) Mount the dashboard:

lib/my_app_web/router.ex
scope "/arcana" do
 pipe_through [:browser]
 forward "/", ArcanaWeb.Router
end
Setup
Start PostgreSQL with pgvector
docker-compose.yml
services:
 postgres:
 image: pgvector/pgvector:pg16
 ports:
 - "5432:5432"
 environment:
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres
 POSTGRES_DB: myapp_dev
Add to supervision tree
Add Arcana components to your supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 MyApp.Repo,
 Arcana.TaskSupervisor, # Required for dashboard async operations
 Arcana.Embedder.Local # Only if using local Bumblebee embeddings
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Arcana.TaskSupervisor is required for the dashboard's async operations (Ask, Maintenance).
Arcana.Embedder.Local is only needed if using local Bumblebee embeddings (the default).
Configure Nx backend (required for local embeddings)
For local embeddings, you need an Nx backend. Choose one of the following:
config/config.exs

Option 1: EXLA - Google's XLA compiler (Linux/macOS/Windows)
config :nx,
 default_backend: EXLA.Backend,
 default_defn_options: [compiler: EXLA]

Option 2: EMLX - Apple's MLX framework (macOS with Apple Silicon only)
config :nx,
 default_backend: EMLX.Backend,
 default_defn_options: [compiler: EMLX]

Option 3: Torchx - PyTorch backend (no compiler, uses eager execution)
config :nx,
 default_backend: {Torchx.Backend, device: :cpu} # or :mps for Apple Silicon
Add the corresponding dependency to your mix.exs:
{:exla, "~> 0.9"} # or
{:emlx, "~> 0.1"} # or
{:torchx, "~> 0.9"}
Embedding providers
Arcana supports multiple embedding providers:
config/config.exs

Local Bumblebee (default) - no API keys needed
config :arcana, embedder: :local
config :arcana, embedder: {:local, model: "BAAI/bge-large-en-v1.5"}

E5 models (automatically adds query:/passage: prefixes)
config :arcana, embedder: {:local, model: "intfloat/e5-small-v2"}

OpenAI (requires OPENAI_API_KEY)
config :arcana, embedder: :openai
config :arcana, embedder: {:openai, model: "text-embedding-3-large"}

Custom module implementing Arcana.Embedder behaviour
config :arcana, embedder: MyApp.CohereEmbedder
Implement custom embedders with the Arcana.Embedder behaviour:
defmodule MyApp.CohereEmbedder do
 @behaviour Arcana.Embedder

 @impl true
 def embed(text, opts) do
 # Call your embedding API
 {:ok, embedding_vector}
 end

 @impl true
 def dimensions(_opts), do: 1024
end
See the Getting Started Guide for all embedding model options.
Chunking providers
Arcana supports pluggable chunking strategies:
config/config.exs

Default text chunker (uses text_chunker library)
config :arcana, chunker: :default
config :arcana, chunker: {:default, chunk_size: 512, chunk_overlap: 100}

Custom module implementing Arcana.Chunker behaviour
config :arcana, chunker: MyApp.SemanticChunker
Implement custom chunkers with the Arcana.Chunker behaviour:
defmodule MyApp.SemanticChunker do
 @behaviour Arcana.Chunker

 @impl true
 def chunk(text, opts) do
 # Custom chunking logic (e.g., semantic boundaries)
 [
 %{text: "chunk 1", chunk_index: 0, token_count: 50},
 %{text: "chunk 2", chunk_index: 1, token_count: 45}
]
 end
end
You can also pass :chunker directly to ingest/2:
Arcana.ingest(text, repo: MyApp.Repo, chunker: MyApp.SemanticChunker)
PDF parsing
Arcana supports PDF ingestion with pluggable parsers. The default uses Poppler's pdftotext:
config/config.exs

Default: Poppler (requires pdftotext installed)
config :arcana, pdf_parser: :poppler
config :arcana, pdf_parser: {:poppler, layout: true}

Custom module implementing Arcana.FileParser.PDF behaviour
config :arcana, pdf_parser: MyApp.PDFParser
config :arcana, pdf_parser: {MyApp.PDFParser, some_option: "value"}
Installing Poppler:
macOS
brew install poppler

Ubuntu/Debian
apt-get install poppler-utils

Fedora
dnf install poppler-utils

Custom PDF parsers implement the Arcana.FileParser.PDF behaviour:
defmodule MyApp.PDFParser do
 @behaviour Arcana.FileParser.PDF

 @impl true
 def parse(path, opts) do
 # Your PDF parsing logic (e.g., using pdf2htmlex, Apache PDFBox, etc.)
 {:ok, extracted_text}
 end

 # Optional: support binary content (default: false)
 def supports_binary?, do: true
end
LLM configuration
Configure the LLM for ask/2 and the Agent pipeline:
config/config.exs

Model string (requires req_llm dependency)
config :arcana, llm: "openai:gpt-4o-mini"
config :arcana, llm: "anthropic:claude-sonnet-4-20250514"

Function that takes a prompt and returns {:ok, response}
config :arcana, llm: fn prompt ->
 {:ok, MyApp.LLM.complete(prompt)}
end

Custom module implementing Arcana.LLM behaviour
config :arcana, llm: MyApp.CustomLLM
You can also pass :llm directly to functions:
Arcana.ask("What is Elixir?", repo: MyApp.Repo, llm: "openai:gpt-4o")

Agent.new(question, repo: MyApp.Repo, llm: fn prompt -> ... end)
See the LLM Integration Guide for detailed examples.
Usage
Ingest documents
Basic ingestion
{:ok, document} = Arcana.ingest("Your document content here", repo: MyApp.Repo)

With metadata and collection
{:ok, document} = Arcana.ingest(content,
 repo: MyApp.Repo,
 metadata: %{"title" => "My Doc", "author" => "Jane"},
 collection: "products"
)

Ingest from file (supports .txt, .md, .pdf)
{:ok, document} = Arcana.ingest_file("path/to/document.pdf", repo: MyApp.Repo)

With GraphRAG (extracts entities and relationships)
{:ok, document} = Arcana.ingest(content, repo: MyApp.Repo, graph: true)
Search
Semantic search (default)
{:ok, results} = Arcana.search("your query", repo: MyApp.Repo)

Hybrid search (combines semantic + fulltext)
{:ok, results} = Arcana.search("query", repo: MyApp.Repo, mode: :hybrid)

Hybrid with custom weights (pgvector only)
{:ok, results} = Arcana.search("query",
 repo: MyApp.Repo,
 mode: :hybrid,
 semantic_weight: 0.7,
 fulltext_weight: 0.3
)

With filters
{:ok, results} = Arcana.search("query",
 repo: MyApp.Repo,
 limit: 5,
 collection: "products"
)

With GraphRAG (combines vector + graph search with RRF)
{:ok, results} = Arcana.search("query", repo: MyApp.Repo, graph: true)
See the Search Algorithms Guide for details on search modes.
GraphRAG
GraphRAG enhances retrieval by building a knowledge graph from your documents. Entities (people, organizations, technologies) and their relationships are extracted during ingestion, then used alongside vector search for more contextual results.
Install GraphRAG tables
mix arcana.graph.install
mix ecto.migrate

Ingest with graph building
{:ok, document} = Arcana.ingest(content, repo: MyApp.Repo, graph: true)

Search combines vector + graph traversal with Reciprocal Rank Fusion
{:ok, results} = Arcana.search("Who leads OpenAI?", repo: MyApp.Repo, graph: true)
Components are pluggable: swap entity extractors (NER, LLM), relationship extractors, community detectors (Leiden), and summarizers with your own implementations.
See the GraphRAG Guide for entity extraction, community detection, and fusion search.
Ask (Simple RAG)
{:ok, answer} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: "openai:gpt-4o-mini"
)
Agentic RAG
For complex questions, use the Agent pipeline with retrieval gating, query expansion, multi-hop reasoning, and re-ranking:
alias Arcana.Agent

llm = fn prompt -> {:ok, "LLM response"} end

ctx =
 Agent.new("Compare Elixir and Erlang features", repo: MyApp.Repo, llm: llm)
 |> Agent.gate() # Skip retrieval if not needed
 |> Agent.select(collections: ["elixir-docs", "erlang-docs"])
 |> Agent.expand()
 |> Agent.search()
 |> Agent.reason() # Search again if results insufficient
 |> Agent.rerank()
 |> Agent.answer()

ctx.answer
=> "Generated answer based on retrieved context..."
Pipeline Steps
	Step	What it does
	new/2	Initialize context with question, repo, and LLM function
	gate/2	Decide if retrieval is needed; sets skip_retrieval: true if answerable from knowledge
	rewrite/2	Clean up conversational input ("Hey, can you tell me about X?" → "about X")
	select/2	Choose which collections to search (LLM picks based on collection descriptions)
	expand/2	Add synonyms and related terms ("ML models" → "ML machine learning models algorithms")
	decompose/2	Split complex questions ("What is X and how does Y work?" → ["What is X?", "How does Y work?"])
	search/2	Execute vector search (skipped if skip_retrieval: true)
	reason/2	Multi-hop reasoning; evaluates if results are sufficient and searches again if needed
	rerank/2	Score each chunk's relevance (0-10) and filter below threshold
	answer/2	Generate final answer using retrieved context (or from knowledge if skip_retrieval: true)

Example: Building a Pipeline
Simple pipeline - just search and answer
ctx =
 Agent.new(question, repo: MyApp.Repo, llm: llm)
 |> Agent.search(collection: "docs")
 |> Agent.answer()

Full pipeline with all steps
ctx =
 Agent.new(question, repo: MyApp.Repo, llm: llm)
 |> Agent.gate() # Decide if retrieval needed
 |> Agent.rewrite() # Clean up conversational input
 |> Agent.select(collections: available_collections) # Pick relevant collections
 |> Agent.expand() # Add synonyms
 |> Agent.decompose() # Split multi-part questions
 |> Agent.search() # Search each sub-question
 |> Agent.reason() # Multi-hop: search again if needed
 |> Agent.rerank(threshold: 7) # Keep chunks scoring 7+/10
 |> Agent.answer() # Generate answer

Access results
ctx.answer # Final answer
ctx.skip_retrieval # true if gate/2 determined no retrieval needed
ctx.sub_questions # Sub-questions from decomposition
ctx.reason_iterations # Number of additional searches by reason/2
Custom Components
Every pipeline step can be replaced with a custom module or function:
Custom reranker using a cross-encoder model
defmodule MyApp.CrossEncoderReranker do
 @behaviour Arcana.Agent.Reranker

 @impl true
 def rerank(question, chunks, _opts) do
 scored = Enum.map(chunks, fn chunk ->
 score = MyApp.CrossEncoder.score(question, chunk.text)
 {chunk, score}
 end)
 |> Enum.filter(fn {_, score} -> score > 0.5 end)
 |> Enum.sort_by(fn {_, score} -> score end, :desc)
 |> Enum.map(fn {chunk, _} -> chunk end)

 {:ok, scored}
 end
end

ctx |> Agent.rerank(reranker: MyApp.CrossEncoderReranker)

Or use an inline function
ctx |> Agent.rerank(reranker: fn question, chunks, _opts ->
 {:ok, Enum.filter(chunks, &relevant?(&1, question))}
end)
All steps support custom implementations via behaviours:
	Step	Behaviour	Option
	rewrite/2	Arcana.Agent.Rewriter	:rewriter
	select/2	Arcana.Agent.Selector	:selector
	expand/2	Arcana.Agent.Expander	:expander
	decompose/2	Arcana.Agent.Decomposer	:decomposer
	search/2	Arcana.Agent.Searcher	:searcher
	rerank/2	Arcana.Agent.Reranker	:reranker
	answer/2	Arcana.Agent.Answerer	:answerer

See the Agentic RAG Guide for detailed examples.
Architecture
┌───┐
│ Your Phoenix App │
├───┤
│ Arcana.Agent │
│ (rewrite → select → expand → search → rerank → answer) │
├───┤
│ Arcana.ask/2 │ Arcana.search/2 │ Arcana.ingest/2 │
├─────────────────┴───────────────────┴───────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Chunker │ │ Embeddings │ │ Search │ │
│ │ (splitting) │ │ (Bumblebee) │ │ (pgvector) │ │
│ └─────────────┘ └─────────────────┘ └─────────────┘ │
│ │
├───┤
│ Your Existing Ecto Repo │
│ PostgreSQL + pgvector extension │
└───┘
Guides
	Getting Started - Installation, embedding models, basic usage
	Agentic RAG - Build sophisticated RAG pipelines
	GraphRAG - Knowledge graphs with entity extraction and community detection
	LLM Integration - Connect to OpenAI, Anthropic, or custom LLMs
	Search Algorithms - Semantic, fulltext, and hybrid search
	Re-ranking - Improve retrieval quality
	Evaluation - Measure and improve retrieval quality
	Telemetry - Observability, metrics, and debugging
	Dashboard - Web UI setup

Roadmap
	[x] LiveView dashboard
	[x] Hybrid search (vector + full-text with RRF)
	[x] File ingestion (text, markdown, PDF)
	[x] Telemetry events for observability
	[x] In-memory vector store (HNSWLib backend)
	[x] Query expansion (Agent.expand/2)
	[x] Re-ranking (Agent.rerank/2)
	[x] Agentic RAG	[x] Agent pipeline with context struct
	[x] Self-correcting answers (evaluate + refine)
	[x] Question decomposition (multi-step)
	[x] Collection selection
	[x] Pluggable components (custom behaviours for all steps)

	[x] E5 embedding model prefix support (query: / passage: prefixes)
	[] Additional vector store backends	[] TurboPuffer (hybrid search)
	[] ChromaDB

	[] Async ingestion with Oban
	[] HyDE (Hypothetical Document Embeddings)
	[x] GraphRAG (knowledge graph + community summaries)

Development
Start PostgreSQL
docker compose up -d

Install deps
mix deps.get

Create and migrate test database
MIX_ENV=test mix ecto.create -r Arcana.TestRepo
MIX_ENV=test mix ecto.migrate -r Arcana.TestRepo

Run tests
mix test

License
Copyright (c) 2025 George Guimarães
Licensed under the Apache License, Version 2.0. See LICENSE file for details.

 Getting Started with Arcana 🔮📚

Arcana is a RAG (Retrieval Augmented Generation) library for Elixir that lets you build AI-powered search and question-answering into your Phoenix applications.
Installation
With Igniter (recommended):
mix igniter.install arcana
mix ecto.migrate

This adds the dependency, creates migrations, configures your repo, and sets up the dashboard route.
Without Igniter:
def deps do
 [
 {:arcana, "~> 1.0"}
]
end
mix deps.get
mix arcana.install
mix ecto.migrate

Embedding Configuration
Arcana uses local embeddings by default via Bumblebee. No API keys needed.
config/config.exs

Default - BGE Small (384 dimensions, 133MB)
config :arcana, embedder: :local

Use a different model
config :arcana, embedder: {:local, model: "BAAI/bge-base-en-v1.5"}
Add Arcana components to your supervision tree:
application.ex
children = [
 MyApp.Repo,
 Arcana.TaskSupervisor, # Required for dashboard async operations
 Arcana.Embedder.Local # Only if using local embeddings
]
Arcana.TaskSupervisor is required for the dashboard's async operations (Ask, Maintenance).
Arcana.Embedder.Local starts the local embedding model (only needed if using local embeddings).
Available Models
	Model	Dimensions	Size	Use Case
	BAAI/bge-small-en-v1.5	384	133MB	Default, good balance
	BAAI/bge-base-en-v1.5	768	438MB	Better accuracy
	BAAI/bge-large-en-v1.5	1024	1.3GB	Best accuracy
	intfloat/e5-small-v2	384	133MB	Alternative to BGE
	intfloat/e5-base-v2	768	438MB	E5 medium size
	intfloat/e5-large-v2	1024	1.3GB	E5 best accuracy
	thenlper/gte-small	384	67MB	Smallest, fastest
	sentence-transformers/all-MiniLM-L6-v2	384	91MB	Lightweight

E5 Models: E5 models require special prefixes (query: for search queries, passage: for documents). Arcana handles this automatically - just configure the model and the prefixes are added during search and ingestion.
Changing Embedding Models
When switching to a model with different dimensions, you need to resize the vector column:
1. Update your config to use the new model
2. Generate a migration to resize the vector column
mix arcana.gen.embedding_migration

3. Run the migration
mix ecto.migrate

4. Re-embed all documents with the new model
mix arcana.reembed

For OpenAI embeddings or custom providers, see the LLM Integration guide.
Chunking Configuration
Arcana uses the default text chunker which splits documents into overlapping chunks:
config/config.exs

Default - 450 tokens with 50 token overlap
config :arcana, chunker: :default

Custom chunk sizes
config :arcana, chunker: {:default, chunk_size: 512, chunk_overlap: 100}
Available Options
	Option	Default	Description
	:chunk_size	450	Maximum tokens per chunk
	:chunk_overlap	50	Overlapping tokens between chunks
	:format	:plaintext	Text format (:plaintext, :markdown, :elixir)
	:size_unit	:tokens	How to measure size (:tokens, :characters)

Custom Chunkers
For semantic chunking or domain-specific splitting, implement the Arcana.Chunker behaviour:
defmodule MyApp.SemanticChunker do
 @behaviour Arcana.Chunker

 @impl true
 def chunk(text, opts) do
 # Split on semantic boundaries (paragraphs, sections, etc.)
 text
 |> split_semantically()
 |> Enum.with_index()
 |> Enum.map(fn {text, index} ->
 %{text: text, chunk_index: index, token_count: estimate_tokens(text)}
 end)
 end
end

Configure globally
config :arcana, chunker: MyApp.SemanticChunker

Or per-ingest
Arcana.ingest(text, repo: MyApp.Repo, chunker: MyApp.SemanticChunker)
PDF Parsing Configuration
Arcana supports PDF file ingestion with pluggable parsers. The default uses Poppler's pdftotext command-line tool.
Default Parser (Poppler)
config/config.exs

Default: Poppler's pdftotext
config :arcana, pdf_parser: :poppler

With options
config :arcana, pdf_parser: {:poppler, layout: true}
Installing Poppler:
	Platform	Command
	macOS	brew install poppler
	Ubuntu/Debian	apt-get install poppler-utils
	Fedora	dnf install poppler-utils

Check availability:
iex> Arcana.FileParser.PDF.Poppler.available?()
true
Poppler Options
	Option	Default	Description
	:layout	true	Preserve original text layout

Custom PDF Parsers
For alternative PDF parsing (e.g., Apache PDFBox, pdf2htmlex, cloud APIs), implement the Arcana.FileParser.PDF behaviour:
defmodule MyApp.PDFBoxParser do
 @behaviour Arcana.FileParser.PDF

 @impl true
 def parse(path, opts) when is_binary(path) do
 # Your PDF parsing logic
 case extract_with_pdfbox(path, opts) do
 {:ok, text} -> {:ok, text}
 {:error, reason} -> {:error, reason}
 end
 end

 # Optional: declare support for binary content
 # (default is false - parser only accepts file paths)
 def supports_binary?, do: false

 defp extract_with_pdfbox(path, _opts) do
 # Call PDFBox CLI, Rustler NIF, or port
 {:ok, "extracted text"}
 end
end
Configure your custom parser:
config/config.exs
config :arcana, pdf_parser: MyApp.PDFBoxParser
config :arcana, pdf_parser: {MyApp.PDFBoxParser, some_option: "value"}
Binary Content Support
Some parsers can accept binary PDF content directly (useful for processing uploads without saving to disk). Declare this capability:
defmodule MyApp.InMemoryPDFParser do
 @behaviour Arcana.FileParser.PDF

 @impl true
 def parse(binary, opts) when is_binary(binary) do
 # Parse binary PDF content directly
 {:ok, extracted_text}
 end

 def supports_binary?, do: true
end
Check if a parser supports binary input:
iex> Arcana.FileParser.PDF.supports_binary?({MyApp.InMemoryPDFParser, []})
true

iex> Arcana.FileParser.PDF.supports_binary?({Arcana.FileParser.PDF.Poppler, []})
false
Basic Usage
Ingesting Documents
Ingest text content
{:ok, document} = Arcana.ingest("Your content here", repo: MyApp.Repo)

With metadata
{:ok, document} = Arcana.ingest(
 "Article about Elixir",
 repo: MyApp.Repo,
 metadata: %{"author" => "Jane", "category" => "programming"}
)

With a source ID for grouping
{:ok, document} = Arcana.ingest(
 "Chapter 1 content",
 repo: MyApp.Repo,
 source_id: "book-123"
)

Ingest from file (supports .txt, .md, .pdf)
{:ok, document} = Arcana.ingest_file("path/to/document.pdf", repo: MyApp.Repo)

Organize documents into collections
{:ok, document} = Arcana.ingest(
 "Product documentation",
 repo: MyApp.Repo,
 collection: "products"
)

With collection description (helps Agent.select/2 route to the right collection)
{:ok, document} = Arcana.ingest(
 "API reference",
 repo: MyApp.Repo,
 collection: %{name: "api", description: "REST API endpoints and parameters"}
)
Note: PDF support requires a PDF parser. The default uses Poppler's pdftotext.
See PDF Parsing Configuration for installation and custom parsers.

Searching
Semantic search (default)
{:ok, results} = Arcana.search("functional programming", repo: MyApp.Repo)

Full-text search
{:ok, results} = Arcana.search("Elixir", repo: MyApp.Repo, mode: :fulltext)

Hybrid search (combines semantic + fulltext)
{:ok, results} = Arcana.search("Elixir patterns", repo: MyApp.Repo, mode: :hybrid)

Hybrid with custom weights (pgvector backend)
{:ok, results} = Arcana.search("Elixir patterns",
 repo: MyApp.Repo,
 mode: :hybrid,
 semantic_weight: 0.7, # Weight for semantic similarity
 fulltext_weight: 0.3 # Weight for keyword matching
)

With filters
{:ok, results} = Arcana.search("query",
 repo: MyApp.Repo,
 limit: 5,
 threshold: 0.7,
 source_id: "book-123",
 collection: "products" # Filter by collection
)
Question Answering
Use Arcana.ask/2 to combine search with an LLM for answers:
llm_fn = fn prompt, context ->
 # Call your LLM API here
 {:ok, "Generated answer based on context"}
end

{:ok, answer} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: llm_fn,
 limit: 5
)
See the LLM Integration guide for production-ready LLM integration.
Agentic RAG Pipeline
For more control over the RAG process, use the Agent pipeline:
alias Arcana.Agent

llm = fn prompt -> {:ok, "LLM response"} end

ctx =
 Agent.new("Compare Elixir and Erlang", repo: MyApp.Repo, llm: llm)
 |> Agent.select(collections: ["elixir-docs", "erlang-docs"])
 |> Agent.expand()
 |> Agent.search()
 |> Agent.answer()

ctx.answer
Pipeline Steps
	Step	Purpose
	new/2	Initialize with question, repo, and LLM
	select/2	Choose which collections to search
	expand/2	Add synonyms to improve retrieval
	decompose/2	Split complex questions into parts
	search/2	Execute search (with optional self-correction)
	rerank/2	Re-score and filter chunks by relevance
	answer/2	Generate final answer

Expand vs. Decompose
Use expand/2 when queries contain abbreviations, jargon, or domain-specific terms:
Before expand: "ML models"
After expand: "ML machine learning artificial intelligence models algorithms"

ctx
|> Agent.expand()
|> Agent.search()
Use decompose/2 when questions have multiple parts:
Before decompose: "What is X and how does it compare to Y?"
After decompose: ["What is X?", "How does it compare to Y?"]

ctx
|> Agent.decompose()
|> Agent.search() # Searches each sub-question
You can combine both:
ctx
|> Agent.expand() # Adds synonyms to the original question
|> Agent.decompose() # Splits into sub-questions
|> Agent.search() # Searches each expanded sub-question
Self-Correcting Search
Enable automatic query refinement when results are insufficient:
ctx
|> Agent.search(self_correct: true, max_iterations: 3)
The agent will:
	Execute the search
	Ask the LLM if results are sufficient
	If not, rewrite the query and retry
	Repeat until sufficient or max iterations reached

Re-ranking
Improve result quality by re-scoring chunks after retrieval:
ctx
|> Agent.search()
|> Agent.rerank(threshold: 7) # Keep chunks scoring 7+/10
|> Agent.answer()
The LLM scores each chunk's relevance to the question. Chunks below the threshold are filtered out, and remaining chunks are sorted by score.
For custom re-ranking logic (e.g., cross-encoder models):
Custom reranker module
defmodule MyApp.CrossEncoderReranker do
 @behaviour Arcana.Agent.Reranker

 @impl true
 def rerank(question, chunks, _opts) do
 # Your scoring logic here
 {:ok, scored_chunks}
 end
end

ctx |> Agent.rerank(reranker: MyApp.CrossEncoderReranker)
Query Rewriting
Improve search results by rewriting queries before searching:
alias Arcana.Rewriters

Create a rewriter with your LLM
rewriter = Rewriters.expand(llm: fn prompt ->
 # Call LLM to expand the query
 {:ok, "expanded query with synonyms"}
end)

Use it with search
results = Arcana.search("ML",
 repo: MyApp.Repo,
 rewriter: rewriter
)
Dashboard UI
Arcana includes a LiveView dashboard for managing documents:
In your router
import ArcanaWeb.Router

scope "/admin", MyAppWeb do
 pipe_through [:browser, :admin]
 arcana_dashboard("/arcana", repo: MyApp.Repo)
end
Telemetry
Arcana emits telemetry events for all operations. You can attach handlers to observe performance and usage:
In your application startup
:telemetry.attach_many(
 "my-arcana-handler",
 [
 [:arcana, :ingest, :stop],
 [:arcana, :search, :stop],
 [:arcana, :ask, :stop]
],
 fn event, measurements, metadata, _config ->
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)
 Logger.info("#{inspect(event)} completed in #{duration_ms}ms")
 end,
 nil
)
Events follow the :telemetry.span/3 convention with :start, :stop, and :exception suffixes. See Arcana.Telemetry for complete documentation.
Next Steps
	LLM Integration - Connect Arcana to LLMs
	Agentic RAG - Build sophisticated RAG pipelines
	Re-ranking - Improve retrieval quality
	Search Algorithms - Hybrid search modes
	Evaluation - Measure retrieval quality
	Dashboard - Web UI setup

 LLM Integration

This guide shows how to use Arcana with Req.LLM for production-ready RAG applications.
Setup
Add req_llm to your dependencies:
def deps do
 [
 {:arcana, "~> 1.0"},
 {:req_llm, "~> 1.2"}
]
end
Configure your API key:
config/runtime.exs
config :req_llm, :openai, api_key: System.get_env("OPENAI_API_KEY")
or for Anthropic:
config :req_llm, :anthropic, api_key: System.get_env("ANTHROPIC_API_KEY")
Basic RAG with Arcana.ask/2
Pass a model string directly to Arcana.ask/2:
OpenAI
{:ok, answer} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: "openai:gpt-4o-mini"
)

Anthropic
{:ok, answer} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: "anthropic:claude-sonnet-4-20250514"
)
The model string format is provider:model-name. Req.LLM supports 45+ providers including OpenAI, Anthropic, Google, Groq, and OpenRouter.
Custom Prompts
Use the :prompt option for custom system prompts:
custom_prompt = fn question, context ->
 context_text = Enum.map_join(context, "\n\n", & &1.text)

 """
 You are a helpful assistant. Answer the question based only on the provided context.
 Be concise and cite specific passages when possible.

