

 ash

 v3.0.0-rc.6

 [image: Logo]

 Table of contents

 	Change Log

 	Tutorials

 	Get Started

 	Why Ash?

 	Philosophy

 	Using Hexdocs

 	Extending Resources

 	How To

 	Contribute to Ash

 	Define Idiomatic Actions

 	Define Manual Relationships

 	Handle Errors

 	Structure your project

 	Upgrade

 	Use Without Data Layers

 	Validate Changes

 	Auto-Format Ash code

 	Topics

 	Actions

 	Aggregates

 	Atomics

 	Attributes

 	Bulk Actions

 	Calculations

 	Code Interface

 	Constraints

 	Development Utilities

 	Embedded Resources

 	Expressions

 	Glossary

 	Identities

 	Managing Relationships

 	Manual Actions

 	Instrumentation

 	Multitenancy

 	Notifiers

 	Pagination

 	Phoenix

 	Policies

 	PubSub

 	Reactor

 	Relationships

 	Security

 	Store Context In Process

 	Testing

 	Timeouts

 	Validations

 	DSLs

 	DSL: Ash.Resource.Dsl

 	DSL: Ash.Domain.Dsl

 	DSL: Ash.Notifier.PubSub

 	DSL: Ash.Policy.Authorizer

 	DSL: Ash.DataLayer.Ets

 	DSL: Ash.DataLayer.Mnesia

 	DSL: Ash.Reactor

 	DSL: Ash.DataLayer.Mnesia

 	Modules

 	Ash.CodeInterface

 	Ash.DataLayer

 	Ash.Notifier

 	Ash.Notifier.Notification

 	Ash.Resource.Attribute.Helpers

 	Ash.Resource.Calculation

 	Ash.Resource.Calculation.Builtins

 	Ash.Resource.ManualCreate

 	Ash.Resource.ManualDestroy

 	Ash.Resource.ManualRead

 	Ash.Resource.ManualRelationship

 	Ash.Resource.ManualUpdate

 	Ash

 	Ash.ActionInput

 	Ash.BulkResult

 	Ash.Changeset

 	Ash.Domain

 	Ash.Query

 	Ash.Query.Aggregate

 	Ash.Query.Calculation

 	Ash.Resource.Preparation

 	Ash.Resource.Preparation.Builtins

 	Ash.Resource.Change

 	Ash.Resource.Validation

 	Ash.Resource.Change.Builtins

 	Ash.Resource.Validation.Builtins

 	Ash.Authorizer

 	Ash.Policy.Check

 	Ash.Policy.FilterCheck

 	Ash.Policy.SimpleCheck

 	Ash.Policy.Check.Builtins

 	Ash.DataLayer.Ets

 	Ash.DataLayer.Mnesia

 	Ash.DataLayer.Simple

 	Ash.Notifier.PubSub

 	Ash.Policy.Authorizer

 	Ash.Reactor

 	Ash.Resource

 	Ash.DataLayer.Ets.Info

 	Ash.DataLayer.Mnesia.Info

 	Ash.Domain.Dsl.ResourceReference

 	Ash.Domain.Info

 	Ash.Notifier.PubSub.Info

 	Ash.Notifier.PubSub.Publication

 	Ash.Policy.FieldPolicy

 	Ash.Policy.Info

 	Ash.Policy.Policy

 	Ash.Resource.Actions

 	Ash.Resource.Actions.Action

 	Ash.Resource.Actions.Argument

 	Ash.Resource.Actions.Create

 	Ash.Resource.Actions.Destroy

 	Ash.Resource.Actions.Implementation

 	Ash.Resource.Actions.Implementation.Context

 	Ash.Resource.Actions.Metadata

 	Ash.Resource.Actions.Read

 	Ash.Resource.Actions.Read.Pagination

 	Ash.Resource.Actions.Update

 	Ash.Resource.Aggregate

 	Ash.Resource.Aggregate.CustomAggregate

 	Ash.Resource.Aggregate.JoinFilter

 	Ash.Resource.Attribute

 	Ash.Resource.Calculation.Argument

 	Ash.Resource.Calculation.Context

 	Ash.Resource.Calculation.LoadAttribute

 	Ash.Resource.Calculation.LoadRelationship

 	Ash.Resource.CalculationInterface

 	Ash.Resource.Identity

 	Ash.Resource.Info

 	Ash.Resource.Interface

 	Ash.Resource.Relationships

 	Ash.Resource.Relationships.BelongsTo

 	Ash.Resource.Relationships.HasMany

 	Ash.Resource.Relationships.HasOne

 	Ash.Resource.Relationships.ManyToMany

 	Ash.Changeset.ManagedRelationshipHelpers

 	Ash.CiString

 	Ash.Expr

 	Ash.Filter

 	Ash.Filter.Runtime

 	Ash.Filter.Simple

 	Ash.Filter.Simple.Not

 	Ash.ForbiddenField

 	Ash.Mix.Tasks.Helpers

 	Ash.NotLoaded

 	Ash.OptionsHelpers

 	Ash.Page

 	Ash.Page.Keyset

 	Ash.Page.Offset

 	Ash.PlugHelpers

 	Ash.ProcessHelpers

 	Ash.Resource.Builder

 	Ash.SatSolver

 	Ash.Sort

 	Ash.UUID

 	Ash.Union

 	Ash.Vector

 	Ash.Domain.Info.Diagram

 	Ash.Domain.Info.Livebook

 	Ash.Policy.Chart.Mermaid

 	Ash.Generator

 	Ash.Seed

 	Ash.Test

 	Ash.Tracer

 	Ash.Tracer.Simple

 	Ash.Tracer.Simple.Span

 	Ash.Type

 	Ash.Type.Atom

 	Ash.Type.Binary

 	Ash.Type.Boolean

 	Ash.Type.CiString

 	Ash.Type.Comparable

 	Ash.Type.Date

 	Ash.Type.DateTime

 	Ash.Type.Decimal

 	Ash.Type.DurationName

 	Ash.Type.Enum

 	Ash.Type.Float

 	Ash.Type.Function

 	Ash.Type.Integer

 	Ash.Type.Keyword

 	Ash.Type.Map

 	Ash.Type.Module

 	Ash.Type.NaiveDatetime

 	Ash.Type.NewType

 	Ash.Type.String

 	Ash.Type.Struct

 	Ash.Type.Term

 	Ash.Type.Time

 	Ash.Type.UUID

 	Ash.Type.Union

 	Ash.Type.UrlEncodedBinary

 	Ash.Type.UtcDatetime

 	Ash.Type.UtcDatetimeUsec

 	Ash.Type.Vector

 	Ash.Error

 	Ash.Error.Action.InvalidArgument

 	Ash.Error.Changes.InvalidArgument

 	Ash.Error.Changes.InvalidAttribute

 	Ash.Error.Changes.InvalidChanges

 	Ash.Error.Changes.InvalidRelationship

 	Ash.Error.Changes.NoSuchAttribute

 	Ash.Error.Changes.NoSuchRelationship

 	Ash.Error.Changes.Required

 	Ash.Error.Changes.StaleRecord

 	Ash.Error.Exception

 	Ash.Error.Forbidden

 	Ash.Error.Forbidden.CannotFilterCreates

 	Ash.Error.Forbidden.DomainRequiresActor

 	Ash.Error.Forbidden.DomainRequiresAuthorization

 	Ash.Error.Forbidden.ForbiddenField

 	Ash.Error.Forbidden.InitialDataRequired

 	Ash.Error.Forbidden.MustPassStrictCheck

 	Ash.Error.Forbidden.Placeholder

 	Ash.Error.Forbidden.Policy

 	Ash.Error.Framework

 	Ash.Error.Framework.AssumptionFailed

 	Ash.Error.Framework.FlagAssertionFailed

 	Ash.Error.Framework.InvalidReturnType

 	Ash.Error.Framework.MustBeAtomic

 	Ash.Error.Framework.SynchronousEngineStuck

 	Ash.Error.Invalid

 	Ash.Error.Invalid.ActionRequiresPagination

 	Ash.Error.Invalid.AtomicsNotSupported

 	Ash.Error.Invalid.InvalidPrimaryKey

 	Ash.Error.Invalid.LimitRequired

 	Ash.Error.Invalid.MultipleResults

 	Ash.Error.Invalid.NoIdentityFound

 	Ash.Error.Invalid.NoMatchingBulkStrategy

 	Ash.Error.Invalid.NoPrimaryAction

 	Ash.Error.Invalid.NoSuchAction

 	Ash.Error.Invalid.NoSuchInput

 	Ash.Error.Invalid.NoSuchResource

 	Ash.Error.Invalid.NonStreamableAction

 	Ash.Error.Invalid.PaginationRequired

 	Ash.Error.Invalid.ResourceNotAllowed

 	Ash.Error.Invalid.TenantRequired

 	Ash.Error.Invalid.Timeout

 	Ash.Error.Invalid.TimeoutNotSupported

 	Ash.Error.Invalid.Unavailable

 	Ash.Error.Load.InvalidQuery

 	Ash.Error.Load.NoSuchRelationship

 	Ash.Error.Page.InvalidKeyset

 	Ash.Error.Query.AggregatesNotSupported

 	Ash.Error.Query.CalculationsNotSupported

 	Ash.Error.Query.InvalidArgument

 	Ash.Error.Query.InvalidCalculationArgument

 	Ash.Error.Query.InvalidExpression

 	Ash.Error.Query.InvalidFilterReference

 	Ash.Error.Query.InvalidFilterValue

 	Ash.Error.Query.InvalidLimit

 	Ash.Error.Query.InvalidLoad

 	Ash.Error.Query.InvalidOffset

 	Ash.Error.Query.InvalidQuery

 	Ash.Error.Query.InvalidSortOrder

 	Ash.Error.Query.LockNotSupported

 	Ash.Error.Query.NoComplexSortsWithKeysetPagination

 	Ash.Error.Query.NoReadAction

 	Ash.Error.Query.NoSuchAttribute

 	Ash.Error.Query.NoSuchField

 	Ash.Error.Query.NoSuchFilterPredicate

 	Ash.Error.Query.NoSuchFunction

 	Ash.Error.Query.NoSuchOperator

 	Ash.Error.Query.NoSuchRelationship

 	Ash.Error.Query.NotFound

 	Ash.Error.Query.ReadActionRequired

 	Ash.Error.Query.ReadActionRequiresActor

 	Ash.Error.Query.Required

 	Ash.Error.Query.UnsortableField

 	Ash.Error.Query.UnsupportedPredicate

 	Ash.Error.SimpleDataLayer.NoDataProvided

 	Ash.Error.Stacktrace

 	Ash.Error.Unknown

 	Ash.Error.Unknown.UnknownError

 	Ash.DataLayer.Verifiers.RequirePreCheckWith

 	Ash.Domain.Verifiers.EnsureNoEmbeds

 	Ash.Domain.Verifiers.ValidateRelatedResourceInclusion

 	Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies

 	Ash.Policy.Authorizer.Transformers.CacheFieldPolicies

 	Ash.Resource.Transformers.AttributesByName

 	Ash.Resource.Transformers.BelongsToAttribute

 	Ash.Resource.Transformers.CacheActionInputs

 	Ash.Resource.Transformers.CachePrimaryKey

 	Ash.Resource.Transformers.CacheRelationships

 	Ash.Resource.Transformers.CacheUniqueKeys

 	Ash.Resource.Transformers.CreateJoinRelationship

 	Ash.Resource.Transformers.DefaultAccept

 	Ash.Resource.Transformers.DefaultPrimaryKey

 	Ash.Resource.Transformers.GetByReadActions

 	Ash.Resource.Transformers.HasDestinationField

 	Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource

 	Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource

 	Ash.Resource.Transformers.RequireUniqueActionNames

 	Ash.Resource.Transformers.RequireUniqueFieldNames

 	Ash.Resource.Transformers.SetRelationshipSource

 	Ash.Resource.Transformers.ValidatePrimaryActions

 	Ash.Resource.Transformers.ValidationsAndChangesForType

 	Ash.Resource.Verifiers.CountableActions

 	Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation

 	Ash.Resource.Verifiers.NoReservedFieldNames

 	Ash.Resource.Verifiers.ValidateAccept

 	Ash.Resource.Verifiers.ValidateActionTypesSupported

 	Ash.Resource.Verifiers.ValidateAggregatesSupported

 	Ash.Resource.Verifiers.ValidateEagerIdentities

 	Ash.Resource.Verifiers.ValidateManagedRelationshipOpts

 	Ash.Resource.Verifiers.ValidateMultitenancy

 	Ash.Resource.Verifiers.ValidatePrimaryKey

 	Ash.Resource.Verifiers.ValidateRelationshipAttributes

 	Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch

 	Ash.Resource.Verifiers.VerifyActionsAtomic

 	Ash.Resource.Verifiers.VerifyIdentityFields

 	Ash.Resource.Verifiers.VerifyPrimaryKeyPresent

 	Ash.Resource.Verifiers.VerifyReservedCalculationArguments

 	Ash.Filter.Predicate

 	Ash.Query.BooleanExpression

 	Ash.Query.Call

 	Ash.Query.Exists

 	Ash.Query.Function

 	Ash.Query.Not

 	Ash.Query.Operator

 	Ash.Query.Parent

 	Ash.Query.Ref

 	Ash.Query.Function.Ago

 	Ash.Query.Function.At

 	Ash.Query.Function.CompositeType

 	Ash.Query.Function.Contains

 	Ash.Query.Function.CountNils

 	Ash.Query.Function.DateAdd

 	Ash.Query.Function.DateTimeAdd

 	Ash.Query.Function.Error

 	Ash.Query.Function.Fragment

 	Ash.Query.Function.FromNow

 	Ash.Query.Function.GetPath

 	Ash.Query.Function.If

 	Ash.Query.Function.IsNil

 	Ash.Query.Function.Lazy

 	Ash.Query.Function.Length

 	Ash.Query.Function.Minus

 	Ash.Query.Function.Now

 	Ash.Query.Function.Round

 	Ash.Query.Function.StringDowncase

 	Ash.Query.Function.StringJoin

 	Ash.Query.Function.StringLength

 	Ash.Query.Function.StringSplit

 	Ash.Query.Function.StringTrim

 	Ash.Query.Function.Today

 	Ash.Query.Function.Type

 	Ash.Query.Operator.Basic

 	Ash.Query.Operator.Eq

 	Ash.Query.Operator.GreaterThan

 	Ash.Query.Operator.GreaterThanOrEqual

 	Ash.Query.Operator.In

 	Ash.Query.Operator.IsNil

 	Ash.Query.Operator.LessThan

 	Ash.Query.Operator.LessThanOrEqual

 	Ash.Query.Operator.NotEq

 	Ash.Policy.Check.AccessingFrom

 	Ash.Policy.Check.Action

 	Ash.Policy.Check.ActionType

 	Ash.Policy.Check.ActorAttributeEquals

 	Ash.Policy.Check.ActorPresent

 	Ash.Policy.Check.ChangingAttributes

 	Ash.Policy.Check.ChangingRelationships

 	Ash.Policy.Check.ContextEquals

 	Ash.Policy.Check.Expression

 	Ash.Policy.Check.FilteringOn

 	Ash.Policy.Check.Loading

 	Ash.Policy.Check.Matches

 	Ash.Policy.Check.RelatesToActorVia

 	Ash.Policy.Check.RelatingToActor

 	Ash.Policy.Check.Resource

 	Ash.Policy.Check.Selecting

 	Ash.Policy.Check.Static

 	Ash.Resource.Change.Context

 	Ash.Resource.Change.GetAndLock

 	Ash.Resource.Change.GetAndLockForUpdate

 	Ash.Resource.Change.Increment

 	Ash.Resource.Change.OptimisticLock

 	Ash.Resource.Validation.ActionIs

 	Ash.Resource.Validation.Context

 	Ash.Actions.Read.AsyncLimiter

 	Ash.Changeset.OriginalDataNotAvailable

 	Ash.Context

 	Ash.CustomExpression

 	Ash.Reactor.ActionStep

 	Ash.Reactor.CreateStep

 	Ash.Reactor.DestroyStep

 	Ash.Reactor.Dsl.Action

 	Ash.Reactor.Dsl.ActionTransformer

 	Ash.Reactor.Dsl.Actor

 	Ash.Reactor.Dsl.Create

 	Ash.Reactor.Dsl.Destroy

 	Ash.Reactor.Dsl.Inputs

 	Ash.Reactor.Dsl.MiddlewareTransformer

 	Ash.Reactor.Dsl.Read

 	Ash.Reactor.Dsl.ReadOne

 	Ash.Reactor.Dsl.Tenant

 	Ash.Reactor.Dsl.Transaction

 	Ash.Reactor.Dsl.Update

 	Ash.Reactor.MergeInputsStep

 	Ash.Reactor.Notifications

 	Ash.Reactor.ReadOneStep

 	Ash.Reactor.ReadStep

 	Ash.Reactor.Tracer

 	Ash.Reactor.TransactionStep

 	Ash.Reactor.UpdateStep

 	Ash.Resource.Dsl.Filter

 	Ash.Resource.ManualCreate.Context

 	Ash.Resource.ManualDestroy.Context

 	Ash.Resource.ManualRelationship.Context

 	Ash.Resource.ManualUpdate.Context

 	Ash.Resource.Preparation.Context

 	Ash.ToTenant

 	Comparable.Type.Ash.CiString.To.Ash.CiString

 	Comparable.Type.Ash.CiString.To.BitString

 	Comparable.Type.BitString.To.Ash.CiString

 	Comparable.Type.BitString.To.Decimal

 	Comparable.Type.Decimal.To.BitString

 	Comparable.Type.Decimal.To.Decimal

 	Comparable.Type.Decimal.To.Float

 	Comparable.Type.Decimal.To.Integer

 	Comparable.Type.Float.To.Decimal

 	Comparable.Type.Integer.To.Decimal

 	Mix Tasks

 	mix ash.codegen

 	mix ash.generate_livebook

 	mix ash.generate_policy_charts

 	mix ash.generate_resource_diagrams

 	mix ash.migrate

 	mix ash.reset

 	mix ash.setup

 	mix ash.tear_down

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v3.0.0-rc.6 (2024-04-01)

 Breaking Changes:

	3.0 (#955)

	use %Ash.NotSelected{} for unselected values

	default require_atomic? to true

	raise errors on unknown generic action arguments

	default bulk strategy to :atomic

	warnings on require_atomic? true actions

	revise Ash.NotSelected to Ash.NotLoaded

	errors on unknown action inputs across the board

	default api.authorization.authorize to :by_default

	require the api when constructing changesets

	code_interface.define_for -> code_interface.api

	remove registries

	pubsub notifier default to previous_values?: false

	requires_original_data? callback defaults to false

	rename Ash.Calculation -> Ash.Resource.Calculation

	improve Ash.Query.Calculation.new signature

	anonymous function calculations now take lists and return lists

	make callback contexts into structs

	pass context to builtin lifecycle hook changes

	calculation arguments are now in the arguments key of the context

	remove aggregates and calculations from Filter.parse and Filter.parse_input

	make picosat_elixir optional with simple_sat

	rename api to domain

	remove Ash.Changeset.new!

	deprecate private?: false in favor of public?: true

	default default_accept is now []

	Ash.CiString.new/1 returns nil on nil input

	clean up and reorganize Ash functions

	remove context-based functionality

	Deprecate calling functions on (domain) api in favor of Ash

	add attribute_public? and update attribute_writable? behavior

	update atomic behaviors, default to invalid

	changeset.filters -> changeset.filter

	remove deprecated functions

	remove and simplify Ash.Filter.TemplateHelpers

	keyword lists are no longer special cased in ash expressions

	introduce strict mode to calculations

	reverse order of before action & before transaction hooks

	default read actions are now paginatable

	require explicit accept lists in default actions

	remove Ash.Flow and Ash.Engine

	standardize various exception keys and names

	use Splode for errors

	move simple_notifiers to an option instead of a DSL builder

	update spark for better autocomplete, configure autocomplete for key functions

	swap position of sort order and arguments in calculation sorting

	add include_nil? aggregate option, and default it to false

	errors on unknown inputs for calculations

 Features:

	code interface on the domain

 Bug Fixes:

	ending a policy w/ authorize_if had flipped conditional

	handle sensitive? option in query aggregate/calculation (#963)

	properly retain input order for embedded attributes

	fix changing_attributes check implementation

	properly handle transaction errors from bulk creates

	set tenant on query so that root calles to Api.aggreagte work as expected (#929)

	properly construct new query in build/3

	make bang variant of field aggregates work correctly (#954)

	enforce multitenancy on aggregates (#952)

	fix missing tenant in some bulk contexts (#951)

	Fix places where tenant is not passed along (#950)

 Improvements:

	allow adding non-public attributes to explicit accept lists

	better error messages for private attribute accepting

	use resource api when verifying its presence in a known api

	change type argument position in Ash.Query.calculate (#959)

	allow simple check to return error tuple (#956)

	skip unknown inputs when managing relationships

	ignore unknown string-keyed inputs beginning with _

	support requesting to ignore additional keys

	add skip_unknown_inputs option, use it for embeds in unions

	ensure that update defaults are set

	update spark to 2.0

	update reactor to 3.0

	import Ash.Expr in modules where it is used

	require Ash.QUery in modules where it makes sense

	add structs for more context implementations

	ensure selects are applied on destroys

	support custom expressions

	update upgrade guide to include Splode

	only require primary key if resource has actions or fields

	only build schema if resource has actions or fields

	verify primary key in its own verifier

	add resource/1 builtin check

	better code interface documentation

	support notifiers within actions

	support specifying multiple filters

	add sortable? flags to all fields

	support multiple filters on relationships

	support sensitive? on calculations and arguments

	validate resources in inputs to code interface

	update reactor and tests

	don't require domain on relationships if destination has domain

	always choose to cast atomic

	support casting some embeds atomically

	various 3.0 updates, documented in upgrade.md

	ensure non-static dynamic domains works

	add Ash.ToTenant protocol

	use Keyword.put_new in Ash.Context.to_opts (#953)

	support bulk and atomic operations in code interfaces

 v3.0.0-rc.5 (2024-03-30)

 Bug Fixes:

	properly retain input order for embedded attributes

 Improvements:

	better error messages for private attribute accepting

	use resource api when verifying its presence in a known api

 v3.0.0-rc.4 (2024-03-29)

 Bug Fixes:

	fix changing_attributes check implementation

 Improvements:

	change type argument position in Ash.Query.calculate (#959)

	allow simple check to return error tuple (#956)

 v3.0.0-rc.3 (2024-03-28)

 Improvements:

	skip unknown inputs when managing relationships

 v3.0.0-rc.2 (2024-03-28)

 Improvements:

	ignore unknown string-keyed inputs beginning with _

	support requesting to ignore additional keys

	add skip_unknown_inputs option, use it for embeds in unions

 v3.0.0-rc.1 (2024-03-28)

 Breaking Changes:

	3.0 (#955)

	use %Ash.NotSelected{} for unselected values

	default require_atomic? to true

	raise errors on unknown generic action arguments

	default bulk strategy to :atomic

	warnings on require_atomic? true actions

	revise Ash.NotSelected to Ash.NotLoaded

	errors on unknown action inputs across the board

	default api.authorization.authorize to :by_default

	require the api when constructing changesets

	code_interface.define_for -> code_interface.api

	remove registries

	pubsub notifier default to previous_values?: false

	requires_original_data? callback defaults to false

	rename Ash.Calculation -> Ash.Resource.Calculation

	improve Ash.Query.Calculation.new signature

	anonymous function calculations now take lists and return lists

	make callback contexts into structs

	pass context to builtin lifecycle hook changes

	calculation arguments are now in the arguments key of the context

	remove aggregates and calculations from Filter.parse and Filter.parse_input

	make picosat_elixir optional with simple_sat

	rename api to domain

	remove Ash.Changeset.new!

	deprecate private?: false in favor of public?: true

	default default_accept is now []

	Ash.CiString.new/1 returns nil on nil input

	clean up and reorganize Ash functions

	remove context-based functionality

	Deprecate calling functions on (domain) api in favor of Ash

	add attribute_public? and update attribute_writable? behavior

	update atomic behaviors, default to invalid

	changeset.filters -> changeset.filter

	remove deprecated functions

	remove and simplify Ash.Filter.TemplateHelpers

	keyword lists are no longer special cased in ash expressions

	introduce strict mode to calculations

	reverse order of before action & before transaction hooks

	default read actions are now paginatable

	require explicit accept lists in default actions

	remove Ash.Flow and Ash.Engine

	standardize various exception keys and names

	use Splode for errors

	move simple_notifiers to an option instead of a DSL builder

	update spark for better autocomplete, configure autocomplete for key functions

	swap position of sort order and arguments in calculation sorting

	add include_nil? aggregate option, and default it to false

	errors on unknown inputs for calculations

 Features:

	code interface on the domain

 Bug Fixes:

	properly handle transaction errors from bulk creates

	set tenant on query so that root calles to Api.aggreagte work as expected (#929)

	properly construct new query in build/3

	make bang variant of field aggregates work correctly (#954)

	enforce multitenancy on aggregates (#952)

	fix missing tenant in some bulk contexts (#951)

	Fix places where tenant is not passed along (#950)

 Improvements:

	ensure that update defaults are set

	update spark to 2.0

	update reactor to 3.0

	import Ash.Expr in modules where it is used

	require Ash.QUery in modules where it makes sense

	add structs for more context implementations

	ensure selects are applied on destroys

	support custom expressions

	update upgrade guide to include Splode

	only require primary key if resource has actions or fields

	only build schema if resource has actions or fields

	verify primary key in its own verifier

	add resource/1 builtin check

	better code interface documentation

	support notifiers within actions

	support specifying multiple filters

	add sortable? flags to all fields

	support multiple filters on relationships

	support sensitive? on calculations and arguments

	validate resources in inputs to code interface

	update reactor and tests

	don't require domain on relationships if destination has domain

	always choose to cast atomic

	support casting some embeds atomically

	various 3.0 updates, documented in upgrade.md

	ensure non-static dynamic domains works

	add Ash.ToTenant protocol

	use Keyword.put_new in Ash.Context.to_opts (#953)

	support bulk and atomic operations in code interfaces

 v3.0.0-rc.0 (2024-03-27)

 Breaking Changes:

	use %Ash.NotSelected{} for unselected values

	default require_atomic? to true

	raise errors on unknown generic action arguments

	default bulk strategy to :atomic

	warnings on require_atomic? true actions

	revise Ash.NotSelected to Ash.NotLoaded

	errors on unknown action inputs across the board

	default api.authorization.authorize to :by_default

	require the api when constructing changesets

	code_interface.define_for -> code_interface.api

	remove registries

	pubsub notifier default to previous_values?: false

	requires_original_data? callback defaults to false

	rename Ash.Calculation -> Ash.Resource.Calculation

	improve Ash.Query.Calculation.new signature

	anonymous function calculations now take lists and return lists

	make callback contexts into structs

	pass context to builtin lifecycle hook changes

	calculation arguments are now in the arguments key of the context

	remove aggregates and calculations from Filter.parse and Filter.parse_input

	make picosat_elixir optional with simple_sat

	rename api to domain

	remove Ash.Changeset.new!/2 (Ash.Changeset.new/1 is still present)

	deprecate private?: false in favor of public?: true

	default default_accept is now []

	Ash.CiString.new/1 returns nil on nil input

	clean up and reorganize Ash functions

	remove context-based functionality

	Deprecate calling functions on (domain) api in favor of Ash

	add attribute_public? and update attribute_writable? behavior

	changeset.filters was a map, it is now changeset.filter and is an expression

	remove Ash.Filter.TemplateHelpers, all functionality moved to Ash.Expr

	keyword lists are no longer special cased in ash expressions

	introduce strict mode to calculations

	reverse order of before action & before transaction hooks

	default read actions are now paginatable with keyset and offset pagination

	move Ash.Flow and Ash.Engine into a separate package

	standardize various exception keys and names

	use splode for errors

	move simple_notifiers to an option to use Ash.Resource instead of its own DSL

	update spark for better autocomplete, configure autocomplete for key functions

	swap position of sort order and arguments in calculation sorting

	add include_nil? aggregate option, and default it to false

 Features:

	code interface on the domain

	Policies on the domain

	add Ash.ToTenant protocol

	support for custom expressions

	support action-specific notifiers

	support specifying multiple filters in a read action and relationship

	support sensitive? on calculations and arguments

	support bulk and atomic operations in code interfaces

 Bug Fixes:

	set tenant on query so that root calles to Api.aggreagte work as expected (#929)

	properly construct new query in build/3

 Improvements:

	update spark to 2.0

	import Ash.Expr in modules where it is used

	use structs for more context implementations

	only require primary key and build schema if resource has actions or fields

	better generated code interface documentation

	add sortable? flags to all fields

	validate resources in inputs to code interface

	don't require domain on relationships if destination resource has domain

 v2.21.2 (2024-03-26)

 Bug Fixes:

	don't try to reselect fields when pkeys are missing

 v2.21.1 (2024-03-25)

 Improvements:

	detect loaded-through types

 v2.21.0 (2024-03-24)

 Features:

	add less_than, greater_than constraints to float, decimal (#936)

	allow providing descriptions to Ash.Type.Enum values (#940)

 Bug Fixes:

	convert %{__struct__: T} into %T{} (#947)

	corrections for reload/reload! (#942)

	show that Policy.Check.strict_check can return an error tuple (#945)

	remove unnecessary function

	fully expand calculation and aggregate references for applying authorization

	batch_change/3 is never called for updates (#938)

	bulk updates for streams ignore :batch_size

	don't double-encode vector data (#934)

	update set/get/update_context function specs to use maps (#935)

 Improvements:

	support load option for create/update/destroy (#946)

	restore old behavior of leveraging in memory values for calculations

	simplify inspect for aggregates

	add matches built-in policy check (#937)

 v2.20.3 (2024-03-20)

 Bug Fixes:

	ensure calculation context is set on aggregate contents

	set source_attribute from join_relationship in many_to_many (#932)

 v2.20.2 (2024-03-19)

 Bug Fixes:

	use proper logic for atomic present validations

	Set tenant correctly when reading many_to_many relationship. (#928)

	properly match no_rollback error

	load with right module in get_rewrites of Ash.Type.Struct (#927)

	ensure that calculation dependency loader combines selects

	properly handle raised errors from async calculations

	ensure depended on attributes are selected in calculations

	properly merge related selects when merging loads

 Improvements:

	cast atomic reference types, makes life easier for data layers

	use wrap_list for where in changes.change (#926)

	don't require Mix to compile an Ash resource

 v2.20.1 (2024-03-11)

 Bug Fixes:

	typespec for action policy check supports list of action names (#924)

	ensure that message is honored in atomic validations

	don't require actor when constructing aggregate query

 Improvements:

	store casted values even if they are nil

	Ash.Reactor: Backport improvements from 3.0 branch.

 v2.20.0 (2024-03-05)

 Features:

	Ash.Reactor: Add a Reactor extension that makes working with resources easy. (#683)

	Add Ash.Reactor with create support.

 Bug Fixes:

	correct atomic implementation of present validation

	track keys that are set to nil in changesets, for use in atomic upgrade

	properly cast atomic constraints for integer

	more fixes for atomic length validations

	fix atomic error for string length type validation

	Mimic copying Ash.Notifier seems to break the compiler for some reason.

 Improvements:

	do not perform atomic upgrade on destroy actions

	Make undo actions for update and destroy actions more explicit. (#920)

	Ash.Reactor: Make undo actions for update and destroy more explicit.

	rename get to read_one in Ash.Reactor

	Add Ash.Reactor update support.

	Add Ash.Reactor destroy support.

	Ash.Reactor: Support for transactional handling of notifications.

	Ash.Reactor: Add read and get steps.

	Ash.Reactor: add support for generic actions.

	Add undo capability to create step.

	transaction and undo working.

	Automatically thread Ash tracers through Reactor.

	Ash.Reactor: Add undo to generic actions.

 v2.19.14 (2024-03-01)

 Bug Fixes:

	properly match return type of Type.new in expr expansion

 v2.19.13 (2024-03-01)

 Improvements:

	cast expression calculations if they don't do it

 v2.19.12 (2024-02-29)

 Bug Fixes:

	properly scope expanded calculations

	properly scope expanded calculations

 Improvements:

	aggregate sort replaces query sort

 v2.19.11 (2024-02-29)

 Bug Fixes:

	properly add aggregate authorization everywhere

	ensure calculation arguments are not ignored when parsing filters

	properly authorize aggregates

 v2.19.10 (2024-02-29)

 Bug Fixes:

	bad reference in atomic validations

	prevent leakage of stale async_limiter's pid (#916)

 v2.19.9 (2024-02-26)

 Bug Fixes:

	ensure that policies are applied to aggregates referenced in calculations

	ensure records are returned from bulk actions in atomic upgrades

	handle small logic error in notification sending for bulk actions

 v2.19.8 (2024-02-25)

 Bug Fixes:

	ensure actor context is set in filter

	properly handle limit/offset for aggregates

	don't use Aggregate.new for builtin aggregates

	merge root query into aggregate queries, don't apply both

 Improvements:

	don't duplicate base filter in aggregates

 v2.19.7 (2024-02-24)

 Bug Fixes:

	return proper pattern from select builtin change

 v2.19.6 (2024-02-24)

 Bug Fixes:

	properly catch errors in atomic changeset casting

	use Ash.Changeset.set_context on changesets

 v2.19.5 (2024-02-22)

 Bug Fixes:

	properly fail early on missing actor in policies

	handle :continue case in authorizer

	validations run regardless of if the relevant fields are changing

 v2.19.4 (2024-02-22)

 Bug Fixes:

	honor soft destroys for atomic bulk destroys

	properly set context on query and changeset

	pass correct options into Api.stream! for bulk_destroy

	check attributes after arguments for present?

	correct for_read calls in update and destroy actions (#907)

 v2.19.3 (2024-02-17)

 Bug Fixes:

	properly annotate run_flow's recursive DSL tag

 v2.19.2 (2024-02-17)

 Bug Fixes:

	ensure that to-many relationships are loaded as lists

 v2.19.1 (2024-02-16)

 Bug Fixes:

	honor not_found_error? in read_one

 Improvements:

	pass tenant to context in custom changes

	Ash.Context.to_opts now checks for a tenant

 v2.19.0 (2024-02-16)

 Features:

	allow using custom delimiters for pubsub topics

	support functions in parse predicates (#874)

	support returning streams from mod calc (#864)

 Bug Fixes:

	remove unneeded code for calculations in a filter (#904)

	restore not_found_error? behavior in Ash.Flow

	handle cases where no primary keys are present better

	ensure that filters are parsed from policy authorizer ahead of time

	check if query is a query before calling .__validated_for_action__

	properly authorize actions in flow

	handle warning about incompatible types (#892)

	properly refer to attributes in changing_attributes/1

	remove unneeded code for calculations in a filter (#891)

	evaluate templates to unknown at ref

	handle atomic_ref templates and changing_attributes/1

	replace refs for relationships use correct action (#888)

	handle not found case in destroy (#890)

	handle not found case in destroy

	add case where authoriztion did not change query

	properly map sort input and non-input refs in keyset filters

	properly match on invalid query from before_action

	ensure proper context set on atomic upgrade

	fix nil ++ list error in bulk destroy

	ensure we retain the sort order of embedded resources

	retain sort on inputs on casting embedded inputs

	properly get rewrites for embedded types

	ensure after_transaction hooks are always run

	handle records in Ash.destroy and Ash.update

	pre-template change/validation option in bulk update/destroy

	fix query match error in bulk destroy/update

	don't consider primary key matches with nil values

	continue cleanup in ManagedRelationshipHelpers (#873)

	fix pattern match error on certain policy conditions

	use primary key for lateral join source in ets

	set right accessing_from name in many to many managed create (#868)

	set_tenant on fully atomic changesets

	handle api.can case in authorize_changeset

	properly bypass authorization in atomic update switch-over

	properly set action_type on atomic changesets

	extract relationship filters from pre-authorization query

	retain metadata on updates, atomic and otherwise

	properly load expression -> runtime calculation deps

	ignore input? when considering refs equal in filter subset checking

	change names of code interface methods for calculations (#863)

	properly mark manuall created input refs with input?: true

	clean vars should handle map vars

	properly merge union loads

	support expression calculations referencing runtime calculations

	set default access type properly

	properly handle the case where all valid scenarios are pruned

	properly prevent the atomic handling of manual update actions

	fix passing extra opts to stream

	properly check if data layer can update_query

	Ash.Type.Float to support min/max constraints(#856)

	add calculations before distinct is applied in data layer query

	properly set index on embedded type array errors

	use correct option for relationship in atomic relate_actor (#855)

	only count resources the actor is allowed to see (#853)

	only count resources the actor is allowed to see

	deselect known forbidden fields after query authorization is complete

	soft? in destroy action options is a boolean, not an atom (#851)

	load fails because of empty list instead of query (#847)

	don't attempt to derive destination_attribute_on_join_resource

	join_relationship in many to many can make through optional (#846)

	make sure query has action (#844)

	pass in actor to api.can call (#843)

	pass in actor to api.can call

	do not check primary key fields in filter (#839)

	add page opts to context again (#838)

	return errors with query from read action

	properly set defaults on upsert in mnesia

	don't load through attributes twice, but also don't miss any

	handle errors properly from invalid loads

	handle data layer calculations for missing records

	only load through calculations in the correct order

	properly detect cyclic dependencies in calculation runner

	properly annotate in-query calculations as complete for dependency calculation

	fix present? and load_through bugs

	don't require pagination in incorrect cases

	get tests passing for bulk creates again

 Improvements:

	handle stale update/destroys

	support authorize_query_with for bulk updates/destroys

	support authorize_changeset_with for bulk updates/destroys

	don't authorize query on synthesized atomic update/destroys

	show field name in NotLoaded inspect

	implement requires_original_data? for Ash.Notifier.PubSub

	support policies requiring original data

	change atomicity requirements when datalayers don't support it

	add on_match: :update_join to manage_relationship (#875)

	don't call telemetry when compiling

	various policy behavior cleanups

	add join_keys option to manage_relationship (#866)

	don't run check in cases that require strict checks

	atomic_batches behavior for bulk destroys

	allow strategy selection for bulk actions

	change nested field filtering to be done with at_path

	support referencing non-array embeds in input filters

	bulk update in batches if not given a query

	update action should respect load and select

	introduce require_atomic?, which defaults to false in 2.0, true in 3.0

	better support around the mixing of atomic and non atomic changes/validations

	more atomic implementations

	support loading and selecting in bulk operations

	use atomic create actions where possible

	always define merge_load/4

	derive source_attribute_on_join_resource for many to many

	atomic implementation for relate_actor

	include a message along with the non-atomic signifier

	support transactions on bulk destroys

	support transactions in bulk updates

	count_nils/1 function

	present/absent atomic implementation

	add atomic_ref/1 template helper

	Change typespec of tenant from String.t() to term() (#845)

	handle pkey-less resources when attaching fields

	set lazy defaults when applying changeset attributes

	add prepend?: true option to add_change

	optimize embedded resource creation

	rewrite read actions to not use Ash.Engine (#836)

 v2.18.1 (2024-01-12)

 Bug Fixes:

	use current read action for counting

 v2.18.0 (2024-01-12)

 Features:

	Allow :self as an option when requesting a relative page from a given page (#833)

 Bug Fixes:

	set tenant attribute in bulk create

 Improvements:

	add all_tenants? option to identities

	support Ash.CiString in string_join (#832)

	Add code interface support in Info and Builder. (#828)

	authorize each related join using join_filters

 v2.17.24 (2024-01-12)

 Bug Fixes:

	fix runtime filter parsing & make last arg optional

	undo incorrect behaviour in runtime evaluation

	fix typespecs and cleanup Ash.Resource.Builder (#827)

 Improvements:

	support join_filters in aggregates

 v2.17.23 (2024-01-10)

 Bug Fixes:

	authorize aggregate references in calculations

 Improvements:

	error on using relate_actor with :many cardinality relationships

 v2.17.22 (2024-01-09)

 Bug Fixes:

	only put keywords to be interpolated in message in error vars (#821)

	only put keywords to be interpolated in message in error vars

	ignore empty relationship paths when authorizing relationships

	properly build query from opts in aggregates

 Improvements:

	append new entities in Ash.Resource.Builder

	simplify aggregate loading, remove Ash.Engine from it

	add atomic implementation for builtin increment change

	simplify related path authorization, use same tool as aggregates now use

 v2.17.21 (2024-01-05)

 Bug Fixes:

	don't consider ash field signals as present

 Improvements:

	refactor filter requests to not use Ash.Engine

 v2.17.20 (2024-01-04)

 Bug Fixes:

	add required check for stream pagination

 Improvements:

	atomic validation implementations for most validations

	support type operator overloading

	add some atomic implementations

 v2.17.19 (2023-12-30)

 Improvements:

	support :no_rollback and return_query/2 callback

	add a return_query/2 callback for data layers

 v2.17.18 (2023-12-29)

 Bug Fixes:

	ensure __source__ is set on nested embedded attributes

	don't include unknown authorize? value in changesets

 Improvements:

	support {:error, :no_rollback, error} from data layer callbacks

	always update the join relationship

	use new api option in Ash.Query.for_read/4

	support using the new api option in actions

	accept api option in Ash.Changeset.for_* functions

	update Ash interface for working with new style resources

	better formatting of nested expressions

	helpful errors when misusing . in expressions

 v2.17.17 (2023-12-23)

 Bug Fixes:

	properly move maps & lists to expression paths

	set tenant when running authorization queries

 v2.17.16 (2023-12-23)

 Improvements:

	simplify used aggregate detection

	add lazy/1 to expressions

	support providing an input key in predicate maps

 v2.17.15 (2023-12-21)

 Improvements:

	support streaming without keyset pagination

	add callbacks for bulk actions on manual actions

	base case iterative bulk destroy implemented

	add iterative, streaming implementation for bulk updates

	test ASH_THREE subprojects

 v2.17.14 (2023-12-20)

 Bug Fixes:

	empty milliseconds for utc datetime must have precision 6

	ensure actor & authorize? contexts are set even if not provided

	ignore load/limit/offset in aggregate queries, instead of raising

	properly set changed? for all changesets

	honor tenant option on aggregates

	pass proper context into manual actions, remove unnecessary changeset code

	ensure actions always raise an error class

 Improvements:

	detect impending manage_relationship calls when checking attribute presence

	add stacktrace context to errors better

	support tenancy on manual actions

	lay the groundwork for fully atomic actions

	rewrite creates to not use Ash.Engine

	remove Ash.Engine from update/destroy actions

 v2.17.13 (2023-12-14)

 Bug Fixes:

	properly unnested union values passed into Ash.Type.Union.prepare_change_array

 Improvements:

	add Ash.Error.from_json/2

	accept expressions in Ash.Query.calculate

 v2.17.12 (2023-12-14)

 Bug Fixes:

	thread context through when setting source constraint on embeds

 Improvements:

	honor field policies in sort expressions

 v2.17.11 (2023-12-13)

 Bug Fixes:

	don't create invalid datetimes when scrubbing microseconds

	prepare change with nil old value on union type change

	properly prepare union value changes when old & new are union structs

	fix dump_to_embedded_array

	test failures and credo issue

 Improvements:

	additional atomic callbacks

	add warn_on_transaction_hooks?: false config

	accept an action input in Ash.Error.to_ash_error/3

	include tenant in change context

 v2.17.10 (2023-12-10)

 Bug Fixes:

	add back in api level verifiers

 Improvements:

	support nil values in struct type callbacks

 v2.17.9 (2023-12-07)

 Bug Fixes:

	don't apply default limit unless pagination is required

	properly handle union changes for lists of embeds

	honor default_limit option in pagination

 Improvements:

	support embed_nil_values? for trimming down stored embeds

 v2.17.8 (2023-12-06)

 Bug Fixes:

	add back in builtin_predicate_operators/0

	various runtime expression evaluation fixes

	honor read action for Api.get calls.

	various fixes to calculation expansion and execution

 Improvements:

	use loaded calculation values in expressions

 v2.17.7 (2023-11-29)

 Bug Fixes:

	don't eager evaluate composite type construction

 Improvements:

	forbid using resources as types

	add composite_type/2 and composite_type/3

 v2.17.6 (2023-11-27)

 Bug Fixes:

	ensure NewType honors new composite callbacks

 Improvements:

	support key aliases for composite types

 v2.17.5 (2023-11-27)

 Bug Fixes:

	properly create new vectors from strings

 Improvements:

	add composite?/1 and composite_types/1 to Ash.Type

 v2.17.4 (2023-11-24)

 Bug Fixes:

	properly resolve nested calculation dependencies

	don't apply sort on manage relationship lookup

	don't apply filter on manage relationship lookup if it has a parent expr

	change_attribute failing on a union attribute (#778)

	convert upsert fields before passing to data layer (#777)

 v2.17.3 (2023-11-16)

 Bug Fixes:

	use sort and filter to synonymous_relationship checks

 v2.17.2 (2023-11-16)

 Bug Fixes:

	properly set actor context on calc expressions in ets data layer

	properly pass authorize? option when loading aggregates

	properly associate lateral join records with no_attributes? true

	set aggregate context as well as calculation context in filters

	set actor when computing aggregates that reference calculations

	dialyzer issues on sort

 v2.17.1 (2023-11-14)

 Bug Fixes:

	properly return constraints in aggregate get_type

	properly include relationship name message when relationship cannot be found (#770)

 v2.17.0 (2023-11-13)

 Features:

	Expand upsert_fields option (#761)

 Bug Fixes:

	properly thread constraints through aggregates

	remove destroyed or unrelated data from the relationship (#767)

	properly strip extra record requested to detect more? pages.

	don't attempt to key a struct

 Improvements:

	honor authorize?: false option in generic actions

 v2.16.1 (2023-10-27)

 Bug Fixes:

	ensure item constraints are passed to array casting

	handle non-list values in Ash.Actions.Sort.process/4

	optimize and make Ash.Type more consistent

	fix typespec for include_source/2

 Improvements:

	detect more parent expressions

 v2.16.0 (2023-10-25)

 Features:

	Add unknown argument error when passing an unknown key to an action. (#750)

 Bug Fixes:

	don't reorder global validations/changes

	use latest spark, and new persisters callback

	properly validate belongs_to relationships

	remove invalid usages of unsafe_change_attribute/3

	handle builtin types in unions (#752)

 Improvements:

	Add ash_three? feature flag for Ash 3.0 related behaviors.

 v2.15.20 (2023-10-24)

 Bug Fixes:

	Change heading levels in generated livebook to have only one H1 (#747)

	code gen interfaces check type first argument (#749)

	properly support get in Ash

	add back in accidentally removed transformer

	properly determine resource from Ash.get!/2

	cast functional default values

	temporarily omit overzealous validation

	properly honor max_concurrency option

	support tenant option in api.can

	properly use constraints when casting expression values

	don't re-case constraints in the type function

 Improvements:

	add Ash.Test.assert_has_error and Ash.Test.refute_has_error

	support to_error_class taking changeset/query/input

	add "filename" parameter to the livebook generator. (#746)

	support an api option to use Ash.Resource (#715)

	support an api option to use Ash.Resource

	add functions to Ash for resources w/ configured apis

	default code_interface.define_for to resource's ash api

	cast_input for default values at compile time

	optimize bulk creates where results are not returned

	rewrite bulk creates, optimize changeset functions (#744)

	better storage_type handling, undo function change

 v2.15.19 (2023-10-17)

 Bug Fixes:

	handle new type constraints properly

 Improvements:

	properly honor ecto type init callback

 v2.15.18 (2023-10-17)

 Bug Fixes:

	honor max_concurrency option

	handle generic actions in list_arguments_and_attributes

	fix type casting for embedded resources

	ensure after action hooks are run on bulk creates

	return records from batches if items have after action hooks

	don't transform errors to changesets when rolling back in with_hooks

	undo previous changes where transactional actions might not roll back

	undo regression where errors weren't wrapped in a changeset

	provide full constraints when determining Ash.Type.NewType storage types

	go back to original default timestamp behavior

 Improvements:

	various optimizations and compile time caching

	set default many to many options (#737)

	various performance improvements

	various optimizations for bulk create actions

	support max_concurrency option on bulk creates

	better error message on missing identities

	better error message on invalid data passed to YourApi.load

	better handling of nested errors in transactions

 v2.15.17 (2023-10-11)

 Bug Fixes:

	properly authorize access to query aggregates in all cases

 v2.15.16 (2023-10-11)

 Improvements:

	move various transformers to be verifiers

 v2.15.15 (2023-10-11)

 Improvements:

	support atomics on upserts

 v2.15.14 (2023-10-11)

 Improvements:

	ensure all changesets sent batched to data layer have same set of atomics

 v2.15.13 (2023-10-11)

 Bug Fixes:

	move misplaced file and fix typespecs for Ash.DataLayer.Ets.Info

	properly set invalid_keys on action inputs

	properly validate required arguments for generic actions

 v2.15.12 (2023-10-10)

 Improvements:

	set storage type for citext to ci_string

 v2.15.11 (2023-10-10)

 Bug Fixes:

	honor authorize? option for calls to aggregate

 v2.15.10 (2023-10-09)

 Bug Fixes:

	handle false values properly when passed to flows

 Improvements:

	support to-one reference paths in calculations

	add Ash.Sort.expr_sort. In 3.0 sort should be a macro

 v2.15.9 (2023-10-06)

 Bug Fixes:

	properly rollback transactions on returned errors in generic actions

	generate keysets immediately after read action

	prepare_change_array on embedded types needs to handle nil

	handle_change_array on embedded types needs to honor nil

 Improvements:

	allow overriding cast_input/2 on NewType

 v2.15.8 (2023-10-03)

 Bug Fixes:

	don't use || when fetching arguments because false || nil is nil

	handle exceptions in generic actions

	fix types for min/max constraints in Type.Float (#718)

	lower compile time dependencies

	raise cleaner error on missing action in bulk creates

	allow for ref to contain nested templates

 Improvements:

	massage changesets & queries in Ash.Error.to_ash_error/3

 v2.15.7 (2023-09-29)

 Bug Fixes:

	return unions as is if load is empty (#714)

 v2.15.6 (2023-09-29)

 Bug Fixes:

	unions, only load through types when loadable

	handle empty list loads

 v2.15.5 (2023-09-28)

 Bug Fixes:

	ensure constraints are properly set in map/new_types

 Improvements:

	don't double cast ci strings

 v2.15.4 (2023-09-28)

 Bug Fixes:

	only set non-nil values unless keep_nil in seed creation

 v2.15.3 (2023-09-28)

 Bug Fixes:

	Ash.Seed extracts attributes from the struct now

 v2.15.2 (2023-09-28)

 Bug Fixes:

	properly perform field authorization on loaded through types

	usage of get_by with belongs_to attribute (#712)

 v2.15.1 (2023-09-27)

 Bug Fixes:

	static checks with conditions could be overly or insufficiently restrictive

	set field policy opts on field policy conditions

	move Resource.Transformers.BelongsToSourceField into entity (#709)

 Improvements:

	add context option to bulk_create

 v2.15.0 (2023-09-27)

 Features:

	expose query or changeset to field policies (#701)

 Bug Fixes:

	don't authorize on identity usage validations

	handle empty batches in bulk create

	update stream_data dependency, as we use the latest version

 Improvements:

	expose max/min constraints on Ash.Type.Float

	rework utc_datetime to datetime

	explicitly validate manual action return types

 v2.14.21 (2023-09-25)

 Improvements:

	deprecate old school manual actions

	better UX around nimble options errors

	remove old, now-deprecated config

	add Ash.Query.around_transaction/2

 v2.14.20 (2023-09-22)

 Bug Fixes:

	revert :wrap_list usage for topic in PubSub, needs recursion (#702)

 v2.14.19 (2023-09-21)

 Bug Fixes:

	more usages of :wrap_list type (#700)

	add missing usage of :default_belongs_to_type (#699)

 Improvements:

	add sequence generator utility

 v2.14.18 (2023-09-20)

 Bug Fixes:

	properly wrap [tracer] in Ash.Flow

	use :wrap_list type where appropriate (#698)

	get_by option can accept a single atom (#697)

	properly handle nil values in embedded resources

	ensure that can always returns an error when asked

	get type for manual action at compile time

 Improvements:

	make storage_type overridable by new_types

	support map_with_tag storage mode for Ash.Union.

	if no authorizers are set, anyone can do anything

	explicit error on after_action hook mismatch

 v2.14.17 (2023-09-15)

 Improvements:

	recommit the dsl cheatsheets, and update ash-ci

	add allow_nil? to generic actions, defaults to false

 v2.14.16 (2023-09-13)

 Bug Fixes:

	properly handle bubbled up exceptions from type casting

	typo in new tracer setting logic

	properly expose nested errors on unions

 Improvements:

	set_handled_error/3 for when errors are returned

 v2.14.15 (2023-09-13)

 Bug Fixes:

	propertly handle configured list of tracers

 v2.14.14 (2023-09-12)

 Improvements:

	support trace_type?/2 in tracers

	support stacktraces in set_error

	support multiple tracers, instead of just one

 v2.14.13 (2023-09-12)

 Bug Fixes:

	fix formatting for policies with conditions

	policy mermaid chart fix forbid_unless behavior

 Improvements:

	support vector types

 v2.14.12 (2023-09-05)

 Improvements:

	Allow resources to opt out of the primary key requirement. (#687)

 v2.14.11 (2023-09-04)

 Bug Fixes:

	better handling for negate error messages

 v2.14.10 (2023-09-04)

 Improvements:

	raise runtime error on misuse of negate

 v2.14.9 (2023-09-04)

 Bug Fixes:

	compile before ash tasks

 v2.14.8 (2023-09-04)

 Improvements:

	add ash.reset and ash.tear_down

 v2.14.7 (2023-09-04)

 Bug Fixes:

	fix no such action error on create changesets

	remove policy documentation due to compile time links

	show policy conditions, and fix final destination of last policy condition

	include path in unique path for anonymous aggregates

 Improvements:

	show policy mermaid chart in moduledocs

	add mix ash.generate_policy_chart

 v2.14.6 (2023-09-01)

 Bug Fixes:

	give anonymous aggregates constant names

	sort operator names in keyset (#684)

 v2.14.5 (2023-08-31)

 Bug Fixes:

	action.update_default -> field.update_default typo

	ensure that errors/records return the proper value in bulk creates

	properly optimized nested get_path calls

	simplify and fix duplicate detection in embedded resources

	better handling of runtime maps & lists

	properly handle as option for calculations in calculation dependencies

 Improvements:

	add Ash.Context.to_opts/1-2

	add topic docs for atomics

	implement atomics, expression-based changes (#682)

	hide __order__ and __lateral_join_source__ on records

 v2.14.4 (2023-08-22)

 Bug Fixes:

	handle inline aggregates in calculation resolver

 v2.14.3 (2023-08-22)

 Bug Fixes:

	init validations at runtime not compile time

	Ash.Filter: Don't overly constrain related references. (#678)

	handle nil constraints in cast_input

	properly handle in-line maps in exprs

	don't cast notloaded/forbidden values at runtime

	add required errors for missing read arguments

	don't evaluate unknown types in basic operators

 Improvements:

	support in-line aggregates

	Set api field for ActionInput when running action (#676)

	make resource's DSL attributes section patchable (#675)

	validate all actions and accept/reject fields at once. (#674)

 v2.14.2 (2023-08-17)

 Bug Fixes:

	Enum types only have storage_type/0 still

	inspecting a query now only shows arguments explicitly set

	don't set attributes or arguments to invalid values

 Improvements:

	storage_type/0 -> storage_type/1

	Ash.Resource.Calculation: set struct defaults. (#673)

	track invalid keys, don't add required errors for them

	properly set path into error instead of on error messages

	expose union errors with path when tag is set

	find all installed extensions by default

 v2.14.1 (2023-08-14)

 Bug Fixes:

	handle atomic/string union type identifiers better

	handle empty field policy lists better internally

 Improvements:

	add initial implementation of new mix tasks

	add plural_name

 v2.14.0 (2023-08-09)

 Bug Fixes:

	optimized boolean expression building typo

 v2.13.4 (2023-08-08)

 Bug Fixes:

	don't optimized in/== predicates across incorrect boolean expressions

	various fixes with runtime evaluation of aggregates

	handle mnesia transaction errors properly

	fix badly formatted error message

	better error message in validate_related_resource_inclusion

 Improvements:

	add from_many? option to has_one

	initialize change opts in bulk actions

 v2.13.3 (2023-08-01)

 Bug Fixes:

	handle changeset errors in mnesia transactions

	fix builder for action preparations

 Improvements:

	validate resourcesin apis

	added round/1 and round/2 to expressions

	add new/1 to all ash errors, because its nicer

	allow for parent/1 expressions to be resolved "later"

	support parent/1 in relationships

	enrich mnesdia data layer

 v2.13.2 (2023-07-22)

 Bug Fixes:

	before/after batch callbacks are no longer broken

 v2.13.1 (2023-07-21)

 Improvements:

	remove ecto after compile hook

 v2.13.0 (2023-07-21)

 Features:

	validate arg (#662)

	validate argument unequality

	validate argument in

 Bug Fixes:

	try to cast_stored expression calculation results

	read argument value in ArgumentEquals validation (#664)

 Improvements:

	add aggregate context when adding aggregates

 v2.12.1 (2023-07-19)

 Improvements:

	support distinct_sort in Query.build/2

	inspect distinct_sort

 v2.12.0 (2023-07-19)

 Features:

	validate argument equality (#659)

 Bug Fixes:

	Keyword.fetch on keywords, fix test name

	allow the query & related fields to be read before authorization status is complete

 Improvements:

	support distinct_sort

	use Comp.equal? for actor_attribute_equals check

 v2.11.11 (2023-07-18)

 Bug Fixes:

	only depend on calcs in runtime calcs

 Improvements:

	support distincting on calculations

	support distinct in ets data layer for testing

 v2.11.10 (2023-07-18)

 Bug Fixes:

	handle manual relationships where source field doesn't exist

 v2.11.9 (2023-07-18)

 Bug Fixes:

	only error on incorrect destination managed relationships when they are resources

 Improvements:

	support the - unary operator

 v2.11.8 (2023-07-13)

 Improvements:

	add ForbiddenField exception

	warn on api missing from config

	support resources directly in API modules

	compile time warning on resources not detected in any apis

 v2.11.7 (2023-07-13)

 Improvements:

	exists type aggregate

 v2.11.6 (2023-07-12)

 Improvements:

	add at/2 function

 v2.11.5 (2023-07-12)

 Bug Fixes:

	incorrect error for casting binary UUID (#653)

	fix and improve policy breakdown logs

	incorrect typespec for bulk_create/5. (#646)

 Improvements:

	add string_split expression

	add field_policy_bypass

	optimize field selection/loading when possible

	deselect fields we know statically are not visible

 v2.11.4 (2023-07-10)

 Bug Fixes:

	add handle_change/3 and prepare_change/3 to Ash.Type.Union (#642)

 v2.11.3 (2023-07-06)

 Bug Fixes:

	properly detect selected attributes for changeset field policies

	run before_action after authorization

 Improvements:

	Add Negate validation (#636)

 v2.11.2 (2023-07-04)

 Bug Fixes:

	return accumulator to correct state after altering exists

	typo in at_most validation message (#640)

 v2.11.1 (2023-07-04)

 Bug Fixes:

	select attributes in load statement

 v2.11.0 (2023-07-04)

 Bug Fixes:

	don't loan unless we need to for runtime filters

 v2.11.0-rc.3 (2023-06-29)

 Bug Fixes:

	load after all hooks have completed

	don't allow is_nil as an expression operator

	proper source field loading on related data

	reselect all selected attributes on action loading

	don't deselect fields on loading for changesets

 Improvements:

	better behavior for invalid filter value errors

 v2.11.0-rc.2 (2023-06-28)

 Features:

	Adds Ash.Changeset around_transaction (#632)

 Bug Fixes:

	select after setting notification data

 Improvements:

	support partial eager evaluation of functions

 v2.11.0-rc.1 (2023-06-24)

 Improvements:

	support specifying calculation as an option

 v2.11.0-rc.0 (2023-06-23)

 Features:

	add field_policies

 Bug Fixes:

	fix field policy expressions

	handle various inconsistencies in runtime expression runner

 v2.10.2 (2023-06-22)

 Improvements:

	fix loading w/ only nil values

	add verifier for identity fields. (#626)

	adds verifier for identity fields.

 v2.10.1 (2023-06-16)

 Bug Fixes:

	check paginability before streaming

	properly set notification_data from loaded record

	properly handle lazy loaded many to many relationships

	remove duplicate doc for authorize? in Query.for_read_opts (#623)

	set notification data with loaded result

	honor not_found_error?: true opt in code interface get actions (#620)

	typo on keyset refactor

 Improvements:

	fix problems w/ nested loads using relationship load calcs

 v2.10.0 (2023-06-14)

 Features:

	generate some action helpers with code interface (#614)

 Bug Fixes:

	ensure attributes for keyset pagination are selected

 Improvements:

	add support for generic actions in api.can (#617)

 v2.9.29 (2023-06-12)

 Bug Fixes:

	can_load?/1 -> can_load?/2

	handle new load calculations in nested loading? checks

 v2.9.28 (2023-06-12)

 Bug Fixes:

	don't load nil values for runtime types

	properly set upsert_keys on bulk upserts

	continue refactor in code interface (#611)

 Improvements:

	properly pass calculation args in keyset filters

 v2.9.27 (2023-06-10)

 Bug Fixes:

	honor query limit when streaming

	refactor out some repetition in code interface (#609)

 v2.9.26 (2023-06-09)

 Bug Fixes:

	properly handle loading through list types

 Improvements:

	better keyset pagination behavior on first and last pages

 v2.9.25 (2023-06-09)

 Bug Fixes:

	handle api missing in code interface calls

 v2.9.24 (2023-06-09)

 Bug Fixes:

	pass empty select statement when loading on changesets

	fixes for loading through attributes

	drop proper opts keys when calling api in code interface (#608)

 v2.9.23 (2023-06-09)

 Bug Fixes:

	remove validation that was breaking real design patterns

 v2.9.22 (2023-06-09)

 Bug Fixes:

	various fixes to data loading

	properly set tenant on nested calculation loads

	properly set calc_name to resource calculation name on aliased calc loads

	check correct calculation dependency for relationship

	don't use to_string on the calculation names

	don't need to check current aggs/calcs in filters anymore

	set query tenant on calc dep loads

	copy tenant to step on flow build (#603)

	ensure add_tenant/1 checks the correctkey (#601)

 Improvements:

	optimize LoadRelationship calculation

	Ash.Query.accessing/2 to get a list of fields being accessed

	builting LoadAttribute and LoadRelationship calculations

	warn on invalid/impossible policies

	support loading through types

	properly set tenant from initial data

 v2.9.21 (2023-06-06)

 Bug Fixes:

	properly chain batch to each change in bulk creates

	properly handle failed bulk creates with no errors

 Improvements:

	handle nils in memory the same way sql would have

 v2.9.20 (2023-06-05)

 Bug Fixes:

	also do not autogenerate values for optional fields that have a generator (#599)

	rename few error files to match module names (#597)

 Improvements:

	support changeset.load

 v2.9.19 (2023-06-02)

 Bug Fixes:

	Only create values for attributes that did not get a generator (#595)

	remove field name from string length error message (#594)

	remove field name from string length error message

	remove old unused Error.Changes.UnknownError

	do not capitalize ash error messages

	change error kind code for Ash.Error.Forbidden.Policy

 Improvements:

	verify reserved calc names, support as input

 v2.9.18 (2023-05-31)

 Bug Fixes:

	properly load aggregates required for keyset pagination

 v2.9.17 (2023-05-31)

 Bug Fixes:

	properly load depended on source attributes

 v2.9.16 (2023-05-29)

 Bug Fixes:

	handle pre-hydrated predicates in expressions

	handle nil errors on bulk creates

	add :forbidden to error_class, lowercase code for Forbidden (#589)

 v2.9.15 (2023-05-27)

 Bug Fixes:

	proper required value validations in bulk creates

	don't use error count in place of errors

 Improvements:

	make loading?/2 smarter

 v2.9.14 (2023-05-26)

 Bug Fixes:

	properly manage relationships on bulk creates

	validations could undo certain changeset changes in bulk creates

	properly upsert on non batchable rows

 v2.9.13 (2023-05-25)

 Bug Fixes:

	properly honor the return_errors? option

 v2.9.12 (2023-05-23)

 Bug Fixes:

	properly wrap errored changesets in bulk creates

	don't notify unless notify?: true in bulk creates

	properly wrap errored changesets in {:error in bulk creates

 Improvements:

	better support for multiple code interfaces w/ same name

 v2.9.11 (2023-05-23)

 Bug Fixes:

	swap Exception.exception? for Kernel.is_exception (#584)

 Improvements:

	handle bulk transaction errors better

 v2.9.10 (2023-05-18)

 Bug Fixes:

	accidental variable shadowing in calculation loading.

	add missing batch_size opt for bulk_create (#581)

 v2.9.9 (2023-05-18)

 Bug Fixes:

	errors on casting arrays of unions in newtypes

 v2.9.8 (2023-05-17)

 Improvements:

	add unavailable error

 v2.9.7 (2023-05-16)

 Bug Fixes:

	don't require {:data_layer, *} for custom locks

 Improvements:

	add get_and_lock/1 builtin change

 v2.9.6 (2023-05-15)

 Bug Fixes:

	don't use :map as storage type for Map

 Improvements:

	Ash.Type.Module: Add :module type. (#578)

	handle ci strings in cast_stored

	better default overflow logic

	custom stale record error

 v2.9.5 (2023-05-08)

 Bug Fixes:

	user proper upsert identity for bulk operations

 Improvements:

	optimistic locking via changeset.filters

 v2.9.4 (2023-05-04)

 Bug Fixes:

	ecto type of map is just :map

 v2.9.3 (2023-05-03)

 Bug Fixes:

	unbound variable in schema definition

 Improvements:

	support bulk upserts

 v2.9.2 (2023-05-02)

 Bug Fixes:

	fix dialyzer

	proper return value for synthesized bulk creates

	assorted bulk create fixes

	set upsert context from action on create changesets

	handle invalid input in basic actions

 Improvements:

	bulk create improvements, docs

	finishing initial touches on bulk actions

	bulk create actions

	initial support for basic actions

	better messages for missed notifications

	retain stacktraces from task errors

 v2.9.1 (2023-05-01)

 Bug Fixes:

	handle map relationship data in lateral join

 v2.9.0 (2023-05-01)

 Features:

	attribute_in/2 builtin validation

 Bug Fixes:

	proper source path for lateral joined relationships

 Improvements:

	error if relationship.api is not an Ash.Api

 v2.8.1 (2023-04-28)

 Improvements:

	more typespec fixes

	support lock option on read

	data layer can? might get a dsl, not a resource

 v2.8.0 (2023-04-28)

 Features:

	add Api.stream!/1

 Bug Fixes:

	set flow argument defaults

	handle join relationship in different api

	don't warn on being managed from attribute changing

	don't initially require attributes for belongs to relationships being managed

	simple equality filter should not traverse ors

 Improvements:

	introduce basic locking

	include resource validations by default

	validate explicit api configurations, with good error messages

 v2.7.1 (2023-04-21)

 Bug Fixes:

	more fixes to optimized boolean filter building

 v2.7.0 (2023-04-20)

 Features:

	add fields/1 and public_fields/1 to Ash.Resource.Info (#569)

 Bug Fixes:

	don't optimize across or boundaries

	handle calculation deps w/ multiple nested relationship paths

	only do tenant things in ETS if strategy is :context

	add the spark function version of calculations

	proper error message on invalid inline function calculation

	Add tenant attribute to identity attributes on upserts (#565)

 Improvements:

	Add upserts option to flow's create step (#566)

	Change storage type of Ash.Type.Term to :binary (#561)

	automatically gather up notifications

 v2.6.31 (2023-04-11)

 Bug Fixes:

	properly require attributes on creates

 v2.6.30 (2023-04-10)

 Bug Fixes:

	don't require values if a changeset result has been set

	properly return errors on invalid calculation arguments

	user unpaginated_read for read_one

	handle strings better in refs

	consider strings in ref

 Improvements:

	add build_action_metadata to resource builder

	add Ash.merge_context/1 and Ash.update_context/1

	add constraints to maps (#556)

 v2.6.29 (2023-04-04)

 Bug Fixes:

	various ash flow return value fixes

	Fix set_new_attribute by adding missing option to set_attribute (#553)

	show context on all errors

	include error context in top level of errors

 Improvements:

	validate returnable steps in flow returns

	update touched_resources logic

	Add :field option to relate_actor change (#546)

 v2.6.28 (2023-04-03)

 Bug Fixes:

	properly handle nested calculation selects

	fix typespecs and not_found_error? code interface option

	typespec support Expr.t() in calculation builder

	remove bad default for struct constraint

	use values when already loading aggregates

 Improvements:

	thread context through when loading data

	update spark to fix deeply nested DSLs

	read_uses_flow?: Build stub for Ash.Actions.Flows.Read.

	properly set related resource

	simpler required attributes behavior

	add :subfield option to relates_to_actor_via (#540)

	add accessing_from/2 builtin check

	rewrite calculation loader

	add {set,update,get}_context to Ash.PlugHelpers (#534)

	improve compile times with ð�ª�

	fix action typespecs

	add option set_when_nil? to builtin change set_attribute (#528)

 v2.6.27 (2023-03-22)

 Improvements:

	add update_actor to Ash.Plughelpers (#532)

 v2.6.26 (2023-03-21)

 Bug Fixes:

	use proper arguments for aggregating queries

 v2.6.25 (2023-03-21)

 Improvements:

	add skip_global_validations? option for actions

 v2.6.24 (2023-03-21)

 Bug Fixes:

	datetime_add was actually datetime_subtract in elixir

	prevent exception when describing some checks (#531)

 Improvements:

	Add get_by option to read actions. (#530)

 v2.6.23 (2023-03-21)

 Improvements:

	builder & typespec improvements

 v2.6.22 (2023-03-20)

 Bug Fixes:

	properly handle multi-resource transaction return values

	various fixes in aggregate authorization behavior

	use builtin short names for builtin type helper

	properly set builtin types

 Improvements:

	better resource detection of transactions in Ash.Flow

	better formatting for branches in flow charts

	add :read_action and :authorize? configurations for resource aggregates

	Add before_action/1 and after_action/1 to Ash.Resource.Preparations.Builtins. (#526)

 v2.6.21 (2023-03-13)

 Improvements:

	add Ash.Type.NewType

	add :unknown for all potential facts

	optimize policy check running with laziness

	don't select when running policy queries

 v2.6.20 (2023-03-10)

 Bug Fixes:

	remove pre_flight expression checking

 Improvements:

	Add builtin changes for lifecycle hooks. (#523)

 v2.6.19 (2023-03-09)

 Bug Fixes:

	properly return false on forbidden errors

 v2.6.18 (2023-03-08)

 Improvements:

	add Api.can? and Api.can

 v2.6.17 (2023-03-06)

 Bug Fixes:

	add actor back to transaction metadata

 Improvements:

	add delay_global_validations? action option

 v2.6.16 (2023-03-03)

 Bug Fixes:

	calc loading in keyset pagination

 Improvements:

	add new date expressions

 v2.6.15 (2023-02-27)

 Bug Fixes:

	properly handle allow_nil fields in keyset pagination

 v2.6.14 (2023-02-24)

 Bug Fixes:

	don't reselect fields automatically

	ensure data layer is compiled

 Improvements:

	introduce reselect_all? option for loading

 v2.6.13 (2023-02-24)

 Bug Fixes:

	only use resource_to_query/2

 v2.6.12 (2023-02-24)

 Bug Fixes:

	support nil values in dump_to_native

	properly support calc expansion in policies

	support nil cast for resource type

 Improvements:

	support record's as calculate arguments

	include actor in all calculation context

 v2.6.11 (2023-02-23)

 Bug Fixes:

	allow argument references in policies

 Improvements:

	don't eager load sort data

 v2.6.10 (2023-02-21)

 Bug Fixes:

	properly handle list args for functions

	set query context from before_action hooks into initial query

	set context into initial_query

 Improvements:

	Implement string_join expr function (#515)

 v2.6.9 (2023-02-21)

 Bug Fixes:

	make resource diagram task recursive

	use private.internal? to bypass require_actor?

	properly call run_aggregate_query_with_lateral_join

 Improvements:

	add force variations of set arguments

 v2.6.8 (2023-02-16)

 Bug Fixes:

	don't overwrite keyset when loading data

 v2.6.7 (2023-02-16)

 Bug Fixes:

	properly return {:ok, page} in all cases

 v2.6.6 (2023-02-16)

 Bug Fixes:

	authorize?: true by default on flows, pass actor through

	pass actor into engine

 v2.6.5 (2023-02-15)

 Bug Fixes:

	properly handle optional args in code interface

 v2.6.4 (2023-02-15)

 Bug Fixes:

	handle cases where union type is already atom

	various union fixes

	make depend_on_resources more reliable

	use load/3 for builtin concat calc

 Improvements:

	Add error message when page is added but pagination is not enabled (#511)

	add union type and some tests around it

	add union short name

	add union type

	better operator type casting and expression fixes

 v2.6.3 (2023-02-12)

 Bug Fixes:

	fix non-optional pagination

 Improvements:

	add warning on usage of transaction hooks when in a surrounding transaction

	add before_transaction and after_transaction

 v2.6.2 (2023-02-10)

 Bug Fixes:

	pagination behavior is incorrect

	nil as page_opts is acceptable

	fix aggregate.uniq?

 v2.6.1 (2023-02-09)

 Bug Fixes:

	Type error: Suggest custom short type names as well (#508)

 Improvements:

	support uniq? for count/list attributes

 v2.6.0 (2023-02-05)

 Features:

	initial (and slightly experimental) Api.aggregate support

 Bug Fixes:

	handle {:ref, ...} tuple in static syntax

	various fast follows to api aggregate functions

	pattern match problem in aggregate action

	properly handle nested array type constraint validation

 Improvements:

	update spark for latest doc improvements

	better description of action_type check

	add more builders

	stop running preparations if one of them returns an error

 v2.5.16 (2023-02-01)

 Bug Fixes:

	load lazily after action when results are set

	fix typespec for Ash.set_tenant/1

 v2.5.15 (2023-01-31)

 Bug Fixes:

	set proper query aggregate when fetching aggregate values

 v2.5.14 (2023-01-30)

 Improvements:

	registry resource validations transformers -> verifiers

	better error message on unknown relationship

 v2.5.13 (2023-01-30)

 Bug Fixes:

	use destination query for aggregates, join auth to come later

	check changeset.valid? properly on destroys

	properly halt on action errors in before_action hooks

 Improvements:

	no async loads except when loading on initial data

	support length constraints on array embeds

 v2.5.12 (2023-01-29)

 Improvements:

	simplify aggregate loading, fix bug with auth query resource

 v2.5.11 (2023-01-28)

 Improvements:

	support {:ignore, changeset} from error handlers

	add read action metadata

 v2.5.10 (2023-01-27)

 Improvements:

	upgrade to latest spark for compile time improvements

	improve compile times by reorienting some compile deps

	add relationships to underlying ecto schemas for better escape hatches

	reselect explicitly selected queries on reload

 v2.5.9 (2023-01-22)

 Bug Fixes:

	properly surface errors from embedded attributes

	use original pkey for ets upsert lookup

 v2.5.8 (2023-01-20)

 Bug Fixes:

	properly prepend the prefix to the topic

 v2.5.7 (2023-01-20)

 Bug Fixes:

	properly load depended on aggregates

	properly handle functional manual creates

	Use proper options in confirm change.

	only pass action name in Ash.Changeset.for_action (#476)

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	include value in invalid error messages

	cleaner inspect for calculations

	add set_result for conditional manual actions/caching

	update docs to new links formats for ash_hq (#483)

	add nil return type to api get/3, read_one/2 and read_one!/2 (#482)

	don't load dependencies for calcs in query

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.6 (2023-01-19)

 Bug Fixes:

	properly load depended on aggregates

	properly handle functional manual creates

	Use proper options in confirm change.

	only pass action name in Ash.Changeset.for_action (#476)

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	cleaner inspect for calculations

	add set_result for conditional manual actions/caching

	update docs to new links formats for ash_hq (#483)

	add nil return type to api get/3, read_one/2 and read_one!/2 (#482)

	don't load dependencies for calcs in query

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.5 (2023-01-19)

 Bug Fixes:

	properly handle functional manual creates

	Use proper options in confirm change.

	only pass action name in Ash.Changeset.for_action (#476)

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	add set_result for conditional manual actions/caching

	update docs to new links formats for ash_hq (#483)

	add nil return type to api get/3, read_one/2 and read_one!/2 (#482)

	don't load dependencies for calcs in query

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.4 (2023-01-18)

 Bug Fixes:

	Use proper options in confirm change.

	only pass action name in Ash.Changeset.for_action (#476)

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	update docs to new links formats for ash_hq (#483)

	add nil return type to api get/3, read_one/2 and read_one!/2 (#482)

	don't load dependencies for calcs in query

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.3 (2023-01-18)

 Bug Fixes:

	Use proper options in confirm change.

	only pass action name in Ash.Changeset.for_action (#476)

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	update docs to new links formats for ash_hq (#483)

	add nil return type to api get/3, read_one/2 and read_one!/2 (#482)

	don't load dependencies for calcs in query

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.2 (2023-01-12)

 Bug Fixes:

	properly set the context option on changesets

	return proper value from validation

 Improvements:

	add action_is/1 builtin validation

	more compile time optimizations

 v2.5.1 (2023-01-11)

 Bug Fixes:

	return proper value from validation

 Improvements:

	more compile time optimizations

 v2.5.0 (2023-01-11)

 v2.5.0-rc.6 (2023-01-09)

 Bug Fixes:

	set interface args to empty list by default

 v2.5.0-rc.5 (2023-01-09)

 Bug Fixes:

	properly zip calculation results with primary keys

 Improvements:

	add Api.calculate/3 and define_calculation code interface builder

 v2.5.0-rc.4 (2023-01-06)

 Bug Fixes:

	more fixes for synonymous relationship paths

 v2.5.0-rc.3 (2023-01-06)

 Bug Fixes:

	stop seeing incorrect relationships as synonymous

 v2.5.0-rc.2 (2023-01-05)

 Bug Fixes:

	various filter & expression fixes

	handle aggregate defaults when evaluating expressions

 v2.5.0-rc.1 (2023-01-05)

 Bug Fixes:

	remove all URI encoding/decoding from core for keysets

 Improvements:

	rename this to parent for clarity

 v2.5.0-rc.0 (2023-01-04)

 Features:

	add this/1 for use inside exists/2 (and other places eventually)

 Bug Fixes:

	various fixes to expression syntax

	encode the keyset for display in a URI automatically

	fix authorize? method (#472)

	calculations depending on aggregates were not including those dependencies properly

	load types marked with cast_in_query? false at runtime

	proper support for nested expressions in calculations

	typo in cast_in_query?

	allow lists in expr syntax

 Improvements:

	warn on potentially incompatible relationship attributes

	add default_belongs_to_type configuration

	loading an attribute is now equivalent to ensure_selected

	support module attributes in exprs

	Add Ash.Error.Invalid.TenantRequired error (#471)

	add constraints to query calculations

	cast_in_query? takes constraints

	support for calculations in aggregate fields

 v2.4.30 (2022-12-27)

 Bug Fixes:

	calculation builder using wrong builder

 Improvements:

	add simple_notifiers as a compile time optimization

 v2.4.29 (2022-12-27)

 Bug Fixes:

	handle nil constraints in array

	only start transactions for resources not already in one

 Improvements:

	add calculations to builder

 v2.4.28 (2022-12-23)

 Bug Fixes:

	import builtins at the action level, not the section level

	fix broken default behavior around managing relationships.