 Context:
 #{context_text}
 """
end

{:ok, answer} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: "openai:gpt-4o-mini",
 prompt: custom_prompt,
 limit: 5
)
Custom RAG Module
Wrap Arcana in a module for cleaner usage:
defmodule MyApp.RAG do
 @default_model "openai:gpt-4o-mini"
 @default_limit 5

 def ask(question, opts \\ []) do
 repo = Keyword.get(opts, :repo, MyApp.Repo)
 model = Keyword.get(opts, :model, @default_model)
 limit = Keyword.get(opts, :limit, @default_limit)
 source_id = Keyword.get(opts, :source_id)

 search_opts = [
 repo: repo,
 llm: model,
 limit: limit,
 mode: :hybrid
]

 search_opts =
 if source_id, do: Keyword.put(search_opts, :source_id, source_id), else: search_opts

 Arcana.ask(question, search_opts)
 end

 def search(query, opts \\ []) do
 repo = Keyword.get(opts, :repo, MyApp.Repo)
 limit = Keyword.get(opts, :limit, @default_limit)

 case Arcana.search(query, repo: repo, limit: limit, mode: :hybrid) do
 {:ok, results} -> results
 {:error, _reason} -> []
 end
 end
end
Streaming Responses
For real-time streaming in LiveView, use Req.LLM's streaming directly with Arcana's search:
defmodule MyAppWeb.ChatLive do
 use MyAppWeb, :live_view

 def handle_event("ask", %{"question" => question}, socket) do
 # Get context from Arcana
 {:ok, context} = Arcana.search(question, repo: MyApp.Repo, limit: 5)
 context_text = Enum.map_join(context, "\n\n", & &1.text)

 # Stream the response
 send(self(), {:stream_answer, question, context_text})

 {:noreply, assign(socket, streaming: true, answer: "")}
 end

 def handle_info({:stream_answer, question, context_text}, socket) do
 live_view_pid = self()

 Task.start(fn ->
 llm_context =
 ReqLLM.Context.new([
 ReqLLM.Context.system("""
 Answer based on this context:
 #{context_text}
 """),
 ReqLLM.Context.user(question)
])

 {:ok, response} = ReqLLM.stream_text("openai:gpt-4o-mini", llm_context)

 response
 |> ReqLLM.StreamResponse.tokens()
 |> Stream.each(fn chunk ->
 send(live_view_pid, {:chunk, chunk})
 end)
 |> Stream.run()

 send(live_view_pid, :stream_done)
 end)

 {:noreply, socket}
 end

 def handle_info({:chunk, content}, socket) do
 {:noreply, update(socket, :answer, &(&1 <> content))}
 end

 def handle_info(:stream_done, socket) do
 {:noreply, assign(socket, streaming: false)}
 end
end
Agentic RAG
For complex questions, use the Agent pipeline:
llm = fn prompt -> ReqLLM.generate_text!("openai:gpt-4o-mini", prompt) end

ctx =
 Arcana.Agent.new("Compare Elixir and Erlang features", repo: MyApp.Repo, llm: llm)
 |> Arcana.Agent.select(collections: ["elixir-docs", "erlang-docs"])
 |> Arcana.Agent.decompose()
 |> Arcana.Agent.search(self_correct: true)
 |> Arcana.Agent.answer()

ctx.answer
All pipeline steps accept custom prompt options:
ctx
|> Agent.select(collections: [...], prompt: fn question, collections -> "..." end)
|> Agent.decompose(prompt: fn question -> "..." end)
|> Agent.search(
 self_correct: true,
 sufficient_prompt: fn question, chunks -> "..." end,
 rewrite_prompt: fn question, chunks -> "..." end
)
|> Agent.answer(prompt: fn question, chunks -> "..." end)
Cost Tracking
Req.LLM includes built-in cost tracking via telemetry. Attach a handler to track LLM costs:
defmodule MyApp.LLMLogger do
 require Logger

 def setup do
 :telemetry.attach(
 "llm-cost-logger",
 [:req_llm, :token_usage],
 &handle_event/4,
 nil
)
 end

 def handle_event([:req_llm, :token_usage], measurements, metadata, _) do
 Logger.info("""
 LLM Usage:
 Model: #{metadata.model}
 Input tokens: #{measurements.input_tokens}
 Output tokens: #{measurements.output_tokens}
 Cost: $#{measurements.total_cost}
 """)
 end
end
Tips
	Use hybrid search - Combines semantic understanding with keyword matching
	Set appropriate limits - More context isn't always better (increases cost and noise)
	Use streaming for chat interfaces - Better UX for long responses
	Monitor costs - Attach telemetry handlers to track LLM spending
	Consider caching - LLM calls are expensive; cache common queries

 Agentic RAG Pipeline

Build sophisticated RAG workflows with Arcana's composable Agent pipeline.
Overview
The Arcana.Agent module provides a pipeline-based approach to RAG where a context struct flows through each step:
alias Arcana.Agent

ctx =
 Agent.new("Compare Elixir and Erlang")
 |> Agent.gate() # Decide if retrieval is needed
 |> Agent.rewrite() # Clean up conversational input
 |> Agent.expand() # Expand query with synonyms
 |> Agent.decompose() # Break into sub-questions
 |> Agent.search() # Search for each sub-question
 |> Agent.reason() # Multi-hop: search again if needed
 |> Agent.rerank() # Re-rank results
 |> Agent.answer() # Generate final answer

ctx.answer
Configuration
Configure defaults in your config so you don't have to pass them every time:
config/config.exs
config :arcana,
 repo: MyApp.Repo,
 llm: &MyApp.LLM.complete/1
You can still override per-call if needed:
Agent.new("Question", repo: OtherRepo, llm: other_llm)
Pipeline Steps
new/1,2 - Initialize Context
Creates the context with your question and optional overrides:
Uses config defaults
ctx = Agent.new("What is Elixir?")

With explicit options
ctx = Agent.new("What is Elixir?",
 repo: MyApp.Repo,
 llm: llm,
 limit: 5, # Max chunks per search (default: 5)
 threshold: 0.5 # Minimum similarity (default: 0.5)
)
gate/2 - Retrieval Gating
Decide if the question needs retrieval or can be answered from knowledge:
ctx = Agent.gate(ctx)

ctx.skip_retrieval # true if retrieval can be skipped
ctx.gate_reasoning # "Basic arithmetic can be answered from knowledge"
When skip_retrieval is true, downstream steps behave differently:
	search/2 skips the search and sets results: []
	reason/2 skips multi-hop reasoning
	rerank/2 passes through empty results
	answer/2 uses a no-context prompt (answers from knowledge)

Use when:
	Your questions mix simple facts with domain-specific queries
	You want to reduce latency for questions that don't need retrieval
	You're building a chatbot that handles general knowledge questions

Example: skip retrieval for math questions
ctx =
 Agent.new("What is 2 + 2?", repo: MyApp.Repo, llm: llm)
 |> Agent.gate()
 |> Agent.search()
 |> Agent.answer()

ctx.skip_retrieval # => true
ctx.answer # => "4" (answered from knowledge, no retrieval)
rewrite/2 - Clean Conversational Input
Transform conversational input into clear search queries:
ctx = Agent.rewrite(ctx)

ctx.rewritten_query
"Hey, I want to compare Elixir and Go" → "compare Elixir and Go"
This step removes greetings, filler phrases, and conversational noise while preserving entity names and technical terms. Use when questions come from chatbots or voice interfaces.
select/2 - Route to Collections
Route the question to specific collections based on content:
ctx
|> Agent.select(collections: ["docs", "api", "tutorials"])
|> Agent.search()
The LLM decides which collection(s) are most relevant. Collection descriptions (if set) are included in the prompt.
expand/2 - Query Expansion
Add synonyms and related terms to improve retrieval:
ctx = Agent.expand(ctx)

ctx.expanded_query
=> "Elixir programming language functional BEAM Erlang VM"
decompose/2 - Query Decomposition
Break complex questions into simpler sub-questions:
ctx = Agent.decompose(ctx)

ctx.sub_questions
=> ["What is Elixir?", "What is Erlang?", "How do they compare?"]
search/2 - Execute Search
Search using the original question, expanded query, or sub-questions:
ctx = Agent.search(ctx)

ctx.results
=> [%{question: "...", collection: "...", chunks: [...]}]
Explicit Collection Selection
Pass :collection or :collections to search specific collections without using select/2:
Search a single collection
ctx
|> Agent.search(collection: "technical_docs")
|> Agent.answer()

Search multiple collections
ctx
|> Agent.search(collections: ["docs", "faq"])
|> Agent.answer()
Collection selection priority:
	:collection/:collections option passed to search/2
	ctx.collections (set by select/2)
	Falls back to "default" collection

This is useful when:
	You have only one collection (no LLM selection needed)
	The user explicitly chooses which collection(s) to search
	You want deterministic routing without LLM overhead

reason/2 - Multi-hop Reasoning
Evaluate if search results are sufficient and search again if not:
ctx = Agent.reason(ctx, max_iterations: 2)

ctx.reason_iterations # Number of additional searches performed
ctx.queries_tried # MapSet of all queries attempted
This step implements multi-hop reasoning by:
	Asking the LLM if current results can answer the question
	If not, getting a follow-up query from the LLM
	Executing the follow-up search and merging results
	Repeating until sufficient or max_iterations reached

The queries_tried set prevents searching the same query twice.
Options
	:max_iterations - Maximum additional searches (default: 2)
	:prompt - Custom prompt function fn question, chunks -> prompt_string end
	:llm - Override the LLM function for this step

Example
Question that may need multiple searches
ctx =
 Agent.new("How does Elixir handle concurrency and error recovery?")
 |> Agent.search()
 |> Agent.reason(max_iterations: 3)
 |> Agent.answer()

First search finds concurrency info, reason/2 adds error recovery search
ctx.reason_iterations # => 1
ctx.queries_tried # => MapSet.new(["How does Elixir...", "Elixir error recovery supervision"])
rerank/2 - Re-rank Results
Score and filter chunks by relevance:
ctx = Agent.rerank(ctx, threshold: 7)
See the Re-ranking Guide for details.
answer/2 - Generate Answer
Generate the final answer from retrieved context:
ctx = Agent.answer(ctx)

ctx.answer
=> "Elixir is a functional programming language..."
ctx.context_used
=> [%Arcana.Chunk{...}, ...]
When skip_retrieval is true (set by gate/2), answer/2 uses a no-context prompt and answers from the LLM's knowledge:
ctx =
 Agent.new("What is 2 + 2?")
 |> Agent.gate() # Sets skip_retrieval: true
 |> Agent.search() # Skipped
 |> Agent.answer() # Answers from knowledge

ctx.answer # => "4"
ctx.context_used # => []
Custom Prompts
Every LLM-powered step accepts a custom prompt function and optional LLM override:
Custom rewrite prompt
Agent.rewrite(ctx, prompt: fn question ->
 "Clean up this conversational input: #{question}"
end)

Custom expansion prompt
Agent.expand(ctx, prompt: fn question ->
 "Expand this query for better search: #{question}"
end)

Custom decomposition prompt
Agent.decompose(ctx, prompt: fn question ->
 """
 Split this into sub-questions. Return JSON:
 {"sub_questions": ["q1", "q2"]}

 Question: #{question}
 """
end)

Custom answer prompt
Agent.answer(ctx, prompt: fn question, chunks ->
 context = Enum.map_join(chunks, "\n", & &1.text)
 """
 Answer based only on this context:
 #{context}

 Question: #{question}
 """
end)

Override LLM for a specific step
Agent.rewrite(ctx, llm: faster_llm)
Agent.answer(ctx, llm: more_capable_llm)
Error Handling
Errors are stored in the context and propagate through the pipeline:
ctx = Agent.new("Question", repo: repo, llm: llm)
 |> Agent.search()
 |> Agent.answer()

case ctx.error do
 nil -> IO.puts("Answer: #{ctx.answer}")
 error -> IO.puts("Error: #{inspect(error)}")
end
Steps skip execution when an error is present.
Telemetry
Each step emits telemetry events:
Available events
[:arcana, :agent, :rewrite, :start | :stop | :exception]
[:arcana, :agent, :select, :start | :stop | :exception]
[:arcana, :agent, :expand, :start | :stop | :exception]
[:arcana, :agent, :decompose, :start | :stop | :exception]
[:arcana, :agent, :search, :start | :stop | :exception]
[:arcana, :agent, :rerank, :start | :stop | :exception]
[:arcana, :agent, :answer, :start | :stop | :exception]
[:arcana, :agent, :self_correct, :start | :stop | :exception] # Per correction attempt
Example handler:
:telemetry.attach(
 "agent-logger",
 [:arcana, :agent, :search, :stop],
 fn _event, measurements, metadata, _config ->
 IO.puts("Search found #{metadata.total_chunks} chunks in #{measurements.duration}ns")
 end,
 nil
)
Example Pipelines
Simple RAG
ctx =
 Agent.new(question, repo: repo, llm: llm)
 |> Agent.search()
 |> Agent.answer()
With Query Expansion
ctx =
 Agent.new(question, repo: repo, llm: llm)
 |> Agent.expand()
 |> Agent.search()
 |> Agent.answer()
Full Pipeline
ctx =
 Agent.new(question, repo: repo, llm: llm)
 |> Agent.select(collections: ["docs", "api"])
 |> Agent.expand()
 |> Agent.decompose()
 |> Agent.search()
 |> Agent.rerank(threshold: 7)
 |> Agent.answer(self_correct: true)
Conditional Steps
ctx = Agent.new(question, repo: repo, llm: llm)

ctx =
 if complex_question?(question) do
 ctx |> Agent.decompose()
 else
 ctx |> Agent.expand()
 end

ctx
|> Agent.search()
|> Agent.rerank()
|> Agent.answer()
Custom Implementations
Every pipeline step has a behaviour and can be replaced with a custom implementation. This gives you full control over each component while keeping the pipeline composable.
Available Behaviours
	Step	Behaviour	Default Implementation	Option
	rewrite/2	Arcana.Agent.Rewriter	Rewriter.LLM	:rewriter
	select/2	Arcana.Agent.Selector	Selector.LLM	:selector
	expand/2	Arcana.Agent.Expander	Expander.LLM	:expander
	decompose/2	Arcana.Agent.Decomposer	Decomposer.LLM	:decomposer
	search/2	Arcana.Agent.Searcher	Searcher.Arcana	:searcher
	rerank/2	Arcana.Agent.Reranker	Reranker.LLM	:reranker
	answer/2	Arcana.Agent.Answerer	Answerer.LLM	:answerer

Custom Rewriter
Transform queries using your own logic:
defmodule MyApp.SpellCheckRewriter do
 @behaviour Arcana.Agent.Rewriter

 @impl true
 def rewrite(question, _opts) do
 {:ok, MyApp.SpellChecker.correct(question)}
 end
end

ctx
|> Agent.rewrite(rewriter: MyApp.SpellCheckRewriter)
|> Agent.search()
Custom Expander
Expand queries with domain-specific knowledge:
defmodule MyApp.MedicalExpander do
 @behaviour Arcana.Agent.Expander

 @impl true
 def expand(question, _opts) do
 terms = MyApp.MedicalThesaurus.expand_terms(question)
 {:ok, question <> " " <> Enum.join(terms, " ")}
 end
end

Agent.expand(ctx, expander: MyApp.MedicalExpander)
Custom Decomposer
Break questions into sub-questions with custom logic:
defmodule MyApp.SimpleDecomposer do
 @behaviour Arcana.Agent.Decomposer

 @impl true
 def decompose(question, _opts) do
 sub_questions =
 question
 |> String.split(~r/ and | or /i)
 |> Enum.map(&String.trim/1)

 {:ok, sub_questions}
 end
end

Agent.decompose(ctx, decomposer: MyApp.SimpleDecomposer)
Custom Searcher
Replace the default pgvector search with any backend:
defmodule MyApp.ElasticsearchSearcher do
 @behaviour Arcana.Agent.Searcher

 @impl true
 def search(question, collection, opts) do
 limit = Keyword.get(opts, :limit, 5)

 chunks =
 MyApp.Elasticsearch.search(collection, question, size: limit)
 |> Enum.map(fn hit ->
 %{
 id: hit["_id"],
 text: hit["_source"]["text"],
 document_id: hit["_source"]["document_id"],
 score: hit["_score"]
 }
 end)

 {:ok, chunks}
 end
end

Use Elasticsearch instead of pgvector
ctx
|> Agent.search(searcher: MyApp.ElasticsearchSearcher)
|> Agent.answer()
Other search backend examples:
	Meilisearch for fast typo-tolerant search
	Pinecone for managed vector search
	Weaviate for hybrid search
	OpenSearch for enterprise deployments

Custom Reranker
Use a cross-encoder or other scoring model:
defmodule MyApp.CrossEncoderReranker do
 @behaviour Arcana.Agent.Reranker

 @impl true
 def rerank(question, chunks, opts) do
 threshold = Keyword.get(opts, :threshold, 0.5)

 scored_chunks =
 chunks
 |> Enum.map(fn chunk ->
 score = MyApp.CrossEncoder.score(question, chunk.text)
 Map.put(chunk, :rerank_score, score)
 end)
 |> Enum.filter(&(&1.rerank_score >= threshold))
 |> Enum.sort_by(& &1.rerank_score, :desc)

 {:ok, scored_chunks}
 end
end

Agent.rerank(ctx, reranker: MyApp.CrossEncoderReranker)
Custom Answerer
Generate answers with your own approach:
defmodule MyApp.TemplateAnswerer do
 @behaviour Arcana.Agent.Answerer

 @impl true
 def answer(question, chunks, _opts) do
 context = Enum.map_join(chunks, "\n\n", & &1.text)

 answer = """
 Based on #{length(chunks)} sources:

 #{context}

 Question: #{question}
 """

 {:ok, answer}
 end
end

Skip LLM entirely, just concatenate chunks
Agent.answer(ctx, answerer: MyApp.TemplateAnswerer)
Inline Functions
For quick customizations, pass a function instead of a module:
Inline rewriter
Agent.rewrite(ctx, rewriter: fn question, _opts ->
 {:ok, String.downcase(question)}
end)

Inline expander
Agent.expand(ctx, expander: fn question, _opts ->
 {:ok, question <> " programming language"}
end)

Inline searcher
Agent.search(ctx, searcher: fn question, collection, opts ->
 # Your search logic
 {:ok, chunks}
end)

Inline answerer
Agent.answer(ctx, answerer: fn question, chunks, _opts ->
 {:ok, "Found #{length(chunks)} relevant chunks for: #{question}"}
end)
Combining Custom Implementations
Mix and match custom components:
ctx =
 Agent.new(question, repo: repo, llm: llm)
 |> Agent.rewrite(rewriter: MyApp.SpellCheckRewriter)
 |> Agent.expand() # Use default LLM expander
 |> Agent.search(searcher: MyApp.ElasticsearchSearcher)
 |> Agent.rerank(reranker: MyApp.CrossEncoderReranker)
 |> Agent.answer() # Use default LLM answerer
Per-Step LLM Override
Override the LLM for specific steps without changing the implementation:
fast_llm = fn prompt -> {:ok, OpenAI.chat("gpt-4o-mini", prompt)} end
smart_llm = fn prompt -> {:ok, OpenAI.chat("gpt-4o", prompt)} end

ctx =
 Agent.new(question, repo: repo, llm: fast_llm)
 |> Agent.expand() # Uses fast_llm
 |> Agent.search()
 |> Agent.rerank() # Uses fast_llm
 |> Agent.answer(llm: smart_llm) # Override with smart_llm
Context Struct
The Arcana.Agent.Context struct carries all state:
	Field	Description
	question	Original question
	repo	Ecto repo
	llm	LLM function
	rewritten_query	Query after cleanup (from rewrite)
	expanded_query	Query after expansion
	sub_questions	Decomposed questions
	collections	Selected collections
	results	Search results per question/collection
	rerank_scores	Scores from re-ranking
	answer	Final generated answer
	context_used	Chunks used for answer
	correction_count	Number of self-corrections made
	corrections	List of {answer, feedback} tuples
	error	Error if any step failed

 Re-ranking

Improve retrieval quality by re-scoring and filtering search results before answer generation.
Overview
Re-ranking is a second-stage retrieval step that scores each chunk based on relevance to the question, filters by a threshold, and re-sorts by score. This improves answer quality by ensuring only the most relevant context reaches the LLM.
Using Re-ranking in the Agent Pipeline
alias Arcana.Agent

llm = fn prompt -> {:ok, LangChain.chat(prompt)} end

ctx =
 Agent.new("What is Elixir?", repo: MyApp.Repo, llm: llm)
 |> Agent.search()
 |> Agent.rerank() # Re-rank before answering
 |> Agent.answer()

ctx.answer
Configuration
Threshold
The threshold (0-10) filters out low-relevance chunks:
Keep only highly relevant chunks (score >= 8)
Agent.rerank(ctx, threshold: 8)

More permissive (score >= 5)
Agent.rerank(ctx, threshold: 5)
Default threshold is 7.
Custom Prompt
Customize how the LLM scores relevance:
custom_prompt = fn question, chunk_text ->
 """
 Rate how relevant this text is for answering the question.

 Question: #{question}
 Text: #{chunk_text}

 Score 0-10 where 10 is perfectly relevant.
 Return JSON: {"score": <number>, "reasoning": "<brief explanation>"}
 """
end

Agent.rerank(ctx, prompt: custom_prompt)
Custom Rerankers
Implementing the Behaviour
Create a custom reranker by implementing Arcana.Agent.Reranker:
defmodule MyApp.CrossEncoderReranker do
 @behaviour Arcana.Agent.Reranker

 @impl Arcana.Agent.Reranker
 def rerank(question, chunks, opts) do
 threshold = Keyword.get(opts, :threshold, 0.5)

 scored_chunks =
 chunks
 |> Enum.map(fn chunk ->
 score = cross_encoder_score(question, chunk.text)
 {chunk, score}
 end)
 |> Enum.filter(fn {_chunk, score} -> score >= threshold end)
 |> Enum.sort_by(fn {_chunk, score} -> score end, :desc)
 |> Enum.map(fn {chunk, _score} -> chunk end)

 {:ok, scored_chunks}
 end

 defp cross_encoder_score(question, text) do
 # Call your cross-encoder model
 Nx.Serving.batched_run(MyApp.CrossEncoder, {question, text})
 end
end
Use it:
Agent.rerank(ctx, reranker: MyApp.CrossEncoderReranker)
Inline Function
For simple cases, pass a function directly:
Agent.rerank(ctx, reranker: fn question, chunks, _opts ->
 # Your custom logic
 filtered = Enum.filter(chunks, &relevant?(&1, question))
 {:ok, filtered}
end)
Built-in Rerankers
Arcana.Agent.Reranker.LLM (Default)
Uses your LLM to score each chunk:
	Prompts the LLM with question + chunk text
	Parses a 0-10 score from the response
	Filters chunks below threshold
	Sorts by score descending

This is the default when you call Arcana.Agent.rerank/2.
Arcana.Agent.Reranker.ColBERT
ColBERT-style neural reranking using per-token embeddings and MaxSim scoring. Provides more nuanced relevance scoring than single-vector methods by matching individual query tokens to document tokens.
Add the optional dependency:
{:stephen, "~> 0.1"}
Use it:
Agent.rerank(ctx, reranker: Arcana.Agent.Reranker.ColBERT)

With options
Agent.rerank(ctx, reranker: {Arcana.Agent.Reranker.ColBERT, top_k: 5})
Options:
	:encoder - Pre-loaded Stephen encoder (loads default on first use if not provided)
	:threshold - Minimum score to keep (default: 0.0)
	:top_k - Maximum results to return

When to use ColBERT:
	When you need high-quality reranking without LLM latency/cost
	When semantic nuance matters (e.g., technical documentation)
	When you want deterministic, reproducible scores

Trade-offs vs LLM reranker:
	Aspect	ColBERT	LLM
	Latency	Fast (local inference)	Slow (API call per chunk)
	Cost	Free after model load	Per-token API cost
	Quality	Excellent for semantic similarity	Can understand complex relevance
	Customization	Fixed model behavior	Custom prompts

Telemetry
Re-ranking emits telemetry events:
:telemetry.attach(
 "rerank-logger",
 [:arcana, :agent, :rerank, :stop],
 fn _event, measurements, metadata, _config ->
 IO.puts("Reranked: #{metadata.chunks_before} -> #{metadata.chunks_after} chunks")
 end,
 nil
)
When to Use Re-ranking
Re-ranking is most valuable when:
	Your initial search returns many marginally relevant results
	Answer quality suffers from irrelevant context
	You have compute budget for the extra LLM calls (one per chunk)

Skip re-ranking when:
	Search already returns highly relevant results
	Latency is critical (adds one LLM call per chunk)
	You're using a very small result set (limit: 3 or less)

 Search Algorithms

Arcana supports three search modes across two vector store backends. This guide explains how each algorithm works under the hood.
Search Modes Overview
	Mode	Purpose	Memory Backend	PgVector Backend
	:semantic	Find similar meaning	HNSWLib cosine similarity	pgvector HNSW index
	:fulltext	Find keyword matches	TF-IDF-like scoring	PostgreSQL tsvector
	:hybrid	Combine both	Two queries + RRF	Single-query with weights

Semantic Search
Both backends use cosine similarity to find semantically similar content.
Memory Backend (HNSWLib)
Uses Hierarchical Navigable Small World graphs for approximate nearest neighbor search.
Query embedding → HNSWLib.Index.knn_query → Top-k neighbors by cosine distance
Score calculation:
score = 1.0 - cosine_distance
Where cosine_distance = 1 - cosine_similarity. A score of 1.0 means identical vectors.
Complexity: O(log n) average case for k-NN queries.
PgVector Backend
Uses PostgreSQL's pgvector extension with HNSW indexing.
SELECT *, 1 - (embedding <=> query_embedding) AS score
FROM arcana_chunks
ORDER BY embedding <=> query_embedding
LIMIT 10
The <=> operator computes cosine distance. The HNSW index makes this efficient even for millions of vectors.
Fulltext Search
Memory Backend: TF-IDF-like Scoring
A simplified term-matching algorithm inspired by TF-IDF:
def calculate_text_score(query_terms, document_text) do
 doc_terms = tokenize(document_text)
 matching = count_matching_terms(query_terms, doc_terms)

 # What fraction of query terms appear in the document
 term_ratio = matching / length(query_terms)

 # Penalize long documents (they match more by chance)
 length_factor = 1.0 / :math.log(length(doc_terms) + 1)

 term_ratio * length_factor
end
Example:
Query: "elixir pattern matching" (3 terms)
	Document	Matches	Term Ratio	Length	Length Factor	Score
	"Pattern matching in Elixir is powerful"	3	1.0	6	0.51	0.51
	"Elixir is great"	1	0.33	3	0.72	0.24
	"A very long document about many topics including elixir..."	1	0.33	50	0.26	0.09

Why "TF-IDF-like" not actual TF-IDF:
	Feature	Real TF-IDF	Memory Backend
	Term frequency	Counts occurrences	Binary (present/absent)
	Inverse document frequency	Corpus-wide statistics	No corpus index
	Document length normalization	Yes	Yes (via log factor)

The simplification avoids maintaining a persistent term index, which would add complexity to an in-memory store.
PgVector Backend: PostgreSQL Full-Text Search
Uses PostgreSQL's battle-tested full-text search with tsvector and tsquery:
SELECT *,
 ts_rank(to_tsvector('english', text), to_tsquery('english', 'elixir & pattern & matching')) AS score
FROM arcana_chunks
WHERE to_tsvector('english', text) @@ to_tsquery('english', 'elixir & pattern & matching')
ORDER BY score DESC
How it works:
	to_tsvector: Converts text to a searchable vector of lexemes (normalized word forms)
	"running" → "run"
	"patterns" → "pattern"
	Removes stop words ("the", "is", "a")

	to_tsquery: Converts query to search terms joined with & (AND)
	"elixir pattern matching" → 'elixir' & 'pattern' & 'match'

	@@ operator: Returns true if document matches query

	ts_rank: Scores documents by:
	Term frequency in document
	Inverse document frequency (rarity)
	Term proximity (how close terms appear)

Advantages over Memory backend:
	Stemming (matches "running" when searching "run")
	Stop word removal
	Proximity scoring
	Language-aware processing

Hybrid Search
Hybrid mode combines semantic and fulltext search. The implementation differs by backend:
	Backend	Approach	Advantages
	PgVector	Single-query weighted combination	Better coverage, configurable weights
	Memory	Two queries + RRF	Simple, rank-based fusion

PgVector Backend: Single-Query Hybrid
The pgvector backend uses a single SQL query that combines both scores:
WITH base_scores AS (
 SELECT
 id, text, embedding,
 1 - (embedding <=> query_embedding) AS semantic_score,
 ts_rank(to_tsvector('english', text), query) AS fulltext_score
 FROM arcana_chunks
),
normalized AS (
 SELECT *,
 (fulltext_score - MIN(fulltext_score) OVER ()) /
 NULLIF(MAX(fulltext_score) OVER () - MIN(fulltext_score) OVER (), 0)
 AS fulltext_normalized
 FROM base_scores
)
SELECT *,
 (semantic_weight * semantic_score + fulltext_weight * fulltext_normalized) AS hybrid_score
FROM normalized
ORDER BY hybrid_score DESC
Why single-query is better:
With separate queries, items ranking moderately in both lists might be missed. For example:
	Semantic search fetches top 20
	Fulltext search fetches top 20
	An item ranking #15 in both could be highly relevant overall, but RRF only sees it at position 15

Single-query evaluates all chunks, ensuring nothing is missed.
Score normalization:
	Semantic scores (cosine similarity) naturally range 0-1
	Fulltext scores (ts_rank) vary widely based on document content
	The query normalizes fulltext scores using min-max scaling within the result set

Configurable weights:
Equal weight (default)
{:ok, results} = Arcana.search("query", repo: Repo, mode: :hybrid)

Favor semantic similarity
{:ok, results} = Arcana.search("query", repo: Repo, mode: :hybrid, semantic_weight: 0.7, fulltext_weight: 0.3)

Favor keyword matches
{:ok, results} = Arcana.search("query", repo: Repo, mode: :hybrid, semantic_weight: 0.3, fulltext_weight: 0.7)
Results include individual scores for debugging:
%{
 id: "...",
 text: "...",
 score: 0.75, # Combined hybrid score
 semantic_score: 0.82, # Cosine similarity
 fulltext_score: 0.68 # Raw ts_rank score
}
Memory Backend: Reciprocal Rank Fusion (RRF)
For the memory backend (and other custom backends), hybrid search uses Reciprocal Rank Fusion to combine results from separate queries.
The Problem:
Semantic and fulltext searches return scores on different scales:
	Semantic: 0.0 to 1.0 (cosine similarity)
	Fulltext: Unbounded (ts_rank or term matching)

Naively averaging scores would bias toward one method.
The Solution: RRF
RRF scores by rank position, not raw score:
def rrf_score(rank, k \\ 60) do
 1.0 / (k + rank)
end
Where k is a constant (default 60) that prevents top-ranked items from dominating.
Algorithm:
def rrf_combine(semantic_results, fulltext_results, limit) do
 # Build rank maps
 semantic_ranks = build_rank_map(semantic_results)
 fulltext_ranks = build_rank_map(fulltext_results)

 # Combine all unique IDs
 all_ids = MapSet.union(Map.keys(semantic_ranks), Map.keys(fulltext_ranks))

 # Calculate RRF score for each
 all_ids
 |> Enum.map(fn id ->
 semantic_rank = Map.get(semantic_ranks, id, 1000) # Default: low rank
 fulltext_rank = Map.get(fulltext_ranks, id, 1000)

 rrf_score = 1/(60 + semantic_rank) + 1/(60 + fulltext_rank)
 {id, rrf_score}
 end)
 |> Enum.sort_by(&elem(&1, 1), :desc)
 |> Enum.take(limit)
end
Example:
Query: "BEAM virtual machine"
	Document	Semantic Rank	Fulltext Rank	Semantic RRF	Fulltext RRF	Combined
	"Erlang runs on the BEAM VM"	1	2	0.016	0.016	0.032
	"The BEAM virtual machine"	-	1	0.001	0.016	0.017
	"The BEAM is Erlang's runtime"	2	-	0.016	0.001	0.017

Documents appearing in both result sets get boosted to the top.
Choosing the Right Mode
	Use Case	Recommended Mode
	Conceptual questions ("How does X work?")	:semantic
	Exact terms, names, codes	:fulltext
	General search, unknown query type	:hybrid
	API/function lookup	:fulltext
	Finding related concepts	:semantic

Backend Comparison
	Aspect	Memory	PgVector
	Setup	No database needed	Requires PostgreSQL + pgvector
	Persistence	Lost on restart	Persisted
	Semantic search	HNSWLib (excellent)	pgvector HNSW (excellent)
	Fulltext search	Basic term matching	Full linguistic processing
	Stemming	No	Yes
	Stop words	No	Yes
	Scale	< 100K vectors	Millions of vectors
	Best for	Testing, small apps	Production

 Evaluation

Measure and improve your retrieval quality with Arcana's evaluation system.
Overview
Arcana provides tools to evaluate how well your RAG pipeline retrieves relevant information:
	Test Cases - Questions paired with their known relevant chunks
	Evaluation Runs - Execute searches and measure performance
	Metrics - Standard IR metrics (MRR, Precision, Recall, Hit Rate)

Creating Test Cases
Manual Test Cases
Create test cases when you know which chunks should be retrieved for a question:
First, find the chunk you want to use as ground truth
chunks = Arcana.search("GenServer state", repo: MyApp.Repo, limit: 1)
chunk = hd(chunks)

Create a test case linking question to relevant chunk
{:ok, test_case} = Arcana.Evaluation.create_test_case(
 repo: MyApp.Repo,
 question: "How do you manage state in Elixir?",
 relevant_chunk_ids: [chunk.id]
)
Synthetic Test Cases
Generate test cases automatically using an LLM:
{:ok, test_cases} = Arcana.Evaluation.generate_test_cases(
 repo: MyApp.Repo,
 llm: Application.get_env(:arcana, :llm),
 sample_size: 50
)
The generator samples random chunks and asks the LLM to create questions that should retrieve those chunks.
Filtering by Collection
Generate test cases from a specific collection:
{:ok, test_cases} = Arcana.Evaluation.generate_test_cases(
 repo: MyApp.Repo,
 llm: Application.get_env(:arcana, :llm),
 sample_size: 50,
 collection: "elixir-docs"
)
Using the Mix Task
Generate 50 test cases (default)
mix arcana.eval.generate

Custom sample size
mix arcana.eval.generate --sample-size 100

From a specific collection
mix arcana.eval.generate --collection elixir-docs

From a specific source
mix arcana.eval.generate --source-id my-source

Running Evaluations
Run an evaluation against all test cases:
{:ok, run} = Arcana.Evaluation.run(
 repo: MyApp.Repo,
 mode: :semantic # or :fulltext, :hybrid
)
Evaluating Answer Quality
For end-to-end RAG evaluation, you can also evaluate the quality of generated answers:
{:ok, run} = Arcana.Evaluation.run(
 repo: MyApp.Repo,
 mode: :semantic,
 evaluate_answers: true,
 llm: Application.get_env(:arcana, :llm)
)

Includes faithfulness metric
run.metrics.faithfulness # => 7.8 (0-10 scale)
When evaluate_answers: true is set, the evaluation:
	Generates an answer for each test case using the retrieved chunks
	Uses LLM-as-judge to score how faithful the answer is to the context
	Aggregates scores into an overall faithfulness metric

Faithfulness measures whether the generated answer is grounded in the retrieved chunks (0 = hallucinated, 10 = fully faithful).
Using the Mix Task
Run with semantic search (default)
mix arcana.eval.run

Run with hybrid search
mix arcana.eval.run --mode hybrid

Run with full-text search
mix arcana.eval.run --mode fulltext

Understanding Results
Overall metrics
run.metrics
=> %{
recall_at_1: 0.62,
recall_at_3: 0.78,
recall_at_5: 0.84,
recall_at_10: 0.91,
precision_at_1: 0.62,
precision_at_3: 0.52,
precision_at_5: 0.34,
precision_at_10: 0.18,
mrr: 0.76,
hit_rate_at_1: 0.62,
hit_rate_at_3: 0.78,
hit_rate_at_5: 0.84,
hit_rate_at_10: 0.91
}

Per-case results
run.results
=> %{"case-id" => %{hit: true, rank: 2, ...}, ...}

Configuration used
run.config
=> %{mode: :semantic, embedding: %{model: "...", dimensions: 384}}
Comparing Configurations
Run evaluations with different settings to find the best configuration:
Test semantic search
{:ok, semantic_run} = Arcana.Evaluation.run(repo: MyApp.Repo, mode: :semantic)

Test hybrid search
{:ok, hybrid_run} = Arcana.Evaluation.run(repo: MyApp.Repo, mode: :hybrid)

Compare
IO.puts("Semantic MRR: #{semantic_run.metrics.mrr}")
IO.puts("Hybrid MRR: #{hybrid_run.metrics.mrr}")
Managing Test Cases and Runs
List all test cases
test_cases = Arcana.Evaluation.list_test_cases(repo: MyApp.Repo)

Get a specific test case
test_case = Arcana.Evaluation.get_test_case(id, repo: MyApp.Repo)

Delete a test case
{:ok, _} = Arcana.Evaluation.delete_test_case(id, repo: MyApp.Repo)

List past runs
runs = Arcana.Evaluation.list_runs(repo: MyApp.Repo, limit: 10)

Delete a run
{:ok, _} = Arcana.Evaluation.delete_run(run_id, repo: MyApp.Repo)
Dashboard
The Arcana Dashboard provides a visual interface for evaluation:
	Test Cases tab - View, generate, and delete test cases
	Run Evaluation tab - Execute evaluations with different search modes
	History tab - View past runs with metrics

See the Dashboard Guide for setup instructions.
Metrics Explained
Retrieval Metrics
	Metric	Description	Good Value
	MRR (Mean Reciprocal Rank)	Average of 1/rank for first relevant result	> 0.7
	Recall@K	Fraction of relevant chunks found in top K	> 0.8
	Precision@K	Fraction of top K results that are relevant	> 0.6
	Hit Rate@K	Fraction of queries with at least one relevant result in top K	> 0.9

Answer Quality Metrics
	Metric	Description	Good Value
	Faithfulness	How well the answer is grounded in retrieved context (0-10)	> 7.0

Which Metric to Focus On?
	MRR - Best for single-answer scenarios where you need the relevant chunk first
	Recall@K - Important when you need to find all relevant information
	Precision@K - Matters when you want to minimize irrelevant context
	Hit Rate@K - Good baseline to ensure retrieval is working at all
	Faithfulness - Essential for preventing hallucinations in generated answers

Best Practices
	Diverse test cases - Cover different topics and question types
	Sufficient sample size - Aim for 50+ test cases for reliable metrics
	Regular evaluation - Re-run after changing embeddings, chunking, or search settings
	Track over time - Compare runs to ensure changes improve quality
	Use collection filtering - Evaluate specific document collections separately
	Test all search modes - Compare semantic, fulltext, and hybrid to find what works best

 Telemetry and Observability

Arcana emits telemetry events for all operations, giving you visibility into performance, errors, and usage patterns. This guide covers setup options from quick debugging to full production monitoring.
Quick Start
For immediate visibility, attach the built-in logger in your application startup:
lib/my_app/application.ex
def start(_type, _args) do
 # Attach telemetry logger before starting supervision tree
 Arcana.Telemetry.Logger.attach()

 children = [
 MyApp.Repo,
 Arcana.TaskSupervisor,
 Arcana.Embedder.Local
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
This logs all Arcana operations with timing:
[info] [Arcana] search completed in 42ms (15 results)
[info] [Arcana] llm.complete completed in 1.23s [openai:gpt-4o-mini] ok (156 chars) prompt=892chars
[info] [Arcana] agent.gate completed in 180ms (skip_retrieval: false)
[info] [Arcana] agent.rewrite completed in 235ms
[info] [Arcana] agent.expand completed in 2.15s ("machine learning ML models...")
[info] [Arcana] agent.search completed in 156ms (25 chunks)
[info] [Arcana] agent.reason completed in 1.2s (1 iteration)
[info] [Arcana] agent.rerank completed in 312ms (10/25 kept)
[info] [Arcana] agent.answer completed in 3.25s
[info] [Arcana] ask completed in 6.12s
With graph: true enabled, you'll also see:
[info] [Arcana] graph.ner completed in 45ms (3 entities)
[info] [Arcana] graph.relationship_extraction completed in 1.2s (2 relationships)
[info] [Arcana] graph.build completed in 1.5s (5 entities, 3 relationships)
[info] [Arcana] graph.search completed in 28ms (8 graph results, 10 combined)
Logger Options
Arcana.Telemetry.Logger.attach(
 level: :debug, # Log level (default: :info)
 handler_id: "my-logger" # Custom handler ID
)

To stop logging
Arcana.Telemetry.Logger.detach()
Event Reference
All events use :telemetry.span/3, which emits :start, :stop, and :exception variants automatically.
Core Events
	Event	Measurements	Metadata
	[:arcana, :ingest, :*]	system_time, duration	text, repo, collection, document, chunk_count
	[:arcana, :search, :*]	system_time, duration	query, repo, mode, limit, results, result_count
	[:arcana, :ask, :*]	system_time, duration	question, repo, answer, context_count
	[:arcana, :embed, :*]	system_time, duration	text, dimensions
	[:arcana, :llm, :complete, :*]	system_time, duration	model, prompt_length, success, response_length, error

Agent Pipeline Events
Each step in the Agent pipeline emits its own events:
	Event	Metadata
	[:arcana, :agent, :gate, :*]	question, skip_retrieval
	[:arcana, :agent, :rewrite, :*]	question, rewritten_query
	[:arcana, :agent, :select, :*]	selected (collections)
	[:arcana, :agent, :expand, :*]	question, expanded_query
	[:arcana, :agent, :decompose, :*]	question, sub_question_count
	[:arcana, :agent, :search, :*]	question, total_chunks
	[:arcana, :agent, :reason, :*]	question, iterations
	[:arcana, :agent, :rerank, :*]	question, chunks_before, chunks_after
	[:arcana, :agent, :answer, :*]	question, context_chunk_count

VectorStore Events
Storage layer events for vector operations:
	Event	Metadata
	[:arcana, :vector_store, :store, :*]	collection, id, backend
	[:arcana, :vector_store, :search, :*]	collection, limit, backend, result_count
	[:arcana, :vector_store, :search_text, :*]	collection, query, limit, backend, result_count
	[:arcana, :vector_store, :delete, :*]	collection, id, backend
	[:arcana, :vector_store, :clear, :*]	collection, backend

GraphRAG Events
When using graph: true, these events track knowledge graph operations:
	Event	Metadata
	[:arcana, :graph, :build, :*]	chunk_count, collection, entity_count, relationship_count
	[:arcana, :graph, :search, :*]	query, entity_count, graph_result_count, combined_count
	[:arcana, :graph, :ner, :*]	text, entity_count
	[:arcana, :graph, :relationship_extraction, :*]	text, relationship_count
	[:arcana, :graph, :community_detection, :*]	entity_count, community_count
	[:arcana, :graph, :community_summary, :*]	entity_count, summary_length

GraphStore Events
Storage layer events for graph operations:
	Event	Metadata
	[:arcana, :graph_store, :persist_entities, :*]	collection_id, entity_count, backend
	[:arcana, :graph_store, :persist_relationships, :*]	relationship_count, backend
	[:arcana, :graph_store, :persist_mentions, :*]	mention_count, backend
	[:arcana, :graph_store, :search, :*]	entity_count, backend, result_count
	[:arcana, :graph_store, :delete_by_chunks, :*]	chunk_count, backend
	[:arcana, :graph_store, :delete_by_collection, :*]	collection_id, backend

Exception Events
All :exception events include:
	kind - The exception type (:error, :exit, :throw)
	reason - The exception or error term
	stacktrace - Full stacktrace

Custom Handlers
For more control, attach your own handlers:
defmodule MyApp.ArcanaMetrics do
 require Logger

 def setup do
 events = [
 [:arcana, :ingest, :stop],
 [:arcana, :search, :stop],
 [:arcana, :ask, :stop],
 [:arcana, :embed, :stop],
 [:arcana, :llm, :complete, :stop],
 # Agent pipeline
 [:arcana, :agent, :gate, :stop],
 [:arcana, :agent, :rerank, :stop],
 [:arcana, :agent, :reason, :stop],
 [:arcana, :agent, :answer, :stop],
 # VectorStore
 [:arcana, :vector_store, :store, :stop],
 [:arcana, :vector_store, :search, :stop],
 # GraphRAG
 [:arcana, :graph, :build, :stop],
 [:arcana, :graph, :search, :stop],
 # GraphStore
 [:arcana, :graph_store, :persist_entities, :stop],
 [:arcana, :graph_store, :search, :stop]
]

 :telemetry.attach_many("my-arcana-metrics", events, &handle_event/4, nil)
 end

 def handle_event([:arcana, :search, :stop], measurements, metadata, _config) do
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)

 Logger.info("Search: #{metadata.result_count} results in #{duration_ms}ms",
 query: metadata.query,
 mode: metadata.mode
)

 # Send to your metrics system
 :telemetry.execute([:my_app, :arcana, :search], %{
 duration_ms: duration_ms,
 result_count: metadata.result_count
 })
 end

 def handle_event([:arcana, :llm, :complete, :stop], measurements, metadata, _config) do
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)

 if metadata.success do
 Logger.debug("LLM call to #{metadata.model}: #{duration_ms}ms")
 else
 Logger.warning("LLM call failed: #{metadata.error}")
 end
 end

 # ... handle other events
end
Call MyApp.ArcanaMetrics.setup() in your application startup.
Phoenix LiveDashboard Integration
Add Arcana metrics to your LiveDashboard:
lib/my_app/telemetry.ex
defmodule MyApp.Telemetry do
 import Telemetry.Metrics

 def metrics do
 [
 # Arcana core operations
 summary("arcana.ingest.stop.duration",
 unit: {:native, :millisecond},
 tags: [:collection]
),
 summary("arcana.search.stop.duration",
 unit: {:native, :millisecond},
 tags: [:mode]
),
 counter("arcana.search.stop.result_count"),
 summary("arcana.ask.stop.duration",
 unit: {:native, :millisecond}
),

 # Embedding performance
 summary("arcana.embed.stop.duration",
 unit: {:native, :millisecond}
),

 # LLM calls (often the slowest part)
 summary("arcana.llm.complete.stop.duration",
 unit: {:native, :millisecond},
 tags: [:model]
),
 counter("arcana.llm.complete.stop.prompt_length"),

 # Agent pipeline steps
 summary("arcana.agent.rerank.stop.duration",
 unit: {:native, :millisecond}
),
 last_value("arcana.agent.rerank.stop.kept"),
 summary("arcana.agent.answer.stop.duration",
 unit: {:native, :millisecond}
),

 # GraphRAG metrics
 summary("arcana.graph.build.stop.duration",
 unit: {:native, :millisecond}
),
 last_value("arcana.graph.build.stop.entity_count"),
 summary("arcana.graph.search.stop.duration",
 unit: {:native, :millisecond}
),
 last_value("arcana.graph.search.stop.graph_result_count")
]
 end
end
Configure LiveDashboard to use these metrics:
lib/my_app_web/router.ex
live_dashboard "/dashboard",
 metrics: MyApp.Telemetry
Prometheus Integration
For production monitoring with Prometheus, use prom_ex:
mix.exs
{:prom_ex, "~> 1.9"}
lib/my_app/prom_ex.ex
defmodule MyApp.PromEx do
 use PromEx, otp_app: :my_app

 @impl true
 def plugins do
 [
 # Default plugins
 PromEx.Plugins.Application,
 PromEx.Plugins.Beam,
 # Add custom Arcana metrics
 MyApp.PromEx.ArcanaPlugin
]
 end

 @impl true
 def dashboards do
 [
 {:prom_ex, "application.json"},
 {:prom_ex, "beam.json"}
]
 end
end
lib/my_app/prom_ex/arcana_plugin.ex
defmodule MyApp.PromEx.ArcanaPlugin do
 use PromEx.Plugin

 @impl true
 def event_metrics(_opts) do
 Event.build(
 :arcana_event_metrics,
 [
 distribution(
 [:arcana, :search, :duration, :milliseconds],
 event_name: [:arcana, :search, :stop],
 measurement: :duration,
 unit: {:native, :millisecond},
 tags: [:mode],
 tag_values: fn metadata -> %{mode: metadata[:mode] || :semantic} end
),
 distribution(
 [:arcana, :llm, :complete, :duration, :milliseconds],
 event_name: [:arcana, :llm, :complete, :stop],
 measurement: :duration,
 unit: {:native, :millisecond},
 tags: [:model, :success],
 tag_values: fn metadata ->
 %{model: metadata[:model] || "unknown", success: metadata[:success]}
 end
),
 counter(
 [:arcana, :ingest, :chunks, :total],
 event_name: [:arcana, :ingest, :stop],
 measurement: fn _measurements, metadata -> metadata[:chunk_count] || 0 end
)
]
)
 end
end
Debugging Performance Issues
Identify Slow Operations
The built-in logger makes it easy to spot bottlenecks:
[info] [Arcana] embed completed in 45ms (384 dims)
[info] [Arcana] search completed in 12ms (10 results)
[info] [Arcana] llm.complete completed in 3.2s [openai:gpt-4o] ok (1892 chars)
[info] [Arcana] ask completed in 3.3s
In this example, the LLM call dominates total time (3.2s of 3.3s).
Track Agent Pipeline Steps
For agentic RAG, each pipeline step is instrumented:
[info] [Arcana] agent.gate completed in 150ms (skip_retrieval: false)
[info] [Arcana] agent.rewrite completed in 180ms ("what are elixir macros")
[info] [Arcana] agent.expand completed in 220ms ("elixir macros metaprogramming...")
[info] [Arcana] agent.search completed in 35ms (25 chunks)
[info] [Arcana] agent.reason completed in 850ms (1 iteration)
[info] [Arcana] agent.rerank completed in 890ms (8/25 kept)
[info] [Arcana] agent.answer completed in 2.1s
Here, reranking takes 890ms - if this is too slow, consider:
	Reducing chunks before reranking (lower search limit)
	Using a faster reranking threshold
	Implementing a custom reranker

If reason/2 is taking too long due to multiple iterations, consider:
	Lowering max_iterations (default: 2)
	Improving initial search quality with query expansion

Monitor LLM Costs
Track prompt sizes to estimate API costs:
def handle_event([:arcana, :llm, :complete, :stop], measurements, metadata, _config) do
 # Rough token estimate (4 chars per token)
 prompt_tokens = div(metadata.prompt_length || 0, 4)
 response_tokens = div(metadata.response_length || 0, 4)

 Logger.info("LLM usage",
 model: metadata.model,
 prompt_tokens: prompt_tokens,
 response_tokens: response_tokens,
 success: metadata.success
)
end
Error Tracking
Handle exceptions to send to your error tracking service:
def setup do
 exception_events = [
 [:arcana, :ingest, :exception],
 [:arcana, :search, :exception],
 [:arcana, :ask, :exception],
 [:arcana, :llm, :complete, :exception]
]

 :telemetry.attach_many("arcana-errors", exception_events, &handle_exception/4, nil)
end

def handle_exception(event, _measurements, metadata, _config) do
 # Send to Sentry, Honeybadger, etc.
 Sentry.capture_message("Arcana error",
 extra: %{
 event: inspect(event),
 kind: metadata.kind,
 reason: inspect(metadata.reason)
 }
)
end
Best Practices
	Start with the built-in logger - It's zero-config and helps you understand what's happening

	Focus on LLM latency - This is usually the bottleneck; track it closely

	Monitor reranking - If using Agent.rerank/2, watch the kept/original ratio

	Track by collection - Tag metrics with collection names to identify slow document sets

	Set up alerts - Alert on LLM failures and unusually slow operations

	Log in production - Keep at least :info level logging for Arcana to debug issues

 Dashboard

A web UI for managing documents and testing search. The dashboard consists of multiple pages accessible via sidebar navigation.
Setup
1. Add TaskSupervisor to your supervision tree
The dashboard requires Arcana.TaskSupervisor for async operations (Ask, Maintenance):
lib/my_app/application.ex
children = [
 MyApp.Repo,
 Arcana.TaskSupervisor, # Required for dashboard
 # ...
]
2. Add the dashboard route
lib/my_app_web/router.ex
import ArcanaWeb.Router

scope "/" do
 pipe_through :browser

 arcana_dashboard "/arcana"
end
Visit http://localhost:4000/arcana to access the dashboard (redirects to Documents page).
Options
arcana_dashboard "/arcana",
 repo: MyApp.Repo, # Override repo
 on_mount: [MyAppWeb.Auth], # Add authentication
 live_socket_path: "/live" # Custom LiveView socket path
Authentication
Protect the dashboard with your existing authentication:
arcana_dashboard "/arcana",
 on_mount: [MyAppWeb.RequireAdmin]
Pages
Documents (/arcana/documents)
	View documents - Browse all ingested documents with pagination
	View chunks - See how documents are chunked
	Ingest text - Paste content directly with format selection
	Upload files - Upload .txt, .md, or .pdf files
	Filter by collection - View documents from specific collections

Ask (/arcana/ask)
	Simple mode - Basic RAG question answering
	Agentic mode - Full pipeline with query expansion, decomposition, and self-correction
	Collection selection - Choose which collections to search (or let the LLM select)
	Pipeline options - Toggle expand, decompose, rerank, and self-correct steps

Search (/arcana/search)
	Test queries - Try searches against your documents
	View results - See retrieved chunks with similarity scores and expandable details
	Compare modes - Test semantic, full-text, and hybrid search
	Filter by collection - Search within specific collections

Collections (/arcana/collections)
	View collections - Browse all collections with document counts
	Create collections - Add new collections with descriptions
	Edit collections - Update collection descriptions
	Delete collections - Remove empty collections

Evaluation (/arcana/evaluation)
	View test cases - See questions and their relevant chunks
	Run evaluations - Execute evaluation runs
	View metrics - See MRR, Precision, Recall scores
	Compare runs - Track changes over time

Maintenance (/arcana/maintenance)
	Rebuild embeddings - Re-embed all chunks (useful after model changes)
	Orphan cleanup - Find and remove chunks without parent documents
	Database operations - Maintenance tasks for the vector store

Info (/arcana/info)
	Configuration - View current Arcana settings
	Embedding model - See which model is in use
	Statistics - Document and chunk counts

Deployment
The dashboard uses Phoenix LiveView. Ensure your production configuration includes:
config/runtime.exs
config :my_app, MyAppWeb.Endpoint,
 url: [host: "example.com", port: 443],
 check_origin: ["//example.com"]
Assets
Dashboard assets (CSS, JS) are served inline - no build step required.
Security Considerations
The dashboard provides full access to your Arcana data:
	Always add authentication in production
	Restrict to admin users who need access
	Consider IP allowlisting for sensitive deployments

Example: Admin-only access
defmodule MyAppWeb.RequireAdmin do
 import Phoenix.LiveView

 def on_mount(:default, _params, session, socket) do
 case session["current_user"] do
 %{admin: true} -> {:cont, socket}
 _ -> {:halt, redirect(socket, to: "/")}
 end
 end
end

Arcana.Agent

Pipeline-based agentic RAG for Arcana.
Compose steps via pipes with a context struct flowing through each transformation:
Arcana.Agent.new(question, llm: llm_fn)
|> Arcana.Agent.search()
|> Arcana.Agent.answer()
Context
The Arcana.Agent.Context struct flows through the pipeline, accumulating
results at each step. Each step transforms the context and passes it on.
Steps
	new/1,2 - Initialize context with question and options
	search/2 - Execute search, populate results
	answer/1 - Generate final answer from results

Configuration
Set defaults in your config to avoid passing options every time:
config :arcana,
 repo: MyApp.Repo,
 llm: &MyApp.LLM.complete/1
Example
ctx =
 Arcana.Agent.new("What is Elixir?")
 |> Arcana.Agent.search()
 |> Arcana.Agent.answer()

ctx.answer
=> "Generated answer"

 Summary

 Functions

 answer(ctx, opts \\ [])

 Generates the final answer from search results.

 decompose(ctx, opts \\ [])

 Breaks a complex question into simpler sub-questions.

 expand(ctx, opts \\ [])

 Expands the query with synonyms and related terms.

 gate(ctx, opts \\ [])

 Decides whether retrieval is needed for the question.

 new(question, opts \\ [])

 Creates a new agent context.

 reason(ctx, opts \\ [])

 Evaluates if search results are sufficient and searches again if not.

 rerank(ctx, opts \\ [])

 Re-ranks search results to improve quality before answering.

 rewrite(ctx, opts \\ [])

 Rewrites conversational input into a clear search query.

 search(ctx, opts \\ [])

 Executes search and populates results in the context.

 select(ctx, opts)

 Selects which collection(s) to search for the question.

 Functions

 answer(ctx, opts \\ [])

Generates the final answer from search results.
Collects all chunks from results, deduplicates by ID, and prompts the LLM
to generate an answer based on the context.
Options
	:answerer - Custom answerer module or function (default: Arcana.Agent.Answerer.LLM)
	:prompt - Custom prompt function fn question, chunks -> prompt_string end
	:llm - Override the LLM function for this step
	:self_correct - Enable self-correcting answers (default: false)
	:max_corrections - Max correction attempts (default: 2)

Example
ctx
|> Agent.search()
|> Agent.answer()

ctx.answer
=> "The answer based on retrieved context..."
Custom Answerer
Module implementing Arcana.Agent.Answerer behaviour
Agent.answer(ctx, answerer: MyApp.TemplateAnswerer)

Inline function
Agent.answer(ctx, answerer: fn question, chunks, opts ->
 llm = Keyword.fetch!(opts, :llm)
 prompt = "Q: " <> question <> "
Context: " <> inspect(chunks)
 Arcana.LLM.complete(llm, prompt, [], [])
end)

 decompose(ctx, opts \\ [])

Breaks a complex question into simpler sub-questions.
Uses the LLM to analyze the question and split it into parts that can
be searched independently. Simple questions are returned unchanged.
Options
	:decomposer - Custom decomposer module or function (default: Arcana.Agent.Decomposer.LLM)
	:prompt - Custom prompt function fn question -> prompt_string end
	:llm - Override the LLM function for this step

Example
ctx
|> Agent.decompose()
|> Agent.search()
|> Agent.answer()
The sub-questions are stored in ctx.sub_questions and used by search/2.
Custom Decomposer
Module implementing Arcana.Agent.Decomposer behaviour
Agent.decompose(ctx, decomposer: MyApp.KeywordDecomposer)

Inline function
Agent.decompose(ctx, decomposer: fn question, _opts ->
 {:ok, [question]} # No decomposition
end)

 expand(ctx, opts \\ [])

Expands the query with synonyms and related terms.
Uses the LLM to add related terms and synonyms that may help
find more relevant documents. The expanded query is used by search/2
if present.
Options
	:expander - Custom expander module or function (default: Arcana.Agent.Expander.LLM)
	:prompt - Custom prompt function fn question -> prompt_string end
	:llm - Override the LLM function for this step

Example
ctx
|> Agent.expand()
|> Agent.search()
|> Agent.answer()
The expanded query is stored in ctx.expanded_query and used by search/2.
Custom Expander
Module implementing Arcana.Agent.Expander behaviour
Agent.expand(ctx, expander: MyApp.ThesaurusExpander)

Inline function
Agent.expand(ctx, expander: fn question, _opts ->
 {:ok, question <> " programming development"}
end)

 gate(ctx, opts \\ [])

Decides whether retrieval is needed for the question.
Uses the LLM to determine if the question can be answered from general
knowledge or if it requires searching the knowledge base. Questions
about basic facts, math, or general knowledge can skip retrieval.
Sets skip_retrieval: true on the context if retrieval can be skipped,
which causes answer/2 to generate a response without context.
Options
	:prompt - Custom prompt function fn question -> prompt_string end
	:llm - Override the LLM function for this step

Example
ctx
|> Agent.gate() # Decides if retrieval is needed
|> Agent.search() # Skipped if skip_retrieval is true
|> Agent.answer() # Uses no-context prompt if skip_retrieval

 new(question, opts \\ [])

Creates a new agent context.
Options
	:repo - The Ecto repo to use (defaults to Application.get_env(:arcana, :repo))
	:llm - Function that takes a prompt and returns {:ok, response} or {:error, reason}
(defaults to Application.get_env(:arcana, :llm))
	:limit - Maximum chunks to retrieve (default: 5)
	:threshold - Minimum similarity threshold (default: 0.5)

Example
With config defaults
config :arcana, repo: MyApp.Repo, llm: &MyApp.LLM.complete/1

Agent.new("What is Elixir?")