 Improvements:

	fix tests to handle new defaults

	optimize strict checks

 v2.4.27 (2022-12-21)

 Bug Fixes:

	properly include module in doc links

	add test for string generator, and fix it

	only allow nil in appropriate circumstances in generator

	respect selects in related_query (#464)

	use action name not struct for embedded generators

	use create generators for embedded types

	support dependencies on pruned branch steps

	ensure type compiled for generator

 Improvements:

	fix decimal generator to only compare with floats at generation

	filter min_length strings in generators

 v2.4.26 (2022-12-15)

 Improvements:

	update spark

 v2.4.25 (2022-12-15)

 Bug Fixes:

	transaction steps use failure_mode: :stop

 Improvements:

	better expression detection

 v2.4.24 (2022-12-10)

 Improvements:

	more dependable notifications, support custom notifications better

 v2.4.23 (2022-12-08)

 Improvements:

	add more transaction types

 v2.4.22 (2022-12-08)

 Bug Fixes:

	depend on latest spark

	different formats for extensions

 Improvements:

	add :struct (Ash.Type.struct) type

 v2.4.21 (2022-12-08)

 Bug Fixes:

	don't lock specific nimble options version

 Improvements:

	replace doc links in sidebar also

	better doc replacement behavior

	dep updates & new aggregate types avg/min/max/custom

 v2.4.20 (2022-12-07)

 Bug Fixes:

	more matching fixes on manual relationships

	handle manual relationship load results when building query

 Improvements:

	only set defaults when attribute is actually set

	Pass context into query and changeset for_... functions. (#460)

 v2.4.19 (2022-12-04)

 Improvements:

	set context once, early

 v2.4.18 (2022-12-01)

 Bug Fixes:

	set proper types in transaction reasons

 v2.4.17 (2022-12-01)

 Improvements:

	support data layers implementing transaction level hooks

 v2.4.16 (2022-11-30)

 Bug Fixes:

	properly authorize manage relationship calls

 Improvements:

	don't run calculation queries if no records were returned

	don't run queries with limit: 0

	more readable flow charts

	not_found_error? option on get?: true read flow steps

 v2.4.15 (2022-11-29)

 Improvements:

	add not_found_error? option to interface builder and when calling

 v2.4.14 (2022-11-29)

 Bug Fixes:

	properly handle arguments with default values in code interface

 v2.4.13 (2022-11-29)

 Bug Fixes:

	don't raise a backwards incompatible error message on certian changeset functions

	properly apply managed relationships on manual actions

	properly pass resource option in filter policies

 v2.4.12 (2022-11-25)

 Bug Fixes:

	don't revisit nodes in the ash engine

	properly map to :destroy step names

	handle Ash.Flow.Step.Destroy in path matchers

	resolve issue with authorize_unless and filter checks

	fix pattern match error in manage relationship reduce

 Improvements:

	optimize various solver boolean optimizations

	more comprehensively remove unnecessary clauses

	prevent changing attributes and arguments after action validation

 v2.4.11 (2022-11-22)

 Bug Fixes:

	fix typespec for Api.Info.trace_name/3

 Improvements:

	add error context to error creation / normalisation (#440)

	update hexdocs processor to link guides on hexdocs

 v2.4.10 (2022-11-21)

 Improvements:

	return invalid primary key errors for Api.get when the input can't be cast

	much more readable errors when building loads

	better check module validation

 v2.4.9 (2022-11-21)

 Bug Fixes:

	reselect relationship source fields when loading relationships

	make plug an optional dependency of Ash

 v2.4.8 (2022-11-19)

 Bug Fixes:

	fix where and or_where implementation

 v2.4.7 (2022-11-19)

 Improvements:

	add where and or_where to expr

 v2.4.6 (2022-11-19)

 Improvements:

	mark manual action modules as modules

 v2.4.5 (2022-11-19)

 Bug Fixes:

	properly pass a map to manual action context

	destroy action types default to accepts [] (#453)

 v2.4.4 (2022-11-18)

 Bug Fixes:

	various typespec/build fixes

	handle tuples properly in some cases in expression syntax

	Add missing [:ash, :query] telemetry (#451)

 Improvements:

	improve runtime expression running

	add default description for filter checks

	validate that modules exist and are documented when referenced

 v2.4.3 (2022-11-15)

 Bug Fixes:

	don't incur compile time dependency for resources used as types

	allow for not-yet-compiled resources as Ash types

	properly raise error on invalid type.

 Improvements:

	optimize sat solving

 v2.4.2 (2022-11-03)

 Bug Fixes:

	properly set error vars with list constraints

	when creating changesets/queries that already have arguments, revalidate arguments

 Improvements:

	update to latest spark

	support statically configured upsert actions

	add more builders

 v2.4.1 (2022-10-31)

 Bug Fixes:

	fix depend on resources to depend on each resource

	allow references on both sides of in

	properly upsert all explicitly changed fields

	traverse maps for template_references_actor?/1

 Improvements:

	replace templates in change/preparation/validation opts

 v2.4.0 (2022-10-31)

 Features:

	support anonymous functions in DSL

These include:
- custom create/read/update/destroy actions
- changes
- preparations
- validations
- calculations
- manual relationships

See the respective DSL guides for more.

 Bug Fixes:

	don't add required belongs_to error if changeset is invalid (#437)

	don't lazy load when managing relationships

 Improvements:

	support anonymous functions for various behaviour based options

	add more ergonomic manual action definitions.

	more additions to the resource builder, update spark

 v2.3.0 (2022-10-27)

 Features:

	Ash.PlugHelpers: standardise conn interface for actors/tenants. (#432)

	add Ash.Resource.Builder, the start of DSL builder utilities of rextension writing

 Bug Fixes:

	DataLayer: incorrect typespec for run_query/2 callback. (#431)

	in Ash.Seed, don't try to update a non-loaded record

	properly load manual to_one relationships

	properly compare against decimal values

 Improvements:

	pass tenant to calculation query explicitly

	allow using get_path/2 by name, as well as bracket access

	SVG, PDF, PNG, Markdown and plain mermaid formats (#428)

	optimize nested exists filter statements

	support floats & decimals in the compare validation

 v2.2.0 (2022-10-21)

 Features:

	add Ash.Api.Info.depend_on_resources/1 to get the list of resources at compile time

 Bug Fixes:

	don't attempt to re-authorize access to already retrieved records in Api.load/2

 Improvements:

	when returning a page, choose keyset if before or after was supplied

	add keysets to records if any action supports keysets

	show conditions in policy breakdowns

 v2.1.0 (2022-10-19)

 Features:

	Custom short names for types (#423)

A compile env can be set to allow customizing the available type short names. This supports two things:
	Adding custom type short names, like attribute :price, :money mapping to MyApp.Type.Money
	Overriding the builtin type short names, like attribute, :price, :string mapping to a custom string type implementation (there is likely no reason to do this)
Commit with unknown type in: feat: Custom short names for types (#423)

See the docs for Ash.Type for more information
	add now() to expressions

 Bug Fixes:

	set defaults before running changes

 Improvements:

	sort relationship in order of input when managing it

This helps with things like https://github.com/ash-project/ash_phoenix/issues/57
which involve rendering the relationship value after editing it. Retaining
the order allows direct reuse without any gymnastics

 v2.0.0 (2022-10-17)

 Features:

	basic livebook generator and mix task (#420)

	mermaid class diagram mix task (#417)

 Bug Fixes:

	properly lateral join when possible

	use prepend?: true when applying relationship sorts

	don't miss dependencies in flow diagrams

	fix deps finding in flow charts & flows

	properly load calcs/aggs on manual relationships

	properly load nested manual relationships

	allow overriding validation message on a list of errors (#412)

	reraise errors on task error

	don't show dependencies for run_flow steps in expanded view(they are duplicates)

 Improvements:

	don't eager evaluate type/2

	support depending on requests that will be added

	support dynamic action steps in Ash.Flow

	add prepend?: true option to sort

	use simple_equality?/0 to allow for optimized equality checking

	mermaid mix task for ER diagrams (#415)

	try to resolve flaky tests by not using named tables for private ets resources

	better unknown error handling

	allow passing query or changeset in can/can?/4 (#410)

 v2.0.0-rc.15 (2022-10-10)

 Bug Fixes:

	handle upsert_identity better with ets/mnesia

	always set source on attributes

 Improvements:

	Improve error when actions reject and accept keys overlap (#405)

	update to latest spark

 v2.0.0-rc.14 (2022-10-07)

 Features:

	list arguments for resource actions in class diagrams (#399)

 Bug Fixes:

	fix chart links rendering

	make loading?/2 know about calcs and aggs

	properly set source on attributes

	policy fixes from pair session (#403)

	don't evaluate expressions incorrectly after casting

 Improvements:

	add type function to ash core

	Allow a single where condition for validations (#407)

	haltable flows, branch step type

	simplify async task strategy

	clean up new create authorization simplification

	remove the need for SetTypes

	add some info to policy errors

	experimental support for calcualtions accepting expression arguments

	various Ash.Flow improvements, including returning the new Ash.Flow.Result

 v2.0.0-rc.13 (2022-10-04)

 Features:

	show_private? option for diagrams (#396)

	generate mermaid entity relationship diagrams from a given api (#376)

 Bug Fixes:

	add back in new/2 to Changeset

	properly load nested calcs

	switch from no_depend_modules in most places

	properly display compare/2 error message

	use the short type for aggregate types

	kind_to_type/2 returns tagged tuple

 Improvements:

	allow select/load callbacks for calcs to return irrelevant keys

	optimize load equality matching by not using Comp

	Forbid reserved field names (#388)

	validate accepted and rejected attributes in actions (#395)

	support zero argument functions in compare/2

 v2.0.0-rc.12 (2022-09-30)

 Improvements:

	optimize for relates_to_actor_via

 v2.0.0-rc.11 (2022-09-29)

 Bug Fixes:

	use at_path when parsing Exists

	properly require a condition of a following bypasses

	don't transform == nil to is_nil automatically

	pass path down to keyword list errors

 Improvements:

	optimize relates_to_actor_via checks

 v2.0.0-rc.10 (2022-09-28)

 Bug Fixes:

	bad pattern in filter.ex, fix dialyzer

	attempt to evaluate filter checks for strict checks

	only return errors when there actually are errors

	return an error if data_layer_query/2 is given a query with errors

	various fixes with complex policy statements

	ensure fields selected in-line when loading calcs

	handle statically false conditions in filter logic

	cast embedded datetimes properly

	Ash.Calculation: fix return type for load/3 callback. (#384)

	warn instead of raise on :replace usage

	handle var_args expression with literal args

 Improvements:

	catch more cases in preflight authorization checks

	lazily set required loads/selects for calcs/sorts

	reselect any necessary fields when loading calcs

	set context when creating related filters allowing checks like filtering_on

	simplify filter statements further

	don't overconstraint filters on related data

	any filter being statically true means :authorized

	properly mark conditions w/ access_type

	use IsNil instead of Eq when either side is nil

	handle string dates for embeds

	remove timestamps in favor of simpler macro

 v2.0.0-rc.9 (2022-09-21)

 Bug Fixes:

	fix replace_relationship type

 v2.0.0-rc.8 (2022-09-21)

 Bug Fixes:

	properly handle args/nested expression for tuple calcs

	add a case for calculations as tuples in expr filters

	return count, not {:ok, count}

	bad return value when async fetching counts

	remove dbg() call

 Improvements:

	update to latest spark, support dsls in resource info

	deprecate :replace in favor of :append_and_remove

	add loading?/1 query helper

	add loading/1 built in check

 v2.0.0-rc.7 (2022-09-15)

 Bug Fixes:

	nil casts as any type (sort of)

	return nil on nil inputs for length/1

	properly reraise errors raised in tasks

	properly return errors from tasks

	use Comp.equal?/2 when finding loaded data matches

 v2.0.0-rc.6 (2022-09-15)

 Bug Fixes:

	properly error on types when evaluating expressions at runtime

	properly surface errors all the way from runtime filters

	properly catch errors when running expressions at runtime

 Improvements:

	Implement length function (#379)

 v2.0.0-rc.5 (2022-09-14)

 Bug Fixes:

	inspect the match for default message

 Improvements:

	validate aggregate paths supported

	add filterable? option to relationships

	add data layer capability for aggregate relationships & filter relationships

	add guide on manual relationships

 v2.0.0-rc.4 (2022-09-12)

 Bug Fixes:

	fix keyset pagination ordering bug

	short names are snake cased

	properly do pagination

	handle pins in exists

	add better error for exists/2

	use root_resource for related path in filter

	add match/3 to upgrading guide

	set root_resource in exists parsing

	error fetching relationships in filter expressions

	filter check typespecs

 Improvements:

	add aggregate_type/2 helper

	make two queries for full keyset pagination support

 v2.0.0-rc.3 (2022-09-06)

 Bug Fixes:

	runtime filter handle new relationship shape

 Improvements:

	add exists/2 expression

 v2.0.0-rc.2 (2022-09-04)

 Bug Fixes:

	the semantics of forbid_unless were not wrong

 v2.0.0-rc.1 (2022-09-04)

 Bug Fixes:

	forbid_unless expression compilation

	fix runtime filter join simulation for multiple rows

 v2.0.0-rc.0 (2022-09-04)

 Bug Fixes:

	Initial Ash 2.0.0-rc.0 release!

 v1.53.3 (2022-08-22)

 Bug Fixes:

	False default value for argument is nil in changeset (#364)

	ignore belongs_to in preflight attribute check

	clean up relationship validation logic

	clean up logic around preflight belongs_to validation

 Improvements:

	add value_is_key option for managed relationships

	Replace usage of Timex.shift with builtin Calendar functions (#362)

	handle required but not accepted values better

 v1.53.2 (2022-08-10)

 Bug Fixes:

	persist a nil actor properly

 v1.53.1 (2022-08-10)

 Bug Fixes:

	properly set authorize?: false on runtime filter

	explicitly don't authorize the runtime filter authorization logic

	fix eager function/operator evaluation

	scrub values properly, same as last bug

	map update bug when sanitizing boolean expressions

	fixs runtime filter fallbacks

 Improvements:

	support authorize? as a changeset option

	add actor_present policy

	add error? option to get

	fix various operator evaluators

 v1.53.0 (2022-08-04)

 Bug Fixes:

	(attempt) to fix calc loading issue

 v1.52.0-rc.22 (2022-08-03)

 Bug Fixes:

	actually use warn_on_empty? config

	check for actor on query/changeset for actor context

	pass actor opt down

	don't skip setting tenant when actor is present

	don't use apply/3 on kernel macros

	small bug in DSL transformer manipulation.

	&& and || don't short-circuit to nil

	{:ok, _} -> {:known, _} when evaluating operators

	fix bad evaluation case for operators

	ensure we only take unique related records when lazy loading

 Improvements:

	add warnings to DSL transformer returns

	warn on empty registries

	better sanitization around sensitive attributes in filters

	change always_authorize? to authorize for multiple options

	add error message for manual action missed

 v1.52.0-rc.21 (2022-07-19)

 Bug Fixes:

	use Map.get/2 when getting paths if the value is a struct

 Improvements:

	add || and && operators

	sort parsing helpers

	add Ash.Sort.parse_input!/2

	add transfer_context/1 and get_context_for_transfer/0

	add process-based actor, tenant and query/changeset context

	add always_authorize? and require_actor? to api config

	support paths in actor/1

 v1.52.0-rc.20 (2022-07-14)

 Features:

	add can?/4 policy utility (#349)

	add can?/4 policy utility

 Improvements:

	add default guide to doc_index

 v1.52.0-rc.19 (2022-07-13)

 Bug Fixes:

	make mnesia and ets work properly when sharing tables

	make updates properly merge with mnesia and ets

	attribute_writable? also makes it public

 Improvements:

	code_interface optional arguments

	improve behavior of lazy?: true option

 v1.52.0-rc.18 (2022-07-10)

 Bug Fixes:

	fix doc links and include in release

 v1.52.0-rc.17 (2022-07-06)

 Bug Fixes:

	add back in writable? option to relationships, and add attribute_writable? to belongs_to

	don't rescue arbitrary exception/exits

 Improvements:

	add back in DSL docs

	add match_other_defaults? to attribute

 v1.52.0-rc.16 (2022-07-05)

 Bug Fixes:

	fix return type for dump/3 ecto type

	load/3 returns {:ok, value} | :error

 Improvements:

	remove relationship writability, as it all happens through arguments now

	repurpose writable? on belongs_to to make the attribute writable

 v1.52.0-rc.15 (2022-06-28)

 Bug Fixes:

	ensure type is always set on attributes

 v1.52.0-rc.14 (2022-06-28)

 Bug Fixes:

	don't try to read files that don't exist

 Improvements:

	new timeout error message and test it

 v1.52.0-rc.13 (2022-06-27)

 Bug Fixes:

	bad return value for destroy! + return_notifications?: true

	use digraph to order transformers

	things breaking due to stricter expectations on type function inputs

	depend on all entries in registry

 Improvements:

	Ash.Generator

	add Ash.Seed module with seed helpers

	add basic type handling for non embedded resources

	better transformer ordering error

	don't pay massive costs of a function undefined error

	optimize related resource inclusion check

 v1.52.0-rc.12 (2022-06-14)

 Bug Fixes:

	don't disable lexical tracker for extensions

	properly set the changed? context

	always return all notifications if return_notifications?: true

	read file at compile time for doc index

	when casting atom -> string, stringify it first

 Improvements:

	add resource to notification warning

	add config :ash, :pub_sub, debug?: true

	add from to notification, and notification_metadata to api

 v1.52.0-rc.11 (2022-06-03)

 Bug Fixes:

	move preparation init to runtime

	don't automatically url encode keyset values

	fixed bug where embedded resources would always provide defaults, not allowing you to declare your own (primary?) actions (#339)

	keyset pagination counts all rows

	fetch items closest to cursor by reversing keyset sort

	keyset + before results must be reversed

 Improvements:

	add identity_priority and use_identities option to manage_relationship

	support limit in simple data layer

	add key to InvalidKeyset error

 v1.52.0-rc.10 (2022-05-30)

 Improvements:

	better error message on invalid keyset

	added options to the built-in function relate_actor/1 (#332)

	add :_pkey shortcut in pub_sub

	validate pre_check_with is set for ets/mnesia identities

	clearer and raised error message on changeset action mismatch

	accept atoms when casting strings

 v1.52.0-rc.9 (2022-05-23)

 Bug Fixes:

	rename interval to duration_name

	Fix concat (#326)

	Make get and get! consistent with what they raise when no record found (#325)

 Improvements:

	specify that upserts could be related at creation

 v1.52.0-rc.8 (2022-05-18)

 Bug Fixes:

	add resource/action to policy error context

 v1.52.0-rc.7 (2022-05-18)

 Bug Fixes:

	don't ignore lazy load option

 v1.52.0-rc.6 (2022-05-18)

 Bug Fixes:

	return {:ok, nil} on nil cast for strings

 v1.52.0-rc.5 (2022-05-17)

 Improvements:

	move ash_policy_authorizer into core as Ash.Policy.Authorizer

 v1.52.0-rc.4 (2022-05-17)

 Bug Fixes:

	run after_action in create properly

 v1.52.0-rc.3 (2022-05-17)

 Bug Fixes:

	require calculations specified on resource load

 v1.52.0-rc.2 (2022-05-13)

 Bug Fixes:

	ensure that the default accept is used

	distinct before limit and offset

	add distinct in data_layer_query

	merge calculations when merging loads

	add no_depend_modules for changes/validations

	match on :unknown not {:ok, :unknown}

	run calc in data layer if it returns :unknown

	don't ignore lexical tracker on modules in DSL

	don't treat single actions of a type as primary

	render contributor images correctly in hexdocs (#321)

	go back to old method of checking for resource

	properly load from load statement in calculations

	send notifications in all cases

	use unpaginated read when loading

	properly handle errors in mnesia transactions

	default custom steps to be async?: false

	get tests/dialyzer passing

 Improvements:

	work on module dependencies

	use new no_depend_modules everywhere

	add no_attributes? relationships

	add manual read actions

	calculation values from requests

	small optimizations

	more flow features/fixes, debug step

	work on transaction flow steps

 v1.52.0-rc.1 (2022-04-19)

 Bug Fixes:

	Handle date type cast_input with nil value (#311)

	fix expression logic

	don't throw away timeout exit

	timeouts @ the engine, not the parent process

	timeout logic was timing out after the fact

	uniqueify list_refs even further

	flaky test issue

	Enforce unique action names (#308)

	pass tenant option to requests properly

	Fix typespecs in Ash.Api (#307)

	fix resource relationship validation

	fix paths for load in flow

	aggregate/calculation filter issues

	show error message in NoSuchResource

	import builtin preparations in global preparations block

 Improvements:

	load on cast_stored in embedded type

	add descriptions to mermaid charts/flow

	tons of engine/timeout improvements

	implement NaiveDateTime type (#312)

	Improve usability of finding by primary key (ID) (#294)

	Add time type matching existing date type (#310)

	flow -> mermaid chart

	flow tenants

	fix nested map statements in flow

	add dynamic allow list

	uniqify list_references

	set default timeout to 30_000

	remove coverage from CI

	fully deprecate the resource entity

	add eager validate identities

	percolate nil values in operators in ash expression language (like SQL)

	add return_destroyed? option

	add api option to relationships

	make default actions and primary actions far more explicit

	better error messages on unknown

	better loading behavior for managed relationships

	add lazy? option for loading

	show value in atom error list

	add modify_query callback

	add overview

	add build_entity!

	properly parse {:_ref, path, name}

	add deselect to build

	validates attributes and relationships have unique names (#300)

	validate no embeds in api

 v1.52.0-rc.0 (2022-03-25)

 Features:

	add Ash.Flow

	support recursive DSL entities.

	manual relationships

 Bug Fixes:

	add load option convenience for reads/code interface

	handle errors in all action types where changeset wasn't resolved

	always sanitize requests before we spawn them

	context name in loading manual relationships

	get aggregate query from proper engine path

	handle error case in create

	don't require attributes if an argument overrides them

	fix hanging issue when adding engine requests

	don't require writable?: false attributes

	pull aggregate values properly

	fix nested section configs having wrong path

	don't rescue errors in resource_formatter

	add input/2 to resource modules

	move back to more efficient formatter

	make the formatter safer, again

	typo in changeset.ex (#291)

 Improvements:

	properly attach authorization_filters to loaded items

	add ref template helper

	add transaction steps to flow

	unimport to avoid name collisions in nested DSLs

	disable lexical tracker when expanding aliases

	temporarily move init to runtime for changes

 v1.51.2 (2022-02-17)

 Bug Fixes:

	don't blow away sections when formatting

	properly reorder sections in the formatter

 v1.51.1 (2022-02-17)

 Bug Fixes:

	solve reorder bugs in formatter

 v1.51.0 (2022-02-14)

 Features:

	add source option to attributes

 v1.50.21 (2022-02-14)

 Improvements:

	add cast_in_query?/0 to Ash.Type

 v1.50.20 (2022-02-11)

 Improvements:

	small data layer improvements

 v1.50.19 (2022-02-07)

 Bug Fixes:

	include a missing module

	properly set filterability on attributes

 v1.50.18 (2022-02-07)

 Bug Fixes:

 Improvements:

	initial implementation of ash resource formatter

	ensure no reserved names can be used as constraints

 v1.50.17 (2022-01-31)

 Improvements:

	optimize if and is_nil functions

 v1.50.16 (2022-01-24)

 Bug Fixes:

	use ash_struct_fields to accumulate schema struct field defaults

 v1.50.15 (2022-01-19)

 Bug Fixes:

	don't call add_aggregates w/ a map

	allow new filter pattern in typespec

 Improvements:

	add where to change

	support data layers bulk adding aggregates

 v1.50.14 (2021-12-21)

 Bug Fixes:

	fix recursion in do_reverse_relationship_path/3

 Improvements:

	add more authorizer state management

	customizable exception for authorizers

 v1.50.13 (2021-12-21)

 Bug Fixes:

	properly construct reverse relationship paths

 Improvements:

	cover more potential cases in filter parsing

 v1.50.12 (2021-12-19)

 Bug Fixes:

	support new versions of ecto's struct fields

	fixes for elixir_sense plugin

 v1.50.11 (2021-12-13)

 Improvements:

	add elixir_sense extension, to be merged when ready (#275)

 v1.50.10 (2021-12-08)

 Improvements:

	add Ash.DataLayer.Simple.set_data/2

	complete mutually_exclusive_and_collectively_exhaustive logic

 v1.50.9 (2021-12-06)

 Bug Fixes:

	undo an unnecessary contains change

	WIP attempt to resolve ci_string typing errors

 Improvements:

	catch more equivalencey cases around is_nil in sat solver

 v1.50.8 (2021-12-01)

 Bug Fixes:

	case clause error in Query.equivalent_to?

 v1.50.7 (2021-12-01)

 Bug Fixes:

	missing rename on refactor

	typo in unquote

	mark contains as a predicate

 Improvements:

	expose small filter helpers

	make to_simple_filter fail better, add failure option

 v1.50.6 (2021-11-26)

 Improvements:

	add Transformer.eval/3 (for special use cases only)

 v1.50.5 (2021-11-25)

 Improvements:

	track defaults being set

 v1.50.4 (2021-11-17)

 Improvements:

	add Ash.Query.equivalent_to/2

 v1.50.3 (2021-11-17)

 Improvements:

	add subset_of? and superset_of? query macros

 v1.50.2 (2021-11-13)

 Bug Fixes:

	run calculations inline by default

	use Date.add when using LessThanOrEqual with date value (#281)

	cast nil input on strings

 Improvements:

	support do/else blocks in if

	support cond

 v1.50.1 (2021-11-09)

 Bug Fixes:

	simplify and improve allow_nil checking

 v1.50.0 (2021-11-09)

 Breaking Changes:

	breaking!: explicitly setting a value to nil on create no longer falls back to the default value

 v1.49.0 (2021-11-03)

 Bug Fixes:

	don't ask the data layer to sort if no sort is applied

	set tenant at start of query build (#278)

 Improvements:

	still filter in cases w/o a lateral join on load

 v1.48.0-rc.30 (2021-11-01)

 Bug Fixes:

	set storage_type to :uuid for Ash.Type.UUID

 Improvements:

	only_when_valid? on changes

 v1.48.0-rc.29 (2021-10-29)

 Bug Fixes:

 v1.48.0-rc.28 (2021-10-29)

 Bug Fixes:

	add changes from last release that I forgot

 v1.48.0-rc.27 (2021-10-29)

 Improvements:

	compile time optimizations via configuration

 v1.48.0-rc.26 (2021-10-28)

 Bug Fixes:

	correctly handle errors in validate_required_belongs_to (#276)

	set actor when loading to manage belongs_to

	cast to string before concatenating

 Improvements:

	set action into data layer context

 v1.48.0-rc.25 (2021-10-25)

 Bug Fixes:

	always lateral join for many to many relationships

 Improvements:

	add default option for aggregates

 v1.48.0-rc.24 (2021-10-25)

 Bug Fixes:

	unset load when running calculation queries

 Improvements:

	add allow_async? to calculations, default to false

	add elixir evaluation step to expression calculations

	global resource preparations

 v1.48.0-rc.23 (2021-10-24)

 Bug Fixes:

	breaking change! disambiguating functions in keyword filter syntax

 v1.48.0-rc.22 (2021-10-23)

 Bug Fixes:

	use correct typespec for Ash.Sort.parse_input/2

 v1.48.0-rc.21 (2021-10-22)

 Improvements:

	add get? metadata

 v1.48.0-rc.20 (2021-10-21)

 Improvements:

	custom error paths for managed relationships

 v1.48.0-rc.19 (2021-10-20)

 Bug Fixes:

	honor get_by and get_by_identity on bang (!) interfaces

 v1.48.0-rc.18 (2021-10-20)

 Improvements:

	add get_by and get_by_identity to code interface

	compile time validations for managed relationships

 v1.48.0-rc.17 (2021-10-19)

 Bug Fixes:

	don't require primary actions if disabled

 v1.48.0-rc.16 (2021-10-19)

 Improvements:

	add primary_actions? option

 v1.48.0-rc.15 (2021-10-15)

 Bug Fixes:

	don't validate allow_nil in attribute casting

 v1.48.0-rc.14 (2021-10-13)

 Bug Fixes:

	fix code interface on resources

 Improvements:

	breaking change! api level code interface removed, contact me on discord if you want a way to avoid changing to resource-based interface, but otherwise

	use proper equality checking in places where we were using simple elixir equality checking

 v1.48.0-rc.13 (2021-10-12)

 Bug Fixes:

	honor base query still when removing filters

 v1.48.0-rc.12 (2021-10-11)

 Bug Fixes:

	move related field validations to resource

	remove join_attributes, which didn't do anything anyway

 Improvements:

	add resource registry validation

 v1.48.0-rc.11 (2021-10-09)

 Bug Fixes:

	handle errors when validation calculation constraints

	remove certain modules from avoiding recompilation

 Improvements:

	support module_prefix for dsl extensions

 v1.48.0-rc.10 (2021-10-07)

 Bug Fixes:

	remove certain modules from avoiding recompilation

 v1.48.0-rc.9 (2021-10-07)

 Improvements:

	deprecation!

 v1.48.0-rc.8 (2021-10-06)

 Bug Fixes:

	make arrays default to nil_items?: false

 Improvements:

	breaking change! don't define code interface by default

 v1.48.0-rc.7 (2021-09-30)

 Bug Fixes:

	ensure changeset is up to date in after_action hooks

	fix a case where unwrap_or_raise! returned the wrong value on destroy

	fix typo on lateral join checker

	set default attribute type (in case it is explicitly set to nil) on belongs_to attributes

	if an error with no message is produced, don't attempt to concat nil with a string

 Improvements:

	simpler patterns around soft destroy actions

	add set_option/4 to transformer helpers

	add where option to validate that accepts a list of validations

	prevent more unnecessary lateral joins

	only issue a lateral join when required (#269)

 v1.48.0-rc.6 (2021-09-20)

 Bug Fixes:

	support on for global changes

	return proper result when input is struct

	remove File.read! from docs

 Improvements:

	skip resource action if no changes have been made

	add changing_attributes?/1 to determine if any attributes are changing

	add global changes

 v1.48.0-rc.5 (2021-09-17)

 Improvements:

	upgrade docs/tooling for elixir_sense

	set docs statically

 v1.48.0-rc.4 (2021-09-17)

 Improvements:

	improvements for elixirsense integration

 v1.48.0-rc.3 (2021-09-16)

 Improvements:

	transformer/extension improvements

	add path to errors

 v1.48.0-rc.2 (2021-09-15)

 Bug Fixes:

	set tenant properly on create interface

	update type spec for Ash.Sort to include single atom instead of only list. (#263)

 Improvements:

	support non-endpoint pubsub adapters

 v1.48.0-rc.1 (2021-09-13)

 Bug Fixes:

	check action type properly in attribute validations

 v1.48.0-rc.0 (2021-09-13)

 Breaking Changes:

	update ecto version

 Bug Fixes:

	pass constraints to sub-fields loaded in embeddable resources

	take creates into account w/ attribute_equals and attribute_does_not_equal

	set changeset in destroy authorization request

 Improvements:

	use paramaterized types under the hood

 v1.47.12 (2021-09-12)

 Bug Fixes:

	return not found in all cases on get

	don't allow get! to return nil

	don't do db filters on creation

	honor allow_nil_input in required validations

 Improvements:

	add after_action option to create/update

	add config :ash, disable_async?: true

	add meta[:order] option for managed relationships

 v1.47.11 (2021-08-29)

 Bug Fixes:

	hydrate metadata types

 Improvements:

	remove metadata from read actions

 v1.47.10 (2021-08-29)

 Bug Fixes:

	update to latest picosat_elixir for releases

	cast nil enum values properly

	set api in destroy action hooks

 Improvements:

	support action level metadata

	add on_match: :destroy option

	if a map is given for a list, take it's keys

	set better error paths for invalid relationships

	include api in changeset inspect

 v1.47.9 (2021-08-11)

 Bug Fixes:

	set argument defaults early

	don't add indices to non-list inputs in managed relationships

 v1.47.8 (2021-08-05)

 Bug Fixes:

	stop managed relationships from sourcing wrong data

 v1.47.7 (2021-08-04)

 Bug Fixes:

	redact fields in the resource struct as well

	allow before_action to manage belongs_to relationships

	load belongs to relationships before managing them

	don't lookup nil input

	don't look for matches for nil

	don't accept list inputs for managed belongs_to

	don't use list inputs in belongs_to managed

	remove belongs to related after action

	fix more cases where belongs_to isn't replaced

 v1.47.6 (2021-08-01)

 Bug Fixes:

	honor on_missing: behavior for belongs_to relationships

	properly remove old belongs_to records

 v1.47.5 (2021-07-28)

 Bug Fixes:

	set source_query tenant in lateral join

 Improvements:

	add belongs_to attributes after the others

 v1.47.4 (2021-07-25)

 Improvements:

	pull relationship paths out of functions

 v1.47.3 (2021-07-23)

 Bug Fixes:

	no need to trap exits anymore

 v1.47.2 (2021-07-23)

 Bug Fixes:

	don't match on explicitly :exit

 v1.47.1 (2021-07-23)

 Bug Fixes:

	catch normal exit message from engine

	flush engine state always

 v1.47.0 (2021-07-22)

 Features:

	Ash.Resource.Info: add &public_field/2 helper (#254)

	Ash.Resource.Info: add &sortable?/3 helper

 Bug Fixes:

	load calculations from sorts properly

	rename conflicting test name

	fix complex attribute check

	disallow aggregate/calculation sorting w/ keyset pagination

 v1.46.13 (2021-07-21)

 Bug Fixes:

	ensure calculation compiled

	don't limit/offset aggregate queries

 v1.46.12 (2021-07-20)

 Bug Fixes:

	call get_type in cast_stored again

 v1.46.11 (2021-07-19)

 Improvements:

	speed up type loading

	add __order__ field to be used by data layers

 v1.46.10 (2021-07-18)

 Bug Fixes:

	missing apply_attributes clause

 Improvements:

	add force? option to apply_attributes/2

 v1.46.9 (2021-07-18)

 Bug Fixes:

	demonitor engine pid after run

 v1.46.8 (2021-07-18)

 Bug Fixes:

	on_lookup read is always on destination

 v1.46.7 (2021-07-17)

 Bug Fixes:

	set item constraints properly

 Improvements:

	add on_lookup_read_action

 v1.46.6 (2021-07-15)

 Bug Fixes:

	fix simple data layer filtering

 Improvements:

	add in error paths for managed relationships

	set error paths on managed rels

 v1.46.5 (2021-07-09)

 Improvements:

	always replace error message vars

	minimize relationship source changeset context inspect size

 v1.46.4 (2021-07-08)

 Bug Fixes:

	cast empty string to nil in atom

	accept strings for atom types again

	don't turn strings to atoms in :atom type

	don't do unnecessary validation in type

 v1.46.3 (2021-07-05)

 Bug Fixes:

	build aggregate paths properly

 v1.46.2 (2021-07-04)

 Improvements:

	info only required? flag for has_one

 v1.46.1 (2021-07-02)

 Bug Fixes:

	properly determine reverse aggregate relationship

	ensure calculation modules are compiled

	attempt to fix calculation compile time issues

 v1.46.0 (2021-07-02)

 v1.45.0-rc20 (2021-07-01)

 Bug Fixes:

	allow sorting on aggs, w/o loading

	ensure query in ensure_selected

	handle sorting empty data properly

	manage ets tables properly

	link request handler to engine and runner, solve mem leak

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	if "" fails to cast, cast it as nil instead

	ReadActionRequiresActor error

	ensure_selected change

	don't perform match on nil

	add {:arg, :name} input for set_attribute

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc19 (2021-06-29)

 Bug Fixes:

	ensure query in ensure_selected

	handle sorting empty data properly

	manage ets tables properly

	link request handler to engine and runner, solve mem leak

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	if "" fails to cast, cast it as nil instead

	ReadActionRequiresActor error

	ensure_selected change

	don't perform match on nil

	add {:arg, :name} input for set_attribute

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc18 (2021-06-28)

 Bug Fixes:

	handle sorting empty data properly

	manage ets tables properly

	link request handler to engine and runner, solve mem leak

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	if "" fails to cast, cast it as nil instead

	ReadActionRequiresActor error

	ensure_selected change

	don't perform match on nil

	add {:arg, :name} input for set_attribute

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc17 (2021-06-28)

 Bug Fixes:

	link request handler to engine and runner, solve mem leak

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	if "" fails to cast, cast it as nil instead

	ReadActionRequiresActor error

	ensure_selected change

	don't perform match on nil

	add {:arg, :name} input for set_attribute

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc16 (2021-06-25)

 Bug Fixes:

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	add {:arg, :name} input for set_attribute

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc15 (2021-06-25)

 Bug Fixes:

	ensure ci_strings casted after constraints

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	revamp ci_string

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc14 (2021-06-24)

 Bug Fixes:

	Revert "more optimized types"

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc11 (2021-06-24)

 Bug Fixes:

	revert a suboptimal change to the type system

	don't call type() on :string

	optimize ash type loading

 Improvements:

	add Ash.Type.type/1

	more optimized types

 v1.45.0-rc10 (2021-06-24)

 Bug Fixes:

	optimize ash type loading

 v1.45.0-rc9 (2021-06-23)

 Bug Fixes:

	pass opts through to Jason.Encode.string/2

 Improvements:

	add error_handler for create/update/destroy actions

 v1.45.0-rc8 (2021-06-23)

 Bug Fixes:

	properly encode ci string to json

 Improvements:

	more engine logging

 v1.45.0-rc7 (2021-06-22)

 Bug Fixes:

	:infinity on engine genserver calls

 v1.45.0-rc6 (2021-06-08)

 Bug Fixes:

	hide metadata field on inspect

	load relationships required for calculations (optimize later)

 v1.45.0-rc5 (2021-06-08)

 Bug Fixes:

	don't halt on request handler failure

	properly error when more than 2 requests of the same type are primary

	properly process sort when the sort is an atom

	properly calculate reverse relationship paths

 v1.45.0-rc4 (2021-06-05)

 Improvements:

	support calculation sorts

 v1.45.0-rc3 (2021-06-05)

 Bug Fixes:

	always wait on the engine if it hasn't completed

 v1.45.0-rc2 (2021-06-04)

 Bug Fixes:

	always wait for engine

 Improvements:

	spawn async requests where possible

 v1.45.0-rc1 (2021-06-04)

 Bug Fixes:

	constraints on calculations

	better calculation inspect

	allow supplying stacktraces when building errors

 v1.45.0-rc0 (2021-06-04)

 Features:

	expression based calculations for filterable/sortable calculations

	expression calculations for sorting/filtering

	add compare validator (#242)

 Bug Fixes:

	aggregate authorization issues

	ensure create functions generated by code_interface accept tenant in the opts list (#243)

 Improvements:

	tons of improvements across the board

	small improvements/fixes across the board

	Update remaining builtin validators (#244)

 v1.44.13 (2021-05-28)

 Bug Fixes:

	properly process managed belongs to relationships

	cast nil -> {:ok, nil} in all cases

	set tenant even on non-tenant resources where relevant (#241)

 v1.44.12 (2021-05-23)

 Improvements:

	define embedded schemas where appropriate

 v1.44.11 (2021-05-20)

 Improvements:

	calculation.select/2 + select calculation option

 v1.44.10 (2021-05-20)

 Bug Fixes:

	run after_action hooks in the proper order

 Improvements:

	add validate_destination_attribute?

	add builtin select change

 v1.44.9 (2021-05-20)

 Improvements:

	set moduledoc to description if one is not set

 v1.44.8 (2021-05-19)

 Bug Fixes:

	fix dialyzer errors for enum + code interface

 v1.44.7 (2021-05-19)

 Bug Fixes:

	fix code interface + args combo error

 Improvements:

	support specifying the upsert_identity option

 v1.44.6 (2021-05-18)

 Bug Fixes:

	ignore?: true still accumulates changes

	properly require_attributes before setting defaults

 v1.44.5 (2021-05-18)

 Bug Fixes:

	set default values before calling resource changes

 Improvements:

	ignore? option for manage_relationship change

 v1.44.4 (2021-05-17)

 Bug Fixes:

	reverse-reverse relationship detection

 v1.44.3 (2021-05-17)

 Bug Fixes:

	support non-predicates in satsolver

 v1.44.2 (2021-05-15)

 Bug Fixes:

	raise better error w/ invalid filter expression

 Improvements:

	expose default_value/1 in aggregate

	transactions for reads, notifications from read callbacks

 v1.44.1 (2021-05-14)

 Bug Fixes:

	handle error return in code_interface getter

 v1.44.0 (2021-05-14)

 Features:

	on_no_match: :match supported for to_one rels

 Bug Fixes:

	rename context -> relationship_context to avoid conflict

 Improvements:

	various managed relationship improvements

 v1.43.12 (2021-05-11)

 Improvements:

	set __source__ context for embeds

	utility manage_relationship_source context

 v1.43.11 (2021-05-09)

 Bug Fixes:

	internal rename (requires version bump for other packages)

 v1.43.10 (2021-05-09)

 Bug Fixes:

	run action changes on destroy

	pattern match manage_relationship notifications fix

 Improvements:

	add manual? option for create/update/destroy

	ensure data layer can perform aggregates

 v1.43.9 (2021-05-09)

 Bug Fixes:

	don't fail on nil root filters

 Improvements:

	support filtering on related aggregates

	autoload aggregates used in filters

 v1.43.8 (2021-05-07)

 Bug Fixes:

	don't raise unnecessary side load error

 v1.43.7 (2021-05-07)

 Improvements:

	fix data-based side loads

 v1.43.6 (2021-05-07)

 Bug Fixes:

	IsNil function to IsNil operator

	function clause match error in not expression

 v1.43.5 (2021-05-07)

 Bug Fixes:

	limit 1 on to one side load queries

 v1.43.4 (2021-05-07)

 Improvements:

	support sorted relationships

 v1.43.3 (2021-05-06)

 Bug Fixes:

	don't consider contextual relationships as reverse relationships

	support not in query expressions

 v1.43.2 (2021-05-04)

 Bug Fixes:

	include aggregates in count request for aggregate filters

 v1.43.1 (2021-05-04)

 Bug Fixes:

	use base_query for aritifical limit/offset when loading

 v1.43.0 (2021-05-03)

 Features:

	rework lateral joins for many to many performance boost

 Improvements:

	add read_action option

 v1.42.0 (2021-04-29)

 Features:

	inner lateral join for many to many relationships

 Improvements:

	inner later join for many to many relationships

	support relationship filters

 v1.41.12 (2021-04-27)

 Improvements:

	add has filter predicate

 v1.41.11 (2021-04-26)

 Improvements:

	add :list aggregate kind

 v1.41.10 (2021-04-25)

 Bug Fixes:

	don't include NotLoaded in manage_relationship

 v1.41.9 (2021-04-23)

 Bug Fixes:

	compile time fixes

 Improvements:

	add require_attributes to create/update/destroy

 v1.41.8 (2021-04-21)

 Bug Fixes:

	don't consider nils for pkey matching

 Improvements:

	add first class support for enum types

	Add detailed parameter checking for Api read functions (#229)

 v1.41.7 (2021-04-18)

 Bug Fixes:

	clearer errors when resource fails to compile

	don't preload multiplicatively

	Decimal casting issues on ash_postgres (#227)

 Improvements:

	add list access to context

	add Resource.input/1

 v1.41.6 (2021-04-16)

 Bug Fixes:

	use items for single constraints

 v1.41.5 (2021-04-15)

 Bug Fixes:

	don't overwrite select in side_load

 v1.41.4 (2021-04-15)

 Bug Fixes:

	load relationships for management properly

	fetch_key bug in embedded types

	handle_indexed_maps for embedded types

 v1.41.3 (2021-04-14)

 Bug Fixes:

	handle no key provided to NotFound

 v1.41.2 (2021-04-13)

 Bug Fixes:

	embedded cast_stored must cast all key/values

	ci_string constraints when nil

	manage_relationship change turns embedded resources to maps

	fixes for common types parsing from embedded, e.g utc_datetime_usec

 Improvements:

	special provisions for casting to embedded type (e.g uuid)

 v1.41.1 (2021-04-13)

 Bug Fixes:

	get! should raise on nil not {:ok, nil}

 v1.41.0 (2021-04-13)

 Features:

	change get?: true interface functions to raise on nil

 Bug Fixes:

	allow_nil -> allow_nil_input

	allow api.load/2 to load calculations

 Improvements:

	add allow_nil_input to create actions for api layers

	add load/1 builtin change

 v1.40.0 (2021-04-13)

 Features:

	change get?: true interface functions to raise on nil

 Bug Fixes:

	allow api.load/2 to load calculations

 Improvements:

	add allow_nil_input to create actions for api layers

	add load/1 builtin change

 v1.39.7 (2021-04-12)

 Bug Fixes:

	always select necessary load fields for nested loads

 v1.39.6 (2021-04-10)

 Bug Fixes:

	always select necessary fields for side loading

 v1.39.5 (2021-04-09)

 Bug Fixes:

	logic bug in selecting specific fields

 v1.39.4 (2021-04-09)

 Improvements:

	support the datalayer selecting fields in reads

 v1.39.3 (2021-04-04)

 Improvements:

	add sum aggregate (#221)

 v1.39.2 (2021-04-04)

 Improvements:

	allow specifying that calculation can't be nil (#220)

 v1.39.1 (2021-04-03)

 Bug Fixes:

	update struct_field logic for latest ecto

	apply proper interface operation when opts aren't passed

 v1.39.0 (2021-04-01)

 Features:

	support Ash.Query.distinct/2

	add build/2 query preparation

 Bug Fixes:

	managerelationships _before after_action callbacks

 Improvements:

	before_action? on validate, validate inline

 v1.38.0 (2021-03-31)

 Features:

	support Ash.Query.distinct/2

	add build/2 query preparation

 Bug Fixes:

	managerelationships _before after_action callbacks

 v1.37.2 (2021-03-29)

 Bug Fixes:

	don't overwrite managed belongs_to relationships

	handle on_lookup + on_no_match for belongs_to

	fix required relationships and add test

	fix required relationships

	various managed_relationship fixes

 v1.37.1 (2021-03-28)

 Bug Fixes:

	fix required relationships and add test

	fix required relationships

	various managed_relationship fixes

 v1.37.0 (2021-03-25)

 Features:

	add manage relationship types

 Improvements:

	don't accept relationships on actions anymore

	require arguments

 v1.36.22 (2021-03-24)

 Bug Fixes:

	add tenant metadata before after action hooks

 v1.36.21 (2021-03-24)

 Bug Fixes:

	support type aliases in more type casting functions

	support tenant option in read interface

 v1.36.20 (2021-03-24)

 Bug Fixes:

	support tenant option in read interface

 v1.36.19 (2021-03-22)

 Bug Fixes:

	always return changeset when runner failed

 v1.36.18 (2021-03-22)

 Improvements:

	docs + dialyzer + error improvements

 v1.36.17 (2021-03-22)

 Bug Fixes:

	don't require values when managing relationships

	Revert "fix: force_change_attributes before passing to action"

 v1.36.16 (2021-03-22)

 Bug Fixes:

	force_change_attributes before passing to action

 v1.36.15 (2021-03-21)

 Bug Fixes:

	exception on invalid query arguments

	allow casting strings as uuids (for embedded types)

 Improvements:

	retain actor context from changeset

 v1.36.14 (2021-03-21)

 Improvements:

	Add float type (#204)

 v1.36.13 (2021-03-20)

 Bug Fixes:

	avoid exception in Changeset.new/2 for bad attribute

	use ecto's uuid type under the hood

 Improvements:

	raise informative errors on bad inputs to for_*

 v1.36.12 (2021-03-19)

 Improvements:

	make Ash.Error a public module

 v1.36.11 (2021-03-19)

 Improvements:

	docs/default value for params

 v1.36.10 (2021-03-19)

 Bug Fixes:

	set source_attribute when replacing belongs_to relationship

	don't consider false as absent value

	set argument name in manage_relationship

 Improvements:

	trim whitespace in uuid

 v1.36.9 (2021-03-18)

 Improvements:

	improve the behavior of defaults

 v1.36.8 (2021-03-17)

 Bug Fixes:

	validate required attributes after before_action hooks

 v1.36.7 (2021-03-17)

 Improvements:

	discard certain empty values for embed input

 v1.36.6 (2021-03-15)

 Bug Fixes:

	forcechange attrs _after for_create/update

	pattern match errors in manage_relationships

	clean up some error cases

	only default accept to public attributes

	allow_nil?: false + default interaction

 v1.36.5 (2021-03-14)

 Bug Fixes:

	remove the as option

 Improvements:

	Add timestamps() attribute (#198)

 v1.36.4 (2021-03-13)

 Bug Fixes:

	properly validate allow_nil?: false on update

	properly validate allow_nil?: false private attributes

 v1.36.3 (2021-03-13)

 Bug Fixes:

	set argument default on cast

 v1.36.2 (2021-03-12)

 Bug Fixes:

	fix pub_sub on update

	fix publish_all pub_sub notifier

 Improvements:

	derive has_one destination_attribute

	finalize code API logic

	add not_found_message + violation_message for relationships

	support get_by_<identity> in interface

	support sublists in pub_sub topics

	support :_tenant in pub_sub topics

 v1.36.1 (2021-03-09)

 Bug Fixes:

	properly filter aggregates

 Improvements:

	accept tenant in for_read

 v1.36.0 (2021-03-08)

 Features:

	functional interface on the Api module

	resource aliases

 Improvements:

	update interface to accept query/changesets

	require completely unique action names

 v1.35.1 (2021-03-07)

 Bug Fixes:

	don't reverse sub-entities in DSL

 v1.35.0 (2021-03-07)

 Features:

	support Ash.Query.select/3 and Ash.Changeset.select/3

 v1.34.9 (2021-03-05)

 Improvements:

	ignore destination field on some relationship inputs

 v1.34.8 (2021-03-05)

 Bug Fixes:

	various validation lifecycle fixes

	don't fetch sideloads for empty data

 Improvements:

	various validation lifecycle options

 v1.34.7 (2021-02-26)

 Bug Fixes:

	fix nested boolean expression optimization

 v1.34.6 (2021-02-24)

 Bug Fixes:

	manage_relationship fixes, input + option defaults

 v1.34.5 (2021-02-24)

 Bug Fixes:

	treat empty string as nil in manage_relationship

	be more conservative (and more correct) when optimizing predicates

 v1.34.4 (2021-02-24)

 Bug Fixes:

	treat empty string as nil in manage_relationship

	be more conservative (and more correct) when optimizing predicates

 v1.34.3 (2021-02-23)

 Bug Fixes:

	fix builtin mange_relationship change

 v1.34.2 (2021-02-23)

 Bug Fixes:

	support belongs_to relationships properly

 v1.34.1 (2021-02-23)

 Bug Fixes:

	authorize if actor key is present

 v1.34.0 (2021-02-23)

 Features:

	refactored manage_relationship options/behavior

 Improvements:

	many compile time fixes via code splitting

	Guess destination_attribute for has many relationships (#187)

	Implement string length validation (#183)

 v1.33.1 (2021-02-23)

 Improvements:

	many compile time fixes via code splitting

	Guess destination_attribute for has many relationships (#187)

	Implement string length validation (#183)

 v1.33.0 (2021-02-05)

 Features:

	add default_context

	add manage_relationship/4

	add relationship specific context (for postgres polymorphism)

	add reject (opposite of accept)

 Bug Fixes:

	support manage_relationship for belongs_to

 Improvements:

	set_context change/preparation

	set accept by default

 v1.32.2 (2021-01-28)

 Improvements:

	support {:filter, _} authorization results for changesets

 v1.32.1 (2021-01-27)

 Bug Fixes:

	only run authorization once per request

	don't error on replacing empty relationship with empty

 Improvements:

	support tenant option to get/2

	support message option on identities

 v1.32.0 (2021-01-25)

 Features:

	add after_action for queries

 Bug Fixes:

	default to calculating filters on data_layer_query

 v1.31.1 (2021-01-24)

 Bug Fixes:

	remove invalid boolean expression optimization

 Improvements:

	make form errors work better with phoenix

 v1.31.0 (2021-01-24)

 Features:

	add contains/2 query function

 Bug Fixes:

	various ci_string improvements

 v1.30.2 (2021-01-22)

 Bug Fixes:

	add explicit jason dependency

 v1.30.1 (2021-01-22)

 Bug Fixes:

	update elixir versions in CI

 v1.30.0 (2021-01-22)

 Bug Fixes:

	add action filters in for_read/3

	don't let local runner processes mix up messages

	runtime filter filters properly

 v1.29.0-rc1 (2021-01-21)

 v1.29.0-rc0 (2021-01-21)

 Features:

	freeform expressions

	validatiosn in actions

	query arguments

	add Ash.Query.for_read/3

	return changeset with API errors

	add case insensitive string CiString/:ci_string

	support context/1 and arg/1 in filter templates

	support targeting notifications with the for option

	add ago/2 query function

	add basic arithmetic operators (+, *, -, /)

	sensitive? option for attributes

	sensitive? option for arguments

	private arguments, which canâ��t be set using for_<action>

	add prevent_change which will erase changes just before the changeset is committed

	add match? validation that supports a custom error message

	add interval type to support ago/2 function

	add url_encoded_binary type

	add function type

 Bug Fixes:

	properly expand module aliases for options w/o compile time dependency

 Improvements:

	support all string constraints for ci_string

	changing? is now a validation

	add Transformer.get_persisted/3

	add api field to Notification

	standardize errors, add to_error_class

	use Comp everywhere

	use action on changeset if set by for_<action_type>

	action_failed? field on change sets

	remove ability for data layers to add operators (for now at least)

	Changeset.apply_attributes/2 now returns an error tuple

	add a bunch of new/informative errors

	runtime filter now uses left join logic (a naive implementation of it)

	support more filter templates in resources

	basic/naive type system for operators/functions

	Add trim/allow_empty to string type (#171)

 v1.28.1 (2021-01-12)

 Improvements:

	Improve attribute defaults (#164)

 v1.28.0 (2021-01-12)

 Features:

	Add Embedded Resources (#170)

 Bug Fixes:

	Correct error message (#163)

 Improvements:

	Add built in decimal type (#162)

 v1.27.1 (2021-01-08)

 Bug Fixes:

	fix small sort bugs

 Improvements:

	add Ash.Sort.parse_input/2

 v1.27.0 (2021-01-08)

 Breaking Changes:

	Use usec timestamps by default

 Improvements:

	Add built in usec datetime type (#160) (#161)

 v1.26.13 (2021-01-08)

 Bug Fixes:

	only cast public relationships/attributes

 v1.26.12 (2021-01-08)

 Bug Fixes:

	allow_nil?: false for integer_primary_key

 v1.26.11 (2021-01-08)

 Improvements:

	add for_<action> helpers

 v1.26.10 (2021-01-07)

 Improvements:

	Add built in binary type (#156)

 v1.26.9 (2021-01-06)

 Bug Fixes:

	the __resource__ change broke some extensions

 v1.26.8 (2021-01-06)

 Bug Fixes:

	add back extensions/1 helper to resources

 v1.26.7 (2021-01-06)

 Bug Fixes:

	lazy loaded module issues (e.g in iex)

 Improvements:

	optimize not-in and fix dialyzer

	rework filter creation + subset checking

 v1.26.6 (2020-12-30)

 Bug Fixes:

	validate read action existence

 Improvements:

	support autocompletion on Api funcs

 v1.26.5 (2020-12-30)

 Improvements:

	default actions

 v1.26.4 (2020-12-30)

 Bug Fixes:

	fix compile issues, add docs

 v1.26.3 (2020-12-30)

 Improvements:

	add parse_input/3 to Ash.Filter

 v1.26.2 (2020-12-29)

 Improvements:

	describe operator types

 v1.26.1 (2020-12-29)

 Bug Fixes:

	only accept kw list in aggregate/5

 v1.26.0 (2020-12-29)

 Features:

	support :first aggregate (#153)

	support more sort orders

 v1.25.8 (2020-12-27)

 Bug Fixes:

	separate builders + description in sections

 v1.25.7 (2020-12-27)

 Bug Fixes:

	support examples on dsl sections

 v1.25.6 (2020-12-27)

 Bug Fixes:

	cast string argument names

	uuid/id pkeys should allow_nil

 v1.25.5 (2020-12-23)

 Bug Fixes:

	support operators on both sides for not_eq

 v1.25.4 (2020-12-23)

 Bug Fixes:

	fix filtering for ets + mnesia data layers

 v1.25.3 (2020-12-23)

 Bug Fixes:

	various pagination, runtime, and auth bugs

	default pagination limit triggers pagination

 v1.25.2 (2020-12-06)

 Bug Fixes:

	resolve warning from nimbleoptions deprecation

 v1.25.1 (2020-12-02)

 Improvements:

	support confirming arguments, test allow_nil?

 v1.25.0 (2020-12-02)

 Features:

	support arguments for actions

 v1.24.2 (2020-12-01)

 Bug Fixes:

	various build fixes

	various small utility fixes

	update get-tag

 v1.24.1 (2020-11-08)

 Bug Fixes:

	do not require private attributes in create api (#143)

 v1.24.0 (2020-11-07)

 Features:

	add uuid_primary_key/2 and integer_primary_key/2

 v1.23.3 (2020-11-07)

 Bug Fixes:

	derived belongs_to attributes are required if their parent is

 v1.23.2 (2020-11-06)

 Bug Fixes:

	default create/update timestamps to private?

 v1.23.1 (2020-11-06)

 Bug Fixes:

	set proper pagination defaults

 v1.23.0 (2020-11-03)

 Features:

	Add property: private? for attributes, relationships, aggregates, and calculations (#140)

 v1.22.1 (2020-10-29)

 Improvements:

	support specifying that some options are modules

 v1.22.0 (2020-10-28)

 Features:

	multitenancy! and tons of various fixes (#139)

 v1.21.0 (2020-10-28)

 Improvements:

	trace $callers through engine genservers

 v1.20.1 (2020-10-21)

 Bug Fixes:

	better not_found error handling

 v1.20.0 (2020-10-21)

 Features:

	Optimize relationship records replacement (#135)

 Bug Fixes:

	remove unused code

	various fixes and improvements

 v1.19.1 (2020-10-17)

 Bug Fixes:

	invalid function arg parsing w/ ref

 v1.19.0 (2020-10-17)

 Features:

	pubsub notifier (#134)

 v1.18.1 (2020-10-16)

 Bug Fixes:

	engine hanging on parallel requests

 v1.18.0 (2020-10-15)

 Features:

	add notifiers (#133)

	Add :one_of constraint to the Atom type (#130)

 v1.17.1 (2020-10-12)

 Bug Fixes:

	bugs with keyset pagination

 v1.17.0 (2020-10-12)

 Features:

	Add pagination (#131)

 v1.16.2 (2020-10-10)

 Bug Fixes:

	parse functions properly

 v1.16.1 (2020-10-10)

 Bug Fixes:

	fix dialyzer

	fix certain versions of elixir having issues

 v1.16.0 (2020-10-08)

 Features:

	expression based filter

 v1.15.1 (2020-10-07)

 v1.15.0 (2020-10-06)

 Features:

	filter rewrite to op/function/ref based structure

	added description for missing resources (#117)

 Bug Fixes:

	add module name to errors (#127)

	Fix composite key in changeset functions (#125)

 v1.14.0 (2020-09-24)

 Features:

	descriptions for actions and relationships (#116)

 Bug Fixes:

	typespec/error message improvements

 v1.13.4 (2020-09-21)

 Bug Fixes:

	upgrade picosat dependency

	correct comment in UUID type (#115)

 v1.13.3 (2020-09-19)

 Features:

	set_attribute builtin change

	(greater_than/less_than)_or_equal predicates

	support deletes as updates via "soft"

	support base_filters

 Bug Fixes:

	less_than predicate was flipped for runtime

 v1.13.2 (2020-09-07)

 Bug Fixes:

	remove delegate data layer (#112)

	delete process/global storage properly

 v1.13.1 (2020-09-04)

 Bug Fixes:

	Fix identities (#110)

 v1.13.0 (2020-09-02)

 Features:

	required belongs_to relationships (#107)

	support filter templates on read actions

	builtin concat calculation

	add changes to actions (#106)

	add accept option to create/update actions (#105)

	add Ash.NotLoaded back, simpler defaults

	improve errors (add stacktraces)

 Bug Fixes:

	various delegate data layer improvements

	engine halting issues

	resolve engine deadlocks

	support nested lists of filters

 v1.12.0 (2020-08-27)

 Features:

	add one_of validation

	add simple data layer, and make it default

 Bug Fixes:

	allow anonymous functions in the dsl

 v1.11.1 (2020-08-26)

 Bug Fixes:

	only update filter when its a filter

	set resource in delegation query

 v1.11.0 (2020-08-26)

 Features:

	support inner lateral joins (#100)

	add identities, to enhance get calls (#99)

	initial calculation support (#98)

	initial calculation support

 Bug Fixes:

	spec + dialyzer fixes

	spec mix task run as no_return

 v1.10.0 (2020-08-22)

 Features:

	Add delegate data_layer (#97)

 v1.9.0 (2020-08-19)

 Features:

	various custom data_layer features

 v1.8.0 (2020-08-18)

 Features:

	streamline load by accepting ok/error

 Bug Fixes:

	extensions: resolve duplicate nested entities

	use Ecto's NotLoaded for assocs for now

	create/update typespecs were wrong

 v1.7.0 (2020-08-17)

 Features:

	add is_nil predicate

 Bug Fixes:

	add lexical scope to DSL for imports

	crash on entity w/ no options specified

	convert eq: nil into is_nil, fix credo

 v1.6.8 (2020-08-15)

 Bug Fixes:

	some day tag names will work

 v1.6.7 (2020-08-15)

 Bug Fixes:

	get the tag name for real this time

 v1.6.6 (2020-08-15)

 Bug Fixes:

	try again to get the version name in tweets

 v1.6.5 (2020-08-15)

 Bug Fixes:

	get the version property

 v1.6.4 (2020-08-15)

 Bug Fixes:

	test out automatic tweeting

 v1.6.3 (2020-08-15)

 Bug Fixes:

	remove bad package reference from the docs

 v1.6.2 (2020-08-13)

 Bug Fixes:

	various fixes for graphql extension

 v1.6.1 (2020-08-10)

 Bug Fixes:

	load typespecs

 v1.6.0 (2020-08-10)

 Features:

	add named aggregates

 Bug Fixes:

	various fixes from json:api integration

 v1.5.1 (2020-07-24)

 Bug Fixes:

	scope data layer feature to aggregate kind

 v1.5.0 (2020-07-24)

 Features:

	group metadata by path and async?: false

	run aggregates async if not in query

	aggregations!

 v1.4.1 (2020-07-20)

 Bug Fixes:

	simplify dsl building using on_load

 v1.4.0 (2020-07-16)

 Features:

	allow editing join association attributes

 v1.3.1 (2020-07-16)

 Bug Fixes:

	use proper errors everywhere

 v1.3.0 (2020-07-15)

 Features:

	various small refactors + validations

 v1.2.1 (2020-07-13)

 Bug Fixes:

	changeset + set_state issues

 v1.2.0 (2020-07-13)

 Features:

	refactor changes into changesets

 v1.1.3 (2020-07-09)

 v1.1.2 (2020-07-09)

 v1.1.1 (2020-07-09)

 Bug Fixes:

	small fixes

 v1.1.0 (2020-07-09)

 Features:

	lots of docs, simplify query generation

	validate relationship keys

 v1.0.3 (2020-07-08)

 v1.0.2 (2020-07-07)

 v1.0.1 (2020-07-07)

 v1.0.0 (2020-07-07)

 Breaking Changes:

	remove initial subscriptions pass

 Features:

	general improvements

 Bug Fixes:

	in predicate + engine errors

 v0.10.0 (2020-07-02)

 Breaking Changes:

	remove atom type, add docs

 Features:

	list types

	refactor ash types to modules, add constraints

 Bug Fixes:

	remove benchee, ensure mnesia always uses transactions

	try clearing cache to fix CI

	stop gitignoring the mnesia data layer

	try to fix ash.formatter task

	test/improve parallelizable requests

	require that resources have primary keys

 v0.9.1 (2020-06-30)

 Bug Fixes:

	move to simpler transaction logic

 v0.9.0 (2020-06-29)

 Features:

	add less_than and greater_than filter support

	validate all related resources in API

 Bug Fixes:

	fix tests/credo

	fix tests, add tests for gt/lt filters

 v0.8.0 (2020-06-29)

 Features:

	cross data layer filters

	cross data layer filtering

 v0.7.0 (2020-06-27)

 Features:

	section option configuration

 Bug Fixes:

	set persistent_term properly

 v0.6.5 (2020-06-22)

 Bug Fixes:

	use authorization filters in side loads

 v0.6.4 (2020-06-22)

 Bug Fixes:

	remove reverse relationships

 v0.6.3 (2020-06-22)

 Bug Fixes:

	many filter/side load fixes/improvements

 v0.6.2 (2020-06-20)

 Bug Fixes:

	allow side_load option on create/update

 v0.6.1 (2020-06-20)

 Bug Fixes:

	raised error message contents

	parent error messages

	relationship path clause

 v0.6.0 (2020-06-19)

 Features:

	boolean filter refactor (#78)

	predicate behaviour

 v0.5.2 (2020-06-15)

 Bug Fixes:

	consider nested entities in ash.formatter

 v0.5.1 (2020-06-15)

 Bug Fixes:

	compile application in ash.formatter task

 v0.5.0 (2020-06-15)

 Features:

	extension section module imports, generated .formatter.exs (#71)

 v0.4.0 (2020-06-14)

 Features:

	rebuild DSL inner workings for extensibility (#70)

	add after_compile and validate primary key

 Bug Fixes:

	dialyzer warnings

	honor the authorize? flag

 Improvements:

	add date support (#68)

 v0.3.0 (2020-06-05)

 Features:

	remove name/type from ash core

 Bug Fixes:

	account for action/actor args to interface

	remove the rest of the deps on name/type

	add resource_module?/1 back to Ash

 v0.2.0 (2020-06-05)

 Features:

	use option schemas in the interface (#30)

 v0.1.9 (2020-06-04)

 Bug Fixes:

	references to error handling code

	fix empty filter checks

 v0.1.8 (2020-06-02)

This release is a test of our automatic hex.pm package publishing

 v0.1.7 (2020-06-02)

This release is a test of our automatic hex.pm package publishing

 v0.1.6 (2020-06-02)

This release is a test of our automatic hex.pm package publishing

 v0.1.5 (2020-06-02)

This release is a test of our automatic hex.pm package publishing

 v0.1.4 (2020-06-02)

This release covers the initial linting/dialyzing improvements

 (2020-06-01)

 Changelog Begins

Get Started

HexDocs
Hexdocs does not support multi-package search. To assist with this, we provide a mirror of this documentation at ash-hq.org. Use Ctrl+K or Cmd+K to search all packages on that site. For the best way to use the hex documentation, see the hexdocs guide.

 Learn with Livebook

We have a basic step by step tutorial in Livebook that introduces you to Ash. No prior Ash knowledge is required.
The Livebook tutorial is self contained and separate from the documentation below.
[image: Run in Livebook]

 Watch the ElixirConf Talk

 Goals

In this guide we will:
	Create a new Elixir application and add Ash as a dependency
	Create a simple set of resources and show they can be used
	Illustrate some core concepts of Ash
	Point you to good next resources so you can explore Ash further

 Things you may want to read first

	Install Elixir
	Philosophy Guide
	Using Hexdocs

 Requirements

If you want to follow along yourself, you will need the following things:
	Elixir and Erlang installed
	A text editor to make the changes that we make
	A terminal to run the examples using iex

 Steps

For this tutorial, we'll use examples based around creating a help desk.
We will make the following resources:
	Helpdesk.Support.Ticket
	Helpdesk.Support.Representative

The actions we will be able to take on these resources include:
	Opening a new Ticket
	Closing a Ticket
	Assigning a Ticket to a representative

 Create a new project

We first create a new project with the --sup flag to add a supervision tree. This will be necessary for later steps.
In your terminal
mix new --sup helpdesk && cd helpdesk

It is a good idea to make it a git repository and commit the initial project. You'll be able to see what changes we made, and can save your changes once we're done.
Run in your terminal
git init
git add -A
git commit -m "first commit"
git branch -M main

Open the project in your text editor, and we'll get started.

 Add Ash to your application

Add the ash dependency to your mix.exs
defp deps do
 [
 # {:dep_from_hexpm, "~> 0.3.0"},
 # {:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git", tag: "0.1.0"},
 {:ash, "~> 3.0"}, # <-- add this line
 {:picosat_elixir, "~> 0.2"} # <- and this line
]
end

 Picosat Installation Issues

In rare cases, users have trouble installing picosat (usually on windows)
if that is the case, use simple_sat instead. We highly recommend that you
get picosat_elixir working before shipping to production if you intend to use
Ash policies. We've provided simple_sat to get you up and running more easily
and to allow you to explore Ash without roadblocks.
defp deps do
 [
 # {:picosat_elixir, "~> 0.2"} # instead of this
 {:simple_sat, "~> 0.1"} # <- use this
]
end

 Formatting

To ensure that your code stays formatted like the examples here, you can add :ash as an import dependency in your .formatter.exs:
[
 # ...
 import_deps: [..., :ash],
 # ...
]
Note
For more auto-formatting options, see the Auto-Format Code guide.

And run mix deps.get, to install the dependency.

 Building your first Ash Domain

The basic building blocks of an Ash application are Ash resources. They are tied together by a domain module, which will allow you to interact with those resources.

 Creating our first resource

Let's start by creating our first resource along with our first domain. We will create the following files:
	The domain [Helpdesk.Support] - lib/helpdesk/support.ex
	Our Ticket resource [Helpdesk.Support.Ticket] - lib/helpdesk/support/ticket.ex.

To create the required folders and files, you can use the following command in your terminal:
mkdir -p lib/helpdesk/support && touch $_/ticket.ex
touch lib/helpdesk/support.ex

Your project structure should now look like this:
lib/
├─ helpdesk/
│ ├─ support/
│ │ ├─ ticket.ex
│ ├─ support.ex
Add the following to the files we created
lib/helpdesk/support.ex

defmodule Helpdesk.Support do
 use Ash.Domain

 resources do
 resource Helpdesk.Support.Ticket
 end
end
lib/helpdesk/support/ticket.ex

defmodule Helpdesk.Support.Ticket do
 # This turns this module into a resource
 use Ash.Resource, domain: Helpdesk.Support

 actions do
 # Add a set of simple actions. You'll customize these later.
 defaults [:read, :destroy, create: :*, update: :*]
 end

 # Attributes are the simple pieces of data that exist on your resource
 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:subject`
 attribute :subject, :string
 end
end
Next, add your domain to your config.exs
Run the following to create your config.exs if it doesn't already exist
mkdir -p config
touch config/config.exs
and add the following contents to it (if the file already exists, just make sure the config line is added)
in config/config.exs
import Config

config :helpdesk, :ash_domains, [Helpdesk.Support]

 Try our first resource out

Run iex -S mix in your project and try it out.
To create a ticket, we first make an Ash.Changeset for the :create action of the Helpdesk.Support.Ticket resource. Then we pass it to the Ash.create!/1 function.
Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:create)
|> Ash.create!()
This returns what we call a record which is an instance of a resource.
#Helpdesk.Support.Ticket<
 ...,
 id: "c0f8dc32-a018-4eb4-8656-d5810118f4ea",
 subject: nil,
 ...
>

 Customizing our Actions

One thing you may have noticed earlier is that we created a ticket without providing any input, and as a result our ticket had a subject of nil. Additionally, we don't have any other data on the ticket. Lets add a status attribute, ensure that subject can't be nil, and provide a better interface by making a custom action for opening a ticket, called :open.
We'll start with the attribute changes:
lib/helpdesk/support/ticket.ex

attributes do
 ...
 attribute :subject, :string do
 # Don't allow `nil` values
 allow_nil? false

 # Allow this attribute to be public. By default, all attributes are private.
 public? true
 end

 # status is either `open` or `closed`. We can add more statuses later
 attribute :status, :atom do
 # Constraints allow you to provide extra rules for the value.
 # The available constraints depend on the type
 # See the documentation for each type to know what constraints are available
 # Since atoms are generally only used when we know all of the values
 # it provides a `one_of` constraint, that only allows those values
 constraints [one_of: [:open, :closed]]

 # The status defaulting to open makes sense
 default :open

 # We also don't want status to ever be `nil`
 allow_nil? false
 end
end
And then add our customized open action which should take a subject argument:
lib/helpdesk/support/ticket.ex

actions do
 ...
 create :open do
 # By default you can provide all public attributes to an action
 # This action should only accept the subject
 accept [:subject]
 end
end
Let's try these changes in iex:
We use create! with an exclamation point here because that will raise the error which gives a nicer view of the error in iex
Use this to pick up changes you've made to your code, or restart your session
recompile()

Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
|> Helpdesk.Support.create!()
And we can see our newly created ticket with a subject and a status.
#Helpdesk.Support.Ticket<
 ...
 id: "3c94d310-7b5e-41f0-9104-5b193b831a5d",
 status: :open,
 subject: "My mouse won't click!",
 ...
>
If we didn't include a subject, or left off the arguments completely, we would see an error instead
** (Ash.Error.Invalid) Invalid Error

* attribute subject is required

 Updates and validations

Now let's add some logic to close a ticket. This time we'll add an update action.
Here we will use a change. Changes allow you to customize how an action executes with very fine-grained control. There are built-in changes that are automatically available as functions, but you can define your own and pass it in as shown below. You can add multiple, and they will be run in order. See the Actions guide for more.
lib/helpdesk/support/ticket.ex

actions do
 ...
 update :close do
 # We don't want to accept any input here
 accept []

 change set_attribute(:status, :closed)
 # A custom change could be added like so:
 #
 # change MyCustomChange
 # change {MyCustomChange, opt: :val}
 end
end
Try out opening and closing a ticket in iex:
Use this to pick up changes you've made to your code, or restart your session
recompile()

parenthesis so you can paste into iex
ticket = (
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
 |> Helpdesk.Support.create!()
)

ticket
|> Ash.Changeset.for_update(:close)
|> Helpdesk.Support.update!()

#Helpdesk.Support.Ticket<
 ...
 status: :closed,
 subject: "My mouse won't click!",
 ...
>

 Querying without persistence

So far we haven't used a data layer that does any persistence, like storing records in a database. All that this simple resource does is return the record back to us. You can see this lack of persistence by attempting to use a read action:
Helpdesk.Support.read!(Helpdesk.Support.Ticket)
Which will raise an error explaining that there is no data to be read for that resource.
In order to save our data somewhere, we need to add a data layer to our resources. Before we do that, however, let's go over how Ash allows us to work against many different data layers (or even no data layer at all).
Resources without a data layer will implicitly be using Ash.DataLayer.Simple, which will just return structs and won't actually store anything. The way that we make our queries return some data is by leveraging context, a free-form map available on queries and changesets. The simple data layer looks for query.context[:data_layer][:data][resource]. It provides a utility, Ash.DataLayer.Simple.set_data/2 to set it.
Try the following in iex. We will open some tickets, and close some of them, and then use Ash.DataLayer.Simple.set_data/2 to use those tickets.
Ash.Query is a macro, so it must be required
require Ash.Query

tickets =
 for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Helpdesk.Support.create!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Helpdesk.Support.update!()
 else
 ticket
 end
 end
Find the tickets where the subject contains "2". Note that the we're setting the ticket data that we're querying using set_data.
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Helpdesk.Support.read!()
Find the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Helpdesk.Support.read!()
The examples above could be easily implemented with Enum.filter, but the real power here is to allow you to use the same tools when working with any data layer. If you were using the AshPostgres.DataLayer data layer.
Even though it doesn't persist data in any way, Ash.DataLayer.Simple can be useful to model static data, or be used for resources where all the actions are manual and inject data from other sources.

 Adding basic persistence

Before we get into working with relationships, let's add some real persistence to our resource. This will let us add relationships and try out querying data.
There is a built in data layer that is useful for testing and prototyping, that uses ETS. ETS (Erlang Term Storage) is OTP's in-memory database, so the data won't actually stick around beyond the lifespan of your program, but it's a simple way to try things out.
To add it to your resource, modify it like so:
lib/helpdesk/support/ticket.ex

use Ash.Resource,
 data_layer: Ash.DataLayer.Ets
Now we can slightly modify our code above, by removing the Ash.DataLayer.Simple.set_data/2 calls, and we can see our persistence in action. Remember, ETS is in-memory, meaning restarting your application/iex session will remove all of the data.
Use this to pick up changes you've made to your code, or restart your session
recompile()

require Ash.Query

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Helpdesk.Support.create!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Helpdesk.Support.update!()
 end
end

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Helpdesk.Support.read!()

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Helpdesk.Support.read!()

 Adding relationships

Now we want to be able to assign a Ticket to a Representative. First, let's create the Representative resource:
lib/helpdesk/support/representative.ex

defmodule Helpdesk.Support.Representative do
 # This turns this module into a resource using the in memory ETS data layer
 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: Ash.DataLayer.Ets

 actions do
 # Add the default simple actions
 defaults [:read, :destroy, create: :*, update: :*]
 end

 # Attributes are the simple pieces of data that exist on your resource
 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:name`
 attribute :name, :string do
 # Make the attribute public in order to give a name when calling functions from `Ash.Changeset`.
 public? true
 end
 end

 relationships do
 # `has_many` means that the destination attribute is not unique, therefore many related records could exist.
 # We assume that the destination attribute is `representative_id` based
 # on the module name of this resource and that the source attribute is `id`.
 has_many :tickets, Helpdesk.Support.Ticket
 end
end
Now let's modify our Ticket resource to have the inverse relationship to the Representative.
lib/helpdesk/support/ticket.ex

relationships do
 # belongs_to means that the destination attribute is unique, meaning only one related record could exist.
 # We assume that the destination attribute is `representative_id` based
 # on the name of this relationship and that the source attribute is `representative_id`.
 # We create `representative_id` automatically.
 belongs_to :representative, Helpdesk.Support.Representative
end
Finally, let's add our new Representative resource to our domain module
lib/helpdesk/support.ex

resources do
 ...
 resource Helpdesk.Support.Representative
end
You may notice that if you don't add the resource to your domain, or if you don't add the belongs_to relationship, that you'll get helpful errors at compile time. Helpful compile time validations are a core concept of Ash as we really want to ensure that your application is valid.

 Working with relationships

There are a wide array of options when managing relationships, and we won't cover all of them here. See the guide on Managing Relationships for a full explanation.
In this example we'll demonstrate the use of action arguments, the method by which you can accept additional input to an action.
Add the assign action to allow us to assign a Ticket to a Representative.
lib/helpdesk/support/ticket.ex

update :assign do
 # No attributes should be accepted
 accept []

 # We accept a representative's id as input here
 argument :representative_id, :uuid do
 # This action requires representative_id
 allow_nil? false
 end

 # We use a change here to replace the related Representative
 # If there is a different representative for this Ticket, it will be changed to the new one
 # The Representative itself is not modified in any way
 change manage_relationship(:representative_id, :representative, type: :append_and_remove)
end
Let's try it out in our iex console!
Use recompile to pick up changes you've made to your code, or just restart your session.
recompile()

 Open a Ticket

ticket = (
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "I can't find my hand!"})
 |> Ash.create!()
)

 Create a Representative

representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Ash.create!()
)

 Assign that Representative to the Ticket

ticket
|> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
|> Ash.update!()

 What next?

What you've seen above barely scratches the surface of what Ash can do. In a lot of ways, it will look very similar to other tools that you've seen. If all that you ever used was the above, then realistically you won't see much benefit to using Ash.
Where Ash shines however, is all of the tools that can operate on your resources. You have the ability to extend the framework yourself, and apply consistent design patterns that enable unparalleled efficiency, power and flexibility as your application grows.
Get Help
	Check out ElixirForum
	Join our Discord server
	Open a GitHub issue

Clean up your code that uses Ash?
Creating and using changesets manually can be verbose, and they all look very similar. Luckily, Ash has your back and can generate these for you using Code Interfaces!
Check out the Code Interface Guide to derive things like Helpdesk.Support.Ticket.assign!(representative.id)
Persist your data
See The AshPostgres getting started guide to see how to back your resources with Postgres. This is highly recommended, as the Postgres data layer provides tons of advanced capabilities.
Add a web API
Check out the AshJsonApi and AshGraphql extensions to effortlessly build APIs around your resources
Authorize access and work with users
See the Policies guide for information on how to authorize access to your resources using actors and policies.

Why Ash?

One of the fundamental ideas behind Ash is that when the various components of your system can have consistent expectations of how the other components around them work, you can ultimately do a significant amount more, with less.

 Example: Policies

Policy authorization is a good example of this. When you're trying to write a flexible system that has secure access patterns, there are tons of ways to do it wrong. For example, lets say you have this policy on your "posts" resource.
policy action_type(:read) do
 authorize_if relates_to_actor_via(:author)
 authorize_if relates_to_actor_via([:author, :friends])
end
Using Ash, if I were to make a simple query like MyApp.Blog.read!(MyApp.Blog.Post, actor: current_user), what it would do is automatically translate those policies to a filter statement. So it is the equivalent to saying:
MyApp.Blog.Post
|> Ash.Query.filter(exists(author, id == ^current_user.id) or exists(author.friends, id == ^current_user.id))
|> MyApp.Blog.read!()
And that is something you could potentially hand roll. But what about when you want to say something like this:
MyApp.Blog.Comment
|> Ash.Query.filter(exists(author, email == "daarb@daarb.com"))
|> MyApp.Blog.read!()
Ash is aware of the policies on author and will translate this under the hood to
MyApp.Blog.Comment
|> Ash.Query.filter(exists(author, id == ^current_user.id and #Ash.Filter<policies for reading authors>))
Or if you want to display aggregate information, i.e in Ash
on an Organization resource
aggregates do
 count :count_of_posts, :posts
end
That should realistically show "the number of posts the user can see" (by default). So Ash is aware of the policies and details of the resource you are aggregating, meaning that aggregate will just "do the right thing"
Policies are just one example of how a tool that is built for this kind of thing can often come with features that would be entirely unreasonable for developers to write by hand for every platform they are building. The declarative design patterns behind Ash allow us to build features that are context aware and extremely powerful.

 It isn't about "less code"

In all reality "writing less code" is not really a goal that Ash has. The real goal behind helping people to not reinvent the wheel is that if we keep reinventing the wheel every time, the wheel will never be properly iterated on.
Policies are one example of this.
By ensuring that the various pieces of our system have consistent, stable and rich interfaces, we can easily write reusable extensions. For example, AshArchival will ensure that any given resource is "soft deleted" instead of actually deleted, and AshPaperTrail will keep a log of all changes that happen on a given resource. Both of these behaviors can be introduced to your resources with a single line of code, e.g extensions: [AshPaperTrail.Resource] because resources are composed of elements that have consistent, declarative structures.

Philosophy

The philosophy behind Ash allows us to build an extremely flexible and powerful set of tools, without locking users into specific choices at any level. The framework acts as a spinal cord for your application, with extension points at every level to allow for custom behavior. What follows are the core tenets behind Ash Framework.

 Anything, not Everything

"Anything, not Everything" means building a framework capable of doing anything, not providing a framework that already does everything. The first is possible, the second is not. Our primary goal is to provide a framework that unlocks potential, and frees developers to work on the things that make their application special.
To this end, there are many prebuilt extensions to use, but there is also a rich suite of tools to build your own extensions. In this way, you can make the framework work for you, instead of struggling to fit your application to a strictly prescribed pattern. Use as much of Ash as you can, and leverage the amazing Elixir ecosystem for everything else.

 Declarative, Introspectable, Derivable

The real superpower behind Ash is the declarative design pattern. All behavior is driven by explicit, static declarations. A resource, for example, is really just a configuration file. On its own it does nothing. It is provided to code that reads that configuration and acts accordingly.
You can read more about some simple declarative design patterns outside of the context of Ash Framework in An Incremental Approach to Declarative Design.

 Pragmatism First

While Ash does have lofty goals and a roadmap, the priority for development is always what the current users of Ash need or are having trouble with. We focus on simple, pragmatic, and integrated solutions that meld well with the rest of the framework.
A high priority is placed on ensuring that our users don't experience feature whip-lash due to poorly thought out implementations, and that any breaking changes (a rare occurrence) have a clean and simple upgrade path. This is something made much easier by the declarative pattern.

 Community

The Ash community comes together and collaborates to make sure that we can all build our software quickly, effectively and in a way that will age gracefully. We have a strict code of conduct, and love working with people of any experience level or background. To experience this first-hand, participate on ElixirForum or join our discord!

Using Hexdocs

Ash is split across various packages. Each package has its own documentation. However, there is a global documentation search available at https://ash-hq.org. Do use it, use Ctrl-K or Cmd-K on that site.

 Packages

	Ash: The core framework, providing all the features and goodies that power and enable the rest of the ecosystem.
	AshPostgres: A PostgreSQL data layer for Ash resources, allowing for rich query capabilities and seamless persistence.
	AshPhoenix: Utilities for using Ash resources with Phoenix Framework, from building forms to running queries in sockets & LiveViews.
	AshGraphql: A GraphQL extension that allows you to build a rich and customizable GraphQL API with minimal configuration required.
	AshJsonApi: A JSON:API extension that allows you to effortlessly create a JSON:API spec compliant API.
	AshAuthentication: Provides drop-in support for user authentication with various strategies and tons of customizability.
	AshAuthenticationPhoenix: Phoenix helpers and UI components in support of AshAuthentication.
	AshStateMachine: An Ash.Resource extension for building finite state machines.
	AshCsv: A CSV data layer allowing resources to be queried from and persisted in a CSV file.
	AshDoubleEntry: A customizable double entry bookkeeping system backed by Ash resources.
	AshArchival: A light-weight resource extension that modifies resources to simulate deletion by setting an archived_at attribute.
	Reactor: Reactor is a dynamic, concurrent, dependency resolving saga orchestrator.
	Spark: The core DSL and extension tooling, allowing for powerful, extensible DSLs with minimal effort.

 DSL documentations

Some helpful tips on using Hex Docs. DSLs are each documented in their own area. Find them in the bottom of the sidebar on the left.

 Searching

In the sidebar
When searching for a dsl, prefix your search with DSL:. If you know the path
to the DSL you are looking for, use it separated by dots. For example, DSL: attributes.attribute. Only five results will show up in the sidebar, so be as specific as possible. If you don't find it, press enter and you will be taken to the search page. An important limitation is that the sidebar only shows "entities" not "options". We are looking into adding something to ex_doc to improve this, but until we do, you will need to use the search page to find options. For example, you can find attributes.attribute but not attributes.attribute.primary_key? in the sidebar search.
In the search page
The fastest way to get to the search page is to click on the sidebar search and press enter without selecting anything. Use type:dsl to filter for DSLs on the search page. By default, search terms are considered optional. You can prefix them with + to make them required. Something you would do to find a specific DSL option is to search for +type:dsl +attributes.attribute.primary_key?.

Extending Resources

Resource extensions allow you to make powerful modifications to resources, and extend the DSL to configure how those modifications are made. If you are using AshPostgres, AshGraphql or AshJsonApi, they are all integrated into a resource using extensions. In this guide we will build a simple extension that adds timestamps to your resource. We'll also show some simple patterns that can help ensure that all of your resources are using your extension.

 Creating an extension

Extensions are modules that expose a set of DSL Transformers and DSL Sections. We'll start with the transformers.
Here we create an extension called MyApp.Extensions.Base, and configure a single transformer, called MyApp.Extensions.Base.AddTimestamps
defmodule MyApp.Extensions.Base do
 use Spark.Dsl.Extension, transformers: [MyApp.Extensions.Base.AddTimestamps]
end

 Creating a transformer

Transformers are all run serially against a map of data called dsl_state, which is the data structure that we build as we use the DSL. For example:
attributes do
 attribute :name, :string
end
Would, under the hood, look something like this:
%{
 [:attributes] => %{entities: [
 %Ash.Resource.Attribute{name: :name, type: :string}
]
 },
 ...
}
Spark.Dsl.Transformer provides utilities to work with this data structure, and most introspection utilities also work with that data structure (i.e Ash.Resource.Info.attributes(dsl_state)). A transformer exposes transform/1, which takes the dsl_state and returns either {:ok, dsl_state} or {:error, error}
defmodule MyApp.Extensions.Base.AddTimestamps do
 use Spark.Dsl.Transformer
 alias Spark.Dsl.Transformer

 def transform(dsl_state) do
 {:ok, inserted_at} =
 Transformer.build_entity(Ash.Resource.Dsl, [:attributes], :create_timestamp,
 name: :inserted_at
)

 {:ok, updated_at} =
 Transformer.build_entity(Ash.Resource.Dsl, [:attributes], :update_timestamp,
 name: :updated_at
)

 {:ok,
 dsl_state
 |> Transformer.add_entity([:attributes], inserted_at)
 |> Transformer.add_entity([:attributes], updated_at)}
 end
end

This transformer builds and adds a create_timestamp called :inserted_at and an update_timestamp called :updated_at.

 Introspecting the resource

If the resource we are extending already has an attribute called inserted_at or updated_at, we'd most likely want to avoid adding one ourselves (this would cause a compile error about duplicate attribute names). We can check for an existing attribute and make that change like so:
 def transform(dsl_state) do
 {:ok,
 dsl_state
 |> add_attribute_if_not_exists(:create_timestamp, :inserted_at)
 |> add_attribute_if_not_exists(:update_timestamp, :updated_at)}
 end

 defp add_attribute_if_not_exists(dsl_state, type, name) do
 if Ash.Resource.Info.attribute(dsl_state, name) do
 dsl_state
 else
 {:ok, attribute} =
 Transformer.build_entity(Ash.Resource.Dsl, [:attributes], type,
 name: name
)

 dsl_state
 |> Transformer.add_entity([:attributes], attribute)
 end
 end
This is just one example of what you can do with transformers. Check out the functions in Spark.Dsl.Transformer to see what utilities are available.

 Make the extension configurable

So far we've covered transformers, and using them to modify resources, but now lets say we want to make this behavior opt-out. Perhaps certain resources really shouldn't have timestamps, but we want it to be the default. Lets add a "DSL Section" to our extension.
defmodule MyApp.Extensions.Base do
 @base %Spark.Dsl.Section{
 name: :base,
 describe: """
 Configure the behavior of our base extension.
 """,
 examples: [
 """
 base do
 timestamps? false
 end
 """
],
 schema: [
 timestamps?: [
 type: :boolean,
 doc: "Set to false to skip adding timestamps",
 default: true
]
]
 }

 defmodule Info do
 def timestamps?(resource) do
 Spark.Dsl.Extension.get_opt(resource, [:base], :timestamps?, true)
 end
 end

 use Spark.Dsl.Extension,
 transformers: [MyApp.Extensions.Base.AddTimestamps],
 sections: [@base]
end
Now we can use this configuration in our transformer, like so:
 def transform(dsl_state) do
 if MyApp.Extensions.Base.Info.timestamps?(dsl_state) do
 {:ok,
 dsl_state
 |> add_attribute_if_not_exists(:create_timestamp, :inserted_at)
 |> add_attribute_if_not_exists(:update_timestamp, :updated_at)}
 else
 {:ok, dsl_state}
 end
 end

 defp add_attribute_if_not_exists(dsl_state, type, name) do
 if Ash.Resource.Info.attribute(dsl_state, name) do
 dsl_state
 else
 {:ok, attribute} =
 Transformer.build_entity(Ash.Resource.Dsl, [:attributes], type,
 name: name
)

 dsl_state
 |> Transformer.add_entity([:attributes], attribute)
 end
 end
And now we have a configurable base extension

 A note on the ordering of transformers

In this case, this transformer can run in any order. However, as we start adding transformers and/or modify the behavior of this one, we may need to ensure that our transformer runs before or after specific transformers. As of the writing of this guide, the best way to look at the list of transformers is to look at the source of the extension, and see what transformers it has and what they do. The Resource DSL for example.
If you need to affect the ordering, you can define before?/1 and after?/1 in your transformer, i.e
I go after any other transformer
def after?(_), do: true

except I go before `SomeOtherTransformer`
def before?(SomeOtherTransformer), do: true
def before?(_), do: false

 Using your extension

Now it can be used like any other extension:
defmodule MyApp.Tweet do
 use Ash.Resource,
 extensions: [MyApp.Extensions.Base]

 base do
 # And you can configure it like so
 timestamps? false
 end
end
Your extension will be automatically supported by the elixir_sense extension, showing inline documentation and auto complete as you type. For more on that, see pDevelopment Utilities

 Making a Base Resource

The "Base Resource" pattern has been adopted by some as a way to make it easy to ensure that your base extension is used everywhere. Instead of using Ash.Resource you use MyApp.Resource. Take a look at the Development Utilities guide if you do this, as you will need to update your formatter configuration, if you are using it.
defmodule MyApp.Resource do
 defmacro __using__(opts) do
 quote do
 use Ash.Resource,
 unquote(Keyword.update(opts, :extensions, [MyApp.Extensions.Base], &[MyApp.Extensions.Base | &1]))
 end
 end
end
And now you can use it with your resources like this:
defmodule MyApp.Tweet do
 use MyApp.Resource
end

Contribute to Ash

 Welcome!

We are delighted to have anyone contribute to Ash, regardless of their skill level or background. We welcome contributions both large and small, from typos and documentation improvements, to bug fixes and features. There is a place for everyone's contribution here. Check the issue tracker or join the ElixirForum/discord server to see how you can help! Make sure to read the rules below as well.

 Rules

	We have a zero tolerance policy for failure to abide by our code of conduct. It is very standard, but please make sure
you have read it.
	Issues may be opened to propose new ideas, to ask questions, or to file bugs.
	Before working on a feature, please talk to the core team/the rest of the community via a proposal. We are
building something that needs to be cohesive and well thought out across all use cases. Our top priority is
supporting real life use cases like yours, but we have to make sure that we do that in a sustainable way. The
best compromise there is to make sure that discussions are centered around the use case for a feature, rather
than the proposed feature itself.
	Before starting work, please comment on the issue and/or ask in the discord if anyone is handling an issue. Be aware that if you've commented on an issue that you'd like to tackle it, but no one can reach you and/or demand/need arises sooner, it may still need to be done before you have a chance to finish. However, we will make all efforts to allow you to finish anything you claim.

Define Idiomatic Actions

The best practice is typically to try to push things as far down into your resources as possible.

 The Non-idiomatic Way

If you were doing a twitter front page, you might have a tweet resource with a simple action like this:
use a simple primary read
defaults [:read, ...]
And in doing that, you could get all the tweets with something like this:
Tweet
|> Ash.Query.for_read(:read)
|> Ash.Query.sort(posted_at: :desc)
|> Ash.Query.filter(author.id == ^current_user.id or exists(author.friends, id == ^current_user.id))
assuming the name of your domain was `Tweets`
|> Tweets.read!()
And that works and in some cases might be the right way to do what you're trying to do
And lets say there was a sort drop down that made it sort by popular instead of recent, you could do something like this:
Tweet
|> Ash.Query.for_read(:read)
|> then(fn query ->
 case sort do
 :recent ->
 Ash.Query.sort(query, posted_at: :desc)
 :popular ->
 Ash.Query.sort(query, like_count: :desc)
 end
end)
|> Ash.Query.filter(author.id == ^current_user.id or exists(author.friends, id == ^current_user.id))
assuming the name of your domain was `Tweets`
|> Tweets.read!()

 The Idiomatic Way

But the better way to model this would be something like this:
code_interface do
 define :front_page, args: [:sort_by]
end

read :front_page do
 argument :sort_by, :atom do
 constraints one_of: [:recent, :popular]
 end

 prepare MyApp.Tweets.Tweet.Preparations.SortFrontPage
 filter expr(author.id == ^actor(:id) or exists(author.friends, id == ^actor(:id))
end
Custom preparations allow you to do all sorts of things, in this case handle custom sorting
defmodule MyApp.Tweets.Tweet.Preparations.SortFrontPage do
 use Ash.Resource.Preparation

 def prepare(query, _, _) do
 # We use `prepend?` to put the sort ahead of any other specified sort on the query
 case Ash.Changeset.get_argument(query, :sort_by) do
 :recent ->
 Ash.Query.sort(query, [posted_at: :desc], prepend?: true)

 :popular ->
 Ash.Query.sort(query, [like_count: :desc], prepend?: true)
 end
 end
end
And then you can get the front page of tweets far more cleanly:
Tweet.front_page!(socket.assigns.sort_by)
If you were using AshGraphql, you could do something like this:
graphql do
 type :tweet

 queries do
 query :front_page, :front_page
 end
end
And because you've made the action encompass the entire logic of fetching the front page, you've got automatic support for API access to your system.
This is just one example of the benefits of having idiomatic and complete actions.

Define Manual Relationships

Manual relationships allow you to express complex or non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.
By default, the only thing manual relationships support is being loaded.

 Example

In our Helpdesk example, we'd like to have a way to find tickets
In the Rep? resource, define a has_many relationship as manual and point to the module where
it will be implemented.
relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end
Using Ash to get the destination records is ideal, so you can authorize access like normal
but if you need to use a raw ecto query here, you can. As long as you return the right structure.
The TicketsAboveThreshold module is implemented as follows.
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 require Ash.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 # Use existing records to limit resultds
 rep_ids = Enum.map(records, & &1.id)

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end
end

 Using the Query

Since you likely want to support things like filtering your relationship when being loaded, you will want to make sure that you use the query being provided. However, depending on how you're loading the relationship, you may need to do things like fetch extra records. To do this, you might do things like
def load(records, _opts, %{query: query, ..}) do
 # unset some fields
 fetch_query = Ash.Query.unset(query, [:limit, :offset])

 # or, to be more safe/explicit, you might make a new query, explicitly setting only a few fields
 fetch_query = query.resource |> Ash.Query.filter(^query.filter) |> Ash.Query.sort(query.sort)

 ...
end

Handle Errors

There is a difficult balance to cut between informative errors and enabling simple reactions to those errors. Since many extensions may need to work with and/or adapt their behavior based on errors coming from Ash, we need rich error messages. However, when you have a hundred different exceptions to represent the various kinds of errors a system can produce, it becomes difficult to say something like "try this code, and if it is invalid, do x, if it is forbidden, do y. To this effect, exceptions in Ash have one of four classes mapping to the top level exceptions.

 Error Classes

	forbidden - Ash.Error.Forbidden
	invalid - Ash.Error.Invalid
	framework - Ash.Error.Framework
	unknown - Ash.Error.Unknown

Since many actions can be happening at once, we want to support the presence of multiple errors as a result of a request to Ash. We do this by grouping up the errors into one before returning or raising.
We choose an exception based on the order of the exceptions listed above. If there is a single forbidden, we choose Ash.Error.Forbidden, if there is a single invalid, we choose Ash.Error.Invalid and so on. The actual errors will be included in the errors key on the exception. The exception's message will contain a bulleted list of all the underlying exceptions that occurred. This makes it easy to react to specific kinds of errors, as well as to react to any/all of the errors present.
An example of a single error being raised, representing multiple underlying errors:
AshExample.Representative
|> Ash.Changeset.for_create(:create, %{employee_id: "the best"})
|> Ash.create!()
 ** (Ash.Error.Invalid) Invalid Error
 * employee_id: must be absent.
 * first_name, last_name: at least 1 must be present.
This allows easy rescuing of the major error classes, as well as inspection of the underlying cases
try do
 AshExample.Representative
 |> Ash.Changeset.for_create(:create, %{employee_id: "dabes"})
 |> Ash.create!()
rescue
 e in Ash.Error.Invalid ->
 "Encountered #{Enum.count(e.errors)} errors"
end

"Encountered 2 errors"
This pattern does add some additional overhead when you want to rescue specific kinds of errors. For example, you may need to do something like this:
try do
 AshExample.Representative
 |> Ash.Changeset.for_create(:create, %{employee_id: "dabes"})
 |> Ash.create!()
rescue
 e in Ash.Error.Invalid ->
 case Enum.find(e.errors, &(&1.__struct__ == A.Specific.Error)) do
 nil ->
 ...handle errors
 error ->
 ...handle specific error you found
 end
end

 Generating Errors

When returning errors in your application, you can a few different things:

 Return a keyword list in changes and validations

A shortcut for creating errors is to return a keyword list containing field
and message. This works in changes and validations. For example:
in a change, you use `Ash.Changeset.add_error/2`
def change(changeset, _, _) do
 if under_21?(changeset) do
 Ash.Changeset.add_error(changeset, field: :age, message: "must be 21 or older")
 else
 changeset
 end
end

in a validation, you return the error in an `{:error, error}` tuple.
def change(changeset, _, _) do
 if under_21?(changeset) do
 {:error, field: :age, message: "must be 21 or older"}
 else
 :ok
 end
end

 Using a Builtin Exception

These are all modules under Ash.Error.*. You can create a new one with error.exception(options), and the options are documented in each exception. This documentation is missing in some cases. Go to the source code of the exception to see its special options. All of them support the vars option, which are values to be interpolated into the message, useful for things like translation.
For example:
def change(changeset, _, _) do
 if some_condition(changeset) do
 error = Ash.Error.Changes.Required.new(
 field: :foo,
 type: :attribute,
 resource: changeset.resource
)

 Ash.Changeset.add_error(changeset, error)
 else
 changeset
 end
end

 Use a Custom Exception

You can create a custom exception like so. This is an example of a builtin exception that you could mirror to build your own
defmodule Ash.Error.Action.InvalidArgument do
 @moduledoc "Used when an invalid value is provided for an action argument"
 use Splode.Error, fields: [:field, :message, :value], class: :invalid

 def message(error) do
 """
 Invalid value provided#{for_field(error)}#{do_message(error)}

 #{inspect(error.value)}
 """
 end
end

Structure your project

In this guide we'll discuss some best practices for how to structure your project.

 A few notes

	None of the things we show you here are requirements, only recommendations.

	We avoid any pattern that requires you to name a file or module in a specific way, or put them in a specific place. This ensures that all connections between one module and another module are explicit rather than implicit.

	We break a common Elixir pattern of having the module name match the file name in one specific way. If the resource has a folder, we suggest putting the resource.ex in the folder with the same name. See the example below for more.

lib/ # top level lib folder for your whole project
├─ my_app/ # your app's main namespace
│ ├─ accounts/ # The Accounts context
│ │ ├─ user/ # resource w/ additional files
│ │ ├─ token.ex # A resource without additional files
│ │ ├─ password_helper.ex # A non-resource file
│ │ ├─ accounts.ex # The Accounts domain module
│ ├─ helpdesk/ # A Helpdesk context
│ │ ├─ notification.ex # A resource without additional files
│ │ ├─ other_file.ex # A non-resource file
│ │ ├─ ticket/ # A resource with additional files
│ │ │ ├─ preparations/ # Components of the reosurce, grouped by type
│ │ │ ├─ changes/
│ │ │ ├─ checks/
│ │ │ ├─ ticket.ex # The resource file
Generally speaking, your Ash application lives in the standard place within your elixir application, i.e lib/my_app. Within that folder, you create one folder for each context that you have. Each context has an Ash.Domain module within it, and the resources that live within that context. All resource interaction ultimately goes through a domain module.
Alongside the domain module, you have your resources, as well as any other files used in the context. If a resource has any additional files that are used to implement it, they should be placed in a folder with the same name as the resource, in subfolders grouping the files type, and the resource should be placed there too. This is optional, as stated above, but we've found that with large contexts it keeps things very simple.

Upgrade

 Other Packages

Other packages have had a major version bump in addition to Ash core. While all packages have been changed to refer to domain instead of api, they did not receive a major version bump because there were no special breaking changes to account for when using that package. You will also need to factor in the following upgrade guides, if you use those packages.
	AshPostgres
	AshPhoenix
	AshJsonApi
	AshGraphql

 Upgrading to 3.0

This section contains each breaking change, and the steps required to address it in your application

 Dependency Changes

Ash.Flow
If you use Ash.Flow, include {:ash_flow, "~> 0.1.0"} in your application.

 DSL Changes

	code_interface.define_for is now code_interface.domain. Additionally, it is set automatically if the domain option is specified on use Ash.Resource.

	actions.create.reject, actions.update.reject and actions.destroy.reject have been removed. Blacklisting inputs makes it too easy to make mistakes. Instead, specify an explicit accept list.

	relationships.belongs_to.attribute_writable? no longer makes the underlying attribute both public and writable. It defaults to the value of writable? on the relationship (which itself defaults to true), and only controls the generated attributes writable? true property. So now, by default, it will be true, which is safe when coupled with changes to the default_accept, discussed below. Generally, this means you should be safe to remove any occurrences of attribute_writable? true.

	relationships.belongs_to.attribute_public? has been added, which controls the underlying attribute's public? value. This, similar to attribute_writable? defaults to the public? attribute of the relationship.

	resource.simple_notifiers has been removed, in favor of specifying non-DSL notifiers in the simple_notifiers option to use Ash.Resource.

	resource.actions.read.filter can now be specified multiple times. Multiple filters will be combined with and.

 Ash.Registry has been removed

Ash.Registry is no longer needed. Place each resource in the domain instead.
resources do
 resource Resource1
 resource Resource2
end

 Expression changes

When calling a calculation with arguments, this is done via passing a keyword list to the calculation, for example: full_name(separator: ""). In 2.0, keyword lists were not evaluated as part of the expression in the same way as other values, meaning two things:
	You did not have to pin usage of template functions, i.e full_name(separator: arg(:separator)). Now, you will need to do so: full_name(separator: ^arg(:separator))

	You had to use expr to pass an expression to a calculation argument (this only works if allow_expr? true is configured on the calculation argument). For example: full_name(separator: expr(sep_1 <> sep_2)) would now be full_name(separator: sep_1 <> sep_2)

If you do not have any expression calculations that accept arguments, you likely need to do nothing. To make these changes, you will need to look at each place you build an expression that you may be calling a calculation w/ arguments, i.e Ash.Query.filter, and the expression callback in Ash.Calculation, and see if they must be modified as described above.

 Module/function changes

Ash.Filter
Ash.Filter.parse/5 is now Ash.Filter.parse/3. Ash.Filter.parse_input/5 is now Ash.Filter.parse_input/2 The third and fourth optional arguments are unnecessary and were previously ignored, and the fifth argument is not necessary for parse_input.
Ash.Filter.used_aggregates/3 no longer accepts :all as a relationship path, instead using :*. Its very unlikely that this is used in your application.
Ash.Filter.TemplateHelpers
Tools for templating expressions were previously in Ash.Filter.TemplateHelpers. This often led to confusion because it was a hard to remember module name, and didn't really make sense to be separate from the rest of our utilities. Now, all the functions/macros you need for expressions are in Ash.Expr. This means that in any given file where you want to work with expressions, you only need to do import Ash.Expr. Additionally, this import Ash.Expr has been added to changes, preparations, validations and calculations automatically.
Ash.CiString
	Ash.CiString.new(nil) now returns nil instead of %Ash.CiString{value: nil}

Ash.Resource.Validation
validate/2 is now validate/3, with the third argument being the context of the validation.
Ash.Query.Calculation
The function signature of Ash.Query.Calculation.new has been changed. We use an options list over optional arguments, and now require constraints to be provided. You will need to adjust your calls to this function.
Ash.Calculation
This module has been renamed to Ash.Resource.Calculation. You will need to rename your references to it.
Ash.Query
Ash.Query.to_query has been removed. Use Ash.Query.new instead.
Ash.Query.expr has been removed. Use Ash.Expr.expr instead.
Aggregates
first and list aggregates have a new option called include_nil?, which defaults to false. You may need to add include_nil?: true to your resource aggregates if you wish to retain the old behavior.
New format for sorting on calculations with arguments
The format for sorting on calculations that take input has been swapped. Previously, you would use sort(calculation: {:desc, %{arg: :value}}), but for the sake of consistency, you now use sort(calculation: {%{arg: :value}, :desc}).
Ash.Changeset
Ash.Changeset.new/2 has been removed. Ash.Changeset.new/1 is still available for creating a new changeset, but attributes and arguments should, with few exceptions, be passed to the relevant Ash.Changeset.for_<action_type> functions, not to Ash.Changeset.new/2. Removing the second argument helps clarify the purpose of Ash.Changeset.new/1.
Ash.Changeset.manage_relationship/4 no longer uses :all to signal that all changes will be sent to the join relationship. Instead, use :*.
Ash.Changeset.filter now accepts expressions. The value of the filter is no longer a simple equality map, but rather a regular Ash expression. We add to it on successive calls to Ash.Changeset.filter. Additionally, this value is stored in changeset.filter instead of changeset.filters.
Ash.Policy.FilterCheckWithContext
Ash.Policy.FilterCheck and Ash.Policy.FilterCheckWithContext have been combined. The name is Ash.Policy.FilterCheck, but the callbacks take the extra arguments present in Ash.Policy.FilterCheckWithContext.
Builtin Changes
The functions provided to after_action/1, after_transaction/1, before_transaction/1 and before_action/1 must all now take an additional argument, which is the change context.
For example,
change after_action(fn changeset, result -> ... end)
is now
change after_action(fn changeset, result, context -> ... end)
Expressions
Previously, in expressions, you could say expr(ref(^some_atom)). This is a tool for building dynamic references, but it was an exception to the standard pattern of prefixing "external" things in an expression, i.e arg with ^. Now, you must do the same with ref/1 and ref/2. You will need to search for ref(in your application, and ensure that if it is inside of an expression you have prefixed it with ^. The original example becomes: expr(^ref(some_atom)).
Exception changes
Ash exceptions have been simplified and are now backed by Splode
Usage of def_ash_error/2 will show you what to change in its warnings.
Instead of combining def_ash_error with defimpl Ash.ErrorKind, you create a custom error like so:
defmodule MyCustomError do
 use Splode.Error, class: :invalid, fields: [:foo, :bar]

 def message(error) do
 "Message: #{error.foo} - #{error.bar}"
 end
end
Ash exception changes
When sorting or filtering, if a field is not found, an Ash.Query.Error.NoSuchField is used, where it would have previously been an Ash.Query.Error.NoSuchAttribute. This was wrong as sometimes the field reference was not an attribute. Places that would previously return Ash.Query.Error.NoSuchAttributeOrRelationship now return Ash.Query.Error.NoSuchField as well.
Additionally, the following exceptions have had keys remapped:
NoSuchAttribute: name -> attribute
NoSuchRelationship: name -> relationship
NoSuchFunction: name -> function
NoSuchOperator: name -> operator

 Significant Changes

 Ash.Api is now Ash.Domain

The previous name was often confusing as this is an overloaded term for many. To that end, Ash.Api has been renamed to Ash.Domain, which better fits our usage and concepts.
What you'll need to change
To make this change you will need to do two things:
	replace Ash.Api with Ash.Domain in your application
	replace places where an :api option is passed to a function with the :domain option. For example, AshPhoenix.Form.for_create(..., api: MyApp.SomeApi) should now be AshPhoenix.Form.for_create(..., domain: MyApp.SomeDomain)

 the Domain of a resource must now be known when constructing a changeset, query or action input

In order to honor rules on the Domain module about authorization and timeouts, we have to know the Domain when building the changeset.
What you'll need to change
Embedded Resources
The domain for the calls to embedded resources is gotten from the parent changeset. No need to change them at all. a domain constraint has been added in case you wish to make a given embedded resource use a specific domain always.
For example:
attribute :bio, MyApp.Bio do
 constraints domain: MyApp.SomeDomain
end
Single Domain resources
While it is possible for resources to be used with multiple domains, it almost never happens in practice. Any resources that are only used from a single domain only (not including embedded resources) should be modified to have a domain option specified in their call to use Ash.Resource. For example:
use Ash.Resource,
 domain: MyApp.MyDomain
Using Ash.* to interact with your resources
Calling functions on the domain has been deprecated. You must now use the functions defined in the Ash module to interact with your resources. They are the same as what was previously available in your domain module. For example:
MyDomain1.create!(changeset)
MyDomain2.read!(query)
MyDomain3.calculate!(...)
can now be written as
Ash.create!(changeset)
Ash.read!(query)
Ash.calculate!(query)
This makes refactoring resources easier, as you no longer need to change the call site, it remains the same regardless of what Domain a resource is in.
Multi Domain resources
For these, you will need to include the domain option when you construct a changeset.
For example:
MyResource
|> Ash.Changeset.for_create(:create, input, domain: MyApp.MyDomain)

 Actions no longer default to accepting all public writable attributes

For more context, see the original discussion: https://github.com/ash-project/ash/issues/512
In 2.0, all public, writable attributes were accepted by each action by default. This made it very easy to accidentally expose writing to an attribute in an action where that was not the intent. Additionally, new attributes added were automatically writable across a wide array of actions, which was error prone for the same reason.
In 2.0, as well as 3.0, there is an option called default_accept, which modifies all actions that do not have an accept list. In 2.0, the default value for default_accept was "all public, writable attributes". In 3.0, the default value for default_accept is []. This encourages a pattern of explicitly listing inputs to actions, and is safer and less error prone.
What you'll need to change
For those who want to upgrade, you would use the new :* option to default_accept (also usable in an action's accept option) that was added that explicitly opts into the old behavior. Go to each resource and, inside the actions block, add:
actions do
 default_accept :*
 ...
end
For those who want to be more explicit, or after your upgrade has complete if you wish to refactor existing resources and actions, the general best path forward is to copy the default_accept into each action (or put it in a module attribute and reference it) as the accept option. This way when a new action is added, it does not "inherit" some list of accepted attributes.

 :* includes belongs_to attributes!

The change to explicit accepts also included a change that defaults belongs_to attributes to writable?: true and public?: true. You may want to add attribute_writable?: false to your belongs_to relationships if you are adding default_acceot :* and don't currently have attribute_writable?: true on them currently.

 Default actions :create and :update can now have an accept list

For example:
defaults [:read, :destroy, create: :*, update: :*]

 Default read actions are now paginatable

In 2.0, if you have :read in your default actions list, it would generate an action like this:
read :read do
 primary? true
end
Now, it generates an action like this:
read :read do
 primary? true
 pagination [keyset?: true, offset?: true, countable: true, required?: false]
end

 What you will need to change

For most cases, this won't affect you. However, if you are using AshGraphql, and have any queries connected to a default :read action, it will default to making those queries paginatable with keyset pagination. To keep the old behavior, you will need to add paginate_with nil to the query, for example:
graphql do
 queries do
 list :list_things, :read, paginate_with: nil
 end
end

 Before action and before transaction hooks order has been reversed

In Ash 2.0, before_action and before_transaction hooks that were added to a changeset were prepended to the list of hooks by default. These hooks were then run in order. What this meant is that, given an action like the following:
create :foo do
 change before_action(fn changeset, _context ->
 IO.puts("first")
 changeset
 end)

 change before_action(fn changeset, _context ->
 IO.puts("second")
 changeset
 end)
end
You would see second printed before first.
What you'll need to change
In many cases, this won't matter to you. However, if you have a situation where the order of your before action/transaction hooks matters, you can do one of two things:
	reorder the changes that add those before action/transaction hooks
	use the :prepend option to Ash.Changeset.before_action/2 and Ash.Changeset.before_transaction/2 to explicitly prepend the hook to the list of hooks

 Context in changes, preparations, validations, calculations are now structs

To help make it clear what keys are available in the context provided to callbacks on these modules, they have been adjusted to provide a struct instead of a map. This helps avoid potential ambiguity, and
acts as documentation.
What you'll need to change
If you are using something like Keyword.new(context) to generate options to pass into an action, change that to Ash.Context.to_opts(context).

 Calculation arguments are now in context.arguments

Per the above change, we have specified the values available in the context of a calculation, with Ash.Resource.Calculation.Context. In Ash 2.0, context was merged with arguments, which was problematic in various ways. Now, arguments are in context.arguments.
What you'll need to change
You will need to update your module-backed calculations to account for this.
def calculate(records, _opts, context) do
 Enum.map(records, fn record ->
 record.first_name <> context.delimiter <> record.last_name
 end)
end
would need to be adjusted to access arguments in the context:
def calculate(records, _opts, %{arguments: arguments}) do
 Enum.map(records, fn record ->
 record.first_name <> arguments.delimiter <> record.last_name
 end)
end

 private?: true -> public?: true

There is no longer a private? option for attributes, relationships, calculations and aggregates. Instead of attributes defaulting to private?: false, they now default to public?: false. It was too easy to add an attribute and not realize that you had exposed it over your api.
What you'll need to change
If you are using api extensions (i.e AshGraphql and AshJsonApi), you will need to go to your resources and "invert" the definitions. i.e remove private?: true and add public?: true to every other attribute, relationship and calculation. Don't forget the relationships and calculations!

 Embedded resources too!

The above includes embedded resources as well! Don't forget to make sure that all fields on your embedded resources are also marked as public?: true (if applicable). The goal here is to have a clear visual indicator of what in your application can be shown publically.

 Anonymous calculations now operate on a list, just like module calculations

Previously, anonymous function calculations were special cased to operate on a single record. For consistency, these anonymous functions now take the list of records.
What you'll need to change
Update any anonymous function calculations to take and return a list, for example:
calculate :full_name, :string, fn record, _context ->
 record.first_name <> " " <> record.last_name
end
would become
calculate :full_name, :string, fn records, _context ->
 # note, you can also return `{:ok, list}` or `{:error, error}`
 Enum.map(records, fn record ->
 record.first_name <> " " <> record.last_name
 end)
end

 Calculation loads do not select all related fields by default

In 2.0 relationship loads from the load/3 callback in a calculation will select all fields of that relationship and make them available to the calculation.
For example, the following calculation load/3 callback expresses a dependency on all fields of the relationship :relationship.
def load(_, _, _) do
 [:relationship]
end
What you'll need to change
Refactor
In 3.0, relationship dependencies alone will only make the related primary keys available. You now need to select explicit fields that you want to use in your calculation, for example:
def load(_, _, _) do
 [relationship: [:field1, :field2]]
end
Keep the old behavior
Each calculation can still opt into the old behavior by adding the callback strict_loads/0 and returning true.
def load(_, _, _) do
 [:relationship]
end

def strict_loads, do: true

 Calculations do not have a select/3 callback any more

In 2.0 calculations had a select/3 callback, but load/3 is now a superset of select/3 and so the former is no longer needed.
What you'll need to change
If you have a select/3 callback in your calculations, you will need to remove the select/3 callback. You must then add those fields to the load/3 callback.
For example:
def select(_, _, _), do: [:some_attribute]
def load(_, _, _), do: [:some_calculation, some_relationship: [:some_field1, :some_field2]]
can now be written more simply as:
def load(_, _, _), do: [:some_attribute, :some_calculation, some_relationship: [:some_field1, :some_field2]]

 PubSub notifier no longer publishes events for previous values by default

Previously, the Ash notifier would publish a message containing both the old and new values for changing attributes. Typically, we use
things like IDs in notification topics, that do not change, so for most this will not have an impact.
If you wish to send a notification for the old value and the new value, then an action cannot be done atomically. Bulk actions must update each record in turn, and atomic updates can't be leveraged.
If you're comfortable with the performance implications, you can restore the previous behavior by addding previous_values?: true to your publications in your pub_sub notifier
publish :update, ["user:updated", :email], previous_values?: true

 Custom checks and notifiers will not have access to the original data by default

In your notifiers and policy checks, when you get a changeset you currently have access to the data field,
which is the original record prior to being updated or destroyed. However, this is not compatible with atomic/bulk
updates/destroys, where we may be given a query and told to destroy it. In those cases, changeset.data will be
%Ash.Changeset.OriginalDataNotAvailable{}. When you write a custom check or a custom notifier, if you need access to the original data, you must add the following function:
in custom checks
def requires_original_data?(_authorizer, _opts), do: true

in notifiers
def requires_original_data?(_resource, _action), do: true
Keep in mind, this will prevent the usage of these checks/notifiers with atomic actions.

 Domain.authorization.authorize now defaults to :by_default

Previously, the default was :when_requested. This meant that, unless you said actor: some_actor or authorize?: true, authorization was skipped. This has the obvious drawback of making it easy to accidentally bypass authorization unintentionally. In 3.0, this now defaults to :by_default.
What you'll need to change
Keep old behavior
To avoid making a significant refactor, and to keep your current behavior, you can go to your domain and set the configuration below. Otherwise skip to the refactor steps below. We advise that you take this route to start, but we highly suggest that you change your domains to authorize :by_default in the future. authorize :when_requested will not be deprecated, so there is no time constraint.
authorization do
 authorize :when_requested
end
Refactor
For each domain that has the old configuration, after setting it to the new config, you'll need to revisit each call to that domain that doesn't set an actor or the authorize? option, and add authorize?: false.
This may be a good time to do the refactor from YourDomain.func to Ash.func, if you want to. See the section about domains being required when building changesets.

 require_atomic? defaults to true

On :update actions, and :destroy actions, they now default to require_atomic? true. This means that the following things will cause errors when attempting to run the action:
	changes or validations exist that do not have the atomic callback. This includes anonymous function changes/validations.
	attributes are being changed that do not support atomic updates. This most notably includes (for now) embedded resources.
	the action has a manual implementation
	the action has applicable notifiers that require the original data.

Updates and destroys that can be made fully atomic are always safe to do concurrently, and as such we now require that actions meet this criteria. See the atomics guide for more.
What you'll need to change
The vast majority of cases will be caught by warnings emitted at compile time. If you are using change atomic_update/2 or Ash.Changeset.atomic_update/2 or Ash.Changeset.atomic_update/3, and the type does not support atomic updates, you will get an error unless you do one of the following:
	for change atomic_update/2 add the cast_atomic?: false option.
	for Ash.Changeset.atomic_update, pass the value as {:atomic, expr}, i.e Ash.Changeset.atomic_update(changeset, :value, {:atomic, expr(value + 1)})

For builtin types, the above applies to :union, :map, :keyword, embedded types. It also applies to :string, but only if the match? constraint is present.

 Ash.Error.Invalid.NoSuchInput errors on unknown action inputs

In 2.0, inputs to actions that don't match an accepted attribute or argument were silently ignored. This made it very easy to make certain kinds of mistakes, like assuming that an input is being used by an action when it actually is not. Now, unknown action inputs will cause an Ash.Error.Invalid.NoSuchInput.
What you'll need to change
If you have action calls that are erroneously passing in extra values, you will need to do remove them.
A logic error was fixed in this behavior for embedded resources. If you are using embedded resources in {:array, _} types, and are relying on including the primary key of that embedded resource to match records up for updating/destroy behavior, you will need to make sure that you do one of the following
	add the writable?: true flag to the uuid of the embedded resource (probably what you want)
	modify the actions to accept an id argument and set the argument to the provided value

 %Ash.NotLoaded{} for attributes

In 2.0, attributes that were not selected were replaced with nil values. This could lead to confusion when dealing with records that didn't have all attributes selected. If you passed these records to a function it might see that an attribute is nil when actually it just wasn't selected. To find out if it was selected, you could look into record.__metadata__.selected, but you'd have to know to do that. To alleviate these issues, attributes that are not selected are now filled in with %Ash.NotLoaded{}, just like calculations and aggregates.
What you'll need to change
If you have logic that was looking at attribute values that may not be selected, you may have been accidentally working with non selected values. For example:
if record.attribute do
 handle_present_attribute(...)
else
 # unselected attributes would have ended up in this branch
 handle_not_present_attribute(...)
end
Now, if it is possible for that attribute to have not been selected, you'll want to do something like this instead:
case record.attribute do
 %Ash.NotLoaded{} ->
 handle_not_selected(...)
 nil ->
 handle_not_present_attribute(...)
 value ->
 handle_present_attribute(...)
end

 Calculations do not reuse values by default

When loading data in 2.0 the option reselect_all? defaulted to false. What this would mean is that existing values for attributes would be reused, instead of visiting the data layer, by default. This can be an extremely valuable piece of behavior, but defaulting to it often means accidentally using data as a cache that you did not intent to use as a cache. Take the following example:
user = %User{first_name: "fred", last_name: "weasley"}

Ash.update!(user, first_name: "george")

user |> Ash.load!(:full_name)
in 2.0 -> fred weasley
in 3.0 -> george weasley
To opt into the old behavior, which we recommend doing on a case-by-case basis, you can pass reuse_values?: true. For example:
user |> Ash.load!(:full_name, reuse_values?: true)

Use Without Data Layers

If a resource is configured without a data layer, then it will always be working off of a temporary data set that lives only for the life of that query. This can be a powerful way to model input validations and/or custom/complex reads. Technically, resources without a data layer use Ash.DataLayer.Simple, which does no persistence, and expects to find any data it should use for read actions in a context on the query

 Example

defmodule MyApp.MyComplexResource do
 use Ash.Resource
 # notice no data layer is configured

 attributes do
 #A primary key is always necessary on a resource, but this will generate one for you automatically
 uuid_primary_key :id
 attribute :some_complex_derived_number, :integer
 end

 actions do
 read :read do
 prepare MyApp.FetchComplexResources
 end

 create :validate_input do
 ...
 # will validate required inputs, and you can add
 # validations like you would for any normal resource
 end
 end
end

defmodule MyApp.FetchComplexResources do
 use Ash.Resource.Preparation

 def prepare(query, _, _) do
 case fetch_data(query) do
 {:ok, data} ->
 Ash.DataLayer.Simple.set_data(query, data)
 {:error, error} ->
 Ash.Query.add_error(query, SomeBuiltinOrCustomAshError.exception(...))
 end
 end
end

 Usage

They are used in exactly the same way as regular resources
You can construct changeset over them
changeset =
Ash.Changeset.for_create(MyApp.FetchComplexResource, :validate_input, %{})

This will return the structs by default
Although you are free to do custom persistence in your resource changes
Ash.create!(changeset)
%MyApp.FetchComplexResource{...}

Validate Changes

In Ash, there are three kinds of validations.
	The simple allow_nil? and writable? validations provided for attributes
	Type constraints, specific to each type
	The validations section

 allow_nil/writable?

These are considered simple/global enough to warrant being specified at the attribute level.
attributes do
 attribute :some_field, :integer, writable?: false
 attribute :some_other_field, :integer, allow_nil?: false
end
To see the equivalent statements using the validations section of a resource, see the
corresponding section below.

 Type constraints

Each type (including custom types) can expose constraints. When declaring an attribute
these constraints can be provided with the constraints option. For example:
attributes do
 attribute :some_field, :integer, constraints: [min: 1, max: 5]
 attribute :some_other_field, :string, constraints: [max_length: 255]
end

 Validations Section

The validations section allows you to create validations based on the changeset.
The only information available is the changeset. If you want to adjust the behavior based
on other details of the request, like the current user, you are most likely looking for
authorization.
A validation is a module that implements the Ash.Resource.Validation behaviour. The built in validations
expose utility functions that are imported into the resource's scope, to make them easier to read. You
can do this with custom validations as well. See the documentation in Ash.Resource.Validation for more information.
Right now, there are not very many built in validations, but the idea is that eventually we will have a rich
library of built in validations to choose from.
Validations can be scoped to the type (:create, :update, :destroy) of action (but not to specific actions). If you would like to adjust the validations for a specific action, you can place that validation directly in the action, i.e
create :create do
 validate attribute_equals(:name, "fred")
end

 Important Note

By default, validations in the global validations block will run on create and update only. Many validations don't make sense in the context of destroys. To make them run on destroy, use on: [:create, :update, :destroy]

 Examples

validations do
 validate present([:foo, :bar]), on: :update
 validate present([:foo, :bar, :baz], at_least: 2), on: :create
 validate absent([:foo, :bar, :baz], exactly: 1), on: [:update, :destroy]
 validate {MyCustomValidation, [foo: :bar]}, on: :create
end

Auto-Format Ash code

Ash comes with several utilities that can help keep your modules consistently formatted and organized.

 Basic setup

Add :ash (and any other Ash libraries you are using) to your .formatter.exs file:
[
 # ...
 import_deps: [..., :ash],
 # ...
]
This means that when you auto-format your code, either via mix format or via an integration in your code editor, the exported data from Ash's .formatter.exs will be included and followed.
It includes definitions for locals_without_parens, meaning that your DSL builder code such as attribute :name, :string won't have parentheses added (to make it attribute(:name, :string)) when formatting the file. The parentheses won't be removed if they currently exist, but they won't be added if missing when formatting.

 Spark.Formatter

For more granular formatting, you can use Spark.Formatter, from the spark library.
What is spark?
spark is a small library for building domain-specific languages (DSLs), and is what Ash itself uses internally. It provides the secret sauce to allow you to write your resources declaratively, and the editor integration so you get full autocomplete and documentation for free.

Add Spark.Formatter as a plugin in your .formatter.exs file:
[
 # ...
 plugins: [..., Spark.Formatter]
 # ...
]
By itself, Spark.Formatter doesn't do much - but it is configurable.
The most common configuration is to remove all extra parentheses from your DSL builder code - this is how the examples within Ash documentation is formatted.
To enable this, add the following line to your application config in config.exs:
config :spark, :formatter, remove_parens?: true, "Ash.Resource": []
This tells Spark that it should remove parenthesis from all modules that use Ash.Resource, following the locals_without_parens rules exported from all your dependencies (and any you may have added yourself).
Spark.Formatter has more configuration available - check the documentation for more details!

Actions

 Action Types

Ash has 5 action types :read, :create, :update, :destroy and :action. The purpose of these action types is to provide expectations about what is required to run those actions, and what is returned from them.

 Generic Actions

The :action type is a special type of action that can do essentially whatever you want. We refer to it as a "generic" action, because there are no special rules about how it works, and minimal structure surrounding it.
A generic action takes arguments and returns a value. The struct used for building input for a generic action is Ash.ActionInput. Most of this document we will focus on the four main action types.

 Create/Read/Update/Destroy

The actions do not need to do exactly what their action type implies however. Using manual actions, you can define a create action that actually updates something, or using the soft? option for destroy actions you can treat them as updates. The important part to consider is their interface. More action types may be added in the future.
Actions either read data or mutate it. :read actions are fundamentally different from :create, :update and :destroy actions. For the most part, :create, :update and :destroy follow all of the same rules, and so will be grouped together when explaining how they behave. Small differences will be pointed out in a few places.

 Idiomatic Actions

 Name Your Actions

The intent behind Ash is not to have you building simple CRUD style applications. In a typical set up you may have a resource with four basic actions, there is even a shorthand to accomplish this:
actions do
 defaults [:read, :destroy, create: :*, update: :*]
end
But that is just a simple way to get started, or to create resources that really don't do anything beyond those four operations. You can have as many actions as you want. The best designed Ash applications will have numerous actions, named after the intent behind how they are used. They won't have all reads going through a single read action, and the same goes for the other action types. The richer the actions on the resource, the better interface you can have. With that said, many resources may only have those four basic actions, especially those that are "managed" through some parent resource. See the guide on Managing Relationships for more.

 Primary Actions

Primary actions are a way to inform the framework which actions should be used in certain "automated" circumstances, or in cases where an action has not been specified. If a primary action is attempted to be used but does not exist, you will get an error about it at runtime. The place you typically need primary actions is, when Managing Relationships. However, some prefer to be as explicit as possible, and so will always indicate an action name, and in that case will never use primary actions. When using the defaults option to add default actions, they are marked as primary.
A simple example where a primary action would be used:
No action is specified, so we look for a primary read.
Ash.get!(Resource, "8ba0ab56-c6e3-4ab0-9c9c-df70e9945281")
To mark an action as primary, add the option, i.e
read :action_name do
 primary? true
end

 Put everything inside the action!

Ash provides utilities to modify queries and changesets outside of the actions on the resources. This is a very important tool in our tool belt, but it is very easy to abuse. The intent is that as much behavior as possible is put into the action. Here is the "wrong way" to do it. There is a lot going on here, so don't hesitate to check out other relevant guides if you see something you don't understand.
def top_tickets(user_id) do
 Ticket
 |> Ash.Query.for_read(:read)
 |> Ash.Query.filter(priority in [:medium, :high])
 |> Ash.Query.filter(representative_id == ^user_id)
 |> Ash.Query.filter(status == :open)
 |> Ash.Query.sort(opened_at: :desc)
 |> Ash.Query.limit(10)
 |> Helpdesk.Support.read!()
end

in the resource

defaults [:read, ...]
And here is the "right way", where the rules about getting the top tickets have been moved into the resource as a nicely named action, and included in the code_interface of that resource. The reality of the situation is that top_tickets/1 is meant to be obsoleted by your Ash resource! Here is how it should be done.
in the resource

code_interface do
 define :top, args: [:user_id]
end

read :top do
 argument :user_id, :uuid do
 allow_nil? false
 end

 prepare build(limit: 10, sort: [opened_at: :desc])

 filter expr(priority in [:medium, :high] and representative_id == ^arg(:user_id) and status == :open)
end
Now, whatever code I had that would have called top_tickets/1 can now call Helpdesk.Support.Ticket.top(user.id). By doing it this way, you get the primary benefit of getting a nice simple interface to call into, but you also have a way to modify how the action is invoked in any way necessary, by going back to the old way of building the query manually. For example, if I also only want to see top tickets that were opened in the last 10 minutes:
Ticket
|> Ash.Query.for_read(:top, %{user_id: user.id})
|> Ash.Query.filter(opened_at > ago(10, :minute))
|> Helpdesk.Support.read!()
That is the best of both worlds! These same lessons transfer to changeset based actions as well.

 Action Lifecycle

defmodule AshChangesetLifeCycleExample do
 def change(changeset, _, _) do
 changeset
 # execute code both before and after the transaction
 |> Changeset.around_transaction(fn changeset, callback ->
 callback.(changeset)
 end)
 # execute code before the transaction is started. Use for things like external calls
 |> Changeset.before_transaction(fn changeset -> changeset end)
 # execute code in the transaction, before and after the data layer is called
 |> Changeset.around_action(fn changeset, callback ->
 callback.(changeset)
 end)
 # execute code in the transaction, before the data layer is called
 |> Changeset.before_action(fn changeset -> changeset end)
 # execute code in the transaction, after the data layer is called, only if the action is successful
 |> Changeset.after_action(fn changeset, result -> {:ok, result} end)
 # execute code after the transaction, both in success and error cases
 |> Changeset.after_transaction(fn changeset, success_or_error_result -> success_or_error_result end
 end
end
Ash uses an "engine" internally that takes lists of "requests" that have dependencies on each-other, and resolves them in some acceptable order. This engine allows for things like parallelizing steps and performing complex workflows without having to handwrite all of the control flow. It isn't important that you know how the engine works, but knowing the basic idea of "list of requests get sent to the engine" should help contextualize the following flow charts.

 Read Actions

Read actions operate on an Ash.Query. They take no input by default, but arguments can be added to the action. All read actions expect to work on lists. The act of pagination, or returning a single result, is handled as part of the interface, and is not a concern of the action itself. Here is an example of a read action:
Giving your actions informative names is always a good idea
read :ticket_queue do
 # Use arguments to take in values to run your read action.
 argument :priorities, {:array, :atom} do
 constraints items: [one_of: [:low, :medium, :high]]
 end

 # This action may be paginated, and returns a total count of records by default
 pagination offset: true, countable: :by_default

 # Use arguments to modify filters
 # You can also use arguments in custom preparations using `Ash.Changeset.get_argument/2`
 # This is useful when a simple filter like the one below does not suffice
 filter expr(status == :open and priority in ^arg(:priorities))
end
Ash.Query.for_read/4
The following steps are performed when you call Ash.Query.for_read/4.
	Gather Process Context
	Cast input arguments - d:Ash.Resource.Dsl.actions.read.argument
	Set default argument values - d:Ash.Resource.Dsl.actions.read.argument|default
	Add errors for missing required arguments | d:Ash.Resource.Dsl.actions.read.argument|allow_nil?

	Run query preparations | d:Ash.Resource.Dsl.actions.read.prepare

	Add action filter | d:Ash.Resource.Dsl.actions.read|filter

Running the Read Action
If the query has not yet been run through Ash.Query.for_read/3 for the action in question, we do that first. Then we perform the following steps. These steps are trimmed down, and are aimed at helping users understand the general flow. Some steps are omitted.
	Run Ash.Query.for_read/3 if it has not already been run
	Apply tenant filters for attribute
	Apply pagination options
	Run before action hooks
	Multi-datalayer filter is synthesized. We run queries in other data layers to fetch ids and translate related filters to (destination_field in ^ids)
	Strict Check & Filter Authorization is run
	Data layer query is built and validated
	Data layer query is Run
	Authorizer "runtime" checks are run (you likely do not have any of these)

The following steps happen asynchronously during or after the main data layer query has been run
	If paginating and count was requested, the count is determined at the same time as the query is run.
	Any calculations & aggregates that were able to be run outside of the main query are run
	Any relationships are loaded

 Create/Update/Destroy Actions

These actions operate on an Ash.Changeset. While standard destroy actions don't care about the changes you add to a changeset, you may mark a destroy action as d:Ash.Resource.Dsl.actions.destroy|soft?, which means you will be performing an update that will in some way "hide" the resource. Generally this hiding is done by adding a d:Ash.Resource.Dsl.resource|base_filter i.e base_filter [is_nil: :archived_at]
Here is an example create action:
create :register do
 # By default all public attributes are accepted, but this should only take email
 accept [:email]

 # Accept additional input by adding arguments
 argument :password, :string do
 allow_nil? false
 end

 argument :password_confirmation, :string do
 allow_nil? false
 end

 # Use the built in `confirm/2` validation
 validate confirm(:password, :password_confirmation)

 # Call a custom change that will hash the password
 change MyApp.User.Changes.HashPassword
end
Changesets for actions
The following steps are run when calling Ash.Changeset.for_create/4, Ash.Changeset.for_update/4 or Ash.Changeset.for_destroy/4.
	Gather process context
	Cast input params | This is any arguments in addition to any accepted attributes

	Set argument defaults
	Require any missing arguments
	Validate all provided attributes are accepted
	Require any accepted attributes that are allow_nil? false
	Set any default values for attributes
	Run action changes & validations
	Run validations, or add them in before_action hooks if using d:Ash.Resource.Dsl.actions.create.validate|before_action?. Any global validations are skipped if the action has skip_global_validations? set to true.

Running the Create/Update/Destroy Action
All of these actions are run in a transaction if the data layer supports it. You can opt out of this behavior by supplying transaction?: false when creating the action. When an action is being run in a transaction, all steps inside of it are serialized, because generally speaking, transactions cannot be split across processes.
	Authorization is performed on the changes
	A before action hook is added to set up belongs_to relationships that are managed. This means potentially creating/modifying the destination of the relationship, and then changing the destination_attribute of the relationship.
	Before transaction hooks are called (Ash.Changeset.before_transaction/2). Keep in mind, any validations that are marked as before_action? true (or all global validations if your action has delay_global_validations? true) will not have happened at this point.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	Before action hooks are performed in reverse order they were added. (unless append? option was used)
	For manual actions, a before action hook must have set
	After action hooks are performed in the order they were added (unless prepend? option was used)
	For Manual Actions, one of these after action hooks must have returned a result, otherwise an error is returned.
	Non-belongs-to relationships are managed, creating/updating/destroying related records.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	If an after_action option was passed when running the action, it is run with the changeset and the result. Only supported for create & update actions.
	The transaction is closed, if one was opened
	After transaction hooks are invoked with the result of the transaction (even if it was an error)

 Generic Actions

A generic action consists of three main components:
	the return type
	the arguments
	the run function

Here is an example:
action :hello, :string do
 argument :name, :string, allow_nil?: false

 run(fn input, _context ->
 {:ok, "Hello #{input.arguments.name}"}
 end)
end
Returning resource instances
It sometimes happens that you want to make a generic action which returns an
instance of the parent resource. It's natural to assume that you would want
to set your action's return type to the name of your resource. Unfortunately
this will result in a compile error as the resource struct is not yet defined
at the time of DSL transformation. The work around is to define an action
that returns :struct and is constrained to only be of a specific type, eg:
action :get, :struct do
 constraints instance_of: __MODULE__

 run # ...
end

The benefit of using generic actions instead of defining normal functions:
	They can be used with api extensions like ash_json_api and ash_graphql
	They support Ash authorization patterns (i.e policies)
	They be included in the code interface of a resource
	They can be made transactional with a single option (transaction? true)

Aggregates

Aggregates in Ash allow for retrieving summary information over groups of related data. A simple example might be to show the "count of published posts for a user". Aggregates allow us quick and performant access to this data, in a way that supports being filtered/sorted on automatically. More aggregate types can be added, but you will be restricted to only the supported types. In cases where aggregates don't suffice, use Calculations, which are intended to be much more flexible.

 Declaring aggregates on a resource

Example:
aggregates do
 count :count_of_posts, :posts do
 filter expr(published == true)
 end
end
The available aggregate types are:
	count - counts related items meeting the criteria
	first - gets the first related value matching the criteria. Must specify the field to get.
	sum - sums the related items meeting the criteria. Must specify the field to sum.
	list - lists the related values. Must specify the field to list.

See the docs on d:Ash.Resource.Dsl.aggregates for more information.
The aggregates declared on a resource allow for declaring a set of named aggregates that can be used by extensions.
As an escape hatch, they can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.load/3. Aggregates declared on the resource will be keys in the resource's struct.

 Custom aggregates in the query

Custom aggregates can be added to the query and will be placed in the aggregates key of the results. This is an escape hatch, and is not the primary way that you should be using aggregates. It does, however, allow for dynamism, i.e if you are accepting user input that determines what the filter and/or field should be, that kind of thing.
Example:
User
|> Ash.Query.aggregate(
 :count_of_posts,
 :count,
 :posts,
 query: [
 filter: [published: published?]
]
)
See the documentation for Ash.Query.aggregate/4 for more information.

 Join Filters

Join filters allows for more complex aggregate queries, including joining with predicates based on multiple related values.

 Example

 aggregates do
 sum :saved_money, [:redeems, :deal], :amount do
 # where any redeem of the deal is redeemed
 filter expr(redeems.redeemed == true)

 join_filter :redeems, expr(redeemed == true)
 join_filter [:redeems, :deal], expr(active == parent(require_active))
 end
 end

Atomics

Atomics allow you to attach expression-based changes to changesets, to be executed in the data layer when the action is performed.
For example:
update :increment_score do
 argument :points, :integer, allow_nil?: false
 change atomic_update(:score, expr(score + ^arg(:points)))
end

 What is supported

	Atomics are only supported in update actions and upserts. In the case of upserts, the atomic changes are only applied in the case of a conflicting record.
	Attaching atomics to an action using the atomic_update/2 change in the action, as shown in the example below.
	Attaching atomics to a changeset manually with Ash.Changeset.atomic_update/3
	Using calculations that don't refer to aggregates or related values in expressions

 Manually attached

changeset
|> Ash.Changeset.atomic_update(:score, Ash.Expr.expr(score + 1))
|> Ash.update!()

 Upsert example

create :upsert do
 upsert? true
 change set_attribute(:points, 1) # set to 1
 set_on_upsert :points, expr(points + 1) # or increment existing
end

Attributes

Attributes specify the name, type and properties of a piece of information in a resource.

 Ways of writing attributes

There are two ways to write an attribute:
attribute :name, :string, allow_nil?: false

or ...
attribute :name, :string do
 allow_nil? false
end
Both ways will work. Though when you're using many options the latter is preferred. This is also true of any other keyword in the Ash DSL, so you can build a flexible yet concise domain model.
For more information on attribute types including composite types and defining your own custom type see Ash.Type
You can find a comprehensive of attribute options with detailed descriptions on the d:Ash.Resource.Dsl.attributes page.

 Special attributes

In Ash there are 4 special attributes these are:
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key

These are really just shorthand for an attribute with specific options set. They're outlined below.

 create_timestamp

You may recognise this if you have used Ecto before. This attribute will record the time at which each row is created, by default it uses DateTime.utc_now/1.
create_timestamp :inserted_at is equivalent to an attribute with these options:
attribute :inserted_at, :utc_datetime_usec do
 writable? false
 default &DateTime.utc_now/0
 match_other_defaults? true
 allow_nil? false
end

 update_timestamp

This is also similar in Ecto. This attribute records the last time a row was updated, also using DateTime.utc_now/1 by default.
update_timestamp :updated_at is equivalent to:
attribute :updated_at, :utc_datetime_usec do
 writable? false
 default &DateTime.utc_now/0
 update_default &DateTime.utc_now/0
 match_other_defaults? true
 allow_nil? false
end

 uuid_primary_key

This attribute is used in almost every resource. It generates a UUID every time a new record is made.
uuid_primary_key :id is equivalent to:
attribute :id, :uuid do
 writable? false
 default &Ash.UUID.generate/0
 primary_key? true
 allow_nil? false
end

 integer_primary_key

Don't use this attribute unless absolutely necessary, there are a lot of good reasons to not use autoincrementing integer ids. If you do, please make sure these resource are only accessed internally and aren't exposed via a public API.
integer_primary_key :id is equivalent to:
attribute :id, :integer do
 writable? false
 generated? true
 primary_key? true
 allow_nil? false
end

Bulk Actions

Bulk actions are ways to create, update or destroy many records at once, backed by scalable patterns.
Currently, only bulk creates are implemented. Bulk updates and bulk destroys will come next.

 Bulk Creates

Bulk creates take a list or stream of inputs for a given action, and batches calls to the underlying data layer. For example, with an action like this:
create :create do
 accept [:title, :subtitle]
end
You could then call Ash.bulk_create like so:
Ash.bulk_create([%{title: "foo", subtitle: "bar"}, %{title: "baz", subtitle: "buz"}], Resource, :action)

 Considerations

Generally speaking, all regular Ash create actions are compatible (or can be made to be compatible) with bulk create actions. However, there are some important considerations.
	Ash.Resource.Change modules can be optimized for bulk actions by implementing batch_change/3, before_batch/3 and after_batch/3. If you implement batch_change/3, the change function will no longer be called, and you should swap any behavior implemented with before_action and after_action hooks to logic in the before_batch and after_batch callbacks.

	Actions that reference arguments in changes, i.e change set_attribute(:attr, ^arg(:arg)) will prevent us from using the batch_change/3 behavior. This is usually not a problem, for instance that change is lightweight and would not benefit from being optimized with batch_change/3

	If your action uses after_action hooks, or has after_batch/3 logic defined for any of its changes, then we must ask the data layer to return the records it inserted. Again, this is not generally a problem because we throw away the results of each batch by default. If you are using return_records?: true then you are already requesting all of the results anyway.

 Returning a Stream

Returning a stream allows you to work with a bulk action as an Elixir Stream. For example:
input_stream()
|> Ash.bulk_create(Resource, :action, return_stream?: true, return_records?: true)
|> Stream.map(fn {:ok, result} ->
 # process results
 {:error, error} ->
 # process errors
end)
|> Enum.reduce(%{}, fn {:ok, result}, acc ->
 # process results
 {:error, error} ->
 # process errors
end)

 Considerations

Because streams are lazily evaluated, if you were to do something like this:
[input1, input2, ...] # has 300 things in it
|> Ash.bulk_create(Resource, :action, return_stream?: true, return_records?: true, batch_size: 100) # the default is 100
|> Enum.take(150)
What would happen is that we would insert 200 records (assuming no errors were emitted). Because the stream would end after we process the first two batches. If you want to make sure that everything happens, just be sure you aren't using things like Stream.take or Enum.take to limit the amount of things pulled from the stream.

Calculations

Calculations in Ash allow for displaying complex values as a top level value of a resource.

 Primer

 Declaring calculations on a resource

 Expression Calculations

The simplest kind of calculation refers to an Ash expression. For example:
calculations do
 calculate :full_name, :string, expr(first_name <> " " <> last_name)
end
See the Expressions guide for more.

 Module Calculations

When calculations require more complex code or can't be pushed down into the data layer, a module that uses Ash.Resource.Calculation can be used.
defmodule Concat do
 # An example concatenation calculation, that accepts the delimiter as an argument,
 #and the fields to concatenate as options
 use Ash.Resource.Calculation

 # Optional callback that verifies the passed in options (and optionally transforms them)
 @impl true
 def init(opts) do
 if opts[:keys] && is_list(opts[:keys]) && Enum.all?(opts[:keys], &is_atom/1) do
 {:ok, opts}
 else
 {:error, "Expected a `keys` option for which keys to concat"}
 end
 end

 @impl true
 # A callback to tell Ash what keys must be loaded/selected when running this calculation
 def load(_query, opts, _context) do
 opts[:keys]
 end

 @impl true
 def calculate(records, opts, %{separator: separator}) do
 Enum.map(records, fn record ->
 Enum.map_join(opts[:keys], separator, fn key ->
 to_string(Map.get(record, key))
 end)
 end)
 end

 # You can implement this callback to make this calculation possible in the data layer
 # *and* in elixir. Ash expressions are already executable in Elixir or in the data layer, but this gives you fine grain control over how it is done
 # @impl true
 # def expression(opts, context) do
 # end
end

Usage in a resource
calculations do
 calculate :full_name, :string, {Concat, keys: [:first_name, :last_name]} do
 # You need to use the [allow_empty?: true, trim?: false] constraints here.
 # The separator could be an empty string or require a leading or trailing space,
 # but would be trimmed or even set to `nil` without the constraints shown below.
 argument :separator, :string do
 allow_nil? false
 constraints [allow_empty?: true, trim?: false]
 default ""
 end
 end
end
See the documentation for the calculations section in Resource DSL docs and the Ash.Resource.Calculation docs for more information.
The calculations declared on a resource allow for declaring a set of named calculations that can be used by extensions.
They can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.load/3. Calculations declared on the resource will be keys in the resource's struct.

 Custom calculations in the query

Example:
User
|> Ash.Query.calculate(:full_name, {Concat, keys: [:first_name, :last_name]}, :string, %{separator: ","})
See the documentation for Ash.Query.calculate/4 for more information.

 Arguments in calculations

Using the above example with arguments, you can load a calculation with arguments like so:
load(full_name: [separator: ","])
If the calculation uses an expression, you can also filter and sort on it like so:
query
|> Ash.Query.filter(full_name(separator: ","))
|> Ash.Query.sort(full_name: {:asc, %{separator: ","}})

Code Interface

One of the ways that we interact with our resources is via hand-written code. The general pattern for that looks like building a query or a changeset for a given action, and calling it via functions like Ash.read/2 and Ash.create/2. This, however, is just one way to use Ash, and is designed to help you build tools that work with resources, and to power things like AshPhoenix.Form, AshGraphql.Resource and AshJsonApi.Resource. When working with your resources in code, we generally want something more idiomatic and simple. For example, on a domain called Helpdesk.Support.
resources do
 resource Ticket do
 define :open_ticket, args: [:subject], action: :open
 end
end
This simple setup now allows you to open a ticket with Helpdesk.Support.open_ticket(subject). You can cause it to raise errors instead of return them with Helpdesk.Support.open!(subject). For information on the options and additional inputs these defined functions take, look at the generated function documentation, which you can do in iex with h Helpdesk.Support.open_ticket. For more information on the code interface, read the DSL documentation: d:Ash.Domain.Dsl.resource.interfaces.

 Code interfaces on the resource

You can define a code interface on individual resources as well, using the code_interface block. The DSL is the same as the DSL for defining it in the domain. For example:
code_interface do
 # the action open can be omitted because it matches the functon name
 define :open, args: [:subject]
end

 Using the code interface

If the action is an update or destroy, it will take a record or a changeset as its first argument.
If the action is a read action, it will take a starting query as an opt in the last argument.
All functions will have an optional last argument that accepts options. See Ash.Resource.Interface.interface_options/1 for valid options.
For reads:
	:query - a query to start the action with, can be used to filter/sort the results of the action.

For creates:
	:changeset - a changeset to start the action with

They will also have an optional second to last argument that is a freeform map to provide action input. It must be a map.
If it is a keyword list, it will be assumed that it is actually options (for convenience).
This allows for the following behaviour:
Because the 3rd argument is a keyword list, we use it as options
Accounts.register_user(username, password, [tenant: "organization_22"])
Because the 3rd argument is a map, we use it as action input
Accounts.register_user(username, password, %{key: "val"})
When all arguments are provided it is unambiguous
Accounts.register_user(username, password, %{key: "val"}, [tenant: "organization_22"])

 Calculations

Resource calculations can be run dynamically using Ash.calculate/3, but
you can also expose them using the code_interface with define_calculation.
For example:
calculations do
 calculate :full_name, :string, expr(first_name <> ^arg(:separator) <> last_name) do
 argument :separator, :string do
 allow_nil? false
 default " "
 end
 end
end

in your domain
resource User do
 define_calculation :full_name, args: [:first_name, :last_name, {:optional, :separator}]
 # or if you want to take a record as an argument
 define_calculation :full_name, args: [:_record]
end
This could now be used like so:
Accounts.full_name("Jessie", "James", "-")
or with a record as an argument
Accounts.full_name(user)
This allows for running calculations without an instance of a resource, normally done via Ash.load(user, :full_name)
By default, configured args will be provided for any matching named reference or argument. This is normally fine, but in the case that you have an argument and a reference with the same name, you can specify it by supplying {:arg, :name} and {:ref, :name}. For example:
define_calculation :id_matches, args: [{:arg, :id}, {:ref, :id}]
To make arguments optional, wrap them in {:optional, ..}, for example:
define_calculation :id_matches, args: [{:arg, :id}, {:optional, {:ref, :id}}]

 Bulk & atomic actions

 Bulk Updates & Destroys

Updates support a list, stream, or query as the first argument. This allows for bulk updates. In this mode, an %Ash.BulkResult{} is returned.

 Valid inputs

You cannot provide "any enumerable", only lists, streams (a function or a %Stream{}), and queries. We have to be able to distinguish the input as a bulk input and not input to the action itself.

For example:
Post
|> Ash.Query.filter(author_id == ^author_id)
|> MyApp.Blog.archive_post!()
=> %Ash.BulkResult{}

[%Post{}, %Post{}]
|> MyApp.Blog.destroy_post!()
=> %Ash.BulkResult{}
end
You can pass options to the bulk operation with the bulk_options option to your code interface function.

 Bulk Creates

For bulk creates, you can provide a list or stream of inputs. In this mode also, an %Ash.BulkResult{} is returned.

 Valid inputs

You cannot provide "any enumerable", only lists, streams (a function or a %Stream{}). We have to be able to distinguish the input as a bulk input and not input to the action itself.

Any arguments on the code interface will be applied to all inputs given as a list, and the arguments will come first.
[%{title: "Post 1"}, %{title: "Post 2"}, ...]
if `:special` is an action argument, it will be applied to all inputs
|> MyApp.Blog.create_post!(:special, bulk_options: [batch_size: 10])

 Returning streams from read actions

The :stream? option allows you to return a stream to be enumerated later.
For example:
MyApp.Blog.my_posts(stream?: true, actor: me)
=> #Stream<...>

Constraints

Constraints are a way of validating an input type. This validation can be used in both attributes and arguments. The kinds of constraints you can apply depends on the type the data. You can find all types in Ash.Type . Each type has its own page on which the available constraints are listed. For example in Ash.Type.String you can find 5 constraints:
	:max_length
	:min_length
	:match
	:trim?
	:allow_empty?

You can also discover these constraints from iex:
$ iex -S mix
iex(1)> Ash.Type.String.constraints
[
 max_length: [
 type: :non_neg_integer,
 doc: "Enforces a maximum length on the value"
],
 min_length: [
 type: :non_neg_integer,
 doc: "Enforces a minimum length on the value"
],
 match: [
 type: {:custom, Ash.Type.String, :match, []},
 doc: "Enforces that the string matches a passed in regex"
],
 trim?: [type: :boolean, doc: "Trims the value.", default: true],
 allow_empty?: [
 type: :boolean,
 doc: "If false, the value is set to `nil` if it's empty.",
 default: false
]
]

 Attributes with Constraints

To show how constraints can be used in a attribute, here is an example attribute describing a username:
defmodule MyProject.MyDomain.Account do
 # ...

 code_interface do
 define :create, action: :create
 end

 actions do
 default [:create, :read, :update, :destroy]
 end

 attributes do
 uuid_primary_key :id

 attribute :username, :string do
 constraints [
 max_length: 20,
 min_length: 3,
 match: ~r/^[a-z_-]*$/,
 trim?: true,
 allow_empty?: false
]
 end
 end

 # ...
end
If when creating or updating this attribute one of the constraints are not met, an error will be given telling you which constraint was broken. See below:
iex(1)> MyProject.MyDomain.Account.create!(%{username: "hi"})

** (Ash.Error.Invalid) Invalid Error

* Invalid value provided for username: length must be greater than or equal to 3.

"hi"

iex(2)> MyProject.MyDomain.Account.create!(%{username: "Hello there this is a long string"})

** (Ash.Error.Invalid) Invalid Error

* Invalid value provided for username: length must be less than or equal to 20.

"Hello there this is a long string"

iex(3)> MyProject.MyDomain.Account.create!(%{username: "hello there"})
** (Ash.Error.Invalid) Invalid Error

* Invalid value provided for username: must match the pattern ~r/^[a-z_-]*$/.

"hello there"

iex(4)> MyProject.MyDomain.Account.create!(%{username: ""})
** (Ash.Error.Invalid) Invalid Error

* attribute title is required
It will give you the resource as usual on successful requests:
iex(5)> MyProject.MyDomain.Account.create!(%{username: "hello"})
#MyProject.MyDomain.Account<
 __meta__: #Ecto.Schema.Metadata<:loaded, "account">,
 id: "7ba467dd-277c-4916-88ae-f62c93fee7a3",
 username: "hello",
 ...
>

 Arguments with Constraints

Arguments are used to input data into actions. As the data we pass in has a type we can apply constraints to validate the input arguments.
defmodule MyProject.MyDomain.Account do
 # ...

 code_interface do
 define :create_username_with_age, action: :create_username_with_age
 end

 actions do
 default [:create, :read, :update, :destroy]

 create :create_username_with_age do
 argument :title, :string, allow_nil?: false

 argument :age, :integer do
 allow_nil? false
 constraints min: 18, max: 99
 end

 change fn changeset, _ ->
 title = Ash.Changeset.get_argument(changeset, :title)
 age = Ash.Changeset.get_argument(changeset, :age)

 Ash.Changeset.change_attribute(changeset, :username, "#{title}-#{age}")
 end
 end
 end

 attributes do
 uuid_primary_key :id

 attribute :username, :string do
 constraints [
 max_length: 20,
 min_length: 3,
 match: ~r/^[a-z0-9_-]*$/,
 trim?: true,
 allow_empty?: false
]
 end
 end

 # ...
end
If you input argument is going to be used as a attribute directly, its best to put the constraint in the attributes block. But if you are combining multiple arguments to synthesize an attribute, then you should apply constraints to the arguments.
Above we have defined a custom action which takes 2 arguments :title and :age this action creates a username where the age of the user is embedded. However we have placed a limitation via the constraints so that only when age >= 18 and age <= 99 is the action allowed to occur. Lets see this in action.
iex(1)> MyProject.MyDomain.Account.create_username_with_age!(%{username: "hello", age: 100})

** (Ash.Error.Invalid) Invalid Error

* Invalid value provided for age: must be less than or equal to 99.

100

iex(2)> MyProject.MyDomain.Account.create_username_with_age!(%{username: "hello", age: 99})
#MyProject.MyDomain.Account<
 __meta__: #Ecto.Schema.Metadata<:loaded, "accounts">,
 id: "5a28d5a1-25e6-4363-b173-3dd64e629dc8",
 title: "hello-99",
 ...
>

Development Utilities

 ElixirSense Plugin

The Ash ElixirSense plugin offers custom auto complete inside of any Ash DSL module (i.e Ash.Resource/Ash.Domain)
As of this writing, this does not work with the currently released VSCode package. We are waiting for them to do another release
to resolve this issue. However, you can clone down the elixir-ls repository, run its release command, and configure VSCode to point
at the folder where you did that.

 Formatter plugin

The underlying DSL tooling Spark has a formatter plugin that can help you keep your resources consistent and neat.

 Adding the plugin

Add the following to your .formatter.exs
[
 plugins: [Spark.Formatter], # <- add the plugin here
 inputs: ...
]

 Configuration

Minimal config for your Ash Resources
config :spark, :formatter,
 remove_parens?: true,
 "Ash.Resource": [
 type: Ash.Resource,
 section_order: [
 :authentication,
 :token,
 :attributes,
 :relationships,
 :policies,
 :postgres
]
]
If you use a different module than Ash.Resource
config :spark, :formatter,
 [
 "Ash.Resource": [
 section_order: [
 :resource,
 :identities,
 :attributes,
 :relationships,
 ...
]
],
 # If you use a different module than Ash.Resource
 "MyApp.Resource": [
 type: Ash.Resource,
 # What extensions might be added by your base module
 extensions: [...],
 section_order: [
 :resource,
 :identities,
 :attributes,
 :relationships,
 ...
]
]
]

Embedded Resources

Embedded resources function very similarly to embedded schemas in Ecto.
The primary difference is the same as the primary difference between Ecto schemas and Ash resources: the full lifecycle
of the resource is managed by its configuration. For example, you can add validations, calculations, and even authorization policies to an embedded resource. Here is an example of a simple embedded resource:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string
 attribute :last_name, :string
 end
end
Embedded resources cannot have relationships or aggregates.

 Adding embedded resource attributes

Embedded resources define an Ash.Type under the hood, meaning you can use them anywhere you would use an Ash type.
defmodule MyApp.User do
 use Ash.Resource, ...

 attributes do
 ...

 attribute :profile, MyApp.Profile
 attribute :profiles, {:array, MyApp.Profile} # You can also have an array of embeds
 end
end

 Nil values

By default, all fields on an embedded resource will be included in the data layer, including keys with nil values. To prevent this, add the embed_nil_values? option to use Ash.Resource. For example:
defmodule YourEmbed do
 use Ash.Resource,
 data_layer: :embedded,
 embed_nil_values?: false
end

 Editing embedded attributes

If you manually supply instances of the embedded structs, the structs you provide are used with no validation. For example:
Ash.Changeset.for_update(user, :update, %{profile: %MyApp.Profile{first_name: "first_name", last_name: "last_name}})
However, you can also treat embedded resources like regular resources that can be "created", "updated", and "destroyed".
To do this, provide maps as the input, instead of structs. In the example above, if you just wanted to change the first_name, you'd provide:
Ash.Changeset.for_update(user, :update, %{profile: %{first_name: "first_name"}})
This will call the primary update action on the resource. This allows you to define an action on the embed, and add validations to it. For example, you might have something like this:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string
 attribute :last_name, :string
 end

 validations do
 validate present([:first_name, :last_name], at_least: 1)
 end
end

 Calculations

Calculations can be added to embedded resources. When you use an embedded resource, you declare what calculations to load via a constraint.
For example:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string
 attribute :last_name, :string
 end

 calculations do
 calculate :full_name, :string, concat([:first_name, :last_name], " ")
 end
end

defmodule MyApp.User do
 use Ash.Resource,
 ...

 attributes do
 attribute :profile, MyApp.Profile do
 constraints [load: [:full_name]]
 end
 end
end

 Determining what action(s) will be called:

Remember: default actions are already implemented for a resource, with no need to add them. They are called :create, :update, :destroy, and :read. You can use those without defining them. You only need to define them if you wish to override their configuration.

 Single Embeds

	If the current value is nil - a create with the provided values
	If the current value is not nil - an update with the provided values
	If the current value is not nil and the new value is nil - a destroy with the original value

 Array Embeds

All values in the original array are destroyed, and all maps in the new array are used to create new records.

 Adding a primary key

Adding a primary key to your embedded resources is especially useful when managing lists of data. Specifically, it allows you to consider changes to elements with matching primary key values as updates.
For example:
defmodule MyApp.Tag do
 use Ash.Resource,
 data_layer: :embedded

 attributes do
 uuid_primary_key :id
 attribute :name, :string
 attribute :counter, :integer
 end

 validations do
 validate {Increasing, field: :counter}, on: :update
 end
end
Now, you can accept input meant to update individual list items. The entire list must still be provided, but any items with a matching id will be considered an update instead of a destroy + create.

 Determining what action(s) will be called with a primary key:

Single Embeds with primary keys
	If you provide a struct, instead of a map, the value provided is used as the new relationship value directly.
	If the current value is nil - a create with the provided values
	If the current value is not nil and the primary keys match - an update with the provided values
	If the current value is not nil and the primary keys don't match - a destroy of the original value and a create of the new value
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds with primary keys
	If you provide structs, instead of maps, the value provided is used as the new relationship value directly.
	Any values in the original list with no primary key matching in the new list are destroyed.
	Any values in the new list with no primary key matching in the original list are created.
	Any values with a primary key match in the original list and the new list are updated

 Identities

Identities can be added on an embedded resource, which will ensure that for any given list, they are unique on that identity. For example, if you had an embedded resource called Tag, you could add an identity on name to ensure that nothing has duplicate tag names.

 Usage in Extensions

The AshJsonApi extension exposes these attributes as maps. However, the AshGraphql extension allows you
to specify a type (but not queries/mutations) for an embedded resource. If you do, instead of being treated as a :json type it will get its own named input object type and field type.

 Accessing the source changeset

When building changesets for embedded resources, the source changeset will be available in action changes under changeset.context.__source__.
This allows you to customize the action based on the details of the parent changeset.