Or with explicit options
Agent.new("What is Elixir?", repo: MyApp.Repo, llm: &my_llm/1)

 reason(ctx, opts \\ [])

Evaluates if search results are sufficient and searches again if not.
This step implements multi-hop reasoning by:
	Asking the LLM if current results can answer the question
	If not, getting a follow-up query and searching again
	Repeating until sufficient or max iterations reached

Tracks queries_tried to prevent searching the same query twice.
Options
	:max_iterations - Maximum additional searches (default: 2)
	:prompt - Custom prompt function fn question, chunks -> prompt_string end
	:llm - Override the LLM function for this step

Example
ctx
|> Agent.search()
|> Agent.reason() # Multi-hop if needed
|> Agent.rerank()
|> Agent.answer()

 rerank(ctx, opts \\ [])

Re-ranks search results to improve quality before answering.
Scores each chunk based on relevance to the question, filters by threshold,
and re-sorts by score. Uses Arcana.Reranker.LLM by default.
Options
	:reranker - Custom reranker module or function (default: Arcana.Reranker.LLM)
	:threshold - Minimum score to keep (default: 7, range 0-10)
	:prompt - Custom prompt function for LLM reranker fn question, chunk_text -> prompt end

Example
ctx
|> Agent.search()
|> Agent.rerank()
|> Agent.answer()
Custom Reranker
Module implementing Arcana.Reranker behaviour
Agent.rerank(ctx, reranker: MyApp.CrossEncoderReranker)

Inline function
Agent.rerank(ctx, reranker: fn question, chunks, opts ->
 {:ok, my_rerank(question, chunks)}
end)
The reranked results replace ctx.results, and scores are stored in ctx.rerank_scores.

 rewrite(ctx, opts \\ [])

Rewrites conversational input into a clear search query.
Uses the LLM to remove conversational noise (greetings, filler phrases)
while preserving the core question and all important terms.
This step should run before expand/2 and decompose/2 to clean up
the input before further transformations.
Options
	:rewriter - Custom rewriter module or function (default: Arcana.Agent.Rewriter.LLM)
	:prompt - Custom prompt function fn question -> prompt_string end
	:llm - Override the LLM function for this step

Example
ctx
|> Agent.rewrite() # "Hey, tell me about Elixir" → "about Elixir"
|> Agent.expand()
|> Agent.search()
|> Agent.answer()
Custom Rewriter
Module implementing Arcana.Agent.Rewriter behaviour
Agent.rewrite(ctx, rewriter: MyApp.RegexRewriter)

Inline function
Agent.rewrite(ctx, rewriter: fn question, _opts ->
 {:ok, String.downcase(question)}
end)

 search(ctx, opts \\ [])

Executes search and populates results in the context.
Uses sub_questions if present (from decompose step), otherwise uses the original question.
Collection Selection
Collections are determined in this priority order:
	:collection or :collections option passed to this function
	ctx.collections (set by select/2 if LLM selection was used)
	Falls back to "default" collection

This allows you to explicitly specify a collection without using LLM-based selection:
Search a specific collection
ctx |> Agent.search(collection: "technical_docs")

Search multiple specific collections
ctx |> Agent.search(collections: ["docs", "faq"])
Options
	:searcher - Custom searcher module or function (default: Arcana.Agent.Searcher.Arcana)
	:collection - Single collection name to search (string)
	:collections - List of collection names to search
	:self_correct - Enable self-correcting search (default: false)
	:max_iterations - Max retry attempts for self-correct (default: 3)
	:sufficient_prompt - Custom prompt function fn question, chunks -> prompt_string end
	:rewrite_prompt - Custom prompt function fn question, chunks -> prompt_string end

Examples
Basic search (uses default collection)
ctx |> Agent.search() |> Agent.answer()

Search specific collection
ctx |> Agent.search(collection: "products") |> Agent.answer()

With pipeline options
ctx
|> Agent.expand()
|> Agent.search(collection: "docs", self_correct: true)
|> Agent.answer()
Custom Searcher
Module implementing Arcana.Agent.Searcher behaviour
Agent.search(ctx, searcher: MyApp.ElasticsearchSearcher)

Inline function
Agent.search(ctx, searcher: fn question, collection, opts ->
 {:ok, my_search(question, collection, opts)}
end)
Self-correcting search
When self_correct: true, the agent will:
	Execute the search
	Ask the LLM if results are sufficient
	If not, rewrite the query and retry
	Repeat until sufficient or max_iterations reached

 select(ctx, opts)

Selects which collection(s) to search for the question.
By default, uses the LLM to decide which collection(s) are most relevant.
You can provide a custom selector module or function for deterministic routing.
Collection descriptions are automatically fetched from the database
and passed to the selector.
Options
	:collections (required) - List of available collection names
	:selector - Custom selector module or function (default: Arcana.Agent.Selector.LLM)
	:prompt - Custom prompt function for LLM selector
	:context - User context map passed to custom selectors

Example
LLM-based selection (default)
ctx
|> Agent.select(collections: ["docs", "api", "support"])
|> Agent.search()

Custom selector module
ctx
|> Agent.select(
 collections: ["docs", "api"],
 selector: MyApp.TeamBasedSelector,
 context: %{team: user.team}
)

Inline selector function
ctx
|> Agent.select(
 collections: ["docs", "api"],
 selector: fn question, _collections, _opts ->
 if question =~ "API", do: {:ok, ["api"], "API query"}, else: {:ok, ["docs"], nil}
 end
)
The selected collections are stored in ctx.collections and used by search/2.

Arcana.Agent.Answerer behaviour

Behaviour for answer generation in the Agent pipeline.
The answerer generates the final response based on the question and
retrieved context chunks.
Built-in Implementations
	Arcana.Agent.Answerer.LLM - Uses your LLM to generate answers (default)

Implementing a Custom Answerer
defmodule MyApp.TemplateAnswerer do
 @behaviour Arcana.Agent.Answerer

 @impl true
 def answer(question, chunks, _opts) do
 context = Enum.map_join(chunks, "
", & &1.text)
 answer = "Based on " <> Integer.to_string(length(chunks)) <> " sources:
" <> context
 {:ok, answer}
 end
end
Using a Custom Answerer
Agent.new(question, repo: repo, llm: llm)
|> Agent.search()
|> Agent.answer(answerer: MyApp.TemplateAnswerer)
Using an Inline Function
Agent.answer(ctx,
 answerer: fn question, chunks, opts ->
 llm = Keyword.fetch!(opts, :llm)
 prompt = build_my_prompt(question, chunks)
 Arcana.LLM.complete(llm, prompt, [], [])
 end
)

 Summary

 Callbacks

 answer(question, chunks, opts)

 Generates an answer based on the question and context chunks.

 Callbacks

 answer(question, chunks, opts)

 @callback answer(
 question :: String.t(),
 chunks :: [map()],
 opts :: keyword()
) :: {:ok, String.t()} | {:error, term()}

Generates an answer based on the question and context chunks.
Parameters
	question - The user's original question
	chunks - List of context chunks retrieved by search
	opts - Options passed to Agent.answer/2, including:	:llm - The LLM function (for LLM-based answerers)
	:prompt - Custom prompt function fn question, chunks -> prompt end
	Any other options passed to Agent.answer/2

Returns
	{:ok, answer} - The generated answer string
	{:error, reason} - On failure

Arcana.Agent.Answerer.LLM

LLM-based answer generator.
Uses the configured LLM to generate answers from retrieved context.
This is the default answerer used by Agent.answer/2.
Usage
With Agent pipeline (uses ctx.llm automatically)
ctx
|> Agent.search()
|> Agent.answer()

Directly
{:ok, answer} = Arcana.Agent.Answerer.LLM.answer(
 "What is Elixir?",
 chunks,
 llm: &my_llm/1
)
Custom Prompts
Agent.answer(ctx,
 prompt: fn question, chunks ->
 context = Enum.map_join(chunks, "
", & &1.text)
 "Answer: " <> question <> "
Context: " <> context
 end
)

Arcana.Agent.Context

Context struct that flows through the agent pipeline.
Each step in the pipeline reads from and writes to this struct,
allowing steps to be composed via pipes.
Fields
Input (set by new/2)
	:question - The original question
	:repo - The Ecto repo to use
	:llm - LLM function for generating answers

Options
	:limit - Maximum chunks to retrieve per search
	:threshold - Minimum similarity threshold

Populated by rewrite/2
	:rewritten_query - Conversational input rewritten as a clear search query

Populated by select/2
	:collections - List of collection names to search
	:selection_reasoning - LLM's reasoning for the selection decision

Populated by expand/2
	:expanded_query - Query expanded with synonyms and related terms

Populated by decompose/1
	:sub_questions - List of sub-questions to search separately

Populated by gate/2
	:skip_retrieval - If true, skip search and answer from LLM knowledge
	:gate_reasoning - LLM's reasoning for the gate decision

Populated by search/2
	:results - List of %{question: _, collection: _, chunks: _} maps

Populated by reason/2
	:queries_tried - MapSet of queries already searched (prevents loops)
	:reason_iterations - Number of reason iterations performed

Populated by rerank/2
	:rerank_scores - Map of chunk ID to score (for debugging/observability)

Populated by answer/1
	:answer - The generated answer
	:context_used - Chunks used to generate the answer
	:correction_count - Number of self-corrections performed (0 if disabled)
	:corrections - List of {answer, feedback} tuples showing correction history

Error handling
	:error - Error reason if any step fails

Arcana.Agent.Decomposer behaviour

Behaviour for query decomposition in the Agent pipeline.
The decomposer breaks complex questions into simpler sub-questions
that can be searched independently, improving retrieval for multi-faceted queries.
Built-in Implementations
	Arcana.Agent.Decomposer.LLM - Uses your LLM to decompose queries (default)

Implementing a Custom Decomposer
defmodule MyApp.KeywordDecomposer do
 @behaviour Arcana.Agent.Decomposer

 @impl true
 def decompose(question, _opts) do
 # Simple keyword-based decomposition
 sub_questions =
 question
 |> String.split(~r/\s+(and|vs|versus|compared to)\s+/i)
 |> Enum.map(&String.trim/1)
 |> Enum.reject(&(&1 == ""))

 {:ok, sub_questions}
 end
end
Using a Custom Decomposer
Agent.new(question, repo: repo, llm: llm)
|> Agent.decompose(decomposer: MyApp.KeywordDecomposer)
|> Agent.search()
Using an Inline Function
Agent.decompose(ctx,
 decomposer: fn question, _opts ->
 {:ok, [question]} # No decomposition
 end
)

 Summary

 Callbacks

 decompose(question, opts)

 Decomposes a complex question into simpler sub-questions.

 Callbacks

 decompose(question, opts)

 @callback decompose(
 question :: String.t(),
 opts :: keyword()
) :: {:ok, [String.t()]} | {:error, term()}

Decomposes a complex question into simpler sub-questions.
Parameters
	question - The complex question to decompose
	opts - Options passed to Agent.decompose/2, including:	:llm - The LLM function (for LLM-based decomposers)
	:prompt - Custom prompt function (for LLM-based decomposers)
	Any other options passed to Agent.decompose/2

Returns
	{:ok, sub_questions} - List of simpler questions
	{:error, reason} - On failure, the original question is used as a single-item list

Arcana.Agent.Decomposer.LLM

LLM-based query decomposer.
Uses the configured LLM to break complex questions into simpler sub-questions.
This is the default decomposer used by Agent.decompose/2.
Usage
With Agent pipeline (uses ctx.llm automatically)
ctx
|> Agent.decompose()
|> Agent.search()
|> Agent.answer()

Directly
{:ok, sub_questions} = Arcana.Agent.Decomposer.LLM.decompose(
 "Compare Elixir and Go for web services",
 llm: &my_llm/1
)

Arcana.Agent.Expander behaviour

Behaviour for query expansion in the Agent pipeline.
The expander adds synonyms, related terms, and alternative phrasings
to improve document retrieval coverage.
Built-in Implementations
	Arcana.Agent.Expander.LLM - Uses your LLM to expand queries (default)

Implementing a Custom Expander
defmodule MyApp.ThesaurusExpander do
 @behaviour Arcana.Agent.Expander

 @impl true
 def expand(question, _opts) do
 expanded = question <> " " <> lookup_synonyms(question)
 {:ok, expanded}
 end

 defp lookup_synonyms(question) do
 # Your synonym lookup logic
 ""
 end
end
Using a Custom Expander
Agent.new(question, repo: repo, llm: llm)
|> Agent.expand(expander: MyApp.ThesaurusExpander)
|> Agent.search()
Using an Inline Function
Agent.expand(ctx,
 expander: fn question, _opts ->
 {:ok, question <> " programming software development"}
 end
)

 Summary

 Callbacks

 expand(question, opts)

 Expands a query with synonyms and related terms.

 Callbacks

 expand(question, opts)

 @callback expand(
 question :: String.t(),
 opts :: keyword()
) :: {:ok, String.t()} | {:error, term()}

Expands a query with synonyms and related terms.
Parameters
	question - The query to expand
	opts - Options passed to Agent.expand/2, including:	:llm - The LLM function (for LLM-based expanders)
	:prompt - Custom prompt function (for LLM-based expanders)
	Any other options passed to Agent.expand/2

Returns
	{:ok, expanded_query} - The expanded query string
	{:error, reason} - On failure, the original question is used

Arcana.Agent.Expander.LLM

LLM-based query expander.
Uses the configured LLM to add synonyms and related terms to queries.
This is the default expander used by Agent.expand/2.
Usage
With Agent pipeline (uses ctx.llm automatically)
ctx
|> Agent.expand()
|> Agent.search()
|> Agent.answer()

Directly
{:ok, expanded} = Arcana.Agent.Expander.LLM.expand(
 "ML models",
 llm: &my_llm/1
)

Arcana.Agent.Reranker behaviour

Behaviour for re-ranking search results.
Re-rankers improve retrieval quality by scoring chunks based on their
relevance to the question, then filtering and re-sorting by score.
Built-in Implementations
	Arcana.Agent.Reranker.LLM - Uses your LLM to score relevance (default)

Custom Implementations
Implement the rerank/3 callback:
defmodule MyApp.CrossEncoderReranker do
 @behaviour Arcana.Agent.Reranker

 @impl Arcana.Agent.Reranker
 def rerank(question, chunks, opts) do
 # Your custom logic
 {:ok, scored_and_filtered_chunks}
 end
end
Or provide a function directly:
Agent.rerank(ctx, reranker: fn question, chunks, opts ->
 {:ok, my_rerank(question, chunks)}
end)

 Summary

 Callbacks

 rerank(question, chunks, opts)

 Re-ranks chunks based on relevance to the question.

 Callbacks

 rerank(question, chunks, opts)

 @callback rerank(
 question :: String.t(),
 chunks :: [map()],
 opts :: keyword()
) :: {:ok, [map()]} | {:error, term()}

Re-ranks chunks based on relevance to the question.
Returns chunks filtered by threshold and sorted by score (highest first).
Options
	:threshold - Minimum score to keep (default: 7, range 0-10)
	:llm - LLM function for scoring (required for LLM reranker)
	:prompt - Custom prompt function fn question, chunk_text -> prompt end

Arcana.Agent.Reranker.ColBERT

ColBERT-style neural reranker using per-token embeddings and MaxSim scoring.
Uses the Stephen library to rerank chunks with fine-grained semantic matching.
Unlike single-vector embeddings, ColBERT maintains one embedding per token,
enabling more nuanced relevance scoring.
Requirements
Add stephen to your dependencies:
{:stephen, "~> 0.1"}
Usage
With Agent pipeline
ctx
|> Agent.search()
|> Agent.rerank(reranker: Arcana.Agent.Reranker.ColBERT)
|> Agent.answer()

With custom encoder
ctx
|> Agent.search()
|> Agent.rerank(reranker: {Arcana.Agent.Reranker.ColBERT, encoder: my_encoder})
|> Agent.answer()

Directly
{:ok, reranked} = Arcana.Agent.Reranker.ColBERT.rerank(
 "What is Elixir?",
 chunks,
 threshold: 0.5
)
Options
	:encoder - Pre-loaded Stephen encoder. If not provided, loads the default
encoder on first use (cached for subsequent calls).
	:threshold - Minimum score to keep (default: 0.0). ColBERT scores are
typically in the range 0-30+ depending on query/document length.
	:top_k - Maximum number of results to return (default: all above threshold)

Score Interpretation
ColBERT scores are the sum of maximum similarities between query tokens and
document tokens. Higher is better, but the scale depends on query length:
	Short queries (2-3 words): scores typically 5-15
	Medium queries (5-10 words): scores typically 10-25
	Long queries (10+ words): scores typically 20-40+

Consider using :top_k rather than :threshold for most use cases.

Arcana.Agent.Reranker.LLM

LLM-based re-ranker that uses your configured LLM to score chunk relevance.
Scores each chunk from 0-10 based on relevance to the question,
then filters by threshold and sorts by score.
Usage
With Agent pipeline (uses ctx.llm automatically)
ctx
|> Agent.search()
|> Agent.rerank()
|> Agent.answer()

Directly
{:ok, reranked} = Arcana.Agent.Reranker.LLM.rerank(
 "What is Elixir?",
 chunks,
 llm: &my_llm/1,
 threshold: 7
)

Arcana.Agent.Rewriter behaviour

Behaviour for query rewriting in the Agent pipeline.
The rewriter transforms conversational input into clear search queries
by removing filler phrases, greetings, and other noise while preserving
the core question and important terms.
Built-in Implementations
	Arcana.Agent.Rewriter.LLM - Uses your LLM to rewrite queries (default)

Implementing a Custom Rewriter
defmodule MyApp.RegexRewriter do
 @behaviour Arcana.Agent.Rewriter

 @impl true
 def rewrite(question, _opts) do
 cleaned =
 question
 |> String.replace(~r/^(hey|hi|hello)[,!]?\s*/i, "")
 |> String.replace(~r/^(can you|could you|please)\s+/i, "")
 |> String.trim()

 {:ok, cleaned}
 end
end
Using a Custom Rewriter
Agent.new(question, repo: repo, llm: llm)
|> Agent.rewrite(rewriter: MyApp.RegexRewriter)
|> Agent.search()
Using an Inline Function
Agent.rewrite(ctx,
 rewriter: fn question, _opts ->
 {:ok, String.downcase(question)}
 end
)

 Summary

 Callbacks

 rewrite(question, opts)

 Rewrites a conversational query into a clear search query.

 Callbacks

 rewrite(question, opts)

 @callback rewrite(
 question :: String.t(),
 opts :: keyword()
) :: {:ok, String.t()} | {:error, term()}

Rewrites a conversational query into a clear search query.
Parameters
	question - The user's original question
	opts - Options passed to Agent.rewrite/2, including:	:llm - The LLM function (for LLM-based rewriters)
	:prompt - Custom prompt function (for LLM-based rewriters)
	Any other options passed to Agent.rewrite/2

Returns
	{:ok, rewritten_query} - The cleaned query string
	{:error, reason} - On failure, the original question is used

Arcana.Agent.Rewriter.LLM

LLM-based query rewriter.
Uses the configured LLM to transform conversational input into clear
search queries. This is the default rewriter used by Agent.rewrite/2.
Usage
With Agent pipeline (uses ctx.llm automatically)
ctx
|> Agent.rewrite()
|> Agent.search()
|> Agent.answer()

Directly
{:ok, rewritten} = Arcana.Agent.Rewriter.LLM.rewrite(
 "Hey, can you tell me about Elixir?",
 llm: &my_llm/1
)

Arcana.Agent.Searcher behaviour

Behaviour for search execution in the Agent pipeline.
The searcher retrieves relevant chunks from a knowledge base based on the query.
This allows swapping Arcana's built-in pgvector search for any search backend.
Built-in Implementations
	Arcana.Agent.Searcher.Arcana - Uses Arcana's pgvector search (default)

Implementing a Custom Searcher
defmodule MyApp.ElasticsearchSearcher do
 @behaviour Arcana.Agent.Searcher

 @impl true
 def search(question, collection, opts) do
 limit = Keyword.get(opts, :limit, 5)

 # Your Elasticsearch query
 case Elasticsearch.search(collection, question, limit: limit) do
 {:ok, hits} ->
 chunks = Enum.map(hits, &to_chunk/1)
 {:ok, chunks}
 {:error, reason} ->
 {:error, reason}
 end
 end

 defp to_chunk(hit) do
 %{
 id: hit["_id"],
 text: hit["_source"]["content"],
 metadata: hit["_source"]["metadata"],
 similarity: hit["_score"]
 }
 end
end
Using a Custom Searcher
Agent.new(question, repo: repo, llm: llm)
|> Agent.search(searcher: MyApp.ElasticsearchSearcher)
|> Agent.answer()
Using an Inline Function
Agent.search(ctx,
 searcher: fn question, collection, opts ->
 {:ok, my_search(question, collection, opts)}
 end
)
Chunk Format
The searcher must return chunks as maps with at least these fields:
	:id - Unique identifier for the chunk
	:text - The text content
	:metadata - Optional metadata map
	:similarity - Optional similarity score (0.0-1.0)

 Summary

 Callbacks

 search(question, collection, opts)

 Searches for relevant chunks matching the question.

 Callbacks

 search(question, collection, opts)

 @callback search(
 question :: String.t(),
 collection :: String.t(),
 opts :: keyword()
) :: {:ok, [map()]} | {:error, term()}

Searches for relevant chunks matching the question.
Parameters
	question - The search query
	collection - The collection name to search in
	opts - Options passed to Agent.search/2, including:	:repo - The Ecto repo (for database-backed searchers)
	:limit - Maximum chunks to return (default: 5)
	:threshold - Minimum similarity threshold (default: 0.5)
	Any other options passed to Agent.search/2

Returns
	{:ok, chunks} - List of chunk maps with :id, :text, :metadata, :similarity
	{:error, reason} - On failure

Arcana.Agent.Searcher.Arcana

Default searcher using Arcana's built-in pgvector search.
Uses Arcana.search/2 to perform semantic similarity search against
the configured PostgreSQL database with pgvector.
Usage
With Agent pipeline (this is the default)
ctx
|> Agent.search()
|> Agent.answer()

Explicitly specifying the searcher
ctx
|> Agent.search(searcher: Arcana.Agent.Searcher.Arcana)
|> Agent.answer()
Options
	:repo - The Ecto repo (required)
	:collection - Collection name to search
	:limit - Maximum chunks to return (default: 5)
	:threshold - Minimum similarity threshold (default: 0.5)

Arcana.Agent.Selector behaviour

Behaviour for collection selection in the Agent pipeline.
The selector determines which collections to search based on the question
and available collections. This allows for both LLM-based routing (default)
and deterministic routing based on user context, metadata, or business logic.
Implementing a Custom Selector
defmodule MyApp.TeamBasedSelector do
 @behaviour Arcana.Agent.Selector

 @impl true
 def select(_question, _collections, opts) do
 case opts[:context][:team] do
 "api" -> {:ok, ["api-reference", "sdk-docs"], "API team routing"}
 "mobile" -> {:ok, ["mobile-docs", "react-native"], "Mobile team routing"}
 _ -> {:ok, ["general"], "Default routing"}
 end
 end
end
Using a Custom Selector
Agent.new(question, repo: repo, llm: llm)
|> Agent.select(
 collections: ["api-reference", "mobile-docs", "general"],
 selector: MyApp.TeamBasedSelector,
 context: %{team: current_user.team}
)
Using an Inline Function
Agent.select(ctx,
 collections: collections,
 selector: fn question, _collections, _opts ->
 if question =~ "API" do
 {:ok, ["api-docs"], "Question mentions API"}
 else
 {:ok, ["general"], "General query"}
 end
 end
)

 Summary

 Callbacks

 select(question, collections, opts)

 Selects which collections to search based on the question.

 Callbacks

 select(question, collections, opts)

 @callback select(
 question :: String.t(),
 collections :: [{name :: String.t(), description :: String.t() | nil}],
 opts :: keyword()
) :: {:ok, [String.t()], String.t() | nil} | {:error, term()}

Selects which collections to search based on the question.
Parameters
	question - The user's question
	collections - List of {name, description} tuples for available collections
	opts - Options passed to Agent.select/2, including:	:llm - The LLM function (for LLM-based selectors)
	:prompt - Custom prompt function (for LLM-based selectors)
	:context - User-provided context map
	Any other options passed to Agent.select/2

Returns
	{:ok, selected_collections, reasoning} - List of collection names to search
and optional reasoning string (can be nil)
	{:error, reason} - On failure, falls back to all collections

Arcana.Agent.Selector.LLM

LLM-based collection selector.
Uses the configured LLM to analyze the question and available collections,
then selects the most relevant ones to search. This is the default selector
used by Agent.select/2.
Collection descriptions are included in the prompt to help the LLM make
better routing decisions.

Arcana.Ask

RAG (Retrieval Augmented Generation) question answering.
This module handles the core ask workflow:
	Search for relevant context chunks
	Build a prompt with the context
	Call the LLM for an answer

Usage
{:ok, answer, context} = Arcana.ask("What is X?",
 repo: MyApp.Repo,
 llm: "openai:gpt-4o-mini"
)

 Summary

 Functions

 ask(question, opts)

 Asks a question using retrieved context from the knowledge base.

 Functions

 ask(question, opts)

Asks a question using retrieved context from the knowledge base.
Performs a search to find relevant chunks, then passes them along with
the question to an LLM for answer generation.
Options
	:repo - The Ecto repo to use (required)
	:llm - Any type implementing the Arcana.LLM protocol (required)
	:limit - Maximum number of context chunks to retrieve (default: 5)
	:source_id - Filter context to a specific source
	:threshold - Minimum similarity score for context (default: 0.0)
	:mode - Search mode: :semantic (default), :fulltext, or :hybrid
	:collection - Filter to a specific collection
	:collections - Filter to multiple collections
	:prompt - Custom prompt function fn question, context -> system_prompt_string end

Examples
Basic usage
{:ok, answer, context} = Arcana.ask("What is Elixir?",
 repo: MyApp.Repo,
 llm: "openai:gpt-4o-mini"
)

With custom prompt
{:ok, answer, _} = Arcana.ask("Summarize the docs",
 repo: MyApp.Repo,
 llm: my_llm,
 prompt: fn question, context ->
 "Be concise. Question: #{question}"
 end
)

Arcana.Chunker.Custom

Custom chunking provider using user-provided functions.
This module wraps a user-provided function to implement the Arcana.Chunker
behaviour. It's used internally when configuring a function as the chunker.
Configuration
Function that returns list of chunk maps
config :arcana, chunker: fn text, opts ->
 [%{text: text, chunk_index: 0, token_count: div(String.length(text), 4)}]
end
The function must:
	Accept text (string) and opts (keyword list)
	Return a list of maps, each with :text, :chunk_index, and :token_count

Arcana.Chunker.Default

Default text chunker using the text_chunker library.
Supports multiple formats (plaintext, markdown, etc.) and can size chunks
by characters or tokens.
Options
	:chunk_size - Maximum chunk size (default: 450)
	:chunk_overlap - Overlap between chunks (default: 50)
	:format - Text format: :plaintext, :markdown, :elixir, etc. (default: :plaintext)
	:size_unit - How to measure size: :characters or :tokens (default: :tokens)

Examples
Arcana.Chunker.Default.chunk("Hello world", chunk_size: 100)
Arcana.Chunker.Default.chunk(markdown_text, format: :markdown, chunk_size: 512)
Arcana.Chunker.Default.chunk(text, size_unit: :tokens, chunk_size: 256)

Arcana.Collection

Represents a collection of documents for segmentation.
Collections allow you to organize documents by product, country,
or any other grouping criteria. Documents can be filtered by
collection when searching.

 Summary

 Functions

 get_or_create(name, repo, description \\ nil)

 Gets an existing collection by name or creates a new one.

 Functions

 get_or_create(name, repo, description \\ nil)

Gets an existing collection by name or creates a new one.
If a description is provided and the collection already exists,
the description is updated only if the existing one is nil or empty.
Examples
{:ok, collection} = Collection.get_or_create("products", MyRepo)
{:ok, collection} = Collection.get_or_create("default", MyRepo)
{:ok, collection} = Collection.get_or_create("docs", MyRepo, "Official documentation")

Arcana.Config

Configuration management for Arcana.
Handles parsing and resolving configuration for embedders, chunkers,
and other pluggable components.
Redacting Sensitive Values
Use Arcana.Config.redact/1 to wrap any config value for safe inspection:
config = Application.get_env(:arcana, :llm)
inspect(Arcana.Config.redact(config))
=> {"zai:glm-4.7", [api_key: "[REDACTED]"]}
Embedder Configuration
Default: Local Bumblebee with bge-small-en-v1.5
config :arcana, embedder: :local

Local with different model
config :arcana, embedder: {:local, model: "BAAI/bge-large-en-v1.5"}

OpenAI (requires req_llm and OPENAI_API_KEY)
config :arcana, embedder: :openai
config :arcana, embedder: {:openai, model: "text-embedding-3-large"}

Custom function
config :arcana, embedder: fn text -> {:ok, embedding} end

Custom module implementing Arcana.Embedder behaviour
config :arcana, embedder: MyApp.CohereEmbedder
config :arcana, embedder: {MyApp.CohereEmbedder, api_key: "..."}
Chunker Configuration
Default: text_chunker-based chunking
config :arcana, chunker: :default

Default chunker with custom options
config :arcana, chunker: {:default, chunk_size: 512, chunk_overlap: 100}

Custom function (receives text, opts; returns list of chunk maps)
config :arcana, chunker: fn text, _opts ->
 [%{text: text, chunk_index: 0, token_count: 10}]
end

Custom module implementing Arcana.Chunker behaviour
config :arcana, chunker: MyApp.SemanticChunker
config :arcana, chunker: {MyApp.SemanticChunker, model: "..."}
PDF Parser Configuration
Default: poppler's pdftotext
config :arcana, pdf_parser: :poppler

Custom module implementing Arcana.FileParser.PDF behaviour
config :arcana, pdf_parser: MyApp.PDFParser
config :arcana, pdf_parser: {MyApp.PDFParser, some_option: "value"}

 Summary

 Functions

 chunker()

 Returns the configured chunker as a {module, opts} tuple.

 current()

 Returns the current Arcana configuration.

 embedder()

 Returns the configured embedder as a {module, opts} tuple.

 graph_enabled?(opts)

 Returns whether GraphRAG is enabled globally or for specific options.

 pdf_parser()

 Returns the configured PDF parser as a {module, opts} tuple.

 redact(value)

 Wraps a config value for safe inspection with sensitive data redacted.

 resolve_chunker(opts)

 Resolves chunker from options, falling back to global config.