Expressions

Ash expressions are used in various places like calculations, filters, and policies, and are meant to be portable representations of elixir expressions. You can create an expression using the Ash.Expr.expr/1 macro, like so:
Ash.Expr.expr(1 + 2)
Ash.Expr.expr(x + y)
Ash.Expr.expr(post.title <> " | " <> post.subtitle)
Ash expressions have some interesting properties in their evaluation, primarily because they are made to be portable, i.e executable in some data layer (like SQL) or executable in Elixir. In general, these expressions will behave the same way they do in Elixir. The primary difference is how nil values work. They behave the way that NULL values behave in SQL. This is primarily because this pattern is easier to replicate to various popular data layers, and is generally safer when using expressions for things like authentication. The practical implications of this are that nil values will "poison" many expressions, and cause them to return nil. For example, x + nil would always evaluate to nil. Additionally, true and nil will always result in nil, this is also true with or and not, i.e true or nil will return nil, and not nil will return nil.

 Operators

The following operators are available and they behave the same as they do in Elixir, except for the nil addendum above.
	==
	!=
	>
	>=
	<
	<=
	in
	*
	-
	/
	<>
	||
	&&
	is_nil | Only works as an operator in maps/keyword list syntax. i.e [x: [is_nil: true]]

 Functions

The following functions are built in. Data Layers can add their own functions to expressions. For example, AshPostgres adds trigram_similarity function.
The following functions are built in:
	if | Works like elixir's if.

	is_nil/1 | Works like elixir's is_nil

	get_path/2 | i.e get_path(value, ["foo", "bar"]). This is what expressions like value[:foo]["bar"] are turned into under the hood.

	contains/2 | if one string contains another string, i.e contains("fred", "red")

	length/1 | the length of a list, i.e. length([:foo, :bar])

	type/2 | Cast a given value to a specific type, i.e type(^arg(:id), :uuid) or type(integer_field, :string)

	string_downcase/1 | Downcases a string

	string_join/1 | Concatenates a list of strings, and ignores any nil values

	string_join/2 | As above, but with a joiner

	string_split/1 | Splits a string on spaces

	string_split/2 | As above, but with a specific delimiter

	string_split/3 | As above, but with options. See the function for the available options.

	string_length/1 | Returns the length of a given string, as reported by String.length/1

	string_trim/1 | Trims unicode whitespace from the beginning and the end of a string

	at/2 | Get an element from a list, i.e at(list, 1)

	round/1 | Round a float, decimal or int to 0 precision, i.e round(num)

	round/2 | Round a float, decimal or int to the provided precision or less, i.e round(1.1234, 3) == 1.1234 and round(1.12, 3) == 1.12

	String interpolation | "#{first_name} #{last_name}", is remapped to the equivalent usage of <>

	fragment/* | Creates a fragment of a data layer expression. See the section on fragments below.

 Fragments

Fragments come in two forms.

 String Fragments

For SQL/query-backed data layers, they will be a string with question marks for interpolation. For example: fragment("(? + ?)", foo, bar).

 Function Fragments

For elixir-backed data layers, they will be a function or an MFA that will be called with the provided arguments. For example: fragment(&Module.add/2, foo, bar) or fragment({Module, :add, []}, foo, bar). When using anonymous functions, you can only use the format &Module.function/arity. &Module.add/2 is okay, but fn a, b -> Module.add(a, b) end is not.

 Sub-expressions

	exists/2 | exists(foo.bar, name == "fred") takes an expression scoped to the destination resource, and checks if any related entry matches. See the section on exists below.

	path.exists/2 | Same as exists but the source of the relationship is itself a nested relationship. See the section on exists below.

	parent/1 | Allows an expression scoped to a resource to refer to the "outer" context. Used in relationship filters and exists

 DateTime Functions

	now/0 | Evaluates to the current time when the expression is evaluated

	today/0 | Evaluates to the current date when the expression is evaluated

	ago/2 | i.e deleted_at > ago(7, :day). The available time intervals are documented in Ash.Type.DurationName

	from_now/2 | Same as ago but adds instead of subtracting

	datetime_add/3 | add an interval to a datetime, i.e datetime_add(^datetime, 10, :hour)

	date/3 | add an interval to a date, i.e datetime_add(^date, 3, :day)

 Primitives

	cond - cond is transformed to a series of if expressions under the hood
	item[:key] or item["key"] - accesses keys in a map. In both cases, it prefers a matching atom key, falling back to a matching string key. This is to aid with data stores that store embeds as JSON with string keys (like AshPostgres), so that this expression behaves the same in the data layer as it does in Elixir.

 Escape Hatches

	lazy/1 - Takes an MFA and evaluates it just before running the query. This is important for calculations, because the expression/2 callback should be stable (returns the same value given the same input). For example lazy({ULID, :generate, [timestamp_input]})

 Inline Aggregates

Aggregates can be referenced in-line, with their relationship path specified and any options provided that match the options given to Ash.Query.Aggregate.new/4. For example:
calculate :grade, :decimal, expr(
 count(answers, query: [filter: expr(correct == true)]) /
 count(answers, query: [filter: expr(correct == false)])
)
The available aggregate kinds can also be seen in the Ash.Query.Aggregate module documentation.

 Templates

Most of the time, when you are using an expression, you will actually be creating a template. In this template, you have a few references that can be used, which will be replaced when before the expression is evaluated. The following references are available.
^actor(:key) # equivalent to `get_in(actor || %{}, [:key])`
^actor([:key1, :key2]) # equivalent to `get_in(actor || %{}, [:key, :key2])`
^arg(:arg_name) # equivalent to `Map.get(arguments, :arg_name)`
^context(:key) # equivalent to `get_in(context, :key)`
^context([:key1, :key2]) # equivalent to `get_in(context, [:key1, :key2])`
^ref(:key) # equivalent to referring to `key`. Allows for dynamic references
^ref(:key, [:path]) # equivalent to referring to `path.key`. Allows for dynamic references with dynamic (or static) paths.

 Custom Expressions

Custom expressions allow you to extend Ash's expression language with your own expressions. To see more, see Ash.CustomExpression. To add a custom expression, configure it and recompile ash. For example:
config :ash, :custom_expressions, [
 MyApp.CustomExpression
]
mix deps.compile ash --force
These expressions will be available across all usages of Ash expressions within your application.

 Use cases for expressions

 Filters

The most obvious place we use expressions is when filtering data. For example:
Ash.Query.filter(Ticket, status == :open and opened_at >= ago(10, :day))
These filters will be run in the data layer, i.e in the SQL query.
Filter semantics & joins
The semantics of Ash filters are probably slightly different than what you are used to, and they are important to understand. Every filter expression is always talking about a single row, potentially "joined" to single related rows. By referencing relationships, you are implicitly doing a join. For those familiar with SQL terminology, it is equivalent to a left join, although AshPostgres can detect when it is safe to do an inner join (for performance reason). Lets use an example of posts and comments.
Given a filter like the following:
Ash.Query.filter(Post, comments.points > 10 and comments.tag.name == "elixir")
The filter refers to a single post/comment/tag combination. So in english, this is "posts where they have a comment with more than 10 points and that same comment has a tag with the name elixir". What this also means is that filters like the above do not compose nicely when new filters are added. For example:
def has_comment_with_more_points_than(query, score) do
 Ash.Query.filter(Post, comments.points > 10)
end

def has_comment_tagged(query, tag) do
 Ash.Query.filter(Post, comments.tag.name == ^tag)
end

Post
|> has_comment_with_more_points_than(query, 10)
|> has_comment_tagged("elixir")
That code seems like it ought to produce a filter over Post that would give us any post with a comment having more than 10 points, and with a comment tagged elixir. That is not the same thing as having a single comment that meets both those criteria. So how do we make this better?
Exists
Lets rewrite the above using exists:
def has_comment_with_more_points_than(query, score) do
 Ash.Query.filter(Post, exists(comments, points > ^score))
end

def has_comment_tagged(query, tag) do
 Ash.Query.filter(Post, exists(comments.tag.name == ^tag)
end

Post
|> has_comment_with_more_points_than(query, ^score)
|> has_comment_tagged("elixir")
Now, they will compose properly! Generally speaking, you should use exists when you are filtering across any relationships that are to_many relationships *even if you don't expect your filter to be composed. Currently, the filter syntax does not minimize(combine) these exists/2 statements, but doing so is not complex and can be added. While unlikely, please lodge an issue if you see any performance issues with exists.
Exists at path
Sometimes, you want the ability to say that some given row must have an existing related entry matching a filter. For example:
Ash.Query.filter(Post, author.exists(roles, name == :admin) and author.active)
While the above is not common, it can be useful in some specific circumstances, and is used under the hood by the policy authorizer when combining the filters of various resources to create a single filter.

 Relationship Filters

When filtering relationships, you can use the parent/1 function to scope a part of the expression to "source" of the join. This allows for very expressive relationships! Keep in mind, however, that if you want to update and/or manage these relationships, you'll have to make sure that any attributes that make these things actually related are properly set.
has_many :descendents, __MODULE__ do
 description "All descendents in the same tree"
 no_attributes? true # this says that there is no matching source_attribute and destination_attribute on this relationship
 # This is an example using postgres' ltree extension.
 filter expr(tree_id == parent(tree_id) and fragment("? @> ?", parent(path), path))
end

 Portability

Ash expressions being portable is more important than it sounds. For example, if you were using AshPostgres and had the following calculation, which is an expression capable of being run in elixir or translated to SQL:
calculate :full_name, :string, expr(first_name <> " " <> last_name)
And you did something like the following:
User
|> Ash.Query.load(:full_name)
|> Ash.Query.sort(:full_name)
|> Accounts.read!()
You would see that it ran a SQL query with the full_name calculation as SQL. This allows for sorting on that value. However, if you had something like this:
data can be loaded in the query like above, or on demand later
Accounts.load!(user, :full_name)
you would see that no SQL queries are run. The calculation is run directly in Elixir and the value is set.

 Parent

Parent is a way to "jump out" of a scoped expression. Here are some examples:
Ash.Query.filter(exists(open_tickets, severity >= parent(severity_threshold)))
has_many :relevant_tickets, Ticket do
 filter expr(status == :open and severity >= parent(severity_threshold))
end
count :count_of_relevant_tickets, :open_tickets do
 filter expr(status == :open and severity >= parent(severity_threshold))
end

 Referencing related values

Related values can be references using dot delimiters, i.e Ash.Query.filter(user.first_name == "fred").
When referencing related values in filters, if the reference is a has_one or belongs_to, the filter does exactly what it looks like (matches if the related value matches). If it is a has_many or a many_to_many, it matches if any of the related records match.

 Referencing aggregates and calculations

Aggregates are simple, as all aggregates can be referenced in filter expressions (if you are using a data layer that supports it).
For calculations, only those that define an expression can be referenced in other expressions.
Here are some examples:
given a `full_name` calculation

Ash.Query.filter(User, full_name == "Hob Goblin")

given a `full_name` calculation that accepts an argument called `delimiter`

Ash.Query.filter(User, full_name(delimiter: "~") == "Hob~Goblin")

Glossary

 Action

An action describes an operation that can be performed for a given resource; it is the verb to a resource's noun. Examples of actions:
	User.create
	Comment.delete
	BlogPost.publish
	Article.search

Ash supports four different types of actions - create, read, update and destroy (collectively often abbreviated as CRUD). A resource can define multiple actions per action type, eg. a publish action would be considered an update because it is updating an existing instance of a resource. Actions are much more flexible than simple CRUD, but these four action types serve as templates for anything you might want to do.
See the Actions guide for more information.

 Actor

The entity that performs an action. Most actions are run on direct user request, eg. if a user presses a Create button on a page then the actor is the user; but an actor might also be an organization, a group, or the system itself.
Actors are referenced during authorization - ensuring that the actor is allowed to perform an action, before it takes place. The actor can also be used within actions, to record which entity performed the action.
See the Security guide for more information.

 Aggregate

An aggregate is a special type of field for a resource, one that summarizes related information of the record. A more specialized type of a calculation.
If a Project resource has_many Ticket resources, an example of an aggregate on the Project might be to count the tickets associated to each project.
See the Aggregates guide for more information.

 Domain

A method of broadly separating resources into different

 Identities - ash v3.0.0-rc.6

Identities

Identities are a way to declare that a record (an instance of a resource) can be uniquely identified by a set of attributes. This information can be used in various ways throughout the framework. The primary key of the resource does not need to be listed as an identity.

 Using Ash.get

This will allow these fields to be passed to Ash.get/3, e.g Ash.get(Resource, [email: "foo"]).

 Using upserts

Create actions support the upsert?: true option, if the data layer supports it. An upsert? involves checking for a conflict on some set of attributes, and translating the behavior to an update in the case one is found. By default, the primary key is used when looking for duplicates, but you can set [upsert?: true, upsert_identity: :identity_name] to tell it to look for conflicts on a specific identity.

 Creating unique constraints

Tools like AshPostgres will create unique constraints in the database automatically for each identity. These unique constraints will honor other configuration on your resource, like the base_filter.

 Eager Checking

Setting eager_check_with: DomainName on an identity will allow that identity to be checked when building a create changeset over the resource. This allows for showing quick up-front validations about whether some value is taken, for example.
If you are using AshPhoenix.Form, for example, this looks for a conflicting record on each call to Form.validate/2.
For updates, it is only checked if one of the involved fields is being changed.
For creates, The identity is checked unless your are performing an upsert, and the upsert_identity is this identity. Keep in mind that for this to work properly, you will need to pass the upsert?: true, upsert_identity: :identity_name when creating the changeset instead of passing it to the Domain when creating. The primary? read action is used to search for a record. This will error if you have not configured one.

 Pre Checking

pre_check_with: DomainName behaves the same as eager_check_with, but it runs just prior to the action being committed. Useful for data layers that don't support transactions/unique constraints, or manual resources with identities. Ash.DataLayer.Ets will actually require you to set pre_check_with since the ETS data layer has no built in support for unique constraints.

 Managing Relationships - ash v3.0.0-rc.6

Managing Relationships

In Ash, managing related data is done via Ash.Changeset.manage_relationship/4. There are various ways to leverage the functionality expressed there. If you are working with changesets directly, you can call that function. However, if you want that logic to be portable (e.g available in ash_graphql mutations and ash_json_api actions), then you want to use the following argument + change pattern:
actions do
 update :update do
 argument :add_comment, :map do
 allow_nil? false
 end

 argument :tags, {:array, :uuid} do
 allow_nil? false
 end

 # First argument is the name of the action argument to use
 # Second argument is the relationship to be managed
 # Third argument is options. For more, see `Ash.Changeset.manage_relationship/4`. This accepts the same options.
 change manage_relationship(:add_comment, :comments, type: :create)

 # Second argument can be omitted, as the argument name is the same as the relationship
 change manage_relationship(:tags, type: :append_and_remove)
 end
end
With this, those arguments can be used in action input:
post
|> Ash.Changeset.for_update(:update, tags: [tag1.id, tag2.id], add_comment: %{text: "comment text"})
|> Ash.update!()

 Argument Types

Notice how we provided a map as input to add_comment, and a list of UUIDs as an input to manage_relationship. When providing maps or lists of maps, you are generally just providing input that will eventually be passed into actions on the destination resource. However, you can also provide individual values or lists of values. By default, we assume that value maps to the primary key of the destination resource, but you can use the value_is_key option to modify that behavior. For example, if you wanted adding a comment to take a list of strings, you could say:
argument :add_comment, :string

...
change manage_relationship(:add_comment, :comments, type: :create, value_is_key: :text)
And then you could use it like so:
post
|> Ash.Changeset.for_update(:update, tags: [tag1.id, tag2.id], add_comment: "comment text")
|> Ash.update!()

 Derived behavior

Determining what will happen when managing related data can be complicated, as the nature of the problem itself is quite complicated. In some simple cases, like type: :create, there may be only one action that will be called. But in order to support all of the various ways that related resources may need to be managed, Ash provides a very rich set of options to determine what happens with the provided input. Tools like AshPhoenix.Form can look at your arguments that have a corresponding manage_relationship change, and derive the structure of those nested forms. Tools like AshGraphql can derive complex input objects to allow manipulating those relationships over a graphql Api. This all works because the options are, ultimately, quite explicit. It can be determined exactly what actions might be called, and therefore what input could be needed.

 Manual Actions - ash v3.0.0-rc.6

Manual Actions

Manual actions allow you to control how an action is performed instead of dispatching to a data layer. To do this, specify the manual option with a module that adopts the appropriate behavior.
Manual actions are a way to implement an action in a fully custom way. This can be a very useful escape hatch when you have something that you are finding difficult to model with Ash's builtin tools.

 Manual Creates/Updates/Destroy

For manual create, update and destroy actions, a module is passed that uses one of the provided modules (Ash.Resource.ManualCreate, Ash.Resource.ManualUpdate and Ash.Resource.ManualDestroy).
For example:
create :special_create do
 manual MyApp.DoCreate
end

The implementation
defmodule MyApp.DoCreate do
 use Ash.Resource.ManualCreate

 def create(changeset, _, _) do
 record = create_the_record(changeset)
 {:ok, record}

 # An `{:error, error}` tuple should be returned if something failed
 end
end
The underlying record can be retrieved from changeset.data for update and destroy manual actions. The changeset given to the manual action will be after any before_action hooks, and before any after_action hooks.

 Manual Read Actions

Manual read actions work the same, except the will also get the "data layer query". For AshPostgres, this means you get the ecto query that would have been run.
in the resource
actions do
 read :action_name do
 manual MyApp.ManualRead
 # or `{MyApp.ManualRead, ...opts}`
 end
end

the implementation
defmodule MyApp.ManualRead do
 use Ash.Resource.ManualRead

 def read(ash_query, ecto_query, _opts, _context) do
 ...
 {:ok, query_results} | {:error, error}
 end
end

 Modifying the query

As an alternative to manual read actions, you can also provide the modify_query option, which takes an MFA and allows low level manipulation of the query just before it is dispatched to the data layer.
For example:
read :read do
 modify_query {MyApp.ModifyQuery, :modify, []}
end

defmodule MyApp.ModifyQuery do
 def modify(ash_query, data_layer_query) do
 {:ok, modify_data_layer_query(data_layer_query)}
 end
end
This can be used as a last-resort escape hatch when you want to still use resource actions but need to do something that you can't do easily with Ash tools. As with any low level escape hatch, here be dragons.

 Instrumentation - ash v3.0.0-rc.6

Instrumentation

Instrumentation Ash has two primary components, Ash.Tracer and :telemetry. Instrumentation is closely tied to observability and monitoring.

 Telemetry

Ash emits the following telemetry events, suffixed with :start and :stop. Start events have system_time measurements, and stop events have system_time and duration measurements. All times will be in the native time unit.

 Important

Note the mention of :start and :stop suffixes. The event below [:ash, (domain_short_name), :create], is actually referring to two events, [:ash, (domain_short_name), :create, :start] and [:ash, (domain_short_name), :create, :stop].
_Replace (domain_short_name) with your domain short name, from d:Ash.Domain.Info.short_name.

 Events

	[:ash, (domain_short_name), :create] - The execution of a create action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (domain_short_name), :update] - The execution of a update action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (domain_short_name), :read] - The execution of a read action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (domain_short_name), :destroy] - The execution of a destroy action. Use resource_short_name and action metadata to break down measurements.
	[:ash, :changeset] - A changeset being processed for a given action, i.e with Ash.Changeset.for_create. Use resource_short_name metadata to break down measurements.
	[:ash, :query] - A query being processed for an action, with Ash.Query.for_read. Use resource_short_name metadata to break down measurements.
	[:ash, :validation] - A validation being run on a changeset. Use resource_short_name and validation metadata to break down measurements.
	[:ash, :change] - A change being run on a changeset. Use resource_short_name and change metadata to break down measurements.
	[:ash, :before_action] - A before_action being run on a changeset. Use resource_short_name to break down measurements.
	[:ash, :after_action] - An after_action being run on a changeset. Use resource_short_name to break down measurements.
	[:ash, :preparation] - A preparation being run on a changeset. Use resource_short_name and preparation metadata to break down measurements.
	[:ash, :request_step] - The resolution of an internal request. Ash breaks up its operations internally into multiple requests, this can give you a high resolution insight onto the execution of those internal requests resolution. Use name metadata to break down measurements.
	[:ash, :flow] - The execution of an Ash flow. Use flow_short_name to break down measurements.
	[:ash, :flow, :custom_step] - The execution of a custom flow step (only if using the built in runner, which is currently the only runner). Use flow_short_name and name metadata to break down measurements.

 Tracing

Tracing is very similar to telemetry, but gives you some additional hooks to set_span_context() and get_span_context(). This allows you to "move" some piece of context between two processes. Ash will call this whenever it starts a new process to do anything. What this means is that if you are using a tracing tool or library you can ensure that any processes spawned by Ash are properly included in the trace. Additionally, you should be able to integrate a tracing library to include Ash actions/spans relatively easily by implementing the other callbacks.
A tracer can be configured globally in application config.
config :ash, :tracer, MyApp.Tracer
Additionally, one can be provide when creating changesets or calling an action, i.e
Resource
better to put it here, as changesets are traced as well. It will be carried over to the domain action
|> Ash.Changeset.for_create(:create, %{}, tracer: MyApp.Tracer)
but you can also pass it here.
|> Ash.create!(tracer: MyApp.Tracer)
For customizing the names created for each span, see:
	d:Ash.Domain.Dsl.execution|trace_name
	d:Ash.Resource.Dsl.resource|trace_name

 Trace types

These are the list of trace types.
	:custom
	:action
	:changeset
	:validation
	:change
	:before_transaction
	:before_action
	:after_transaction
	:after_action
	:request_step
	:custom_flow_step
	:flow
	:query
	:preparation

 After/Before Action Hooks

Due to the way before/after action hooks run, their execution time won't be included in the span created for the change. In practice, before/after action hooks are where the long running operations tend to be. We start a corresponding span and emit a telemetry event for before and after hooks, but they are only so useful. In a trace, they can highlight that "some hook" took a long time. In telemetry metrics they are of even less use. The cardinality of the metric would be extremely high, and we don't have a "name" or anything to distinguish them. To that end, you can use the macros & functions available in Ash.Tracer to create custom spans and/or emit custom telemetry events from your hooks. They automatically handle cases where the provided tracer is nil, for convenience. For example:
defmodule MyApp.CustomChange do
 use Ash.Resource.Change

 require Ash.Tracer

 def change(changeset, _, _) do
 changeset
 |> Ash.Changeset.before_action(fn changeset ->
 Ash.Tracer.span(:custom, "custom name", changeset.context[:private][:tracer]) do
 # optionally set some metadata
 metadata = %{...}
 Ash.Tracer.set_metadata(changeset.context[:private][:tracer], :custom, metadata)
 # will get `:start` and `:stop` suffixed events emitted
 Ash.Tracer.telemetry_span([:telemetry, :event, :name], metadata) do
 ## Your logic here
 end
 end
 end)
 end
end

 Multitenancy - ash v3.0.0-rc.6

Multitenancy

Multitenancy is the idea of splitting up your data into discrete areas, typically by customer. One of the most common examples of this, is the idea of splitting up a postgres database into "schemas" one for each customer that you have. Then, when making any queries, you ensure to always specify the "schema" you are querying, and you never need to worry about data crossing over between customers. The biggest benefits of this kind of strategy are the simplification of authorization logic, and better performance. Instead of all queries from all customers needing to use the same large table, they are each instead all using their own smaller tables. Another benefit is that it is much easier to delete a single customer's data on request.
In Ash, there are a two primary strategies for implementing multitenancy. The first (and simplest) works for any data layer that supports filtering, and requires very little maintenance/mental overhead. It is done via expecting a given attribute to line up with the tenant, and is called :attribute. The second, is based on the data layer backing your resource, and is called :context. For information on
context based multitenancy, see the documentation of your datalayer. For example, AshPostgres uses postgres schemas. While the :attribute strategy is simple to implement, it also offers fewer advantages, primarily acting as another way to ensure your data is filtered to the correct tenant.

 Attribute Multitenancy

defmodule MyApp.Users do
 use Ash.Resource, ...

 multitenancy do
 strategy :attribute
 attribute :organization_id
 end

 ...

 relationships do
 belongs_to :organization, MyApp.Organization
 end
end
In this case, if you were to try to run a query without specifying a tenant, you would get an error telling you that the tenant is required.
Setting the tenant is done via Ash.Query.set_tenant/2 and Ash.Changeset.set_tenant/2. If you are using an extension, such as AshJsonMyDomain or AshGraphql the method of setting tenant context is explained in that extension's documentation.
Example usage of the above:
Error when not setting a tenant
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> Ash.read!()
** (Ash.Error.Invalid)

* "Queries against the Helpdesk.Accounts.User resource require a tenant to be specified"
 (ash 1.22.0) lib/ash/domain/domain.ex:944: Ash.Domain.unwrap_or_raise!/2

Automatically filtering by `organization_id == 1`
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> Ash.Query.set_tenant(1)
|> Ash.read!()

[...]

Automatically setting `organization_id` to `1`
MyApp.Users
|> Ash.Changeset.for_create(:create, %{name: "fred"})
|> Ash.Changeset.set_tenant(1)
|> Ash.create!()

%MyApp.User{organization_id: 1}
If you want to enable running queries without a tenant as well as queries with a tenant, the global? option supports this. You will likely need to incorporate this ability into any authorization rules though, to ensure that users from one tenant can't access other tenant's data.
multitenancy do
 strategy :attribute
 attribute :organization_id
 global? true
end
You can also provide the parse_attribute? option if the tenant being set doesn't exactly match the attribute value, e.g the tenant is org_10 and the attribute is organization_id, which requires just 10.

 Context Multitenancy

Context multitenancy allows for the data layer to dictate how multitenancy works. For example, a csv data layer might implement multitenancy via saving the file with different suffixes, or an API wrapping data layer might use different subdomains for the tenant.
For AshPostgres context multitenancy, which uses postgres schemas and is referred to ash "Schema Based Multitenancy", see the guide

 Possible Values for tenant

By default, the tenant value is passed directly to the relevant implementation. For example, if you are using schema multitenancy with ash_postgres, you might provide a schema like organization.subdomain. In Ash, a tenant should be identifiable by a single value, like an integer or a string.
You can use the Ash.ToTenant protocol to automatically convert values into this simple value. The example below will allow you to use the same organization everywhere, and have it automatically converted into the correct schema for postgres, and the correct id for attribute-based multitenant resources. You can use this without looking up the relevant record as well, as long as the required fields used in your protocol are present.
Ash.Changeset.for_create(..., tenant: %MyApp.Organization{id: id})
in Organization resource

defimpl Ash.ToTenant do
 def to_tenant(resource, %MyApp.Accounts.Organization{id: id}) do
 if Ash.Resource.Info.data_layer(resource) == AshPostgres.DataLayer
 && Ash.Resource.Info.multitenancy_strategy(resource) == :context do
 "org_#{id}"
 else
 id
 end
 end
end
This allows you to pass an %Organization{} or an organization_id around, and have that organization_id properly used with attribute and context-based multitenancy.

 Notifiers - ash v3.0.0-rc.6

Notifiers

 Built-in Notifiers

	PubSub: Ash.Notifier.PubSub

 Creating a notifier

A notifier is a simple extension that must implement a single callback notify/1. Notifiers do not have to implement an Ash DSL extension, but they may in order to configure how that notifier should behave. See Ash.Notifier.Notification for the currently available fields. Notifiers should not do anything intensive synchronously. If any heavy work needs to be done, they should delegate to something else to handle the notification, like sending it to a GenServer or GenStage.
Eventually, there may be built in notifiers that will make setting up a GenStage that reacts to your resource changes easy. Until then, you'll have to write your own.
For more information on creating a DSL extension to configure your notifier, see the docs for Spark.Dsl.Extension.

 Example notifier

defmodule ExampleNotifier do
 use Ash.Notifier

 def notify(%Ash.Notifier.Notification{resource: resource, action: %{type: :create}, actor: actor}) do
 if actor do
 Logger.info("#{actor.id} created a #{resource}")
 else
 Logger.info("A non-logged in user created a #{resource}")
 end
 end
end

 Including a notifier in a resource

If the notifier is also an extension, include it in the notifiers key:
defmodule MyResource do
 use Ash.Resource,
 notifiers: [ExampleNotifier]
end
Configuring a notifier for a specific action or actions can be a great way to avoid complexity in the implementation of a notifier. It allows you to avoid doing things like pattern matching on the action, and treat it more like a change module, that does its work whenever it is called.
create :create do
 notifiers [ExampleNotifier]
end
When your notifier is not an extension, and you want it to run on all actions, include it this way to avoid a compile time dependency:
defmodule MyResource do
 use Ash.Resource,
 simple_notifiers: [ExampleNotifier]
end

 Transactions

Domain calls involving resources who's datalayer supports transactions (like Postgres), notifications are saved up and sent after the transaction is closed. For example, the domain call below ultimately results in many many database calls.
Post
|> Ash.Changeset.for_update(:update, %{})
|> Ash.Changeset.manage_relationship(:related_posts, [1, 2, 3], type: :append)
|> Ash.Changeset.manage_relationship(:related_posts, [4, 5], type: :remove)
|> Ash.Changeset.manage_relationship(:comments, [10], type: :append)
|> Ash.update!()
Ash.Changeset.manage_relationship doesn't leverage bulk operations yet, so it performs the following operations:
	a read of the currently related posts
	a read of the currently related comments
	a creation of a post_link to relate to 1
	a creation of a post_link to relate to 2
	a creation of a post_link to relate to 3
	a destruction of the post_link related to 4
	a destruction of the post_link related to 5
	an update to comment 10, to set its post_id to this post

If all three of these resources have notifiers configured, we need to send a notification for each operation (notifications are not sent for reads). For data consistency reasons, if a data layer supports transactions, all writes are done in a transaction. However, if you try to read the record from the database that you have just received a notification about before the transaction has been closed, in a different process, the information will be wrong. For this reason, Ash accumulates notifications until they can be sent.
If you need to perform multiple operations against your resources in your own transaction, you will have to handle that case yourself. To support this, Ash.create/2, Ash.update/2 and Ash.destroy/2 support a return_notifications?: true option. This causes the domain call to return {:ok, result, notifications} in the successful case. Here is an example of how you might use it.
result =
 Ash.DataLayer.transaction(resource, fn ->
 {:ok, something, notifications1} = create_something()
 {:ok, result, notifications2} = create_another_thing(something)
 {:ok, notifications3} = destroy_something(something)

 {result, Enum.concat([notifications1, notifications2, notifications3])}
 end)

case result do
 {:ok, value, notifications} ->
 Ash.Notifier.notify(notifications)

 value
 {:error, error} ->
 handle_error(error)
end

 Pagination - ash v3.0.0-rc.6

Pagination

Pagination when reading records is configured on a per-action basis. Ash supports two kinds of pagination: keyset and offset.
A single action can use both kinds of pagination if desired, but typically you would use one or the other.
For information on configuring actions to support pagination, see d:Ash.Resource.Dsl.actions.read|prepare.
Counting records
When calling an action that uses pagination, the full count of records can be requested by adding the option page: [count: true].
Note that this will perform a similar query a second time to fetch the count, which can be expensive on large data sets.

 Offset Pagination

Offset pagination is done via providing a limit and an offset when making queries.
	The limit determines how many records should be returned in the query.
	The offset describes how many records from the beginning should be skipped.

Using this, you might make requests like the following:
Get the first ten records
Ash.read(Resource, page: [limit: 10])
or by using an action named `read` directly
Resource.read(page: [limit: 10])

Get the next ten records
Ash.read(Resource, page: [limit: 10, offset: 10])
or by using an action named `read` directly
Resource.read(page: [limit: 10, offset: 10])
Next/previous page requests can also be made in memory, using an existing page of search results:
Return page three of search results
{:ok, third_page} = Resource.read(page: [limit: 10, offset: 20])

Use `:prev` and `:next` to go backwards and forwards.
`:first`, `:last`, `:self` and specifying a page number are also supported.
{:ok, second_page} = Ash.page(third_page, :prev)
{:ok, fourth_page} = Ash.page(third_page, :next)

 Pros of offset pagination

	Simple to think about
	Possible to skip to a page by number. E.g the 5th page of 10 records is offset: 40
	Easy to reason about what page you are currently on (if the total number of records is requested)
	Can go to the last page (though data may have changed between calculating the last page details, and requesting it)

 Cons of offset pagination

	Does not perform well on large datasets (if you have to ask if your dataset is "large", it probably isn't)
	When moving between pages, if data was created or deleted, individual records may be missing or appear on multiple pages

 Keyset Pagination

Keyset pagination is done via providing an after or before option, as well as a limit.
	The limit determines how many records should be returned in the query.
	The after or before value should be a keyset value that has been returned from a previous request. Keyset values are returned whenever there is any read action on a resource that supports keyset pagination, and they are stored in the __metadata__ key of each record.

Keysets are directly tied to the sorting applied to the query
 You can't change the sort applied to a request being paginated, and use the same keyset. If you want to change the sort, but keep the record who's keyset you are using in the before or after option, you must first request the individual record, with the new sort applied. Then, you can use the new keyset.

For example:
{:ok, page} = Ash.read(Resource, page: [limit: 10])
Returns `{:ok, %Ash.Page.Keyset{results: [...], before: nil, after: nil}}`
The `before`/`after` values are the keysets used for this request.

Fetch the keyset for the next request from the results list
last_record = List.last(page.results)
Returns `%Resource{__metadata__: %{keyset: "g2wAAAABbQAAACQzOWNjNTcwNy00NjlmL..."}, ...}``

Use this keyset value to fetch the next page
{:ok, next_page} = Ash.read(Resource, page: [limit: 10, after: last_record.__metadata__.keyset])
Like offset pagination, next/previous page requests can also be made in memory, using an existing page of search results:
Return page three of search results
{:ok, third_page} = Resource.read(page: [limit: 10])

Use `:prev` and `:next` to go backwards and forwards.
`:first` and `:self` can also be used, but `:last` and specifying a page number are not supported.
{:ok, second_page} = Ash.page(third_page, :prev)
{:ok, fourth_page} = Ash.page(third_page, :next)

 Pros of keyset pagination

	Performs very well on large datasets (assuming indices exist on the columns being sorted on)
	Behaves well as data changes. The record specified will always be the first or last item in the page

 Cons of keyset paginations

	A bit more complex to use
	Can't go to a specific page number

 Example implementation

 Setting up the resource

Add the pagination macro call to the action of the resource that you want to be paginated.
defmodule AppName.ResourceName do
 use Ash.Resource

 actions do
 read :read_action_name do
 pagination offset?: true, default_limit: 3, countable: true
 end

 # ...
For all available pagination options, see d:Ash.Resource.Dsl.actions.read|pagination.
Check the updated query return type!
Pagination will modify the return type of calling the query action.
Without pagination, Ash will return a list of records.
But with pagination, Ash will return an Ash.Page.Offset struct (for offset pagination) or Ash.Page.Keyset struct (for keyset pagination). Both structs contain the list of records in the results key of the struct.

 Phoenix - ash v3.0.0-rc.6

Phoenix

Ash plays nicely with phoenix. There are a few things to consider when using them side-by-side.

 Adding Ash to an existing Phoenix app

To add Ash to an existing application is easy, generally only involves updating your Ecto.Repo to use AshPostgres.Repo if you are using AshPostgres. Other than that, you can follow the guides as usual.

 Creating a new Phoenix app

If you want to use AshPostgres, you have two options here:
	create a phoenix app as normal, and when you set up AshPostgres, ignore the steps for creating the repo, and instead update it to use AshPostgres.Repo.
	create the app with --no-ecto and follow the AshPostgres guide getting started guide fully.

 Using Extensions

If you are using extensions like AshGraphql or AshJsonApi, you will want to follow their getting started guides separately.

 Policies - ash v3.0.0-rc.6

Policies

Policies determine what actions on a resource are permitted for a given actor, and can also filter the results of read actions to restrict the results to only records that should be visible.
To restrict access to specific fields (attributes, aggregates, calculations), the section on field policies.
Read and understand the Security guide before proceeding, which explains actors, how to set them, and other relevant configurations.

 Setup

You'll need to add the extension to your resource, like so:
use Ash.Resource, authorizers: [Ash.Policy.Authorizer]
Then you can start defining policies for your resource.

 Policies

 Anatomy of a Policy

Each policy defined in a resource has two parts -
	a condition, such as action_type(:read) or actor_attribute_equals(:admin, true) or always(). If this condition is true for a given action request, then the policy will be applied to the request.
	a set of policy checks, each of which will be evaluated individually if a policy applies to a request.

If more than one policy applies to any given request (eg. an admin actor calls a read action) then all applicable policies must pass for the action to be performed.
A policy will produce one of three results: :forbidden, :authorized, or :unknown. :unknown is treated the same as :forbidden.

 The Simplest Policy

Let's start with the simplest (most permissive) policy:
policies do
 policy always() do
 authorize_if always()
 end
end
The first argument to policy is the condition. In this case, the condition is always() - a built-in helper always returning true, meaning that the policy applies to every request.
Within this policy we have a single policy check, declared with authorize_if. Checks logically apply from top to bottom, based on their check type. In this case, we'd read the policy as "this policy always applies, and authorizes always".
There are four check types, all of which do what they sound like they do:
	authorize_if - if the check is true, the whole policy is authorized.
	authorize_unless - if the check is false, the whole policy is authorized.
	forbid_if - if the check is true, the whole policy is forbidden.
	forbid_unless - if the check is false, the whole policy is forbidden.

If a single check does not explicitly authorize or forbid the whole policy, then the flow moves to the next check. For example, if an authorize_if check does NOT return true, this does not mean the whole policy is forbidden - it means that further checking is required.

 How a Decision is Reached

Not every check in a policy must pass! This is described above, but is very important so another example is provided here. Checks go from top to bottom, are evaluated independently of each other, and the first one that reaches a decision determines the overall policy result. For example:
policy action_type(:create) do
 authorize_if IsSuperUser
 forbid_if Deactivated
 authorize_if IsAdminUser
 forbid_if RegularUserCanCreate
 authorize_if RegularUserAuthorized
end
We check those from top to bottom, so the first one of those that returns :authorized or :forbidden determines the entire outcome. For example:
authorize_if IsSuperUser # If this is true, the actor is a superuser

None of the rest of the checks matter, even if the actor is deactivated.
forbid_if Deactivated
authorize_if IsAdminUser
forbid_if RegularUserCanCreate
authorize_if RegularUserAuthorized
Conversely:
authorize_if IsSuperUser # This can be false
forbid_if Deactivated # This can be false
authorize_if IsAdminUser # If this is true, then the policy is still authorized.

And none of these checks matter
forbid_if RegularUserCanCreate
authorize_if RegularUserAuthorized

 Not all policy checks have yes/no answers

This will be covered in greater detail in Checks, but will be briefly mentioned here.
Ash provides two basic types of policy checks - simple checks and filter checks. Simple checks are what we commonly think of with authorization, and what the above example would suggest - is an actor allowed to perform a given operation, yes or no? But we can also use filter checks - given a list of resources, which ones is an actor allowed to perform the operation on?
Filter checks are frequently used with read actions, as they can refer to multiple instances (eg. "list all products"), but may also be applied to actions like bulk-deleting records (which is not currently supported, but will be eventually).

 Bypass policies

A bypass policy is just like a regular policy, except if a bypass passes, then other policies after it do not need to pass. This can be useful for writing complex access rules, or for a simple rule like "an admin can do anything" without needing to specify it as part of every other policy.

 A realistic policy

In this example, we use some of the provided built-in checks.
policies do
 # Anything you can use in a condition, you can use in a check, and vice-versa
 # This policy applies if the actor is a super_user
 # Additionally, this policy is declared as a `bypass`. That means that this check is allowed to fail without
 # failing the whole request, and that if this check *passes*, the entire request passes.
 bypass actor_attribute_equals(:super_user, true) do
 authorize_if always()
 end

 # This will likely be a common occurrence. Specifically, policies that apply to all read actions
 policy action_type(:read) do
 # unless the actor is an active user, forbid
 forbid_unless actor_attribute_equals(:active, true)
 # if the record is marked as public, authorize
 authorize_if attribute(:public, true)
 # if the actor is related to the data via that data's `owner` relationship, authorize
 authorize_if relates_to_actor_via(:owner)
 end
end

 Checks

Checks evaluate from top to bottom within a policy. A check can produce one of three results, the same that a policy can produce. While checks are not necessarily evaluated in order, they logically apply in that order, so you may as well think of it in that way. It can be thought of as a step-through algorithm.
For each check, starting from the top:
	Run the check.	If it returns :authorized, the policy is :authorized
	If it returns :forbidden, the policy is :forbidden
	If it returns :unknown, the next check down is checked

For the example from earlier:
	authorize_if IsSuperUser	If this check succeeds, it returns :authorized, the whole policy is :authorized, and checks stop running
	If this check fails, it returns :unknown and the next check is checked

	forbid_if Deactivated	We only care about this result if the previous check failed, ie. the actor is not a super user.
	If this check succeeds, it returns :forbidden, the whole policy is :forbidden, and checks stop running
	If this check fails, it returns :unknown and the next check is checked

	authorize_if IsAdminUser	We only care about this result if the previous checks failed, ie. the actor is not a super user and is not deactivated.
	If this check succeeds, it returns :authorized, the whole policy is :authorized and checks stop running.
	If this check fails, it returns :unknown and the next check is checked

	authorize_if RegularUserAuthorized	We only care about this result if the previous checks failed, ie. the actor is not a super user, not deactivated and not an admin user.
	If this check succeeds, it returns :authorized, the whole policy is :authorized and checks stop running.
	If this check fails, it returns :unknown. As there are no more checks to run, the whole policy returns :unknown, which is treated as forbidden and the actor is not allowed to perform the action.

 Types of checks

As mentioned earlier, there are two distinct types of checks - simple checks and filter checks. So far we've seen examples of both - let's look in a bit more detail.
(Both simple and filter checks are a subset of a third type of check - a manual check - but you will almost always want to write simple or filter checks.)
Simple checks
Simple checks are determined at the outset of a request, and can only cause a request to be authorized or forbidden. These are typically yes/no questions - is the actor an admin? Did the actor create the post they want to call the update action on? Is the actor old enough to drink alcohol?
You can write a simple check by creating a new module and using the Ash.Policy.SimpleCheck module:
defmodule MyApp.Checks.ActorIsOldEnough do
 use Ash.Policy.SimpleCheck

 # This is used when logging a breakdown of how a policy is applied - see Logging below.
 def describe(_) do
 "actor is old enough"
 end

 # The context here may have a changeset, query, resource, and domain module, depending
 # on the action being run.
 # `match?` should return true or false, and answer the statement being posed in the description,
 # i.e "is the actor old enough?"
 def match?(%MyApp.User{age: age} = _actor, %{resource: MyApp.Beer} = _context, _opts) do
 age >= 21
 end

 def match?(_, _, _), do: true
end
You can then use this module as the check name, as part of a policy:
defmodule MyApp.Beer do
 # ...

 policies do
 policy action(:drink) do
 authorize_if MyApp.Checks.ActorIsOldEnough
 end
 end

 # ...
end
Ash will internally convert the true/false return value from match?/3 to a :authorized/:forbidden/:unknown response, depending on how the check is being run (ie. whether it's part of an authorize_if/forbid_if/etc.)
Filter checks
Many checks won't return a status yes/no, but instead return a "filter" to apply to a collection of data. They are most commonly used for read actions, but can be used for all types of actions.
For update and destroy actions, they apply to the data before the action is run.
For read actions, they will automatically restrict the returned data to be compliant with the filter. Using the drinking example from earlier, we could write a filter check to list only users that are old enough to drink alcohol.
There are two ways to write a filter check - by creating a module and using the Ash.Policy.FilterCheck module, or by using inline expression syntax.
defmodule MyApp.Checks.ActorOverAgeLimit do
 use Ash.Policy.FilterCheck

 # A description is not necessary, as it will be derived from the filter, but one could be added
 # def describe(_opts), do: "actor is over the age limit"

 # Filter checks don't have a `context` available to them
 def filter(_options) do
 expr(age_limit <= ^actor(:age))
 end
end
You can then use this module as the check name, as part of a policy:
defmodule MyApp.User do
 # ...

 policies do
 policy action(:of_drinking_age) do
 authorize_if MyApp.Checks.ActorOverAgeLimit
 end
 end

 # ...
end
Inline checks
Inline checks are filter checks, but are different enough to warrant their own documentation. These are written directly in a policy, eg.
policy action_type(:read) do
 # Allow records with the attribute `public` set to true to be read
 authorize_if attribute(:public, true)

 # Allow records with the attribute `level` less than the value of the `level`
 # argument to the action to be read
 authorize_if expr(level <= ^arg(:level))
end
Keep in mind that, for create actions, many expr/1 checks won't make sense, and may return false when you wouldn't expect. Expression (and other filter) policies apply to "a synthesized result" of applying the action, so related values won't be available. For this reason, you may end up wanting to use other checks that are built for working against changesets, or only simple attribute-based filter checks. Custom checks may also be warranted here.
Ash also comes with a set of built-in helpers for writing inline checks - see Ash.Policy.Check.Builtins for more information.
Referencing the actor
In expression checks, the actor template can be used (other templates that may work in filter expressions, for example, are not available). For example:
Authorize records that have an author relationship with the author ID the same as the actor ID
ie. records authored by the actor
authorize_if expr(author.id == ^actor(:id))
Using exists
A common mistake when using related data in filters is to be too restrictive. Imagine a scenario where you have an action like this:
read :friends_of_ted do
 filter expr(friends.first_name == "ted")
end
If this was in a User resource, it would return users that have a friend with the first name "ted". So far so good. Then someone calls it like so:
Resource
|> Ash.Query.for_read(:friends_of_ted)
|> Ash.Query.filter(friends.last_name == "dansen")
The resulting filter is friends.first_name == "ted" and friends.last_name == "dansen"- this means that you'll get users that have a friend with the full name "ted dansen". That might be what you meant, but more likely you would want "users that have a friend with the first name "ted", that also have a friend with the last name 'dansen'".
To accomplish that, we can use the exists helper and rework the example like so:
There exists a friend with the first name "ted"
read :friends_of_ted do
 filter expr(exists(friends, first_name == "ted"))
end

And there also exists a friend with the last name "dansen"
They may be the same friend if the user is friends with Ted Dansen!
Resource
|> Ash.Query.for_read(:friends_of_ted)
|> Ash.Query.filter(exists(friends, last_name == "dansen"))
In policies (and often any time you mean "a related thing exists where some condition is true"), it is advised to use exists/2 when referring to relationships because of the way that the policy authorizer may mix & match your policies when building filters. This is also true when adding filters to actions. If you use exists, then your policies can be used in filters without excluding unnecessary data.

 Field Policies

Field policies allow you to authorize access to specific fields via policies scoped to fields.
For example:
field_policies do
 field_policy :role do
 authorize_if actor_attribute_equals(:role, :supervisor)
 end
end
If any field policies exist then all fields must be authorized by a field policy.
If you want a "deny-list" style, then you can add policies for specific fields.
and add a catch-all policy using the special field name :*. All policies that apply
to a field must be authorized.
The only exception to the above behavior is primary keys, which can always be read by everyone.
Additionally, keep in mind that adding Ash.Policy.Authorizer will require that all actions
pass policies. If you want to just add field policies, you will need to add a policy that allows
all access explicitly, i.e
policies do
 policy always() do
 authorize_if always()
 end
end

 Using Expressions In Field Policies

Unlike in regular policies, expressions in field policies cannot refer to related entities currently (except when using exists). Instead, you will need to create aggregates or expression calculations that return the results you want to reference.
In results, forbidden fields will be replaced with a special value: %Ash.ForbiddenField{}.
When these fields are referred to in filters, they will be replaced with an expression that evaluates to nil. To support this behavior, only simple and filter checks are allowed in field policies.

 Debugging and Logging

 Policy Breakdowns

Policy breakdowns can be fetched on demand for a given forbidden error (either an Ash.Error.Forbidden that contains one ore more Ash.Error.Forbidden.Policy errors, or an Ash.Error.Forbidden.Policy error itself), via Ash.Error.Forbidden.Policy.report/2.
Here is an example policy breakdown from tests:
Policy Breakdown
A check status of `?` implies that the solver did not need to determine that check.
Some checks may look like they failed when in reality there was no need to check them.
Look for policies with `✘` and `✓` in check statuses.

A check with a `⬇` means that it didn't determine if the policy was authorized or forbidden, and so moved on to the next check.
`🌟` and `⛔` mean that the check was responsible for producing an authorized or forbidden (respectively) status.

If no check results in a status (they all have `⬇`) then the policy is assumed to have failed. In some cases, however, the policy
may have just been ignored, as described above.

 Admins and managers can create posts | ⛔:
 authorize if: actor.admin == true | ✘ | ⬇
 authorize if: actor.manager == true | ✘ | ⬇
To remove the help text, you can pass the help_text?: false option, which would leave you with:
Policy Breakdown
 Admins and managers can create posts | ⛔:
 authorize if: actor.admin == true | ✘ | ⬇
 authorize if: actor.manager == true | ✘ | ⬇

 Including in error messages

IMPORTANT WARNING: The following configuration should only ever be used in development mode!
For security reasons, authorization errors don't include any extra information, aside from forbidden. To have authorization errors include a policy breakdown (without help text) use the following config.
config :ash, :policies, show_policy_breakdowns?: true

 Logging

It is generally safe to log authorization error details, even in production. This can be very helpful when investigating certain classes of issue.
To have Ash automatically log each authorization failure, use
config :ash, :policies, log_policy_breakdowns: :error # Use whatever log level you'd like to use here
To have Ash log all policy breakdowns, even successful ones (this will be lots of noise, and should only be used for dev testing)
config :ash, :policies, log_successful_policy_breakdowns: :error # Use whatever log level you'd like to use here

 PubSub - ash v3.0.0-rc.6

PubSub

Ash includes a builtin notifier to help you publish events over any kind of pub-sub pattern. This is plug and play with Phoenix.PubSub, but could be used with any pubsub pattern.
You configure a module that defines a broadcast/3 function, and then add some "publications" which configure under what conditions an event should be sent and what the topic should be.
For the full DSL spec see Ash.Notifier.PubSub

 Debugging PubSub

It can be quite frustrating when setting up pub_sub when everything appears to be set up properly, but you aren't receiving events. This usually means some kind of mismatch between the event names produced by the resource/config
of your publications, and you can use the following flag to display debug information about pub sub events coming from Ash.Notifier.PubSub
config :ash, :pub_sub, debug?: true

 Topic Templates

Often you want to include some piece of data in the thing being changed, like the :id attribute. This is done by providing a list as the topic, and using atoms which will be replaced by their corresponding values. They will ultimately be joined with :.
For example:
prefix "user"

publish :create, ["created", :user_id]
This might publish a message to "user:created:1" for example.
For updates, if the field in the template is being changed, a message is sent
to both values. So if you change user 1 to user 2, the same message would
be published to user:updated:1 and user:updated:2. If there are multiple
attributes in the template, and they are all being changed, a message is sent for
every combination of substitutions.

 Important

If the previous value was nil or the field was not selected on the data passed into the action, then a notification is not sent for the previous value.
If the new value is nil then a notification is not sent for the new value.

 Template parts

Templates may contain lists, in which case all combinations of values in the list will be used. Add
nil to the list if you want to produce a pattern where that entry is omitted.
The atom :_tenant may be used. If the changeset has a tenant set on it, that
value will be used, otherwise that combination of values is ignored.
The atom :_pkey may be used. It will be a stringified, concatenation of the primary key fields,
or just the primary key if there is only one primary key field.
The atom nil may be used. It only makes sense to use it in the context of a list of alternatives,
and adds a pattern where that part is skipped.
publish :updated, [[:team_id, :_tenant], "updated", [:id, nil]]
Would produce the following messages, given a team_id of 1, a tenant of org_1, and an id of 50:
"1:updated:50"
"1:updated"
"org_1:updated:50"
"org_1:updated"

 Custom Delimiters

It's possible to change the default delimiter used when generating topics. This is useful when working with message brokers
like RabbitMQ, which rely on a different set of delimiters for routing.
pub_sub do
 delimiter "."
end

 Named Pubsub modules

If you are using a phoenix Endpoint module for pubsub then this is unnecessary. If you want to use a custom pub sub started with something like {Phoenix.PubSub, name: MyName}, then you can provide MyName to
here.

 Broadcast Types

Configured with broadcast_type.
	:notification just sends the notification
	:phoenix_broadcast sends a %Phoenix.Socket.Broadcast{} (see above)
	:broadcast sends %{topic: (topic), event: (event), notification: (notification)}

 Reactor - ash v3.0.0-rc.6

Reactor

Ash.Reactor is an extension for Reactor which adds explicit support for interacting with resources via their defined actions.
See Getting started with Reactor for more information about Reactor.

 Usage

You can either add the Ash.Reactor extension to your existing reactors eg:
defmodule MyExistingReactor do
 use Reactor, extensions: [Ash.Reactor]
end
or for your convenience you can use use Ash.Reactor which expands to exactly the same as above.

 Example

An example is worth 1000 words of prose:
defmodule ExampleReactor do
 use Ash.Reactor

 ash do
 default_domain ExampleDomain
 end

 input :customer_name
 input :customer_email
 input :plan_name
 input :payment_nonce

 create :create_customer, Customer do
 inputs %{name: input(:customer_name), email: input(:customer_email)}
 end

 read_one :get_plan, Plan, :get_plan_by_name do
 inputs %{name: input(:plan_name)}
 fail_on_not_found? true
 end

 action :take_payment, PaymentProvider do
 inputs %{
 nonce: input(:payment_nonce),
 amount: result(:get_plan, [:price])
 }
 end

 create :subscription, Subscription do
 inputs %{
 plan_id: result(:get_plan, [:id]),
 payment_provider_id: result(:take_payment, :id)
 }
 end
end

 Actions

For each action type there is a corresponding step DSL, which needs a name (used
to refer to the result of the step by other steps), a resource and optional
action name (defaults to the primary action if one is not provided).
Actions have several common options and some specific to their particular type.
See the DSL documentation for
details.

 Action inputs

Ash actions take a map of input parameters which are usually a combination of
resource attributes and action arguments. You can provide these values as a
single map using the inputs DSL entity with a map or keyword list which refers to Reactor inputs, results and hard-coded values via Reactor's predefined template functions.
For action types that act on a specific resource (ie update and destroy) you can provide the value using the initial DSL option.
Example
input :blog_title
input :blog_body
input :author_email

read :get_author, MyBlog.Author, :get_author_by_email do
 inputs %{email: input(:author_email)}
end

create :create_post, MyBlog.Post, :create do
 inputs %{
 title: input(:blog, [:title]),
 body: input(:blog, [:body]),
 author_id: result(:get_author, [:email])
 }
end

update :author_post_count, MyBlog.Author, :update_post_count do
 wait_for :create_post
 initial result(:get_author)
end

return :create_post

 Handling failure.

Reactor is a saga executor, which means that when failure occurs it tries to
clean up any intermediate state left behind. By default the create, update
and destroy steps do not specify any behaviour for what to do when there is a
failure downstream in the reactor. This can be changed by providing both an
undo_action and changing the step's undo option to either
:outside_transaction or :always depending on your resource and datalayer
semantics.

 The undo option.

	:never - this is the default, and means that the reactor will never try and
undo the action's work. This is the most performant option, as it means that
the reactor doesn't need to store as many intermediate values.
	:outside_transaction - this option allows the step to decide at runtime
whether it should support undo based on whether the action is being run within
a transaction. If it is, then no undo is required because the transaction
will rollback.
	:always - this forces the step to always undo it's work on failure.

 The undo_action option.

The behaviour of the undo_action is action specific:
	For create actions, the undo_action should be the name of a destroy
action with no specific requirements.
	For update actions, the undo_action should also be an update action
which takes a changeset argument, which will contain the Ash.Changeset
which was used to execute the original update.
	For destroy actions, the undo_action should be the name of a create
action which takes a record argument, which will contain the
resource record which was used destroyed.

 Transactions

You can use the transaction step type to wrap a group of steps inside a data layer transaction, however the following caveats apply:
	All steps inside a transaction must happen in the same process, so the steps
inside the transaction will only ever be executed synchronously.
	Notifications will be sent only when the transaction is committed.

 Notifications

Because a reactor has transaction-like semantics notifications are automatically batched and only sent upon successful completion of the reactor.

 Running Reactors as an action

Currently the best way to expose a Reactor as an action is to use a Generic Action.

 Example

action :run_reactor, :struct do
 constraints instance_of: MyBlog.Post

 argument :blog_title, :string, allow_nil?: false
 argument :blog_body, :string, allow_nil?: false
 argument :author_email, :ci_string, allow_nil?: false

 run fn input, _context ->
 Reactor.run(MyBlog.CreatePostReactor, input.arguments)
 end
end

 Relationships - ash v3.0.0-rc.6

Relationships

Relationships describe the connections between resources and are a core component of Ash. Defining relationships enables you to do things like
	Loading related data
	Filtering on related data
	Managing related records through changes on a single resource
	Authorizing based on the state of related data

 Relationships Basics

A relationship exists between a source resource and a destination resource. These are defined in the relationships block of the source resource. For example, if MyApp.Tweet is the source resource, and MyApp.User is the destination resource, we could define a relationship called :owner like this:
defmodule MyApp.Tweet do
 use Ash.Resource,
 data_layer: my_data_layer

 attributes do
 uuid_primary_key :id
 attribute :body, :string
 end

 relationships do
 belongs_to :owner, MyApp.User
 end
end

 Managing related data

See Managing Relationships for more information.
Your data layer may enforce foreign key constraints, see the following guides for more information:
	AshPostgres references

 Kinds of relationships

There are four kinds of relationships:
	belongs_to
	has_one
	has_many
	many_to_many

Each of these relationships has a source resource and a destination resource with a corresponding attribute on the source resource (source_attribute), and destination resource (destination_attribute). Relationships will validate that their configured attributes exist at compile time.
You don't need to have a corresponding "reverse" relationship for every relationship, i.e if you have a MyApp.Tweet resource with belongs_to :user, MyApp.User you aren't required to have a has_many :tweets, MyApp.Tweet on MyApp.User. All that is required is that the attributes used by the relationship exist.

 Belongs To

on MyApp.Tweet
belongs_to :owner, MyApp.User
A belongs_to relationship means that there is an attribute (source_attribute) on the source resource that uniquely identifies a record with a matching attribute (destination_attribute) in the destination. In the example above, the source attribute on MyApp.Tweet is :owner_id and the destination attribute on MyApp.User is :id.
Attribute Defaults
By default, the source_attribute is defined as :<relationship_name>_id of the type :uuid on the source resource and the destination_attribute is assumed to be :id. You can override the attribute names by specifying the source_attribute and destination_attribute options like so:
belongs_to :owner, MyApp.User do
 # defaults to :<relationship_name>_id (i.e. :owner_id)
 source_attribute :custom_attribute_name

 # defaults to :id
 destination_attribute :custom_attribute_name
end
You can further customize the source_attribute using options such as:
	d:Ash.Resource.Dsl.relationships.belongs_to|define_attribute? to define it yourself
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_type to modify the default type
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_public? to make the source attribute public?: true

For example:
belongs_to :owner, MyApp.User do
 attribute_type :integer
 attribute_writable? false
end
Or if you wanted to define the attribute yourself,
attributes do
 attribute :owner_foo, MyApp.CustomType
end

...
relationships do
 belongs_to :owner, MyApp.User do
 define_attribute? false
 source_attribute :owner_foo
 end
end
Customizing default belongs_to attribute type
Destination attributes that are added by default are assumed to be :uuid. To change this, set the following configuration in config.exs:
config :ash, :default_belongs_to_type, :integer
See the docs for more: d:Ash.Resource.Dsl.relationships.belongs_to

 Has One

on MyApp.User
has_one :profile, MyApp.Profile
A has_one relationship means that there is a unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Profile is :user_id.
A has_one is similar to a belongs_to except the reference attribute is on
the destination resource, instead of the source.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_one

 Has Many

on MyApp.User
has_many :tweets, MyApp.Tweet
A has_many relationship means that there is a non-unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Tweet is :user_id.
A has_many relationship is similar to a has_one because the reference attribute exists on the destination resource. The only difference between this and has_one is that the destination attribute is not unique, and therefore will produce a list of related items. In the example above, :tweets corresponds to a list of MyApp.Tweet records.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_many

 Many To Many

A many_to_many relationship can be used to relate many source resources to many destination resources. To achieve this, the source_attribute and destination_attribute are defined on a join resource. A many_to_many relationship can be thought of as a combination of a has_many relationship on the source/destination resources and a belongs_to relationship on the join resource.
For example, consider two resources MyApp.Tweet and MyApp.Hashtag representing tweets and hashtags. We want to be able to associate a tweet with many hashtags, and a hashtag with many tweets. To do this, we could define the following many_to_many relationship:
on MyApp.Tweet
many_to_many :hashtags, MyApp.Hashtag do
 through MyApp.TweetHashtag
 source_attribute_on_join_resource :tweet_id
 destination_attribute_on_join_resource :hashtag_id
end
The through option specifies the "join" resource that will be used to store the relationship. We need to define this resource as well:
defmodule MyApp.TweetHashtag do
 use Ash.Resource,
 data_layer: your_data_layer

 postgres do
 table "tweet_hashtags"
 repo MyApp.Repo
 end

 relationships do
 belongs_to :tweet, MyApp.Tweet, primary_key?: true, allow_nil?: false
 belongs_to :hashtag, MyApp.Hashtag, primary_key?: true, allow_nil?: false
 end

 actions do
 defaults [:read, :destroy, create: :*, update: :*]
 end
end
It is convention to name this resource <source_resource_name><destination_resource_name> however this is not required. The attributes on the join resource must match the source_attribute_on_join_resource and destination_attribute_on_join_resource options on the many_to_many relationship. The relationships on the join resource are standard belongs_to relationships, and can be configured as such. In this case, we have specified that the :tweet_id and :hashtag_id attributes form the primary key for the join resource, and that they cannot be nil.
Now that we have a resource with the proper attributes, Ash will use this automatically under the hood when
performing relationship operations like filtering and loading.
See the docs for more: d:Ash.Resource.Dsl.relationships.many_to_many

 Cross-domain relationships

You will need to specify the domain option in the relationship if the destination resource and/or the join table are parts of a different domain:
many_to_many :authors, MyApp.OtherDomain.Resource do
 domain MyApp.OtherDomain
 ...
end
However, if the join table is a part of the same domain but the destination resource is a part of a different domain, you will have to add a custom has_many association to the source domain as well. Suppose you have a domain called MyApp.Organizations with a resource named MyApp.Organizations.Organization, a domain called MyApp.Accounts with a resource named MyApp.Accounts.User, as well as a join resource MyApp.Organizations.OrganizationUsers. Then, in order to add many_to_many :users for MyApp.Organizations.Organization, you'll need the following setup:
relationships do
 ...

 has_many :users_join_assoc, MyApp.Organizations.OrganizationUsers

 many_to_many :users, MyApp.Accounts.User do
 domain MyApp.Accounts
 through MyApp.Organizations.OrganizationUsers
 source_attribute_on_join_resource :organization_id
 destination_attribute_on_join_resource :user_id
 end
end

 Loading related data

There are two ways to load relationships:
	in the query using Ash.Query.load/2
	directly on records using Ash.load/3

 On records

Given a single record or a set of records, it is possible to load their relationships by calling the load function on the record's parent domain. For example:
user = %User{...}
Ash.load(user, :tweets)

users = [%User{...}, %User{...},]
Ash.load(users, :tweets)
This will fetch the tweets for each user, and set them in the corresponding tweets key.
%User{
 ...
 tweets: [
 %Tweet{...},
 %Tweet{...},
 ...
]
}
See Ash.load/3 for more information.

 In the query

The following will return a list of users with their tweets loaded identically to the previous example:
User
|> Ash.Query.load(:tweets)
|> Ash.read()
At present, loading relationships in the query is fundamentally the same as loading on records. Eventually, data layers will be able to optimize these loads (potentially including them as joins in the main query).
See Ash.Query.load/2 for more information.

 More complex data loading

Multiple relationships can be loaded at once, i.e
Ash.load(users, [:tweets, :followers])
Nested relationships can be loaded:
Ash.load(users, followers: [:tweets, :followers])
The queries used for loading can be customized by providing a query as the value.
followers = Ash.Query.sort(User, follower_count: :asc)

Ash.load(users, followers: followers)
Nested loads will be included in the parent load.
followers =
 User
 |> Ash.Query.sort(follower_count: :asc)
 |> Ash.Query.load(:followers)

Will load followers and followers of those followers
Ash.load(users, followers: followers)

 no_attributes? true

This can be very useful when combined with multitenancy. Specifically, if you have a tenant resource like Organization,
you can use no_attributes? to do things like has_many :employees, Employee, no_attributes?: true, which lets you avoid having an
unnecessary organization_id field on Employee. The same works in reverse: has_one :organization, Organization, no_attributes?: true
allows relating the employee to their organization.
Some important caveats here:
	You can still manage relationships from one to the other, but "relate" and "unrelate"
will have no effect, because there are no fields to change.

	Loading the relationship on a list of resources will not behave as expected in all circumstances involving multitenancy. For example,
if you get a list of Organization and then try to load employees, you would need to set a single tenant on the load query, meaning
you'll get all organizations back with the set of employees from one tenant. This could eventually be solved, but for now it is considered an
edge case.

 Security - ash v3.0.0-rc.6

Security

 Authorization Configuration

 d:Ash.Domain.Dsl.authorization|require_actor?

Requires that an actor is set for all requests.
Important: nil is still a valid actor, so this won't prevent providing actor: nil.

 d:Ash.Domain.Dsl.authorization|authorize

When to run authorization for a given request.
	:by_default sets authorize?: true if the authorize? option was not set (so it can be set to false). This is the default.
	:always forces authorize?: true on all requests to the domain.
	:when_requested sets authorize?: true whenever an actor is set or authorize?: true is explicitly passed. This is the default behavior.

 Sensitive Attributes

Using sensitive? true will cause the argument to be ** Redacted ** from the resource when logging or inspecting. In filter statements, any value used in the same expression as a sensitive attribute will also be redacted. For example, you might see: email == "** Redacted **" in a filter statement if email is marked as sensitive.

 Authorization

Authorization in Ash is done via authorizers. Generally, you won't need to create your own authorizer, as the builtin policy authorizer Ash.Policy.Authorizer should work well for any use case. Authorization is performed with a given actor and a query or changeset.

 Actors

An actor is the "entity performing the action". This is generally a user, but could potentially be an organization, a group, whatever makes sense for your use case. By default, when using Ash in code, authorization does not happen.
Does not perform authorization
Ash.read!(User)
However, if you either 1. provide an actor or 2. use the authorize?: true option, then authorization will happen.
Authorize with a `nil` actor (which is valid, i.e if no one is logged in and they are trying to list users)
Ash.read!(User, actor: nil)

Authorize with a `nil` actor
Ash.read!(User, authorize?: true)

Authorize with an actor
Ash.read!(User, actor: current_user)

Authorize with an actor, but being explicit
Ash.read!(User, actor: current_user, authorize?: true)

Skip authorization, but set an actor. The actor can be used in other things than authorization
so this may make sense depending on what you are doing.
Ash.read!(User, actor: current_user, authorize?: false)
Where to set the actor
When setting an actor, if you are building a query or changeset, you should do so at the time that you call the various for_* functions. This makes the actor available in the context of any change that is run. For example:
DO THIS
Resource
|> Ash.Query.for_read(:read, input, actor: current_user)
|> Ash.read()

DON'T DO THIS
Resource
|> Ash.Query.for_read(:read, input)
|> Ash.read(actor: current_user)
The second option "works" in most cases, but not all, because some changes might need to know the actor and will instead get nil.

 Store Context In Process - ash v3.0.0-rc.6

Store Context In Process

There are various things that can be stored in the process dictionary as opposed to passing them to every function. This is a stylistic choice, and in many cases could lead to less clear code, so use with caution. See the functions in the Ash module for more.
The following things can be stored in the process:
	Query/changeset context, will be merged with the context of any query/changeset before it is run.
	The current actor (i.e current_user)
	Whether or not to run authorization, i.e authorize?
	The current tracer
	The current tenant

 Testing - ash v3.0.0-rc.6

Testing

The configuration you likely want to add to your config/test.exs is:
config/test.exs
config :ash, :disable_async?, true
config :ash, :missed_notifications, :ignore
Each option is explained in more detail below.

 Async tests

The first thing you will likely want to do, especially if you are using AshPostgres, is to add the following config to your config/test.exs.
config/test.exs
config :ash, :disable_async?, true
This ensures that Ash does not spawn tasks when executing your requests, which is necessary for doing transactional tests with AshPostgres.

 Missed notifications

If you are using Ecto's transactional features to ensure that your tests all run in a transaction, Ash will detect that it had notifications to send (if you have any notifiers set up) but couldn't because it was still in a transaction. The default behavior when notifications are missed is to warn. However, this can get pretty noisy in tests. So we suggest adding the following config to your config/test.exs.
config/test.exs
config :ash, :missed_notifications, :ignore

 Timeouts - ash v3.0.0-rc.6

Timeouts

Timeouts in Ash work a bit differently than other tools. The following considerations must be taken into account:
	If you run a resource action in a transaction, then the timeout applies to the entire transaction.
	If the resource action you are running, and any of its touches_resources is already in a transaction then the timeout is ignored, as the outer transaction is handling the timeout.
	If the resource is not in a transaction, and supports async execution (ash_postgres does), then everything is run in a task and awaited with the provided timeout.
	If the data layer of the resource does not support timeouts, or async execution then timeouts are ignored.
	As of the writing of this guide, none of the web API extensions support specifying a timeout. If/when they do, they will run the action they are meant to run in a Task.

 Ways to Specify Timeouts

You have a few options.
You can specify a timeout when you call an action. This takes the highest precedence.
Ash.read!(query, timeout: :timer.seconds(30))
You can specify one using Ash.Changeset.timeout/2 or Ash.Query.timeout/2. This can be useful if you want to conditionally set a timeout based on the details of the request. For example, you might do something like this:
in your resource
defmodule MyApp.SetReportTimeout do
 use Ash.Resource.Preparation

 def prepare(query, _, _) do
 if Ash.Query.get_argument(query, :full_report) do
 Ash.Query.timeout(query, :timer.minutes(3))
 else
 Ash.Query.timeout(query, :timer.minutes(1))
 end
 end
end

actions do
 read :report_items do
 argument :full_report, :boolean, default: false

 prepare MyApp.SetReportTimeout
 end
end
And you can specify a default timeout on the domain module that you call your resources with. Overriding a domain with a default timeout requires providing a timeout of :infinity in one of the other methods.
execution do
 timeout :timer.seconds(30) # this is the default
end
Keep in mind, you can't specify timeouts in a before_action or after_action hook, because at that point you are already "within" the code that should have a timeout applied.

 Validations - ash v3.0.0-rc.6

Validations

 Builtin Validations

Checkout the documentation for Ash.Resource.Validation.Builtins to see the builtin validations.
Some examples of usage of builtin validations
validate match(:email, ~r/@/)

validate compare(:age, greater_than_or_equal_to: 18) do
 message "must be over 18 to sign up"
end

validate present(:last_name) do
 where [present(:first_name), present(:middle_name)]
 message "must also be supplied if setting first name and middle_name"
end

 Custom Validations

defmodule MyApp.Validations.IsPrime do
 # transform and validate opts

 use Ash.Resource.Validation

 @impl true
 def init(opts) do
 if is_atom(opts[:attribute]) do
 {:ok, opts}
 else
 {:error, "attribute must be an atom!"}
 end
 end

 @impl true
 def validate(changeset, opts) do
 value = Ash.Changeset.get_attribute(changeset, opts[:attribute])
 # this is a function I made up for example
 if is_nil(value) || Math.is_prime?(value) do
 :ok
 else
 # The returned error will be passed into `Ash.Error.to_ash_error/3`
 {:error, field: opts[:attribute], message: "must be prime"}
 end
 end
end
This could then be used in a resource via:
validate {MyApp.Validations.IsPrime, attribute: :foo}

 Where

The where can be used to perform changes/validations conditionally. This functions by running the validation, and if the validation returns an error, we discard the error and skip the operation. This means that even custom validations can be used in conditions.
For example:
validate present(:other_number) do
 where [{MyApp.Validations.IsPrime, attribute: :foo}]
end

 Action vs Global Validations

You can place a validation in any create, update, or destroy action. For example:
actions do
 create :create do
 validate compare(:age, greater_than_or_equal_to: 18)
 end
end
Or you can use the global validations block to validate on all actions of a given type. Where statements can be used in either. Use on to determine the types of actions the validation runs on. By default, it only runs on create an update actions
validations do
 validate present([:foo, :bar], at_least: 1) do
 on [:create, :update]
 where present(:baz)
 end
end

 Action-Specific Validation

You can also put a validation directly in an action, like so:
actions do
 create do
 ...
 validate present([:foo, :bar], at_least: 1)
 end
end

 DSL: Ash.Resource.Dsl - ash v3.0.0-rc.6

DSL: Ash.Resource.Dsl

 attributes

A section for declaring attributes on the resource.

 Nested DSLs

	attribute
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key

 Examples

attributes do
 uuid_primary_key :id

 attribute :first_name, :string do
 allow_nil? false
 end

 attribute :last_name, :string do
 allow_nil? false
 end

 attribute :email, :string do
 allow_nil? false

 constraints [
 match: ~r/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$/
]
 end

 attribute :type, :atom do
 constraints [
 one_of: [:admin, :teacher, :student]
]
 end

 create_timestamp :inserted_at
 update_timestamp :updated_at
end

 attributes.attribute

attribute name, type
Declares an attribute on the resource.

 Examples

attribute :name, :string do
 allow_nil? false
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the attribute.
	type	module		The type of the attribute. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see the constraints topic.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII. See the Security guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	false	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	allow_nil?	boolean	true	Whether or not the attribute can be set to nil. If nil value is given error is raised.
	generated?	boolean	false	Whether or not the value may be generated by the data layer.
	writable?	boolean	true	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	false	Whether or not the attribute should be shown over public interfaces. See the security guide for more.
	default	(-> any) | mfa | any		A value to be set on all creates, unless a value is being provided already.
	update_default	(-> any) | mfa | any		A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	false	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

 Introspection

Target: Ash.Resource.Attribute

 attributes.create_timestamp

create_timestamp name
Declares a non-writable attribute with a create default of &DateTime.utc_now/0
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except it sets
the following different defaults:
writable? false
default &DateTime.utc_now/0
match_other_defaults? true
type Ash.Type.UTCDatetimeUsec
allow_nil? false

 Examples

create_timestamp :inserted_at

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the attribute.

 Options

	Name	Type	Default	Docs
	type	module	Ash.Type.UtcDatetimeUsec	The type of the attribute. See Ash.Type for more.
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see the constraints topic.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII. See the Security guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	false	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	allow_nil?	boolean	false	Whether or not the attribute can be set to nil. If nil value is given error is raised.
	generated?	boolean	false	Whether or not the value may be generated by the data layer.
	writable?	boolean	false	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	false	Whether or not the attribute should be shown over public interfaces. See the security guide for more.
	default	(-> any) | mfa | any	&DateTime.utc_now/0	A value to be set on all creates, unless a value is being provided already.
	update_default	(-> any) | mfa | any		A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	true	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

 Introspection

Target: Ash.Resource.Attribute

 attributes.update_timestamp

update_timestamp name
Declares a non-writable attribute with a create and update default of &DateTime.utc_now/0
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except it sets
the following different defaults:
writable? false
default &DateTime.utc_now/0
match_other_defaults? true
update_default &DateTime.utc_now/0
type Ash.Type.UTCDatetimeUsec
allow_nil? false

 Examples

update_timestamp :updated_at

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the attribute.

 Options

	Name	Type	Default	Docs
	type	module	Ash.Type.UtcDatetimeUsec	The type of the attribute. See Ash.Type for more.
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see the constraints topic.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII. See the Security guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	false	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	allow_nil?	boolean	false	Whether or not the attribute can be set to nil. If nil value is given error is raised.
	generated?	boolean	false	Whether or not the value may be generated by the data layer.
	writable?	boolean	false	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	false	Whether or not the attribute should be shown over public interfaces. See the security guide for more.
	default	(-> any) | mfa | any	&DateTime.utc_now/0	A value to be set on all creates, unless a value is being provided already.
	update_default	(-> any) | mfa | any	&DateTime.utc_now/0	A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	true	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

 Introspection

Target: Ash.Resource.Attribute

 attributes.integer_primary_key

integer_primary_key name
Declares a generated, non writable, non-nil, primary key column of type integer.
Generated integer primary keys must be supported by the data layer.
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except for allow_nil?, but it sets
the following different defaults:
public? true
writable? false
primary_key? true
generated? true
type :integer

 Examples

integer_primary_key :id

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the attribute.

 Options

	Name	Type	Default	Docs
	type	module	:integer	The type of the attribute. See Ash.Type for more.
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see the constraints topic.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII. See the Security guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	true	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	generated?	boolean	true	Whether or not the value may be generated by the data layer.
	writable?	boolean	false	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	true	Whether or not the attribute should be shown over public interfaces. See the security guide for more.
	default	(-> any) | mfa | any		A value to be set on all creates, unless a value is being provided already.
	update_default	(-> any) | mfa | any		A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	false	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

 Introspection

Target: Ash.Resource.Attribute

 attributes.uuid_primary_key

uuid_primary_key name
Declares a non writable, non-nil, primary key column of type uuid, which defaults to Ash.UUID.generate/0.
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except for allow_nil?, but it sets
the following different defaults:
writable? false
public? true
default &Ash.UUID.generate/0
primary_key? true
type :uuid

 Examples

uuid_primary_key :id

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the attribute.

 Options

	Name	Type	Default	Docs
	type	module	:uuid	The type of the attribute. See Ash.Type for more.
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see the constraints topic.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII. See the Security guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	true	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	generated?	boolean	false	Whether or not the value may be generated by the data layer.
	writable?	boolean	false	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	true	Whether or not the attribute should be shown over public interfaces. See the security guide for more.
	default	(-> any) | mfa | any	&Ash.UUID.generate/0	A value to be set on all creates, unless a value is being provided already.
	update_default	(-> any) | mfa | any		A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	false	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

 Introspection

Target: Ash.Resource.Attribute

 relationships

A section for declaring relationships on the resource.
Relationships are a core component of resource oriented design. Many components of Ash
will use these relationships. A simple use case is loading relationships (done via the Ash.Query.load/2).
See the relationships guide for more.

 Nested DSLs

	has_one	filter

	has_many	filter

	many_to_many	filter

	belongs_to	filter

 Examples

relationships do
 belongs_to :post, MyApp.Post do
 primary_key? true
 end

 belongs_to :category, MyApp.Category do
 primary_key? true
 end
end

relationships do
 belongs_to :author, MyApp.Author

 many_to_many :categories, MyApp.Category do
 through MyApp.PostCategory
 destination_attribute_on_join_resource :category_id
 source_attribute_on_join_resource :post_id
 end
end

relationships do
 has_many :posts, MyApp.Post do
 destination_attribute :author_id
 end

 has_many :composite_key_posts, MyApp.CompositeKeyPost do
 destination_attribute :author_id
 end
end

 relationships.has_one

has_one name, destination
Declares a has_one relationship. In a relational database, the foreign key would be on the other table.
Generally speaking, a has_one also implies that the destination table is unique on that foreign key.
See the relationships guide for more.

 Nested DSLs

	filter

 Examples

In a resource called `Word`
has_one :dictionary_entry, DictionaryEntry do
 source_attribute :text
 destination_attribute :word_text
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

 Options

	Name	Type	Default	Docs
	manual	(any, any -> any) | module		A module that implements Ash.Resource.ManualRelationship. Also accepts a 2 argument function that takes the source records and the context.
	no_attributes?	boolean		All existing entities are considered related, i.e this relationship is not based on any fields, and source_attribute and destination_attribute are ignored. See the See the relationships guide for more.
	allow_nil?	boolean	true	Marks the relationship as required. Has no effect on validations, but can inform extensions that there will always be a related entity.
	from_many?	boolean	false	Signal that this relationship is actually a has_many where the first record is given via the sort. This will allow data layers to properly deduplicate when necessary.
	description	String.t		An optional description for the relationship
	destination_attribute	atom		The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.

 relationships.has_one.filter

filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Examples

filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

 Arguments

	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Introspection

Target: Ash.Resource.Dsl.Filter

 Introspection

Target: Ash.Resource.Relationships.HasOne

 relationships.has_many

has_many name, destination
Declares a has_many relationship. There can be any number of related entities.
See the relationships guide for more.

 Nested DSLs

	filter

 Examples

In a resource called `Word`
has_many :definitions, DictionaryDefinition do
 source_attribute :text
 destination_attribute :word_text
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

 Options

	Name	Type	Default	Docs
	manual	(any, any -> any) | module		A module that implements Ash.Resource.ManualRelationship. Also accepts a 2 argument function that takes the source records and the context.
	no_attributes?	boolean		All existing entities are considered related, i.e this relationship is not based on any fields, and source_attribute and destination_attribute are ignored. See the See the relationships guide for more.
	description	String.t		An optional description for the relationship
	destination_attribute	atom		The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.

 relationships.has_many.filter

filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Examples

filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

 Arguments

	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Introspection

Target: Ash.Resource.Dsl.Filter

 Introspection

Target: Ash.Resource.Relationships.HasMany

 relationships.many_to_many

many_to_many name, destination
Declares a many_to_many relationship. Many to many relationships require a join resource.
A join resource is a resource that consists of a relationship to the source and destination of the many to many.
See the relationships guide for more.

 Nested DSLs

	filter

 Examples

In a resource called `Word`
many_to_many :books, Book do
 through BookWord
 source_attribute :text
 source_attribute_on_join_resource :word_text
 destination_attribute :id
 destination_attribute_on_join_resource :book_id
end

And in `BookWord` (the join resource)
belongs_to :book, Book, primary_key?: true, allow_nil?: false
belongs_to :word, Word, primary_key?: true, allow_nil?: false

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

 Options

	Name	Type	Default	Docs
	source_attribute_on_join_resource	atom		The attribute on the join resource that should line up with source_attribute on this resource. Defaults to <snake_cased_last_part_of_source_module_name>_id.
	destination_attribute_on_join_resource	atom		The attribute on the join resource that should line up with destination_attribute on the related resource. Defaults to <snake_cased_last_part_of_destination_module_name>_id.
	through	module		The resource to use as the join resource.
	join_relationship	atom		The has_many relationship to the join resource. Defaults to <relationship_name>_join_assoc.
	description	String.t		An optional description for the relationship
	destination_attribute	atom	:id	The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.

 relationships.many_to_many.filter

filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Examples

filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

 Arguments

	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Introspection

Target: Ash.Resource.Dsl.Filter

 Introspection

Target: Ash.Resource.Relationships.ManyToMany

 relationships.belongs_to

belongs_to name, destination
Declares a belongs_to relationship. In a relational database, the foreign key would be on the source table.
This creates a field on the resource with the corresponding name and type, unless define_attribute?: false is provided.
See the relationships guide for more.

 Nested DSLs

	filter

 Examples

In a resource called `Word`
belongs_to :dictionary_entry, DictionaryEntry do
 source_attribute :text,
 destination_attribute :word_text
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

 Options

	Name	Type	Default	Docs
	primary_key?	boolean	false	Whether the generated attribute is, or is part of, the primary key of a resource.
	allow_nil?	boolean	true	Whether this relationship must always be present, e.g: must be included on creation, and never removed (it may be modified). The generated attribute will not allow nil values.
	attribute_writable?	boolean		Whether the generated attribute will be marked as writable. If not set, it will default to the relationship's writable? setting.
	attribute_public?	boolean		Whether or not the generated attribute will be public. If not set, it will default to the relationship's public? setting.
	define_attribute?	boolean	true	If set to false an attribute is not created on the resource for this relationship, and one must be manually added in attributes, invalidating many other options.
	attribute_type	any	:uuid	The type of the generated created attribute. See Ash.Type for more.
	description	String.t		An optional description for the relationship
	destination_attribute	atom	:id	The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom		The field on this resource that should match the destination_attribute on the related resource. - Defaults to <name>_id
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.

 relationships.belongs_to.filter

filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Examples

filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

 Arguments

	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Introspection

Target: Ash.Resource.Dsl.Filter

 Introspection

Target: Ash.Resource.Relationships.BelongsTo

 actions

A section for declaring resource actions.
All manipulation of data through the underlying data layer happens through actions.
There are four types of action: create, read, update, and destroy. You may
recognize these from the acronym CRUD. You can have multiple actions of the same
type, as long as they have different names. This is the primary mechanism for customizing
your resources to conform to your business logic. It is normal and expected to have
multiple actions of each type in a large application.

 Nested DSLs

	action	argument

	create	change
	validate
	argument
	metadata

	read	argument
	prepare
	pagination
	metadata
	filter

	update	change
	validate
	metadata
	argument

	destroy	change
	validate
	metadata
	argument

 Examples

actions do
 create :signup do
 argument :password, :string
 argument :password_confirmation, :string
 validate confirm(:password, :password_confirmation)
 change {MyApp.HashPassword, []} # A custom implemented Change
 end

 read :me do
 # An action that auto filters to only return the user for the current user
 filter [id: actor(:id)]
 end

 update :update do
 accept [:first_name, :last_name]
 end

 destroy do
 change set_attribute(:deleted_at, &DateTime.utc_now/0)
 # This tells it that even though this is a delete action, it
 # should be treated like an update because `deleted_at` is set.
 # This should be coupled with a `base_filter` on the resource
 # or with the read actions having a `filter` for `is_nil: :deleted_at`
 soft? true
 end
end

 Options

	Name	Type	Default	Docs
	defaults	list(:create | :read | :update | :destroy | {atom, atom | list(atom)})		Creates a simple action of each specified type, with the same name as the type. These will be primary? unless one already exists for that type. Embedded resources, however, have a default of all resource types.
	default_accept	list(atom) | :*		A default value for the accept option for each action. Use :* to accept all public attributes.

 actions.action

action name, returns
Declares a generic action. A combination of arguments, a return type and a run function.
For calling this action, see the Ash.Domain documentation.

 Nested DSLs

	argument

 Examples

action :top_user_emails, {:array, :string} do
 argument :limit, :integer, default: 10, allow_nil?: false
 run fn input, context ->
 with {:ok, top_users} <- top_users(input.arguments.limit) do
 {:ok, Enum.map(top_users, &(&1.email))}
 end
 end
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the action
	returns	module		The return type of the action. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword		Constraints for the return type. See the constriants topic for more.
	allow_nil?	boolean	false	Whether or not the action can return nil. Unlike attributes & arguments, this defaults to false.
	run	(any, any -> any) | module		
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.

 actions.action.argument

argument name, type
Declares an argument on the action

 Examples

argument :password_confirmation, :string

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see the constraints topic.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII. See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Argument

 Introspection

Target: Ash.Resource.Actions.Action

 actions.create

create name
Declares a create action. For calling this action, see the Ash.Domain documentation.

 Nested DSLs

	change
	validate
	argument
	metadata

 Examples

create :register do
 primary? true
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the action

 Options

	Name	Type	Default	Docs
	allow_nil_input	list(atom)		A list of attributes that would normally be required, but should not be for this action. They will still be validated just before the record is created.
	manual	(any, any -> any) | module		Override the creation behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	upsert?	boolean	false	Forces all uses of this action to be treated as an upsert.
	upsert_identity	atom		The identity to use for the upsert. Cannot be overriden by the caller. Ignored if upsert? is not set to true.
	upsert_fields	:replace_all | {:replace, atom | list(atom)} | {:replace_all_except, atom | list(atom)} | atom | list(atom)		The fields to overwrite in the case of an upsert. If not provided, all fields except for fields set by defaults will be overwritten.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	error_handler	mfa		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

 actions.create.change

change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.

 Examples

change relate_actor(:reporter)
change {MyCustomChange, :foo}

 Arguments

	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

 Options

	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Change

 actions.create.validate

validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation for more.

 Examples

validate changing(:email)

 Arguments

	Name	Type	Default	Docs
	validation	(any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a one argument function that takes the changeset.

 Options

	Name	Type	Default	Docs
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/2 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Validation

 actions.create.argument

argument name, type
Declares an argument on the action

 Examples

argument :password_confirmation, :string

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see the constraints topic.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII. See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Argument

 actions.create.metadata

metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.

 Examples

metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Metadata

 Introspection

Target: Ash.Resource.Actions.Create

 actions.read

read name
Declares a read action. For calling this action, see the Ash.Domain documentation.

 Nested DSLs

	argument
	prepare
	pagination
	metadata
	filter

 Examples

read :read_all do
 primary? true
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the action

 Options

	Name	Type	Default	Docs
	manual	(any, any, any -> any) | module		Delegates running of the query to the provided module. Accepts a module or module and opts, or a function that takes the ash query, the data layer query, and context. See the manual actions guide for more.
	get?	boolean	false	Expresses that this action innately only returns a single result. Used by extensions to validate and/or modify behavior. Causes code interfaces to return a single value instead of a list. See the code interface guide for more.
	modify_query	mfa | (any, any -> any)		Allows direct manipulation of the data layer query via an MFA. The ash query and the data layer query will be provided as additional arguments. The result must be {:ok, new_data_layer_query} | {:error, error}.
	get_by	atom | list(atom)		A helper to automatically generate a "get by X" action. Sets get? to true, add args for each of the specified fields, and adds a filter for each of the arguments.
	timeout	pos_integer		The maximum amount of time, in milliseconds, that the action is allowed to run for. Ignored if the data layer doesn't support transactions and async is disabled.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.

 actions.read.argument

argument name, type
Declares an argument on the action

 Examples

argument :password_confirmation, :string

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see the constraints topic.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII. See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Argument

 actions.read.prepare

prepare preparation
Declares a preparation, which can be used to prepare a query for a read action.

 Examples

prepare build(sort: [:foo, :bar])

 Arguments

	Name	Type	Default	Docs
	preparation	(any, any -> any) | module		The module and options for a preparation. Also accepts functions take the query and the context.

 Introspection

Target: Ash.Resource.Preparation

 actions.read.pagination

Adds pagination options to a resource

 Options

	Name	Type	Default	Docs
	keyset?	boolean	false	Whether or not keyset based pagination is supported
	offset?	boolean	false	Whether or not offset based pagination is supported
	default_limit	pos_integer		The default page size to apply, if one is not supplied
	countable	true | false | :by_default	false	Whether not a returned page will have a full count of all records. Use :by_default to do it automatically.
	max_page_size	pos_integer	250	The maximum amount of records that can be requested in a single page
	required?	boolean	true	Whether or not pagination can be disabled. Only relevant if some pagination configuration is supplied.

 Introspection

Target: Ash.Resource.Actions.Read.Pagination

 actions.read.metadata

metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.

 Examples

metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Metadata

 actions.read.filter

filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Examples

filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

 Arguments

	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 teplates. Multiple filters are combined with and.

 Introspection

Target: Ash.Resource.Dsl.Filter

 Introspection

Target: Ash.Resource.Actions.Read

 actions.update

update name
Declares a update action. For calling this action, see the Ash.Domain documentation.

 Nested DSLs

	change
	validate
	metadata
	argument

 Examples

update :flag_for_review, primary?: true

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the action

 Options

	Name	Type	Default	Docs
	manual	(any, any -> any) | module		Override the update behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	require_atomic?	boolean	true	Require that the update be atomic. This means that all changes and validations implement the atomic callback. See the guide on atomic updates for more.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	error_handler	mfa		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

 actions.update.change

change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.

 Examples

change relate_actor(:reporter)
change {MyCustomChange, :foo}

 Arguments

	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

 Options

	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Change

 actions.update.validate

validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation for more.

 Examples

validate changing(:email)

 Arguments

	Name	Type	Default	Docs
	validation	(any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a one argument function that takes the changeset.

 Options

	Name	Type	Default	Docs
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/2 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Validation

 actions.update.metadata

metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.

 Examples

metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Metadata

 actions.update.argument

argument name, type
Declares an argument on the action

 Examples

argument :password_confirmation, :string

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see the constraints topic.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII. See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Argument

 Introspection

Target: Ash.Resource.Actions.Update

 actions.destroy

destroy name
Declares a destroy action. For calling this action, see the Ash.Domain documentation.

 Nested DSLs

	change
	validate
	metadata
	argument

 Examples

destroy :soft_delete do
 primary? true
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the action

 Options

	Name	Type	Default	Docs
	soft?	boolean	false	If specified, the destroy action behaves as an update internally
	manual	(any, any -> any) | module		Override the update behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	require_atomic?	boolean	true	Require that the update be atomic. Only relevant if soft? is set to true. This means that all changes and validations implement the atomic callback. See the guide on atomic updates for more.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	error_handler	mfa		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

 actions.destroy.change

change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.

 Examples

change relate_actor(:reporter)
change {MyCustomChange, :foo}

 Arguments

	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

 Options

	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Change

 actions.destroy.validate

validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation for more.

 Examples

validate changing(:email)

 Arguments

	Name	Type	Default	Docs
	validation	(any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a one argument function that takes the changeset.

 Options

	Name	Type	Default	Docs
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/2 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Validation

 actions.destroy.metadata

metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.

 Examples

metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Metadata

 actions.destroy.argument

argument name, type
Declares an argument on the action

 Examples

argument :password_confirmation, :string

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see the constraints topic.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII. See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

 Introspection

Target: Ash.Resource.Actions.Argument

 Introspection

Target: Ash.Resource.Actions.Destroy

 code_interface

Functions that will be defined on the resource. See the code interface guide for more.

 Nested DSLs

	define
	define_calculation

 Examples

code_interface do
 define :create_user, action: :create
 define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
end

 Options

	Name	Type	Default	Docs
	domain	module	false	Use the provided Domain instead of the resources configured domain when calling actions.
	define?	boolean		Whether or not to define the code interface in the resource.

 code_interface.define

define name
Defines a function with the corresponding name and arguments. See the code interface guide for more.

 Examples

define :get_user_by_id, action: :get_by_id, args: [:id], get?: true

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

 Options

	Name	Type	Default	Docs
	action	atom		The name of the action that will be called. Defaults to the same name as the function.
	args	list(atom | {:optional, atom})		Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.
	not_found_error?	boolean	true	If the action or interface is configured with get?: true, this determines whether or not an error is raised or nil is returned.
	get?	boolean		Expects to only receive a single result from a read action, and returns a single result instead of a list. Ignored for other action types.
	get_by	atom | list(atom)		Takes a list of fields and adds those fields as arguments, which will then be used to filter. Sets get? to true automatically. Ignored for non-read actions.
	get_by_identity	atom		Only relevant for read actions. Takes an identity, and gets its field list, performing the same logic as get_by once it has the list of fields.

 Introspection

Target: Ash.Resource.Interface

 code_interface.define_calculation

define_calculation name
Defines a function with the corresponding name and arguments, that evaluates a calculation. Use :_record to take an instance of a record. See the code interface guide for more.

 Examples

define_calculation :referral_link, args: [:id]
define_calculation :referral_link, args: [{:arg, :id}, {:ref, :id}]

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

 Options

	Name	Type	Default	Docs
	calculation	atom		The name of the calculation that will be evaluated. Defaults to the same name as the function.
	args	any	[]	Supply field or argument values referenced by the calculation, in the form of :name, {:arg, :name} and/or {:ref, :name}. See the code interface guide for more.

 Introspection

Target: Ash.Resource.CalculationInterface

 resource

General resource configuration

 Examples

resource do
 description "A description of this resource"
 base_filter [is_nil: :deleted_at]
end

 Options

	Name	Type	Default	Docs
	description	String.t		A human readable description of the resource, to be used in generated documentation
	base_filter	any		A filter statement to be applied to any queries on the resource
	default_context	any		Default context to apply to any queries/changesets generated for this resource.
	trace_name	String.t		The name to use in traces. Defaults to the short_name stringified. See the monitoring guide for more.
	short_name	atom		A short identifier for the resource, which should be unique. See the monitoring guide for more.
	plural_name	atom		A pluralized version of the resource short_name. May be used by generators or automated tooling.
	require_primary_key?	boolean	true	Allow the resource to be used without any primary key fields. Warning: this option is experimental, and should not be used unless you know what you're doing.

 identities

Unique identifiers for the resource

 Nested DSLs

	identity

 Examples

identities do
 identity :full_name, [:first_name, :last_name]
 identity :email, [:email]
end

 identities.identity

identity name, keys
Represents a unique constraint on the resource.
See the identities guide for more.

 Examples

identity :name, [:name]
identity :full_name, [:first_name, :last_name]

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the identity.
	keys	atom | list(atom)		The names of the attributes that uniquely identify this resource.

 Options

	Name	Type	Default	Docs
	eager_check_with	module		Validates that the unique identity provided is unique at validation time, outside of any transactions, using the domain module provided.
	pre_check_with	module		Validates that the unique identity provided is unique in a before_action hook.
	description	String.t		An optional description for the identity
	message	String.t		An error message to use when the unique identity would be violated
	all_tenants?	boolean	false	Whether or not this identity is unique across all tenants. If the resource is not multitenant, has no effect.

 Introspection

Target: Ash.Resource.Identity

 changes

Declare changes that occur on create/update/destroy actions against the resource
See Ash.Resource.Change for more.

 Nested DSLs

	change

 Examples

changes do
 change {Mod, [foo: :bar]}
 change set_context(%{some: :context})
end

 changes.change

change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.

 Examples

change relate_actor(:reporter)
change {MyCustomChange, :foo}

 Arguments

	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

 Options

	Name	Type	Default	Docs
	on	:create | :update | :destroy | list(:create | :update | :destroy)	[:create, :update]	The action types the change should run on. Destroy actions are omitted by default as most changes don't make sense for a destroy.
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Change

 preparations

Declare preparations that occur on all read actions for a given resource

 Nested DSLs

	prepare

 Examples

preparations do
 prepare {Mod, [foo: :bar]}
 prepare set_context(%{some: :context})
end

 preparations.prepare

prepare preparation
Declares a preparation, which can be used to prepare a query for a read action.

 Examples

prepare build(sort: [:foo, :bar])

 Arguments

	Name	Type	Default	Docs
	preparation	(any, any -> any) | module		The module and options for a preparation. Also accepts functions take the query and the context.

 Introspection

Target: Ash.Resource.Preparation

 validations

Declare validations prior to performing actions against the resource

 Nested DSLs

	validate

 Examples

validations do
 validate {Mod, [foo: :bar]}
 validate at_least_one_of_present([:first_name, :last_name])
end

 validations.validate

validate validation
Declares a validation for creates and updates.
See Ash.Resource.Change for more.

 Examples

validate {Mod, [foo: :bar]}
validate at_least_one_of_present([:first_name, :last_name])

 Arguments

	Name	Type	Default	Docs
	validation	(any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a one argument function that takes the changeset.

 Options

	Name	Type	Default	Docs
	where	(any -> any) | module | list((any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	on	:create | :update | :destroy | list(:create | :update | :destroy)	[:create, :update]	The action types the validation should run on. Many validations don't make sense in the context of deletion, so by default it is not included.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/2 callback defined. Set this to true to run it atomically always.

 Introspection

Target: Ash.Resource.Validation

 aggregates

Declare named aggregates on the resource.
These are aggregates that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
See the aggregates guide for more.

 Nested DSLs

	count	join_filter

	exists	join_filter

	first	join_filter

	sum	join_filter

	list	join_filter

	max	join_filter

	min	join_filter

	avg	join_filter

	custom	join_filter

 Examples

aggregates do
 count :assigned_ticket_count, :reported_tickets do
 filter [active: true]
 end
end

 aggregates.count

count name, relationship_path
Declares a named count aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the count)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

count :assigned_ticket_count, :assigned_tickets do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	uniq?	boolean	false	Whether or not to count unique values only
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.count.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.exists

exists name, relationship_path
Declares a named exists aggregate on the resource
Supports filter, but not sort (because that wouldn't affect if something exists)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

exists :has_ticket, :assigned_tickets

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.exists.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.first

first name, relationship_path, field
Declares a named first aggregate on the resource
First aggregates return the first value of the related record
that matches. Supports both filter and sort.
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

first :first_assigned_ticket_subject, :assigned_tickets, :subject do
 filter [active: true]
 sort [:subject]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	include_nil?	boolean		Whether or not to include nil values in the aggregate. Only relevant for list and first aggregates.
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.first.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.sum

sum name, relationship_path, field
Declares a named sum aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the sum)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

sum :assigned_ticket_price_sum, :assigned_tickets, :price do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.sum.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.list

list name, relationship_path, field
Declares a named list aggregate on the resource.
A list aggregate selects the list of all values for the given field
and relationship combination.
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

list :assigned_ticket_prices, :assigned_tickets, :price do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	uniq?	boolean	false	Whether or not to count unique values only
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.list.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.max

max name, relationship_path, field
Declares a named max aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the max)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

max :first_assigned_ticket_subject, :assigned_tickets, :severity do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.max.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.min

min name, relationship_path, field
Declares a named min aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the min)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

min :first_assigned_ticket_subject, :assigned_tickets, :severity do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.min.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.avg

avg name, relationship_path, field
Declares a named avg aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the avg)
See the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

avg :assigned_ticket_price_sum, :assigned_tickets, :price do
 filter [active: true]
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

 Options

	Name	Type	Default	Docs
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.avg.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 aggregates.custom

custom name, relationship_path, type
Declares a named custom aggregate on the resource
Supports filter and sort.
Custom aggregates provide an implementation which must implement data layer specific callbacks.
See the relevant data layer documentation and the aggregates guide for more.

 Nested DSLs

	join_filter

 Examples

custom :author_names, :authors, :string do
 implementation {StringAgg, delimiter: ","}
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	type	module		The type of the value returned by the aggregate

 Options

	Name	Type	Default	Docs
	implementation	module		The module that implements the relevant data layer callbacks
	kind	:count | :first | :sum | :list | :avg | :max | :min | :exists | :custom | {:custom, module}		The kind of the aggregate
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

 aggregates.custom.join_filter

join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.

 Examples

join_filter [:comments, :author], expr(active == true)

 Arguments

	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

 Introspection

Target: Ash.Resource.Aggregate.JoinFilter

 Introspection

Target: Ash.Resource.Aggregate

 calculations

Declare named calculations on the resource.
These are calculations that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
See the calculations guide for more.

 Nested DSLs

	calculate	argument

 Examples

calculations do
 calculate :full_name, :string, MyApp.MyResource.FullName
end

 calculations.calculate

calculate name, type, calculation \\ nil
Declares a named calculation on the resource.
Takes a module that must adopt the Ash.Resource.Calculation behaviour. See that module
for more information.
To ensure that the necessary fields are selected:
1.) Specifying the select option on a calculation in the resource.
2.) Define a select/2 callback in the calculation module
3.) Set always_select? on the attribute in question
See the calculations guide for more.

 Nested DSLs

	argument

 Examples

Ash.Resource.Calculation implementation example:
calculate :full_name, :string, {MyApp.FullName, keys: [:first_name, :last_name]}, select: [:first_name, :last_name]
expr/1 example:
calculate :full_name, :string, expr(first_name <> " " <> last_name)

 Arguments

	Name	Type	Default	Docs
	name	atom		The field name to use for the calculation value
	type	any		The type of the calculation. See Ash.Type for more.
	calculation	(any, any -> any) | module | any		The module, {module, opts} or expr(...) to use for the calculation. Also accepts a function that takes a single record and produces the result.

 Options

	Name	Type	Default	Docs
	constraints	keyword	[]	Constraints to provide to the type. See Ash.Type for more.
	description	String.t		An optional description for the calculation
	public?	boolean	false	Whether or not the calculation will appear in public interfaces.
	sensitive?	boolean	false	Whether or not references to the calculation will be considered sensitive.
	load	any	[]	A load statement to be applied if the calculation is used.
	allow_nil?	boolean	true	Whether or not the calculation can return nil.
	filterable?	boolean | :simple_equality	true	Whether or not the calculation should be usable in filters.
	sortable?	boolean	true	Whether or not the calculation can be referenced in sorts.

 calculations.calculate.argument

argument name, type
An argument to be passed into the calculation's arguments map
See the calculations guide for more.

 Examples

argument :params, :map do
 default %{}
end

argument :retries, :integer do
 allow_nil? false
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

 Options

	Name	Type	Default	Docs
	default	(-> any) | mfa | any		A default value to use for the argument if not provided
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided)
	allow_expr?	boolean	false	Allow passing expressions as argument values. Expressions cannot be type validated.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. See the type's documentation and Ash.Type for more.

 Introspection

Target: Ash.Resource.Calculation.Argument

 Introspection

Target: Ash.Resource.Calculation

 multitenancy

Options for configuring the multitenancy behavior of a resource.
To specify a tenant, use Ash.Query.set_tenant/2 or
Ash.Changeset.set_tenant/2 before passing it to an operation.
See the multitenancy guide

 Examples

multitenancy do
 strategy :attribute
 attribute :organization_id
 global? true
end

 Options

	Name	Type	Default	Docs
	strategy	:context | :attribute	:context	Determine if multitenancy is performed with attribute filters or using data layer features.
	attribute	atom		If using the attribute strategy, the attribute to use, e.g org_id
	global?	boolean	false	Whether or not the data may be accessed without setting a tenant. For example, with attribute multitenancy, this allows accessing without filtering by the tenant attribute.
	parse_attribute	mfa	{Ash.Resource.Dsl, :identity, []}	An mfa ({module, function, args}) pointing to a function that takes a tenant and returns the attribute value

 DSL: Ash.Domain.Dsl - ash v3.0.0-rc.6

DSL: Ash.Domain.Dsl

 domain

General domain configuration

 Examples

domain do
 description """
 Resources related to the flux capacitor.
 """
end

 Options

	Name	Type	Default	Docs
	description	String.t		A description for the domain.

 resources

List the resources of this domain

 Nested DSLs

	resource	define
	define_calculation

 Examples

resources do
 resource MyApp.Tweet
 resource MyApp.Comment
end

 Options

	Name	Type	Default	Docs
	allow	mfa		Support a dynamic resource list by providing a callback that checks whether or not the resource should be allowed.
	allow_unregistered?	boolean	false	Whether the domain will support only registered entries or not.

 resources.resource

resource resource
A resource present in the domain

 Nested DSLs

	define
	define_calculation

 Examples

resource Foo

 Arguments

	Name	Type	Default	Docs
	resource	module		

 resources.resource.define

define name
Defines a function with the corresponding name and arguments. See the code interface guide for more.

 Examples

define :get_user_by_id, User, action: :get_by_id, args: [:id], get?: true

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

 Options

	Name	Type	Default	Docs
	action	atom		The name of the action that will be called. Defaults to the same name as the function.
	args	list(atom | {:optional, atom})		Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.
	not_found_error?	boolean	true	If the action or interface is configured with get?: true, this determines whether or not an error is raised or nil is returned.
	get?	boolean		Expects to only receive a single result from a read action, and returns a single result instead of a list. Ignored for other action types.
	get_by	atom | list(atom)		Takes a list of fields and adds those fields as arguments, which will then be used to filter. Sets get? to true automatically. Ignored for non-read actions.
	get_by_identity	atom		Only relevant for read actions. Takes an identity, and gets its field list, performing the same logic as get_by once it has the list of fields.

 Introspection

Target: Ash.Resource.Interface

 resources.resource.define_calculation

define_calculation name
Defines a function with the corresponding name and arguments, that evaluates a calculation. Use :_record to take an instance of a record. See the code interface guide for more.

 Examples

define_calculation :referral_link, User, args: [:id]
define_calculation :referral_link, User, args: [{:arg, :id}, {:ref, :id}]

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

 Options

	Name	Type	Default	Docs
	calculation	atom		The name of the calculation that will be evaluated. Defaults to the same name as the function.
	args	any	[]	Supply field or argument values referenced by the calculation, in the form of :name, {:arg, :name} and/or {:ref, :name}. See the code interface guide for more.

 Introspection

Target: Ash.Resource.CalculationInterface

 Introspection

Target: Ash.Domain.Dsl.ResourceReference

 execution

Options for how requests are executed using this domain

 Examples

execution do
 timeout :timer.seconds(30)
end

 Options

	Name	Type	Default	Docs
	timeout	timeout	30000	The default timeout to use for requests using this domain. See the timeouts guide for more.
	trace_name	String.t		The name to use in traces. Defaults to the last part of the module. See the monitoring guide for more

 authorization

Options for how requests are authorized using this domain. See the security guide for more.

 Examples

authorization do
 authorize :always
end

 Options

	Name	Type	Default	Docs
	require_actor?	boolean	false	Requires that an actor has been supplied.
	authorize	:always | :by_default | :when_requested	:by_default	When to run authorization for a given request.

 DSL: Ash.Notifier.PubSub - ash v3.0.0-rc.6

DSL: Ash.Notifier.PubSub

A pubsub notifier extension.

 pub_sub

A section for configuring how resource actions are published over pubsub
See the PubSub and Notifiers guide for more.

 Nested DSLs

	publish
	publish_all

 Examples

pub_sub do
 module MyEndpoint
 prefix "post"

 publish :destroy, ["foo", :id]
 publish :update, ["bar", :name] event: "name_change"
 publish_all :create, "created"
end

 Options

	Name	Type	Default	Docs
	module	atom		The module to call broadcast/3 on e.g module.broadcast(topic, event, message).
	prefix	String.t		A prefix for all pubsub messages, e.g users. A message with created would be published as users:created
	delimiter	String.t		A delimiter for building topics. Default is a colon (:)
	broadcast_type	:notification | :phoenix_broadcast | :broadcast	:notification	What shape the event payloads will be in. See
	name	atom		A named pub sub to pass as the first argument to broadcast.

 pub_sub.publish

publish action, topic
Configure a given action to publish its results over a given topic.
See the PubSub and Notifiers guides for more.

 Examples

publish :create, "created"
publish :assign, "assigned"

 Arguments

	Name	Type	Default	Docs
	action	atom		The name of the action that should be published
	topic	any		The topic to publish

 Options

	Name	Type	Default	Docs
	previous_values?	boolean	false	Whether or not to publish messages with both the new values and the old values for referencing changed attributes
	event	String.t		The name of the event to publish. Defaults to the action name
	dispatcher	atom		The module to use as a dispatcher. If none is set, the pubsub module provided is used.

 Introspection

Target: Ash.Notifier.PubSub.Publication

 pub_sub.publish_all

publish_all type, topic
Works just like publish, except that it takes a type
and publishes all actions of that type
See the PubSub and Notifiers guides for more.

 Examples

publish_all :create, "created"

 Arguments

	Name	Type	Default	Docs
	type	:create | :update | :destroy		Publish on all actions of a given type
	topic	any		The topic to publish

 Options

	Name	Type	Default	Docs
	action	atom		The name of the action that should be published
	previous_values?	boolean	false	Whether or not to publish messages with both the new values and the old values for referencing changed attributes
	event	String.t		The name of the event to publish. Defaults to the action name
	dispatcher	atom		The module to use as a dispatcher. If none is set, the pubsub module provided is used.

 Introspection

Target: Ash.Notifier.PubSub.Publication

 DSL: Ash.Policy.Authorizer - ash v3.0.0-rc.6

DSL: Ash.Policy.Authorizer

An authorization extension for ash resources.
To add this extension to a resource, add it to the list of authorizers like so:
use Ash.Resource,
 ...,
 authorizers: [
 Ash.Policy.Authorizer
]
A resource can be given a set of policies, which are enforced on each call to a resource action.
For reads, policies can be configured to filter out data that the actor shouldn't see, as opposed to
resulting in a forbidden error.
See the policies guide for practical examples.
Policies are solved/managed via a boolean satisfiability solver. To read more about boolean satisfiability,
see this page: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. At the end of
the day, however, it is not necessary to understand exactly how Ash takes your
authorization requirements and determines if a request is allowed. The
important thing to understand is that Ash may or may not run any/all of your
authorization rules as they may be deemed unnecessary. As such, authorization
checks should have no side effects. Ideally, the checks built-in to ash should
cover the bulk of your needs.

 policies

A section for declaring authorization policies.
Each policy that applies must pass independently in order for the
request to be authorized.
See the policies guide for more.

 Nested DSLs

	policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

	bypass	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Examples

policies do
 # Anything you can use in a condition, you can use in a check, and vice-versa
 # This policy applies if the actor is a super_user
 # Additionally, this policy is declared as a `bypass`. That means that this check is allowed to fail without
 # failing the whole request, and that if this check *passes*, the entire request passes.
 bypass actor_attribute_equals(:super_user, true) do
 authorize_if always()
 end

 # This will likely be a common occurrence. Specifically, policies that apply to all read actions
 policy action_type(:read) do
 # unless the actor is an active user, forbid their request
 forbid_unless actor_attribute_equals(:active, true)
 # if the record is marked as public, authorize the request
 authorize_if attribute(:public, true)
 # if the actor is related to the data via that data's `owner` relationship, authorize the request
 authorize_if relates_to_actor_via(:owner)
 end
end

 Options

	Name	Type	Default	Docs
	default_access_type	:strict | :filter | :runtime	:filter	The default access type of policies for this resource.

 policies.policy

policy condition
A policy has a name, a condition, and a list of checks.
Checks apply logically in the order they are specified, from top to bottom.
If no check explicitly authorizes the request, then the request is forbidden.
This means that, if you want to "blacklist" instead of "whitelist", you likely
want to add an authorize_if always() at the bottom of your policy, like so:
policy action_type(:read) do
forbid_if not_logged_in()
forbid_if user_is_denylisted()
forbid_if user_is_in_denylisted_group()

authorize_if always()
end
If the policy should always run, use the always() check, like so:
policy always() do
...
end
See the policies guide for more.

 Nested DSLs

	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Arguments

	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

 Options

	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results
	access_type	:strict | :filter | :runtime		Determines how the policy is applied. See the guide for more.

 policies.policy.authorize_if

authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.

 Examples

authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.policy.forbid_if

forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.policy.authorize_unless

authorize_unless check
If the check is false, the request is authorized, otherwise run remaining checks.

 Examples

authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.policy.forbid_unless

forbid_unless check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 Introspection

Target: Ash.Policy.Policy

 policies.bypass

bypass condition
A policy that, if passed, will skip all following policies. If failed, authorization moves on to the next policy

 Nested DSLs

	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Arguments

	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

 Options

	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results
	access_type	:strict | :filter | :runtime		Determines how the policy is applied. See the guide for more.

 policies.bypass.authorize_if

authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.

 Examples

authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.bypass.forbid_if

forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.bypass.authorize_unless

authorize_unless check
If the check is false, the request is authorized, otherwise run remaining checks.

 Examples

authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 policies.bypass.forbid_unless

forbid_unless check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 Introspection

Target: Ash.Policy.Policy

 field_policies

Authorize access to specific fields via policies scoped to fields.
If any field policies exist then all fields must be authorized by a field policy.
If you want a "deny-list" style, then you can add policies for specific fields
and add a catch-all policy using the special field name :*. All policies that apply
to a field must be authorized.
The only exception to the above behavior is primary keys, which can always be read by everyone.
Additionally, keep in mind that adding Ash.Policy.Authorizer will require that all actions
pass policies. If you want to just add field policies, you will need to add a policy that allows
all access explicitly, i.e
policies do
policy always() do
authorize_if always()
end
end
Using expressions: unlike in regular policies, expressions in field policies cannot refer
to related entities currently. Instead, you will need to create aggregates or expression calculations
that return the results you want to reference.
In results, forbidden fields will be replaced with a special value: %Ash.ForbiddenField{}.
When these fields are referred to in filters, they will be replaced with an expression that evaluates
to nil. To support this behavior, only expression/filter checks are allowed in field policies.

 Nested DSLs

	field_policy_bypass	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

	field_policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Examples

field_policies do
 field_policy :admin_only_field do
 authorize_if actor_attribute_equals(:admin, true)
 end
end

Example of denylist style
field_policies do
 field_policy [:sensitive, :fields] do
 authorize_if actor_attribute_equals(:admin, true)
 end

 field_policy :* do
 authorize_if always()
 end
end

 field_policies.field_policy_bypass

field_policy_bypass fields, condition \\ {Ash.Policy.Check.Static, [result: true]}
A field policy that, if passed, will skip all following field policies for that field or fields. If failed, field authorization moves on to the next policy

 Nested DSLs

	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Arguments

	Name	Type	Default	Docs
	fields	atom | list(atom)		The field or fields that the policy applies to.
	condition	any		A check or list of checks that must be true in order for this field policy to apply. If not specified, it always applies.

 Options

	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results

 field_policies.field_policy_bypass.authorize_if

authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.

 Examples

authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy_bypass.forbid_if

forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy_bypass.authorize_unless

authorize_unless check
If the check is false, the request is authorized, otherwise run remaining checks.

 Examples

authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy_bypass.forbid_unless

forbid_unless check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 Introspection

Target: Ash.Policy.FieldPolicy

 field_policies.field_policy

field_policy fields, condition \\ {Ash.Policy.Check.Static, [result: true]}
Field policies behave similarly to policies. See d:Ash.Policy.Authorizer.field_policies
for more.

 Nested DSLs

	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

 Arguments

	Name	Type	Default	Docs
	fields	atom | list(atom)		The field or fields that the policy applies to.
	condition	any		A check or list of checks that must be true in order for this field policy to apply. If not specified, it always applies.

 Options

	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results

 field_policies.field_policy.authorize_if

authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.

 Examples

authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy.forbid_if

forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy.authorize_unless

authorize_unless check
If the check is false, the request is authorized, otherwise run remaining checks.

 Examples

authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 field_policies.field_policy.forbid_unless

forbid_unless check
If the check is true, the request is forbidden, otherwise run remaining checks.

 Examples

forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)

 Arguments

	Name	Type	Default	Docs
	check	any		The check to run. See Ash.Policy.Check for more.

 Options

	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

 Introspection

Target: Ash.Policy.Check

 Introspection

Target: Ash.Policy.FieldPolicy

 DSL: Ash.DataLayer.Ets - ash v3.0.0-rc.6

DSL: Ash.DataLayer.Ets

An ETS (Erlang Term Storage) backed Ash Datalayer, for testing and lightweight usage.
Remember, this does not have support for transactions! This is not recommended for production
use, especially in multi-user applications. It can, however, be great for prototyping.

 ets

A section for configuring the ets data layer

 Examples

ets do
 # Used in testing
 private? true
end

 Options

	Name	Type	Default	Docs
	private?	boolean	false	Sets the ets table protection to private, and scopes it to only this process. The table name will not be used directly if this is true, to allow multiple processes to use this resource separately.
	table	atom		The name of the table. Defaults to the resource name.

 DSL: Ash.DataLayer.Mnesia - ash v3.0.0-rc.6

DSL: Ash.DataLayer.Mnesia

An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.

 mnesia

A section for configuring the mnesia data layer

 Examples

mnesia do
 table :custom_table
end

 Options

	Name	Type	Default	Docs
	table	atom		The table name to use, defaults to the name of the resource

 DSL: Ash.Reactor - ash v3.0.0-rc.6

DSL: Ash.Reactor

Ash.Reactor is a Reactor extension
which provides steps for working with Ash resources and actions.
See the Ash Reactor Guide for more
information.

 ash

Ash-related configuration for the Ash.Reactor extension

 Options

	Name	Type	Default	Docs
	default_domain	module		A domain to use by default when calling actions

 reactor.action

action name, resource, action \\ nil
Declares a step that will call a generic action on a resource.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	What to do when the reactor is undoing it's work? always - The undo action will always be run. never - The action will never be undone. * outside_transaction - The action will only be undone if not running inside a transaction.

 reactor.action.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.action.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.action.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.action.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Action

 reactor.create

create name, resource, action \\ nil
Declares a step that will call a create action on a resource.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Examples

create :create_post, MyApp.Post, :create do
 inputs %{
 title: input(:post_title),
 author_id: result(:get_user, [:id])
 }
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	upsert_identity	atom		The identity to use for the upsert
	upsert?	boolean	false	Whether or not this action should be executed as an upsert.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	What to do when the reactor is undoing it's work? always - The undo action will always be run. never - The action will never be undone. * outside_transaction - The action will only be undone if not running inside a transaction.

 reactor.create.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.create.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.create.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.create.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Create

 reactor.destroy

destroy name, resource, action \\ nil
Declares a step that will call a destroy action on a resource.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Examples

destroy :delete_post, MyApp.Post, :destroy do
 initial input(:post)
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	initial	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The record to update.
	return_destroyed?	boolean	false	Whether or not the step should return the destroyed record upon completion.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	What to do when the reactor is undoing it's work? always - The undo action will always be run. never - The action will never be undone. * outside_transaction - The action will only be undone if not running inside a transaction.

 reactor.destroy.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.destroy.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.destroy.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.destroy.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Destroy

 reactor.read_one

read_one name, resource, action \\ nil
Declares a step that will call a read action on a resource returning a single record.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Examples

read_one :post_by_id, MyApp.Post, :read do
 inputs %{id: input(:post_id)}
end

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	fail_on_not_found?	boolean	false	When set to true the step will fail if the resource is not found.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step

 reactor.read_one.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.read_one.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.read_one.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.read_one.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.ReadOne

 reactor.read

read name, resource, action \\ nil
Declares a step that will call a read action on a resource.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Examples

read :read_posts, MyApp.Post, :read

read :read_posts_in_range, MyApp.Post, :read_in_range do
 inputs %{min_date: input(:min_date), max_date: input(:max_date)}
end

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step

 reactor.read.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.read.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.read.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.read.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Read

 reactor.transaction

transaction name, resources
Creates a group of steps which will be executed inside a data layer transaction.

 Nested DSLs

	wait_for

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resources	module | list(module)		A resource or list of resources to consider in the transaction.

 Options

	Name	Type	Default	Docs
	return	atom		The name of the step whose result will be returned as the return value of the transaction.
	timeout	pos_integer | :infinity	15000	How long to allow the transaction to run before timing out.

 reactor.transaction.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Transaction

 reactor.update

update name, resource, action \\ nil
Declares a step that will call an update action on a resource.

 Nested DSLs

	actor
	inputs
	tenant
	wait_for

 Examples

update :publish_post, MyApp.Post, :update do
 initial input(:post)
 inputs %{
 published: value(true)
 }
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

 Arguments

	Name	Type	Default	Docs
	name	atom		A unique name for the step. This is used when choosing the return value of the Reactor and for arguments into other steps.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

 Options

	Name	Type	Default	Docs
	initial	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The record to update.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	What to do when the reactor is undoing it's work? always - The undo action will always be run. never - The action will never be undone. * outside_transaction - The action will only be undone if not running inside a transaction.

 reactor.update.actor

actor source
Specifies the action actor

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Actor

 reactor.update.inputs

inputs template
Specify the inputs for an action

 Examples

inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

 Arguments

	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

 Introspection

Target: Ash.Reactor.Dsl.Inputs

 reactor.update.tenant

tenant source
Specifies the action tenant

 Arguments

	Name	Type	Default	Docs
	source	Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant. See Reactor.Dsl.Argument for more information.

 Options

	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

 Introspection

Target: Ash.Reactor.Dsl.Tenant

 reactor.update.wait_for

wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)

 Examples

wait_for :create_user

 Arguments

	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

 Introspection

Target: Reactor.Dsl.WaitFor

 Introspection

Target: Ash.Reactor.Dsl.Update

 DSL: Ash.DataLayer.Mnesia - ash v3.0.0-rc.6

DSL: Ash.DataLayer.Mnesia

An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.

 mnesia

A section for configuring the mnesia data layer

 Examples

mnesia do
 table :custom_table
end

 Options

	Name	Type	Default	Docs
	table	atom		The table name to use, defaults to the name of the resource

 Ash.CodeInterface - ash v3.0.0-rc.6

Ash.CodeInterface

Used to define the functions of a code interface for a resource.

 Summary

 Functions

 define_interface(domain, resource, definitions \\ nil)

 Defines the code interface for a given resource + domain combination in the current module. For example

 describe_action(resource, action, args)

 describe_calculation(resource, calculation, args)

 trim_double_newlines(str)

 unwrap_calc_interface_args(keys, resource, arguments, function_head? \\ false)

 without_optional(keys)

 Functions

 Link to this macro

 define_interface(domain, resource, definitions \\ nil)

 View Source

 (macro)

Defines the code interface for a given resource + domain combination in the current module. For example:
defmodule MyApp.Accounting do
 require Ash.CodeInterface

 Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Transaction)
 Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Account)
 Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Invoice)
end

 Link to this function

 describe_action(resource, action, args)

 View Source

 Link to this function

 describe_calculation(resource, calculation, args)

 View Source

 Link to this function

 trim_double_newlines(str)

 View Source

 Link to this function

 unwrap_calc_interface_args(keys, resource, arguments, function_head? \\ false)

 View Source

 Link to this function

 without_optional(keys)

 View Source

 Ash.DataLayer - ash v3.0.0-rc.6

Ash.DataLayer behaviour

The interface for being an ash data layer.
This is a large behaviour, and this capability is not complete, but the idea
is to have a large amount of optional callbacks, and use the can?/2 callback
to ensure that the engine only ever tries to interact with the data layer in ways
that it supports.

 Summary

 Types

 bulk_create_options()

 bulk_update_options()

 data_layer_query()

 feature()

 lateral_join_link()

 lock_type()

 t()

 transaction_reason()

 Callbacks

 add_aggregate(data_layer_query, t, t)

 add_aggregates(data_layer_query, list, t)

 add_calculation(data_layer_query, t, expression, t)

 add_calculations(data_layer_query, list, t)

 bulk_create(t, t, options)

 can?(arg1, feature)

 create(t, t)

 destroy(t, t)

 destroy_query(data_layer_query, t, t, opts)

 distinct(data_layer_query, list, resource)

 distinct_sort(data_layer_query, t, resource)

 filter(data_layer_query, t, resource)

 functions(t)

 in_transaction?(t)

 limit(data_layer_query, limit, resource)

 lock(data_layer_query, lock_type, resource)

 offset(data_layer_query, offset, resource)

 prefer_lateral_join_for_many_to_many?()

 resource_to_query(t, t)

 return_query(data_layer_query, t)

 rollback(t, term)

 run_aggregate_query(data_layer_query, list, t)

 run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)

 run_query(data_layer_query, t)

 run_query_with_lateral_join(data_layer_query, list, source_resource, list)

 select(data_layer_query, select, resource)

 set_context(t, data_layer_query, map)

 set_tenant(t, data_layer_query, term)

 sort(data_layer_query, t, resource)

 source(t)

 transaction(t, function, arg3, reason)

 transform_query(t)

 update(t, t)

 update_query(data_layer_query, t, t, opts)

 upsert(t, t, list)

 Functions

 add_aggregates(query, aggregates, resource)

 add_calculations(query, calculations, resource)

 bulk_create(resource, changesets, options)

 can?(feature, resource)

 create(resource, changeset)

 data_layer(resource)

 The data layer of the resource, or nil if it does not have one

 data_layer_can?(resource, feature)

 Whether or not the data layer supports a specific feature

 data_layer_functions(resource)

 Custom functions supported by the data layer of the resource

 destroy(resource, changeset)

 destroy_query(query, changeset, opts)

 distinct(query, distinct, resource)

 distinct_sort(query, sort, resource)

 filter(query, filter, resource)

 functions(resource)

 in_transaction?(resource)

 limit(query, limit, resource)

 lock(query, lock_type, resource)

 offset(query, offset, resource)

 prefer_lateral_join_for_many_to_many?(data_layer)

 Whether or not lateral joins should be used for many to many relationships by default

 resource_to_query(resource, domain)

 return_query(query, resource)

 rollback(resource, term)

 Rolls back the current transaction

 run_aggregate_query(query, aggregates, resource)

 run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)

 run_query(query, central_resource)

 run_query_with_lateral_join(query, root_data, destination_resource, path)

 select(query, select, resource)

 set_context(resource, query, map)

 set_tenant(resource, query, term)

 sort(query, sort, resource)

 source(resource)

 transaction(resource_or_resources, func, timeout \\ nil, reason \\ %{type: :custom, metadata: %{}})

 Wraps the execution of the function in a transaction with the resource's data_layer

 transform_query(query)

 update(resource, changeset)

 update_query(query, changeset, opts)

 upsert(resource, changeset, keys)

 Types

 Link to this type

 bulk_create_options()

 View Source

 @type bulk_create_options() :: %{
 batch_size: pos_integer(),
 return_records?: boolean(),
 upsert?: boolean(),
 upsert_keys: nil | [atom()],
 select: [atom()],
 upsert_fields:
 nil
 | [atom()]
 | :replace_all
 | {:replace, [atom()]}
 | {:replace_all_except, [atom()]},
 tenant: term()
}

 Link to this type

 bulk_update_options()

 View Source

 @type bulk_update_options() :: %{
 return_records?: boolean(),
 select: [atom()],
 tenant: term()
}

 Link to this type

 data_layer_query()

 View Source

 @type data_layer_query() :: struct()

 Link to this type

 feature()

 View Source

 @type feature() ::
 :transact
 | :multitenancy
 | {:atomic, :update}
 | {:atomic, :upsert}
 | {:lateral_join, [Ash.Resource.t()]}
 | {:join, Ash.Resource.t()}
 | {:aggregate, Ash.Query.Aggregate.kind()}
 | {:aggregate_relationship, Ash.Resource.Relationships.relationship()}
 | {:query_aggregate, Ash.Query.Aggregate.kind()}
 | :select
 | :expr_error
 | :expression_calculation_sort
 | :aggregate_filter
 | :aggregate_sort
 | :boolean_filter
 | :async_engine
 | :bulk_create
 | :update_query
 | :destroy_query
 | :create
 | :read
 | :update
 | :destroy
 | :limit
 | :offset
 | :transact
 | :filter
 | :composite_type
 | {:lock, lock_type()}
 | {:filter_expr, struct()}
 | {:filter_relationship, Ash.Resource.Relationships.relationship()}
 | :sort
 | {:sort, Ash.Type.t()}
 | :upsert
 | :composite_primary_key

 Link to this type

 lateral_join_link()

 View Source

 @type lateral_join_link() ::
 {Ash.Resource.t(), atom(), atom(), Ash.Resource.Relationships.relationship()}

 Link to this type

 lock_type()

 View Source

 @type lock_type() :: :for_update | term()

 Link to this type

 t()

 View Source

 @type t() :: module()

 Link to this type

 transaction_reason()

 View Source

 @type transaction_reason() ::
 %{
 :type => :create,
 :metadata => %{resource: Ash.Resource.t(), action: atom()},
 optional(:data_layer_context) => %{}
 }
 | %{
 :type => :update,
 :metadata => %{
 resource: Ash.Resource.t(),
 action: atom(),
 record: Ash.Resource.record(),
 actor: term()
 },
 optional(:data_layer_context) => %{}
 }
 | %{
 :type => :destroy,
 :metadata => %{
 resource: Ash.Resource.t(),
 action: atom(),
 record: Ash.Resource.record(),
 actor: term()
 },
 optional(:data_layer_context) => %{}
 }
 | %{
 :type => :read,
 :metadata => %{
 resource: Ash.Resource.t(),
 query: Ash.Query.t(),
 actor: term()
 },
 optional(:data_layer_context) => %{}
 }
 | %{
 :type => :flow_transaction,
 :metadata => %{
 resource: Ash.Resource.t(),
 input: Ash.ActionInput.t(),
 action: atom(),
 actor: term()
 },
 optional(:data_layer_context) => %{}
 }
 | %{
 :type => :generic,
 :metadata => %{
 step_name: atom() | [term()],
 flow: module(),
 actor: term()
 },
 optional(:data_layer_context) => %{}
 }
 | %{type: :custom, metadata: map()}
 | %{type: atom(), metadata: map()}

 Callbacks

 Link to this callback

 add_aggregate(data_layer_query, t, t)

 View Source

 (optional)

 @callback add_aggregate(
 data_layer_query(),
 Ash.Query.Aggregate.t(),
 Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 add_aggregates(data_layer_query, list, t)

 View Source

 (optional)

 @callback add_aggregates(
 data_layer_query(),
 [Ash.Query.Aggregate.t()],
 Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 add_calculation(data_layer_query, t, expression, t)

 View Source

 (optional)

 @callback add_calculation(
 data_layer_query(),
 Ash.Query.Calculation.t(),
 expression :: any(),
 Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 add_calculations(data_layer_query, list, t)

 View Source

 (optional)

 @callback add_calculations(
 data_layer_query(),
 [{Ash.Query.Calculation.t(), expression :: any()}],
 Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 bulk_create(t, t, options)

 View Source

 (optional)

 @callback bulk_create(
 Ash.Resource.t(),
 Enumerable.t(Ash.Changeset.t()),
 options :: bulk_create_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this callback

 can?(arg1, feature)

 View Source

 @callback can?(Ash.Resource.t() | Spark.Dsl.t(), feature()) :: boolean()

 Link to this callback

 create(t, t)

 View Source

 (optional)

 @callback create(Ash.Resource.t(), Ash.Changeset.t()) ::
 {:ok, Ash.Resource.record()}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this callback

 destroy(t, t)

 View Source

 (optional)

 @callback destroy(Ash.Resource.t(), Ash.Changeset.t()) :: :ok | {:error, term()}

 Link to this callback

 destroy_query(data_layer_query, t, t, opts)

 View Source

 (optional)

 @callback destroy_query(
 data_layer_query(),
 Ash.Changeset.t(),
 Ash.Resource.t(),
 opts :: bulk_update_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this callback

 distinct(data_layer_query, list, resource)

 View Source

 (optional)

 @callback distinct(data_layer_query(), [atom()], resource :: Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 distinct_sort(data_layer_query, t, resource)

 View Source

 (optional)

 @callback distinct_sort(data_layer_query(), Ash.Sort.t(), resource :: Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 filter(data_layer_query, t, resource)

 View Source

 (optional)

 @callback filter(data_layer_query(), Ash.Filter.t(), resource :: Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 functions(t)

 View Source

 (optional)

 @callback functions(Ash.Resource.t()) :: [module()]

 Link to this callback

 in_transaction?(t)

 View Source

 (optional)

 @callback in_transaction?(Ash.Resource.t()) :: boolean()

 Link to this callback

 limit(data_layer_query, limit, resource)

 View Source

 (optional)

 @callback limit(
 data_layer_query(),
 limit :: non_neg_integer(),
 resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 lock(data_layer_query, lock_type, resource)

 View Source

 (optional)

 @callback lock(data_layer_query(), lock_type(), resource :: Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 offset(data_layer_query, offset, resource)

 View Source

 (optional)

 @callback offset(
 data_layer_query(),
 offset :: non_neg_integer(),
 resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 prefer_lateral_join_for_many_to_many?()

 View Source

 (optional)

 @callback prefer_lateral_join_for_many_to_many?() :: boolean()

 Link to this callback

 resource_to_query(t, t)

 View Source

 @callback resource_to_query(Ash.Resource.t(), Ash.Domain.t()) :: data_layer_query()

 Link to this callback

 return_query(data_layer_query, t)

 View Source

 (optional)

 @callback return_query(data_layer_query(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 rollback(t, term)

 View Source

 (optional)

 @callback rollback(Ash.Resource.t(), term()) :: no_return()

 Link to this callback

 run_aggregate_query(data_layer_query, list, t)

 View Source

 (optional)

 @callback run_aggregate_query(
 data_layer_query(),
 [Ash.Query.Aggregate.t()],
 Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}

 Link to this callback

 run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)

 View Source

 (optional)

 @callback run_aggregate_query_with_lateral_join(
 data_layer_query(),
 [Ash.Query.Aggregate.t()],
 [Ash.Resource.record()],
 destination_resource :: Ash.Resource.t(),
 [lateral_join_link()]
) :: {:ok, [Ash.Resource.t()]} | {:error, term()}

 Link to this callback

 run_query(data_layer_query, t)

 View Source

 (optional)

 @callback run_query(data_layer_query(), Ash.Resource.t()) ::
 {:ok, [Ash.Resource.record()]}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this callback

 run_query_with_lateral_join(data_layer_query, list, source_resource, list)

 View Source

 (optional)

 @callback run_query_with_lateral_join(
 data_layer_query(),
 [Ash.Resource.record()],
 source_resource :: Ash.Resource.t(),
 [lateral_join_link()]
) :: {:ok, [Ash.Resource.record()]} | {:error, term()}

 Link to this callback

 select(data_layer_query, select, resource)

 View Source

 (optional)

 @callback select(
 data_layer_query(),
 select :: [atom()],
 resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 set_context(t, data_layer_query, map)

 View Source

 (optional)

 @callback set_context(Ash.Resource.t(), data_layer_query(), map()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 set_tenant(t, data_layer_query, term)

 View Source

 (optional)

 @callback set_tenant(Ash.Resource.t(), data_layer_query(), term()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 sort(data_layer_query, t, resource)

 View Source

 (optional)

 @callback sort(data_layer_query(), Ash.Sort.t(), resource :: Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this callback

 source(t)

 View Source

 (optional)

 @callback source(Ash.Resource.t()) :: String.t()

 Link to this callback

 transaction(t, function, arg3, reason)

 View Source

 (optional)

 @callback transaction(
 Ash.Resource.t(),
 (-> term()),
 nil | pos_integer(),
 reason :: transaction_reason()
) :: {:ok, term()} | {:error, term()}

 Link to this callback

 transform_query(t)

 View Source

 (optional)

 @callback transform_query(Ash.Query.t()) :: Ash.Query.t()

 Link to this callback

 update(t, t)

 View Source

 (optional)

 @callback update(Ash.Resource.t(), Ash.Changeset.t()) ::
 {:ok, Ash.Resource.record()}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this callback

 update_query(data_layer_query, t, t, opts)

 View Source

 (optional)

 @callback update_query(
 data_layer_query(),
 Ash.Changeset.t(),
 Ash.Resource.t(),
 opts :: bulk_update_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this callback

 upsert(t, t, list)

 View Source

 (optional)

 @callback upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
 {:ok, Ash.Resource.record()}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Functions

 Link to this function

 add_aggregates(query, aggregates, resource)

 View Source

 @spec add_aggregates(data_layer_query(), [Ash.Query.Aggregate.t()], Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 add_calculations(query, calculations, resource)

 View Source

 @spec add_calculations(
 data_layer_query(),
 [{Ash.Query.Calculation.t(), expression :: term()}],
 Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 bulk_create(resource, changesets, options)

 View Source

 @spec bulk_create(
 Ash.Resource.t(),
 Enumerable.t(Ash.Changeset.t()),
 options :: bulk_create_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this function

 can?(feature, resource)

 View Source

 @spec can?(feature(), Ash.Resource.t() | Spark.Dsl.t()) :: boolean()

 Link to this function

 create(resource, changeset)

 View Source

 @spec create(Ash.Resource.t(), Ash.Changeset.t()) ::
 {:ok, Ash.Resource.record()}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this function

 data_layer(resource)

 View Source

 @spec data_layer(Ash.Resource.t() | Spark.Dsl.t()) :: t() | nil

The data layer of the resource, or nil if it does not have one

 Link to this function

 data_layer_can?(resource, feature)

 View Source

 @spec data_layer_can?(Ash.Resource.t() | Spark.Dsl.t(), feature()) :: boolean()

Whether or not the data layer supports a specific feature

 Link to this function

 data_layer_functions(resource)

 View Source

 @spec data_layer_functions(Ash.Resource.t()) :: map()

Custom functions supported by the data layer of the resource

 Link to this function

 destroy(resource, changeset)

 View Source

 @spec destroy(Ash.Resource.t(), Ash.Changeset.t()) ::
 :ok | {:error, term()} | {:error, :no_rollback, term()}

 Link to this function

 destroy_query(query, changeset, opts)

 View Source

 @spec destroy_query(
 data_layer_query(),
 Ash.Changeset.t(),
 opts :: bulk_update_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this function

 distinct(query, distinct, resource)

 View Source

 @spec distinct(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 distinct_sort(query, sort, resource)

 View Source

 @spec distinct_sort(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 filter(query, filter, resource)

 View Source

 @spec filter(data_layer_query(), Ash.Filter.t(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 functions(resource)

 View Source

 Link to this function

 in_transaction?(resource)

 View Source

 Link to this function

 limit(query, limit, resource)

 View Source

 @spec limit(data_layer_query(), limit :: non_neg_integer(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 lock(query, lock_type, resource)

 View Source

 @spec lock(
 data_layer_query(),
 lock_type :: lock_type() | nil,
 resource :: Ash.Resource.t()
) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 offset(query, offset, resource)

 View Source

 @spec offset(data_layer_query(), offset :: non_neg_integer(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 prefer_lateral_join_for_many_to_many?(data_layer)

 View Source

 @spec prefer_lateral_join_for_many_to_many?(t()) :: boolean()

Whether or not lateral joins should be used for many to many relationships by default

 Link to this function

 resource_to_query(resource, domain)

 View Source

 @spec resource_to_query(Ash.Resource.t(), Ash.Domain.t()) :: data_layer_query()

 Link to this function

 return_query(query, resource)

 View Source

 @spec return_query(data_layer_query(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 rollback(resource, term)

 View Source

 @spec rollback(Ash.Resource.t() | [Ash.Resource.t()], term()) :: no_return()

Rolls back the current transaction

 Link to this function

 run_aggregate_query(query, aggregates, resource)

 View Source

 @spec run_aggregate_query(
 data_layer_query(),
 [Ash.Query.Aggregate.t()],
 Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}

 Link to this function

 run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)

 View Source

 Link to this function

 run_query(query, central_resource)

 View Source

 @spec run_query(data_layer_query(), central_resource :: Ash.Resource.t()) ::
 {:ok, [Ash.Resource.record()]}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this function

 run_query_with_lateral_join(query, root_data, destination_resource, path)

 View Source

 Link to this function

 select(query, select, resource)

 View Source

 @spec select(data_layer_query(), select :: [atom()], Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 set_context(resource, query, map)

 View Source

 @spec set_context(Ash.Resource.t(), data_layer_query(), map()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 set_tenant(resource, query, term)

 View Source

 @spec set_tenant(Ash.Resource.t(), data_layer_query(), String.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 sort(query, sort, resource)

 View Source

 @spec sort(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
 {:ok, data_layer_query()} | {:error, term()}

 Link to this function

 source(resource)

 View Source

 @spec source(Ash.Resource.t()) :: String.t()

 Link to this function

 transaction(resource_or_resources, func, timeout \\ nil, reason \\ %{type: :custom, metadata: %{}})

 View Source

 @spec transaction(
 Ash.Resource.t() | [Ash.Resource.t()],
 (-> term()),
 nil | pos_integer(),
 reason :: transaction_reason()
) :: term()

Wraps the execution of the function in a transaction with the resource's data_layer

 Link to this function

 transform_query(query)

 View Source

 Link to this function

 update(resource, changeset)

 View Source

 @spec update(Ash.Resource.t(), Ash.Changeset.t()) ::
 {:ok, Ash.Resource.record()}
 | {:error, term()}
 | {:error, :no_rollback, term()}

 Link to this function

 update_query(query, changeset, opts)

 View Source

 @spec update_query(
 data_layer_query(),
 Ash.Changeset.t(),
 opts :: bulk_update_options()
) ::
 :ok
 | {:ok, Enumerable.t(Ash.Resource.record())}
 | {:error, Ash.Error.t()}
 | {:error, :no_rollback, Ash.Error.t()}

 Link to this function

 upsert(resource, changeset, keys)

 View Source

 @spec upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
 {:ok, Ash.Resource.record()} | {:error, term()}

 Ash.Notifier - ash v3.0.0-rc.6

Ash.Notifier behaviour

A notifier is an extension that receives various events

 Summary

 Callbacks

 notify(t)

 requires_original_data?(t, action)

 Functions

 notify(resource_notifications)

 Sends any notifications that can be sent, and returns the rest.

 Callbacks

 Link to this callback

 notify(t)

 View Source

 @callback notify(Ash.Notifier.Notification.t()) :: :ok

 Link to this callback

 requires_original_data?(t, action)

 View Source

 @callback requires_original_data?(Ash.Resource.t(), Ash.Resource.Actions.action()) ::
 boolean()

 Functions

 Link to this function

 notify(resource_notifications)

 View Source

 @spec notify([Ash.Notifier.Notification.t()] | Ash.Notifier.Notification.t()) :: [
 Ash.Notifier.Notification.t()
]

Sends any notifications that can be sent, and returns the rest.
A notification can only be sent if you are not currently in a transaction
for the resource in question.

 Ash.Notifier.Notification - ash v3.0.0-rc.6

Ash.Notifier.Notification

Represents a notification that will be handled by a resource's notifiers
Set the for key to a notifier or a list of notifiers to route the notification
to them. This allows you to produce notifications inside of a change module
and target specific notifiers with them.
metadata is freeform data to be set however you want. resource, action, data,
changeset and actor are all set by default based on the details of the action, so
they can be omitted.
When creating a notification, a resource is required to ensure that the notification isn't
sent until the current transaction for that resource is closed. If you don't need this
behavior you can explicitly supply nil for the resource. If you supply nil for the resource,
however, you must manually set the for option, e.g: for: Notifier or for: [Notifier1, Notifier2]

 Summary

 Types

 t()

 Functions

 new(resource, opts)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Notifier.Notification{
 action: term(),
 actor: term(),
 changeset: term(),
 data: term(),
 domain: term(),
 for: term(),
 from: term(),
 metadata: term(),
 resource: term()
}

 Functions

 Link to this function

 new(resource, opts)

 View Source

 Ash.Resource.Attribute.Helpers - ash v3.0.0-rc.6

Ash.Resource.Attribute.Helpers

Helpers for building attributes

 Summary

 Functions

 timestamps(opts \\ [])

 Functions

 Link to this macro

 timestamps(opts \\ [])

 View Source

 (macro)

 Ash.Resource.Calculation - ash v3.0.0-rc.6

Ash.Resource.Calculation behaviour

The behaviour for defining a module calculation, and the struct for storing a defined calculation.

 Summary

 Types

 opts()

 ref()

 t()

 Callbacks

 calculate(records, opts, context)

 describe(opts)

 expression(opts, context)

 has_expression?()

 init(opts)

 load(query, opts, context)

 strict_loads?()

 Functions

 expr_calc(expr)

 schema()

 Types

 Link to this type

 opts()

 View Source

 @type opts() :: Keyword.t()

 Link to this type

 ref()

 View Source

 @type ref() :: {module(), Keyword.t()} | module()

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Calculation{
 allow_nil?: boolean(),
 arguments: [Ash.Resource.Calculation.Argument.t()],
 calculation: module() | {module(), keyword()},
 constraints: keyword(),
 description: nil | String.t(),
 filterable?: boolean(),
 load: keyword(),
 name: atom(),
 public?: boolean(),
 sensitive?: term(),
 sortable?: boolean(),
 type: nil | Ash.Type.t()
}

 Callbacks

 Link to this callback

 calculate(records, opts, context)

 View Source

 (optional)

 @callback calculate(
 records :: [Ash.Resource.record()],
 opts :: opts(),
 context :: Ash.Resource.Calculation.Context.t()
) :: {:ok, [term()]} | [term()] | {:error, term()} | :unknown

 Link to this callback

 describe(opts)

 View Source

 @callback describe(opts :: opts()) :: String.t()

 Link to this callback

 expression(opts, context)

 View Source

 (optional)

 @callback expression(opts :: opts(), context :: Ash.Resource.Calculation.Context.t()) ::
 any()

 Link to this callback

 has_expression?()

 View Source

 @callback has_expression?() :: boolean()

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: opts()) :: {:ok, opts()} | {:error, term()}

 Link to this callback

 load(query, opts, context)

 View Source

 @callback load(
 query :: Ash.Query.t(),
 opts :: opts(),
 context :: Ash.Resource.Calculation.Context.t()
) ::
 atom() | [atom()] | Keyword.t()

 Link to this callback

 strict_loads?()

 View Source

 @callback strict_loads?() :: boolean()

 Functions

 Link to this function

 expr_calc(expr)

 View Source

 Link to this function

 schema()

 View Source

 Ash.Resource.Calculation.Builtins - ash v3.0.0-rc.6

Ash.Resource.Calculation.Builtins

Built in calculations that are automatically imported in the calculations section

 Summary

 Functions

 concat(keys, separator \\ "")

 An example concatenation calculation, that accepts the delimiter as an argument

 Functions

 Link to this function

 concat(keys, separator \\ "")

 View Source

 @spec concat(keys :: [atom()], separator :: String.t()) ::
 Ash.Resource.Calculation.ref()

An example concatenation calculation, that accepts the delimiter as an argument

 Examples

calculate :full_name, :string, concat([:first_name, :last_name], " ")

 Ash.Resource.ManualCreate - ash v3.0.0-rc.6

Ash.Resource.ManualCreate behaviour

A module to implement manual create actions.

 Summary

 Callbacks

 bulk_create(changesets, opts, context)

 create(changeset, opts, context)

 Callbacks

 Link to this callback

 bulk_create(changesets, opts, context)

 View Source

 (optional)

 @callback bulk_create(
 changesets :: Enumerable.t(Ash.Changeset.t()),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualCreate.Context.t()
) :: [
 :ok
 | {:ok, Ash.Resource.record()}
 | {:error, Ash.Error.t()}
 | {:notifications, [Ash.Notifier.Notification.t()]}
]

 Link to this callback

 create(changeset, opts, context)

 View Source

 @callback create(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualCreate.Context.t()
) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(),
 %{notifications: [Ash.Notifier.Notification.t()]}}
 | {:error, term()}

 Ash.Resource.ManualDestroy - ash v3.0.0-rc.6

Ash.Resource.ManualDestroy behaviour

A module to implement manual destroy actions.
Note that in the returns of these functions you must return the destroyed record or records.

 Summary

 Callbacks

 bulk_destroy(changesets, opts, context)

 destroy(changeset, opts, context)

 Callbacks

 Link to this callback

 bulk_destroy(changesets, opts, context)

 View Source

 (optional)

 @callback bulk_destroy(
 changesets :: Enumerable.t(Ash.Changeset.t()),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualDestroy.Context.t()
) :: [
 ok: Ash.Resource.record(),
 error: Ash.Error.t(),
 notifications: [Ash.Notifier.Notification.t()]
]

 Link to this callback

 destroy(changeset, opts, context)

 View Source

 @callback destroy(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualDestroy.Context.t()
) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

 Ash.Resource.ManualRead - ash v3.0.0-rc.6

Ash.Resource.ManualRead behaviour

A module to implement manual read actions.

 Summary

 Types

 context()

 Callbacks

 read(query, data_layer_query, opts, context)

 Types

 Link to this type

 context()

 View Source

 @type context() :: %{
 optional(:actor) => term(),
 optional(:tenant) => term(),
 optional(:authorize?) => boolean(),
 optional(:domain) => module(),
 optional(any()) => any()
}

 Callbacks

 Link to this callback

 read(query, data_layer_query, opts, context)

 View Source

 @callback read(
 query :: Ash.Query.t(),
 data_layer_query :: term(),
 opts :: Keyword.t(),
 context :: context()
) :: {:ok, [Ash.Resource.record()]} | {:error, term()}

 Ash.Resource.ManualRelationship - ash v3.0.0-rc.6

Ash.Resource.ManualRelationship behaviour

A module to implement manual relationships.

 Summary

 Callbacks

 load(list, opts, context)

 select(opts)

 Callbacks

 Link to this callback

 load(list, opts, context)

 View Source

 @callback load(
 [Ash.Resource.record()],
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualRelationship.Context.t()
) :: {:ok, map()} | {:error, term()}

 Link to this callback

 select(opts)

 View Source

 @callback select(opts :: Keyword.t()) :: [atom()]

 Ash.Resource.ManualUpdate - ash v3.0.0-rc.6

Ash.Resource.ManualUpdate behaviour

A module to implement manual update actions.

 Summary

 Callbacks

 bulk_update(changesets, opts, context)

 update(changeset, opts, context)

 Callbacks

 Link to this callback

 bulk_update(changesets, opts, context)

 View Source

 (optional)

 @callback bulk_update(
 changesets :: Enumerable.t(Ash.Changeset.t()),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualUpdate.Context.t()
) :: [
 :ok
 | {:ok, Ash.Resource.record()}
 | {:error, Ash.Error.t()}
 | {:notifications, [Ash.Notifier.Notification.t()]}
]

 Link to this callback

 update(changeset, opts, context)

 View Source

 @callback update(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.ManualUpdate.Context.t()
) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(),
 %{notifications: [Ash.Notifier.Notification.t()]}}
 | {:error, term()}

 Ash - ash v3.0.0-rc.6

Ash

The primary interface to call actions and interact with resources.

 Summary

 Types

 aggregate()

 load_statement()

 page_request()

 record_or_records()

 Functions

 aggregate(query, aggregate_or_aggregates, opts \\ [])

 Runs an aggregate or aggregates over a resource query

 aggregate!(query, aggregate_or_aggregates, opts \\ [])

 Runs an aggregate or aggregates over a resource query. See aggregate/3 for more.

 avg(query, field, opts \\ [])

 Fetches the average of all values of a given field.

 avg!(query, field, opts \\ [])

 Fetches the average of all values of a given field or raises an error.

 bulk_create(inputs, resource, action, opts \\ [])

 Creates many records.

 bulk_create!(inputs, resource, action, opts \\ [])

 Creates many records, raising any errors that are returned. See bulk_create/4 for more.

 bulk_destroy(query_or_stream, action, input, opts \\ [])

 Destroys all items in the provided enumerable or query with the provided input.

 bulk_destroy!(stream_or_query, action, input, opts \\ [])

 Destroys all items in the provided enumerable or query with the provided input.

 bulk_update(query_or_stream, action, input, opts \\ [])

 Updates all items in the provided enumerable or query with the provided input.

 bulk_update!(stream_or_query, action, input, opts \\ [])

 Updates all items in the provided enumerable or query with the provided input.

 calculate(resource_or_record, calculation, opts \\ [])

 Evaluates the calculation on the resource.

 calculate!(resource_or_record, calculation, opts \\ [])

 Evaluates the calculation on the resource or raises an error. See calculate/3 for more.

 calculate_opts()

 can(action_or_query_or_changeset, actor, opts \\ [])

 Returns whether or not the user can perform the action, or :maybe, returning any errors.

 can?(action_or_query_or_changeset, actor, opts \\ [])

 Returns whether or not the user can perform the action, or raises on errors.

 context_to_opts(map, add_to \\ [])

 deprecated

 See Ash.Context.to_opts/2.

 count(query, opts \\ [])

 Fetches the count of results that would be returned from a given query.

 count!(query, opts \\ [])

 Fetches the count of results that would be returned from a given query, or raises an error.

 create(changeset, opts \\ [])

 Create a record.

 create!(changeset, opts \\ [])

 Create a record or raises an error. See create/2 for more information.

 destroy(changeset_or_record, opts \\ [])

 Destroy a record.

 destroy!(changeset_or_record, opts \\ [])

 Destroy a record. See destroy/2 for more information.

 exists(query, opts \\ [])

 Returns whether or not the query would return any results.

 exists?(query, opts \\ [])

 Returns whether or not the query would return any results, or raises an error.

 first(query, field, opts \\ [])

 Fetches the first value for a given field, or raises an error.

 first!(query, field, opts \\ [])

 Fetches the first value for a given field.

 get(resource, id, opts \\ [])

 Get a record by an identifier.

 get!(resource, id, opts \\ [])

 Get a record by an identifier, or raises an error. See get/3 for more.

 list(query, field, opts \\ [])

 Fetches a list of all values of a given field.

 list!(query, field, opts \\ [])

 Fetches a list of all values of a given field or raises an error.

 load(data, query, opts \\ [])

 Load fields or relationships on already fetched records.

 load!(data, query, opts \\ [])

 Load fields or relationships on already fetched records. See load/3 for more information.

 max(query, field, opts \\ [])

 Fetches the greatest of all values of a given field.

 max!(query, field, opts \\ [])

 Fetches the greatest of all values of a given field or raises an error.

 min(query, field, opts \\ [])

 Fetches the least of all values of a given field.

 min!(query, field, opts \\ [])

 Fetches the least of all values of a given field or raises an error.

 page(page, n)

 Fetch a page relative to the provided page.

 page!(page, request)

 Fetch a page relative to the provided page or raises an error

 read(query, opts \\ [])

 Runs an Ash.Query.

 read!(query, opts \\ [])

 Run an Ash.Query. See read/2 for more.

 read_one(query, opts \\ [])

 Runs a query on a resource, returning a single result, nil, or an error.

 read_one!(query, opts \\ [])

 Runs an ash query, returning a single result or raise an error. See read_one/2 for more.

 reload(record, opts \\ [])

 Refetches a record by primary key. See reload/2 for more.

 reload!(record, opts \\ [])

 Refetches a record by primary key or raises an error. See reload/2 for more.

 run_action(input, opts \\ [])

 Runs a generic action.

 run_action!(input, opts \\ [])

 Runs a generic action or raises an error. See run_action/2 for more

 stream!(query, opts \\ [])

 Streams the results of a query.

 sum(query, field, opts \\ [])

 Fetches the sum of a given field.

 sum!(query, field, opts \\ [])

 Fetches the sum of a given field or raises an error.

 update(changeset, opts \\ [])

 Update a record.

 update!(changeset, opts \\ [])

 Update a record. See update/2 for more information.

 Types

 Link to this type

 aggregate()

 View Source

 @type aggregate() ::
 Ash.Query.Aggregate.t()
 | {name :: atom(), kind :: atom()}
 | {name :: atom(), kind :: atom(), opts :: Keyword.t()}

 Link to this type

 load_statement()

 View Source

 @type load_statement() ::
 Ash.Query.t()
 | [atom()]
 | atom()
 | Keyword.t()
 | [atom() | {atom(), atom() | Keyword.t()}]

 Link to this type

 page_request()

 View Source

 @type page_request() :: :next | :prev | :first | :last | :self | integer()

 Link to this type

 record_or_records()

 View Source

 @type record_or_records() :: Ash.Resource.record() | [Ash.Resource.record()]

 Functions

 Link to this function

 aggregate(query, aggregate_or_aggregates, opts \\ [])

 View Source

 @spec aggregate(
 Ash.Query.t() | Ash.Resource.t(),
 aggregates :: aggregate() | [aggregate()],
 opts :: Keyword.t()
) :: {:ok, term()} | {:error, Ash.Error.t()}

Runs an aggregate or aggregates over a resource query
If you pass an %Ash.Query.Aggregate{}, gotten from Ash.Query.Aggregate.new(),
the query provided as the first argument to this function will not apply. For this
reason, it is preferred that you pass in the tuple format, i.e
Prefer this:
Api.aggregate(query, {:count_of_things, :count})
Over this:
Api.aggregate(query, Ash.Query.Aggregate.new(...))
	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Link to this function

 aggregate!(query, aggregate_or_aggregates, opts \\ [])

 View Source

 @spec aggregate!(
 Ash.Query.t() | Ash.Resource.t(),
 aggregates :: aggregate() | [aggregate()],
 opts :: Keyword.t()
) :: term() | no_return()

Runs an aggregate or aggregates over a resource query. See aggregate/3 for more.

 Link to this function

 avg(query, field, opts \\ [])

 View Source

Fetches the average of all values of a given field.

 Link to this function

 avg!(query, field, opts \\ [])

 View Source

Fetches the average of all values of a given field or raises an error.

 Link to this function

 bulk_create(inputs, resource, action, opts \\ [])

 View Source

 @spec bulk_create(
 [map()],
 resource :: Ash.Resource.t(),
 action :: atom(),
 opts :: Keyword.t()
) ::
 Ash.BulkResult.t()
 | Enumerable.t(
 {:ok, Ash.Resource.record()}
 | {:error, Ash.Changeset.t() | Ash.Error.t()}
 | {:notification, Ash.Notifier.Notification.t()}
)

Creates many records.

 Assumptions

We assume that the input is a list of changesets all for the same action, or a list of input maps for the
same action with the :resource and :action option provided to illustrate which action it is for.

 Performance/Feasibility

The performance of this operation depends on the data layer in question.
Data layers like AshPostgres will choose reasonable batch sizes in an attempt
to handle large bulk actions, but that does not mean that you can pass a list of
500k inputs and expect things to go off without a hitch (although it might).
If you need to do large data processing, you should look into projects like
GenStage and Broadway. With that said, if you want to do things like support CSV upload
and you place some reasonable limits on the size this is a great tool. You'll need to
test it yourself, YMMV.
Passing return_records?: true can significantly increase the time it takes to perform the operation,
and can also make the operation completely unreasonable due to the memory requirement. If you want to
do very large bulk creates and display all of the results, the suggestion is to annotate them with a
"bulk_create_id" in the data layer, and then read the records with that bulk_create_id so that they can
be retrieved later if necessary.

 Changes/Validations

Changes will be applied in the order they are given on the actions as normal. Any change that exposes
the bulk_change or bulk_validate callback will be applied on the entire list.

 After Action Hooks

The following requirements must be met for after_action hooks to function properly. If they are not met,
and an after_action hook being applied to a changeset in a change.
	return_records? must be set to true.
	The changeset must be setting the primary key as part of its changes, so that we know which result applies to which
changeset.

It is possible to use after_action hooks with bulk_change/3, but you need to return the hooks along with the changesets.
This allows for setting up after_action hooks that don't need access to the returned record,
or after_action hooks that can operate on the entire list at once. See the documentation for that callback for more on
how to do accomplish that.

 Options

	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used. Unlike singular create, bulk_create with upsert? requires that upsert_fields be specified explicitly in one of these two locations.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether or not to return all of the errors that occur. Defaults to false to account for large inserts. The default value is false.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an invidual error. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is false.

	:notify? (boolean/0) - Whether or not to send notifications out. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

 Link to this function

 bulk_create!(inputs, resource, action, opts \\ [])

 View Source

 @spec bulk_create!(Enumerable.t(map()), Ash.Resource.t(), atom(), Keyword.t()) ::
 Ash.BulkResult.t() | no_return()

Creates many records, raising any errors that are returned. See bulk_create/4 for more.

 Link to this function

 bulk_destroy(query_or_stream, action, input, opts \\ [])

 View Source

 @spec bulk_destroy(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 atom(),
 input :: map(),
 Keyword.t()
) :: Ash.BulkResult.t()

Destroys all items in the provided enumerable or query with the provided input.
The input is a map of valid inputs for the action. The input will be applied to all records in the enumerable/query.
If the data layer supports destroying from a query, and the destroy action can be done fully atomically,
it will be updated in a single pass using the data layer.
Otherwise, this will stream each record and update it.

 Options

	:resource (Ash.Resource) - The resource being destroyed. This must be provided if the input given is a stream, so we know ahead of time what the resource being updated is.

	:stream_batch_size (integer/0) - Batch size to use if provided a query and the query must be streamed

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records if the :stream strategy is chosen. See the Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:authorize_query? (boolean/0) - If a query is given, determines whether or not authorization is run on that query. The default value is true.

	:strategy - The strategy or strategies to enable. :stream is used in all cases if the data layer does not support atomics. Valid values are :atomic, :atomic_batches, :stream The default value is :atomic.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether or not to return all of the errors that occur. Defaults to false to account for large inserts. The default value is false.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an invidual error. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is false.

	:notify? (boolean/0) - Whether or not to send notifications out. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

 Link to this function

 bulk_destroy!(stream_or_query, action, input, opts \\ [])

 View Source

 @spec bulk_destroy!(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 action :: atom(),
 input :: map(),
 opts :: Keyword.t()
) :: Ash.BulkResult.t() | no_return()

Destroys all items in the provided enumerable or query with the provided input.
See bulk_destroy/4 for more.

 Link to this function

 bulk_update(query_or_stream, action, input, opts \\ [])

 View Source

 @spec bulk_update(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 atom(),
 input :: map(),
 Keyword.t()
) :: Ash.BulkResult.t()

Updates all items in the provided enumerable or query with the provided input.
The input is a map of valid inputs for the action. The input will be applied to all records in the enumerable/query.
If the data layer supports updating from a query, and the update action can be done fully atomically,
it will be updated in a single pass using the data layer.
Otherwise, this will stream each record and update it.