 Functions

 chunker()

Returns the configured chunker as a {module, opts} tuple.

 current()

Returns the current Arcana configuration.
Useful for logging, debugging, and storing with evaluation runs
to track which settings produced which results.
Example
Arcana.Config.current()
=> %{
embedding: %{module: Arcana.Embedder.Local, model: "BAAI/bge-small-en-v1.5", dimensions: 384},
vector_store: :pgvector
}

 embedder()

Returns the configured embedder as a {module, opts} tuple.

 graph_enabled?(opts)

Returns whether GraphRAG is enabled globally or for specific options.
Checks the :graph option in the provided opts first, then falls back
to the global configuration.
Examples
Check global config
Arcana.Config.graph_enabled?([])

Override with per-call option
Arcana.Config.graph_enabled?(graph: true)

 pdf_parser()

Returns the configured PDF parser as a {module, opts} tuple.

 redact(value)

Wraps a config value for safe inspection with sensitive data redacted.
Returns a struct that implements the Inspect protocol and automatically
redacts sensitive keys like :api_key, :token, :password, etc.
Example
iex> config = {"zai:glm-4.7", [api_key: "secret123"]}
iex> inspect(Arcana.Config.redact(config))
~s|{"zai:glm-4.7", [api_key: "[REDACTED]"]}|

 resolve_chunker(opts)

Resolves chunker from options, falling back to global config.

Arcana.Config.Redacted

Wrapper struct for config values that redacts sensitive data on inspect.
Created via Arcana.Config.redact/1.

Arcana.Embedder behaviour

Behaviour for embedding providers used by Arcana.
Arcana accepts any module that implements this behaviour.
Built-in implementations are provided for:
	Arcana.Embedder.Local - Local Bumblebee models (e.g., bge-small-en-v1.5)
	Arcana.Embedder.OpenAI - OpenAI embeddings via Req.LLM

Configuration
Configure your embedding provider in config.exs:
Default: Local Bumblebee with bge-small-en-v1.5 (384 dims)
config :arcana, embedder: :local

Local with different HuggingFace model
config :arcana, embedder: {:local, model: "BAAI/bge-large-en-v1.5"}

OpenAI via Req.LLM
config :arcana, embedder: :openai
config :arcana, embedder: {:openai, model: "text-embedding-3-large"}

Custom function
config :arcana, embedder: fn text -> {:ok, embedding} end

Custom module implementing this behaviour
config :arcana, embedder: MyApp.CohereEmbedder
config :arcana, embedder: {MyApp.CohereEmbedder, api_key: "..."}
Implementing a Custom Embedder
Create a module that implements this behaviour:
defmodule MyApp.CohereEmbedder do
 @behaviour Arcana.Embedder

 @impl true
 def embed(text, opts) do
 api_key = opts[:api_key] || System.get_env("COHERE_API_KEY")
 # Call Cohere API...
 {:ok, embedding}
 end

 @impl true
 def dimensions(_opts), do: 1024
end
Then configure:
config :arcana, embedder: {MyApp.CohereEmbedder, api_key: "..."}

 Summary

 Callbacks

 dimensions(opts)

 Returns the embedding dimensions.

 embed(text, opts)

 Embed a single text string.

 embed_batch(texts, opts)

 Embed multiple texts in batch.

 Functions

 dimensions(arg)

 Returns the embedding dimensions for the configured embedder.

 embed(arg, text, call_opts \\ [])

 Embeds text using the configured embedder.

 embed_batch(arg, texts)

 Embeds multiple texts using the configured embedder.

 Callbacks

 dimensions(opts)

 @callback dimensions(opts :: keyword()) :: pos_integer()

Returns the embedding dimensions.

 embed(text, opts)

 @callback embed(text :: String.t(), opts :: keyword()) ::
 {:ok, [float()]} | {:error, term()}

Embed a single text string.
Returns {:ok, embedding} where embedding is a list of floats,
or {:error, reason} on failure.

 embed_batch(texts, opts)

 (optional)

 @callback embed_batch(texts :: [String.t()], opts :: keyword()) ::
 {:ok, [[float()]]} | {:error, term()}

Embed multiple texts in batch.
Default implementation calls embed/2 for each text sequentially.
Override for providers that support native batch embedding.

 Functions

 dimensions(arg)

Returns the embedding dimensions for the configured embedder.

 embed(arg, text, call_opts \\ [])

Embeds text using the configured embedder.
The embedder is a {module, opts} tuple where module implements
this behaviour.
Options
	:intent - The embedding intent, either :query or :document.
Used by models like E5 that require different prefixes for
search queries vs document content. Defaults to :document.

Examples
Embed a search query (uses "query: " prefix for E5 models)
Embedder.embed(embedder, "what is machine learning?", intent: :query)

Embed document content (uses "passage: " prefix for E5 models)
Embedder.embed(embedder, "Machine learning is...", intent: :document)

 embed_batch(arg, texts)

Embeds multiple texts using the configured embedder.
Falls back to sequential embedding if the module doesn't implement
embed_batch/2.

Arcana.Embedder.Custom

Custom embedding provider using user-provided functions.
This module wraps a user-provided function to implement the Arcana.Embedder
behaviour. It's used internally when configuring a function as the embedder.
Configuration
Function that returns {:ok, embedding}
config :arcana, embedder: fn text -> {:ok, List.duplicate(0.1, 384)} end
The function must:
	Accept a single text string
	Return {:ok, [float()]} or {:error, term()}

Arcana.Embedder.Local

Local embedding provider using Bumblebee and Nx.Serving.
Uses HuggingFace models locally. Default is BAAI/bge-small-en-v1.5 (384 dimensions).
Configuration
Default model
config :arcana, embedder: :local

Custom HuggingFace model
config :arcana, embedder: {:local, model: "BAAI/bge-large-en-v1.5"}
Starting the Serving
Add Arcana.Embedder.Local.child_spec/1 to your application supervision tree:
children = [
 {Arcana.Embedder.Local, model: "BAAI/bge-small-en-v1.5"},
 # ... other children
]

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for starting the embedding serving.

 prepare_text(text, model, intent)

 Prepares text for embedding by adding model-specific prefixes.

 start_link(opts)

 Starts the Nx.Serving for this embedder.

 Functions

 child_spec(opts)

Returns the child spec for starting the embedding serving.

 prepare_text(text, model, intent)

Prepares text for embedding by adding model-specific prefixes.
E5 models require query: prefix for search queries and passage: prefix
for documents. Other models return text unchanged.
Options
	:query - Text is a search query (adds "query: " prefix for E5)
	:document - Text is document content (adds "passage: " prefix for E5)
	nil - Defaults to :document for E5 models

Examples
iex> prepare_text("hello", "intfloat/e5-small-v2", :query)
"query: hello"

iex> prepare_text("hello", "intfloat/e5-small-v2", :document)
"passage: hello"

iex> prepare_text("hello", "BAAI/bge-small-en-v1.5", :query)
"hello"

 start_link(opts)

Starts the Nx.Serving for this embedder.

Arcana.Embedder.OpenAI

OpenAI embedding provider using Req.LLM.
Uses OpenAI's embedding models via Req.LLM. Default is text-embedding-3-small (1536 dimensions).
Configuration
Default OpenAI model
config :arcana, embedder: :openai

Custom OpenAI model
config :arcana, embedder: {:openai, model: "text-embedding-3-large"}
Requirements
Requires the req_llm dependency and OPENAI_API_KEY environment variable.

Arcana.Evaluation

Retrieval evaluation for measuring search quality.
Generates synthetic test cases from your document chunks and
evaluates retrieval performance with standard IR metrics.
Usage
Generate test cases from chunks
{:ok, test_cases} = Arcana.Evaluation.generate_test_cases(
 repo: MyApp.Repo,
 llm: my_llm,
 sample_size: 50
)

Run evaluation
{:ok, run} = Arcana.Evaluation.run(repo: MyApp.Repo, mode: :semantic)

View metrics
run.metrics
=> %{recall_at_5: 0.84, precision_at_5: 0.68, mrr: 0.76, ...}

 Summary

 Functions

 count_test_cases(opts)

 Returns count of test cases.

 create_test_case(opts)

 Creates a manual test case.

 delete_run(id, opts)

 Deletes an evaluation run.

 delete_test_case(id, opts)

 Deletes a test case.

 generate_test_cases(opts)

 Generates synthetic test cases from existing chunks.

 get_run(id, opts)

 Gets a single evaluation run by ID.

 get_test_case(id, opts)

 Gets a single test case by ID.

 list_runs(opts)

 Lists past evaluation runs.

 list_test_cases(opts)

 Lists all test cases.

 run(opts)

 Runs evaluation against existing test cases.

 Functions

 count_test_cases(opts)

Returns count of test cases.

 create_test_case(opts)

Creates a manual test case.
Options
	:repo - Ecto repo (required)
	:question - The question text (required)
	:relevant_chunk_ids - List of chunk IDs considered relevant (required)

 delete_run(id, opts)

Deletes an evaluation run.

 delete_test_case(id, opts)

Deletes a test case.

 generate_test_cases(opts)

Generates synthetic test cases from existing chunks.
Samples chunks randomly and uses an LLM to generate questions
that should retrieve those chunks.
Options
	:repo - Ecto repo (required)
	:llm - LLM implementing Arcana.LLM protocol (required)
	:sample_size - Number of chunks to sample (default: 50)
	:source_id - Limit to chunks from specific source
	:prompt - Custom prompt template

 get_run(id, opts)

Gets a single evaluation run by ID.

 get_test_case(id, opts)

Gets a single test case by ID.

 list_runs(opts)

Lists past evaluation runs.
Options
	:repo - Ecto repo (required)
	:limit - Maximum runs to return (default: 20)

 list_test_cases(opts)

Lists all test cases.
Options
	:repo - Ecto repo (required)
	:source_id - Filter by source (optional)

 run(opts)

Runs evaluation against existing test cases.
Options
	:repo - Ecto repo (required)
	:mode - Search mode :semantic | :fulltext | :hybrid (default: :semantic)

	:source_id - Limit evaluation to specific source
	:evaluate_answers - When true, also evaluates answer quality (default: false)
	:llm - LLM function (required when evaluate_answers is true)

Arcana.Evaluation.AnswerMetrics

Evaluates answer quality using LLM-as-judge.
Provides faithfulness scoring to measure whether generated answers
are grounded in the retrieved context.

 Summary

 Functions

 default_prompt()

 Returns the default faithfulness prompt template.

 evaluate_faithfulness(question, chunks, answer, opts)

 Evaluates the faithfulness of an answer to the retrieved chunks.

 Functions

 default_prompt()

Returns the default faithfulness prompt template.

 evaluate_faithfulness(question, chunks, answer, opts)

Evaluates the faithfulness of an answer to the retrieved chunks.
Options
	:llm - LLM function (required)
	:prompt - Custom prompt function fn question, chunks, answer -> prompt end

Returns
	{:ok, %{score: integer, reasoning: string | nil}} on success

	{:error, reason} on failure

Arcana.Evaluation.Generator

Generates synthetic test cases from existing chunks.
Samples chunks and uses an LLM to generate questions that
should retrieve those chunks.

 Summary

 Functions

 default_prompt()

 Returns the default prompt template.

 generate(opts)

 Generates test cases from a sample of chunks.

 Functions

 default_prompt()

Returns the default prompt template.

 generate(opts)

Generates test cases from a sample of chunks.
Options
	:repo - Ecto repo (required)
	:llm - LLM implementing Arcana.LLM protocol (required)
	:sample_size - Number of chunks to sample (default: 50)
	:source_id - Limit to chunks from specific source
	:collection - Limit to chunks from specific collection
	:prompt - Custom prompt template (must include {chunk_text})

Arcana.Evaluation.Metrics

Computes retrieval evaluation metrics.
Supports Recall@K, Precision@K, MRR (Mean Reciprocal Rank),
and Hit Rate@K for standard K values [1, 3, 5, 10].

 Summary

 Functions

 aggregate(case_results)

 Aggregates per-case results into summary metrics.

 evaluate_case(test_case, search_results)

 Evaluates a single test case against search results.

 k_values()

 Returns the K values used for evaluation.

 Functions

 aggregate(case_results)

Aggregates per-case results into summary metrics.

 evaluate_case(test_case, search_results)

Evaluates a single test case against search results.
Returns a map with per-K metrics and debugging info.

 k_values()

Returns the K values used for evaluation.

Arcana.Evaluation.Run

An evaluation run containing metrics and per-case results.
Stores the configuration used, aggregate metrics, and detailed
results for each test case to enable drill-down into failures.

 Summary

 Functions

 changeset(run, attrs)

 Functions

 changeset(run, attrs)

Arcana.Evaluation.TestCase

A test case for retrieval evaluation.
Each test case contains a question and links to one or more
chunks that are considered relevant (ground truth).

 Summary

 Functions

 changeset(test_case, attrs)

 Functions

 changeset(test_case, attrs)

Arcana.FileParser.PDF behaviour

Behaviour for PDF parsing providers.
Arcana accepts any module that implements this behaviour for PDF text extraction.
The built-in implementation uses poppler's pdftotext command.
Configuration
Configure your PDF parser in config.exs:
Default: poppler's pdftotext
config :arcana, pdf_parser: :poppler

Custom module implementing this behaviour
config :arcana, pdf_parser: MyApp.PDFParser
config :arcana, pdf_parser: {MyApp.PDFParser, some_option: "value"}
Implementing a Custom PDF Parser
Create a module that implements this behaviour:
defmodule MyApp.PDFParser do
 @behaviour Arcana.FileParser.PDF

 @impl true
 def parse(path, opts) when is_binary(path) do
 # Parse PDF at file path
 {:ok, extracted_text}
 end

 # Optional: handle binary content directly
 def parse(binary, opts) when is_binary(binary) do
 # Parse PDF binary content
 {:ok, extracted_text}
 end
end
Then configure:
config :arcana, pdf_parser: {MyApp.PDFParser, some_option: "value"}

 Summary

 Callbacks

 parse(path_or_binary, opts)

 Parses a PDF and extracts text content.

 Functions

 parse(arg, path_or_binary, call_opts \\ [])

 Parses a PDF using the configured parser.

 supports_binary?(arg)

 Checks if the given parser module supports binary input.

 Callbacks

 parse(path_or_binary, opts)

 @callback parse(path_or_binary :: binary(), opts :: keyword()) ::
 {:ok, String.t()} | {:error, term()}

Parses a PDF and extracts text content.
The first argument can be either:
	A file path (string) - the implementation reads the file
	Binary content - the implementation parses directly

Returns {:ok, text} on success, or {:error, reason} on failure.
Options
Options are implementation-specific. The default Poppler implementation
supports:
	:layout - Preserve original layout (default: true)

 Functions

 parse(arg, path_or_binary, call_opts \\ [])

Parses a PDF using the configured parser.
The parser is a {module, opts} tuple where module implements
this behaviour.

 supports_binary?(arg)

Checks if the given parser module supports binary input.
Some parsers (like Poppler) require a file path and don't support
parsing binary content directly.

Arcana.FileParser.PDF.Poppler

PDF parser using poppler's pdftotext command.
This is the default PDF parser for Arcana. It requires the pdftotext
command from the Poppler library to be installed on the system.
Installation
macOS
brew install poppler

Ubuntu/Debian
apt-get install poppler-utils

Fedora
dnf install poppler-utils
Options
	:layout - Preserve original text layout (default: true)

 Summary

 Functions

 available?()

 Checks if pdftotext is available on the system.

 supports_binary?()

 Returns false - Poppler requires a file path, not binary content.

 Functions

 available?()

Checks if pdftotext is available on the system.
Examples
iex> Arcana.FileParser.PDF.Poppler.available?()
true # or false if poppler not installed

 supports_binary?()

Returns false - Poppler requires a file path, not binary content.

Arcana.Graph

GraphRAG (Graph-enhanced Retrieval Augmented Generation) for Arcana.
This module provides the public API for GraphRAG functionality:
	Building knowledge graphs from documents
	Graph-based search and retrieval
	Fusion search combining vector and graph results
	Community summaries for global context

Installation
GraphRAG is optional and requires separate installation:
$ mix arcana.graph.install
$ mix ecto.migrate

Add the NER serving to your supervision tree:
children = [
 MyApp.Repo,
 Arcana.Embedder.Local,
 Arcana.Graph.NERServing # For entity extraction
]
Configuration
GraphRAG is disabled by default. Enable it in your config:
config :arcana,
 graph: [
 enabled: true,
 community_levels: 5,
 resolution: 1.0
]
Or enable per-call:
Arcana.ingest(text, repo: MyApp.Repo, graph: true)
Arcana.search(query, repo: MyApp.Repo, graph: true)
Usage
Build a graph from chunks
{:ok, graph_data} = Arcana.Graph.build(chunks,
 entity_extractor: &MyApp.extract_entities/2,
 relationship_extractor: &MyApp.extract_relationships/3
)

Convert to queryable format
graph = Arcana.Graph.to_query_graph(graph_data, chunks)

Search the graph
results = Arcana.Graph.search(graph, entities, depth: 2)

Fusion search combining vector and graph
results = Arcana.Graph.fusion_search(graph, entities, vector_results)
Components
GraphRAG consists of several modules:
	Arcana.Graph.EntityExtractor - Behaviour for entity extraction
	Arcana.Graph.EntityExtractor.NER - Built-in NER implementation (default)
	Arcana.Graph.RelationshipExtractor - Behaviour for relationship extraction
	Arcana.Graph.RelationshipExtractor.LLM - Built-in LLM implementation (default)
	Arcana.Graph.RelationshipExtractor.Cooccurrence - Local co-occurrence (no LLM)
	Arcana.Graph.CommunityDetector - Behaviour for community detection
	Arcana.Graph.CommunityDetector.Leiden - Built-in Leiden implementation (default)
	Arcana.Graph.CommunitySummarizer - Behaviour for community summarization
	Arcana.Graph.CommunitySummarizer.LLM - Built-in LLM implementation (default)
	Arcana.Graph.GraphQuery - Queries the knowledge graph
	Arcana.Graph.FusionSearch - Combines vector and graph search with RRF
	Arcana.Graph.GraphBuilder - Orchestrates graph construction

Custom Implementations
All core extractors and detectors support the behaviour pattern for extensibility:
Custom entity extractor
config :arcana, :graph,
 entity_extractor: {MyApp.SpacyExtractor, endpoint: "http://localhost:5000"}

Custom relationship extractor
config :arcana, :graph,
 relationship_extractor: {MyApp.PatternExtractor, patterns: [...]}

Custom community detector
config :arcana, :graph,
 community_detector: {MyApp.LouvainDetector, resolution: 0.5}

Custom community summarizer
config :arcana, :graph,
 community_summarizer: {MyApp.ExtractiveSum, max_sentences: 3}

 Summary

 Functions

 build(chunks, opts)

 Builds graph data from document chunks.

 build_and_persist(chunk_records, collection, repo, opts)

 Builds and persists graph data from chunk records during ingest.

 community_summaries(graph, opts \\ [])

 Gets community summaries from the graph.

 config()

 Returns the current GraphRAG configuration.

 enabled?()

 Returns whether GraphRAG is enabled globally.

 find_entities(graph, name, opts \\ [])

 Finds entities in the graph by name.

 fusion_search(graph, entities, vector_results, opts \\ [])

 Combines vector search and graph search using Reciprocal Rank Fusion.

 resolve_entity_extractor(opts)

 Resolves the entity extractor from options and config.

 search(graph, entities, opts \\ [])

 Searches the knowledge graph for relevant chunks.

 to_query_graph(graph_data, chunks)

 Converts builder output to queryable graph format.

 traverse(graph, entity_id, opts \\ [])

 Traverses the graph from a starting entity.

 Functions

 build(chunks, opts)

Builds graph data from document chunks.
Delegates to Arcana.Graph.GraphBuilder.build/2.
Options
	:entity_extractor - Function to extract entities from text
	:relationship_extractor - Function to extract relationships

Example
{:ok, graph_data} = Arcana.Graph.build(chunks,
 entity_extractor: fn text, _opts ->
 Arcana.Graph.EntityExtractor.NER.extract(text, [])
 end,
 relationship_extractor: fn text, entities, _opts ->
 Arcana.Graph.RelationshipExtractor.extract(text, entities, my_llm)
 end
)

 build_and_persist(chunk_records, collection, repo, opts)

Builds and persists graph data from chunk records during ingest.
Processes chunks incrementally, persisting after each chunk so progress
is saved continuously. Accepts an optional :progress callback that
receives {current_chunk, total_chunks} after each chunk is processed.
Options
	:progress - Callback function fn current, total -> ... end called after each chunk

Examples
With progress logging
Arcana.Graph.build_and_persist(chunks, collection, repo,
 progress: fn current, total ->
 IO.puts("Processed chunk #{current}/#{total}")
 end
)

 community_summaries(graph, opts \\ [])

Gets community summaries from the graph.
Community summaries provide high-level context about clusters
of related entities, useful for global queries.
Options
	:level - Filter by hierarchy level (0 = finest)
	:entity_id - Filter by communities containing entity

Example
Get all top-level summaries
summaries = Arcana.Graph.community_summaries(graph, level: 0)

 config()

Returns the current GraphRAG configuration.
Example
Arcana.Graph.config()
=> %{enabled: false, community_levels: 5, resolution: 1.0}

 enabled?()

Returns whether GraphRAG is enabled globally.
Check this before performing graph operations:
if Arcana.Graph.enabled?() do
 # Build graph during ingest
end

 find_entities(graph, name, opts \\ [])

Finds entities in the graph by name.
Options
	:fuzzy - Enable fuzzy matching (default: false)

 fusion_search(graph, entities, vector_results, opts \\ [])

Combines vector search and graph search using Reciprocal Rank Fusion.
This is the primary retrieval method for GraphRAG, merging results
from both vector similarity and knowledge graph traversal.
Options
	:depth - Graph traversal depth (default: 1)
	:limit - Maximum results to return (default: 10)
	:k - RRF constant (default: 60)

Example
Run vector search separately
{:ok, vector_results} = Arcana.search(query, repo: MyApp.Repo)

Extract entities from query
{:ok, entities} = Arcana.Graph.EntityExtractor.NER.extract(query, [])

Combine with graph search
results = Arcana.Graph.fusion_search(graph, entities, vector_results)

 resolve_entity_extractor(opts)

Resolves the entity extractor from options and config.

 search(graph, entities, opts \\ [])

Searches the knowledge graph for relevant chunks.
Finds entities matching the query, traverses relationships,
and returns connected chunks.
Options
	:depth - How many hops to traverse (default: 1)

Example
entities = [%{name: "OpenAI", type: :organization}]
results = Arcana.Graph.search(graph, entities, depth: 2)

 to_query_graph(graph_data, chunks)

Converts builder output to queryable graph format.
Delegates to Arcana.Graph.GraphBuilder.to_query_graph/2.

 traverse(graph, entity_id, opts \\ [])

Traverses the graph from a starting entity.
Options
	:depth - Maximum traversal depth (default: 1)

Arcana.Graph.Community

Schema for knowledge graph communities.
Communities are clusters of related entities detected by the
Leiden algorithm. They enable global queries by providing
pre-generated summaries at different hierarchy levels.

 Summary

 Functions

 changeset(community, attrs)

 Functions

 changeset(community, attrs)

Arcana.Graph.CommunityDetector behaviour

Behaviour for community detection in GraphRAG.
Community detectors partition entities into groups based on their
relationships. Arcana provides a built-in Leiden implementation,
but you can implement custom detectors for different algorithms.
Built-in Implementations
	Arcana.Graph.CommunityDetector.Leiden - Leiden algorithm via Leidenfold (Rust NIF)

Installation
To enable community detection, add leidenfold to your dependencies:
defp deps do
 [
 {:arcana, "~> 1.2"},
 {:leidenfold, "~> 0.2"}
]
end
Precompiled binaries are available for macOS (Apple Silicon) and Linux (x86_64, ARM64).
Configuration
Configure your community detector in config.exs:
Default: Leiden algorithm (requires leidenfold)
config :arcana, :graph,
 community_detector: :leiden

Disable community detection
config :arcana, :graph,
 community_detector: nil

Custom module implementing this behaviour
config :arcana, :graph,
 community_detector: MyApp.LouvainDetector

Custom module with options
config :arcana, :graph,
 community_detector: {MyApp.LouvainDetector, resolution: 0.5}

Inline function
config :arcana, :graph,
 community_detector: fn entities, relationships, opts ->
 {:ok, my_detect(entities, relationships, opts)}
 end
Implementing a Custom Detector
Create a module that implements this behaviour:
defmodule MyApp.LouvainDetector do
 @behaviour Arcana.Graph.CommunityDetector

 @impl true
 def detect(entities, relationships, opts) do
 resolution = Keyword.get(opts, :resolution, 1.0)
 # Run Louvain algorithm...
 {:ok, communities}
 end
end
Community Format
Detectors must return communities as maps with:
	:level - Hierarchy level (0 = finest, higher = coarser)
	:entity_ids - List of entity IDs in this community

 Summary

 Callbacks

 detect(entities, relationships, opts)

 Detects communities in the entity graph.

 Functions

 detect(fun, entities, relationships)

 Detects communities using the configured detector.

 Callbacks

 detect(entities, relationships, opts)

 @callback detect(
 entities :: [map()],
 relationships :: [map()],
 opts :: keyword()
) :: {:ok, [map()]} | {:error, term()}

Detects communities in the entity graph.
Parameters
	entities - List of entity maps with :id and :name
	relationships - List of relationship maps with :source_id, :target_id, :strength
	opts - Options passed from the detector configuration

Returns
	{:ok, communities} - List of community maps
	{:error, reason} - On failure

 Functions

 detect(fun, entities, relationships)

Detects communities using the configured detector.
The detector can be:
	A {module, opts} tuple where module implements this behaviour
	A function (entities, relationships, opts) -> {:ok, communities} | {:error, reason}

	nil to skip community detection (returns empty list)

Examples
With module
detector = {Arcana.Graph.CommunityDetector.Leiden, resolution: 1.0}
{:ok, communities} = CommunityDetector.detect(detector, entities, relationships)

With inline function
detector = fn entities, _rels, _opts ->
 {:ok, [%{level: 0, entity_ids: Enum.map(entities, & &1.id)}]}
end
{:ok, communities} = CommunityDetector.detect(detector, entities, relationships)

Skip detection
{:ok, []} = CommunityDetector.detect(nil, entities, relationships)

Arcana.Graph.CommunityDetector.Leiden

Leiden algorithm implementation for community detection.
Uses the Leidenfold library (Rust NIF) to detect communities in entity graphs.
The Leiden algorithm is a refinement of the Louvain algorithm that
guarantees well-connected communities.
Installation
Add leidenfold to your dependencies in mix.exs:
defp deps do
 [
 {:arcana, "~> 1.2"},
 {:leidenfold, "~> 0.2"}
]
end
Precompiled binaries are available for macOS (Apple Silicon) and Linux (x86_64, ARM64).
Usage
detector = {Arcana.Graph.CommunityDetector.Leiden, resolution: 1.0}
{:ok, communities} = CommunityDetector.detect(detector, entities, relationships)
Options
	:resolution - Controls community granularity (default: 1.0)
Higher values produce smaller communities
	:objective - Quality function to optimize (default: :cpm)
Options: :cpm, :modularity, :rber, :rbc, :significance, :surprise
	:iterations - Number of optimization iterations (default: 2)
	:seed - Random seed for reproducibility (default: 0 = random)
	:min_size - Minimum community size to include (default: 1)
Set to 2 to exclude singleton communities
	:max_level - Maximum hierarchy levels to generate (default: 1)
Higher levels contain coarser communities built by aggregating lower levels

Arcana.Graph.CommunitySummarizer behaviour

Behaviour for community summarization in GraphRAG.
Community summarizers generate natural language descriptions of
entity communities. These summaries provide high-level context
for global queries that need broad understanding rather than
specific document chunks.
Built-in Implementations
	Arcana.Graph.CommunitySummarizer.LLM - LLM-based summarization (default)

Configuration
Configure your community summarizer in config.exs:
Default: LLM-based summarization
config :arcana, :graph,
 community_summarizer: {Arcana.Graph.CommunitySummarizer.LLM, llm: &MyApp.llm/3}

Disable summarization (communities won't have summaries)
config :arcana, :graph,
 community_summarizer: nil

Custom module implementing this behaviour
config :arcana, :graph,
 community_summarizer: {MyApp.ExtractiveSum, max_sentences: 3}

Inline function
config :arcana, :graph,
 community_summarizer: fn entities, relationships, _opts ->
 {:ok, "Community with #{length(entities)} entities"}
 end
Implementing a Custom Summarizer
Create a module that implements this behaviour:
defmodule MyApp.ExtractiveSum do
 @behaviour Arcana.Graph.CommunitySummarizer

 @impl true
 def summarize(entities, relationships, opts) do
 max_sentences = Keyword.get(opts, :max_sentences, 3)
 # Extract key sentences from entity descriptions...
 {:ok, summary}
 end
end
Summary Format
Summarizers should return a concise string (2-5 sentences) that:
	Identifies the community's central theme or domain
	Names the most important entities
	Describes key relationships between entities

 Summary

 Callbacks

 summarize(entities, relationships, opts)

 Generates a summary for a community.