 Options

	:resource (Ash.Resource) - The resource being updated. This must be provided if the input given is a stream, so we know ahead of time what the resource being updated is.

	:atomic_update (map/0) - A map of atomic updates to apply. See Ash.Changeset.atomic_update/3 for more.

	:stream_batch_size (integer/0) - Batch size to use if provided a query and the query must be streamed

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records if the :stream strategy is chosen. See the Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:authorize_query? (boolean/0) - If a query is given, determines whether or not authorization is run on that query. The default value is true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:strategy - The strategy or strategies to enable. :stream is used in all cases if the data layer does not support atomics. Valid values are :atomic, :atomic_batches, :stream The default value is :atomic.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether or not to return all of the errors that occur. Defaults to false to account for large inserts. The default value is false.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an invidual error. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is false.

	:notify? (boolean/0) - Whether or not to send notifications out. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

 Link to this function

 bulk_update!(stream_or_query, action, input, opts \\ [])

 View Source

 @spec bulk_update!(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 action :: atom(),
 input :: map(),
 opts :: Keyword.t()
) :: Ash.BulkResult.t() | no_return()

Updates all items in the provided enumerable or query with the provided input.
See bulk_update/4 for more.

 Link to this function

 calculate(resource_or_record, calculation, opts \\ [])

 View Source

 @spec calculate(
 resource :: Ash.Resource.t(),
 calculation :: atom(),
 opts :: Keyword.t()
) ::
 {:ok, term()} | {:error, term()}

Evaluates the calculation on the resource.
If a record is provided, its field values will be used to evaluate the calculation.
	:args (map/0) - Values for arguments referenced by the calculation. The default value is %{}.

	:refs (map/0) - Values for references used by the calculation. The default value is %{}.

	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant, supplied to calculation context.

	:authorize? (boolean/0) - Whether or not the request is being authorized, provided to calculation context. The default value is true.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer, provided to the calculation context.

	:record (term/0) - A record to use as the base of the calculation

	:domain (Ash.Domain) - The domain to use for the action

 Link to this function

 calculate!(resource_or_record, calculation, opts \\ [])

 View Source

 @spec calculate!(
 resource :: Ash.Resource.t(),
 calculation :: atom(),
 opts :: Keyword.t()
) ::
 term() | no_return()

Evaluates the calculation on the resource or raises an error. See calculate/3 for more.

 Link to this function

 calculate_opts()

 View Source

 Link to this function

 can(action_or_query_or_changeset, actor, opts \\ [])

 View Source

 @spec can(
 action_or_query_or_changeset ::
 Ash.Query.t()
 | Ash.Changeset.t()
 | Ash.ActionInput.t()
 | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()}
 | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action(), input :: map()},
 actor :: term(),
 opts :: Keyword.t()
) ::
 {:ok, boolean() | :maybe}
 | {:ok, true, Ash.Changeset.t() | Ash.Query.t()}
 | {:ok, true, Ash.Changeset.t(), Ash.Query.t()}
 | {:ok, false, Exception.t()}
 | {:error, term()}

Returns whether or not the user can perform the action, or :maybe, returning any errors.
In cases with "runtime" checks (checks after the action), we may not be able to determine
an answer, and so the value :maybe will be returned from can/2. The can? function assumes that
:maybe means true. Keep in mind, this is just for doing things like "can they do this" in a UI,
so assuming :maybe is true is fine. The actual action invocation will be properly checked regardless.
If you have runtime checks, you may need to use can instead of can?, or configure what :maybe means.

 Options

	:maybe_is (term/0) - If the actor may be able to perform the action, what value should be returned. The default value is :maybe.

	:filter_with - If set to :error, the query will raise an error on a match. If set to :filter the query will filter out unauthorized access. Valid values are :filter, :error The default value is :filter.

	:run_queries? (boolean/0) - Whether or not to run queries. If set to true, :maybe will not be returned. The default value is true.

	:data - The record or records specifically attempting to be acted upon.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant to use for authorization

	:alter_source? (boolean/0) - If set to true, the source being authorized is returned so it can be run. The default value is false.

	:base_query (term/0) - A base query on which to apply an generated filters

	:no_check? (boolean/0) - Whether or not authorization must pass at the strict/filter step, or if post-checks are allowed to be run The default value is false.

	:atomic_changeset (term/0) - A base query on which to apply an generated filters

	:return_forbidden_error? (boolean/0) - Whether or not to return a forbidden error in cases of not being authorized. The default value is false.

 Link to this function

 can?(action_or_query_or_changeset, actor, opts \\ [])

 View Source

 @spec can?(
 query_or_changeset_or_action ::
 Ash.Query.t()
 | Ash.Changeset.t()
 | Ash.ActionInput.t()
 | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()}
 | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action(), input :: map()},
 actor :: term(),
 opts :: Keyword.t()
) :: boolean() | no_return()

Returns whether or not the user can perform the action, or raises on errors.
Calls can/3 with a maybe_is: true. See can/3 for more info.

 Options

	:maybe_is (term/0) - If the actor may be able to perform the action, what value should be returned. The default value is true.

	:filter_with - If set to :error, the query will raise an error on a match. If set to :filter the query will filter out unauthorized access. Valid values are :filter, :error The default value is :filter.

	:run_queries? (boolean/0) - Whether or not to run queries. If set to true, :maybe will not be returned. The default value is true.

	:data - The record or records specifically attempting to be acted upon.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant to use for authorization

	:alter_source? (boolean/0) - If set to true, the source being authorized is returned so it can be run. The default value is false.

	:base_query (term/0) - A base query on which to apply an generated filters

	:no_check? (boolean/0) - Whether or not authorization must pass at the strict/filter step, or if post-checks are allowed to be run The default value is false.

	:atomic_changeset (term/0) - A base query on which to apply an generated filters

	:return_forbidden_error? (boolean/0) - Whether or not to return a forbidden error in cases of not being authorized. The default value is false.

 Link to this function

 context_to_opts(map, add_to \\ [])

 View Source

 This function is deprecated. Converts a context map to opts to be passed into an action.
.

See Ash.Context.to_opts/2.

 Link to this function

 count(query, opts \\ [])

 View Source

Fetches the count of results that would be returned from a given query.

 Link to this function

 count!(query, opts \\ [])

 View Source

Fetches the count of results that would be returned from a given query, or raises an error.

 Link to this function

 create(changeset, opts \\ [])

 View Source

 @spec create(Ash.Changeset.t(), Keyword.t()) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Create a record.
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used, and if that is not set, then any fields not being set to defaults are written.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

 Link to this function

 create!(changeset, opts \\ [])

 View Source

 @spec create!(Ash.Changeset.t(), Keyword.t()) ::
 Ash.Resource.record()
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Create a record or raises an error. See create/2 for more information.

 Link to this function

 destroy(changeset_or_record, opts \\ [])

 View Source

 @spec destroy(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
 :ok
 | {:ok, Ash.Resource.record()}
 | {:ok, [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Destroy a record.
	:return_destroyed? (boolean/0) - If true, the destroyed record is included in the return result, e.g {:ok, destroyed} or {:ok, destroyed, notifications} The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

 Link to this function

 destroy!(changeset_or_record, opts \\ [])

 View Source

 @spec destroy!(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
 :ok
 | Ash.Resource.record()
 | [Ash.Notifier.Notification.t()]
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Destroy a record. See destroy/2 for more information.

 Link to this function

 exists(query, opts \\ [])

 View Source

Returns whether or not the query would return any results.

 Link to this function

 exists?(query, opts \\ [])

 View Source

Returns whether or not the query would return any results, or raises an error.

 Link to this function

 first(query, field, opts \\ [])

 View Source

Fetches the first value for a given field, or raises an error.

 Link to this function

 first!(query, field, opts \\ [])

 View Source

Fetches the first value for a given field.

 Link to this function

 get(resource, id, opts \\ [])

 View Source

 @spec get(Ash.Resource.t(), term(), Keyword.t()) ::
 {:ok, Ash.Resource.record()} | {:error, term()}

Get a record by an identifier.
For a resource with a composite primary key, pass a keyword list or map, e.g
Ash.get(MyResource, %{first_key: 1, second_key: 2})
Additionally, a keyword list or map of keys matching an identity can be provided.
	:error? (boolean/0) - Whether or not an error should be returned or raised when the record is not found. If set to false, nil will be returned. The default value is true.

	:load (term/0) - Fields or relationships to load in the query. See Ash.Query.load/2

	:lock (term/0) - A lock statement to add onto the query

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant to set on the query being run

	:action (atom/0) - The action to use for reading the data

	:context (term/0) - Context to be set on the query being run

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Link to this function

 get!(resource, id, opts \\ [])

 View Source

 @spec get!(Ash.Resource.t(), term(), Keyword.t()) ::
 Ash.Resource.record() | no_return()

Get a record by an identifier, or raises an error. See get/3 for more.

 Link to this function

 list(query, field, opts \\ [])

 View Source

Fetches a list of all values of a given field.

 Link to this function

 list!(query, field, opts \\ [])

 View Source

Fetches a list of all values of a given field or raises an error.

 Link to this function

 load(data, query, opts \\ [])

 View Source

 @spec load(
 record_or_records :: Ash.Resource.record() | [Ash.Resource.record()],
 query :: load_statement(),
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.record() | [Ash.Resource.record()]} | {:error, term()}

Load fields or relationships on already fetched records.
Accepts a list of non-loaded fields and loads them on the provided records or a query, in
which case the loaded fields of the query are used. Relationship loads can be nested, for
example: Ash.load(record, [posts: [:comments]]).
	:lazy? (boolean/0) - If set to true, values will only be loaded if the related value isn't currently loaded. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Link to this function

 load!(data, query, opts \\ [])

 View Source

 @spec load!(
 record_or_records ::
 record_or_records()
 | {:ok, record_or_records()}
 | :error
 | {:error, term()}
 | :ok
 | Ash.Page.page(),
 query :: load_statement(),
 opts :: Keyword.t()
) :: Ash.Resource.record() | [Ash.Resource.record()] | no_return()

Load fields or relationships on already fetched records. See load/3 for more information.

 Link to this function

 max(query, field, opts \\ [])

 View Source

Fetches the greatest of all values of a given field.

 Link to this function

 max!(query, field, opts \\ [])

 View Source

Fetches the greatest of all values of a given field or raises an error.

 Link to this function

 min(query, field, opts \\ [])

 View Source

Fetches the least of all values of a given field.

 Link to this function

 min!(query, field, opts \\ [])

 View Source

Fetches the least of all values of a given field or raises an error.

 Link to this function

 page(page, n)

 View Source

 @spec page(Ash.Page.page(), page_request()) ::
 {:ok, Ash.Page.page()} | {:error, Ash.Error.t()}

Fetch a page relative to the provided page.

 Link to this function

 page!(page, request)

 View Source

 @spec page!(Ash.Page.page(), page_request()) :: Ash.Page.page() | no_return()

Fetch a page relative to the provided page or raises an error

 Link to this function

 read(query, opts \\ [])

 View Source

 @spec read(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 {:ok, [Ash.Resource.record()] | Ash.Page.page()} | {:error, term()}

Runs an Ash.Query.
For more information on building a query, see Ash.Query.
	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Pagination

Limit/offset pagination
	:offset (non_neg_integer/0) - The number of records to skip from the beginning of the query

	:limit (pos_integer/0) - The number of records to include in the page

	:filter (term/0) - A filter to apply for pagination purposes, that should not be considered in the full count.
This is used by the liveview paginator to only fetch the records that were already on the
page when refreshing data, to avoid pages jittering.

	:count (boolean/0) - Whether or not to return the page with a full count of all records

Keyset pagination
	:before (String.t/0) - Get records that appear before the provided keyset (mutually exclusive with after)

	:after (String.t/0) - Get records that appear after the provided keyset (mutually exclusive with before)

	:limit (pos_integer/0) - How many records to include in the page

	:filter (term/0) - See the filter option for offset pagination, this behaves the same.

	:count (boolean/0) - Whether or not to return the page with a full count of all records

 Link to this function

 read!(query, opts \\ [])

 View Source

 @spec read!(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 [Ash.Resource.record()] | Ash.Page.page() | no_return()

Run an Ash.Query. See read/2 for more.

 Link to this function

 read_one(query, opts \\ [])

 View Source

Runs a query on a resource, returning a single result, nil, or an error.
If more than one result would be returned, an error is returned instead.

 Options

	:not_found_error? (boolean/0) - Whether or not to return an Ash.Error.Query.NotFound if no record is found. The default value is false.

	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Link to this function

 read_one!(query, opts \\ [])

 View Source

Runs an ash query, returning a single result or raise an error. See read_one/2 for more.

 Link to this function

 reload(record, opts \\ [])

 View Source

 @spec reload(record :: Ash.Resource.record(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.record()} | {:error, Ash.Error.t()}

Refetches a record by primary key. See reload/2 for more.

 Link to this function

 reload!(record, opts \\ [])

 View Source

 @spec reload!(record :: Ash.Resource.record(), opts :: Keyword.t()) ::
 Ash.Resource.record() | no_return()

Refetches a record by primary key or raises an error. See reload/2 for more.

 Link to this function

 run_action(input, opts \\ [])

 View Source

 @spec run_action(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
 {:ok, term()} | {:error, Ash.Error.t()}

Runs a generic action.
Options:
	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant, supplied to calculation context.

	:authorize? (boolean/0) - Whether or not the request should be authorized.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer, provided to the calculation context.

	:domain (Ash.Domain) - The domain to use for the action

 Link to this function

 run_action!(input, opts \\ [])

 View Source

 @spec run_action!(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
 term() | no_return()

Runs a generic action or raises an error. See run_action/2 for more

 Link to this function

 stream!(query, opts \\ [])

 View Source

 @spec stream!(query :: Ash.Query.t(), opts :: Keyword.t()) ::
 Enumerable.t(Ash.Resource.record())

Streams the results of a query.

 Strategies

There are three strategies supported, and the best one available is always chosen. They are,
in order from best to worst:
	:keyset
	:offset
	:full_read

By default, only :keyset is supported. If you want to allow worse strategies to be used, pass
the worst one you wish to allow as the allow_stream_with option, i.e allow_stream_with: :full_read.
If you wish to specify a specific strategy to use, pass stream_with: :strategy_name.

 Keyset

This utilizes keyset pagination to accomplish this stream. The action must support keyset pagination.
This is the most efficient way to stream a query, because it works by using filters which can benefit
from indexes in the data layer.

 Offset

This utilizes offset/limit to accomplish this stream. If the action supports offset pagination, that will
be used. Otherwise, if the data layer supports limit/offset, then explicit limits/offsets will be used.
This is a much less efficient way of streaming a resource than keyset. To use limit/offset to reliably
stream, a sort must always be applied, and limit/offset in the data layer will generally require sorting
the entire table to figure out what is in each batch.

 Full Read

This reads the entire table into memory with no limit. This is, generally speaking, the least efficient.

 Options

	:batch_size (integer/0) - How many records to request in each query run. Defaults to the pagination limits on the resource, or 250.

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

 Link to this function

 sum(query, field, opts \\ [])

 View Source

Fetches the sum of a given field.

 Link to this function

 sum!(query, field, opts \\ [])

 View Source

Fetches the sum of a given field or raises an error.

 Link to this function

 update(changeset, opts \\ [])

 View Source

 @spec update(Ash.Changeset.t(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Update a record.
	:params (map/0) - Parameters to supply, ignored if the input is a changeset, only used when an identifier is given.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used (which defaults to 30_000).

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:context (map/0) - Context to set on the query, changeset, or input

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:load (term/0) - A load statement to add onto the changeset

 Link to this function

 update!(changeset, opts \\ [])

 View Source

 @spec update!(Ash.Changeset.t(), opts :: Keyword.t()) ::
 Ash.Resource.record()
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Update a record. See update/2 for more information.

 Ash.ActionInput - ash v3.0.0-rc.6

Ash.ActionInput

Input for a custom action

 Summary

 Types

 t()

 Functions

 add_error(input, errors, path \\ [])

 Adds an error to the input errors list, and marks the input as valid?: false

 fetch_argument(input, argument)

 Fetches the value of an argument provided to the input or :error.

 for_action(resource_or_input, action, params, opts \\ [])

 Creates a new input for a generic action

 get_argument(input, argument)

 Gets the value of an argument provided to the input.

 new(resource, domain \\ nil)

 set_argument(input, argument, value)

 Set an argument value

 set_context(input, map)

 Deep merges the provided map into the input context that can be used later

 set_tenant(input, tenant)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.ActionInput{
 action: Ash.Resource.Actions.Action.t() | nil,
 arguments: map(),
 context: map(),
 domain: Ash.Domain.t(),
 errors: term(),
 invalid_keys: MapSet.t(),
 params: map(),
 resource: Ash.Resource.t(),
 tenant: term(),
 valid?: boolean()
}

 Functions

 Link to this function

 add_error(input, errors, path \\ [])

 View Source

Adds an error to the input errors list, and marks the input as valid?: false

 Link to this function

 fetch_argument(input, argument)

 View Source

 @spec fetch_argument(t(), atom() | String.t()) :: {:ok, term()} | :error

Fetches the value of an argument provided to the input or :error.

 Link to this function

 for_action(resource_or_input, action, params, opts \\ [])

 View Source

 @spec for_action(
 resource_or_input :: Ash.Resource.t() | t(),
 action :: atom(),
 params :: map(),
 opts :: Keyword.t()
) :: t()

Creates a new input for a generic action

 Link to this function

 get_argument(input, argument)

 View Source

 @spec get_argument(t(), atom() | String.t()) :: term()

Gets the value of an argument provided to the input.

 Link to this function

 new(resource, domain \\ nil)

 View Source

 Link to this function

 set_argument(input, argument, value)

 View Source

 @spec set_argument(input :: t(), name :: atom(), value :: term()) :: t()

Set an argument value

 Link to this function

 set_context(input, map)

 View Source

 @spec set_context(t(), map() | nil) :: t()

Deep merges the provided map into the input context that can be used later
Do not use the private key in your custom context, as that is reserved for internal use.

 Link to this function

 set_tenant(input, tenant)

 View Source

 @spec set_tenant(t(), Ash.ToTenant.t()) :: t()

 Ash.BulkResult - ash v3.0.0-rc.6

Ash.BulkResult

The return value for bulk actions.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.BulkResult{
 error_count: non_neg_integer(),
 errors: [Ash.Error.t() | Ash.Changeset.t()] | nil,
 notifications: [Ash.Notifier.Notification.t()] | nil,
 records: [Ash.Resource.record()] | nil,
 status: :success | :partial_success | :error
}

 Ash.Changeset - ash v3.0.0-rc.6

Ash.Changeset

Changesets are used to create and update data in Ash.
Create a changeset with new/1 or new/2, and alter the attributes
and relationships using the functions provided in this module. Nothing in this module
actually incurs changes in a data layer. To commit a changeset, see Ash.create/2
and Ash.update/2.
See the action DSL documentation for more.

 Summary

 Types

 after_action_fun()

 after_transaction_fun()

 around_action_fun()

 around_callback()

 around_result()

 around_transaction_fun()

 before_action_fun()

 before_transaction_fun()

 error_info()

 manage_relationship_type()

 t()

 Functions

 accessing(changeset, types \\ [:attributes, :relationships, :calculations, :attributes])

 Returns a list of attributes, aggregates, relationships, and calculations that are being loaded

 add_error(changeset, errors, path \\ [])

 Adds an error to the changesets errors list, and marks the change as valid?: false.

 after_action(changeset, func, opts \\ [])

 Adds an after_action hook to the changeset.

 after_transaction(changeset, func, opts \\ [])

 Adds an after_transaction hook to the changeset.

 apply_attributes(changeset, opts \\ [])

 Returns the original data with attribute changes merged, if the changeset is valid.

 around_action(changeset, func)

 Adds an around_action hook to the changeset.

 around_transaction(changeset, func)

 Adds an around_transaction hook to the changeset.

 atomic_ref(changeset, field)

 Gets a reference to a field, or the current atomic update expression of that field.

 atomic_update(changeset, atomics)

 Adds multiple atomic changes to the changeset

 atomic_update(changeset, key, value)

 Adds an atomic change to the changeset.

 before_action(changeset, func, opts \\ [])

 Adds a before_action hook to the changeset.

 before_transaction(changeset, func, opts \\ [])

 Adds a before_transaction hook to the changeset.

 change_attribute(changeset, attribute, value)

 Adds a change to the changeset, unless the value matches the existing value.

 change_attributes(changeset, changes)

 Calls change_attribute/3 for each key/value pair provided.

 change_default_attribute(changeset, attribute, value)

 The same as change_attribute, but annotates that the attribute is currently holding a default value.

 change_new_attribute(changeset, attribute, value)

 Change an attribute only if is not currently being changed

 change_new_attribute_lazy(changeset, attribute, func)

 Change an attribute if is not currently being changed, by calling the provided function.

 changing_attribute?(changeset, attribute)

 Returns true if an attribute exists in the changes

 changing_attributes?(changeset)

 Returns true if any attributes on the resource are being changed.

 changing_relationship?(changeset, relationship)

 Returns true if a relationship exists in the changes

 clear_change(changeset, field)

 Clears an attribute or relationship change off of the changeset.

 delete_argument(changeset, argument_or_arguments)

 Remove an argument from the changeset

 deselect(changeset, fields)

 Ensure the the specified attributes are nil in the changeset results.

 ensure_selected(changeset, fields)

 Ensures that the given attributes are selected.

 expand_upsert_fields(fields, resource)

 Turns the special case {:replace, fields}, :replace_all and {:replace_all_except, fields} upsert_fields
options into a list of fields

 fetch_argument(changeset, argument)

 Fetches the value of an argument provided to the changeset or :error.

 fetch_argument_or_change(changeset, attribute)

 Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided.

 fetch_change(changeset, attribute)

 Gets the new value for an attribute, or :error if it is not being changed.

 filter(changeset, expr)

 Adds a filter for a record being updated or destroyed.

 for_action(initial, action, params \\ %{}, opts \\ [])

 Constructs a changeset for a given action, and validates it.

 for_create(initial, action, params \\ %{}, opts \\ [])

 Constructs a changeset for a given create action, and validates it.

 for_destroy(initial, action_or_name, params \\ %{}, opts \\ [])

 Constructs a changeset for a given destroy action, and validates it.

 for_update(initial, action, params \\ %{}, opts \\ [])

 Constructs a changeset for a given update action, and validates it.

 force_change_attribute(changeset, attribute, value)

 Changes an attribute even if it isn't writable

 force_change_attributes(changeset, changes)

 Calls force_change_attribute/3 for each key/value pair provided.

 force_change_new_attribute(changeset, attribute, value)

 Force change an attribute if it is not currently being changed.

 force_change_new_attribute_lazy(changeset, attribute, func)

 Force change an attribute if it is not currently being changed, by calling the provided function.

 force_set_argument(changeset, argument, value)

 Add an argument to the changeset, which will be provided to the action.

 force_set_arguments(changeset, map)

 Merge a map of arguments to the arguments list.

 fully_atomic_changeset(resource, action, params, opts \\ [])

 get_argument(changeset, argument)

 Gets the value of an argument provided to the changeset.

 get_argument_or_attribute(changeset, attribute)

 Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided.

 get_attribute(changeset, attribute)

 Gets the changing value or the original value of an attribute.

 get_data(changeset, attribute)

 Gets the original value for an attribute

 handle_errors(changeset, func)

 Sets a custom error handler on the changeset.

 handle_params(changeset, action, params, handle_params_opts \\ [])

 load(changeset, load)

 Calls the provided load statement on the result of the action at the very end of the action.

 loading?(changeset, path)

 Returns true if the field/relationship or path to field/relationship is being loaded.

 manage_relationship(changeset, relationship, input, opts \\ [])

 Manages the related records by creating, updating, or destroying them as necessary.

 manage_relationship_opts(atom)

 new(record_or_resource)

 Returns a new changeset over a resource.

 prepare_changeset_for_action(changeset, action, opts)

 present?(changeset, attribute)

 Checks if an attribute is not nil, either in the original data, or that it is not being changed to a nil value if it is changing.

 put_context(changeset, key, value)

 Puts a key/value in the changeset context that can be used later.

 run_before_transaction_hooks(changeset)

 select(changeset, fields, opts \\ [])

 Ensure that only the specified attributes are present in the results.

 selecting?(changeset, field)

 set_argument(changeset, argument, value)

 Add an argument to the changeset, which will be provided to the action.

 set_arguments(changeset, map)

 Merge a map of arguments to the arguments list.

 set_context(changeset, map)

 Deep merges the provided map into the changeset context that can be used later.

 set_on_upsert(changeset, upsert_keys)

 set_result(changeset, result)

 Set the result of the action. This will prevent running the underlying datalayer behavior

 set_tenant(changeset, tenant)

 timeout(changeset, timeout, default \\ nil)

 with_hooks(changeset, func, opts \\ [])

 Wraps a function in the before/after action hooks of a changeset.

 Types

 Link to this type

 after_action_fun()

 View Source

 @type after_action_fun() ::
 (t(), Ash.Resource.record() ->
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, any()})

 Link to this type

 after_transaction_fun()

 View Source

 @type after_transaction_fun() ::
 (t(), {:ok, Ash.Resource.record()} | {:error, any()} ->
 {:ok, Ash.Resource.record()} | {:error, any()})

 Link to this type

 around_action_fun()

 View Source

 @type around_action_fun() :: (t(), around_callback() -> around_result())

 Link to this type

 around_callback()

 View Source

 @type around_callback() :: (t() -> around_result())

 Link to this type

 around_result()

 View Source

 @type around_result() ::
 {:ok, Ash.Resource.record(), t(),
 %{notifications: [Ash.Notifier.Notification.t()]}}
 | {:error, Ash.Error.t()}

 Link to this type

 around_transaction_fun()

 View Source

 @type around_transaction_fun() ::
 (t() -> {:ok, Ash.Resource.record()} | {:error, any()})

 Link to this type

 before_action_fun()

 View Source

 @type before_action_fun() ::
 (t() -> t() | {t(), %{notifications: [Ash.Notifier.Notification.t()]}})

 Link to this type

 before_transaction_fun()

 View Source

 @type before_transaction_fun() :: (t() -> t())

 Link to this type

 error_info()

 View Source

 @type error_info() ::
 String.t()
 | [field: atom(), fields: [atom()], message: String.t(), value: any()]
 | %{:__struct__ => atom(), required(atom()) => any()}

 Link to this type

 manage_relationship_type()

 View Source

 @type manage_relationship_type() ::
 :append_and_remove | :append | :remove | :direct_control | :create

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Changeset{
 __validated_for_action__: atom() | nil,
 action: Ash.Resource.Actions.action() | nil,
 action_failed?: boolean(),
 action_type: Ash.Resource.Actions.action_type() | nil,
 after_action: [after_action_fun() | {after_action_fun(), map()}],
 after_transaction: [
 after_transaction_fun() | {after_transaction_fun(), map()}
],
 arguments: %{optional(atom()) => any()},
 around_action: [around_action_fun() | {around_action_fun(), map()}],
 around_transaction: [
 around_transaction_fun() | {around_transaction_fun(), map()}
],
 atomic_validations: term(),
 atomics: Keyword.t(),
 attributes: %{optional(atom()) => any()},
 before_action: [before_action_fun() | {around_action_fun(), map()}],
 before_transaction: [
 before_transaction_fun() | {before_transaction_fun(), map()}
],
 casted_arguments: term(),
 casted_attributes: term(),
 context: map(),
 data: Ash.Resource.record() | nil,
 defaults: [atom()],
 domain: module() | nil,
 errors: [Ash.Error.t()],
 filter: term(),
 handle_errors:
 nil
 | (t(), error :: any() ->
 :ignore | t() | (error :: any()) | {error :: any(), t()}),
 invalid_keys: MapSet.t(),
 load: keyword(keyword()),
 params: %{optional(atom() | binary()) => any()},
 phase:
 :validate
 | :before_transaction
 | :before_action
 | :after_action
 | :after_transaction
 | :around_action
 | :around_transaction,
 relationships: %{
 optional(atom()) =>
 %{optional(atom() | binary()) => any()}
 | [%{optional(atom() | binary()) => any()}]
 },
 resource: module(),
 select: [atom()] | nil,
 tenant: term(),
 timeout: pos_integer() | nil,
 valid?: boolean()
}

 Functions

 Link to this function

 accessing(changeset, types \\ [:attributes, :relationships, :calculations, :attributes])

 View Source

Returns a list of attributes, aggregates, relationships, and calculations that are being loaded
Provide a list of field types to narrow down the returned results.

 Link to this function

 add_error(changeset, errors, path \\ [])

 View Source

 @spec add_error(t(), error_info() | [error_info()], Keyword.t()) :: t()

Adds an error to the changesets errors list, and marks the change as valid?: false.

 Error Data

The given errors argument can be a string, a keyword list, a struct, or a list of any of the three.
If errors is a keyword list, or a list of keyword lists, the following keys are supported in the keyword list:
	field (atom) - the field that the error is for. This is required, unless fields is given.
	fields (list of atoms) - the fields that the error is for. This is required, unless field is given.
	message (string) - the error message
	value (any) - (optional) the field value that caused the error

 Link to this function

 after_action(changeset, func, opts \\ [])

 View Source

 @spec after_action(
 t(),
 after_action_fun(),
 Keyword.t()
) :: t()

Adds an after_action hook to the changeset.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

 Link to this function

 after_transaction(changeset, func, opts \\ [])

 View Source

 @spec after_transaction(
 t(),
 after_transaction_fun(),
 Keyword.t()
) :: t()

Adds an after_transaction hook to the changeset.
after_transaction hooks differ from after_action hooks in that they are run
on success and failure of the action or some previous hook.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

 Link to this function

 apply_attributes(changeset, opts \\ [])

 View Source

 @spec apply_attributes(t(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.record()} | {:error, t()}

Returns the original data with attribute changes merged, if the changeset is valid.
Options:
	force? - applies current attributes even if the changeset is not valid

 Link to this function

 around_action(changeset, func)

 View Source

 @spec around_action(t(), around_action_fun()) :: t()

Adds an around_action hook to the changeset.
Your function will get the changeset, and a callback that must be called with a changeset (that may be modified).
The callback will return {:ok, result, instructions} or {:error, error}. You can modify these values, but the
return value must be one of those types. Instructions contains the notifications in its notifications key, i.e
%{notifications: [%Ash.Resource.Notification{}, ...]}.
The around_action calls happen first, and then (after they each resolve their callbacks) the before_action
hooks are called, followed by the action itself occurring at the data layer and then the after_action hooks being run.
Then, the code that appeared after the callbacks were called is then run.
For example:
changeset
|> Ash.Changeset.around_action(fn changeset, callback ->
 IO.puts("first around: before")
 result = callback.(changeset)
 IO.puts("first around: after")

 result
end)
|> Ash.Changeset.around_action(fn changeset, callback ->
 IO.puts("second around: before")
 result = callback.(changeset)
 IO.puts("second around: after")

 result
end)
|> Ash.Changeset.before_action(fn changeset ->
 IO.puts("first before")
 changeset
end, append?: true)
|> Ash.Changeset.before_action(fn changeset ->
 IO.puts("second before")
 changeset
end, append?: true)
|> Ash.Changeset.after_action(fn changeset, result ->
 IO.puts("first after")
 {:ok, result}
end)
|> Ash.Changeset.after_action(fn changeset, result ->
 IO.puts("second after")
 {:ok, result}
end)
This would print:
first around: before
second around: before
first before
second before
 <-- action happens here
first after
second after
second around: after <-- Notice that because of the callbacks, the after of the around hooks is reversed from the before
first around: after
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action, instructions}.
You can almost always get the same effect by using before_action, setting some context on the changeset
and reading it out in an after_action hook.

 Link to this function

 around_transaction(changeset, func)

 View Source

 @spec around_transaction(t(), around_transaction_fun()) :: t()

Adds an around_transaction hook to the changeset.
Your function will get the changeset, and a callback that must be called with a changeset (that may be modified).
The callback will return {:ok, result} or {:error, error}. You can modify these values, but the return value
must be one of those types.
The around_transaction calls happen first, and then (after they each resolve their callbacks) the before_transaction
hooks are called, followed by the action hooks and then the after_transaction hooks being run.
Then, the code that appeared after the callbacks were called is then run.
For example:
changeset
|> Ash.Changeset.around_transaction(fn changeset, callback ->
 IO.puts("first around: before")
 result = callback.(changeset)
 IO.puts("first around: after")

 result
end)
|> Ash.Changeset.around_transaction(fn changeset, callback ->
 IO.puts("second around: before")
 result = callback.(changeset)
 IO.puts("second around: after")

 result
end)
|> Ash.Changeset.before_transaction(fn changeset ->
 IO.puts("first before")
 changeset
end, append?: true)
|> Ash.Changeset.before_transaction(fn changeset ->
 IO.puts("second before")
 changeset
end, append?: true)
|> Ash.Changeset.after_transaction(fn changeset, result ->
 IO.puts("first after")
 result
end)
|> Ash.Changeset.after_transaction(fn changeset, result ->
 IO.puts("second after")
 result
end)
This would print:
first around: before
second around: before
first before
second before
 <-- action hooks happens here
first after
second after
second around: after <-- Notice that because of the callbacks, the after of the around hooks is reversed from the before
first around: after
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action}.
You can almost always get the same effect by using before_transaction, setting some context on the changeset
and reading it out in an after_transaction hook.

 Link to this function

 atomic_ref(changeset, field)

 View Source

Gets a reference to a field, or the current atomic update expression of that field.

 Link to this function

 atomic_update(changeset, atomics)

 View Source

 @spec atomic_update(t(), map() | Keyword.t()) :: t()

Adds multiple atomic changes to the changeset
See atomic_update/3 for more information.

 Link to this function

 atomic_update(changeset, key, value)

 View Source

 @spec atomic_update(t(), atom(), {:atomic, Ash.Expr.t()} | Ash.Expr.t()) :: t()

Adds an atomic change to the changeset.
Atomic changes are applied by the data layer, and as such have guarantees that are not
given by changes that are based on looking at the previous value and updating it. Here
is an example of a change that is not safe to do concurrently:
change fn changeset, _ ->
 Ash.Changeset.set_attribute(changeset, :score, changeset.data.score + 1)
end
If two processes run this concurrently, they will both read the same value of score, and
set the new score to the same value. This means that one of the increments will be lost.
If you were to instead do this using atomic_update, you would get the correct result:
Ash.Changeset.atomic_update(changeset, :score, [expr(score + 1)])
There are drawbacks/things to consider, however. The first is that atomic update results
are not known until after the action is run. The following functional validation would not
be able to enforce the score being less than 10, because the atomic happens after the validation.
validate fn changeset, _ ->
 if Ash.Changeset.get_attribute(changeset, :score) < 10 do
 :ok
 else
 {:error, field: :score, message: "must be less than 10"}
 end
end
If you want to use atomic updates, it is suggested to write module-based validations & changes,
and implement the appropriate atomic callbacks on those modules. All builtin validations and changes
implement these callbacks in addition to the standard callbacks. Validations will only be run atomically
when the entire action is being run atomically or if one of the relevant fields is being updated atomically.

 Link to this function

 before_action(changeset, func, opts \\ [])

 View Source

 @spec before_action(
 changeset :: t(),
 fun :: before_action_fun(),
 opts :: Keyword.t()
) :: t()

Adds a before_action hook to the changeset.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

 Link to this function

 before_transaction(changeset, func, opts \\ [])

 View Source

 @spec before_transaction(
 t(),
 before_transaction_fun(),
 Keyword.t()
) :: t()

Adds a before_transaction hook to the changeset.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

 Link to this function

 change_attribute(changeset, attribute, value)

 View Source

 @spec change_attribute(t(), atom(), any()) :: t()

Adds a change to the changeset, unless the value matches the existing value.

 Link to this function

 change_attributes(changeset, changes)

 View Source

 @spec change_attributes(t(), map() | Keyword.t()) :: t()

Calls change_attribute/3 for each key/value pair provided.

 Link to this function

 change_default_attribute(changeset, attribute, value)

 View Source

 @spec change_default_attribute(t(), atom(), any()) :: t()

The same as change_attribute, but annotates that the attribute is currently holding a default value.
This information can be used in changes to see if a value was explicitly set or if it was set by being the default.
Additionally, this is used in upsert actions to not overwrite existing values with the default.

 Link to this function

 change_new_attribute(changeset, attribute, value)

 View Source

 @spec change_new_attribute(t(), atom(), term()) :: t()

Change an attribute only if is not currently being changed

 Link to this function

 change_new_attribute_lazy(changeset, attribute, func)

 View Source

 @spec change_new_attribute_lazy(t(), atom(), (-> any())) :: t()

Change an attribute if is not currently being changed, by calling the provided function.
Use this if you want to only perform some expensive calculation for an attribute value
only if there isn't already a change for that attribute.

 Link to this function

 changing_attribute?(changeset, attribute)

 View Source

 @spec changing_attribute?(t(), atom()) :: boolean()

Returns true if an attribute exists in the changes

 Link to this function

 changing_attributes?(changeset)

 View Source

 @spec changing_attributes?(t()) :: boolean()

Returns true if any attributes on the resource are being changed.

 Link to this function

 changing_relationship?(changeset, relationship)

 View Source

 @spec changing_relationship?(t(), atom()) :: boolean()

Returns true if a relationship exists in the changes

 Link to this function

 clear_change(changeset, field)

 View Source

Clears an attribute or relationship change off of the changeset.

 Link to this function

 delete_argument(changeset, argument_or_arguments)

 View Source

Remove an argument from the changeset

 Link to this function

 deselect(changeset, fields)

 View Source

Ensure the the specified attributes are nil in the changeset results.

 Link to this function

 ensure_selected(changeset, fields)

 View Source

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

 Link to this function

 expand_upsert_fields(fields, resource)

 View Source

Turns the special case {:replace, fields}, :replace_all and {:replace_all_except, fields} upsert_fields
options into a list of fields

 Link to this function

 fetch_argument(changeset, argument)

 View Source

 @spec fetch_argument(t(), atom()) :: {:ok, term()} | :error

Fetches the value of an argument provided to the changeset or :error.

 Link to this function

 fetch_argument_or_change(changeset, attribute)

 View Source

 @spec fetch_argument_or_change(t(), atom()) :: {:ok, any()} | :error

Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided.

 Link to this function

 fetch_change(changeset, attribute)

 View Source

 @spec fetch_change(t(), atom()) :: {:ok, any()} | :error

Gets the new value for an attribute, or :error if it is not being changed.

 Link to this function

 filter(changeset, expr)

 View Source

 @spec filter(t(), Ash.Expr.t()) :: t()

Adds a filter for a record being updated or destroyed.
Used by optimistic locking. See Ash.Resource.Change.Builtins.optimistic_lock/1 for more.

 Link to this function

 for_action(initial, action, params \\ %{}, opts \\ [])

 View Source

Constructs a changeset for a given action, and validates it.
Calls for_create/4, for_update/4 or for_destroy/4 based on the type of action passed in.
See those functions for more explanation.

 Link to this function

 for_create(initial, action, params \\ %{}, opts \\ [])

 View Source

Constructs a changeset for a given create action, and validates it.
Anything that is modified prior to for_create/4 is validated against the rules of the action, while anything after it is not.
This runs any changes contained on your action. To have your logic execute only during the action, you can use after_action/2
or before_action/2.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the domain action.

 Params

params may be attributes, relationships, or arguments. You can safely pass user/form input directly into this function.
Only public attributes and relationships are supported. If you want to change private attributes as well, see the
Customization section below. params are stored directly as given in the params field of the changeset, which is used

 Opts

	:require? (boolean/0) - If set to false, values are only required when the action is run (instead of immediately). The default value is false.

	:actor (term/0) - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:authorize? (term/0) - set authorize?, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer to use. Will be carried over to the action. For more information see Ash.Tracer.

	:tenant (value that implements the Ash.ToTenant protocol) - set the tenant on the changeset

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

 Customization

A changeset can be provided as the first argument, instead of a resource, to allow
setting specific attributes ahead of time.
For example:
MyResource
|> Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:foo, 1)
|> Ash.Changeset.for_create(:create, ...opts)
Once a changeset has been validated by for_create/4 (or for_update/4), it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

 Link to this function

 for_destroy(initial, action_or_name, params \\ %{}, opts \\ [])

 View Source

Constructs a changeset for a given destroy action, and validates it.

 Opts

	:actor - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)
	:tenant - set the tenant on the changeset

Anything that is modified prior to for_destroy/4 is validated against the rules of the action, while anything after it is not.
Once a changeset has been validated by for_destroy/4, it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

 Link to this function

 for_update(initial, action, params \\ %{}, opts \\ [])

 View Source

Constructs a changeset for a given update action, and validates it.
Anything that is modified prior to for_update/4 is validated against the rules of the action, while anything after it is not.
See for_create/4 for more information

 Link to this function

 force_change_attribute(changeset, attribute, value)

 View Source

 @spec force_change_attribute(t(), atom(), any()) :: t()

Changes an attribute even if it isn't writable

 Link to this function

 force_change_attributes(changeset, changes)

 View Source

 @spec force_change_attributes(t(), map() | Keyword.t()) :: t()

Calls force_change_attribute/3 for each key/value pair provided.

 Link to this function

 force_change_new_attribute(changeset, attribute, value)

 View Source

 @spec force_change_new_attribute(t(), atom(), term()) :: t()

Force change an attribute if it is not currently being changed.
See change_new_attribute/3 for more.

 Link to this function

 force_change_new_attribute_lazy(changeset, attribute, func)

 View Source

 @spec force_change_new_attribute_lazy(t(), atom(), (-> any())) :: t()

Force change an attribute if it is not currently being changed, by calling the provided function.
See change_new_attribute_lazy/3 for more.

 Link to this function

 force_set_argument(changeset, argument, value)

 View Source

Add an argument to the changeset, which will be provided to the action.
Does not show a warning when used in before/after action hooks.

 Link to this function

 force_set_arguments(changeset, map)

 View Source

Merge a map of arguments to the arguments list.
Does not show a warning when used in before/after action hooks.

 Link to this function

 fully_atomic_changeset(resource, action, params, opts \\ [])

 View Source

 @spec fully_atomic_changeset(
 resource :: Ash.Resource.t(),
 action :: atom() | Ash.Resource.Actions.action(),
 params :: map(),
 opts :: Keyword.t()
) :: t() | {:not_atomic, String.t()}

 Link to this function

 get_argument(changeset, argument)

 View Source

 @spec get_argument(t(), atom()) :: term()

Gets the value of an argument provided to the changeset.

 Link to this function

 get_argument_or_attribute(changeset, attribute)

 View Source

 @spec get_argument_or_attribute(t(), atom()) :: term()

Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided.

 Link to this function

 get_attribute(changeset, attribute)

 View Source

 @spec get_attribute(t(), atom()) :: term()

Gets the changing value or the original value of an attribute.

 Link to this function

 get_data(changeset, attribute)

 View Source

 @spec get_data(t(), atom()) :: term()

Gets the original value for an attribute

 Link to this function

 handle_errors(changeset, func)

 View Source

 @spec handle_errors(
 t(),
 (t(), error :: term() ->
 :ignore | t() | (error :: term()) | {error :: term(), t()})
 | {module(), atom(), [term()]}
) :: t()

Sets a custom error handler on the changeset.
The error handler should be a two argument function or an mfa, in which case the first two arguments will be set
to the changeset and the error, w/ the supplied arguments following those.
Any errors generated are passed to handle_errors, which can return any of the following:
	:ignore - the error is discarded, and the changeset is not marked as invalid
	changeset - a new (or the same) changeset. The error is not added (you'll want to add an error yourself), but the changeset is marked as invalid.
	{changeset, error} - a new (or the same) error and changeset. The error is added to the changeset, and the changeset is marked as invalid.
	anything_else - is treated as a new, transformed version of the error. The result is added as an error to the changeset, and the changeset is marked as invalid.

 Link to this function

 handle_params(changeset, action, params, handle_params_opts \\ [])

 View Source

 Link to this function

 load(changeset, load)

 View Source

 @spec load(t(), term()) :: t()

Calls the provided load statement on the result of the action at the very end of the action.

 Link to this function

 loading?(changeset, path)

 View Source

Returns true if the field/relationship or path to field/relationship is being loaded.
It accepts an atom or a list of atoms, which is treated for as a "path", i.e:
Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?([:friends, :enemies, :score])
iex> true

Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?([:friends, :score])
iex> false

Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?(:friends)
iex> true

 Link to this function

 manage_relationship(changeset, relationship, input, opts \\ [])

 View Source

Manages the related records by creating, updating, or destroying them as necessary.
Keep in mind that the default values for all on_* are :ignore, meaning nothing will happen
unless you provide instructions.
The input provided to manage_relationship should be a map, in the case of to_one relationships, or a list of maps
in the case of to_many relationships. The following steps are followed for each input provided:
	The input is checked against the currently related records to find any matches. The primary key and unique identities are used to find matches.
	For any input that had a match in the current relationship, the :on_match behavior is triggered
	For any input that does not have a match:	if there is on_lookup behavior:	we try to find the record in the data layer.
	if the record is found, the on_lookup behavior is triggered
	if the record is not found, the on_no_match behavior is triggered

	if there is no on_lookup behavior:	the on_no_match behavior is triggered

	finally, for any records present in the current relationship that had no match in the input, the on_missing behavior is triggered

 Options

	:type - If the type is specified, the default values of each option is modified to match that type of operation.
This allows for specifying certain operations much more succinctly. The defaults that are modified are listed below:
	:append_and_remove [
 on_lookup: :relate,
 on_no_match: :error,
 on_match: :ignore,
 on_missing: :unrelate
]

	:append [
 on_lookup: :relate,
 on_no_match: :error,
 on_match: :ignore,
 on_missing: :ignore
]

	:remove [
 on_no_match: :error,
 on_match: :unrelate,
 on_missing: :ignore
]

	:direct_control [
 on_lookup: :ignore,
 on_no_match: :create,
 on_match: :update,
 on_missing: :destroy
]

	:create [
 on_no_match: :create,
 on_match: :ignore
]
Valid values are :append_and_remove, :append, :remove, :direct_control, :create

	:authorize? (boolean/0) - Authorize reads and changes to the destination records, if the primary change is being authorized as well. The default value is true.

	:eager_validate_with (atom/0) - Validates that any referenced entities exist before the action is being performed, using the provided domain for the read. The default value is false.

	:on_no_match (term/0) - Instructions for handling records where no matching record existed in the relationship.
	:ignore (default) - those inputs are ignored
	:match - For has_one and belongs_to only, any input is treated as a match for an existing value. For has_many and many_to_many, this is the same as :ignore.
	:create - the records are created using the destination's primary create action
	{:create, :action_name} - the records are created using the specified action on the destination resource
	{:create, :action_name, :join_table_action_name, [:list, :of, :join_table, :params]} - Same as {:create, :action_name} but takes
 the list of params specified out and applies them when creating the join record, with the provided join_table_action_name.
	:error - an error is returned indicating that a record would have been created	 If on_lookup is set, and the data contained a primary key or identity, then the error is a NotFound error
	Otherwise, an InvalidRelationship error is returned The default value is :ignore.

	:value_is_key (atom/0) - Configures what key to use when a single value is provided.
This is useful when you use things like a list of strings i.e friend_emails to manage the relationship, instead of a list of maps.
By default, we assume it is the primary key of the destination resource, unless it is a composite primary key.

	:identity_priority (list of atom/0) - The list, in priority order, of identities to use when looking up records for on_lookup, and matching records with on_match.
Use :_primary_key to prioritize checking a match with the primary key.
All identities, along with :_primary_key are checked regardless, this only allows ensuring that some are checked first.
Defaults to the list provided by use_identities, so you typically won't need this option.

	:use_identities (list of atom/0) - A list of identities that may be used to look up and compare records. Use :_primary_key to include the primary key. By default, only [:_primary_key] is used.

	:on_lookup (term/0) - Before creating a record (because no match was found in the relationship), the record can be looked up and related.
	:ignore (default) - Does not look for existing entries (matches in the current relationship are still considered updates)
	:relate - Same as calling {:relate, primary_action_name}
	{:relate, :action_name} - the records are looked up by primary key/the first identity that is found (using the primary read action), and related. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource

	{:relate, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	:relate_and_update - Same as :relate, but the remaining parameters from the lookup are passed into the action that is used to change the relationship key
	{:relate_and_update, :action_name} - Same as the above, but customizes the action used. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource

	{:relate_and_update, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	{:relate_and_update, :action_name, :read_action_name, [:list, :of, :join_table, :params]} - Same as the above, but uses the provided list of parameters when creating
 the join row (only relevant for many to many relationships). Use :* to only update the join record, and pass all parameters to its action The default value is :ignore.

	:on_match (term/0) - Instructions for handling records where a matching record existed in the relationship already.
	:ignore (default) - those inputs are ignored
	:update - the record is updated using the destination's primary update action
	{:update, :action_name} - the record is updated using the specified action on the destination resource
	{:update, :action_name, :join_table_action_name, [:list, :of, :params]} - Same as {:update, :action_name} but takes
 the list of params specified out and applies them as an update to the join record (only valid for many to many)
	:update_join - update only the join record (only valid for many to many)
	{:update_join, :join_table_action_name} - use the specified update action on a join resource
	{:update_join, :join_table_action_name, [:list, :of, :params]} - pass specified params from input into a join resource update action
	{:destroy, :action_name} - the record is destroyed using the specified action on the destination resource. The action should be:	many_to_many - a destroy action on the join record
	has_many - a destroy action on the destination resource
	has_one - a destroy action on the destination resource
	belongs_to - a destroy action on the destination resource

	:error - an error is returned indicating that a record would have been updated
	:no_match - follows the on_no_match instructions with these records
	:missing - follows the on_missing instructions with these records
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_attribute (on the related record) is set to nil
	has_one - the destination_attribute (on the related record) is set to nil
	belongs_to - the source_attribute (on this record) is set to nil

	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.

	:on_missing (term/0) - Instructions for handling records that existed in the current relationship but not in the input.
	:ignore (default) - those inputs are ignored
	:destroy - the record is destroyed using the destination's primary destroy action
	{:destroy, :action_name} - the record is destroyed using the specified action on the destination resource
	{:destroy, :action_name, :join_resource_action_name} - the record is destroyed using the specified action on the destination resource,
but first the join resource is destroyed with its specified action
	:error - an error is returned indicating that a record would have been updated
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_attribute (on the related record) is set to nil
	has_one - the destination_attribute (on the related record) is set to nil
	belongs_to - the source_attribute (on this record) is set to nil

	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.

	:error_path (term/0) - By default, errors added to the changeset will use the path [:relationship_name], or [:relationship_name, <index>].
If you want to modify this path, you can specify error_path, e.g if had a change on an action that takes an argument
and uses that argument data to call manage_relationship, you may want any generated errors to appear under the name of that
argument, so you could specify error_path: :argument_name when calling manage_relationship.

	:join_keys (list of atom/0) - For many to many relationships specifies the parameters to pick from the input and pass into a join resource action.
Applicable in cases like on_no_match: :create, on_match: :update and on_lookup: :relate.
Can be overwritten by a full form instruction tuple which contains join parameters at the end.

	:meta (term/0) - Freeform data that will be retained along with the options, which can be used to track/manage the changes that are added to the relationships key.

	:ignore? (term/0) - This tells Ash to ignore the provided inputs when actually running the action. This can be useful for
building up a set of instructions that you intend to handle manually. The default value is false.

Each call to this function adds new records that will be handled according to their options. For example,
if you tracked "tags to add" and "tags to remove" in separate fields, you could input them like so:
changeset
|> Ash.Changeset.manage_relationship(
 :tags,
 [%{name: "backend"}],
 on_lookup: :relate, #relate that tag if it exists in the database
 on_no_match: :error # error if a tag with that name doesn't exist
)
|> Ash.Changeset.manage_relationship(
 :tags,
 [%{name: "frontend"}],
 on_no_match: :error, # error if a tag with that name doesn't exist in the relationship
 on_match: :unrelate # if a tag with that name is related, unrelate it
)
When calling this multiple times with the on_missing option set, the list of records that are considered missing are checked
after each set of inputs is processed. For example, if you manage the relationship once with on_missing: :unrelate, the records
missing from your input will be removed, and then your next call to manage_relationship will be resolved (with those records unrelated).
For this reason, it is suggested that you don't call this function multiple times with an on_missing instruction, as you may be
surprised by the result.
If you want the input to update existing entities, you need to ensure that the primary key (or unique identity) is provided as
part of the input. See the example below:
changeset
|> Ash.Changeset.manage_relationship(
 :comments,
 [%{rating: 10, contents: "foo"}],
 on_no_match: {:create, :create_action},
 on_missing: :ignore
)
|> Ash.Changeset.manage_relationship(
 :comments,
 [%{id: 10, rating: 10, contents: "foo"}],
 on_match: {:update, :update_action},
 on_no_match: {:create, :create_action})
This is a simple way to manage a relationship. If you need custom behavior, you can customize the action that is
called, which allows you to add arguments/changes. However, at some point you may want to forego this function
and make the changes yourself. For example:
input = [%{id: 10, rating: 10, contents: "foo"}]

changeset
|> Ash.Changeset.after_action(fn _changeset, result ->
 # An example of updating comments based on a result of other changes
 for comment <- input do
 comment = Ash.get(Comment, comment.id)

 comment
 |> Map.update(:rating, 0, &(&1 * result.rating_weight))
 |> Ash.update!()
 end

 {:ok, result}
end)

 Using records as input

Records can be supplied as the input values. If you do:
	if it would be looked up due to on_lookup, the record is used as-is
	if it would be created due to on_no_match, the record is used as-is
	Instead of specifying join_keys, those keys must go in __metadata__.join_keys. If join_keys is specified in the options, it is ignored.

For example:
post1 =
 changeset
 |> Ash.create!()
 |> Ash.Resource.put_metadata(:join_keys, %{type: "a"})

post1 =
 changeset2
 |> Ash.create!()
 |> Ash.Resource.put_metadata(:join_keys, %{type: "b"})

author = Ash.create!(author_changeset)

Ash.Changeset.manage_relationship(
 author,
 :posts,
 [post1, post2],
 on_lookup: :relate
)

 Link to this function

 manage_relationship_opts(atom)

 View Source

 @spec manage_relationship_opts(manage_relationship_type()) :: Keyword.t()

 Link to this function

 new(record_or_resource)

 View Source

 @spec new(Ash.Resource.t() | Ash.Resource.record()) :: t()

Returns a new changeset over a resource.
Warning: You almost always want to use for_action or for_create, etc. over this function if possible.
You can use this to start a changeset and make changes prior to calling for_action. This is not typically
necessary, but can be useful as an escape hatch. For example:
Resource
|> Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:name, "foobar")
|> Ash.Changeset.for_action(...)

 Link to this function

 prepare_changeset_for_action(changeset, action, opts)

 View Source

 Link to this function

 present?(changeset, attribute)

 View Source

Checks if an attribute is not nil, either in the original data, or that it is not being changed to a nil value if it is changing.
This also accounts for the accessing_from context that is set when using manage_relationship, so it is aware that a particular value
will be set by manage_relationship even if it isn't currently being set.

 Link to this function

 put_context(changeset, key, value)

 View Source

 @spec put_context(t(), atom(), term()) :: t()

Puts a key/value in the changeset context that can be used later.
Do not use the private key in your custom context, as that is reserved for internal use.

 Link to this function

 run_before_transaction_hooks(changeset)

 View Source

 Link to this function

 select(changeset, fields, opts \\ [])

 View Source

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Datalayers currently are not notified of the select for a changeset(unlike queries), and creates/updates select all fields when they are performed.
A select provided on a changeset sets the unselected fields to nil before returning the result.
Use ensure_selected/2 if you wish to make sure a field has been selected, without deselecting any other fields.

 Link to this function

 selecting?(changeset, field)

 View Source

 Link to this function

 set_argument(changeset, argument, value)

 View Source

Add an argument to the changeset, which will be provided to the action.

 Link to this function

 set_arguments(changeset, map)

 View Source

Merge a map of arguments to the arguments list.

 Link to this function

 set_context(changeset, map)

 View Source

 @spec set_context(t(), map() | nil) :: t()

Deep merges the provided map into the changeset context that can be used later.
Do not use the private key in your custom context, as that is reserved for internal use.

 Link to this function

 set_on_upsert(changeset, upsert_keys)

 View Source

 @spec set_on_upsert(t(), [atom()]) :: Keyword.t()

 Link to this function

 set_result(changeset, result)

 View Source

 @spec set_result(t(), term()) :: t()

Set the result of the action. This will prevent running the underlying datalayer behavior

 Link to this function

 set_tenant(changeset, tenant)

 View Source

 @spec set_tenant(t(), Ash.ToTenant.t()) :: t()

 Link to this function

 timeout(changeset, timeout, default \\ nil)

 View Source

 @spec timeout(t(), nil | pos_integer(), nil | pos_integer()) :: t()

 Link to this function

 with_hooks(changeset, func, opts \\ [])

 View Source

 @spec with_hooks(
 t(),
 (t() ->
 {:ok, term(), %{notifications: [Ash.Notifier.Notification.t()]}}
 | {:error, term()}),
 Keyword.t()
) ::
 {:ok, term(), t(), %{notifications: [Ash.Notifier.Notification.t()]}}
 | {:error, term()}

Wraps a function in the before/after action hooks of a changeset.
The function takes a changeset and if it returns
{:ok, result}, the result will be passed through the after
action hooks.

 Ash.Domain - ash v3.0.0-rc.6

Ash.Domain

A domain allows you to interact with your resources, and holds domain-wide configuration.
For example, the json domain extension adds a domain extension that lets you toggle authorization on/off
for all resources in a given domain. You include resources in your domain like so:
defmodule MyApp.MyDomain do
 use Ash.Domain

 resources do
 resource OneResource
 resource SecondResource
 end
end

 Options

	:validate_config_inclusion? (boolean/0) - Whether or not to validate that this domain is included in the configuration. The default value is true.

	:extensions (list of module that adopts Spark.Dsl.Extension) - A list of DSL extensions to add to the Spark.Dsl

	:otp_app (atom/0) - The otp_app to use for any application configurable options

	:fragments (list of module/0) - Fragments to include in the Elixir.Spark.Dsl. See the fragments guide for more.

 Summary

 Types

 t()

 Functions

 opt_schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: module()

 Functions

 Link to this function

 opt_schema()

 View Source

 Ash.Query - ash v3.0.0-rc.6

Ash.Query

Utilities around constructing/manipulating ash queries.
Ash queries are used for read actions and loads, and ultimately
map to queries to a resource's data layer.
Queries are run by calling Ash.read.
Examples:
MyApp.Post
|> Ash.Query.filter(likes > 10)
|> Ash.Query.sort([:title])
|> Ash.read!()

MyApp.Author
|> Ash.Query.aggregate(:published_post_count, :posts, query: [filter: [published: true]])
|> Ash.Query.sort(published_post_count: :desc)
|> Ash.Query.limit(10)
|> Ash.read!()

MyApp.Author
|> Ash.Query.load([:post_count, :comment_count])
|> Ash.Query.load(posts: [:comments])
|> Ash.read!()

 Summary

 Types

 around_action_fun()

 around_callback()

 around_result()

 around_transaction_fun()

 t()

 Functions

 accessing(query, types \\ [:attributes, :relationships, :calculations, :aggregates])

 Returns a list of attributes, aggregates, relationships, and calculations that are being loaded

 add_error(query, keys \\ [], message)

 after_action(query, func)

 aggregate(query, name, kind, relationship)

 Adds an aggregation to the query.

 aggregate(query, name, kind, relationship, opts)

 around_transaction(query, func)

 Adds an around_transaction hook to the query.

 authorize_results(query, func)

 before_action(query, func, opts \\ [])

 Adds a before_action hook to the query.

 build(resource, domain \\ nil, keyword)

 Builds a query from a keyword list.

 calculate(query, name, type, module_and_opts, arguments \\ %{}, constraints \\ [], extra_context \\ %{})

 Adds a calculation to the query.

 clear_result(changeset)

 Removes a result set previously with set_result/2

 data_layer_query(ash_query, opts \\ [])

 Return the underlying data layer query for an ash query

 delete_argument(query, argument_or_arguments)

 Remove an argument from the query

 deselect(query, fields)

 Ensure the the specified attributes are nil in the query results.

 distinct(query, distincts)

 Get results distinct on the provided fields.

 distinct_sort(query, sorts, opts \\ [])

 Set a sort to determine how distinct records are selected.

 ensure_selected(query, fields)

 Ensures that the given attributes are selected.

 equivalent_to(query, expr)

 Determines if the filter statement of a query is equivalent to the provided expression.

 equivalent_to?(query, expr)

 Same as equivalent_to/2 but always returns a boolean. :maybe returns false.

 fetch_argument(query, argument)

 fetches the value of an argument provided to the query or :error

 filter(query, filter)

 Attach a filter statement to the query.

 filter_input(query, filter)

 Attach a filter statement to the query labelled as user input.

 for_read(query, action_name, args \\ %{}, opts \\ [])

 Creates a query for a given read action and prepares it.

 get_argument(query, argument)

 Gets the value of an argument provided to the query

 limit(query, limit)

 Limit the results returned from the query

 load(query, new)

 Loads relationships, calculations, or aggregates on the resource.

 load_calculation_as(query, calc_name, as_name, opts_or_args \\ %{}, opts \\ [])

 Adds a resource calculation to the query as a custom calculation with the provided name.

 load_through(query, type, name, load)

 Adds a load statement to the result of an attribute or calculation.

 loading?(query, item)

 Returns true if the field/relationship or path to field/relationship is being loaded.

 lock(query, lock_type)

 Lock the query results.

 merge_query_load(left, right, context)

 Merges two query's load statements, for the purpose of handling calculation requirements.

 new(resource, opts \\ [])

 Create a new query

 offset(query, offset)

 Skip the first n records

 put_context(query, key, value)

 Sets a specific context key to a specific value

 select(query, fields, opts \\ [])

 Ensure that only the specified attributes are present in the results.

 selecting?(query, field)

 set_argument(query, argument, value)

 Add an argument to the query, which can be used in filter templates on actions

 set_arguments(query, map)

 Merge a map of arguments to the arguments list

 set_context(query, map)

 Merge a map of values into the query context

 set_domain(query, domain)

 Set the query's domain, and any loaded query's domain

 set_result(changeset, result)

 Set the result of the action. This will prevent running the underlying datalayer behavior

 set_tenant(query, tenant)

 sort(query, sorts, opts \\ [])

 Sort the results based on attributes, aggregates or calculations.

 sort_input(query, sorts, opts \\ [])

 Attach a sort statement to the query labelled as user input.

 struct?(arg1)

 subset_of(query, expr)

 Determines if the provided expression would return data that is a suprset of the data returned by the filter on the query.

 subset_of?(query, expr)

 Same as subset_of/2 but always returns a boolean. :maybe returns false.

 superset_of(query, expr)

 Determines if the provided expression would return data that is a subset of the data returned by the filter on the query.

 superset_of?(query, expr)

 Same as superset_of/2 but always returns a boolean. :maybe returns false.

 timeout(query, timeout)

 unload(query, fields)

 Removes a field from the list of fields to load

 unset(query, keys)

 Types

 Link to this type

 around_action_fun()

 View Source

 @type around_action_fun() :: (t(), around_callback() -> around_result())

 Link to this type

 around_callback()

 View Source

 @type around_callback() :: (t() -> around_result())

 Link to this type

 around_result()

 View Source

 @type around_result() :: {:ok, [Ash.Resource.record()]} | {:error, Ash.Error.t()}

 Link to this type

 around_transaction_fun()

 View Source

 @type around_transaction_fun() ::
 (t() -> {:ok, Ash.Resource.record()} | {:error, any()})

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Query{
 __validated_for_action__: atom() | nil,
 action: Ash.Resource.Actions.Read.t() | nil,
 action_failed?: boolean(),
 after_action: [
 (t(), [Ash.Resource.record()] ->
 {:ok, [Ash.Resource.record()]}
 | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
 | {:error, any()})
],
 aggregates: %{optional(atom()) => Ash.Filter.t()},
 arguments: %{optional(atom()) => any()},
 around_transaction: term(),
 authorize_results: [
 (t(), [Ash.Resource.record()] ->
 {:ok, [Ash.Resource.record()]} | {:error, any()})
],
 before_action: [(t() -> t())],
 calculations: %{optional(atom()) => :wat},
 context: map(),
 distinct: [atom()],
 distinct_sort: term(),
 domain: module() | nil,
 errors: [Ash.Error.t()],
 filter: Ash.Filter.t() | nil,
 invalid_keys: term(),
 limit: nil | non_neg_integer(),
 load: keyword(keyword()),
 load_through: term(),
 lock: term(),
 offset: non_neg_integer(),
 params: %{optional(atom() | binary()) => any()},
 phase: :preparing | :before_action | :after_action | :executing,
 resource: module(),
 select: nil | [atom()],
 sort: [atom() | {atom(), :asc | :desc}],
 sort_input_indices: term(),
 tenant: term(),
 timeout: pos_integer() | nil,
 valid?: boolean()
}

 Functions

 Link to this function

 accessing(query, types \\ [:attributes, :relationships, :calculations, :aggregates])

 View Source

Returns a list of attributes, aggregates, relationships, and calculations that are being loaded
Provide a list of field types to narrow down the returned results.

 Link to this function

 add_error(query, keys \\ [], message)

 View Source

 Link to this function

 after_action(query, func)

 View Source

 @spec after_action(
 t(),
 (t(), [Ash.Resource.record()] ->
 {:ok, [Ash.Resource.record()]}
 | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
 | {:error, term()})
) :: t()

 Link to this function

 aggregate(query, name, kind, relationship)

 View Source

Adds an aggregation to the query.
Aggregations are made available on the aggregates field of the records returned
The filter option accepts either a filter or a keyword list of options to supply to build a limiting query for that aggregate.
See the DSL docs for each aggregate type in the Resource DSL docs for more information.
Options:
	query: The query over the destination resource to use as a base for aggregation
	default: The default value to use if the aggregate returns nil
	filterable?: Whether or not this aggregate may be referenced in filters
	type: The type of the aggregate
	constraints: Type constraints for the aggregate's type
	implementation: An implementation used when the aggregate kind is custom
	read_action: The read action to use on the destination resource
	authorize?: Whether or not to authorize access to this aggregate
	join_filters: A map of relationship paths to filter expressions. See the aggregates guide for more.

 Link to this function

 aggregate(query, name, kind, relationship, opts)

 View Source

 Link to this function

 around_transaction(query, func)

 View Source

 @spec around_transaction(t(), around_transaction_fun()) :: t()

Adds an around_transaction hook to the query.
Your function will get the query, and a callback that must be called with a query (that may be modified).
The callback will return {:ok, results} or {:error, error}. You can modify these values, but the return value
must be one of those types.
The around_transaction calls happen first, and then (after they each resolve their callbacks) the before_action
hooks are called, followed by the after_action hooks being run. Then, the code that appeared after the callbacks were called is then run.
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action}.

 Link to this function

 authorize_results(query, func)

 View Source

 @spec authorize_results(
 t(),
 (t(), [Ash.Resource.record()] ->
 {:ok, [Ash.Resource.record()]}
 | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
 | {:error, term()})
) :: t()

 Link to this function

 before_action(query, func, opts \\ [])

 View Source

 @spec before_action(
 query :: t(),
 fun :: (t() -> t() | {t(), [Ash.Notifier.Notification.t()]}),
 opts :: Keyword.t()
) :: t()

Adds a before_action hook to the query.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

 Link to this function

 build(resource, domain \\ nil, keyword)

 View Source

 @spec build(Ash.Resource.t(), Ash.Domain.t() | nil, Keyword.t()) :: t()

Builds a query from a keyword list.
This is used by certain query constructs like aggregates. It can also be used to manipulate a data structure
before passing it to an ash query. It allows for building an entire query struct using only a keyword list.
For example:
Ash.Query.build(MyResource, filter: [name: "fred"], sort: [name: :asc], load: [:foo, :bar], offset: 10)
If you want to use the expression style filters, you can use expr/1.
For example:
import Ash.Expr, only: [expr: 1]

Ash.Query.build(Myresource, filter: expr(name == "marge"))

 Options

	:filter (term/0) - A filter keyword, expression or %Ash.Filter{}

	:sort (term/0) - A sort list or keyword

	:distinct_sort (term/0) - A distinct_sort list or keyword

	:limit (integer/0) - A limit to apply

	:offset (integer/0) - An offset to apply

	:load (term/0) - A load statement to add to the query

	:select (term/0) - A select statement to add to the query

	:ensure_selected (term/0) - An ensure_selected statement to add to the query

	:aggregate (term/0) - A custom aggregate to add to the query. Can be {name, type, relationship} or {name, type, relationship, build_opts}

	:calculate (term/0) - A custom calculation to add to the query. Can be {name, module_and_opts} or {name, module_and_opts, context}

	:distinct (list of atom/0) - A distinct clause to add to the query

	:context (map/0) - A map to merge into the query context

 Link to this function

 calculate(query, name, type, module_and_opts, arguments \\ %{}, constraints \\ [], extra_context \\ %{})

 View Source

Adds a calculation to the query.
Calculations are made available on the calculations field of the records returned
The module_and_opts argument accepts either a module or a {module, opts}. For more information
on what that module should look like, see Ash.Resource.Calculation.

 Link to this function

 clear_result(changeset)

 View Source

 @spec clear_result(t()) :: t()

Removes a result set previously with set_result/2

 Link to this function

 data_layer_query(ash_query, opts \\ [])

 View Source

Return the underlying data layer query for an ash query

 Link to this function

 delete_argument(query, argument_or_arguments)

 View Source

Remove an argument from the query

 Link to this function

 deselect(query, fields)

 View Source

Ensure the the specified attributes are nil in the query results.

 Link to this function

 distinct(query, distincts)

 View Source

 @spec distinct(t() | Ash.Resource.t(), Ash.Sort.t()) :: t()

Get results distinct on the provided fields.
Takes a list of fields to distinct on. Each call is additive, so to remove the distinct use
unset/2.
Examples:
Ash.Query.distinct(query, [:first_name, :last_name])

Ash.Query.distinct(query, :email)

 Link to this function

 distinct_sort(query, sorts, opts \\ [])

 View Source

Set a sort to determine how distinct records are selected.
If none is set, any sort applied to the query will be used.
This is useful if you want to control how the distinct records
are selected without affecting (necessarily, it may affect it if
there is no sort applied) the overall sort of the query

 Link to this function

 ensure_selected(query, fields)

 View Source

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

 Link to this macro

 equivalent_to(query, expr)

 View Source

 (macro)

Determines if the filter statement of a query is equivalent to the provided expression.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use supserset_of? to always return
a boolean.

 Link to this macro

 equivalent_to?(query, expr)

 View Source

 (macro)

Same as equivalent_to/2 but always returns a boolean. :maybe returns false.

 Link to this function

 fetch_argument(query, argument)

 View Source

 @spec fetch_argument(t(), atom()) :: {:ok, term()} | :error

fetches the value of an argument provided to the query or :error

 Link to this macro

 filter(query, filter)

 View Source

 (macro)

Attach a filter statement to the query.
The filter is applied as an "and" to any filters currently on the query.
For more information on writing filters, see: Ash.Filter.

 Link to this function

 filter_input(query, filter)

 View Source

Attach a filter statement to the query labelled as user input.
Filters added as user input (or filters constructed with Ash.Filter.parse_input)
will honor any field policies on resources by replacing any references to the field
with nil in cases where the actor should not be able to see the given field.
This function does not expect the expression style filter (because an external source
could never reasonably provide that). Instead, use the keyword/map style syntax. For
example:
expr(name == "fred")
could be any of
	map syntax: %{"name" => %{"eq" => "fred"}}
	keyword syntax: [name: [eq: "fred"]]

See Ash.Filter for more.

 Link to this function

 for_read(query, action_name, args \\ %{}, opts \\ [])

 View Source

Creates a query for a given read action and prepares it.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the domain action.

 Arguments

Provide a map or keyword list of arguments for the read action

 Opts

	:actor (term/0) - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:authorize? (boolean/0) - set authorize?, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer to use. Will be carried over to the action. For more information see Ash.Tracer.

	:tenant (value that implements the Ash.ToTenant protocol) - set the tenant on the query

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action.

 Link to this function

 get_argument(query, argument)

 View Source

 @spec get_argument(t(), atom()) :: term()

Gets the value of an argument provided to the query

 Link to this function

 limit(query, limit)

 View Source

 @spec limit(t() | Ash.Resource.t(), nil | integer()) :: t()

Limit the results returned from the query

 Link to this function

 load(query, new)

 View Source

 @spec load(
 t() | Ash.Resource.t(),
 atom()
 | Ash.Query.Calculation.t()
 | Ash.Query.Aggregate.t()
 | [atom() | Ash.Query.Calculation.t() | Ash.Query.Aggregate.t()]
 | [{atom() | Ash.Query.Calculation.t() | Ash.Query.Aggregate.t(), term()}]
) :: t()

Loads relationships, calculations, or aggregates on the resource.
Currently, loading attributes has no effects, as all attributes are returned.
Before long, we will have the default list to load as the attributes, but if you say
load(query, [:attribute1]), that will be the only field filled in. This will let
data layers make more intelligent "select" statements as well.
Loading nested relationships
Ash.Query.load(query, [comments: [:author, :ratings]])

Loading relationships with a query
Ash.Query.load(query, [comments: [author: author_query]])

 Link to this function

 load_calculation_as(query, calc_name, as_name, opts_or_args \\ %{}, opts \\ [])

 View Source

Adds a resource calculation to the query as a custom calculation with the provided name.
Example:
Ash.Query.load_calculation_as(query, :calculation, :some_name, args: %{}, load_through: [:foo])

 Link to this function

 load_through(query, type, name, load)

 View Source

Adds a load statement to the result of an attribute or calculation.
Uses Ash.Type.load/5 to request that the type load nested data.

 Link to this function

 loading?(query, item)

 View Source

Returns true if the field/relationship or path to field/relationship is being loaded.
It accepts an atom or a list of atoms, which is treated for as a "path", i.e:
Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?([:friends, :enemies, :score])
iex> true

Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?([:friends, :score])
iex> false

Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?(:friends)
iex> true

 Link to this function

 lock(query, lock_type)

 View Source

 @spec lock(t() | Ash.Resource.t(), Ash.DataLayer.lock_type()) :: t()

Lock the query results.
This must be run while in a transaction, and is not supported by all data layers.

 Link to this function

 merge_query_load(left, right, context)

 View Source

Merges two query's load statements, for the purpose of handling calculation requirements.
This should only be used if you are writing a custom type that is loadable.
See the callback documentation for Ash.Type.merge_load/4 for more.

 Link to this function

 new(resource, opts \\ [])

 View Source

 @spec new(Ash.Resource.t() | t(), opts :: Keyword.t()) :: t()

Create a new query

 Link to this function

 offset(query, offset)

 View Source

 @spec offset(t() | Ash.Resource.t(), nil | integer()) :: t()

Skip the first n records

 Link to this function

 put_context(query, key, value)

 View Source

 @spec put_context(t() | Ash.Resource.t(), atom(), term()) :: t()

Sets a specific context key to a specific value
See set_context/2 for more information.

 Link to this function

 select(query, fields, opts \\ [])

 View Source

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes are always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Use ensure_selected/2 if you wish to make sure a field has been selected, without deselecting any other fields.

 Link to this function

 selecting?(query, field)

 View Source

 Link to this function

 set_argument(query, argument, value)

 View Source

Add an argument to the query, which can be used in filter templates on actions

 Link to this function

 set_arguments(query, map)

 View Source

Merge a map of arguments to the arguments list

 Link to this function

 set_context(query, map)

 View Source

 @spec set_context(t() | Ash.Resource.t(), map() | nil) :: t()

Merge a map of values into the query context

 Link to this function

 set_domain(query, domain)

 View Source

Set the query's domain, and any loaded query's domain

 Link to this function

 set_result(changeset, result)

 View Source

 @spec set_result(t(), term()) :: t()

Set the result of the action. This will prevent running the underlying datalayer behavior

 Link to this function

 set_tenant(query, tenant)

 View Source

 @spec set_tenant(t() | Ash.Resource.t(), Ash.ToTenant.t()) :: t()

 Link to this function

 sort(query, sorts, opts \\ [])

 View Source

 @spec sort(t() | Ash.Resource.t(), Ash.Sort.t(), opts :: Keyword.t()) :: t()

Sort the results based on attributes, aggregates or calculations.
Calculations are supported if they are defined with expressions, which can be done one of two ways.
	with the shorthand calculate :calc, :type, expr(a + b)
	By defining expression/2 in a custom calculation module

See the guide on calculations for more.
Takes a list of fields to sort on, or a keyword list/mixed keyword list of fields and sort directions.
The default sort direction is :asc.
Examples:
Ash.Query.sort(query, [:foo, :bar])

Ash.Query.sort(query, [:foo, bar: :desc])

Ash.Query.sort(query, [foo: :desc, bar: :asc])

 Options

	prepend? - set to true to put your sort at the front of the list of a sort is already specified

 Link to this function

 sort_input(query, sorts, opts \\ [])

 View Source

Attach a sort statement to the query labelled as user input.
Sorts added as user input (or filters constructed with Ash.Filter.parse_input)
will honor any field policies on resources by replacing any references to the field
with nil in cases where the actor should not be able to see the given field.

 Link to this function

 struct?(arg1)

 View Source

 Link to this macro

 subset_of(query, expr)

 View Source

 (macro)

Determines if the provided expression would return data that is a suprset of the data returned by the filter on the query.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use subset_of? to always return
a boolean.

 Link to this macro

 subset_of?(query, expr)

 View Source

 (macro)

Same as subset_of/2 but always returns a boolean. :maybe returns false.

 Link to this macro

 superset_of(query, expr)

 View Source

 (macro)

Determines if the provided expression would return data that is a subset of the data returned by the filter on the query.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use supserset_of? to always return
a boolean.

 Link to this macro

 superset_of?(query, expr)

 View Source

 (macro)

Same as superset_of/2 but always returns a boolean. :maybe returns false.

 Link to this function

 timeout(query, timeout)

 View Source

 Link to this function

 unload(query, fields)

 View Source

 @spec unload(t(), [atom()]) :: t()

Removes a field from the list of fields to load

 Link to this function

 unset(query, keys)

 View Source

 @spec unset(Ash.Resource.t() | t(), atom() | [atom()]) :: t()

 Ash.Query.Aggregate - ash v3.0.0-rc.6

Ash.Query.Aggregate

Represents an aggregated association value

 Summary

 Types

 kind()

 t()

 Functions

 default_value(atom)

 new(resource, name, kind, opts \\ [])

 Create a new aggregate, used with Query.aggregate or Ash.aggregate

 new!(resource, name, kind, opts \\ [])

 Types

 Link to this type

 kind()

 View Source

 @type kind() ::
 :custom | :exists | :avg | :min | :max | :list | :sum | :first | :count

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Query.Aggregate{
 agg_name: term(),
 authorize?: term(),
 constraints: term(),
 context: term(),
 default_value: term(),
 field: term(),
 filterable?: term(),
 implementation: term(),
 include_nil?: term(),
 join_filters: term(),
 kind: term(),
 load: term(),
 name: term(),
 query: term(),
 read_action: term(),
 relationship_path: term(),
 resource: term(),
 sensitive?: term(),
 sortable?: term(),
 type: term(),
 uniq?: term()
}

 Functions

 Link to this function

 default_value(atom)

 View Source

 Link to this function

 new(resource, name, kind, opts \\ [])

 View Source

Create a new aggregate, used with Query.aggregate or Ash.aggregate
Options:
	:path (list of atom/0) - The relationship path to aggregate over. Only used when adding aggregates to a query.

	:query (term/0) - A base query to use for the aggregate, or a keyword list to be passed to Ash.Query.build/2

	:field (atom/0) - The field to use for the aggregate. Not necessary for all aggregate types.

	:default (term/0) - A default value to use for the aggregate if it returns nil.

	:filterable? (boolean/0) - Whether or not this aggregate may be used in filters. The default value is true.

	:sortable? (boolean/0) - Whether or not this aggregate may be used in sorts. The default value is true.

	:type (term/0) - A type to use for the aggregate.

	:constraints (term/0) - Type constraints to use for the aggregate.

	:implementation (term/0) - The implementation for any custom aggregates.

	:read_action (atom/0) - The read action to use for the aggregate, defaults to the primary read action.

	:uniq? (boolean/0) - Whether or not to only consider unique values. Only relevant for count and list aggregates. The default value is false.

	:include_nil? (boolean/0) - Whether or not to include nil values in the aggregate. Only relevant for list and first aggregates. The default value is false.

	:join_filters (map of one or a list of atom/0 keys and term/0 values) - A map of relationship paths (an atom or list of atoms), to an expression to apply when fetching the aggregate data. See the aggregates guide for more. The default value is %{}.

	:sensitive? (boolean/0) - Whether or not references to this aggregate will be considered sensitive The default value is false.

	:authorize? (boolean/0) - Whether or not the aggregate query should authorize based on the target action.
See d:Ash.Resource.Dsl.aggregates|count for more information. The default value is true.

 Link to this function

 new!(resource, name, kind, opts \\ [])

 View Source

 Ash.Query.Calculation - ash v3.0.0-rc.6

Ash.Query.Calculation

Represents a calculated attribute requested on a query

 Summary

 Types

 t()

 Functions

 new(name, module, calc_opts, type, constraints, opts \\ [])

 Creates a new query calculation.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Query.Calculation{
 calc_name: term(),
 constraints: term(),
 context: term(),
 filterable?: term(),
 load: term(),
 module: term(),
 name: term(),
 opts: term(),
 required_loads: term(),
 select: term(),
 sensitive?: term(),
 sortable?: term(),
 type: term()
}

 Functions

 Link to this function

 new(name, module, calc_opts, type, constraints, opts \\ [])

 View Source

Creates a new query calculation.