 Functions

 needs_regeneration?(community, opts \\ [])

 Checks if a community needs its summary regenerated.

 reset_change_tracking()

 Returns a map of fields to reset after regenerating a summary.

 summarize(entities, relationships, opts \\ [])

 Generates a summary using the configured summarizer.

 Callbacks

 summarize(entities, relationships, opts)

 @callback summarize(
 entities :: [map()],
 relationships :: [map()],
 opts :: keyword()
) :: {:ok, String.t()} | {:error, term()}

Generates a summary for a community.
Parameters
	entities - List of entity maps with :name, :type, and optional :description
	relationships - List of relationship maps connecting entities
	opts - Options passed from the summarizer configuration

Returns
	{:ok, summary} - The generated summary string
	{:error, reason} - On failure

 Functions

 needs_regeneration?(community, opts \\ [])

Checks if a community needs its summary regenerated.
Regeneration Triggers
	dirty: true - Community was modified since last summary
	change_count >= threshold - Many changes accumulated
	summary: nil - No summary exists yet

Options
	:threshold - Number of changes before regeneration (default: 10)

 reset_change_tracking()

Returns a map of fields to reset after regenerating a summary.
Use with Ecto.Changeset.change/2 to mark a community as clean:
community
|> Community.changeset(CommunitySummarizer.reset_change_tracking())
|> Repo.update()

 summarize(entities, relationships, opts \\ [])

Generates a summary using the configured summarizer.
The summarizer can be:
	A {module, opts} tuple where module implements this behaviour
	A function (entities, relationships, opts) -> {:ok, summary} | {:error, reason}

	nil to skip summarization (returns empty string)

Falls back to LLM summarizer if not configured but :llm option is provided.

Arcana.Graph.CommunitySummarizer.LLM

LLM-based community summarizer.
Uses a language model to generate natural language summaries of
knowledge graph communities based on their entities and relationships.
Configuration
config :arcana, :graph,
 community_summarizer: {Arcana.Graph.CommunitySummarizer.LLM, llm: &MyApp.llm/3}
Options
	:llm - Required. A function (prompt, context, opts) -> {:ok, response}

 Summary

 Functions

 build_prompt(entities, relationships)

 Builds the prompt for community summarization.

 Functions

 build_prompt(entities, relationships)

Builds the prompt for community summarization.

Arcana.Graph.Entity

Schema for knowledge graph entities.
Entities represent named concepts, people, places, organizations,
or other items extracted from documents for graph-based retrieval.

 Summary

 Functions

 changeset(entity, attrs)

 Functions

 changeset(entity, attrs)

Arcana.Graph.EntityExtractor behaviour

Behaviour for entity extraction in GraphRAG.
Entity extractors identify named entities (people, organizations, locations, etc.)
from text. Arcana provides a built-in NER implementation, but you can implement
custom extractors for different approaches.
Built-in Implementations
	Arcana.Graph.EntityExtractor.NER - Local Bumblebee NER (default)

Configuration
Configure your entity extractor in config.exs:
Default: Local NER with distilbert-NER
config :arcana, :graph,
 entity_extractor: :ner

Custom module implementing this behaviour
config :arcana, :graph,
 entity_extractor: MyApp.LLMEntityExtractor

Custom module with options
config :arcana, :graph,
 entity_extractor: {MyApp.LLMEntityExtractor, model: "gpt-4"}

Inline function
config :arcana, :graph,
 entity_extractor: fn text, opts -> {:ok, extract_entities(text)} end
Implementing a Custom Extractor
Create a module that implements this behaviour:
defmodule MyApp.LLMEntityExtractor do
 @behaviour Arcana.Graph.EntityExtractor

 @impl true
 def extract(text, opts) do
 llm = opts[:llm] || raise "LLM required"
 # Use LLM to extract entities...
 {:ok, entities}
 end

 # Optional: implement for batch optimization
 @impl true
 def extract_batch(texts, opts) do
 # Batch LLM call...
 {:ok, results}
 end
end
Entity Format
Extractors must return entities as maps with at least:
	:name - The entity name (required)
	:type - Entity type as atom: :person, :organization, :location, :concept, :other

Optional fields:
	:span_start - Character offset where entity starts
	:span_end - Character offset where entity ends
	:score - Confidence score (0.0-1.0)
	:description - Brief description of the entity

 Summary

 Callbacks

 extract(text, opts)

 Extracts entities from a single text.

 extract_batch(texts, opts)

 Extracts entities from multiple texts in batch.

 Functions

 extract(fun, text)

 Extracts entities using the configured extractor.

 extract_batch(fun, texts)

 Extracts entities from multiple texts using the configured extractor.

 Callbacks

 extract(text, opts)

 @callback extract(text :: String.t(), opts :: keyword()) ::
 {:ok, [map()]} | {:error, term()}

Extracts entities from a single text.
Parameters
	text - The text to extract entities from
	opts - Options passed from the extractor configuration

Returns
	{:ok, entities} - List of entity maps
	{:error, reason} - On failure

 extract_batch(texts, opts)

 (optional)

 @callback extract_batch(texts :: [String.t()], opts :: keyword()) ::
 {:ok, [[map()]]} | {:error, term()}

Extracts entities from multiple texts in batch.
Default implementation calls extract/2 for each text sequentially.
Override for extractors that support native batch processing.

 Functions

 extract(fun, text)

Extracts entities using the configured extractor.
The extractor can be:
	A {module, opts} tuple where module implements this behaviour
	A function (text, opts) -> {:ok, entities} | {:error, reason}

Examples
With module
extractor = {Arcana.Graph.EntityExtractor.NER, []}
{:ok, entities} = EntityExtractor.extract(extractor, "Sam Altman leads OpenAI")

With inline function
extractor = fn text, _opts -> {:ok, [%{name: "Test", type: :other}]} end
{:ok, entities} = EntityExtractor.extract(extractor, "some text")

 extract_batch(fun, texts)

Extracts entities from multiple texts using the configured extractor.
Falls back to sequential extraction if the module doesn't implement
extract_batch/2.

Arcana.Graph.EntityExtractor.LLM

LLM-based entity extraction implementation.
Uses structured prompts to identify named entities from text. The LLM
returns JSON-formatted entities with name, type, and optional description.
This extractor is useful when you want to use the same LLM for both
entity and relationship extraction, or when you need domain-specific
entity recognition.
Usage
Configure with an LLM function
extractor = {Arcana.Graph.EntityExtractor.LLM, llm: my_llm_fn}
{:ok, entities} = EntityExtractor.extract(extractor, "Sam Altman leads OpenAI")
Configuration
config :arcana, :graph,
 entity_extractor: {Arcana.Graph.EntityExtractor.LLM, []}
When using this extractor, the LLM function is passed automatically
from the graph pipeline.
Options
	:llm - Required. An LLM function (prompt, context, opts) -> {:ok, response} | {:error, reason}

	:types - Optional. List of entity types to extract. Defaults to all standard types.

 Summary

 Functions

 build_prompt(text, types)

 Builds the prompt for entity extraction.

 Functions

 build_prompt(text, types)

Builds the prompt for entity extraction.

Arcana.Graph.EntityExtractor.NER

Extracts named entities from text using Bumblebee NER.
Uses dslim/distilbert-NER to identify persons, organizations,
locations, and miscellaneous entities. The model is lazy-loaded
on first use to avoid startup overhead when graph features aren't needed.
Usage
As configured extractor
config :arcana, :graph,
 entity_extractor: :ner

Direct usage
{:ok, entities} = Arcana.Graph.EntityExtractor.NER.extract(text, [])

 Summary

 Functions

 extract(text, opts)

 Extracts entities from text using the NER model.

 extract_batch(texts, opts)

 Extracts entities from multiple texts.

 map_label(label)

 Maps NER labels to entity types.

 Functions

 extract(text, opts)

Extracts entities from text using the NER model.
Returns a list of entity maps with :name, :type, :span_start, :span_end, :score.
Entities are deduplicated by name (first occurrence kept).
Examples
iex> NER.extract("Sam Altman is CEO of OpenAI.", [])
{:ok, [
 %{name: "Sam Altman", type: "person", span_start: 0, span_end: 10, score: 0.99},
 %{name: "OpenAI", type: "organization", span_start: 22, span_end: 28, score: 0.98}
]}

 extract_batch(texts, opts)

Extracts entities from multiple texts.
Examples
iex> NER.extract_batch(["Sam Altman", "Elon Musk"], [])
{:ok, [[%{name: "Sam Altman", ...}], [%{name: "Elon Musk", ...}]]}

 map_label(label)

Maps NER labels to entity types.
Label Mapping
	PER, B-PER, I-PER → "person"
	ORG, B-ORG, I-ORG → "organization"
	LOC, B-LOC, I-LOC → "location"
	MISC, B-MISC, I-MISC → "concept"
	Other → "other"

Arcana.Graph.EntityMention

Schema for tracking where entities appear in chunks.
Entity mentions link entities to the specific chunks where they
were found, optionally with span positions and surrounding context.

 Summary

 Functions

 changeset(mention, attrs)

 Functions

 changeset(mention, attrs)

Arcana.Graph.FusionSearch

Combines vector search and graph-based search using Reciprocal Rank Fusion.
FusionSearch implements the core GraphRAG retrieval strategy:
	Extract entities from the query
	Run vector search on document chunks (standard RAG)
	Run graph search on the knowledge graph
	Merge results using Reciprocal Rank Fusion (RRF)

Reciprocal Rank Fusion
RRF is a simple but effective method for combining ranked lists:
score(doc) = Σ 1 / (k + rank(doc, list_i))
where k is a constant (default: 60) that reduces the impact of high ranks.
Example
Build graph from extracted data
graph = GraphQuery.build_graph(entities, relationships, chunks, communities)

Extract entities from query
{:ok, entities} = Arcana.Graph.EntityExtractor.NER.extract("Tell me about OpenAI", [])

Run vector search
vector_results = Arcana.search(repo, collection, query, top_k: 10)

Combine with graph search
FusionSearch.search(graph, entities, vector_results)

 Summary

 Functions

 graph_search(graph, entities, opts \\ [])

 Searches the knowledge graph based on recognized entities.

 reciprocal_rank_fusion(lists, opts \\ [])

 Merges multiple ranked lists using Reciprocal Rank Fusion.

 search(graph, entities, vector_results, opts \\ [])

 Combines vector search results with graph search using RRF.

 Functions

 graph_search(graph, entities, opts \\ [])

Searches the knowledge graph based on recognized entities.
Finds entities in the graph matching the provided extracted entities,
then traverses relationships to collect connected chunks.
Options
	:depth - How many hops to traverse (default: 1)

 reciprocal_rank_fusion(lists, opts \\ [])

Merges multiple ranked lists using Reciprocal Rank Fusion.
Options
	:k - RRF constant to reduce high-rank impact (default: 60)

Algorithm
For each document, computes:
score = sum(1 / (k + rank)) across all lists
Higher scores indicate documents that appear in multiple lists
and/or rank highly in individual lists.

 search(graph, entities, vector_results, opts \\ [])

Combines vector search results with graph search using RRF.
Takes pre-computed vector search results and entities extracted from
the query, runs graph search, then merges both result sets.
Options
	:depth - Graph traversal depth (default: 1)
	:limit - Maximum results to return (default: 10)
	:k - RRF constant (default: 60)

Arcana.Graph.GraphBuilder

Builds knowledge graph data from document chunks.
GraphBuilder orchestrates entity extraction, relationship extraction, and
mention tracking to create a knowledge graph structure from text.
Usage
GraphBuilder is designed to integrate optionally into the ingest pipeline:
During ingest (when graph: true option is passed)
chunks = Chunker.chunk(text, opts)
{:ok, graph_data} = GraphBuilder.build(chunks,
 entity_extractor: &Arcana.Graph.EntityExtractor.NER.extract/2,
 relationship_extractor: &RelationshipExtractor.extract/3
)

Convert to queryable format
graph = GraphBuilder.to_query_graph(graph_data, chunks)
Output Structure
The builder outputs a map with:
%{
 entities: [%{id: "...", name: "...", type: :atom}],
 relationships: [%{source: "...", target: "...", type: "..."}],
 mentions: [%{entity_name: "...", chunk_id: "..."}]
}
This intermediate format can be persisted to a database or converted
to the in-memory format used by GraphQuery.

 Summary

 Functions

 build(chunks, opts)

 Builds graph data from a list of chunks.

 build_from_text(text, opts)

 Builds graph data from a single text string.

 merge(graph1, graph2)

 Merges two graph data structures.

 to_query_graph(graph_data, chunks)

 Converts builder output to the format used by GraphQuery.

 Functions

 build(chunks, opts)

Builds graph data from a list of chunks.
Extracts entities and relationships from each chunk, tracking which
entities appear in which chunks (mentions).
Options
	:extractor - Combined extractor (text, opts) -> {:ok, %{entities: [...], relationships: [...]}}.
When provided, this takes priority over separate extractors.
	:entity_extractor - Function (text, opts) -> {:ok, entities} | {:error, reason}.
Used when :extractor is not provided.

	:relationship_extractor - Function (text, entities, opts) -> {:ok, rels} | {:error, reason}.
Used when :extractor is not provided.

Returns
	{:ok, graph_data} - Successfully built graph data
	{:error, reason} - If all extractions fail

 build_from_text(text, opts)

Builds graph data from a single text string.
Convenience function for processing a single document without chunks.

 merge(graph1, graph2)

Merges two graph data structures.
Combines entities (deduplicating by name), relationships, and mentions.
Useful for incremental graph building across multiple documents.

 to_query_graph(graph_data, chunks)

Converts builder output to the format used by GraphQuery.
Takes the graph data and original chunks to build an indexed
graph structure suitable for querying.

Arcana.Graph.GraphExtractor behaviour

Behaviour for combined entity and relationship extraction in GraphRAG.
A GraphExtractor extracts both entities and relationships in a single pass,
which is more efficient than separate extractors when using LLMs.
Built-in Implementations
	Arcana.Graph.GraphExtractor.LLM - LLM-based extraction (default)

Configuration
Configure your graph extractor in config.exs:
Combined extractor (efficient, 1 LLM call per chunk):
config :arcana, :graph,
 extractor: Arcana.Graph.GraphExtractor.LLM

Or configure separately (flexible, 2 LLM calls per chunk):
config :arcana, :graph,
 entity_extractor: Arcana.Graph.EntityExtractor.NER,
 relationship_extractor: Arcana.Graph.RelationshipExtractor.LLM
When extractor is set, it takes priority over separate extractors.
Implementing a Custom Extractor
Create a module that implements this behaviour:
defmodule MyApp.CustomExtractor do
 @behaviour Arcana.Graph.GraphExtractor

 @impl true
 def extract(text, opts) do
 # Extract entities and relationships together
 entities = [%{name: "Entity", type: :concept}]
 relationships = [%{source: "A", target: "B", type: "RELATED"}]
 {:ok, %{entities: entities, relationships: relationships}}
 end
end
Output Format
Extractors must return a map with:
	:entities - List of entity maps with :name, :type, and optional :description
	:relationships - List of relationship maps with :source, :target, :type,
and optional :description and :strength

 Summary

 Callbacks

 extract(text, opts)

 Extracts entities and relationships from text in a single pass.

 Functions

 extract(fun, text)

 Extracts graph data using the configured extractor.

 Callbacks

 extract(text, opts)

 @callback extract(text :: String.t(), opts :: keyword()) ::
 {:ok, map()} | {:error, term()}

Extracts entities and relationships from text in a single pass.
Parameters
	text - The source text to analyze
	opts - Options passed from the extractor configuration

Returns
	{:ok, %{entities: [...], relationships: [...]}} - Extracted graph data
	{:error, reason} - On failure

 Functions

 extract(fun, text)

Extracts graph data using the configured extractor.
The extractor can be:
	A {module, opts} tuple where module implements this behaviour
	A function (text, opts) -> {:ok, result} | {:error, reason}

	nil to skip extraction (returns empty result)

Examples
With module
extractor = {Arcana.Graph.GraphExtractor.LLM, llm: my_llm}
{:ok, result} = GraphExtractor.extract(extractor, text)

With inline function
extractor = fn text, _opts ->
 {:ok, %{entities: [], relationships: []}}
end
{:ok, result} = GraphExtractor.extract(extractor, text)

Arcana.Graph.GraphExtractor.LLM

LLM-based combined entity and relationship extraction.
Extracts both entities and relationships in a single LLM call,
which is more efficient than separate extractors.
Usage
extractor = {Arcana.Graph.GraphExtractor.LLM, llm: my_llm}
{:ok, result} = GraphExtractor.extract(extractor, text)
Configuration
config :arcana, :graph,
 extractor: Arcana.Graph.GraphExtractor.LLM
The LLM is automatically injected from the global :arcana, :llm config.
Options
	:llm - Required. An LLM tuple like {"openai:gpt-4", api_key: "..."} or function

 Summary

 Functions

 build_prompt(text)

 Builds the prompt for combined entity and relationship extraction.

 Functions

 build_prompt(text)

Builds the prompt for combined entity and relationship extraction.

Arcana.Graph.GraphQuery

Queries the knowledge graph for entities, relationships, and community summaries.
This module provides efficient graph traversal and lookup operations for
GraphRAG workflows. It works with in-memory graph structures built from
entities, relationships, chunks, and community summaries.
Graph Structure
The graph is represented as a map with indexed lookups for efficient querying:
%{
 entities: %{id => entity},
 relationships: [relationship],
 chunks: [chunk],
 communities: [community],
 adjacency: %{entity_id => [neighbor_ids]},
 entity_chunks: %{entity_id => [chunk_ids]}
}
Example
graph = GraphQuery.build_graph(entities, relationships, chunks, communities)

Find entities by name
GraphQuery.find_entities_by_name(graph, "OpenAI")

Traverse the graph
GraphQuery.traverse(graph, "entity_id", depth: 2)

Get relevant chunks
GraphQuery.get_chunks_for_entities(graph, ["id1", "id2"])

 Summary

 Functions

 build_graph(entities, relationships, chunks, communities)

 Builds a graph structure from entities, relationships, chunks, and communities.

 find_entities_by_embedding(graph, query_embedding, opts \\ [])

 Finds entities similar to a query embedding using cosine similarity.

 find_entities_by_name(graph, query, opts \\ [])

 Finds entities by name with optional fuzzy matching.

 get_chunks_for_entities(graph, entity_ids)

 Gets all chunks connected to a set of entities.

 get_community_summaries(graph, opts \\ [])

 Gets community summaries with optional filtering.

 traverse(graph, entity_id, opts \\ [])

 Traverses the graph from a starting entity up to the specified depth.

 Functions

 build_graph(entities, relationships, chunks, communities)

Builds a graph structure from entities, relationships, chunks, and communities.
Creates indexed lookups for efficient querying:
	Entity lookup by ID
	Adjacency list for graph traversal
	Entity-to-chunk mapping for retrieval

 find_entities_by_embedding(graph, query_embedding, opts \\ [])

Finds entities similar to a query embedding using cosine similarity.
Options
	:top_k - Maximum number of results to return (default: 10)
	:min_similarity - Minimum cosine similarity threshold (default: 0.0)

 find_entities_by_name(graph, query, opts \\ [])

Finds entities by name with optional fuzzy matching.
Options
	:fuzzy - When true, matches if entity name contains the query (default: false)

Examples
Exact match (case-insensitive)
GraphQuery.find_entities_by_name(graph, "OpenAI")

Fuzzy match
GraphQuery.find_entities_by_name(graph, "Open", fuzzy: true)

 get_chunks_for_entities(graph, entity_ids)

Gets all chunks connected to a set of entities.
Returns unique chunks that contain at least one of the specified entities.

 get_community_summaries(graph, opts \\ [])

Gets community summaries with optional filtering.
Options
	:level - Filter by hierarchy level
	:entity_id - Filter by communities containing a specific entity

 traverse(graph, entity_id, opts \\ [])

Traverses the graph from a starting entity up to the specified depth.
Returns all entities reachable within the given number of hops.
Does not include the starting entity in results.
Options
	:depth - Maximum traversal depth (default: 1)

Arcana.Graph.GraphStore behaviour

Behaviour and dispatch module for graph storage backends.
Arcana supports swappable graph storage:
	:ecto (default) - PostgreSQL via Ecto
	:memory - In-memory storage for testing
	Custom module implementing this behaviour

Configuration
config/config.exs

Use Ecto/PostgreSQL (default)
config :arcana, :graph_store, :ecto

With options
config :arcana, :graph_store, {:ecto, repo: MyApp.Repo}

Custom module
config :arcana, :graph_store, MyApp.CustomGraphStore

 Summary

 Callbacks

 delete_by_chunks(chunk_ids, opts)

 Deletes all graph data for the given chunk IDs.

 delete_by_collection(binary, opts)

 Deletes all graph data for a collection.

 find_entities(binary, opts)

 Finds all entities in a collection.

 find_related_entities(binary, depth, opts)

 Finds entities related to the given entity within the specified depth.

 get_community(community_id, opts)

 Retrieves a single community by ID.

 get_community_summaries(binary, opts)

 Retrieves community summaries for a collection.

 get_entity(binary, opts)

 Retrieves a single entity by ID.

 get_mentions(binary, opts)

 Retrieves mentions for an entity with chunk context.

 get_relationship(relationship_id, opts)

 Retrieves a single relationship by ID.

 get_relationships(binary, opts)

 Retrieves all relationships for an entity.

 list_communities(opts)

 Lists communities with optional filtering and pagination.

 list_entities(opts)

 Lists entities with optional filtering and pagination.

 list_relationships(opts)

 Lists relationships with optional filtering and pagination.

 persist_communities(binary, list, opts)

 Persists community data for a collection.

 persist_entities(binary, list, opts)

 Persists entities to the graph store.

 persist_mentions(list, map, opts)

 Persists entity mentions (links between entities and chunks).

 persist_relationships(list, map, opts)

 Persists relationships between entities.

 search(list, arg2, opts)

 Searches for chunks related to the given entity names.

 Functions

 backend()

 Returns the configured graph store backend.

 delete_by_chunks(chunk_ids, opts \\ [])

 Deletes graph data for the given chunk IDs using the configured backend.

 delete_by_collection(collection_id, opts \\ [])

 Deletes all graph data for a collection using the configured backend.

 find_entities(collection_id, opts \\ [])

 Finds entities using the configured backend.

 find_related_entities(entity_id, depth, opts \\ [])

 Finds related entities using the configured backend.

 get_community(community_id, opts \\ [])

 Gets a single community by ID using the configured backend.

 get_community_summaries(collection_id, opts \\ [])

 Gets community summaries using the configured backend.

 get_entity(entity_id, opts \\ [])

 Gets a single entity by ID using the configured backend.

 get_mentions(entity_id, opts \\ [])

 Gets mentions for an entity using the configured backend.

 get_relationship(relationship_id, opts \\ [])

 Gets a single relationship by ID using the configured backend.

 get_relationships(entity_id, opts \\ [])

 Gets relationships for an entity using the configured backend.

 list_communities(opts \\ [])

 Lists communities using the configured backend.

 list_entities(opts \\ [])

 Lists entities using the configured backend.

 list_relationships(opts \\ [])

 Lists relationships using the configured backend.

 persist_communities(collection_id, communities, opts \\ [])

 Persists communities using the configured backend.

 persist_entities(collection_id, entities, opts \\ [])

 Persists entities using the configured backend.

 persist_mentions(mentions, entity_id_map, opts \\ [])

 Persists entity mentions using the configured backend.

 persist_relationships(relationships, entity_id_map, opts \\ [])

 Persists relationships using the configured backend.

 search(entity_names, collection_ids, opts \\ [])

 Searches for chunks using the configured backend.

 Callbacks

 delete_by_chunks(chunk_ids, opts)

 @callback delete_by_chunks(chunk_ids :: [binary()], opts :: keyword()) ::
 :ok | {:error, term()}

Deletes all graph data for the given chunk IDs.
Removes mentions referencing these chunks, and cleans up orphaned entities
(entities with no remaining mentions).

 delete_by_collection(binary, opts)

 @callback delete_by_collection(binary(), opts :: keyword()) :: :ok | {:error, term()}

Deletes all graph data for a collection.
Removes all entities, relationships, mentions, and communities
associated with the collection.

 find_entities(binary, opts)

 @callback find_entities(binary(), opts :: keyword()) :: [map()]

Finds all entities in a collection.

 find_related_entities(binary, depth, opts)

 @callback find_related_entities(binary(), depth :: pos_integer(), opts :: keyword()) :: [
 map()
]

Finds entities related to the given entity within the specified depth.
Enables graph-native traversal operations.

 get_community(community_id, opts)

 @callback get_community(community_id :: binary(), opts :: keyword()) ::
 {:ok, map()} | {:error, :not_found}

Retrieves a single community by ID.

 get_community_summaries(binary, opts)

 @callback get_community_summaries(binary(), opts :: keyword()) :: [map()]

Retrieves community summaries for a collection.

 get_entity(binary, opts)

 @callback get_entity(binary(), opts :: keyword()) :: {:ok, map()} | {:error, :not_found}

Retrieves a single entity by ID.

 get_mentions(binary, opts)

 @callback get_mentions(binary(), opts :: keyword()) :: [map()]

Retrieves mentions for an entity with chunk context.
Returns mentions with associated chunk text for display.

 get_relationship(relationship_id, opts)

 @callback get_relationship(relationship_id :: binary(), opts :: keyword()) ::
 {:ok, map()} | {:error, :not_found}

Retrieves a single relationship by ID.

 get_relationships(binary, opts)

 @callback get_relationships(binary(), opts :: keyword()) :: [map()]

Retrieves all relationships for an entity.
Returns relationships where the entity is either source or target.

 list_communities(opts)

 @callback list_communities(opts :: keyword()) :: [map()]

Lists communities with optional filtering and pagination.
Options
	:collection_id - Filter by collection (nil for all)
	:level - Filter by hierarchy level
	:search - Search in summary
	:limit - Maximum results (default: 50)
	:offset - Pagination offset (default: 0)

Returns communities with entity counts.

 list_entities(opts)

 @callback list_entities(opts :: keyword()) :: [map()]

Lists entities with optional filtering and pagination.
Options
	:collection_id - Filter by collection (nil for all)
	:type - Filter by entity type
	:search - Search in entity name
	:limit - Maximum results (default: 50)
	:offset - Pagination offset (default: 0)

Returns entities with aggregated counts (mention_count, relationship_count).

 list_relationships(opts)

 @callback list_relationships(opts :: keyword()) :: [map()]

Lists relationships with optional filtering and pagination.
Options
	:collection_id - Filter by collection (nil for all)
	:type - Filter by relationship type
	:search - Search in entity names or type
	:strength - Filter by strength (:strong, :medium, :weak)
	:limit - Maximum results (default: 50)
	:offset - Pagination offset (default: 0)

Returns relationships with source/target entity names.

 persist_communities(binary, list, opts)

 @callback persist_communities(binary(), [map()], opts :: keyword()) ::
 :ok | {:error, term()}

Persists community data for a collection.

 persist_entities(binary, list, opts)

 @callback persist_entities(binary(), [map()], opts :: keyword()) ::
 {:ok, map()} | {:error, term()}

Persists entities to the graph store.
Returns a map of entity names to their assigned IDs.

 persist_mentions(list, map, opts)

 @callback persist_mentions([map()], map(), opts :: keyword()) :: :ok | {:error, term()}

Persists entity mentions (links between entities and chunks).

 persist_relationships(list, map, opts)

 @callback persist_relationships([map()], map(), opts :: keyword()) ::
 :ok | {:error, term()}

Persists relationships between entities.

 search(list, arg2, opts)

 @callback search([String.t()], [binary()] | nil, opts :: keyword()) :: [map()]

Searches for chunks related to the given entity names.
Returns scored chunk results.

 Functions

 backend()

Returns the configured graph store backend.

 delete_by_chunks(chunk_ids, opts \\ [])

Deletes graph data for the given chunk IDs using the configured backend.

 delete_by_collection(collection_id, opts \\ [])

Deletes all graph data for a collection using the configured backend.

 find_entities(collection_id, opts \\ [])

Finds entities using the configured backend.

 find_related_entities(entity_id, depth, opts \\ [])

Finds related entities using the configured backend.

 get_community(community_id, opts \\ [])

Gets a single community by ID using the configured backend.

 get_community_summaries(collection_id, opts \\ [])

Gets community summaries using the configured backend.

 get_entity(entity_id, opts \\ [])

Gets a single entity by ID using the configured backend.

 get_mentions(entity_id, opts \\ [])

Gets mentions for an entity using the configured backend.

 get_relationship(relationship_id, opts \\ [])

Gets a single relationship by ID using the configured backend.

 get_relationships(entity_id, opts \\ [])

Gets relationships for an entity using the configured backend.

 list_communities(opts \\ [])

Lists communities using the configured backend.

 list_entities(opts \\ [])

Lists entities using the configured backend.

 list_relationships(opts \\ [])

Lists relationships using the configured backend.

 persist_communities(collection_id, communities, opts \\ [])

Persists communities using the configured backend.

 persist_entities(collection_id, entities, opts \\ [])

Persists entities using the configured backend.

 persist_mentions(mentions, entity_id_map, opts \\ [])

Persists entity mentions using the configured backend.

 persist_relationships(relationships, entity_id_map, opts \\ [])

Persists relationships using the configured backend.

 search(entity_names, collection_ids, opts \\ [])

Searches for chunks using the configured backend.

Arcana.Graph.GraphStore.Ecto

Ecto/PostgreSQL implementation of the GraphStore behaviour.
This is the default graph storage backend, storing entities, relationships,
and mentions in PostgreSQL tables.

Arcana.Graph.GraphStore.Memory

In-memory implementation of the GraphStore behaviour.
Uses GenServer to store graph data in memory. Useful for testing
and small-scale applications that don't need persistence.
Usage
Start a memory store
{:ok, pid} = GraphStore.Memory.start_link([])

Use in tests
Arcana.ingest(text, graph_store: {:memory, pid: pid})

Use with named process
{:ok, _} = GraphStore.Memory.start_link(name: :test_graph)
Arcana.ingest(text, graph_store: {:memory, name: :test_graph})

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Starts a memory graph store.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

Starts a memory graph store.
Options
	:name - Optional name for the GenServer process

Arcana.Graph.NERServing

Lazy-loaded Nx.Serving for Named Entity Recognition using Bumblebee.
Uses dslim/distilbert-NER which is 40% smaller than BERT-base
while retaining 97% accuracy. Only loaded when graph features are used.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 ensure_started()

 Ensures the NER serving is started. Called automatically by run/1.

 run(text)

 Runs NER on the given text, starting the serving if not already running.
Returns a list of entity maps with :entity, :label, :start, :end, :score.

 running?()

 Checks if the NER serving is currently running.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ensure_started()

Ensures the NER serving is started. Called automatically by run/1.

 run(text)

Runs NER on the given text, starting the serving if not already running.
Returns a list of entity maps with :entity, :label, :start, :end, :score.

 running?()

Checks if the NER serving is currently running.

 start_link(opts \\ [])

Arcana.Graph.Relationship

Schema for knowledge graph relationships between entities.
Relationships connect two entities with a typed edge,
optionally including a description and strength score.

 Summary

 Functions

 changeset(relationship, attrs)

 Functions

 changeset(relationship, attrs)

Arcana.Graph.RelationshipExtractor behaviour

Behaviour for relationship extraction in GraphRAG.
Relationship extractors identify semantic relationships between entities
in text. Arcana provides a built-in LLM-based implementation, but you
can implement custom extractors for different approaches.
Built-in Implementations
	Arcana.Graph.RelationshipExtractor.LLM - LLM-based extraction (default)
	Arcana.Graph.RelationshipExtractor.Cooccurrence - Local co-occurrence based (no LLM)

Configuration
Configure your relationship extractor in config.exs:
Default: LLM-based extraction
config :arcana, :graph,
 relationship_extractor: {Arcana.Graph.RelationshipExtractor.LLM, llm: &MyApp.llm/3}

Disable relationship extraction
config :arcana, :graph,
 relationship_extractor: nil

Custom module implementing this behaviour
config :arcana, :graph,
 relationship_extractor: {MyApp.PatternExtractor, patterns: [...]}

Inline function
config :arcana, :graph,
 relationship_extractor: fn text, entities, opts ->
 {:ok, my_extract(text, entities, opts)}
 end
Implementing a Custom Extractor
Create a module that implements this behaviour:
defmodule MyApp.PatternExtractor do
 @behaviour Arcana.Graph.RelationshipExtractor

 @impl true
 def extract(text, entities, opts) do
 patterns = Keyword.get(opts, :patterns, [])
 # Pattern-based extraction...
 {:ok, relationships}
 end
end
Relationship Format
Extractors must return relationships as maps with:
	:source - Name of the source entity
	:target - Name of the target entity
	:type - Relationship type (e.g., "WORKS_AT", "FOUNDED")
	:description - Optional description
	:strength - Optional strength (1-10)

 Summary

 Callbacks

 extract(text, entities, opts)

 Extracts relationships between entities from text.

 Functions

 extract(fun, text, entities)

 Extracts relationships using the configured extractor.

 Callbacks

 extract(text, entities, opts)

 @callback extract(
 text :: String.t(),
 entities :: [map()],
 opts :: keyword()
) :: {:ok, [map()]} | {:error, term()}

Extracts relationships between entities from text.
Parameters
	text - The source text to analyze
	entities - List of entity maps with :name and :type
	opts - Options passed from the extractor configuration

Returns
	{:ok, relationships} - List of relationship maps
	{:error, reason} - On failure

 Functions

 extract(fun, text, entities)

Extracts relationships using the configured extractor.
The extractor can be:
	A {module, opts} tuple where module implements this behaviour
	A function (text, entities, opts) -> {:ok, relationships} | {:error, reason}

	nil to skip relationship extraction (returns empty list)

Examples
With module
extractor = {Arcana.Graph.RelationshipExtractor.LLM, llm: &MyApp.llm/3}
{:ok, relationships} = RelationshipExtractor.extract(extractor, text, entities)

With inline function
extractor = fn text, entities, _opts ->
 {:ok, [%{source: "A", target: "B", type: "RELATES_TO"}]}
end
{:ok, relationships} = RelationshipExtractor.extract(extractor, text, entities)

Skip extraction
{:ok, []} = RelationshipExtractor.extract(nil, text, entities)

Arcana.Graph.RelationshipExtractor.LLM

LLM-based relationship extraction implementation.
Uses structured prompts to identify semantic relationships between
previously extracted entities. The LLM returns JSON-formatted
relationships with type, description, and strength.
Usage
Configure with an LLM function
extractor = {Arcana.Graph.RelationshipExtractor.LLM, llm: my_llm_fn}
{:ok, relationships} = RelationshipExtractor.extract(extractor, text, entities)
Options
	:llm - Required. An LLM function (prompt, context, opts) -> {:ok, response} | {:error, reason}

 Summary

 Functions

 build_prompt(text, entities)

 Builds the prompt for relationship extraction.

 Functions

 build_prompt(text, entities)

Builds the prompt for relationship extraction.
The prompt includes the source text and a list of entities
for the LLM to find relationships between.

Arcana.Ingest

Document ingestion for Arcana.
Handles chunking, embedding, and storing documents with optional
GraphRAG entity/relationship extraction.

 Summary

 Functions

 ingest(text, opts)

 Ingests text content, creating a document with embedded chunks.

 ingest_file(path, opts)

 Ingests a file, parsing its content and creating a document with embedded chunks.

 Functions

 ingest(text, opts)

Ingests text content, creating a document with embedded chunks.
Options
	:repo - The Ecto repo to use (required)
	:source_id - An optional identifier for grouping/filtering
	:metadata - Optional map of metadata to store with the document
	:chunk_size - Maximum chunk size in characters (default: 1024)
	:chunk_overlap - Overlap between chunks (default: 200)
	:collection - Collection name (string) or map with name and description (default: "default")
	:graph - Enable GraphRAG extraction (default: from config)

 ingest_file(path, opts)

Ingests a file, parsing its content and creating a document with embedded chunks.
Supports multiple file formats including plain text, markdown, and PDF.
Options
	:repo - The Ecto repo to use (required)
	:source_id - An optional identifier for grouping/filtering
	:metadata - Optional map of metadata to store with the document
	:chunk_size - Maximum chunk size in characters (default: 1024)
	:chunk_overlap - Overlap between chunks (default: 200)
	:collection - Collection name to organize the document (default: "default")

Arcana.LLM protocol

Protocol for LLM adapters used by Arcana.
Arcana accepts any LLM that implements this protocol. Built-in implementations:
	Model strings via Req.LLM (e.g., "openai:gpt-4o-mini", "zai:glm-4.5-flash")
	Tuples of {model_string, opts} for passing options like :api_key
	Anonymous functions (for testing)

Examples
Model string (requires req_llm)
Arcana.ask("question", llm: "openai:gpt-4o-mini", repo: MyApp.Repo)

With options
Arcana.ask("question", llm: {"zai:glm-4.7", api_key: "key"}, repo: MyApp.Repo)

Function (for testing)
Arcana.ask("question", llm: fn _prompt -> {:ok, "answer"} end, repo: MyApp.Repo)

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 complete(llm, prompt, context, opts)

 Completes a prompt with the given context and options.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 complete(llm, prompt, context, opts)

Completes a prompt with the given context and options.
Returns {:ok, response} or {:error, reason}.

Arcana.Maintenance

Maintenance functions for Arcana.
These functions are designed to be callable from production environments
where mix tasks are not available (e.g., releases).
Usage in Production
Remote IEx
iex> Arcana.Maintenance.reembed(MyApp.Repo)

Release command
bin/my_app eval "Arcana.Maintenance.reembed(MyApp.Repo)"

 Summary

 Functions

 detect_communities(repo, opts \\ [])

 Detects communities in the knowledge graph using the Leiden algorithm.

 embedding_dimensions()

 Returns the current embedding dimensions.

 embedding_info()

 Returns info about the current embedding configuration.

 graph_info()

 Returns info about the current graph configuration.

 rebuild_graph(repo, opts \\ [])

 Rebuilds the knowledge graph for documents.

 reembed(repo, opts \\ [])

 Re-embeds all chunks and rechunks documents that have no chunks.

 summarize_communities(repo, opts \\ [])

 Generates summaries for communities that need them.

 Functions

 detect_communities(repo, opts \\ [])

Detects communities in the knowledge graph using the Leiden algorithm.
This runs community detection on entities and relationships, producing
hierarchical community clusters. Existing communities for the collection(s)
are cleared before detection.
Options
	:collection - Filter to a specific collection by name (default: all collections)
	:resolution - Community detection resolution (default: 1.0)
	:max_level - Maximum hierarchy levels (default: 3)
	:progress - Function to call with progress updates fn current, total -> :ok end

Examples
Basic usage - all collections
Arcana.Maintenance.detect_communities(MyApp.Repo)

Single collection
Arcana.Maintenance.detect_communities(MyApp.Repo, collection: "my-docs")

With custom resolution
Arcana.Maintenance.detect_communities(MyApp.Repo, resolution: 0.5)

 embedding_dimensions()

Returns the current embedding dimensions.
Useful for verifying the configured embedder before running migrations.
Examples
iex> Arcana.Maintenance.embedding_dimensions()
{:ok, 1536}

 embedding_info()

Returns info about the current embedding configuration.
Examples
iex> Arcana.Maintenance.embedding_info()
%{type: :openai, model: "text-embedding-3-small", dimensions: 1536}

 graph_info()

Returns info about the current graph configuration.
Examples
iex> Arcana.Maintenance.graph_info()
%{enabled: true, extractor: :llm}

 rebuild_graph(repo, opts \\ [])

Rebuilds the knowledge graph for documents.
This clears existing graph data (entities, relationships, mentions) and
re-extracts from all chunks using the current graph extractor configuration.
Use this when:
	You've changed the graph extractor configuration
	You've enabled relationship extraction after initial ingest
	You want to regenerate entity/relationship data

Options
	:collection - Filter to a specific collection by name (default: all collections)
	:batch_size - Number of chunks to process per collection batch (default: 50)
	:progress - Function to call with progress updates fn current, total -> :ok end

Examples
Basic usage - all collections
Arcana.Maintenance.rebuild_graph(MyApp.Repo)

Single collection
Arcana.Maintenance.rebuild_graph(MyApp.Repo, collection: "test-graphrag-3")

With progress callback
Arcana.Maintenance.rebuild_graph(MyApp.Repo,
 progress: fn current, total ->
 IO.puts("Progress: #{current}/#{total}")
 end
)

 reembed(repo, opts \\ [])

Re-embeds all chunks and rechunks documents that have no chunks.
This is useful when switching embedding models or after a migration
that cleared chunks.
Options
	:batch_size - Number of items to process at once (default: 50)
	:concurrency - Number of parallel embedding requests (default: 5)
	:skip - Number of chunks to skip (for resuming interrupted runs)
	:progress - Function to call with progress updates fn current, total -> :ok end

Examples
Basic usage
Arcana.Maintenance.reembed(MyApp.Repo)

With progress callback and concurrency
Arcana.Maintenance.reembed(MyApp.Repo,
 batch_size: 100,
 concurrency: 10,
 progress: fn current, total ->
 IO.puts("Progress: #{current}/#{total}")
 end
)

Resume from chunk 500
Arcana.Maintenance.reembed(MyApp.Repo, skip: 500)

 summarize_communities(repo, opts \\ [])

Generates summaries for communities that need them.
This function iterates through communities and generates LLM summaries
for those that are dirty, have no summary, or have accumulated changes.
Options
	:collection - Only summarize communities in this collection (default: all)
	:progress - Progress callback function
	:force - Regenerate all summaries even if not dirty (default: false)
	:concurrency - Number of parallel summarization tasks (default: 1)
	:llm - LLM function for summarization (uses config if not provided)

Returns
{:ok, %{communities: count, summaries: count}} on success.
Examples
Summarize all dirty communities
Maintenance.summarize_communities(repo)

Force regenerate all summaries
Maintenance.summarize_communities(repo, force: true)

Summarize a specific collection
Maintenance.summarize_communities(repo, collection: "my-docs")

Arcana.Parser

Parses files into text content for ingestion.
Supports multiple file formats including plain text, markdown, and PDF.
PDF Support
PDF parsing is handled by a configurable parser. The default uses
pdftotext from the Poppler library. See Arcana.FileParser.PDF for
implementing custom PDF parsers.
Default Parser (Poppler)
The default PDF parser requires pdftotext to be installed:
macOS
brew install poppler

Ubuntu/Debian
apt-get install poppler-utils

Fedora
dnf install poppler-utils
Custom PDF Parser
Configure a custom parser in config.exs:
config :arcana, pdf_parser: MyApp.PDFParser
See Arcana.FileParser.PDF for the behaviour specification.

 Summary

 Functions

 parse(path)

 Parses a file and extracts text content.

 pdf_support_available?()

 Checks if PDF support is available.

 supported_formats()

 Returns list of supported file extensions.

 Functions

 parse(path)

Parses a file and extracts text content.
Returns {:ok, text} on success, or {:error, reason} on failure.

 pdf_support_available?()

Checks if PDF support is available.
For the default Poppler parser, this checks if pdftotext is installed.
Custom parsers may have different availability requirements.
Examples
iex> Arcana.Parser.pdf_support_available?()
true # or false if parser not available

 supported_formats()

Returns list of supported file extensions.

Arcana.Search

Search functionality for Arcana.
Provides semantic, fulltext, and hybrid search modes with optional
GraphRAG enhancement using Reciprocal Rank Fusion (RRF).

 Summary

 Functions

 rewrite_query(query, opts \\ [])

 Rewrites a query using a provided rewriter function.

 search(query, opts)

 Searches for chunks similar to the query.

 Functions

 rewrite_query(query, opts \\ [])

Rewrites a query using a provided rewriter function.
Query rewriting can improve retrieval by expanding abbreviations,
adding synonyms, or reformulating the query for better matching.
Options
	:rewriter - A function that takes a query and returns {:ok, rewritten} or {:error, reason}

 search(query, opts)

Searches for chunks similar to the query.
Returns {:ok, results} where results is a list of maps containing chunk
information and similarity scores, or {:error, reason} on failure.
Options
	:repo - The Ecto repo to use (required for pgvector backend)
	:limit - Maximum number of results (default: 10)
	:source_id - Filter results to a specific source
	:threshold - Minimum similarity score (default: 0.0)
	:mode - Search mode: :semantic (default), :fulltext, or :hybrid
	:collection - Filter results to a specific collection by name
	:vector_store - Override the configured vector store backend
	:semantic_weight - Weight for semantic scores in hybrid mode (default: 0.5)
	:fulltext_weight - Weight for fulltext scores in hybrid mode (default: 0.5)

Arcana.TaskSupervisor

Task supervisor for async operations in Arcana.
Add to your application's supervision tree:
children = [
 MyApp.Repo,
 Arcana.Embedder.Local,
 Arcana.TaskSupervisor
]
This enables supervised async operations in the Arcana dashboard
(evaluation runs, test case generation, maintenance tasks) with:
	Graceful shutdown during deploys
	Visibility in Observer/LiveDashboard
	Proper crash logging with $callers metadata

 Summary

 Functions

 child_spec(opts)

 start_child(fun)

 Starts a fire-and-forget task under this supervisor.

 Functions

 child_spec(opts)

 start_child(fun)

Starts a fire-and-forget task under this supervisor.
The task is not linked to the caller, so crashes won't bring down
the calling process. Crashes are logged by the supervisor.

Arcana.Telemetry

Telemetry events emitted by Arcana.
Arcana uses the standard :telemetry library to emit events for observability.
You can attach handlers to these events for logging, metrics, or tracing.
Events
All events are emitted using :telemetry.span/3, which automatically generates
:start, :stop, and :exception events.
Ingest Events
	[:arcana, :ingest, :start] - Emitted when document ingestion begins.
	Measurement: %{system_time: integer}
	Metadata: %{text: String.t(), repo: module(), collection: String.t()}

	[:arcana, :ingest, :stop] - Emitted when document ingestion completes.
	Measurement: %{duration: integer}
	Metadata: %{document: Document.t(), chunk_count: integer}

	[:arcana, :ingest, :exception] - Emitted when document ingestion fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

Search Events
	[:arcana, :search, :start] - Emitted when a search query begins.
	Measurement: %{system_time: integer}
	Metadata: %{query: String.t(), repo: module(), mode: atom(), limit: integer}

	[:arcana, :search, :stop] - Emitted when a search query completes.
	Measurement: %{duration: integer}
	Metadata: %{results: list(), result_count: integer}

	[:arcana, :search, :exception] - Emitted when a search query fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

Ask Events (RAG)
	[:arcana, :ask, :start] - Emitted when a RAG question begins.
	Measurement: %{system_time: integer}
	Metadata: %{question: String.t(), repo: module()}

	[:arcana, :ask, :stop] - Emitted when a RAG question completes.
	Measurement: %{duration: integer}
	Metadata: %{answer: String.t(), context_count: integer}

	[:arcana, :ask, :exception] - Emitted when a RAG question fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

Embed Events
	[:arcana, :embed, :start] - Emitted when embedding generation begins.
	Measurement: %{system_time: integer}
	Metadata: %{text: String.t()}

	[:arcana, :embed, :stop] - Emitted when embedding generation completes.
	Measurement: %{duration: integer}
	Metadata: %{dimensions: integer}

	[:arcana, :embed, :exception] - Emitted when embedding generation fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

LLM Events
	[:arcana, :llm, :complete, :start] - Emitted when an LLM call begins.
	Measurement: %{system_time: integer}
	Metadata: %{model: String.t(), prompt_length: integer, context_count: integer}

	[:arcana, :llm, :complete, :stop] - Emitted when an LLM call completes.
	Measurement: %{duration: integer}
	Metadata: %{success: boolean, response_length: integer} or %{success: false, error: String.t()}

	[:arcana, :llm, :complete, :exception] - Emitted when an LLM call fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

Agent Pipeline Events
Each step in the Agent pipeline emits :start, :stop, and :exception events:
	[:arcana, :agent, :rewrite, :*] - Query rewriting step.
	Stop metadata: %{query: String.t()}

	[:arcana, :agent, :select, :*] - Collection selection step.
	Stop metadata: %{selected: [String.t()]}

	[:arcana, :agent, :expand, :*] - Query expansion step.
	Stop metadata: %{expanded_query: String.t()}

	[:arcana, :agent, :decompose, :*] - Question decomposition step.
	Stop metadata: %{sub_question_count: integer}

	[:arcana, :agent, :search, :*] - Vector search step.
	Stop metadata: %{total_chunks: integer}

	[:arcana, :agent, :rerank, :*] - Chunk reranking step.
	Stop metadata: %{kept: integer, original: integer}

	[:arcana, :agent, :answer, :*] - Answer generation step.
	Stop metadata: %{}

	[:arcana, :agent, :self_correct, :*] - Self-correction iteration.
	Stop metadata: %{attempt: integer}

GraphRAG Events
When using GraphRAG features (graph: true), these events are emitted:
	[:arcana, :graph, :build, :start] - Emitted when graph building begins during ingest.
	Measurement: %{system_time: integer}
	Metadata: %{chunk_count: integer, collection: String.t()}

	[:arcana, :graph, :build, :stop] - Emitted when graph building completes.
	Measurement: %{duration: integer}
	Metadata: %{entity_count: integer, relationship_count: integer}

	[:arcana, :graph, :build, :exception] - Emitted when graph building fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

	[:arcana, :graph, :search, :start] - Emitted when graph-enhanced search begins.
	Measurement: %{system_time: integer}
	Metadata: %{query: String.t(), entity_count: integer}

	[:arcana, :graph, :search, :stop] - Emitted when graph-enhanced search completes.
	Measurement: %{duration: integer}
	Metadata: %{graph_result_count: integer, combined_count: integer}

	[:arcana, :graph, :search, :exception] - Emitted when graph-enhanced search fails.
	Measurement: %{duration: integer}
	Metadata: %{kind: atom(), reason: term(), stacktrace: list()}

	[:arcana, :graph, :ner, :start] - Emitted when NER entity extraction begins.
	Measurement: %{system_time: integer}
	Metadata: %{text: String.t()}

	[:arcana, :graph, :ner, :stop] - Emitted when NER entity extraction completes.
	Measurement: %{duration: integer}
	Metadata: %{entity_count: integer}

	[:arcana, :graph, :relationship_extraction, :start] - Emitted when relationship extraction begins.
	Measurement: %{system_time: integer}
	Metadata: %{text: String.t()}

	[:arcana, :graph, :relationship_extraction, :stop] - Emitted when relationship extraction completes.
	Measurement: %{duration: integer}
	Metadata: %{relationship_count: integer}

	[:arcana, :graph, :community_detection, :start] - Emitted when community detection begins.
	Measurement: %{system_time: integer}
	Metadata: %{entity_count: integer}

	[:arcana, :graph, :community_detection, :stop] - Emitted when community detection completes.
	Measurement: %{duration: integer}
	Metadata: %{community_count: integer}

	[:arcana, :graph, :community_summary, :start] - Emitted when community summarization begins.
	Measurement: %{system_time: integer}
	Metadata: %{entity_count: integer}

	[:arcana, :graph, :community_summary, :stop] - Emitted when community summarization completes.
	Measurement: %{duration: integer}
	Metadata: %{summary_length: integer}

VectorStore Events
	[:arcana, :vector_store, :store, :start] - Emitted when storing a vector.
	Measurement: %{system_time: integer}
	Metadata: %{collection: String.t(), id: String.t()}

	[:arcana, :vector_store, :store, :stop] - Emitted when vector storage completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :vector_store, :search, :start] - Emitted when vector search begins.
	Measurement: %{system_time: integer}
	Metadata: %{collection: String.t(), limit: integer}

	[:arcana, :vector_store, :search, :stop] - Emitted when vector search completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom(), result_count: integer}

	[:arcana, :vector_store, :search_text, :start] - Emitted when fulltext search begins.
	Measurement: %{system_time: integer}
	Metadata: %{collection: String.t(), query: String.t(), limit: integer}

	[:arcana, :vector_store, :search_text, :stop] - Emitted when fulltext search completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom(), result_count: integer}

	[:arcana, :vector_store, :delete, :start] - Emitted when deleting a vector.
	Measurement: %{system_time: integer}
	Metadata: %{collection: String.t(), id: String.t()}

	[:arcana, :vector_store, :delete, :stop] - Emitted when vector deletion completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :vector_store, :clear, :start] - Emitted when clearing a collection.
	Measurement: %{system_time: integer}
	Metadata: %{collection: String.t()}

	[:arcana, :vector_store, :clear, :stop] - Emitted when collection clearing completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

GraphStore Events
	[:arcana, :graph_store, :persist_entities, :start] - Emitted when persisting entities.
	Measurement: %{system_time: integer}
	Metadata: %{collection_id: String.t(), entity_count: integer}

	[:arcana, :graph_store, :persist_entities, :stop] - Emitted when entity persistence completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :graph_store, :persist_relationships, :start] - Emitted when persisting relationships.
	Measurement: %{system_time: integer}
	Metadata: %{relationship_count: integer}

	[:arcana, :graph_store, :persist_relationships, :stop] - Emitted when relationship persistence completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :graph_store, :persist_mentions, :start] - Emitted when persisting mentions.
	Measurement: %{system_time: integer}
	Metadata: %{mention_count: integer}

	[:arcana, :graph_store, :persist_mentions, :stop] - Emitted when mention persistence completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :graph_store, :search, :start] - Emitted when searching graph store.
	Measurement: %{system_time: integer}
	Metadata: %{entity_count: integer}

	[:arcana, :graph_store, :search, :stop] - Emitted when graph search completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom(), result_count: integer}

	[:arcana, :graph_store, :delete_by_chunks, :start] - Emitted when deleting by chunks.
	Measurement: %{system_time: integer}
	Metadata: %{chunk_count: integer}

	[:arcana, :graph_store, :delete_by_chunks, :stop] - Emitted when chunk deletion completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

	[:arcana, :graph_store, :delete_by_collection, :start] - Emitted when deleting by collection.
	Measurement: %{system_time: integer}
	Metadata: %{collection_id: String.t()}

	[:arcana, :graph_store, :delete_by_collection, :stop] - Emitted when collection deletion completes.
	Measurement: %{duration: integer}
	Metadata: %{backend: atom()}

Quick Start with Built-in Logger
For quick setup, use the built-in logger:
In your application's start/2
Arcana.Telemetry.Logger.attach()
This logs all events with timing info. See Arcana.Telemetry.Logger for options.
Custom Handler
For custom handling, attach your own handler:
defmodule MyApp.ArcanaLogger do
 require Logger

 def setup do
 events = [
 [:arcana, :ingest, :stop],
 [:arcana, :search, :stop],
 [:arcana, :ask, :stop],
 [:arcana, :embed, :stop]
]

 :telemetry.attach_many("arcana-logger", events, &handle_event/4, nil)
 end

 def handle_event([:arcana, :ingest, :stop], measurements, metadata, _config) do
 Logger.info("Ingested document #{metadata.document.id} with #{metadata.chunk_count} chunks in #{format_duration(measurements.duration)}")
 end

 def handle_event([:arcana, :search, :stop], measurements, metadata, _config) do
 Logger.info("Search returned #{metadata.result_count} results in #{format_duration(measurements.duration)}")
 end

 def handle_event([:arcana, :ask, :stop], measurements, metadata, _config) do
 Logger.info("RAG answered with #{metadata.context_count} context chunks in #{format_duration(measurements.duration)}")
 end

 def handle_event([:arcana, :embed, :stop], measurements, _metadata, _config) do
 Logger.debug("Generated embedding in #{format_duration(measurements.duration)}")
 end

 defp format_duration(duration) do
 duration
 |> System.convert_time_unit(:native, :millisecond)
 |> then(&"#{&1}ms")
 end
end
Then call MyApp.ArcanaLogger.setup() in your application startup.
Integration with Metrics Libraries
These telemetry events work with metrics libraries like:
	telemetry_metrics - Define metrics based on these events
	telemetry_poller - Periodically report metrics
	prom_ex - Export to Prometheus

Example with telemetry_metrics:
defmodule MyApp.Metrics do
 import Telemetry.Metrics

 def metrics do
 [
 counter("arcana.ingest.stop.duration", unit: {:native, :millisecond}),
 counter("arcana.search.stop.duration", unit: {:native, :millisecond}),
 summary("arcana.search.stop.result_count"),
 distribution("arcana.embed.stop.duration", unit: {:native, :millisecond})
]
 end
end

 Summary

 Functions

 span(event_prefix, start_metadata, fun)

 Wraps a function call with telemetry span events.

 span_with_metadata(event_prefix, start_metadata, fun)

 Wraps a function call with telemetry span events, allowing custom stop metadata.

 Functions

 span(event_prefix, start_metadata, fun)

Wraps a function call with telemetry span events.
This is a convenience function used internally by Arcana to emit
consistent telemetry events.

 span_with_metadata(event_prefix, start_metadata, fun)

Wraps a function call with telemetry span events, allowing custom stop metadata.
The function should return {result, stop_metadata} where stop_metadata
is a map of additional metadata to include in the stop event.

Arcana.Telemetry.Logger

Ready-to-use telemetry logger for Arcana events.
Logs all Arcana operations with timing information to help identify
performance bottlenecks.
Usage
Add to your application's start/2 function:
def start(_type, _args) do
 Arcana.Telemetry.Logger.attach()

 children = [
 # ...
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
Example Output
[info] [Arcana] search completed in 42ms (15 results)
[info] [Arcana] llm.complete completed in 1.23s [zai:glm-4.7] ok (156 chars) prompt=892chars
[info] [Arcana] agent.gate completed in 235ms (proceed)
[info] [Arcana] agent.rewrite completed in 235ms
[info] [Arcana] llm.complete completed in 2.1s [zai:glm-4.7] ok (45 chars) prompt=1204chars
[info] [Arcana] agent.expand completed in 2.15s (3 queries)
[info] [Arcana] agent.search completed in 156ms (25 chunks)
[info] [Arcana] agent.reason completed in 1.2s (2 iterations)
[info] [Arcana] agent.rerank completed in 312ms (10/25 kept)
[info] [Arcana] llm.complete completed in 3.2s [zai:glm-4.7] ok (1892 chars) prompt=4521chars
[info] [Arcana] agent.answer completed in 3.25s
[info] [Arcana] ask completed in 6.12s
Options
You can customize the logger by passing options to attach/1:
Arcana.Telemetry.Logger.attach(
 level: :debug, # Log level (default: :info)
 handler_id: "my-logger" # Custom handler ID (default: "arcana-telemetry-logger")
)
Detaching
To stop logging, call:
Arcana.Telemetry.Logger.detach()

 Summary

 Functions

 attach(opts \\ [])

 Attaches telemetry handlers for logging Arcana events.

 detach(opts \\ [])

 Detaches the telemetry handlers.