 Options

	:arguments (map/0) - Arguments to pass to the calculation The default value is %{}.

	:filterable? (boolean/0) - Whether or not this calculation can be filtered on The default value is true.

	:sortable? (boolean/0) - Whether or not this calculation can be sorted on The default value is true.

	:sensitive? (boolean/0) - Whether or not references to this calculation will be considered sensitive The default value is false.

	:load (term/0) - Loads that are required for the calculation.

	:source_context (map/0) - Context from the source query or changeset. The default value is %{}.

 Ash.Resource.Preparation - ash v3.0.0-rc.6

Ash.Resource.Preparation behaviour

The behaviour for an action-specific query preparation.
init/1 is defined automatically by use Ash.Resource.Preparation, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is prepare/3. It takes the query, any options that were provided
when this preparation was configured on a resource, and the context, which currently only has
the actor.
To access any query arguments from within a preparation, make sure you are using Ash.Query.get_argument/2
as the argument keys may be strings or atoms.

 Summary

 Types

 ref()

 t()

 Callbacks

 init(opts)

 prepare(query, opts, context)

 Types

 Link to this type

 ref()

 View Source

 @type ref() :: {module(), Keyword.t()} | module()

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Preparation{preparation: term()}

 Callbacks

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}

 Link to this callback

 prepare(query, opts, context)

 View Source

 @callback prepare(
 query :: Ash.Query.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.Preparation.Context.t()
) :: Ash.Query.t()

 Ash.Resource.Preparation.Builtins - ash v3.0.0-rc.6

Ash.Resource.Preparation.Builtins

Builtin query preparations

 Summary

 Functions

 after_action(callback)

 Directly attach an after_action function to the query.

 before_action(callback)

 Directly attach a before_action function to the query.

 build(options)

 Passes the given keyword list to Ash.Query.build/2 with the query being prepared.

 set_context(context)

 Merges the given query context.

 Functions

 Link to this macro

 after_action(callback)

 View Source

 (macro)

Directly attach an after_action function to the query.
See Ash.Query.after_action/2 for more information.

 Example

 prepare after_action(fn query, records ->
Logger.debug("Query for #{query.action.name} on resource #{inspect(query.resource)} returned #{length(records)} records")

{:ok, records}
 end)

 Link to this macro

 before_action(callback)

 View Source

 (macro)

Directly attach a before_action function to the query.
See Ash.Query.before_action/2 for more information.

 Example

 prepare before_action(fn query ->
Logger.debug("About to execute query for #{query.action.name} on #{inspect(query.resource)})

query
 end)

 Link to this function

 build(options)

 View Source

 @spec build(Keyword.t()) :: Ash.Resource.Preparation.ref()

Passes the given keyword list to Ash.Query.build/2 with the query being prepared.
This allows declaring simple query modifications in-line.
To see the available options, see Ash.Query.build/2

 Examples

prepare build(sort: [song_rank: :desc], limit: 10)
prepare build(load: [:friends])

 Link to this function

 set_context(context)

 View Source

 @spec set_context(context :: map() | mfa()) :: Ash.Resource.Preparation.ref()

Merges the given query context.
If an MFA is provided, it will be called with the changeset.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

 Examples

change set_context(%{something_used_internally: true})
change set_context({MyApp.Context, :set_context, []})

 Ash.Resource.Change - ash v3.0.0-rc.6

Ash.Resource.Change behaviour

The behaviour for an action-specific resource change.
init/1 is defined automatically by use Ash.Resource.Change, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is change/3. It takes the changeset, any options that were provided
when this change was configured on a resource, and the context, which currently only has
the actor.

 Summary

 Types

 context()

 ref()

 t()

 Callbacks

 after_atomic(t, t, record, t)

 after_batch(changesets_and_results, opts, context)

 Runs on each batch result after it is dispatched to the data layer.

 atomic(t, t, t)

 atomic?()

 batch_change(changesets, opts, context)

 Replaces change/3 for batch actions, allowing to optimize changes for bulk actions.

 before_batch(changesets, opts, context)

 Runs on each batch before it is dispatched to the data layer.

 change(changeset, opts, context)

 has_change?()

 init(opts)

 Types

 Link to this type

 context()

 View Source

 @type context() :: Ash.Resource.Change.Context.t()

 Link to this type

 ref()

 View Source

 @type ref() :: {module(), Keyword.t()} | module()

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Change{
 always_atomic?: term(),
 change: term(),
 description: term(),
 on: term(),
 only_when_valid?: term(),
 where: term()
}

 Callbacks

 Link to this callback

 after_atomic(t, t, record, t)

 View Source

 (optional)

 @callback after_atomic(
 Ash.Changeset.t(),
 Keyword.t(),
 Ash.Resource.record(),
 Ash.Resource.Change.Context.t()
) :: {:ok, Ash.Resource.record()} | {:error, term()}

 Link to this callback

 after_batch(changesets_and_results, opts, context)

 View Source

 (optional)

 @callback after_batch(
 changesets_and_results :: [{Ash.Changeset.t(), Ash.Resource.record()}],
 opts :: Keyword.t(),
 context :: Ash.Resource.Change.Context.t()
) ::
 Enumerable.t(
 {:ok, Ash.Resource.record()}
 | {:error, Ash.Error.t()}
 | Ash.Notifier.Notification.t()
)

Runs on each batch result after it is dispatched to the data layer.

 Link to this callback

 atomic(t, t, t)

 View Source

 (optional)

 @callback atomic(Ash.Changeset.t(), Keyword.t(), Ash.Resource.Change.Context.t()) ::
 {:ok, Ash.Changeset.t()}
 | {:atomic, %{optional(atom()) => Ash.Expr.t() | {:atomic, Ash.Expr.t()}}}
 | {:atomic, Ash.Changeset.t(), %{optional(atom()) => Ash.Expr.t()}}
 | {:not_atomic, String.t()}
 | :ok
 | {:error, term()}

 Link to this callback

 atomic?()

 View Source

 @callback atomic?() :: boolean()

 Link to this callback

 batch_change(changesets, opts, context)

 View Source

 (optional)

 @callback batch_change(
 changesets :: [Ash.Changeset.t()],
 opts :: Keyword.t(),
 context :: Ash.Resource.Change.Context.t()
) :: Enumerable.t(Ash.Changeset.t() | Ash.Notifier.Notification.t())

Replaces change/3 for batch actions, allowing to optimize changes for bulk actions.

 Link to this callback

 before_batch(changesets, opts, context)

 View Source

 (optional)

 @callback before_batch(
 changesets :: [Ash.Changeset.t()],
 opts :: Keyword.t(),
 context :: Ash.Resource.Change.Context.t()
) :: Enumerable.t(Ash.Changeset.t() | Ash.Notifier.Notification.t())

Runs on each batch before it is dispatched to the data layer.

 Link to this callback

 change(changeset, opts, context)

 View Source

 (optional)

 @callback change(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.Change.Context.t()
) :: Ash.Changeset.t()

 Link to this callback

 has_change?()

 View Source

 @callback has_change?() :: boolean()

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}

 Ash.Resource.Validation - ash v3.0.0-rc.6

Ash.Resource.Validation behaviour

Represents a validation in Ash.
See Ash.Resource.Validation.Builtins for a list of builtin validations.
To write your own validation, define a module that implements the init/1 callback
to validate options at compile time, and validate/3 callback to do the validation.
Then, in a resource, you can say:
validations do
 validate {MyValidation, [foo: :bar]}
end

 Summary

 Types

 path()

 ref()

 t()

 Callbacks

 atomic(changeset, opts, context)

 atomic?()

 describe(opts)

 has_validate?()

 init(opts)

 validate(changeset, opts, context)

 Functions

 action_schema()

 opt_schema()

 validation_type()

 Types

 Link to this type

 path()

 View Source

 @type path() :: [atom() | integer()]

 Link to this type

 ref()

 View Source

 @type ref() :: {module(), Keyword.t()} | module()

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Validation{
 always_atomic?: term(),
 before_action?: term(),
 description: String.t() | nil,
 message: term(),
 module: atom(),
 on: [atom()],
 only_when_valid?: boolean(),
 opts: [atom()],
 validation: {atom(), [atom()]},
 where: [{atom(), [atom()]}]
}

 Callbacks

 Link to this callback

 atomic(changeset, opts, context)

 View Source

 (optional)

 @callback atomic(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.Validation.Context.t()
) ::
 :ok
 | {:atomic, involved_fields :: [atom()] | :*, condition_expr :: Ash.Expr.t(),
 error_expr :: Ash.Expr.t()}
 | [
 {:atomic, involved_fields :: [atom()] | :*,
 condition_expr :: Ash.Expr.t(), error_expr :: Ash.Expr.t()}
]
 | {:not_atomic, String.t()}
 | {:error, term()}

 Link to this callback

 atomic?()

 View Source

 @callback atomic?() :: boolean()

 Link to this callback

 describe(opts)

 View Source

 (optional)

 @callback describe(opts :: Keyword.t()) ::
 String.t() | [message: String.t(), vars: Keyword.t()]

 Link to this callback

 has_validate?()

 View Source

 @callback has_validate?() :: boolean()

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: Keyword.t()) :: {:ok, Keyword.t()} | {:error, String.t()}

 Link to this callback

 validate(changeset, opts, context)

 View Source

 (optional)

 @callback validate(
 changeset :: Ash.Changeset.t(),
 opts :: Keyword.t(),
 context :: Ash.Resource.Validation.Context.t()
) :: :ok | {:error, term()}

 Functions

 Link to this function

 action_schema()

 View Source

 Link to this function

 opt_schema()

 View Source

 Link to this function

 validation_type()

 View Source

 Ash.Resource.Change.Builtins - ash v3.0.0-rc.6

Ash.Resource.Change.Builtins

Built in changes that are available to all resources
The functions in this module are imported by default in the actions section.

 Summary

 Functions

 after_action(callback, opts \\ [])

 Directly attach an after_action function to the current change.

 after_transaction(callback, opts \\ [])

 Directly attach an after_transaction function to the current change.

 atomic_update(attribute, expr, opts \\ [])

 Updates an attribute using an expression. See Ash.Changeset.atomic_update/3 for more.

 before_action(callback, opts \\ [])

 Directly attach a before_action function to the current change.

 before_transaction(callback, opts \\ [])

 Directly attach a before_transaction function to the current change.

 debug_log(label \\ nil)

 ensure_selected(value)

 Passes the provided value into Ash.Changeset.ensure_selected/2

 get_and_lock(lock)

 Re-fetches the record being updated and locks it with the given type.

 get_and_lock_for_update()

 Re-fetches the record being updated and locks it for update.

 increment(attribute, opts \\ [])

 Increments an attribute's value by the amount specified, which defaults to 1.

 load(value)

 Passes the provided value into Ash.load after the action has completed.

 manage_relationship(argument, relationship_name \\ nil, opts)

 Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument.

 optimistic_lock(attribute)

 Apply an "optimistic lock" on a record being updated or destroyed.

 prevent_change(attribute)

 Clears a change off of the changeset before the action runs.

 relate_actor(relationship, opts \\ [])

 relate_actor_opts()

 Relates the actor to the data being changed, as the provided relationship.

 select(value)

 Passes the provided value into Ash.Changeset.select/3

 set_attribute(attribute, value, opts \\ [])

 Sets the attribute to the value provided.

 set_context(context)

 Merges the given query context.

 set_new_attribute(attribute, value)

 Sets the attribute to the value provided if the attribute is not already being changed.

 Functions

 Link to this macro

 after_action(callback, opts \\ [])

 View Source

 (macro)

Directly attach an after_action function to the current change.
See Ash.Changeset.after_action/3 for more information.
Provide the option prepend?: true to place the hook before all other hooks instead of after.

 Example

change after_action(fn changeset, record, _context ->
 Logger.debug("Successfully executed action #{changeset.action.name} on #{inspect(changeset.resource)}")
 {:ok, record}
end)

 Link to this macro

 after_transaction(callback, opts \\ [])

 View Source

 (macro)

Directly attach an after_transaction function to the current change.
See Ash.Changeset.after_transaction/3 for more information.
Provide the option prepend?: true to place the hook before all other hooks instead of after.

 Example

change after_transaction(fn
 changeset, {:ok, record}, _context ->
 Logger.debug("Successfully executed transaction for action #{changeset.action.name} on #{inspect(changeset.resource)}")
 {:ok, record}
 changeset, {:error, reason}, _context ->
 Logger.debug("Failed to execute transaction for action #{changeset.action.name} on #{inspect(changeset.resource)}, reason: #{inspect(reason)}")
 {:error, reason}
end)

 Link to this function

 atomic_update(attribute, expr, opts \\ [])

 View Source

 @spec atomic_update(attribute :: atom(), expr :: Ash.Expr.t(), opts :: Keyword.t()) ::
 Ash.Resource.Change.ref()

Updates an attribute using an expression. See Ash.Changeset.atomic_update/3 for more.
Options:
	:cast_atomic? - set to false to ignore atomic type casting logic. Defaults to true.

 Link to this macro

 before_action(callback, opts \\ [])

 View Source

 (macro)

Directly attach a before_action function to the current change.
See Ash.Changeset.before_action/3 for more information.
Provide the option append?: true to place the hook after all other hooks instead of before.

 Example

change before_action(fn changeset, _context ->
 Logger.debug("About to execute #{changeset.action.name} on #{inspect(changeset.resource)})

 changeset
end)

 Link to this macro

 before_transaction(callback, opts \\ [])

 View Source

 (macro)

Directly attach a before_transaction function to the current change.
See Ash.Changeset.before_transaction/3 for more information.
Provide the option append?: true to place the hook after all other hooks instead of before.

 Example

change before_transaction(fn changeset, _context ->
 Logger.debug("About to execute transaction for #{changeset.action.name} on #{inspect(changeset.resource)})

 changeset
end)

 Link to this function

 debug_log(label \\ nil)

 View Source

 @spec debug_log(label :: String.t() | nil) :: Ash.Resource.Change.ref()

 Link to this function

 ensure_selected(value)

 View Source

 @spec ensure_selected(select :: atom() | [atom()]) :: Ash.Resource.Change.ref()

Passes the provided value into Ash.Changeset.ensure_selected/2
If the value is not already selected, this makes sure it is. Does not deselect anything else.

 Example

 change ensure_selected([:necessary_field])

 Link to this function

 get_and_lock(lock)

 View Source

 @spec get_and_lock(lock :: Ash.DataLayer.lock_type()) :: Ash.Resource.Change.ref()

Re-fetches the record being updated and locks it with the given type.
This happens in a before_action hook (so that it is done as part of the transaction).
If your resource has global validations (in the top level validations block), you may
want to add delay_global_validations? true to your action to ensure they happen on the
locked record.

 Link to this function

 get_and_lock_for_update()

 View Source

 @spec get_and_lock_for_update() :: Ash.Resource.Change.ref()

Re-fetches the record being updated and locks it for update.
Only usable with data layers that support locking :for_update.
This happens in a before_action hook (so that it is done as part of the transaction).
If your resource has global validations (in the top level validations block), you may
want to add delay_global_validations? true to your action to ensure they happen on the
locked record.

 Link to this function

 increment(attribute, opts \\ [])

 View Source

 @spec increment(attribute :: atom(), opts :: Keyword.t()) :: Ash.Resource.Change.ref()

Increments an attribute's value by the amount specified, which defaults to 1.
Options:
	:amount - Defaults to 1
	:overflow_limit - Defaults to nil. If the value is over the overflow limit it will roll-over to the amount being incremented by (for common database limit support)

 Link to this function

 load(value)

 View Source

 @spec load(load :: term()) :: Ash.Resource.Change.ref()

Passes the provided value into Ash.load after the action has completed.

 Example

change load(:comments)
change load([:friend_count, :friends])

 Link to this function

 manage_relationship(argument, relationship_name \\ nil, opts)

 View Source

 @spec manage_relationship(
 argument :: atom(),
 relationship_name :: atom() | nil,
 opts :: Keyword.t()
) :: Ash.Resource.Change.ref()

Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument.
If relationship_name is not specified, it is assumed to be the same as the argument.
For information on the available options, see Ash.Changeset.manage_relationship/4.

 Examples

change manage_relationship(:comments, type: :append)
change manage_relationship(:remove_comments, :comments, type: :remove)

 Link to this function

 optimistic_lock(attribute)

 View Source

Apply an "optimistic lock" on a record being updated or destroyed.
This is modeled after ecto's implementation of optimistic locking, so to
read more, see their documentation: https://hexdocs.pm/ecto/Ecto.Changeset.html#optimistic_lock/3
The primary difference is that we leave it to you to increment the field being used for optimistic locking
yourself. So in ecto you might do Changeset.optimistic_lock(changeset, :foo) and that would add 1 to the :foo attribute
automatically. In Ash, you would combine this with the increment/1 change.
change optimistic_lock(:foo)
change increment(:foo)

 Link to this function

 prevent_change(attribute)

 View Source

 @spec prevent_change(attribute :: atom()) :: Ash.Resource.Change.ref()

Clears a change off of the changeset before the action runs.
Does not fail if it is being changed, but ensures it is cleared just before the action.
Can be useful if a change is only used in validations but shouldn't ultimately be written to the data layer.

 Examples

change prevent_change(:email)

 Link to this function

 relate_actor(relationship, opts \\ [])

 View Source

 @spec relate_actor(relationship :: atom(), opts :: Keyword.t()) ::
 Ash.Resource.Change.ref()

 Link to this function

 relate_actor_opts()

 View Source

Relates the actor to the data being changed, as the provided relationship.

 Options

	:relationship (atom/0) - Required. The relationship to set the actor to.

	:allow_nil? (boolean/0) - Whether or not to allow the actor to be nil, in which case nothing will happen. The default value is false.

	:field (atom/0) - The field of the actor to set the relationship to

 Examples

change relate_actor(:owner, allow_nil?: true)

 Link to this function

 select(value)

 View Source

 @spec select(select :: atom() | [atom()]) :: Ash.Resource.Change.ref()

Passes the provided value into Ash.Changeset.select/3
Keep in mind, this will limit the fields that are selected. You may want ensure_selected/1 if you
want to make sure that something is selected, without deselecting anything else.
Selecting in changesets does not actually do a select in the data layer. It nils out any
fields that were not selected after completing the action. This can be useful if you are writing
policies that have to do with specific fields being selected.

 Example

change select([:name])

 Link to this function

 set_attribute(attribute, value, opts \\ [])

 View Source

 @spec set_attribute(
 relationship :: atom(),
 (-> term()) | {:_arg, :status} | term(),
 opts :: Keyword.t()
) :: Ash.Resource.Change.ref()

Sets the attribute to the value provided.
If a zero argument function is provided, it is called to determine the value.
Use arg(:argument_name) to use the value of the given argument. If the argument is not supplied then nothing happens.

 Options

	:set_when_nil? (boolean/0) - When false, decline setting the attribute if it is nil. The default value is true.

	:new? (boolean/0) - When true, sets the attribute to the value provided if the attribute is not already being changed. The default value is false.

 Examples

change set_attribute(:active, false)
change set_attribute(:opened_at, &DateTime.utc_now/0)
change set_attribute(:status, arg(:status))
change set_attribute(:encrypted_data, arg(:data), set_when_nil?: false)

 Link to this function

 set_context(context)

 View Source

 @spec set_context(context :: map() | mfa()) :: Ash.Resource.Change.ref()

Merges the given query context.
If an MFA is provided, it will be called with the changeset.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

 Examples

change set_context(%{something_used_internally: true})
change set_context({MyApp.Context, :set_context, []})

 Link to this function

 set_new_attribute(attribute, value)

 View Source

 @spec set_new_attribute(
 relationship :: atom(),
 (-> term()) | {:_arg, :status} | term()
) ::
 Ash.Resource.Change.ref()

Sets the attribute to the value provided if the attribute is not already being changed.
If a zero argument function is provided, it is called to determine the value.
Use arg(:argument_name) to use the value of the given argument. If the argument is not supplied then nothing happens.

 Examples

change set_new_attribute(:active, false)
change set_new_attribute(:opened_at, &DateTime.utc_now/0)
change set_new_attribute(:status, arg(:status))

 Ash.Resource.Validation.Builtins - ash v3.0.0-rc.6

Ash.Resource.Validation.Builtins

Built in validations that are available to all resources
The functions in this module are imported by default in the validations section.

 Summary

 Functions

 absent(attributes, opts \\ [])

 Validates the absence of a list of attributes or arguments.

 action_is(action)

 Validates that the action is a specific action. Primarily meant for use in where.

 argument_does_not_equal(argument, value)

 Validates that an argument is not being changed to a specific value, or does not equal the given value if it is not being changed.

 argument_equals(argument, value)

 Validates that an argument is being changed to a specific value, or equals the given value if it is not being changed.

 argument_in(argument, list)

 Validates that an argument is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

 attribute_does_not_equal(attribute, value)

 Validates that an attribute is not being changed to a specific value, or does not equal the given value if it is not being changed.

 attribute_equals(attribute, value)

 Validates that an attribute is being changed to a specific value, or equals the given value if it is not being changed.

 attribute_in(attribute, list)

 Validates that an attribute is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

 changing(field)

 Validates that an attribute or relationship is being changed

 compare(attribute, opts \\ [])

 Validates that an attribute or argument meets the given comparison criteria.

 confirm(field, confirmation)

 Validates that a field or argument matches another field or argument

 match(attribute, match)

 Validates that an attribute's value matches a given regex.

 negate(validation)

 Validates that other validation does not pass

 numericality(attribute, opts \\ [])

 Validates that an attribute or argument meets the given comparison criteria.

 one_of(attribute, values)

 Validates that an attribute's value is in a given list

 present(attributes, opts \\ [])

 Validates the presence of a list of attributes or arguments.

 string_length(attribute, opts \\ [])

 Validates that an attribute on the original record meets the given length criteria

 Functions

 Link to this function

 absent(attributes, opts \\ [])

 View Source

 @spec absent(attributes_or_arguments :: atom() | [atom()], opts :: Keyword.t()) ::
 Ash.Resource.Validation.ref()

Validates the absence of a list of attributes or arguments.
If no options are provided, validates that they are all absent.
This works by changing your options and providing them to the present validation.

 Options

	:at_least (non_neg_integer/0) - At least this many must be absent. Defaults to the number of attributes provided

	:at_most (non_neg_integer/0) - At most this many must be absent. Defaults to the number of attributes provided

	:exactly (non_neg_integer/0) - Exactly this many must be absent

 Link to this function

 action_is(action)

 View Source

 @spec action_is(action :: atom()) :: Ash.Resource.Validation.ref()

Validates that the action is a specific action. Primarily meant for use in where.

 Examples

validate present(:foo), where: [action_is(:bar)]

 Link to this function

 argument_does_not_equal(argument, value)

 View Source

 @spec argument_does_not_equal(argument :: atom(), value :: term()) ::
 Ash.Resource.Validation.ref()

Validates that an argument is not being changed to a specific value, or does not equal the given value if it is not being changed.

 Examples

validate argument_does_not_equal(:admin, true)

Or to only check for changing to a given value
validate argument_does_not_equal(:admin, true), where: [changing(:admin)]

 Link to this function

 argument_equals(argument, value)

 View Source

 @spec argument_equals(argument :: atom(), value :: term()) ::
 Ash.Resource.Validation.ref()

Validates that an argument is being changed to a specific value, or equals the given value if it is not being changed.

 Examples

validate argument_equals(:admin, true)

Or to only check for changing to a given value
validate argument_equals(:admin, true), where: [changing(:admin)]

 Link to this function

 argument_in(argument, list)

 View Source

 @spec argument_in(argument :: atom(), list :: [term()]) ::
 Ash.Resource.Validation.ref()

Validates that an argument is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

 Examples

validate argument_in(:state, [1, 2, 3])

Or to only check for changing to a something in a given list
validate argument_in(:state, [1, 2, 3]), where: [changing(:state)]

 Link to this function

 attribute_does_not_equal(attribute, value)

 View Source

 @spec attribute_does_not_equal(attribute :: atom(), value :: term()) ::
 Ash.Resource.Validation.ref()

Validates that an attribute is not being changed to a specific value, or does not equal the given value if it is not being changed.

 Examples

validate attribute_does_not_equal(:admin, true)

Or to only check for changing to a given value
validate attribute_does_not_equal(:admin, true), where: [changing(:admin)]

 Link to this function

 attribute_equals(attribute, value)

 View Source

 @spec attribute_equals(attribute :: atom(), value :: term()) ::
 Ash.Resource.Validation.ref()

Validates that an attribute is being changed to a specific value, or equals the given value if it is not being changed.

 Examples

validate attribute_equals(:admin, true)

Or to only check for changing to a given value
validate attribute_equals(:admin, true), where: [changing(:admin)]

 Link to this function

 attribute_in(attribute, list)

 View Source

 @spec attribute_in(attribute :: atom(), list :: [term()]) ::
 Ash.Resource.Validation.ref()

Validates that an attribute is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

 Examples

validate attribute_in(:state, [1, 2, 3])

Or to only check for changing to a something in a given list
validate attribute_in(:state, [1, 2, 3]), where: [changing(:state)]

 Link to this function

 changing(field)

 View Source

 @spec changing(attribute :: atom()) :: Ash.Resource.Validation.ref()

Validates that an attribute or relationship is being changed

 Examples

validate changing(:first_name)
validate changing(:comments)

 Link to this function

 compare(attribute, opts \\ [])

 View Source

 @spec compare(attribute :: atom(), opts :: Keyword.t()) ::
 Ash.Resource.Validation.ref()

Validates that an attribute or argument meets the given comparison criteria.
The values provided for each option may be a literal value, attribute, argument, or a zero argument function.

 Options

	:greater_than - The value that the attribute should be greater than.

	:greater_than_or_equal_to - The value that the attribute should be greater than or equal to

	:less_than - The value that the attribute should be less than

	:less_than_or_equal_to - The value that the attribute should be less than or equal to

 Examples

validate compare(:age, greater_than_or_equal_to: 18),
 where: [attribute_equals(:show_adult_content, true)],
 message: "must be over %{greater_than_or_equal_to} to enable adult content."

validate compare(:points, greater_than: 0, less_than_or_equal_to: 100)

 Link to this function

 confirm(field, confirmation)

 View Source

 @spec confirm(
 attribute_or_argument :: atom(),
 confirmation_attribute_or_argument :: atom()
) ::
 Ash.Resource.Validation.ref()

Validates that a field or argument matches another field or argument

 Examples

validate confirm(:password, :password_confirmation)
validate confirm(:email, :email_confirmation)

 Link to this function

 match(attribute, match)

 View Source

 @spec match(attribute :: atom(), match :: Regex.t()) :: Ash.Resource.Validation.ref()

Validates that an attribute's value matches a given regex.
String.match?/2 is used to determine if the value matches.

 Examples

 validate match(:slug, ~r/^[0-9a-z-_]+$/)

 Link to this function

 negate(validation)

 View Source

 @spec negate(validation :: Ash.Resource.Validation.ref()) ::
 Ash.Resource.Validation.ref()

Validates that other validation does not pass

 Examples

 validate negate(one_of(:status, [:closed, :finished]))

 Link to this function

 numericality(attribute, opts \\ [])

 View Source

 @spec numericality(attribute :: atom(), opts :: Keyword.t()) ::
 Ash.Resource.Validation.ref()

Validates that an attribute or argument meets the given comparison criteria.
The values provided for each option may be a literal value, attribute, argument, or a zero argument function.

 Options

	:greater_than - The value that the attribute should be greater than.

	:greater_than_or_equal_to - The value that the attribute should be greater than or equal to

	:less_than - The value that the attribute should be less than

	:less_than_or_equal_to - The value that the attribute should be less than or equal to

 Examples

validate numericality(:age, greater_than_or_equal_to: 18),
 where: [attribute_equals(:show_adult_content, true)],
 message: "must be over %{greater_than_or_equal_to} to enable adult content."

validate numericality(:points, greater_than: 0, less_than_or_equal_to: 100)

 Link to this function

 one_of(attribute, values)

 View Source

 @spec one_of(attribute :: atom(), [any()]) :: Ash.Resource.Validation.ref()

Validates that an attribute's value is in a given list

 Examples

validate one_of(:status, [:closed_won, :closed_lost])

 Link to this function

 present(attributes, opts \\ [])

 View Source

 @spec present(attributes_or_arguments :: atom() | [atom()], opts :: Keyword.t()) ::
 Ash.Resource.Validation.ref()

Validates the presence of a list of attributes or arguments.
If no options are provided, validates that they are all present.

 Options

	:at_least (non_neg_integer/0) - At least this many must be present. Defaults to the number of attributes provided

	:at_most (non_neg_integer/0) - At most this many must be present. Defaults to the number of attributes provided

	:exactly (non_neg_integer/0) - Exactly this many must be present

 Link to this function

 string_length(attribute, opts \\ [])

 View Source

 @spec string_length(attribute :: atom(), opts :: Keyword.t()) ::
 Ash.Resource.Validation.ref()

Validates that an attribute on the original record meets the given length criteria

 Options

	:min (non_neg_integer/0) - String must be this length at least

	:max (non_neg_integer/0) - String must be this length at most

	:exact (non_neg_integer/0) - String must be this length exactly

 Examples

validate string_length(:slug, exactly: 8)
validate string_length(:password, min: 6)
validate string_length(:secret, min: 4, max: 12)

 Ash.Authorizer - ash v3.0.0-rc.6

Ash.Authorizer behaviour

The interface for an ash authorizer
These will typically be implemented by an extension, but a custom
one can be implemented by defining an extension that also adopts this behaviour.
Then you can extend a resource with authorizers: [YourAuthorizer]

 Summary

 Types

 context()

 state()

 Callbacks

 add_calculations(arg1, state, context)

 alter_filter(filter, state, context)

 alter_results(state, list, context)

 check(state, context)

 check_context(state)

 exception(atom, state)

 initial_state(t, record, action)

 strict_check(state, context)

 strict_check_context(state)

 Functions

 add_calculations(module, query_or_changeset, state, context)

 alter_filter(module, state, filter, context)

 alter_results(module, state, records, context)

 alter_sort(module, state, sort, context)

 check(module, state, context)

 check_context(module, state)

 exception(module, reason, state)

 initial_state(module, actor, resource, action)

 strict_check(module, state, context)

 strict_check_context(module, state)

 Types

 Link to this type

 context()

 View Source

 @type context() :: map()

 Link to this type

 state()

 View Source

 @type state() :: map()

 Callbacks

 Link to this callback

 add_calculations(arg1, state, context)

 View Source

 (optional)

 @callback add_calculations(Ash.Query.t() | Ash.Changeset.t(), state(), context()) ::
 {:ok, Ash.Query.t() | Ash.Changeset.t(), state()} | {:error, Ash.Error.t()}

 Link to this callback

 alter_filter(filter, state, context)

 View Source

 (optional)

 @callback alter_filter(filter :: Ash.Filter.t(), state(), context()) ::
 {:ok, Ash.Filter.t()} | {:error, Ash.Error.t()}

 Link to this callback

 alter_results(state, list, context)

 View Source

 (optional)

 @callback alter_results(state(), [Ash.Resource.record()], context()) ::
 {:ok, [Ash.Resource.record()]} | {:error, Ash.Error.t()}

 Link to this callback

 check(state, context)

 View Source

 @callback check(state(), context()) ::
 :authorized | {:data, [Ash.Resource.record()]} | {:error, term()}

 Link to this callback

 check_context(state)

 View Source

 @callback check_context(state()) :: [atom()]

 Link to this callback

 exception(atom, state)

 View Source

 (optional)

 @callback exception(atom(), state()) :: no_return()

 Link to this callback

 initial_state(t, record, action)

 View Source

 @callback initial_state(
 Ash.Resource.t(),
 Ash.Resource.record(),
 Ash.Resource.Actions.action()
) :: state()

 Link to this callback

 strict_check(state, context)

 View Source

 @callback strict_check(state(), context()) ::
 {:authorized, state()}
 | {:continue, state()}
 | {:filter, Keyword.t()}
 | {:filter, Keyword.t(), state()}
 | {:filter_and_continue, Keyword.t(), state()}
 | {:error, term()}

 Link to this callback

 strict_check_context(state)

 View Source

 @callback strict_check_context(state()) :: [atom()]

 Functions

 Link to this function

 add_calculations(module, query_or_changeset, state, context)

 View Source

 Link to this function

 alter_filter(module, state, filter, context)

 View Source

 Link to this function

 alter_results(module, state, records, context)

 View Source

 Link to this function

 alter_sort(module, state, sort, context)

 View Source

 Link to this function

 check(module, state, context)

 View Source

 Link to this function

 check_context(module, state)

 View Source

 Link to this function

 exception(module, reason, state)

 View Source

 Link to this function

 initial_state(module, actor, resource, action)

 View Source

 Link to this function

 strict_check(module, state, context)

 View Source

 Link to this function

 strict_check_context(module, state)

 View Source

 Ash.Policy.Check - ash v3.0.0-rc.6

Ash.Policy.Check behaviour

A behaviour for declaring checks, which can be used to easily construct
authorization rules.
If a check can be expressed simply, i.e as a function of the actor, or the context of the request,
see Ash.Policy.SimpleCheck for an easy way to write that check.
If a check can be expressed with a filter statement, see Ash.Policy.FilterCheck
for an easy way to write that check.

 Summary

 Types

 actor()

 authorizer()

 check_type()

 options()

 ref()

 t()

 Callbacks

 auto_filter(actor, authorizer, options)

 An optional callback, that allows the check to work with policies set to access_type :filter

 check(actor, list, map, options)

 An optional callback, hat allows the check to work with policies set to access_type :runtime

 describe(options)

 Describe the check in human readable format, given the options

 requires_original_data?(actor, options)

 Whether or not your check requires the original data of a changeset (if applicable)

 strict_check(actor, authorizer, options)

 Strict checks should be cheap, and should never result in external calls (like database or domain)

 type()

 The type of the check

 Functions

 defines_auto_filter?(module)

 defines_check?(module)

 Types

 Link to this type

 actor()

 View Source

 @type actor() :: any()

 Link to this type

 authorizer()

 View Source

 @type authorizer() :: Ash.Policy.Authorizer.t()

 Link to this type

 check_type()

 View Source

 @type check_type() :: :simple | :filter | :manual

 Link to this type

 options()

 View Source

 @type options() :: Keyword.t()

 Link to this type

 ref()

 View Source

 @type ref() :: {module(), Keyword.t()} | module()

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Policy.Check{
 check: term(),
 check_module: term(),
 check_opts: term(),
 type: term()
}

 Callbacks

 Link to this callback

 auto_filter(actor, authorizer, options)

 View Source

 (optional)

 @callback auto_filter(actor(), authorizer(), options()) :: Keyword.t() | Ash.Expr.t()

An optional callback, that allows the check to work with policies set to access_type :filter
Return a keyword list filter that will be applied to the query being made, and will scope the results to match the rule

 Link to this callback

 check(actor, list, map, options)

 View Source

 (optional)

 @callback check(actor(), [Ash.Resource.record()], map(), options()) :: [
 Ash.Resource.record()
]

An optional callback, hat allows the check to work with policies set to access_type :runtime
Takes a list of records, and returns the subset of authorized records.

 Link to this callback

 describe(options)

 View Source

 @callback describe(options()) :: String.t()

Describe the check in human readable format, given the options

 Link to this callback

 requires_original_data?(actor, options)

 View Source

 @callback requires_original_data?(actor(), options()) :: boolean()

Whether or not your check requires the original data of a changeset (if applicable)

 Link to this callback

 strict_check(actor, authorizer, options)

 View Source

 @callback strict_check(actor(), authorizer(), options()) ::
 {:ok, boolean() | :unknown} | {:error, term()}

Strict checks should be cheap, and should never result in external calls (like database or domain)
It should return {:ok, true} if it can tell that the request is authorized, and {:ok, false} if
it can tell that it is not. If unsure, it should return {:ok, :unknown}

 Link to this callback

 type()

 View Source

 @callback type() :: check_type()

The type of the check
:manual checks must be written by hand as standard check modules
:filter checks can use Ash.Policy.FilterCheck for simplicity
:simple checks can use Ash.Policy.SimpleCheck for simplicity

 Functions

 Link to this function

 defines_auto_filter?(module)

 View Source

 Link to this function

 defines_check?(module)

 View Source

 Ash.Policy.FilterCheck - ash v3.0.0-rc.6

Ash.Policy.FilterCheck behaviour

A type of check that is represented by a filter statement
That filter statement can be templated, currently only supporting {:_actor, field}
which will replace that portion of the filter with the appropriate field value from the actor and
{:_actor, :_primary_key} which will replace the value with a keyword list of the primary key
fields of an actor to their values, like [id: 1]. If the actor is not present {:_actor, field}
becomes nil, and {:_actor, :_primary_key} becomes false.
You can customize what the "negative" filter looks like by defining reject/3. This is important for
filters over related data. For example, given an owner relationship and a data layer like ash_postgres
where column != NULL does not evaluate to true (see postgres docs on NULL for more):
The opposite of
`owner.id == 1`
in most cases is not
`not(owner.id == 1)`
because in postgres that would be `NOT (owner.id = NULL)` in cases where there was no owner
A better opposite would be
`owner.id != 1 or is_nil(owner.id)`
alternatively
`not(owner.id == 1) or is_nil(owner.id)`
By being able to customize the reject filter, you can use related filters in your policies. Without it,
they will likely have undesired effects.

 Summary

 Types

 context()

 options()

 Callbacks

 filter(actor, context, options)

 reject(actor, context, options)

 Functions

 is_filter_check?(module)

 Types

 Link to this type

 context()

 View Source

 @type context() :: %{
 :action => Ash.Resource.Actions.action(),
 :resource => Ash.Resource.t(),
 :domain => Ash.Domain.t(),
 optional(:query) => Ash.Query.t(),
 optional(:changeset) => Ash.Changeset.t(),
 optional(any()) => any()
}

 Link to this type

 options()

 View Source

 @type options() :: Keyword.t()

 Callbacks

 Link to this callback

 filter(actor, context, options)

 View Source

 @callback filter(actor :: term(), context(), options()) :: Keyword.t() | Ash.Expr.t()

 Link to this callback

 reject(actor, context, options)

 View Source

 (optional)

 @callback reject(actor :: term(), context(), options()) :: Keyword.t() | Ash.Expr.t()

 Functions

 Link to this function

 is_filter_check?(module)

 View Source

 Ash.Policy.SimpleCheck - ash v3.0.0-rc.6

Ash.Policy.SimpleCheck behaviour

A type of check that operates only on request context, never on the data
Define match?/3, which gets the actor, request context, and opts, and returns true or false

 Summary

 Types

 actor()

 context()

 options()

 Callbacks

 match?(actor, context, options)

 Whether or not the request matches the check

 Types

 Link to this type

 actor()

 View Source

 @type actor() :: Ash.Policy.Check.actor()

 Link to this type

 context()

 View Source

 @type context() :: %{
 :action => Ash.Resource.Actions.action(),
 :resource => Ash.Resource.t(),
 :domain => Ash.Domain.t(),
 optional(:query) => Ash.Query.t(),
 optional(:changeset) => Ash.Changeset.t(),
 optional(any()) => any()
}

 Link to this type

 options()

 View Source

 @type options() :: Keyword.t()

 Callbacks

 Link to this callback

 match?(actor, context, options)

 View Source

 @callback match?(actor(), context(), options()) ::
 boolean() | {:ok, boolean()} | {:error, term()}

Whether or not the request matches the check

 Ash.Policy.Check.Builtins - ash v3.0.0-rc.6

Ash.Policy.Check.Builtins

The global authorization checks built into ash

 Summary

 Functions

 accessing_from(resource, relationship)

 This check is true when the current action is being run "through" a relationship.

 action(action)

 This check is true when the action name matches the provided action name or names.

 action_type(action_type)

 This check is true when the action type matches the provided type

 actor_attribute_equals(attribute, value)

 This check is true when the value of the specified attribute of the actor equals the specified value.

 actor_present()

 This check is true when there is an actor specified, and false when the actor is nil.

 always()

 This check always passes.

 changing_attributes(opts)

 This check is true when attribute changes correspond to the provided options.

 changing_relationship(relationship)

 This check is true when the specified relationship is changing

 changing_relationships(relationships)

 This check is true when the specified relationships are changing

 context_equals(key, value)

 This check is true when the value of the specified key or path in the changeset or query context equals the specified value.

 filtering_on(path \\ [], field)

 deprecated

 This check is true when the field provided is being referenced anywhere in a filter statement.

 loading(field)

 This check is true when the field or relationship, or path to field, is being loaded and false when it is not.

 matches(description, func)

 This check is true when the specified function returns true

 never()

 This check never passes.

 relates_to_actor_via(relationship_path, opts \\ [])

 This check passes if the data relates to the actor via the specified relationship or path of relationships.

 relating_to_actor(relationship)

 This check is true when the specified relationship is being changed to the current actor.

 resource(resource)

 This check is true when the resource name matches the provided resource name or names.

 selecting(attribute)

 This check is true when the field is being selected and false when it is not.

 Functions

 Link to this function

 accessing_from(resource, relationship)

 View Source

 @spec accessing_from(Ash.Resource.t(), atom()) :: Ash.Policy.Check.ref()

This check is true when the current action is being run "through" a relationship.
Cases where this happens:
	Loading related data
	Managing relationships
	Aggregating data
	Filtering on relationships

 Link to this function

 action(action)

 View Source

 @spec action(atom() | [atom()]) :: Ash.Policy.Check.ref()

This check is true when the action name matches the provided action name or names.
This is a very common pattern, allowing action-specific policies.

 Link to this function

 action_type(action_type)

 View Source

 @spec action_type(Ash.Resource.Actions.action_type()) :: Ash.Policy.Check.ref()

This check is true when the action type matches the provided type
This is useful for writing policies that apply to all actions of a given type.
For example:
policy action_type(:read) do
 authorize_if relates_to_actor_via(:owner)
end

 Link to this function

 actor_attribute_equals(attribute, value)

 View Source

 @spec actor_attribute_equals(atom(), any()) :: Ash.Policy.Check.ref()

This check is true when the value of the specified attribute of the actor equals the specified value.
This check will never pass if the actor does not have the specified key. For example,
actor_attribute_equals(:missing_key, nil)

 Link to this function

 actor_present()

 View Source

 @spec actor_present() :: Ash.Policy.Check.ref()

This check is true when there is an actor specified, and false when the actor is nil.

 Link to this function

 always()

 View Source

 @spec always() :: Ash.Policy.Check.ref()

This check always passes.
Can be useful for "deny-list" style authorization. For example:
policy action_type(:read) do
 forbid_if actor_attribute_equals(:disabled, true)
 forbid_if actor_attribute_equals(:active, false)
 authorize_if always()
end
Without that last clause, the policy would never pass.

 Link to this function

 changing_attributes(opts)

 View Source

This check is true when attribute changes correspond to the provided options.
Provide a keyword list of options or just an atom representing the attribute.
For example:
if you are changing both first name and last name
changing_attributes([:first_name, :last_name])

if you are changing first name to fred
changing_attributes(first_name: [to: "fred"])

if you are changing last name from bob
changing_attributes(last_name: [from: "bob"])

if you are changing :first_name at all, last_name from "bob" and middle name from "tom" to "george"
changing_attributes([:first_name, last_name: [from: "bob"], middle_name: [from: "tom", to: "george]])

 Link to this function

 changing_relationship(relationship)

 View Source

This check is true when the specified relationship is changing

 Link to this function

 changing_relationships(relationships)

 View Source

This check is true when the specified relationships are changing

 Link to this function

 context_equals(key, value)

 View Source

This check is true when the value of the specified key or path in the changeset or query context equals the specified value.

 Link to this function

 filtering_on(path \\ [], field)

 View Source

 This function is deprecated. `filtering_on/2` check is deprecated. Instead, add arguments and add policies that said arguments are set.

For complex queries, policies on what is being filtered on require multiple authorization passes of
the same resource, leading to a large amount of typically unnecessary complexity.

Additionally, they could yield false negatives in some scenarios, and more work would be needed
to ensure that they don't.
.

 @spec filtering_on(atom() | [atom()], atom()) :: Ash.Policy.Check.ref()

This check is true when the field provided is being referenced anywhere in a filter statement.
This applies to related filters as well. For example:
policy actor_attribute_equals(:is_admin, false) do
 forbid_if filtering_on(:email)
 # a path can be provided as well
 forbid_if filtering_on([:owner], :email)
end
The first will return true in situations like:
Ash.Query.filter(User, email == "blah")
Ash.Query.filter(Tweet, author.email == "blah")
The second will return true on queries like:
Ash.Query.filter(Post, owner.email == "blah")
Ash.Query.filter(Comment, post.owner.email == "blah")

 Link to this function

 loading(field)

 View Source

 @spec loading(atom()) :: Ash.Policy.Check.ref()

This check is true when the field or relationship, or path to field, is being loaded and false when it is not.
This is always false for create/update/destroy actions, because you cannot load fields on those action types.

 Link to this macro

 matches(description, func)

 View Source

 (macro)

This check is true when the specified function returns true

 Link to this function

 never()

 View Source

 @spec never() :: Ash.Policy.Check.ref()

This check never passes.
There is, generally speaking, no reason to use this, but it exists for
completeness sake.

 Link to this function

 relates_to_actor_via(relationship_path, opts \\ [])

 View Source

 @spec relates_to_actor_via(
 atom(),
 keyword()
) :: Ash.Policy.Check.ref()

This check passes if the data relates to the actor via the specified relationship or path of relationships.
For update & destroy actions, this check will apply to the original data before the changes are applied.
For create actions this check is very unlikely to pass. This is because relationships are modified after authorization
happens, not before.
For example:
policy action_type(:read) do
 authorize_if relates_to_actor_via(:owner)

 # Path of relationships:
 authorize_if relates_to_actor_via([:account, :user])

 # When the resource relates to a field of the actor:
 authorize_if relates_to_actor_via(:roles, field: :role)
end

 Link to this function

 relating_to_actor(relationship)

 View Source

This check is true when the specified relationship is being changed to the current actor.
This only supports belongs_to relationships at the moment, and will detect two cases:
	the source_attribute is being changed directly
	the relationship is being changed with on_lookup?: :relate, and a single input is being provided.

 Link to this function

 resource(resource)

 View Source

 @spec resource(atom() | [atom()]) :: Ash.Policy.Check.ref()

This check is true when the resource name matches the provided resource name or names.

 Link to this function

 selecting(attribute)

 View Source

 @spec selecting(atom()) :: Ash.Policy.Check.ref()

This check is true when the field is being selected and false when it is not.
This won't affect filters placed on this resource, so you may also want to either:
	Mark the given field as filterable? false
	Add another check for filtering_on(:field)

For example:
policy action_type(:read) do
 # The actor can read and filter on their own email
 authorize_if expr(id == ^actor(:id))

 # No one else can select or filter on their email
 forbid_if selecting(:email)
 forbid_if filtering_on(:email)

 # Otherwise, the policy passes
 authorize_if always()
end

 Ash.DataLayer.Ets - ash v3.0.0-rc.6

Ash.DataLayer.Ets

An ETS (Erlang Term Storage) backed Ash Datalayer, for testing and lightweight usage.
Remember, this does not have support for transactions! This is not recommended for production
use, especially in multi-user applications. It can, however, be great for prototyping.

 Summary

 Functions

 do_add_calculations(records, resource, calculations, domain)

 stop(resource, tenant \\ nil)

 Stops the storage for a given resource/tenant (deleting all of the data)

 Functions

 Link to this function

 do_add_calculations(records, resource, calculations, domain)

 View Source

 Link to this function

 stop(resource, tenant \\ nil)

 View Source

Stops the storage for a given resource/tenant (deleting all of the data)

 Ash.DataLayer.Mnesia - ash v3.0.0-rc.6

Ash.DataLayer.Mnesia

An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.

 Summary

 Functions

 start(domain, resources \\ [])

 Creates the table for each mnesia resource in a domain

 Functions

 Link to this function

 start(domain, resources \\ [])

 View Source

Creates the table for each mnesia resource in a domain

 Ash.DataLayer.Simple - ash v3.0.0-rc.6

Ash.DataLayer.Simple

A data layer that returns structs.
This is the data layer that is used under the hood
by embedded resources, and resources without data layers.

 Summary

 Functions

 bulk_create(resource, stream, options)

 Callback implementation for Ash.DataLayer.bulk_create/3.

 set_data(query, data)

 Sets the data for a query against a data-layer-less resource

 Functions

 Link to this function

 bulk_create(resource, stream, options)

 View Source

Callback implementation for Ash.DataLayer.bulk_create/3.

 Link to this function

 set_data(query, data)

 View Source

Sets the data for a query against a data-layer-less resource

 Ash.Notifier.PubSub - ash v3.0.0-rc.6

Ash.Notifier.PubSub

A pubsub notifier extension.

 Summary

 Functions

 to_payload(topic, event, notification)

 Functions

 Link to this function

 to_payload(topic, event, notification)

 View Source

 Ash.Policy.Authorizer - ash v3.0.0-rc.6

Ash.Policy.Authorizer

An authorization extension for ash resources.
To add this extension to a resource, add it to the list of authorizers like so:
use Ash.Resource,
 ...,
 authorizers: [
 Ash.Policy.Authorizer
]
A resource can be given a set of policies, which are enforced on each call to a resource action.
For reads, policies can be configured to filter out data that the actor shouldn't see, as opposed to
resulting in a forbidden error.
See the policies guide for practical examples.
Policies are solved/managed via a boolean satisfiability solver. To read more about boolean satisfiability,
see this page: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. At the end of
the day, however, it is not necessary to understand exactly how Ash takes your
authorization requirements and determines if a request is allowed. The
important thing to understand is that Ash may or may not run any/all of your
authorization rules as they may be deemed unnecessary. As such, authorization
checks should have no side effects. Ideally, the checks built-in to ash should
cover the bulk of your needs.

 Summary

 Types

 t()

 Functions

 alter_sort(sort, authorizer, context)

 print_tuple_boolean(v)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Policy.Authorizer{
 action: term(),
 action_input: term(),
 actor: term(),
 changeset: term(),
 check_scenarios: term(),
 data: term(),
 data_facts: term(),
 domain: term(),
 facts: term(),
 policies: term(),
 query: term(),
 real_scenarios: term(),
 resource: term(),
 scenarios: term()
}

 Functions

 Link to this function

 alter_sort(sort, authorizer, context)

 View Source

 Link to this function

 print_tuple_boolean(v)

 View Source

 Ash.Reactor - ash v3.0.0-rc.6

Ash.Reactor

Ash.Reactor is a Reactor extension
which provides steps for working with Ash resources and actions.
See the Ash Reactor Guide for more
information.

 Summary

 Types

 action()

 Types

 Link to this type

 action()

 View Source

 @type action() :: Ash.Reactor.Dsl.Create.t() | Ash.Reactor.Dsl.Update.t()

 Ash.Resource - ash v3.0.0-rc.6

Ash.Resource

A resource is a static definition of an entity in your system.
Resource DSL documentation

 Options

	:simple_notifiers (list of module that adopts Ash.Notifier) - Notifiers with no DSL.

	:validate_domain_inclusion? (boolean/0) - Whether or not to validate that this resource is included in a domain. The default value is true.

	:domain (atom/0) - The domain to use when interacting with this resource. Also sets defaults for various options that ask for a domain.

	:embed_nil_values? (boolean/0) - Whether or not to include keys with nil values in an embedded representation. Has no effect unless resource is an embedded resource. The default value is true.

	:extensions (list of module that adopts Spark.Dsl.Extension) - A list of DSL extensions to add to the Spark.Dsl

	:data_layer (module that adopts Ash.DataLayer) - data_layer extensions to add to the Elixir.Spark.Dsl The default value is Ash.DataLayer.Simple.

	:authorizers (one or a list of module that adopts Ash.Authorizer) - authorizers extensions to add to the Elixir.Spark.Dsl The default value is [].

	:notifiers (one or a list of module that adopts Ash.Notifier) - notifiers extensions to add to the Elixir.Spark.Dsl The default value is [].

	:otp_app (atom/0) - The otp_app to use for any application configurable options

	:fragments (list of module/0) - Fragments to include in the Elixir.Spark.Dsl. See the fragments guide for more.

 Summary

 Types

 record()

 t()

 Functions

 get_metadata(record, key_or_path)

 loaded?(data, path, opts \\ [])

 Returns true if the load or path to load has been loaded

 opt_schema()

 put_metadata(record, key, term)

 selected?(record, field)

 set_metadata(record, map)

 unload(page, path)

 Sets a loaded key or path to a key back to its original unloaded stated

 unload_many(data, paths)

 Sets a list of loaded key or paths to a key back to their original unloaded stated

 Types

 Link to this type

 record()

 View Source

 @type record() :: struct()

 Link to this type

 t()

 View Source

 @type t() :: module()

 Functions

 Link to this function

 get_metadata(record, key_or_path)

 View Source

 @spec get_metadata(record(), atom() | [atom()]) :: term()

 Link to this function

 loaded?(data, path, opts \\ [])

 View Source

 @spec loaded?(
 nil | [record()] | record() | Ash.Page.page(),
 atom() | Ash.Query.Calculation.t() | Ash.Query.Aggregate.t() | [atom()],
 opts :: Keyword.t()
) :: boolean()

Returns true if the load or path to load has been loaded

 Options

	lists: set to :any to have this return true if any record in a list that appears has the value loaded. Default is :all.
	unknown: set to true to have unknown paths (like nil values or non-resources) return true. Defaults to false
	strict?: set to true to return false if a calculation with arguments is being checked

 Link to this function

 opt_schema()

 View Source

 Link to this function

 put_metadata(record, key, term)

 View Source

 @spec put_metadata(record(), atom(), term()) :: record()

 Link to this function

 selected?(record, field)

 View Source

 @spec selected?(record(), atom()) :: boolean()

 Link to this function

 set_metadata(record, map)

 View Source

 @spec set_metadata(record(), map()) :: record()

 Link to this function

 unload(page, path)

 View Source

 @spec unload(
 nil | [record()] | record() | Ash.Page.page(),
 atom() | [atom()]
) :: nil | [record()] | record() | Ash.Page.page()

Sets a loaded key or path to a key back to its original unloaded stated

 Link to this function

 unload_many(data, paths)

 View Source

 @spec unload_many(
 nil | [record()] | record() | Ash.Page.page(),
 [atom()] | [[atom()]]
) :: nil | [record()] | record() | Ash.Page.page()

Sets a list of loaded key or paths to a key back to their original unloaded stated

 Ash.DataLayer.Ets.Info - ash v3.0.0-rc.6

Ash.DataLayer.Ets.Info

Introspection helpers for the Ets data layer

 Summary

 Functions

 private?(resource)

 Whether or not the ets table for the resource should be private

 table(resource)

 The ets table name for a resource

 Functions

 Link to this function

 private?(resource)

 View Source

 @spec private?(Ash.Resource.t() | Spark.Dsl.t()) :: boolean()

Whether or not the ets table for the resource should be private

 Link to this function

 table(resource)

 View Source

 @spec table(Ash.Resource.t() | Spark.Dsl.t()) :: boolean()

The ets table name for a resource

 Ash.DataLayer.Mnesia.Info - ash v3.0.0-rc.6

Ash.DataLayer.Mnesia.Info

Introspection helpers for Ash.DataLayer.Mnesia

 Summary

 Functions

 table(resource)

 The mnesia table for a resource

 Functions

 Link to this function

 table(resource)

 View Source

The mnesia table for a resource

 Ash.Domain.Dsl.ResourceReference - ash v3.0.0-rc.6

Ash.Domain.Dsl.ResourceReference

A resource reference in a domain

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Domain.Dsl.ResourceReference{
 definitions: [
 Ash.Resource.Interface.t() | Ash.Resource.CalculationInterface.t()
],
 resource: module()
}

 Ash.Domain.Info - ash v3.0.0-rc.6

Ash.Domain.Info

Introspection tools for Ash.Domain

 Summary

 Functions

 allow(domain)

 The allow MFA for a domain

 allow_unregistered?(domain)

 Whether or not the domain allows unregistered resources to be used with it

 authorize(domain)

 When authorization should happen for a given domain

 depend_on_resources(domain)

 deprecated

 Gets the resources of a domain module. Can be used at compile time.

 description(domain)

 The description of the domain

 find_manage_relationships_with_identity_not_configured(otp_app)

 related_domain(subject, relationship, default \\ nil)

 Determine what domain to use when interacting with a related resource.

 require_actor?(domain)

 Whether or not the actor is always required for a domain

 resource(domain, resource)

 Returns {:ok, resource} if the resource can be used by the domain, or {:error, error}.

 resource_references(domain)

 Gets the resource references of a domain module. DO NOT USE AT COMPILE TIME.

 resources(domain)

 Gets the resources of a domain module.

 short_name(domain)

 The short name for a domain

 span_name(domain, resource, action)

 The span_name for a domain and resource combination

 telemetry_event_name(domain, name)

 Names a telemetry event for a given domain/resource combo

 timeout(domain)

 The execution timeout for a domain

 trace_name(domain)

 The trace name for a domain

 Functions

 Link to this function

 allow(domain)

 View Source

 @spec allow(Ash.Domain.t() | Spark.Dsl.t()) :: mfa() | nil

The allow MFA for a domain

 Link to this function

 allow_unregistered?(domain)

 View Source

 @spec allow_unregistered?(Ash.Domain.t() | Spark.Dsl.t()) :: atom() | nil

Whether or not the domain allows unregistered resources to be used with it

 Link to this function

 authorize(domain)

 View Source

 @spec authorize(Ash.Domain.t()) :: :always | :by_default | :when_requested

When authorization should happen for a given domain

 Link to this macro

 depend_on_resources(domain)

 View Source

 (macro)

 This macro is deprecated. Use `Ash.Domain.Info.resources/1` instead. This macro is no longer necessary.

 @spec depend_on_resources(Macro.t()) :: Macro.t()

Gets the resources of a domain module. Can be used at compile time.
Liberal use of this can greatly increase compile times, or even cause compiler deadlocks.
Use with care.

 Link to this function

 description(domain)

 View Source

 @spec description(Spark.Dsl.t() | Ash.Domain.t()) :: String.t() | nil

The description of the domain

 Link to this function

 find_manage_relationships_with_identity_not_configured(otp_app)

 View Source

 Link to this function

 related_domain(subject, relationship, default \\ nil)

 View Source

 @spec related_domain(
 Ash.Resource.t() | Ash.Query.t() | Ash.Changeset.t() | Ash.ActionInput.t(),
 atom()
 | Ash.Resource.Relationships.relationship()
 | [atom() | Ash.Resource.Relationships.relationship()],
 Ash.Domain.t() | nil
) :: Ash.Domain.t()

Determine what domain to use when interacting with a related resource.
We choose the first domain found in the following order:
	relationship.domain, i.e an explicitly configured domain for a relationship
	resource.domain, i.e. the domain the resource declares
	subject.domain, i.e. the domain of the query, changeset or action input (if it has one)
	default, the default domain provided as the third argument

 Link to this function

 require_actor?(domain)

 View Source

 @spec require_actor?(Ash.Domain.t()) :: boolean()

Whether or not the actor is always required for a domain

 Link to this function

 resource(domain, resource)

 View Source

 @spec resource(Ash.Domain.t() | Spark.Dsl.t(), Ash.Resource.t()) ::
 {:ok, Ash.Resource.t()} | {:error, Ash.Error.t()}

Returns {:ok, resource} if the resource can be used by the domain, or {:error, error}.

 Link to this function

 resource_references(domain)

 View Source

 @spec resource_references(Ash.Domain.t()) :: [Ash.Domain.Dsl.ResourceReference.t()]

Gets the resource references of a domain module. DO NOT USE AT COMPILE TIME.
If you need the resource list at compile time, use depend_on_resources/1

 Link to this function

 resources(domain)

 View Source

 @spec resources(Ash.Domain.t()) :: [Ash.Resource.t()]

Gets the resources of a domain module.

 Link to this function

 short_name(domain)

 View Source

 @spec short_name(Ash.Domain.t()) :: atom()

The short name for a domain

 Link to this function

 span_name(domain, resource, action)

 View Source

 @spec span_name(Ash.Domain.t(), Ash.Resource.t(), action :: atom() | binary()) ::
 String.t()

The span_name for a domain and resource combination

 Link to this function

 telemetry_event_name(domain, name)

 View Source

 @spec telemetry_event_name(Ash.Domain.t(), atom() | [atom()]) :: [atom()]

Names a telemetry event for a given domain/resource combo

 Link to this function

 timeout(domain)

 View Source

 @spec timeout(Ash.Domain.t()) :: nil | :infinity | integer()

The execution timeout for a domain

 Link to this function

 trace_name(domain)

 View Source

 @spec trace_name(Ash.Domain.t()) :: String.t()

The trace name for a domain

 Ash.Notifier.PubSub.Info - ash v3.0.0-rc.6

Ash.Notifier.PubSub.Info

Introspection helpers for Ash.Notifier.PubSub

 Summary

 Functions

 broadcast_type(resource)

 The broadcast type for a resource

 delimiter(resource)

 The delimiter to use when generating message topics

 module(resource)

 The pubsub module for a resource

 name(resource)

 The pubsub name for a resource

 prefix(resource)

 The topic prefix for a resource

 publications(resource)

 The list of publications for a resource

 Functions

 Link to this function

 broadcast_type(resource)

 View Source

The broadcast type for a resource

 Link to this function

 delimiter(resource)

 View Source

The delimiter to use when generating message topics

 Link to this function

 module(resource)

 View Source

The pubsub module for a resource

 Link to this function

 name(resource)

 View Source

The pubsub name for a resource

 Link to this function

 prefix(resource)

 View Source

The topic prefix for a resource

 Link to this function

 publications(resource)

 View Source

The list of publications for a resource

 Ash.Notifier.PubSub.Publication - ash v3.0.0-rc.6

Ash.Notifier.PubSub.Publication

Represents a configured publication from the pubsub notifier on an Ash.Resource

 Summary

 Functions

 publish_all_schema()

 schema()

 Functions

 Link to this function

 publish_all_schema()

 View Source

 Link to this function

 schema()

 View Source

 Ash.Policy.FieldPolicy - ash v3.0.0-rc.6

Ash.Policy.FieldPolicy

Represents a field policy in an Ash.Resource

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Policy.FieldPolicy{
 __identifier__: term(),
 bypass?: term(),
 condition: term(),
 description: term(),
 fields: term(),
 policies: term()
}

 Ash.Policy.Info - ash v3.0.0-rc.6

Ash.Policy.Info

An authorization extension for ash resources.
For more information, see Ash.Policy.Authorizer

 Summary

 Functions

 default_access_type(resource)

 describe_resource(domain, resource)

 field_policies(resource)

 field_policies_for_field(resource, field)

 Gets the field policies relevant to a given field

 log_policy_breakdowns()

 Whether or not Ash policy authorizer is configured to log policy breakdowns

 log_successful_policy_breakdowns()

 Whether or not Ash policy authorizer is configured to log successful policy breakdowns

 policies(domain, resource)

 show_policy_breakdowns?()

 Whether or not Ash policy authorizer is configured to show policy breakdowns in error messages

 strict_check(actor, query, domain)

 A utility to determine if a given query/changeset would pass authorization.

 Functions

 Link to this function

 default_access_type(resource)

 View Source

 Link to this function

 describe_resource(domain, resource)

 View Source

 Link to this function

 field_policies(resource)

 View Source

 Link to this function

 field_policies_for_field(resource, field)

 View Source

Gets the field policies relevant to a given field

 Link to this function

 log_policy_breakdowns()

 View Source

Whether or not Ash policy authorizer is configured to log policy breakdowns

 Link to this function

 log_successful_policy_breakdowns()

 View Source

Whether or not Ash policy authorizer is configured to log successful policy breakdowns

 Link to this function

 policies(domain, resource)

 View Source

 Link to this function

 show_policy_breakdowns?()

 View Source

Whether or not Ash policy authorizer is configured to show policy breakdowns in error messages

 Link to this function

 strict_check(actor, query, domain)

 View Source

A utility to determine if a given query/changeset would pass authorization.
This is still experimental.

 Ash.Policy.Policy - ash v3.0.0-rc.6

Ash.Policy.Policy

Represents a policy on an Ash.Resource

 Summary

 Types

 t()

 Functions

 at_least_one_policy_expression(policies, authorizer)

 fetch_fact(facts, arg2)

 fetch_or_strict_check_fact(authorizer, arg2)

 solve(authorizer)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Policy.Policy{
 access_type: term(),
 bypass?: term(),
 checks: term(),
 condition: term(),
 description: term(),
 policies: term()
}

 Functions

 Link to this function

 at_least_one_policy_expression(policies, authorizer)

 View Source

 Link to this function

 fetch_fact(facts, arg2)

 View Source

 Link to this function

 fetch_or_strict_check_fact(authorizer, arg2)

 View Source

 Link to this function

 solve(authorizer)

 View Source

 Ash.Resource.Actions - ash v3.0.0-rc.6

Ash.Resource.Actions

Types for Ash actions

 Summary

 Types

 action()

 action_type()

 Types

 Link to this type

 action()

 View Source

 @type action() ::
 Ash.Resource.Actions.Action.t()
 | Ash.Resource.Actions.Create.t()
 | Ash.Resource.Actions.Read.t()
 | Ash.Resource.Actions.Update.t()
 | Ash.Resource.Actions.Destroy.t()

 Link to this type

 action_type()

 View Source

 @type action_type() :: :action | :read | :create | :update | :destroy

 Ash.Resource.Actions.Action - ash v3.0.0-rc.6

Ash.Resource.Actions.Action

Represents a custom action on a resource.

 Summary

 Types

 t()

 Functions

 transform(thing)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Action{
 allow_nil?: boolean(),
 arguments: [Ash.Resource.Actions.Argument.t()],
 constraints: Keyword.t(),
 description: String.t() | nil,
 name: atom(),
 primary?: boolean(),
 returns: Ash.Type.t(),
 run: {module(), Keyword.t()},
 touches_resources: [Ash.Resource.t()],
 transaction?: boolean(),
 type: :action
}

 Functions

 Link to this function

 transform(thing)

 View Source

 Ash.Resource.Actions.Argument - ash v3.0.0-rc.6

Ash.Resource.Actions.Argument

Represents an argument to an action

 Summary

 Types

 t()

 Functions

 schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Argument{
 allow_nil?: term(),
 constraints: term(),
 default: term(),
 description: term(),
 name: term(),
 public?: term(),
 sensitive?: term(),
 type: term()
}

 Functions

 Link to this function

 schema()

 View Source

 Ash.Resource.Actions.Create - ash v3.0.0-rc.6

Ash.Resource.Actions.Create

Represents a create action on a resource.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Create{
 accept: [atom()],
 allow_nil_input: [atom()],
 arguments: [Ash.Resource.Actions.Argument.t()],
 changes: term(),
 delay_global_validations?: boolean(),
 description: String.t() | nil,
 error_handler: term(),
 manual: module() | nil,
 metadata: term(),
 name: atom(),
 notifiers: [module()],
 primary?: boolean(),
 reject: term(),
 require_attributes: term(),
 skip_global_validations?: boolean(),
 touches_resources: [atom()],
 transaction?: term(),
 type: :create,
 upsert?: boolean(),
 upsert_fields:
 nil
 | [atom()]
 | :replace_all
 | {:replace, [atom()]}
 | {:replace_all_except, [atom()]},
 upsert_identity: atom() | nil
}

 Ash.Resource.Actions.Destroy - ash v3.0.0-rc.6

Ash.Resource.Actions.Destroy

Represents a destroy action on a resource.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Destroy{
 accept: term(),
 arguments: [Ash.Resource.Actions.Argument.t()],
 changes: term(),
 delay_global_validations?: boolean(),
 description: String.t() | nil,
 error_handler: term(),
 manual: module() | nil,
 metadata: term(),
 name: atom(),
 notifiers: [module()],
 primary?: boolean(),
 reject: term(),
 require_atomic?: boolean(),
 require_attributes: term(),
 skip_global_validations?: boolean(),
 soft?: term(),
 touches_resources: [atom()],
 transaction?: term(),
 type: :destroy
}

 Ash.Resource.Actions.Implementation - ash v3.0.0-rc.6

Ash.Resource.Actions.Implementation behaviour

An implementation of a generic action.

 Summary

 Callbacks

 run(t, opts, t)

 Callbacks

 Link to this callback

 run(t, opts, t)

 View Source

 @callback run(
 Ash.ActionInput.t(),
 opts :: Keyword.t(),
 Ash.Resource.Actions.Implementation.Context.t()
) ::
 {:ok, term()} | {:ok, [Ash.Notifier.Notification.t()]} | {:error, term()}

 Ash.Resource.Actions.Implementation.Context - ash v3.0.0-rc.6

Ash.Resource.Actions.Implementation.Context

The context passed into generic action functions

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Implementation.Context{
 actor: term(),
 authorize?: boolean(),
 domain: module(),
 tenant: term()
}

 Ash.Resource.Actions.Metadata - ash v3.0.0-rc.6

Ash.Resource.Actions.Metadata

Represents metadata from an action

 Summary

 Types

 t()

 Functions

 schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Metadata{
 allow_nil?: term(),
 constraints: term(),
 default: term(),
 description: term(),
 name: term(),
 type: term()
}

 Functions

 Link to this function

 schema()

 View Source

 Ash.Resource.Actions.Read - ash v3.0.0-rc.6

Ash.Resource.Actions.Read

Represents a read action on a resource.

 Summary

 Types

 t()

 Functions

 pagination_schema()

 transform(read)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Read{
 arguments: [Ash.Resource.Actions.Argument.t()],
 description: String.t() | nil,
 filter: any(),
 filters: [any()],
 get?: nil | boolean(),
 get_by: nil | atom() | [atom()],
 manual: atom() | {atom(), Keyword.t()} | nil,
 metadata: [Ash.Resource.Actions.Metadata.t()],
 modify_query: nil | mfa(),
 name: atom(),
 pagination: any(),
 preparations: term(),
 primary?: boolean(),
 timeout: pos_integer() | nil,
 touches_resources: [atom()],
 transaction?: boolean(),
 type: :read
}

 Functions

 Link to this function

 pagination_schema()

 View Source

 Link to this function

 transform(read)

 View Source

 Ash.Resource.Actions.Read.Pagination - ash v3.0.0-rc.6

Ash.Resource.Actions.Read.Pagination

Represents the pagination configuration of a read action

 Summary

 Types

 t()

 Functions

 transform(pagination)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Read.Pagination{
 countable: term(),
 default_limit: term(),
 keyset?: term(),
 max_page_size: term(),
 offset?: term(),
 required?: term()
}

 Functions

 Link to this function

 transform(pagination)

 View Source

 Ash.Resource.Actions.Update - ash v3.0.0-rc.6

Ash.Resource.Actions.Update

Represents a update action on a resource.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Actions.Update{
 accept: [atom()],
 arguments: [Ash.Resource.Actions.Argument.t()],
 atomics: term(),
 changes: term(),
 delay_global_validations?: boolean(),
 description: String.t() | nil,
 error_handler: term(),
 manual: module() | nil,
 manual?: term(),
 metadata: term(),
 name: atom(),
 notifiers: [module()],
 primary?: boolean(),
 reject: term(),
 require_atomic?: boolean(),
 require_attributes: term(),
 skip_global_validations?: boolean(),
 touches_resources: [atom()],
 transaction?: term(),
 type: :update
}

 Ash.Resource.Aggregate - ash v3.0.0-rc.6

Ash.Resource.Aggregate

Represents a named aggregate on the resource that can be loaded

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Aggregate{
 authorize?: boolean(),
 constraints: term(),
 default: term(),
 description: String.t() | nil,
 field: atom(),
 filter: Keyword.t(),
 filterable?: boolean(),
 implementation: term(),
 include_nil?: term(),
 join_filters: %{required([atom()]) => term()},
 kind: Ash.Query.Aggregate.kind(),
 name: atom(),
 public?: boolean(),
 read_action: atom() | nil,
 relationship_path: [atom()],
 sensitive?: boolean(),
 sort: term(),
 sortable?: boolean(),
 type: term(),
 uniq?: term()
}

 Ash.Resource.Aggregate.CustomAggregate - ash v3.0.0-rc.6

Ash.Resource.Aggregate.CustomAggregate behaviour

The root behavior for a custom aggregate.
See data layers for their implementation of custom aggregates.

 Summary

 Types

 t()

 Callbacks

 describe(t)

 Types

 Link to this type

 t()

 View Source

 @type t() :: {module(), Keyword.t()}

 Callbacks

 Link to this callback

 describe(t)

 View Source

 @callback describe(t()) :: String.t()

 Ash.Resource.Aggregate.JoinFilter - ash v3.0.0-rc.6

Ash.Resource.Aggregate.JoinFilter

Represents a join filter on a resource aggregate

 Ash.Resource.Attribute - ash v3.0.0-rc.6

Ash.Resource.Attribute

Represents an attribute on a resource

 Summary

 Types

 t()

 Functions

 create_timestamp_schema()

 integer_primary_key_schema()

 transform(attribute)

 update_timestamp_schema()

 uuid_primary_key_schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Attribute{
 allow_nil?: term(),
 always_select?: term(),
 constraints: Keyword.t(),
 default: nil | term() | (-> term()),
 description: term(),
 filterable?: term(),
 generated?: term(),
 match_other_defaults?: term(),
 name: atom(),
 primary_key?: boolean(),
 public?: boolean(),
 sensitive?: boolean(),
 sortable?: boolean(),
 source: term(),
 type: Ash.Type.t(),
 update_default:
 nil | term() | (-> term()) | (Ash.Resource.record() -> term()),
 writable?: boolean()
}

 Functions

 Link to this function

 create_timestamp_schema()

 View Source

 Link to this function

 integer_primary_key_schema()

 View Source

 Link to this function

 transform(attribute)

 View Source

 Link to this function

 update_timestamp_schema()

 View Source

 Link to this function

 uuid_primary_key_schema()

 View Source

 Ash.Resource.Calculation.Argument - ash v3.0.0-rc.6

Ash.Resource.Calculation.Argument

An argument to a calculation

 Summary

 Types

 t()

 Functions

 schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Calculation.Argument{
 allow_expr?: boolean(),
 allow_nil?: boolean(),
 constraints: keyword(),
 default: any(),
 name: atom(),
 type: Ash.Type.t()
}

 Functions

 Link to this function

 schema()

 View Source

 Ash.Resource.Calculation.Context - ash v3.0.0-rc.6

Ash.Resource.Calculation.Context

The context and arguments of a calculation

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Calculation.Context{
 actor: term() | nil,
 arguments: map(),
 authorize?: boolean(),
 constraints: Keyword.t(),
 domain: module(),
 resource: module(),
 source_context: map(),
 tenant: term(),
 tracer: module() | nil,
 type: Ash.Type.t()
}

 Ash.Resource.Calculation.LoadAttribute - ash v3.0.0-rc.6

Ash.Resource.Calculation.LoadAttribute

Loads an attribute as a calculation.
Can be used to load the same attribute with different load statements applied.

 Summary

 Functions

 calculate(list, opts, context)

 Callback implementation for Ash.Resource.Calculation.calculate/3.

 describe(opts)

 Callback implementation for Ash.Resource.Calculation.describe/1.

 has_calculate?()

 has_expression?()

 Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 init(opts)

 Callback implementation for Ash.Resource.Calculation.init/1.

 load(query, opts, arg3)

 Callback implementation for Ash.Resource.Calculation.load/3.

 strict_loads?()

 Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

 Functions

 Link to this function

 calculate(list, opts, context)

 View Source

Callback implementation for Ash.Resource.Calculation.calculate/3.

 Link to this function

 describe(opts)

 View Source

Callback implementation for Ash.Resource.Calculation.describe/1.

 Link to this function

 has_calculate?()

 View Source

 Link to this function

 has_expression?()

 View Source

Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 Link to this function

 init(opts)

 View Source

Callback implementation for Ash.Resource.Calculation.init/1.

 Link to this function

 load(query, opts, arg3)

 View Source

Callback implementation for Ash.Resource.Calculation.load/3.

 Link to this function

 strict_loads?()

 View Source

Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

 Ash.Resource.Calculation.LoadRelationship - ash v3.0.0-rc.6

Ash.Resource.Calculation.LoadRelationship

Loads a relationship as a calculation.
Can be used to load the same relationship with a different query.

 Summary

 Functions

 calculate(results, opts, context)

 Callback implementation for Ash.Resource.Calculation.calculate/3.

 describe(opts)

 Callback implementation for Ash.Resource.Calculation.describe/1.

 has_calculate?()

 has_expression?()

 Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 init(opts)

 Callback implementation for Ash.Resource.Calculation.init/1.

 load(query, opts, arg3)

 Callback implementation for Ash.Resource.Calculation.load/3.

 strict_loads?()

 Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

 Functions

 Link to this function

 calculate(results, opts, context)

 View Source

Callback implementation for Ash.Resource.Calculation.calculate/3.

 Link to this function

 describe(opts)

 View Source

Callback implementation for Ash.Resource.Calculation.describe/1.

 Link to this function

 has_calculate?()

 View Source

 Link to this function

 has_expression?()

 View Source

Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 Link to this function

 init(opts)

 View Source

Callback implementation for Ash.Resource.Calculation.init/1.

 Link to this function

 load(query, opts, arg3)

 View Source

Callback implementation for Ash.Resource.Calculation.load/3.

 Link to this function

 strict_loads?()

 View Source

Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

 Ash.Resource.CalculationInterface - ash v3.0.0-rc.6

Ash.Resource.CalculationInterface

Represents a function that evaluates a calculation in a resource's code interface

 Summary

 Types

 t()

 Functions

 schema()

 transform(interface)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.CalculationInterface{
 args: term(),
 calculation: term(),
 name: term()
}

 Functions

 Link to this function

 schema()

 View Source

 Link to this function

 transform(interface)

 View Source

 Ash.Resource.Identity - ash v3.0.0-rc.6

Ash.Resource.Identity

Represents a unique constraint on a resource
Data layers should (and all built in ones do), discount nil or null (in the case of postgres) values
when determining if a unique constraint matches. This often means that you should
prefer to use identities with non-nullable columns.
Eventually, features could be added to support including nil or null values, but they would
need to include a corresponding feature for data layers.

 Summary

 Types

 t()

 Functions

 schema()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Identity{
 all_tenants?: boolean(),
 description: String.t() | nil,
 eager_check_with: term(),
 keys: [atom()],
 message: term(),
 name: atom(),
 pre_check_with: term()
}

 Functions

 Link to this function

 schema()

 View Source

 Ash.Resource.Info - ash v3.0.0-rc.6

Ash.Resource.Info

Introspection for resources

 Summary

 Functions

 action(resource, name, type \\ nil)

 Returns the action with the matching name and type on the resource

 action_input?(resource, action, input)

 Returns true or false if the input is accepted by the action, as an argument or an attribute

 action_inputs(resource, action)

 Returns the list of possible accepted keys by an action

 actions(resource)

 Returns all actions of a resource

 aggregate(resource, name)

 Get an aggregate by name

 aggregate_type(resource, aggregate)

 Gets the type of an aggregate for a given resource.

 aggregates(resource)

 Returns all aggregates of a resource

 attribute(resource, name)

 Get an attribute name from the resource

 attributes(resource)

 Returns all attributes of a resource

 authorizers(resource)

 A list of authorizers to be used when accessing

 base_filter(resource)

 The base filter of the resource

 calculation(resource, name)

 Get a calculation by name

 calculation_interface(resource, name)

 Get an calculation interface by name from the resource

 calculation_interfaces(resource)

 The list of code interface calculation definitions.

 calculations(resource)

 Returns all calculations of a resource

 changes(resource)

 A list of all changes for the resource

 changes(resource, type)

 A list of all changes for the resource for a given action type

 code_interface_domain(resource)

 The domain to define the interface for, when defining it in the resource

 data_layer(resource)

 The data layer of the resource, or nil if it does not have one

 default_actions(resource)

 Returns the configured default actions

 default_context(resource)

 The default context of the resource

 define_interface?(resource)

 Whether or not to define the interface on the resource

 description(resource)

 The description of the resource

 domain(resource)

 Returns the statically configured domain for the resource.

 embedded?(resource)

 Whether or not the resource is an embedded resource

 field(resource, name)

 Get a field from a resource by name

 fields(resource, types \\ [:attributes, :aggregates, :calculations, :relationships])

 Returns all attributes, aggregates, calculations and relationships of a resource

 identities(resource)

 A list of identities for the resource

 identity(resource, name)

 Get an identity by name from the resource

 interface(resource, name)

 Get an interface by name from the resource

 interfaces(resource)

 The list of code interface definitions.

 lazy_matching_default_attributes(resource, atom)

 Returns all attributes of a resource with lazy matching defaults

 lazy_non_matching_default_attributes(resource, atom)

 Returns all attributes of a resource with lazy non-matching-defaults

 multitenancy_attribute(resource)

 The multitenancy attribute for a resource

 multitenancy_global?(resource)

 The MFA to parse the tenant from the attribute

 multitenancy_parse_attribute(resource)

 The function to parse the tenant from the attribute

 multitenancy_strategy(resource)

 The multitenancy strategy for a resource

 multitenancy_template(resource)

 The template for creating the tenant name

 notifiers(resource)

 A list of notifiers to be used when accessing

 plural_name(resource)

 The plural_name of the resource

 preparations(resource)

 primary_action(resource, type)

 Returns the primary action of a given type

 primary_action!(resource, type)

 Returns the primary action of the given type

 primary_key(resource)

 A list of field names corresponding to the primary key

 primary_key_simple_equality?(resource)

 Whether or not all primary key attributes can be compared with simple_equality

 public_aggregate(resource, name)

 Get an aggregate by name

 public_aggregates(resource)

 Returns all public aggregates of a resource

 public_attribute(resource, name)

 Get a public attribute name from the resource

 public_attributes(resource)

 Returns all public attributes of a resource

 public_calculation(resource, name)

 Get a public calculation by name

 public_calculations(resource)

 Returns all public calculations of a resource

 public_field(resource, name)

 Get a public field from a resource by name

 public_fields(resource)

 Returns all public attributes, aggregates, calculations and relationships of a resource

 public_relationship(resource, relationship_name)

 Get a public relationship by name or path

 public_relationships(resource)

 Returns all public relationships of a resource

 related(resource, relationship)

 relationship(resource, relationship_name)

 Get a relationship by name or path

 relationships(resource)

 Returns all relationships of a resource

 required_belongs_to_relationships(resource)

 The required belongs_to relationships

 resource?(module)

 Whether or not a given module is a resource module

 reverse_relationship(resource, path, acc \\ [])

 Retrieves a relationship path from the resource related by path, to the provided resource.

 short_name(resource)

 The short_name of the resource

 simple_notifiers(resource)

 A list of simple notifiers (require no DSL, used to avoid compile time dependencies)

 sortable?(resource, name, opts \\ [])

 Determine if a field is sortable by name

 static_default_attributes(resource, atom)

 Returns all attributes of a resource with static defaults

 trace_name(resource)

 The trace_name of the resource

 unique_keys(resource)

 A list of unique keys and information for a resource

 validations(resource)

 A list of all validations for the resource

 validations(resource, type)

 A list of all validations for the resource for a given action type

 Functions

 Link to this function

 action(resource, name, type \\ nil)

 View Source

 @spec action(
 Spark.Dsl.t() | Ash.Resource.t(),
 atom(),
 Ash.Resource.Actions.action_type() | nil
) ::
 Ash.Resource.Actions.action() | nil

Returns the action with the matching name and type on the resource

 Link to this function

 action_input?(resource, action, input)

 View Source

 @spec action_input?(Ash.Resource.t(), action :: atom(), input :: atom() | String.t()) ::
 boolean()

Returns true or false if the input is accepted by the action, as an argument or an attribute

 Link to this function

 action_inputs(resource, action)

 View Source

 @spec action_inputs(Ash.Resource.t(), action :: atom()) :: MapSet.t()

Returns the list of possible accepted keys by an action

 Link to this function

 actions(resource)

 View Source

 @spec actions(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Actions.action()]

Returns all actions of a resource

 Link to this function

 aggregate(resource, name)

 View Source

 @spec aggregate(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
 Ash.Resource.Aggregate.t() | nil

Get an aggregate by name

 Link to this function

 aggregate_type(resource, aggregate)

 View Source

 @spec aggregate_type(
 Spark.Dsl.t() | Ash.Resource.t(),
 Ash.Resource.Aggregate.t() | atom()
) ::
 {:ok, Ash.Type.t()} | {:error, String.t()}

Gets the type of an aggregate for a given resource.