 Functions

 attach(opts \\ [])

Attaches telemetry handlers for logging Arcana events.
Options
	:level - The log level to use (default: :info)
	:handler_id - Custom handler ID (default: "arcana-telemetry-logger")

 detach(opts \\ [])

Detaches the telemetry handlers.
Options
	:handler_id - The handler ID to detach (default: "arcana-telemetry-logger")

Arcana.VectorStore behaviour

Behaviour and dispatch module for vector storage backends.
Arcana supports two vector storage backends:
	:pgvector (default) - PostgreSQL with pgvector extension
	:memory - In-memory storage using HNSWLib

Configuration
config/config.exs

Use pgvector (default)
config :arcana, vector_store: :pgvector

Use in-memory storage
config :arcana, vector_store: :memory
In-Memory Backend
When using :memory, you need to start the Memory server in your supervision tree:
children = [
 MyApp.Repo,
 {Arcana.VectorStore.Memory, name: Arcana.VectorStore.Memory}
]
The Memory backend is useful for:
	Testing embedding models without database migrations
	Smaller RAGs where pgvector overhead isn't justified
	Development and experimentation workflows

Note: Memory backend data is not persisted - all vectors are lost when the process stops.
Custom Backend
To implement a custom backend, create a module that implements the Arcana.VectorStore behaviour:
defmodule MyApp.CustomVectorStore do
 @behaviour Arcana.VectorStore

 @impl true
 def store(collection, id, embedding, metadata, opts) do
 # Your implementation
 end

 @impl true
 def search(collection, query_embedding, opts) do
 # Your implementation
 end

 @impl true
 def delete(collection, id, opts) do
 # Your implementation
 end

 @impl true
 def clear(collection, opts) do
 # Your implementation
 end
end
Then configure:
config :arcana, vector_store: MyApp.CustomVectorStore

 Summary

 Callbacks

 clear(binary, opts)

 Clears all vectors from a collection.

 delete(binary, binary, opts)

 Deletes a vector from a collection.

 search(binary, list, opts)

 Searches for similar vectors in a collection (semantic search).

 search_text(binary, query, opts)

 Searches for matching text in a collection (fulltext search).

 store(binary, binary, list, map, opts)

 Stores a vector with its id and metadata in a collection.

 Functions

 backend()

 Returns the configured vector store backend.

 clear(collection, opts \\ [])

 Clears a collection using the configured backend.

 delete(collection, id, opts \\ [])

 Deletes a vector using the configured backend.

 search(collection, query_embedding, opts \\ [])

 Searches for similar vectors using the configured backend.

 search_text(collection, query_text, opts \\ [])

 Searches for matching text using the configured backend (fulltext search).

 store(collection, id, embedding, metadata, opts \\ [])

 Stores a vector using the configured backend.

 Callbacks

 clear(binary, opts)

 @callback clear(binary(), opts :: keyword()) :: :ok

Clears all vectors from a collection.

 delete(binary, binary, opts)

 @callback delete(binary(), binary(), opts :: keyword()) :: :ok | {:error, term()}

Deletes a vector from a collection.

 search(binary, list, opts)

 @callback search(binary(), list(), opts :: keyword()) :: [map()]

Searches for similar vectors in a collection (semantic search).
Returns a list of results with :id, :metadata, and :score keys.

 search_text(binary, query, opts)

 @callback search_text(binary(), query :: String.t(), opts :: keyword()) :: [map()]

Searches for matching text in a collection (fulltext search).
Returns a list of results with :id, :metadata, and :score keys.
Score represents relevance based on term matching.

 store(binary, binary, list, map, opts)

 @callback store(binary(), binary(), list(), map(), opts :: keyword()) ::
 :ok | {:error, term()}

Stores a vector with its id and metadata in a collection.

 Functions

 backend()

Returns the configured vector store backend.
Examples
iex> Arcana.VectorStore.backend()
:pgvector

 clear(collection, opts \\ [])

Clears a collection using the configured backend.
Options
	:vector_store - Override the configured backend (see store/5 for format)

 delete(collection, id, opts \\ [])

Deletes a vector using the configured backend.
Options
	:vector_store - Override the configured backend (see store/5 for format)

 search(collection, query_embedding, opts \\ [])

Searches for similar vectors using the configured backend.
Options
	:vector_store - Override the configured backend (see store/5 for format)
	:limit - Maximum number of results (default: 10)

Examples
Use global config
VectorStore.search("products", query_embedding, limit: 10)

Override with memory backend
VectorStore.search("products", query_embedding,
 vector_store: {:memory, pid: memory_pid},
 limit: 10)

 search_text(collection, query_text, opts \\ [])

Searches for matching text using the configured backend (fulltext search).
Options
	:vector_store - Override the configured backend (see store/5 for format)
	:limit - Maximum number of results (default: 10)

Examples
Use global config
VectorStore.search_text("products", "organic coffee", limit: 10)

Override with memory backend
VectorStore.search_text("products", "organic coffee",
 vector_store: {:memory, pid: memory_pid},
 limit: 10)

 store(collection, id, embedding, metadata, opts \\ [])

Stores a vector using the configured backend.
Options
	:vector_store - Override the configured backend. Can be:	{:memory, pid: pid} - Use memory backend with specific server
	{:pgvector, repo: MyRepo} - Use pgvector with specific repo
	MyCustomModule - Use a custom module implementing the behaviour

	:limit - Maximum number of results (default: 10)

Examples
Use global config
VectorStore.store("products", "id", embedding, metadata)

Override with memory backend
VectorStore.store("products", "id", embedding, metadata,
 vector_store: {:memory, pid: memory_pid})

Override with pgvector backend
VectorStore.store("products", "id", embedding, metadata,
 vector_store: {:pgvector, repo: MyApp.Repo})

Arcana.VectorStore.Memory

In-memory vector store using HNSWLib for approximate nearest neighbor search.
Useful for:
	Testing embedding models without database migrations
	Smaller RAGs where pgvector overhead isn't justified
	Development and experimentation workflows

Usage
Start the server
{:ok, pid} = Arcana.VectorStore.Memory.start_link(name: MyApp.VectorStore)

Store vectors
:ok = Memory.store(pid, "default", "chunk-1", embedding, %{text: "hello"})

Search
results = Memory.search(pid, "default", query_embedding, limit: 10)

Delete
:ok = Memory.delete(pid, "default", "chunk-1")

Clear collection
:ok = Memory.clear(pid, "default")
Requirements
Requires the hnswlib dependency.
Notes
	Data is not persisted to disk - all vectors are lost when the process stops
	Uses cosine similarity for semantic search
	Recommended for < 100K vectors per collection

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear(server, collection)

 Clears all vectors from a collection.

 delete(server, collection, id)

 Deletes a vector from a collection.

 search(server, collection, query_embedding, opts \\ [])

 Searches for similar vectors in a collection.

 search_text(server, collection, query_text, opts \\ [])

 Searches for matching text in a collection (fulltext search).

 start_link(opts \\ [])

 Starts the Memory vector store GenServer.

 store(server, collection, id, embedding, metadata)

 Stores a vector with its id and metadata in a collection.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear(server, collection)

Clears all vectors from a collection.
Parameters
	server - The GenServer pid or name
	collection - The collection name to clear

Returns
	:ok on success

 delete(server, collection, id)

Deletes a vector from a collection.
Parameters
	server - The GenServer pid or name
	collection - The collection name
	id - The vector's unique identifier

Returns
	:ok on success
	{:error, :not_found} if the id doesn't exist in the collection

 search(server, collection, query_embedding, opts \\ [])

Searches for similar vectors in a collection.
Parameters
	server - The GenServer pid or name
	collection - The collection name to search in
	query_embedding - The query vector as a list of floats
	opts - Search options	:limit - Maximum number of results to return (default: 10)

Returns
A list of maps with keys:
	:id - The vector's unique identifier
	:metadata - The associated metadata map
	:score - Similarity score (0.0 to 1.0, higher is more similar)

 search_text(server, collection, query_text, opts \\ [])

Searches for matching text in a collection (fulltext search).
Uses simple term matching with TF-IDF-like scoring.
Parameters
	server - The GenServer pid or name
	collection - The collection name to search in
	query_text - The query string
	opts - Search options	:limit - Maximum number of results to return (default: 10)

Returns
A list of maps with keys:
	:id - The vector's unique identifier
	:metadata - The associated metadata map
	:score - Relevance score based on term matching (higher is more relevant)

 start_link(opts \\ [])

Starts the Memory vector store GenServer.
Options
	:name - The name to register the GenServer under (optional)
	:max_elements - Maximum number of elements per collection (default: 10,000)

 store(server, collection, id, embedding, metadata)

Stores a vector with its id and metadata in a collection.
Parameters
	server - The GenServer pid or name
	collection - The collection name (e.g., "default", "products")
	id - Unique identifier for the vector
	embedding - The embedding vector as a list of floats
	metadata - A map of metadata associated with the vector

Returns
	:ok on success

Arcana.VectorStore.Pgvector

PostgreSQL pgvector-backed vector store.
This is the default vector store backend, using the existing Arcana
schema with pgvector extension for similarity search.
Configuration
config :arcana, vector_store: :pgvector # default
Notes
This backend works with the existing arcana_chunks and arcana_documents
tables. The collection parameter maps to the document's collection_id.
For simpler use cases without the full document schema, consider the
:memory backend.

 Summary

 Functions

 search_hybrid(collection, query_embedding, query_text, opts)

 Performs hybrid search combining semantic and fulltext search in a single query.

 Functions

 search_hybrid(collection, query_embedding, query_text, opts)

Performs hybrid search combining semantic and fulltext search in a single query.
This approach retrieves all results in one database query, avoiding the issue where
items ranking moderately in both semantic and fulltext searches might be missed
by separate queries.
Options
	:repo - The Ecto repo to use (required)
	:limit - Maximum number of results (default: 10)
	:source_id - Filter results to a specific source
	:semantic_weight - Weight for semantic score (default: 0.5)
	:fulltext_weight - Weight for fulltext score (default: 0.5)
	:threshold - Minimum combined score threshold (default: 0.0)

Score Normalization
Semantic scores (cosine similarity) naturally range from 0-1. Fulltext scores
(ts_rank) vary based on document content. This function normalizes fulltext
scores using min-max scaling within the result set to ensure fair combination.

ArcanaWeb.AskLive

LiveView for asking questions about documents in Arcana.

ArcanaWeb.CollectionsLive

LiveView for managing collections in Arcana.

ArcanaWeb.DashboardComponents

Shared components for the Arcana dashboard.

 Summary

 Functions

 blank_to_nil(value)

 dashboard_layout(assigns)

 Renders the dashboard layout with stats bar, navigation, and content.

 error_to_string(err)

 format_metadata(metadata)

 format_pct(value)

 format_score(value)

 get_repo_from_session(session)

 load_collections(repo)

 load_source_ids(repo)

 load_stats(repo)

 normalize_collection(name)

 parse_float(val, default)

 parse_format(_)

 parse_int(val, default)

 parse_mode(_)

 Functions

 blank_to_nil(value)

 dashboard_layout(assigns)

Renders the dashboard layout with stats bar, navigation, and content.
Attributes
	stats (:map) (required)
	current_tab (:atom) (required)

Slots
	inner_block (required)

 error_to_string(err)

 format_metadata(metadata)

 format_pct(value)

 format_score(value)

 get_repo_from_session(session)

 load_collections(repo)

 load_source_ids(repo)

 load_stats(repo)

 normalize_collection(name)

 parse_float(val, default)

 parse_format(_)

 parse_int(val, default)

 parse_mode(_)

ArcanaWeb.DocumentsLive

LiveView for managing documents in Arcana.

ArcanaWeb.EvaluationLive

LiveView for retrieval evaluation in Arcana.

ArcanaWeb.GraphLive

LiveView for exploring the GraphRAG knowledge graph.
Provides three sub-views:
	Entities: Browse and search entities with their relationships and source chunks
	Relationships: Explore entity relationships with strength indicators
	Communities: View community clusters with LLM-generated summaries

ArcanaWeb.InfoLive

LiveView for displaying Arcana configuration info.

ArcanaWeb.MaintenanceLive

LiveView for maintenance operations in Arcana.

ArcanaWeb.Router

Provides LiveView routing for the Arcana dashboard.
Usage
Add to your router:
import ArcanaWeb.Router

scope "/" do
 pipe_through :browser

 arcana_dashboard "/arcana"
end
Options
	:live_socket_path - The path to the LiveView socket. Defaults to "/live".

	:repo - The Ecto repo to use for Arcana operations. If not provided,
falls back to Application.get_env(:arcana, :repo).

	:on_mount - Optional list of Phoenix.LiveView.on_mount/1 callbacks
to add to the dashboard's live_session.

Example with options
arcana_dashboard "/arcana",
 repo: MyApp.Repo,
 on_mount: [MyAppWeb.Auth]

 Summary

 Functions

 arcana_dashboard(path, opts \\ [])

 Defines an Arcana dashboard route.

 Functions

 arcana_dashboard(path, opts \\ [])

 (macro)

Defines an Arcana dashboard route.
It expects the path the dashboard will be mounted at
and a set of options.

ArcanaWeb.SearchLive

LiveView for searching documents in Arcana.

Arcana

RAG (Retrieval Augmented Generation) library for Elixir.
Arcana provides document ingestion, embedding, and vector search
capabilities that you can embed into any Phoenix/Ecto application.
Usage
Ingest a document
{:ok, document} = Arcana.ingest("Your text content", repo: MyApp.Repo)

Search for relevant chunks
{:ok, results} = Arcana.search("your query", repo: MyApp.Repo)

Ask questions with RAG
{:ok, answer} = Arcana.ask("What is X?", repo: MyApp.Repo, llm: my_llm)

Delete a document
:ok = Arcana.delete(document.id, repo: MyApp.Repo)
Modules
	Arcana.Config - Configuration management
	Arcana.Ingest - Document ingestion
	Arcana.Search - Vector and hybrid search
	Arcana.Ask - RAG question answering
	Arcana.Graph - GraphRAG functionality

 Summary

 Functions

 ask(question, opts)

 Asks a question using retrieved context from the knowledge base.
See Arcana.Ask.ask/2 for options.

 chunker()

 Returns the configured chunker as a {module, opts} tuple.
See Arcana.Config for configuration options.

 config()

 Returns the current Arcana configuration.

 delete(document_id, opts)

 Deletes a document and all its chunks.

 embedder()

 Returns the configured embedder as a {module, opts} tuple.
See Arcana.Config for configuration options.

 graph_enabled?(opts)

 Returns whether GraphRAG is enabled.

 ingest(text, opts)

 Ingests text content, creating a document with embedded chunks.
See Arcana.Ingest.ingest/2 for options.

 ingest_file(path, opts)

 Ingests a file, parsing its content and creating a document with embedded chunks.
See Arcana.Ingest.ingest_file/2 for options.

 rewrite_query(query, opts \\ [])

 Rewrites a query using a provided rewriter function.
See Arcana.Search.rewrite_query/2 for options.

 search(query, opts)

 Searches for chunks similar to the query.
See Arcana.Search.search/2 for options.

 Functions

 ask(question, opts)

Asks a question using retrieved context from the knowledge base.
See Arcana.Ask.ask/2 for options.

 chunker()

Returns the configured chunker as a {module, opts} tuple.
See Arcana.Config for configuration options.

 config()

Returns the current Arcana configuration.

 delete(document_id, opts)

Deletes a document and all its chunks.
Options
	:repo - The Ecto repo to use (required)

 embedder()

Returns the configured embedder as a {module, opts} tuple.
See Arcana.Config for configuration options.

 graph_enabled?(opts)

Returns whether GraphRAG is enabled.

 ingest(text, opts)

Ingests text content, creating a document with embedded chunks.
See Arcana.Ingest.ingest/2 for options.

 ingest_file(path, opts)

Ingests a file, parsing its content and creating a document with embedded chunks.
See Arcana.Ingest.ingest_file/2 for options.

 rewrite_query(query, opts \\ [])

Rewrites a query using a provided rewriter function.
See Arcana.Search.rewrite_query/2 for options.

 search(query, opts)

Searches for chunks similar to the query.
See Arcana.Search.search/2 for options.

Arcana.Chunk

Schema for document chunks with embeddings.
Chunks are the unit of storage for vector search,
containing text segments and their embeddings.

 Summary

 Functions

 changeset(chunk, attrs)

 Functions

 changeset(chunk, attrs)

Arcana.Document

Schema for documents stored in Arcana.
Documents contain the original content and metadata,
with associated chunks for vector search.

 Summary

 Functions

 changeset(document, attrs)

 Functions

 changeset(document, attrs)

Arcana.Chunker behaviour

Behaviour for text chunking providers used by Arcana.
Arcana accepts any module that implements this behaviour.
Built-in implementations are provided for:
	Arcana.Chunker.Default - Default chunking using text_chunker library

Configuration
Configure your chunking provider in config.exs:
Default: text_chunker-based chunking
config :arcana, chunker: :default

Default chunker with custom options
config :arcana, chunker: {:default, chunk_size: 512, chunk_overlap: 100}

Custom function
config :arcana, chunker: fn text, opts -> [%{text: text, chunk_index: 0, token_count: 10}] end

Custom module implementing this behaviour
config :arcana, chunker: MyApp.SemanticChunker
config :arcana, chunker: {MyApp.SemanticChunker, model: "..."}
Implementing a Custom Chunker
Create a module that implements this behaviour:
defmodule MyApp.SemanticChunker do
 @behaviour Arcana.Chunker

 @impl true
 def chunk(text, opts) do
 # Custom chunking logic...
 # Return list of chunk maps
 [
 %{text: "chunk 1", chunk_index: 0, token_count: 50},
 %{text: "chunk 2", chunk_index: 1, token_count: 45}
]
 end
end
Then configure:
config :arcana, chunker: {MyApp.SemanticChunker, model: "..."}
Chunk Format
Each chunk returned must be a map with at minimum:
	:text - The chunk text content (required)
	:chunk_index - Zero-based index of this chunk (required)
	:token_count - Estimated token count (required)

Additional keys may be included and will be passed through to storage.

 Summary

 Callbacks

 chunk(text, opts)

 Splits text into chunks.

 Functions

 chunk(arg, text)

 Chunks text using the configured chunker.

 chunk(arg, text, extra_opts)

 Chunks text using the configured chunker, merging additional options.

 Callbacks

 chunk(text, opts)

 @callback chunk(text :: String.t(), opts :: keyword()) :: [map()]

Splits text into chunks.
Returns a list of chunk maps, each containing at minimum :text,
:chunk_index, and :token_count.
Options
Options are implementation-specific. Common options include:
	:chunk_size - Maximum chunk size
	:chunk_overlap - Overlap between chunks
	:format - Text format hint (:plaintext, :markdown, etc.)

 Functions

 chunk(arg, text)

Chunks text using the configured chunker.
The chunker is a {module, opts} tuple where module implements
this behaviour.

 chunk(arg, text, extra_opts)

Chunks text using the configured chunker, merging additional options.
Useful when you need to override chunker defaults at call time.

Arcana.Rewriters

Built-in query rewriter helpers for common rewriting strategies.
Each helper can be used in two ways:
	Direct call with a query:
 {:ok, rewritten} = Rewriters.expand("ML models", llm: my_llm_fn)

	As a rewriter function for Arcana.search/2:
 rewriter = Rewriters.expand(llm: my_llm_fn)
 {:ok, results} = Arcana.search("ML models", repo: Repo, rewriter: rewriter)

The :llm option accepts any type implementing the Arcana.LLM protocol,
including anonymous functions and LangChain chat models.
All helpers accept a :prompt option to customize the prompt template.
Use {query} as a placeholder for the original query.

 Summary

 Functions

 decompose(opts)

 decompose(query, opts)

 Decomposes a complex question into simpler sub-queries.

 expand(opts)

 expand(query, opts)

 Expands a query with synonyms and related terms.

 keywords(opts)

 keywords(query, opts)

 Extracts key search terms from a query.

 Functions

 decompose(opts)

 decompose(query, opts)

Decomposes a complex question into simpler sub-queries.
Options
	:llm - LLM function fn(prompt) -> {:ok, result} | {:error, reason} (required)

	:prompt - Custom prompt template with {query} placeholder

Examples
{:ok, sub_queries} = Rewriters.decompose("Complex multi-part question?", llm: my_llm)

 expand(opts)

 expand(query, opts)

Expands a query with synonyms and related terms.
Options
	:llm - LLM function fn(prompt) -> {:ok, result} | {:error, reason} (required)

	:prompt - Custom prompt template with {query} placeholder

Examples
Direct use
{:ok, expanded} = Rewriters.expand("ML", llm: my_llm)

As rewriter function
rewriter = Rewriters.expand(llm: my_llm)
{:ok, results} = Arcana.search("ML", repo: Repo, rewriter: rewriter)

 keywords(opts)

 keywords(query, opts)

Extracts key search terms from a query.
Options
	:llm - LLM function fn(prompt) -> {:ok, result} | {:error, reason} (required)

	:prompt - Custom prompt template with {query} placeholder

Examples
{:ok, keywords} = Rewriters.keywords("What are the best practices?", llm: my_llm)

Arcana.Embeddings.Serving

Nx.Serving for text embeddings using Bumblebee.
Uses BAAI/bge-small-en-v1.5 which produces 384-dimensional embeddings by default.

 Summary

 Functions

 child_spec(opts)

 Returns the child spec for starting the embedding serving.
Add this to your application's supervision tree.

 embed(text)

 Embeds a single text and returns a list of floats (384 dimensions).

 embed_batch(texts)

 Embeds multiple texts and returns a list of embeddings.

 start_link(opts \\ [])

 Functions

 child_spec(opts)

Returns the child spec for starting the embedding serving.
Add this to your application's supervision tree.

 embed(text)

Embeds a single text and returns a list of floats (384 dimensions).

 embed_batch(texts)

Embeds multiple texts and returns a list of embeddings.

 start_link(opts \\ [])

ArcanaWeb.DashboardLive

Redirects to the Documents page.
This module previously contained the monolithic dashboard with tab switching.
It has been replaced by separate LiveView pages for each tab:
	/documents - ArcanaWeb.DocumentsLive
	/collections - ArcanaWeb.CollectionsLive
	/search - ArcanaWeb.SearchLive
	/ask - ArcanaWeb.AskLive
	/evaluation - ArcanaWeb.EvaluationLive
	/maintenance - ArcanaWeb.MaintenanceLive
	/info - ArcanaWeb.InfoLive

mix arcana.eval.generate

Generates synthetic test cases from existing chunks.
Usage
mix arcana.eval.generate --sample-size 50
mix arcana.eval.generate --source-id my-docs --sample-size 100
mix arcana.eval.generate --collection my-collection
Options
	--sample-size - Number of chunks to sample (default: 50)
	--source-id - Limit to chunks from specific source
	--collection - Limit to chunks from specific collection

Configuration
Requires :repo and :llm to be configured in your application:
config :arcana,
 repo: MyApp.Repo,
 llm: my_llm_function

mix arcana.eval.run

Runs evaluation and prints metrics.
Usage
mix arcana.eval.run
mix arcana.eval.run --mode hybrid
mix arcana.eval.run --generate --sample-size 50
mix arcana.eval.run --format json > results.json
Options
	--mode - Search mode: semantic, fulltext, hybrid (default: semantic)
	--source-id - Limit to specific source
	--generate - Generate test cases first if none exist
	--sample-size - Sample size for generation (default: 50)
	--format - Output format: table, json (default: table)
	--fail-under - Exit 1 if recall@5 below threshold (for CI)

Configuration
Requires :repo to be configured in your application:
config :arcana, repo: MyApp.Repo
If using --generate, also requires :llm to be configured.

mix arcana.gen.embedding_migration

Generates a migration to update vector column dimensions.
Use this when switching to an embedding model with different dimensions.
$ mix arcana.gen.embedding_migration

The task will:
	Detect the current embedding configuration dimensions
	Show the detected dimensions
	Generate a migration to update the vector column

Options
	--dimensions - Override auto-detected dimensions

mix arcana.graph.detect_communities

Detects communities in the knowledge graph using the Leiden algorithm.
Use this after building or rebuilding the knowledge graph to generate
community clusters for global queries.
$ mix arcana.graph.detect_communities

Options
	--collection - Only detect communities for the specified collection
	--resolution - Community detection resolution (default: 1.0, higher = smaller communities)
	--objective - Quality function: cpm (default), modularity, rber, rbc, significance, surprise
	--iterations - Number of optimization iterations (default: 2)
	--seed - Random seed for reproducibility (default: 0 = random)
	--min-size - Minimum community size to include (default: 1, set to 2+ to exclude singletons)
	--max-level - Maximum hierarchy levels to generate (default: 1)
	--quiet - Suppress progress output

Examples
Default usage
mix arcana.graph.detect_communities

Detect communities for a specific collection
mix arcana.graph.detect_communities --collection my-docs

With custom resolution (higher = more, smaller communities)
mix arcana.graph.detect_communities --resolution 1.5

Using modularity optimization
mix arcana.graph.detect_communities --objective modularity

Exclude small communities (less than 5 members)
mix arcana.graph.detect_communities --min-size 5

Generate hierarchical communities (3 levels)
mix arcana.graph.detect_communities --max-level 3

Quiet mode (no progress output)
mix arcana.graph.detect_communities --quiet
Requirements
This task requires the leidenfold package. Add it to your dependencies:
{:leidenfold, "~> 0.2"}

mix arcana.graph.install

Generates the migration for GraphRAG tables.
$ mix arcana.graph.install

This will create a migration for:
	arcana_graph_entities - Named entities extracted from documents
	arcana_graph_entity_mentions - Links entities to chunks where they appear
	arcana_graph_relationships - Edges between entities
	arcana_graph_communities - Community clusters with summaries

GraphRAG is optional. Only run this if you want to use knowledge graph
features for enhanced retrieval.
Options
	--repo - The repo to use (defaults to YourApp.Repo)

Configuration
After running the migration, enable GraphRAG in your config:
config :arcana,
 graph: [
 enabled: true,
 community_levels: 5,
 resolution: 1.0
]
Or enable per-call:
Arcana.ingest(text, repo: MyApp.Repo, graph: true)

mix arcana.graph.rebuild

Rebuilds the knowledge graph for all documents.
Use this after changing graph extractor configuration or enabling
relationship extraction.
$ mix arcana.graph.rebuild

Options
	--collection - Only rebuild graph for the specified collection
	--quiet - Suppress progress output
	--resume - Skip chunks that already have entity mentions (for resuming interrupted builds)
	--concurrency N - Number of parallel LLM requests (default: 3)

Examples
Default usage (all collections)
mix arcana.graph.rebuild

Rebuild only a specific collection
mix arcana.graph.rebuild --collection my-docs

Resume an interrupted build
mix arcana.graph.rebuild --resume

Control parallelism (default is 3)
mix arcana.graph.rebuild --concurrency 5

Quiet mode (no progress bar)
mix arcana.graph.rebuild --quiet

mix arcana.graph.summarize_communities

Generates LLM summaries for knowledge graph communities.
Use this after detecting communities to generate natural language
summaries that provide high-level context for global queries.
$ mix arcana.graph.summarize_communities

Options
	--collection - Only summarize communities for the specified collection
	--force - Regenerate all summaries, not just dirty ones
	--concurrency - Number of parallel summarization tasks (default: 1)
	--quiet - Suppress progress output

Examples
Default usage (summarize dirty communities)
mix arcana.graph.summarize_communities

Summarize a specific collection
mix arcana.graph.summarize_communities --collection my-docs

Force regenerate all summaries
mix arcana.graph.summarize_communities --force

Parallel summarization (4 concurrent tasks)
mix arcana.graph.summarize_communities --concurrency 4

Quiet mode
mix arcana.graph.summarize_communities --quiet
Requirements
This task requires an LLM to be configured:
config :arcana, :llm, {"openai:gpt-4o-mini", api_key: "..."}

mix arcana.install

Installs Arcana in your Phoenix application.
$ mix arcana.install

This will:
	Generate the migration for arcana_documents and arcana_chunks tables
	Add the dashboard route to your Phoenix router
	Create the Postgrex types module for pgvector
	Configure your repo to use the types module

Options
	--no-dashboard - Skip adding the dashboard route
	--repo - The repo to use (defaults to YourApp.Repo)

mix arcana.reembed_chunks

Re-embeds all chunks with the current embedding configuration.
Use this after switching embedding models or updating to a new version.
$ mix arcana.reembed_chunks

Options
	--collection - Only re-embed chunks in the specified collection
	--batch-size - Number of chunks to process at once (default: 50)
	--concurrency N - Number of parallel embedding requests (default: 5)
	--skip N - Skip first N chunks (for resuming interrupted runs)
	--quiet - Suppress progress output

Examples
Default usage (all collections)
mix arcana.reembed_chunks

Re-embed only a specific collection
mix arcana.reembed_chunks --collection my-docs

With larger batch size and higher concurrency
mix arcana.reembed_chunks --batch-size 100 --concurrency 10

Resume from chunk 500
mix arcana.reembed_chunks --skip 500

Quiet mode (no progress bar)
mix arcana.reembed_chunks --quiet

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