 Link to this function

 aggregates(resource)

 View Source

 @spec aggregates(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Aggregate.t()]

Returns all aggregates of a resource

 Link to this function

 attribute(resource, name)

 View Source

 @spec attribute(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
 Ash.Resource.Attribute.t() | nil

Get an attribute name from the resource

 Link to this function

 attributes(resource)

 View Source

 @spec attributes(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Attribute.t()]

Returns all attributes of a resource

 Link to this function

 authorizers(resource)

 View Source

 @spec authorizers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]

A list of authorizers to be used when accessing

 Link to this function

 base_filter(resource)

 View Source

 @spec base_filter(Spark.Dsl.t() | Ash.Resource.t()) :: term()

The base filter of the resource

 Link to this function

 calculation(resource, name)

 View Source

 @spec calculation(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
 Ash.Resource.Calculation.t() | nil

Get a calculation by name

 Link to this function

 calculation_interface(resource, name)

 View Source

 @spec calculation_interface(Spark.Dsl.t() | Ash.Resource.t(), atom()) ::
 Ash.Resource.CalculationInterface.t() | nil

Get an calculation interface by name from the resource

 Link to this function

 calculation_interfaces(resource)

 View Source

 @spec calculation_interfaces(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.CalculationInterface.t()
]

The list of code interface calculation definitions.

 Link to this function

 calculations(resource)

 View Source

 @spec calculations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Calculation.t()]

Returns all calculations of a resource

 Link to this function

 changes(resource)

 View Source

 @spec changes(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Validation.t() | Ash.Resource.Change.t()
]

A list of all changes for the resource

 Link to this function

 changes(resource, type)

 View Source

 @spec changes(Spark.Dsl.t() | Ash.Resource.t(), :create | :update | :destroy) :: [
 Ash.Resource.Validation.t() | Ash.Resource.Change.t()
]

A list of all changes for the resource for a given action type

 Link to this function

 code_interface_domain(resource)

 View Source

 @spec code_interface_domain(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil

The domain to define the interface for, when defining it in the resource

 Link to this function

 data_layer(resource)

 View Source

 @spec data_layer(Ash.Resource.t()) :: Ash.DataLayer.t() | nil

The data layer of the resource, or nil if it does not have one

 Link to this function

 default_actions(resource)

 View Source

 @spec default_actions(Spark.Dsl.t() | Ash.Resource.t()) :: [
 :create | :read | :update | :destroy
]

Returns the configured default actions

 Link to this function

 default_context(resource)

 View Source

 @spec default_context(Spark.Dsl.t() | Ash.Resource.t()) :: term()

The default context of the resource

 Link to this function

 define_interface?(resource)

 View Source

 @spec define_interface?(Spark.Dsl.t() | Ash.Resource.t()) :: boolean()

Whether or not to define the interface on the resource

 Link to this function

 description(resource)

 View Source

 @spec description(Spark.Dsl.t() | Ash.Resource.t()) :: String.t() | nil

The description of the resource

 Link to this function

 domain(resource)

 View Source

Returns the statically configured domain for the resource.

 Link to this function

 embedded?(resource)

 View Source

 @spec embedded?(Spark.Dsl.t() | Ash.Resource.t()) :: boolean()

Whether or not the resource is an embedded resource

 Link to this function

 field(resource, name)

 View Source

 @spec field(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
 Ash.Resource.Attribute.t()
 | Ash.Resource.Aggregate.t()
 | Ash.Resource.Calculation.t()
 | Ash.Resource.Relationships.relationship()
 | nil

Get a field from a resource by name

 Link to this function

 fields(resource, types \\ [:attributes, :aggregates, :calculations, :relationships])

 View Source

 @spec fields(
 Spark.Dsl.t() | Ash.Resource.t(),
 types :: [:attributes | :aggregates | :calculations | :relationships]
) :: [
 Ash.Resource.Attribute.t()
 | Ash.Resource.Aggregate.t()
 | Ash.Resource.Calculation.t()
 | Ash.Resource.Relationships.relationship()
]

Returns all attributes, aggregates, calculations and relationships of a resource

 Link to this function

 identities(resource)

 View Source

 @spec identities(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Identity.t()]

A list of identities for the resource

 Link to this function

 identity(resource, name)

 View Source

 @spec identity(Spark.Dsl.t() | Ash.Resource.t(), atom()) ::
 Ash.Resource.Identity.t() | nil

Get an identity by name from the resource

 Link to this function

 interface(resource, name)

 View Source

 @spec interface(Spark.Dsl.t() | Ash.Resource.t(), atom()) ::
 Ash.Resource.Interface.t() | nil

Get an interface by name from the resource

 Link to this function

 interfaces(resource)

 View Source

 @spec interfaces(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Interface.t()]

The list of code interface definitions.

 Link to this function

 lazy_matching_default_attributes(resource, atom)

 View Source

 @spec lazy_matching_default_attributes(
 Spark.Dsl.t() | Ash.Resource.t(),
 type :: :create | :update
) :: [Ash.Resource.Attribute.t()]

Returns all attributes of a resource with lazy matching defaults

 Link to this function

 lazy_non_matching_default_attributes(resource, atom)

 View Source

 @spec lazy_non_matching_default_attributes(
 Spark.Dsl.t() | Ash.Resource.t(),
 type :: :create | :update
) :: [Ash.Resource.Attribute.t()]

Returns all attributes of a resource with lazy non-matching-defaults

 Link to this function

 multitenancy_attribute(resource)

 View Source

 @spec multitenancy_attribute(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil

The multitenancy attribute for a resource

 Link to this function

 multitenancy_global?(resource)

 View Source

 @spec multitenancy_global?(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil

The MFA to parse the tenant from the attribute

 Link to this function

 multitenancy_parse_attribute(resource)

 View Source

 @spec multitenancy_parse_attribute(Spark.Dsl.t() | Ash.Resource.t()) ::
 {atom(), atom(), [any()]}

The function to parse the tenant from the attribute

 Link to this function

 multitenancy_strategy(resource)

 View Source

 @spec multitenancy_strategy(Spark.Dsl.t() | Ash.Resource.t()) ::
 :context | :attribute | nil

The multitenancy strategy for a resource

 Link to this function

 multitenancy_template(resource)

 View Source

 @spec multitenancy_template(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil

The template for creating the tenant name

 Link to this function

 notifiers(resource)

 View Source

 @spec notifiers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]

A list of notifiers to be used when accessing

 Link to this function

 plural_name(resource)

 View Source

The plural_name of the resource

 Link to this function

 preparations(resource)

 View Source

 @spec preparations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Preparation.t()]

 Link to this function

 primary_action(resource, type)

 View Source

 @spec primary_action(
 Spark.Dsl.t() | Ash.Resource.t(),
 Ash.Resource.Actions.action_type()
) ::
 Ash.Resource.Actions.action() | nil

Returns the primary action of a given type

 Link to this function

 primary_action!(resource, type)

 View Source

 @spec primary_action!(
 Spark.Dsl.t() | Ash.Resource.t(),
 Ash.Resource.Actions.action_type()
) ::
 Ash.Resource.Actions.action() | no_return()

Returns the primary action of the given type

 Link to this function

 primary_key(resource)

 View Source

 @spec primary_key(Spark.Dsl.t() | Ash.Resource.t()) :: [atom()]

A list of field names corresponding to the primary key

 Link to this function

 primary_key_simple_equality?(resource)

 View Source

 @spec primary_key_simple_equality?(Spark.Dsl.t() | Ash.Resource.t()) :: boolean()

Whether or not all primary key attributes can be compared with simple_equality

 Link to this function

 public_aggregate(resource, name)

 View Source

 @spec public_aggregate(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
 Ash.Resource.Aggregate.t() | nil

Get an aggregate by name

 Link to this function

 public_aggregates(resource)

 View Source

 @spec public_aggregates(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Aggregate.t()
]

Returns all public aggregates of a resource

 Link to this function

 public_attribute(resource, name)

 View Source

 @spec public_attribute(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
 Ash.Resource.Attribute.t() | nil

Get a public attribute name from the resource

 Link to this function

 public_attributes(resource)

 View Source

 @spec public_attributes(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Attribute.t()
]

Returns all public attributes of a resource

 Link to this function

 public_calculation(resource, name)

 View Source

 @spec public_calculation(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
 Ash.Resource.Calculation.t() | nil

Get a public calculation by name

 Link to this function

 public_calculations(resource)

 View Source

 @spec public_calculations(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Calculation.t()
]

Returns all public calculations of a resource

 Link to this function

 public_field(resource, name)

 View Source

 @spec public_field(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
 Ash.Resource.Attribute.t()
 | Ash.Resource.Aggregate.t()
 | Ash.Resource.Calculation.t()
 | Ash.Resource.Relationships.relationship()
 | nil

Get a public field from a resource by name

 Link to this function

 public_fields(resource)

 View Source

 @spec public_fields(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Attribute.t()
 | Ash.Resource.Aggregate.t()
 | Ash.Resource.Calculation.t()
 | Ash.Resource.Relationships.relationship()
]

Returns all public attributes, aggregates, calculations and relationships of a resource

 Link to this function

 public_relationship(resource, relationship_name)

 View Source

Get a public relationship by name or path

 Link to this function

 public_relationships(resource)

 View Source

 @spec public_relationships(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Relationships.relationship()
]

Returns all public relationships of a resource

 Link to this function

 related(resource, relationship)

 View Source

 @spec related(
 Spark.Dsl.t() | Ash.Resource.t(),
 atom() | String.t() | [atom() | String.t()]
) ::
 Ash.Resource.t() | nil

 Link to this function

 relationship(resource, relationship_name)

 View Source

 @spec relationship(
 Spark.Dsl.t() | Ash.Resource.t(),
 atom() | String.t() | [atom() | String.t()]
) ::
 Ash.Resource.Relationships.relationship() | nil

Get a relationship by name or path

 Link to this function

 relationships(resource)

 View Source

 @spec relationships(Spark.Dsl.t() | Ash.Resource.t()) :: [
 Ash.Resource.Relationships.relationship()
]

Returns all relationships of a resource

 Link to this function

 required_belongs_to_relationships(resource)

 View Source

The required belongs_to relationships

 Link to this function

 resource?(module)

 View Source

 @spec resource?(module()) :: boolean()

Whether or not a given module is a resource module

 Link to this function

 reverse_relationship(resource, path, acc \\ [])

 View Source

Retrieves a relationship path from the resource related by path, to the provided resource.

 Link to this function

 short_name(resource)

 View Source

 @spec short_name(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil

The short_name of the resource

 Link to this function

 simple_notifiers(resource)

 View Source

 @spec simple_notifiers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]

A list of simple notifiers (require no DSL, used to avoid compile time dependencies)

 Link to this function

 sortable?(resource, name, opts \\ [])

 View Source

 @spec sortable?(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom(),
 pagination_type: Ash.Page.type(),
 include_private?: boolean()
) :: boolean()

Determine if a field is sortable by name

 Link to this function

 static_default_attributes(resource, atom)

 View Source

 @spec static_default_attributes(
 Spark.Dsl.t() | Ash.Resource.t(),
 type :: :create | :update
) :: [Ash.Resource.Attribute.t()]

Returns all attributes of a resource with static defaults

 Link to this function

 trace_name(resource)

 View Source

 @spec trace_name(Spark.Dsl.t() | Ash.Resource.t()) :: String.t() | nil

The trace_name of the resource

 Link to this function

 unique_keys(resource)

 View Source

 @spec unique_keys(Spark.Dsl.t() | Ash.Resource.t()) :: [
 %{type: atom(), keys: [atom()]}
]

A list of unique keys and information for a resource

 Link to this function

 validations(resource)

 View Source

 @spec validations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Validation.t()]

A list of all validations for the resource

 Link to this function

 validations(resource, type)

 View Source

 @spec validations(Spark.Dsl.t() | Ash.Resource.t(), :create | :update | :destroy) :: [
 Ash.Resource.Validation.t()
]

A list of all validations for the resource for a given action type

 Ash.Resource.Interface - ash v3.0.0-rc.6

Ash.Resource.Interface

Represents a function in a resource's code interface

 Summary

 Types

 t()

 Functions

 interface_options(arg1)

 schema()

 transform(definition)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Interface{
 action: term(),
 args: term(),
 get?: term(),
 get_by: term(),
 get_by_identity: term(),
 name: term(),
 not_found_error?: term()
}

 Functions

 Link to this function

 interface_options(arg1)

 View Source

 Link to this function

 schema()

 View Source

 Link to this function

 transform(definition)

 View Source

 Ash.Resource.Relationships - ash v3.0.0-rc.6

Ash.Resource.Relationships

Types Ash relationships

 Summary

 Types

 cardinality()

 relationship()

 type()

 Types

 Link to this type

 cardinality()

 View Source

 @type cardinality() :: :many | :one

 Link to this type

 relationship()

 View Source

 @type relationship() ::
 Ash.Resource.Relationships.HasOne.t()
 | Ash.Resource.Relationships.BelongsTo.t()
 | Ash.Resource.Relationships.HasMany.t()
 | Ash.Resource.Relationships.ManyToMany.t()

 Link to this type

 type()

 View Source

 @type type() :: :has_many | :has_one | :belongs_to | :many_to_many

 Ash.Resource.Relationships.BelongsTo - ash v3.0.0-rc.6

Ash.Resource.Relationships.BelongsTo

Represents a belongs_to relationship on a resource

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Relationships.BelongsTo{
 allow_nil?: boolean(),
 attribute_public?: boolean(),
 attribute_type: term(),
 attribute_writable?: boolean(),
 cardinality: :one,
 context: term(),
 define_attribute?: boolean(),
 description: String.t(),
 destination: Ash.Resource.t(),
 destination_attribute: atom(),
 domain: term(),
 filter: Ash.Filter.t() | nil,
 filterable?: boolean(),
 filters: [any()],
 name: atom(),
 not_found_message: term(),
 primary_key?: boolean(),
 public?: boolean(),
 read_action: atom(),
 sort: term(),
 sortable?: boolean(),
 source: Ash.Resource.t(),
 source_attribute: atom() | nil,
 type: :belongs_to,
 validate_destination_attribute?: term(),
 violation_message: term(),
 writable?: boolean()
}

 Ash.Resource.Relationships.HasMany - ash v3.0.0-rc.6

Ash.Resource.Relationships.HasMany

Represents a has_many relationship on a resource

 Summary

 Types

 t()

 Functions

 manual(module)

 transform(relationship)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Relationships.HasMany{
 autogenerated_join_relationship_of: atom() | nil,
 cardinality: :many,
 context: term(),
 could_be_related_at_creation?: term(),
 description: String.t(),
 destination: Ash.Resource.t(),
 destination_attribute: atom(),
 domain: term(),
 filter: Ash.Filter.t() | nil,
 filterable?: boolean(),
 filters: [any()],
 manual: atom() | {atom(), Keyword.t()} | nil,
 name: atom(),
 no_attributes?: boolean(),
 not_found_message: term(),
 public?: boolean(),
 read_action: atom(),
 sort: term(),
 sortable?: true,
 source: Ash.Resource.t(),
 source_attribute: atom(),
 type: :has_many,
 validate_destination_attribute?: term(),
 violation_message: term(),
 writable?: boolean()
}

 Functions

 Link to this function

 manual(module)

 View Source

 Link to this function

 transform(relationship)

 View Source

 Ash.Resource.Relationships.HasOne - ash v3.0.0-rc.6

Ash.Resource.Relationships.HasOne

Represents a has_one relationship on a resource

 Summary

 Types

 t()

 Functions

 transform(relationship)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Relationships.HasOne{
 allow_nil?: term(),
 allow_orphans?: boolean(),
 cardinality: :one,
 context: term(),
 could_be_related_at_creation?: term(),
 description: String.t(),
 destination: Ash.Resource.t(),
 destination_attribute: atom(),
 domain: term(),
 filter: Ash.Filter.t() | nil,
 filterable?: boolean(),
 filters: [any()],
 from_many?: boolean(),
 manual: atom() | {atom(), Keyword.t()} | nil,
 name: atom(),
 no_attributes?: boolean(),
 not_found_message: term(),
 public?: boolean(),
 read_action: atom(),
 sort: term(),
 sortable?: boolean(),
 source: Ash.Resource.t(),
 source_attribute: atom(),
 type: :has_one,
 validate_destination_attribute?: term(),
 violation_message: term(),
 writable?: boolean()
}

 Functions

 Link to this function

 transform(relationship)

 View Source

 Ash.Resource.Relationships.ManyToMany - ash v3.0.0-rc.6

Ash.Resource.Relationships.ManyToMany

Represents a many_to_many relationship on a resource

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Relationships.ManyToMany{
 cardinality: :many,
 context: term(),
 could_be_related_at_creation?: term(),
 description: String.t(),
 destination: Ash.Resource.t(),
 destination_attribute: atom(),
 destination_attribute_on_join_resource: atom(),
 domain: term(),
 filter: Ash.Filter.t() | nil,
 filterable?: boolean(),
 filters: [any()],
 has_many: boolean(),
 join_relationship: atom(),
 name: atom(),
 not_found_message: term(),
 public?: boolean(),
 read_action: atom(),
 sort: term(),
 sortable?: boolean(),
 source: Ash.Resource.t(),
 source_attribute: atom(),
 source_attribute_on_join_resource: atom(),
 through: Ash.Resource.t(),
 type: :many_to_many,
 validate_destination_attribute?: term(),
 violation_message: term()
}

 Ash.Changeset.ManagedRelationshipHelpers - ash v3.0.0-rc.6

Ash.Changeset.ManagedRelationshipHelpers

Tools for introspecting managed relationships.
Extensions can use this to look at an argument that will be passed
to a manage_relationship change and determine what their behavior
should be. For example, AshAdmin uses these to find out what kind of
nested form it should offer for each argument that manages a relationship.

 Summary

 Functions

 could_create?(opts)

 could_handle_missing?(opts)

 could_lookup?(opts)

 could_update?(opts)

 must_load?(opts, must_load_opts \\ [])

 on_lookup_read_action(opts, relationship)

 on_lookup_update_action(opts, relationship)

 on_match_destination_actions(opts, relationship)

 on_missing_destination_actions(opts, relationship)

 on_no_match_destination_actions(opts, relationship)

 sanitize_opts(relationship, opts)

 Functions

 Link to this function

 could_create?(opts)

 View Source

 Link to this function

 could_handle_missing?(opts)

 View Source

 Link to this function

 could_lookup?(opts)

 View Source

 Link to this function

 could_update?(opts)

 View Source

 Link to this function

 must_load?(opts, must_load_opts \\ [])

 View Source

 Link to this function

 on_lookup_read_action(opts, relationship)

 View Source

 Link to this function

 on_lookup_update_action(opts, relationship)

 View Source

 Link to this function

 on_match_destination_actions(opts, relationship)

 View Source

 Link to this function

 on_missing_destination_actions(opts, relationship)

 View Source

 Link to this function

 on_no_match_destination_actions(opts, relationship)

 View Source

 Link to this function

 sanitize_opts(relationship, opts)

 View Source

 Ash.CiString - ash v3.0.0-rc.6

Ash.CiString

Represents a case insensitive string
While some data layers are aware of case insensitive string types, in order for values
of this type to be used in other parts of Ash Framework, it has to be embedded in a module
this allows us to implement the Comparable protocol for it.
For the type implementation, see Ash.Type.CiString

 Summary

 Types

 t()

 Functions

 compare(left, right)

 new(value, casing \\ nil)

 sigil_i(value, mods)

 Creates a case insensitive string

 to_comparable_string(value)

 Returns the downcased value, only downcasing if it hasn't already been done

 value(ci_string)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.CiString{
 case: nil | :lower | :upper,
 casted?: boolean(),
 string: String.t()
}

 Functions

 Link to this function

 compare(left, right)

 View Source

 Link to this function

 new(value, casing \\ nil)

 View Source

 Link to this function

 sigil_i(value, mods)

 View Source

Creates a case insensitive string

 Link to this function

 to_comparable_string(value)

 View Source

Returns the downcased value, only downcasing if it hasn't already been done

 Link to this function

 value(ci_string)

 View Source

 Ash.Expr - ash v3.0.0-rc.6

Ash.Expr

Tools to build Ash expressions

 Summary

 Types

 t()

 Functions

 actor(value)

 A template helper for using actor values in filter templates

 arg(name)

 A template helper for using action arguments in filter templates

 atomic_ref(expr)

 A template helper for referring to the most recent atomic expression applied to an update field

 context(name)

 A template helper for using query context in filter templates

 eval(expression, opts \\ [])

 Evaluate an expression. This function only works if you have no references, or if you provide the record option.

 eval!(expression, opts \\ [])

 Evaluate an expression. See eval/2 for more.

 expr(body)

 expr?(value)

 Returns true if the value is or contains an expression

 or_where(left, right)

 parent(expr)

 A template helper for creating a parent reference

 ref(name)

 A template helper for creating a reference

 ref(path, name)

 A template helper for creating a reference to a related path

 template_references?(list, pred)

 Whether or not a given template contains an actor reference

 template_references_argument?(template)

 template_references_context?(template)

 where(left, right)

 Types

 Link to this type

 t()

 View Source

 @type t() :: any()

 Functions

 Link to this function

 actor(value)

 View Source

A template helper for using actor values in filter templates

 Link to this function

 arg(name)

 View Source

A template helper for using action arguments in filter templates

 Link to this function

 atomic_ref(expr)

 View Source

A template helper for referring to the most recent atomic expression applied to an update field

 Link to this function

 context(name)

 View Source

A template helper for using query context in filter templates
An atom will get the value for a key, and a list will be accessed via get_in.

 Link to this function

 eval(expression, opts \\ [])

 View Source

Evaluate an expression. This function only works if you have no references, or if you provide the record option.

 Link to this function

 eval!(expression, opts \\ [])

 View Source

Evaluate an expression. See eval/2 for more.

 Link to this macro

 expr(body)

 View Source

 (macro)

 @spec expr(Macro.t()) :: t()

 Link to this function

 expr?(value)

 View Source

 @spec expr?(term()) :: boolean()

Returns true if the value is or contains an expression

 Link to this macro

 or_where(left, right)

 View Source

 (macro)

 @spec or_where(Macro.t(), Macro.t()) :: t()

 Link to this function

 parent(expr)

 View Source

A template helper for creating a parent reference

 Link to this function

 ref(name)

 View Source

A template helper for creating a reference

 Link to this function

 ref(path, name)

 View Source

A template helper for creating a reference to a related path

 Link to this function

 template_references?(list, pred)

 View Source

Whether or not a given template contains an actor reference

 Link to this function

 template_references_argument?(template)

 View Source

 Link to this function

 template_references_context?(template)

 View Source

 Link to this macro

 where(left, right)

 View Source

 (macro)

 @spec where(Macro.t(), Macro.t()) :: t()

 Ash.Filter - ash v3.0.0-rc.6

Ash.Filter

The representation of a filter in Ash.

 Security Concerns

If you are using a map with string keys, it is likely that you are parsing
input. It is important to note that, instead of passing a filter supplied from
an external source directly to Ash.Query.filter/2, you should call
Ash.Filter.parse_input/2. This ensures that the filter only uses public
attributes, relationships, aggregates and calculations, honors field policies
and any policies on related resources.

 Writing a filter

 Built In Predicates

	is_nil
	==
	!=
	in
	<
	>
	<=
	>=
	&&
	||
	<>
	/
	-
	*
	+
	equals (alias
for ==)
	not_equals (alias
for !=)
	gt (alias
for >)
	lt (alias
for <)
	gte (alias
for >=)
	lte (alias
for <=)
	eq (alias
for ==)
	not_eq (alias
for !=)
	less_than (alias
for <)
	greater_than (alias
for >)
	less_than_or_equal (alias
for <=)
	greater_than_or_equal (alias
for >=)
	and (alias
for &&)
	or (alias
for ||)
	concat (alias
for <>)
	div (alias
for /)
	minus (alias
for -)
	times (alias
for *)
	plus (alias
for +)

 BooleanExpression syntax

The expression syntax ultimately just builds the keyword list style filter,
but with lots of conveniences that would be very annoying to do manually.
Examples
Ash.Query.filter(resource, name == "Zardoz")
Ash.Query.filter(resource, first_name == "Zar" and last_name == "Doz")
Ash.Query.filter(resource, first_name == "Zar" and last_name in ["Doz", "Daz"] and high_score > 10)
Ash.Query.filter(resource, first_name == "Zar" or last_name == "Doz" or (high_score > 10 and high_score < -10))

 Keyword list syntax

A filter is a nested keyword list (with some exceptions, like true for
everything and false for nothing).
The key is the "predicate" (or "condition") and the value is the parameter.
You can use and and or to create nested filters. Data layers can expose
custom predicates. Eventually, you will be able to define your own custom
predicates, which will be a mechanism for you to attach complex filters
supported by the data layer to your queries.
 Important In a given keyword list, all predicates are considered to be
"ands". So [or: [first_name: "Tom", last_name: "Bombadil"]] doesn't mean
'First name == "tom" or last_name == "bombadil"'. To say that, you want to
provide a list of filters, like so: [or: [[first_name: "Tom"], [last_name: "Bombadil"]]]
Some example filters:
Ash.Query.filter(resource, [name: "Zardoz"])
Ash.Query.filter(resource, [first_name: "Zar", last_name: "Doz"])
Ash.Query.filter(resource, [first_name: "Zar", last_name: [in: ["Doz", "Daz"]], high_score: [greater_than: 10]])
Ash.Query.filter(resource, [or: [
 [first_name: "Zar"],
 [last_name: "Doz"],
 [or: [
 [high_score: [greater_than: 10]]],
 [high_score: [less_than: -10]]
]
]])

 Other formats

Maps are also accepted, as are maps with string keys. Technically, a list of
[{"string_key", value}] would also work.

 Summary

 Types

 t()

 Functions

 add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

 add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

 builtin_functions()

 builtin_operators()

 builtin_predicate_operators()

 builtins()

 custom_expression(name, args)

 do_hydrate_refs(ref, context)

 find(expr, pred, ors? \\ true, ands? \\ true)

 Find an expression inside of a filter that matches the provided predicate

 find_simple_equality_predicate(expression, attribute)

 Can be used to find a simple equality predicate on an attribute

 find_value(expr, pred)

 flat_map(expression, func)

 get_filter(resource, id)

 Returns a filter statement that would find a single record based on the input.

 get_function(key, resource, public?)

 get_operator(key)

 get_predicate_function(key, resource, public?)

 hydrate_refs(value, context)

 list_predicates(expression)

 list_refs(expression, no_longer_simple? \\ false, in_an_eq? \\ false, expand_calculations? \\ false, expand_get_path? \\ false)

 map(filter, func)

 move_exprs_to_relationship_path(refs, path)

 move_to_relationship_path(expression, relationship_path)

 parse(resource, statement, context \\ %{})

 Parses a filter statement

 parse!(resource, statement, context \\ %{})

 Parses a filter statement

 parse_input(resource, statement)

 Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies.

 parse_input!(resource, statement)

 Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies, raising on errors.

 prefix_refs(expr, path)

 put_at_path(value, list)

 relationship_paths(filter_or_expression, include_exists? \\ false, with_refs? \\ false, expand_aggregates? \\ false)

 run_other_data_layer_filters(domain, resource, filter, tenant)

 strict_subset_of(filter, candidate)

 Returns true if the second argument is a strict subset (always returns the same or less data) of the first

 strict_subset_of?(filter, candidate)

 to_simple_filter(map, opts \\ [])

 Transform an expression based filter to a simple filter, which is just a list of predicates

 update_aggregates(expression, mapper, nested_path \\ [], parent_paths \\ [])

 used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)

 used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{}, return_refs? \\ false)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Filter{expression: term(), resource: term()}

 Functions

 Link to this function

 add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

 View Source

 Link to this function

 add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

 View Source

 Link to this function

 builtin_functions()

 View Source

 Link to this function

 builtin_operators()

 View Source

 Link to this function

 builtin_predicate_operators()

 View Source

 Link to this function

 builtins()

 View Source

 Link to this function

 custom_expression(name, args)

 View Source

 Link to this function

 do_hydrate_refs(ref, context)

 View Source

 Link to this function

 find(expr, pred, ors? \\ true, ands? \\ true)

 View Source

Find an expression inside of a filter that matches the provided predicate

 Link to this function

 find_simple_equality_predicate(expression, attribute)

 View Source

Can be used to find a simple equality predicate on an attribute
Use this when your attribute is configured with filterable? :simple_equality, and you want to
to find the value that it is being filtered on with (if any).

 Link to this function

 find_value(expr, pred)

 View Source

 Link to this function

 flat_map(expression, func)

 View Source

 Link to this function

 get_filter(resource, id)

 View Source

Returns a filter statement that would find a single record based on the input.
For example:
iex> get_filter(MyApp.Post, 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, id: 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, author_id: 1, publication_id: 2, first_name: "fred")
{:ok, %{author_id: 1, publication_id: 1}} # using a unique identity
iex> get_filter(MyApp.Post, first_name: "fred")
:error # not enough information

 Link to this function

 get_function(key, resource, public?)

 View Source

 Link to this function

 get_operator(key)

 View Source

 Link to this function

 get_predicate_function(key, resource, public?)

 View Source

 Link to this function

 hydrate_refs(value, context)

 View Source

 Link to this function

 list_predicates(expression)

 View Source

 Link to this function

 list_refs(expression, no_longer_simple? \\ false, in_an_eq? \\ false, expand_calculations? \\ false, expand_get_path? \\ false)

 View Source

 Link to this function

 map(filter, func)

 View Source

 Link to this function

 move_exprs_to_relationship_path(refs, path)

 View Source

 Link to this function

 move_to_relationship_path(expression, relationship_path)

 View Source

 Link to this function

 parse(resource, statement, context \\ %{})

 View Source

Parses a filter statement
See the module documentation for more information on the supported formats for filter
statements.

 Important

If you are trying to validate a filter supplied from an external/untrusted source,
be sure to use parse_input/2 instead! The only difference is that it only accepts
filters over public attributes/relationships.

 Link to this function

 parse!(resource, statement, context \\ %{})

 View Source

Parses a filter statement
See parse/2 for more

 Link to this function

 parse_input(resource, statement)

 View Source

Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies.
See parse/2 for more

 Link to this function

 parse_input!(resource, statement)

 View Source

Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies, raising on errors.
See parse_input/2 for more

 Link to this function

 prefix_refs(expr, path)

 View Source

 Link to this function

 put_at_path(value, list)

 View Source

 Link to this function

 relationship_paths(filter_or_expression, include_exists? \\ false, with_refs? \\ false, expand_aggregates? \\ false)

 View Source

 Link to this function

 run_other_data_layer_filters(domain, resource, filter, tenant)

 View Source

 Link to this function

 strict_subset_of(filter, candidate)

 View Source

Returns true if the second argument is a strict subset (always returns the same or less data) of the first

 Link to this function

 strict_subset_of?(filter, candidate)

 View Source

 Link to this function

 to_simple_filter(map, opts \\ [])

 View Source

Transform an expression based filter to a simple filter, which is just a list of predicates
Options:
	skip_invalid?:

 Link to this function

 update_aggregates(expression, mapper, nested_path \\ [], parent_paths \\ [])

 View Source

 Link to this function

 used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)

 View Source

 Link to this function

 used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{}, return_refs? \\ false)

 View Source

 Ash.Filter.Runtime - ash v3.0.0-rc.6

Ash.Filter.Runtime

Checks a record to see if it matches a filter statement.
We can't always tell if a record matches a filter statement, and as such this
function may return :unknown. Additionally, some expressions wouldn't ever
make sense outside of the context of the data layer, and will always be an
error. For example, if you used the trigram search features in
ash_postgres. That logic would need to be handwritten in Elixir and would
need to be a perfect copy of the postgres implementation. That isn't a
realistic goal. This generally should not affect anyone using the standard
framework features, but if you were to attempt to use this module with a data
layer like ash_postgres, certain expressions will behave unpredictably.

 Summary

 Functions

 filter_matches(domain, records, filter, opts \\ [])

 Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambiguous terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.

 Functions

 Link to this function

 filter_matches(domain, records, filter, opts \\ [])

 View Source

Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambiguous terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.

 Ash.Filter.Simple - ash v3.0.0-rc.6

Ash.Filter.Simple

Represents a simplified filter, with a simple list of predicates

 Ash.Filter.Simple.Not - ash v3.0.0-rc.6

Ash.Filter.Simple.Not

A negated predicate

 Ash.ForbiddenField - ash v3.0.0-rc.6

Ash.ForbiddenField

Represents a field that was hidden due to authorization rules.

 Ash.Mix.Tasks.Helpers - ash v3.0.0-rc.6

Ash.Mix.Tasks.Helpers

Helpers for Ash Mix tasks.

 Summary

 Functions

 domains!(argv)

 Get all domains for the current project and ensure they are compiled.

 extensions!(argv, opts \\ [])

 Gets all extensions in use by the current project's domains and resources

 Functions

 Link to this function

 domains!(argv)

 View Source

Get all domains for the current project and ensure they are compiled.

 Link to this function

 extensions!(argv, opts \\ [])

 View Source

Gets all extensions in use by the current project's domains and resources

 Ash.NotLoaded - ash v3.0.0-rc.6

Ash.NotLoaded

Used when a field hasn't been loaded or selected.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.NotLoaded{
 field: atom(),
 type: :relationship | :calculation | :aggregate | :attribute
}

 Ash.OptionsHelpers - ash v3.0.0-rc.6

Ash.OptionsHelpers

Helpers for working with nimble options

 Summary

 Functions

 ash_resource()

 ash_type()

 hide_all_except(options, keys)

 Functions

 Link to this function

 ash_resource()

 View Source

 Link to this function

 ash_type()

 View Source

 Link to this function

 hide_all_except(options, keys)

 View Source

 Ash.Page - ash v3.0.0-rc.6

Ash.Page

Types for Ash pages

 Summary

 Types

 page()

 type()

 Types

 Link to this type

 page()

 View Source

 @type page() :: Ash.Page.Keyset.t() | Ash.Page.Offset.t()

 Link to this type

 type()

 View Source

 @type type() :: :offset | :keyset

 Ash.Page.Keyset - ash v3.0.0-rc.6

Ash.Page.Keyset

A page of results from keyset based pagination.
The results are generated with a keyset metadata,
which can be used to fetch the next/previous pages.

 Summary

 Types

 t()

 Functions

 data_with_keyset(results, resource, sort)

 filter(query, values, sort, after_or_before)

 new(results, count, sort, original_query, more?, opts)

 non_executable_binary_to_term(binary, opts)

 A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Page.Keyset{
 after: term(),
 before: term(),
 count: term(),
 limit: term(),
 more?: term(),
 rerun: term(),
 results: term()
}

 Functions

 Link to this function

 data_with_keyset(results, resource, sort)

 View Source

 Link to this function

 filter(query, values, sort, after_or_before)

 View Source

 Link to this function

 new(results, count, sort, original_query, more?, opts)

 View Source

 Link to this function

 non_executable_binary_to_term(binary, opts)

 View Source

A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex

 Ash.Page.Offset - ash v3.0.0-rc.6

Ash.Page.Offset

A page of results from offset based pagination.
If a resource supports keyset pagination as well,
it will also have the keyset metadata.

 Summary

 Types

 t()

 Functions

 new(results, count, original_query, more?, opts)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Page.Offset{
 count: term(),
 limit: term(),
 more?: term(),
 offset: term(),
 rerun: term(),
 results: term()
}

 Functions

 Link to this function

 new(results, count, original_query, more?, opts)

 View Source

 Ash.PlugHelpers - ash v3.0.0-rc.6

Ash.PlugHelpers

Helpers for working with the Plug connection.

 Summary

 Functions

 get_actor(arg1)

 Retrieves the actor from the Plug connection.

 get_context(arg1)

 Retrieves the context from the Plug connection.

 get_tenant(arg1)

 Retrieves the tenant from the Plug connection.

 set_actor(conn, actor)

 Sets the actor inside the Plug connection.

 set_context(conn, context)

 Sets the context inside the Plug connection.

 set_tenant(conn, tenant)

 Sets the tenant inside the Plug connection.

 update_actor(conn, callback)

 Updates the actor inside the Plug connection.

 update_context(conn, callback)

 Updates the context inside the Plug connection.

 Functions

 Link to this function

 get_actor(arg1)

 View Source

 @spec get_actor(Plug.Conn.t()) :: nil | Ash.Resource.record()

Retrieves the actor from the Plug connection.
The actor is stored inside the connection's private
fields.

 Deprecation warning

This function checks to see if the actor is already set in the @actor
assign, and if so will emit a deprecation warning.
This is to allow apps using the previous method a chance to update.
Rather than setting the actor in the assigns, please use the set_actor/2
method.

 Example

iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> put_private(:ash, %{actor: actor})
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor

iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> assign(:actor, actor)
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor

 Link to this function

 get_context(arg1)

 View Source

 @spec get_context(Plug.Conn.t()) :: nil | map()

Retrieves the context from the Plug connection.
The context is stored inside the connection's private
fields.

 Example

iex> context = %{fraud_score: 0.427}
...> conn = build_conn() |> put_private(:ash, %{context: context})
...> context = get_context(conn)
%{fraud_score: 0.427}

 Link to this function

 get_tenant(arg1)

 View Source

 @spec get_tenant(Plug.Conn.t()) :: term()

Retrieves the tenant from the Plug connection.
The tenant is stored inside the connection's private
fields.

 Deprecation warning

This function checks to see if the tenant is already set in the @tenant
assign, and if so will emit a deprecation warning.
This is to allow apps using the previous method a chance to update.
Rather than setting the tenant in the assigns, please use the set_tenant/2
method.

 Example

iex> conn = build_conn() |> put_private(:ash, %{tenant: "my-tenant"})
...> tenant = get_tenant(conn)
"my_tenant" = tenant

iex> conn = build_conn() |> assign(:tenant, "my-tenant")
...> tenant = get_tenant(conn)
"my_tenant" = tenant

 Link to this function

 set_actor(conn, actor)

 View Source

 @spec set_actor(Plug.Conn.t(), Ash.Resource.record()) :: Plug.Conn.t()

Sets the actor inside the Plug connection.
The actor is stored inside the connection's private
fields.

 Example

iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> set_actor(actor)
%Plug.Conn{private: %{ash: %{actor: %{email: "marty@1985.retro"}}}} = conn

 Link to this function

 set_context(conn, context)

 View Source

 @spec set_context(Plug.Conn.t(), map()) :: Plug.Conn.t()

Sets the context inside the Plug connection.
Context can be used to store abitrary data about the user, connection, or
anything else you like that doesn't belong as part of the actor or tenant.
The context is stored inside the connection's private
fields.

 Example

iex> context = %{fraud_score: 0.427}
...> conn = build_conn() |> set_context(context)
%Plug.Conn{private: %{ash: %{context: %{fraud_score: 0.427}}}}

 Link to this function

 set_tenant(conn, tenant)

 View Source

 @spec set_tenant(Plug.Conn.t(), Ash.ToTenant.t()) :: Plug.Conn.t()

Sets the tenant inside the Plug connection.
The tenant is stored inside the connection's private
fields.

 Example

iex> conn = build_conn() |> set_tenant("my-tenant")
%Plug.Conn{private: %{ash: %{tenant: "my-tenant}}} = conn

 Link to this function

 update_actor(conn, callback)

 View Source

 @spec update_actor(
 Plug.Conn.t(),
 (nil | Ash.Resource.record() -> nil | Ash.Resource.record())
) ::
 Plug.Conn.t()

Updates the actor inside the Plug connection.
The actor is stored inside the connection's private
fields.

 Example

iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> put_private(:ash, %{actor: actor})
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor
...> conn = update_actor(conn, fn actor -> Map.put(actor, :name, "Marty Retro") end)
...> actor = get_actor(conn)
%{email: "marty@1985.retro", name: "Marty Retro"} = actor
...> conn = update_actor(conn, fn actor -> Map.delete(actor, :email) end)
...> actor = get_actor(conn)
%{name: "Marty Retro"} = actor

 Link to this function

 update_context(conn, callback)

 View Source

 @spec update_context(Plug.Conn.t(), (nil | map() -> nil | map())) :: Plug.Conn.t()

Updates the context inside the Plug connection.
The context is stored inside the connection's private
fields.

 Example

iex> context = %{species: "Fythetropozoat"}
...> conn = build_conn() |> put_private(:ash, %{context: context})
...> context = get_context(conn)
%{fraud_score: 0.427}
...> conn = update_context(conn, fn context -> Map.put(context, :location, "Barnard's Loop") end)
...> context = get_context(conn)
%{species: "Fythetropozoat", location: "Barnard's Loop"}
...> conn = update_context(conn, fn context -> Map.delete(context, :fraud_score) end)
...> context = get_context(conn)
%{location: "Barnard's Loop"}

 Ash.ProcessHelpers - ash v3.0.0-rc.6

Ash.ProcessHelpers

Helpers for working with processes and Ash actions.

 Summary

 Functions

 async(func, opts)

 Creates a task that will properly transfer the ash context to the new process

 get_context_for_transfer(opts \\ [])

 Gets all of the ash context so it can be set into a new process.

 task_with_timeout(fun, resource, timeout, name, tracer)

 Creates a task that will properly transfer the ash context to the new process, and timeout if it takes longer than the given timeout

 transfer_context(tracer_context, opts \\ [])

 Functions

 Link to this function

 async(func, opts)

 View Source

Creates a task that will properly transfer the ash context to the new process

 Link to this function

 get_context_for_transfer(opts \\ [])

 View Source

 @spec get_context_for_transfer(opts :: Keyword.t()) :: term()

Gets all of the ash context so it can be set into a new process.
Use transfer_context/1 in the new process to set the context.

 Link to this function

 task_with_timeout(fun, resource, timeout, name, tracer)

 View Source

Creates a task that will properly transfer the ash context to the new process, and timeout if it takes longer than the given timeout

 Link to this function

 transfer_context(tracer_context, opts \\ [])

 View Source

 @spec transfer_context(term(), opts :: Keyword.t()) :: :ok

 Ash.Resource.Builder - ash v3.0.0-rc.6

Ash.Resource.Builder

Tools for transforming resources in DSL Transformers.

 Summary

 Functions

 add_action(dsl_state, type, name, opts \\ [])

 Builds and adds an action

 add_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

 Builds and adds an aggregate to a resource

 add_attribute(dsl_state, name, type, opts \\ [])

 Builds and adds an attribute to a resource

 add_calculation(dsl_state, name, type, calculation, opts \\ [])

 Builds and adds a calculation to a resource

 add_calculation_interface(dsl_state, name, opts \\ [])

 Builds and adds an calculation interface to a resource

 add_change(dsl_state, ref, opts \\ [])

 Builds and adds a change

 add_create_timestamp(dsl_state, name, opts \\ [])

 Builds and adds a create_timestamp to a resource

 add_identity(dsl_state, name, fields, opts \\ [])

 Builds and adds an identity

 add_interface(dsl_state, name, opts \\ [])

 Builds and adds an interface to a resource

 add_new_action(dsl_state, type, name, opts \\ [])

 Builds and adds a new action unless an action with that name already exists

 add_new_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

 Builds and adds an aggregate unless an aggregate with that name already exists

 add_new_attribute(dsl_state, name, type, opts \\ [])

 Builds and adds an attribute unless an attribute with that name already exists

 add_new_calculation(dsl_state, name, type, calculation, opts \\ [])

 Builds and adds a calculation unless a calculation with that name already exists

 add_new_calculation_interface(dsl_state, name, opts \\ [])

 Builds and adds an calculation interface unless an calculation interface with that name already exists

 add_new_create_timestamp(dsl_state, name, opts \\ [])

 Builds and adds a create_timestamp unless a create_timestamp with that name already exists

 add_new_identity(dsl_state, name, fields, opts \\ [])

 Builds and adds a new identity unless an identity with that name already exists

 add_new_interface(dsl_state, name, opts \\ [])

 Builds and adds an interface unless an interface with that name already exists

 add_new_relationship(dsl_state, type, name, destination, opts \\ [])

 Builds and adds a new relationship unless a relationship with that name already exists

 add_new_update_timestamp(dsl_state, name, opts \\ [])

 Builds and adds an update_timestamp unless an update_timestamp with that name already exists

 add_preparation(dsl_state, ref, opts \\ [])

 Builds and adds a preparation

 add_relationship(dsl_state, type, name, destination, opts \\ [])

 Builds and adds an action

 add_update_timestamp(dsl_state, name, opts \\ [])

 Builds and adds an update_timestamp

 build_action(type, name, opts \\ [])

 Builds an action

 build_action_argument(name, type, opts \\ [])

 Builds an action argument

 build_action_change(change, opts \\ [])

 Builds an action change

 build_action_metadata(name, type, opts \\ [])

 Builds an action metadata

 build_aggregate(name, kind, relationship_path, opts \\ [])

 Builds a calculation with the given name, type, and options

 build_attribute(name, type, opts \\ [])

 Builds an attribute with the given name, type, and options

 build_calculation(name, type, calculation, opts \\ [])

 Builds a calculation with the given name, type, and options

 build_calculation_argument(name, type, opts \\ [])

 Builds a calculation argument

 build_calculation_interface(name, opts \\ [])

 Builds an calculation interface with the given name, type, and options

 build_change(ref, opts \\ [])

 Builds a change

 build_create_timestamp(name, opts \\ [])

 Builds an create_timestamp with the given name, type, and options

 build_identity(name, fields, opts \\ [])

 Builds an action

 build_interface(name, opts \\ [])

 Builds an interface with the given name, type, and options

 build_pagination(opts \\ [])

 Builds a pagination object

 build_preparation(ref, opts \\ [])

 Builds a preparation

 build_relationship(type, name, destination, opts \\ [])

 Builds a relationship

 build_update_timestamp(name, opts \\ [])

 Builds an update_timestamp with the given name, type, and options

 prepend_action(dsl_state, type, name, opts \\ [])

 Builds and adds an action to the front of the actions list

 Functions

 Link to this function

 add_action(dsl_state, type, name, opts \\ [])

 View Source

 @spec add_action(
 Spark.Dsl.Builder.input(),
 type :: Ash.Resource.Actions.action_type(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an action

 Link to this function

 add_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

 View Source

 @spec add_aggregate(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 kind :: Ash.Query.Aggregate.kind(),
 relationship_path :: atom() | [atom()],
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an aggregate to a resource

 Link to this function

 add_attribute(dsl_state, name, type, opts \\ [])

 View Source

 @spec add_attribute(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 type :: Ash.Type.t(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an attribute to a resource

 Link to this function

 add_calculation(dsl_state, name, type, calculation, opts \\ [])

 View Source

 @spec add_calculation(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 type :: Ash.Type.t(),
 calculation :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a calculation to a resource

 Link to this function

 add_calculation_interface(dsl_state, name, opts \\ [])

 View Source

 @spec add_calculation_interface(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an calculation interface to a resource

 Link to this function

 add_change(dsl_state, ref, opts \\ [])

 View Source

 @spec add_change(
 Spark.Dsl.Builder.input(),
 ref :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a change

 Link to this function

 add_create_timestamp(dsl_state, name, opts \\ [])

 View Source

 @spec add_create_timestamp(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a create_timestamp to a resource

 Link to this function

 add_identity(dsl_state, name, fields, opts \\ [])

 View Source

 @spec add_identity(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 fields :: atom() | [atom()],
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an identity

 Link to this function

 add_interface(dsl_state, name, opts \\ [])

 View Source

 @spec add_interface(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an interface to a resource

 Link to this function

 add_new_action(dsl_state, type, name, opts \\ [])

 View Source

 @spec add_new_action(
 Spark.Dsl.Builder.input(),
 type :: Ash.Resource.Actions.action_type(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a new action unless an action with that name already exists

 Link to this function

 add_new_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

 View Source

 @spec add_new_aggregate(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 kind :: Ash.Query.Aggregate.kind(),
 relationship_path :: atom() | [atom()],
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an aggregate unless an aggregate with that name already exists

 Link to this function

 add_new_attribute(dsl_state, name, type, opts \\ [])

 View Source

 @spec add_new_attribute(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 type :: Ash.Type.t(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an attribute unless an attribute with that name already exists

 Link to this function

 add_new_calculation(dsl_state, name, type, calculation, opts \\ [])

 View Source

 @spec add_new_calculation(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 type :: Ash.Type.t(),
 calculation :: module() | {module(), Keyword.t()} | Ash.Expr.t(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a calculation unless a calculation with that name already exists

 Link to this function

 add_new_calculation_interface(dsl_state, name, opts \\ [])

 View Source

 @spec add_new_calculation_interface(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an calculation interface unless an calculation interface with that name already exists

 Link to this function

 add_new_create_timestamp(dsl_state, name, opts \\ [])

 View Source

 @spec add_new_create_timestamp(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) ::
 Spark.Dsl.Builder.result()

Builds and adds a create_timestamp unless a create_timestamp with that name already exists

 Link to this function

 add_new_identity(dsl_state, name, fields, opts \\ [])

 View Source

 @spec add_new_identity(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 fields :: atom() | [atom()],
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a new identity unless an identity with that name already exists

 Link to this function

 add_new_interface(dsl_state, name, opts \\ [])

 View Source

 @spec add_new_interface(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an interface unless an interface with that name already exists

 Link to this function

 add_new_relationship(dsl_state, type, name, destination, opts \\ [])

 View Source

 @spec add_new_relationship(
 Spark.Dsl.Builder.input(),
 type :: Ash.Resource.Relationships.type(),
 name :: atom(),
 destination :: module(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a new relationship unless a relationship with that name already exists

 Link to this function

 add_new_update_timestamp(dsl_state, name, opts \\ [])

 View Source

 @spec add_new_update_timestamp(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) ::
 Spark.Dsl.Builder.result()

Builds and adds an update_timestamp unless an update_timestamp with that name already exists

 Link to this function

 add_preparation(dsl_state, ref, opts \\ [])

 View Source

 @spec add_preparation(
 Spark.Dsl.Builder.input(),
 ref :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds a preparation

 Link to this function

 add_relationship(dsl_state, type, name, destination, opts \\ [])

 View Source

 @spec add_relationship(
 Spark.Dsl.Builder.input(),
 type :: Ash.Resource.Relationships.type(),
 name :: atom(),
 destination :: module(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an action

 Link to this function

 add_update_timestamp(dsl_state, name, opts \\ [])

 View Source

 @spec add_update_timestamp(
 Spark.Dsl.Builder.input(),
 name :: atom(),
 opts :: Keyword.t()
) ::
 Spark.Dsl.Builder.result()

Builds and adds an update_timestamp

 Link to this function

 build_action(type, name, opts \\ [])

 View Source

 @spec build_action(
 type :: Ash.Resource.Actions.action_type(),
 name :: atom(),
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Actions.action()} | {:error, term()}

Builds an action

 Link to this function

 build_action_argument(name, type, opts \\ [])

 View Source

 @spec build_action_argument(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Actions.Argument.t()} | {:error, term()}

Builds an action argument

 Link to this function

 build_action_change(change, opts \\ [])

 View Source

 @spec build_action_change(change :: Ash.Resource.Change.ref(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Change.t()} | {:error, term()}

Builds an action change

 Link to this function

 build_action_metadata(name, type, opts \\ [])

 View Source

 @spec build_action_metadata(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Actions.Metadata.t()} | {:error, term()}

Builds an action metadata

 Link to this function

 build_aggregate(name, kind, relationship_path, opts \\ [])

 View Source

 @spec build_aggregate(
 name :: atom(),
 kind :: Ash.Query.Aggregate.kind(),
 relationship_path :: atom() | [atom()],
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Aggregate.t()} | {:error, term()}

Builds a calculation with the given name, type, and options

 Link to this function

 build_attribute(name, type, opts \\ [])

 View Source

 @spec build_attribute(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Attribute.t()} | {:error, term()}

Builds an attribute with the given name, type, and options

 Link to this function

 build_calculation(name, type, calculation, opts \\ [])

 View Source

 @spec build_calculation(
 name :: atom(),
 type :: Ash.Type.t(),
 calculation :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Calculation.t()} | {:error, term()}

Builds a calculation with the given name, type, and options

 Link to this function

 build_calculation_argument(name, type, opts \\ [])

 View Source

 @spec build_calculation_argument(
 name :: atom(),
 type :: Ash.Type.t(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.Calculation.Argument.t()} | {:error, term()}

Builds a calculation argument

 Link to this function

 build_calculation_interface(name, opts \\ [])

 View Source

 @spec build_calculation_interface(name :: atom(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.CalculationInterface.t()} | {:error, term()}

Builds an calculation interface with the given name, type, and options

 Link to this function

 build_change(ref, opts \\ [])

 View Source

 @spec build_change(
 ref :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Change.t()} | {:error, term()}

Builds a change

 Link to this function

 build_create_timestamp(name, opts \\ [])

 View Source

 @spec build_create_timestamp(name :: atom(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Attribute.t()} | {:error, term()}

Builds an create_timestamp with the given name, type, and options

 Link to this function

 build_identity(name, fields, opts \\ [])

 View Source

 @spec build_identity(
 name :: atom(),
 fields :: atom() | [atom()],
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Identity.t()} | {:error, term()}

Builds an action

 Link to this function

 build_interface(name, opts \\ [])

 View Source

 @spec build_interface(name :: atom(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Interface.t()} | {:error, term()}

Builds an interface with the given name, type, and options

 Link to this function

 build_pagination(opts \\ [])

 View Source

 @spec build_pagination(pts :: Keyword.t()) ::
 {:ok, Ash.Resource.Actions.Read.Pagination.t()} | {:error, term()}

Builds a pagination object

 Link to this function

 build_preparation(ref, opts \\ [])

 View Source

 @spec build_preparation(
 ref :: module() | {module(), Keyword.t()},
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Preparation.t()} | {:error, term()}

Builds a preparation

 Link to this function

 build_relationship(type, name, destination, opts \\ [])

 View Source

 @spec build_relationship(
 type :: Ash.Resource.Relationships.type(),
 name :: atom(),
 destination :: module(),
 opts :: Keyword.t()
) :: {:ok, Ash.Resource.Relationships.relationship()} | {:error, term()}

Builds a relationship

 Link to this function

 build_update_timestamp(name, opts \\ [])

 View Source

 @spec build_update_timestamp(name :: atom(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.Attribute.t()} | {:error, term()}

Builds an update_timestamp with the given name, type, and options

 Link to this function

 prepend_action(dsl_state, type, name, opts \\ [])

 View Source

 @spec prepend_action(
 Spark.Dsl.Builder.input(),
 type :: Ash.Resource.Actions.action_type(),
 name :: atom(),
 opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()

Builds and adds an action to the front of the actions list

 Ash.SatSolver - ash v3.0.0-rc.6

Ash.SatSolver

Tools for working with the satsolver that drives filter subset checking (for authorization)

 Summary

 Functions

 b(statement)

 Creates tuples of a boolean statement.

 contains?(l1, l2)

 find_non_equal_overlap(expression)

 left_excludes_right(left, right)

 Returns b(not (left and right))

 left_implies_right(left, right)

 Returns b(not (left and not right))

 lift_equals_out_of_in(expression)

 mutually_exclusive(predicates, acc \\ [])

 Returns a statement expressing that the predicates are mutually exclusive.

 mutually_exclusive_and_collectively_exhaustive(predicates)

 Returns a statement expressing that the predicates are mutually exclusive and collectively exhaustive.

 mutually_inclusive(predicates, acc \\ [])

 Returns a statement expressing that the predicates are mutually inclusive

 right_excludes_left(left, right)

 Returns b(not (right and left))

 right_implies_left(left, right)

 Returns b(not (right and not left))

 solutions_to_predicate_values(solution, bindings)

 solve_expression(cnf)

 split_in_expressions(sub_expr, non_equal_overlap)

 strict_filter_subset(filter, candidate)

 Returns true if the candidate filter returns the same or less data than the filter

 synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)

 Returns true if the relationship paths are synonymous from a data perspective

 to_cnf(expression)

 Transforms a statement to Conjunctive Normal Form(CNF), as lists of lists of integers.

 transform(resource, expression)

 Prepares a filter for comparison

 transform_and_solve(resource, expression)

 Calls transform/2 and solves the expression

 unbind(expression, map)

 Remaps integers back to clauses

 Functions

 Link to this macro

 b(statement)

 View Source

 (macro)

Creates tuples of a boolean statement.
i.e b(1 and 2) #=> {:and, 1, 2}

 Link to this function

 contains?(l1, l2)

 View Source

 Link to this function

 find_non_equal_overlap(expression)

 View Source

 Link to this function

 left_excludes_right(left, right)

 View Source

Returns b(not (left and right))

 Link to this function

 left_implies_right(left, right)

 View Source

Returns b(not (left and not right))

 Link to this function

 lift_equals_out_of_in(expression)

 View Source

 Link to this function

 mutually_exclusive(predicates, acc \\ [])

 View Source

Returns a statement expressing that the predicates are mutually exclusive.

 Link to this function

 mutually_exclusive_and_collectively_exhaustive(predicates)

 View Source

Returns a statement expressing that the predicates are mutually exclusive and collectively exhaustive.

 Link to this function

 mutually_inclusive(predicates, acc \\ [])

 View Source

Returns a statement expressing that the predicates are mutually inclusive

 Link to this function

 right_excludes_left(left, right)

 View Source

Returns b(not (right and left))

 Link to this function

 right_implies_left(left, right)

 View Source

Returns b(not (right and not left))

 Link to this function

 solutions_to_predicate_values(solution, bindings)

 View Source

 Link to this function

 solve_expression(cnf)

 View Source

 Link to this function

 split_in_expressions(sub_expr, non_equal_overlap)

 View Source

 Link to this function

 strict_filter_subset(filter, candidate)

 View Source

Returns true if the candidate filter returns the same or less data than the filter

 Link to this function

 synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)

 View Source

Returns true if the relationship paths are synonymous from a data perspective

 Link to this function

 to_cnf(expression)

 View Source

Transforms a statement to Conjunctive Normal Form(CNF), as lists of lists of integers.

 Link to this function

 transform(resource, expression)

 View Source

Prepares a filter for comparison

 Link to this function

 transform_and_solve(resource, expression)

 View Source

Calls transform/2 and solves the expression

 Link to this function

 unbind(expression, map)

 View Source

Remaps integers back to clauses

 Ash.Sort - ash v3.0.0-rc.6

Ash.Sort

Utilities and types for sorting.

 Important

Keyset pagination cannot currently be used in conjunction with aggregate and calculation sorting.
Combining them will result in an error on the query.

 Summary

 Types

 sort_item()

 sort_order()

 t()

 Functions

 expr_sort(expression, type \\ nil)

 Builds an expression to be used in a sort statement.

 parse_input(resource, sort, handler \\ nil)

 A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.

 parse_input!(resource, sort, handler \\ nil)

 Same as parse_input/2 except raises any errors

 parse_sort(resource, sort, handler \\ nil)

 reverse(sort)

 Reverses an Ash sort statement.

 runtime_sort(results, sort, domain \\ nil)

 A utility for sorting a list of records at runtime.

 Types

 Link to this type

 sort_item()

 View Source

 @type sort_item() ::
 atom()
 | {atom(), sort_order()}
 | %Ash.Query.Calculation{
 calc_name: term(),
 constraints: term(),
 context: term(),
 filterable?: term(),
 load: term(),
 module: term(),
 name: term(),
 opts: term(),
 required_loads: term(),
 select: term(),
 sensitive?: term(),
 sortable?: term(),
 type: term()
 }
 | {%Ash.Query.Calculation{
 calc_name: term(),
 constraints: term(),
 context: term(),
 filterable?: term(),
 load: term(),
 module: term(),
 name: term(),
 opts: term(),
 required_loads: term(),
 select: term(),
 sensitive?: term(),
 sortable?: term(),
 type: term()
 }, sort_order()}
 | {atom(), {Keyword.t() | map(), sort_order()}}

 Link to this type

 sort_order()

 View Source

 @type sort_order() ::
 :asc
 | :desc
 | :asc_nils_first
 | :asc_nils_last
 | :desc_nils_first
 | :desc_nils_last

 Link to this type

 t()

 View Source

 @type t() :: [sort_item()] | sort_item()

 Functions

 Link to this macro

 expr_sort(expression, type \\ nil)

 View Source

 (macro)

 @spec expr_sort(Ash.Expr.t(), Ash.Type.t() | nil) :: Ash.Expr.t()

Builds an expression to be used in a sort statement.
For example:
Ash.Query.sort(Ash.Sort.expr_sort(author.full_name, :string))

Ash.Query.sort([{Ash.Sort.expr_sort(author.full_name, :string), :desc_nils_first}])

 Link to this function

 parse_input(resource, sort, handler \\ nil)

 View Source

 @spec parse_input(
 Ash.Resource.t(),
 String.t()
 | [atom() | String.t() | {atom(), sort_order()} | [String.t()]]
 | nil,
 nil | (String.t() -> nil | atom() | {atom(), map()})
) :: {:ok, t()} | {:error, term()}

A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.
The supported formats are:

 Sort Strings

A comma separated list of fields to sort on, each with an optional prefix.
The prefixes are:
	"+" - Same as no prefix. Sorts :asc.
	"++" - Sorts :asc_nils_first
	"-" - Sorts :desc
	"--" - Sorts :desc_nils_last

For example
"foo,-bar,++baz,--buz"

 A list of sort strings

Same prefix rules as above, but provided as a list.
For example:
["foo", "-bar", "++baz", "--buz"]

 Handling specific values

A handler function may be provided that takes a string, and returns the relevant sort
It won't be given any prefixes, only the field. This allows for things like parsing the calculation values
out of the sort, or setting calculation values if they are not included in the sort string.
To return calculation parameters, return {:field, %{param: :value}}. This will end up as something
like {:field, {:desc, %{param: :value}}}, with the corresponding sort order.
This handler function will only be called if you pass in a string or list of strings for the sort.
Atoms will be assumed to have already been handled. The handler should return nil if it is not handling
the given field.

 Link to this function

 parse_input!(resource, sort, handler \\ nil)

 View Source

Same as parse_input/2 except raises any errors
See parse_input/2 for more.

 Link to this function

 parse_sort(resource, sort, handler \\ nil)

 View Source

 Link to this function

 reverse(sort)

 View Source

Reverses an Ash sort statement.

 Link to this function

 runtime_sort(results, sort, domain \\ nil)

 View Source

A utility for sorting a list of records at runtime.
For example:
Ash.Sort.runtime_sort([record1, record2, record3], name: :asc, type: :desc_nils_last)
Keep in mind that it is unrealistic to expect this runtime sort to always
be exactly the same as a sort that may have been applied by your data layer.
This is especially true for strings. For example, Postgres strings have a
collation that affects their sorting, making it unpredictable from the perspective
of a tool using the database: https://www.postgresql.org/docs/current/collation.html

 Ash.UUID - ash v3.0.0-rc.6

Ash.UUID

Helpers for working with UUIDs

 Summary

 Functions

 generate()

 Generates a new uuid

 Functions

 Link to this function

 generate()

 View Source

Generates a new uuid

 Ash.Union - ash v3.0.0-rc.6

Ash.Union

A wrapper for values that are sourced from Ash.Type.Union.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Union{type: term(), value: term()}

 Ash.Vector - ash v3.0.0-rc.6

Ash.Vector

A vector struct for Ash.
Implementation based off of https://github.com/pgvector/pgvector-elixir/blob/v0.2.0/lib/pgvector.ex

 Summary

 Types

 t()

 Functions

 from_binary(binary)

 Creates a new vector from its binary representation

 new(vector)

 Creates a new vector from a list or tensor

 to_binary(vector)

 Converts the vector to its binary representation

 to_list(vector)

 Converts the vector to a list

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Vector{data: binary()}

 Functions

 Link to this function

 from_binary(binary)

 View Source

Creates a new vector from its binary representation

 Link to this function

 new(vector)

 View Source

 @spec new(t() | binary() | [integer()]) :: {:ok, t()} | {:error, :invalid_vector}

Creates a new vector from a list or tensor

 Link to this function

 to_binary(vector)

 View Source

Converts the vector to its binary representation

 Link to this function

 to_list(vector)

 View Source

Converts the vector to a list

 Ash.Domain.Info.Diagram - ash v3.0.0-rc.6

Ash.Domain.Info.Diagram

Generate Mermaid diagrams from a specified domain.

 Limitations

We can't easily model Ash relationships with Mermaid diagrams
because they are unidirectional and could be asymmetric.
Mermaid assumes symmetrical, bidirectional relationships.
If we try to model all unidirectional relationships as separate
lines in the diagram it gets very hard to read very quickly.

 Summary

 Functions

 mermaid_class_diagram(domain, opts \\ [indent: " ", show_private?: false])

 Generates a Mermaid Class Diagram for a given domain.

 mermaid_er_diagram(domain, opts \\ [indent: " ", show_private?: false])

 Generates a Mermaid Entity Relationship Diagram for a given domain.

 Functions

 Link to this function

 mermaid_class_diagram(domain, opts \\ [indent: " ", show_private?: false])

 View Source

Generates a Mermaid Class Diagram for a given domain.
Shows only public attributes, calculations, aggregates and actions.
Shows a connecting line for relationships with the type of relationship
indicated in the attribute list.

 Link to this function

 mermaid_er_diagram(domain, opts \\ [indent: " ", show_private?: false])

 View Source

Generates a Mermaid Entity Relationship Diagram for a given domain.
Shows only public attributes, calculations, aggregates and actions.
Shows a one-to-one line for relationships as enumerating all unidirectional
relationships is far too noisy.

 Ash.Domain.Info.Livebook - ash v3.0.0-rc.6

Ash.Domain.Info.Livebook

Generate a Livebook from a specified domain.

 Summary

 Functions

 action_header()

 action_input_section(resource, action)

 action_section(resource, action)

 attr_header()

 attr_section(attr)

 domain_section(domain)

 overview(domains)

 resource_section(resource)

 Functions

 Link to this function

 action_header()

 View Source

 Link to this function

 action_input_section(resource, action)

 View Source

 Link to this function

 action_section(resource, action)

 View Source

 Link to this function

 attr_header()

 View Source

 Link to this function

 attr_section(attr)

 View Source

 Link to this function

 domain_section(domain)

 View Source

 Link to this function

 overview(domains)

 View Source

 Link to this function

 resource_section(resource)

 View Source

 Ash.Policy.Chart.Mermaid - ash v3.0.0-rc.6

Ash.Policy.Chart.Mermaid

Generates policy mermaid charts

 Summary

 Functions

 chart(resource)

 Functions

 Link to this function

 chart(resource)

 View Source

 Ash.Generator - ash v3.0.0-rc.6

Ash.Generator

Tools for generating input to Ash resource actions, as well as for seeds.
These tools are young, and various factors are not taken into account. For example,
validations and identities are not automatically considered.
If you want to use this with stream data testing, you will likely want to get familiar with StreamData.
Many functions in this module support overrides, which allow passing down either constant values
or your own generators.
For example:
All generated posts will have text as `"text"`. Equivalent to providing `StreamData.constant("text")`.
Ash.Generator.seed_input(Post, %{text: "text"})

 Summary

 Functions

 action_input(resource_or_record, action, generators \\ %{})

 Generate input meant to be passed into a resource action.

 changeset(resource_or_record, action, generators \\ %{}, changeset_options \\ [])

 Creates the input for the provided action with action_input/3, and creates a changeset for that action with that input.

 initialize_sequence(identifier)

 Starts and links an agent for a sequence, or returns the existing agent pid if it already exists.

 many_changesets(resource_or_record, action, n, generators \\ %{}, changeset_options \\ [])

 Generate n changesets and return them as a list.

 many_queries(resource, action, n, generators \\ %{}, changeset_options \\ [])

 Generate n queries and return them as a list.

 mixed_map(map, keys)

 Creates a generator map where the keys are required except the list provided

 query(resource, action, generators \\ %{}, changeset_options \\ [])

 Creates the input for the provided action with action_input/3, and creates a query for that action with that input.

 seed!(resource, generators \\ %{})

 Gets input using seed_input/2 and passes it to Ash.Seed.seed!/2, returning the result

 seed_input(resource, generators \\ %{})

 Generate input meant to be passed into Ash.Seed.seed!/2.

 seed_many!(resource, n, generators \\ %{})

 Generates an input n times, and passes them all to seed, returning the list of seeded items.

 sequence(identifier, generator, sequencer \\ fn i -> (i || -1) + 1 end)

 Generate globally unique values.

 stop_sequence(identifier)

 Stops the agent for a sequence.

 Functions

 Link to this function

 action_input(resource_or_record, action, generators \\ %{})

 View Source

Generate input meant to be passed into a resource action.
Currently input for arguments that are passed to a manage_relationship are excluded, and you will
have to generate them yourself by passing your own generators/values down See the module documentation for more.
This is meant to be used in property testing. If you want to generate a finite list of

 Link to this function

 changeset(resource_or_record, action, generators \\ %{}, changeset_options \\ [])

 View Source

Creates the input for the provided action with action_input/3, and creates a changeset for that action with that input.
See action_input/3 and the module documentation for more.

 Link to this function

 initialize_sequence(identifier)

 View Source

 @spec initialize_sequence(atom()) :: pid()

Starts and links an agent for a sequence, or returns the existing agent pid if it already exists.
See sequence/3 for more.

 Link to this function

 many_changesets(resource_or_record, action, n, generators \\ %{}, changeset_options \\ [])

 View Source

Generate n changesets and return them as a list.

 Link to this function

 many_queries(resource, action, n, generators \\ %{}, changeset_options \\ [])

 View Source

Generate n queries and return them as a list.

 Link to this function

 mixed_map(map, keys)

 View Source

Creates a generator map where the keys are required except the list provided

 Link to this function

 query(resource, action, generators \\ %{}, changeset_options \\ [])

 View Source

Creates the input for the provided action with action_input/3, and creates a query for that action with that input.
See action_input/3 and the module documentation for more.

 Link to this function

 seed!(resource, generators \\ %{})

 View Source

Gets input using seed_input/2 and passes it to Ash.Seed.seed!/2, returning the result

 Link to this function

 seed_input(resource, generators \\ %{})

 View Source

Generate input meant to be passed into Ash.Seed.seed!/2.
A map of custom StreamData generators can be provided to add to or overwrite the generated input,
for example: Ash.Generator.for_seed(Post, %{text: StreamData.constant("Post")})

 Link to this function

 seed_many!(resource, n, generators \\ %{})

 View Source

Generates an input n times, and passes them all to seed, returning the list of seeded items.

 Link to this function

 sequence(identifier, generator, sequencer \\ fn i -> (i || -1) + 1 end)

 View Source

 @spec sequence(
 pid() | atom(),
 (iterator | nil -> value),
 (iterator | nil -> iterator)
) ::
 StreamData.t(value)
when iterator: term(), value: term()

Generate globally unique values.
This is useful for generating values that are unique across all resources, such as email addresses,
or for generating values that are unique across a single resource, such as identifiers. The values will be unique
for anything using the same sequence name.
The name of the identifier will be used as the name of the agent process, so use a unique name not in use anywhere else.
The lifecycle of this generator is tied to the process that initially starts it. In general,
that will be the test. In the rare case where you are running async processes that need to share a sequence
that is not created in the test process, you can initialize a sequence in the test using initialize_sequence/1.
Example:
Ash.Generator.sequence(:unique_email, fn i -> "user#{i}@example.com" end) |> Enum.take(3)
iex> ["user0@example.com", "user1@example.com", "user2@example.com"]

 Using a different sequencer

By default we use an incrementing integer starting at 0. However, if you want to use something else, you can provide
your own sequencer. The initial value will be nil, which you can use to detect that you are the start of the sequence.
Example:
Ash.Generator.sequence(:unique_email, fn i -> "user#{i}@example.com" end, fn num -> (num || 1) - 1 end) |> Enum.take(3)
iex> ["user0@example.com", "user-1@example.com", "user-2@example.com"]

 Link to this function

 stop_sequence(identifier)

 View Source

Stops the agent for a sequence.
See sequence/3 for more.

 Ash.Seed - ash v3.0.0-rc.6

Ash.Seed

Helpers for seeding data, useful for quickly creating lots of data either for database seeding or testing.
Important: this bypasses resource actions, and goes straight to the data layer. No action changes or validations are run.
The only thing that it does at the moment is ensure that default values for attributes are set, it does not validate
that required attributes are set (although the data layer may do that for you, e.g with ash_postgres).

 Summary

 Functions

 keep_nil()

 Returns :__keep_nil__, allowing to ensure a default value is not used when you want the value to be nil.

 seed!(input)

 Seed using a record (instance of a resource) as input.

 seed!(resource, input)

 Performs a direct call to the data layer of a resource with the provided input.

 update!(record, input)

 Functions

 Link to this function

 keep_nil()

 View Source

Returns :__keep_nil__, allowing to ensure a default value is not used when you want the value to be nil.

 Link to this function

 seed!(input)

 View Source

Seed using a record (instance of a resource) as input.
If the passed in struct was retrieved from the data layer already (i.e already seeded),
then it is returned and nothing is done. Otherwise, the attributes and relationships are
used as input to seed/2, after having any %Ash.NotLoaded{} values stripped out.
Any nil values will be overwritten with their default values. To avoid this, either use seed/2
in which providing the key will have it not set the default values.
If you want to force nil to be accepted and prevent the default value from being set, use the
keep_nil/0 function provided here, which returns :__keep_nil__. Alternatively, use
seed!(Post, %{text: nil}).
See seed!/2 for more information.

 Link to this function

 seed!(resource, input)

 View Source

Performs a direct call to the data layer of a resource with the provided input.
If a list is provided as input, then you will get back that many results.

 Link to this function

 update!(record, input)

 View Source

 Ash.Test - ash v3.0.0-rc.6

Ash.Test

Testing helpers for Ash.

 Summary

 Functions

 assert_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

 Assert that the given changeset, query, or action input has a matching error.

 refute_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

 Refute that the given changeset, query, or action input has a matching error.

 strip_metadata(structs)

 Clears the __metadata__ field and the underlying ecto __meta__ field

 Functions

 Link to this function

 assert_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

 View Source

Assert that the given changeset, query, or action input has a matching error.
Use the optional second argument to assert that the errors (all together) are of a specific class.

 Link to this function

 refute_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

 View Source

Refute that the given changeset, query, or action input has a matching error.
Use the optional second argument to assert that the errors (all together) are of a specific class.

 Link to this function

 strip_metadata(structs)

 View Source

Clears the __metadata__ field and the underlying ecto __meta__ field
This allows for easier comparison of changeset/query results

 Ash.Tracer - ash v3.0.0-rc.6

Ash.Tracer behaviour

A behaviour for implementing tracing for an Ash application.

 Summary

 Types

 metadata()

 span_type()

 t()

 Callbacks

 get_span_context()

 set_error(t)

 set_error(t, t)

 set_handled_error(t, t)

 set_metadata(span_type, metadata)

 Set metadata for the current span.

 set_span_context(term)

 start_span(span_type, name)

 stop_span()

 trace_type?(atom)

 Functions

 get_span_context(tracer)

 set_error(tracers, error)

 set_error(tracers, error, opts)

 set_handled_error(tracers, error, opts)

 set_metadata(tracers, type, metadata)

 set_span_context(tracer, context)

 span(type, name, tracer, block_opts \\ [])

 start_span(tracers, type, name)

 stop_span(tracers)

 telemetry_span(name, metadata, opts)

 trace_type?(tracer, type)

 Types

 Link to this type

 metadata()

 View Source

 @type metadata() :: %{
 domain: nil | module(),
 resource: nil | module(),
 actor: term(),
 tenant: term(),
 action: atom(),
 authorize?: boolean()
}

 Link to this type

 span_type()

 View Source

 @type span_type() ::
 :action
 | :changeset
 | :query
 | :flow
 | :request_step
 | :change
 | :validation
 | :preparation
 | :custom_flow_step
 | :custom
 | :before_transaction
 | :before_action
 | :after_transaction
 | :after_action
 | {:custom, atom()}

 Link to this type

 t()

 View Source

 @type t() :: module()

 Callbacks

 Link to this callback

 get_span_context()

 View Source

 @callback get_span_context() :: term()

 Link to this callback

 set_error(t)

 View Source

 (optional)

 @callback set_error(Exception.t()) :: :ok

 Link to this callback

 set_error(t, t)

 View Source

 (optional)

 @callback set_error(Exception.t(), Keyword.t()) :: :ok

 Link to this callback

 set_handled_error(t, t)

 View Source

 (optional)

 @callback set_handled_error(Exception.t(), Keyword.t()) :: :ok

 Link to this callback

 set_metadata(span_type, metadata)

 View Source

 @callback set_metadata(span_type(), metadata()) :: :ok

Set metadata for the current span.
This may be called multiple times per span, and should ideally merge with previous metadata.

 Link to this callback

 set_span_context(term)

 View Source

 @callback set_span_context(term()) :: :ok

 Link to this callback

 start_span(span_type, name)

 View Source

 @callback start_span(span_type(), name :: String.t()) :: :ok

 Link to this callback

 stop_span()

 View Source

 @callback stop_span() :: :ok

 Link to this callback

 trace_type?(atom)

 View Source

 (optional)

 @callback trace_type?(atom()) :: boolean()

 Functions

 Link to this function

 get_span_context(tracer)

 View Source

 Link to this function

 set_error(tracers, error)

 View Source

 Link to this function

 set_error(tracers, error, opts)

 View Source

 Link to this function

 set_handled_error(tracers, error, opts)

 View Source

 Link to this function

 set_metadata(tracers, type, metadata)

 View Source

 Link to this function

 set_span_context(tracer, context)

 View Source

 Link to this macro

 span(type, name, tracer, block_opts \\ [])

 View Source

 (macro)

 Link to this function

 start_span(tracers, type, name)

 View Source

 Link to this function

 stop_span(tracers)

 View Source

 Link to this macro

 telemetry_span(name, metadata, opts)

 View Source

 (macro)

 Link to this function

 trace_type?(tracer, type)

 View Source

 Ash.Tracer.Simple - ash v3.0.0-rc.6

Ash.Tracer.Simple

A simple tracer that can send traces to the current process or call a module with the trace.

 Summary

 Functions

 gather_spans()

 Functions

 Link to this function

 gather_spans()

 View Source

 Ash.Tracer.Simple.Span - ash v3.0.0-rc.6

Ash.Tracer.Simple.Span

A span produced by Ash.Tracer.Simple

 Ash.Type - ash v3.0.0-rc.6

Ash.Type behaviour

The Ash.Type behaviour is used to define a value type in Ash.

 Built in types

	:map - Ash.Type.Map
	:keyword - Ash.Type.Keyword
	:term - Ash.Type.Term
	:atom - Ash.Type.Atom
	:string - Ash.Type.String
	:integer - Ash.Type.Integer
	:float - Ash.Type.Float
	:duration_name - Ash.Type.DurationName
	:function - Ash.Type.Function
	:boolean - Ash.Type.Boolean
	:struct - Ash.Type.Struct
	:uuid - Ash.Type.UUID
	:binary - Ash.Type.Binary
	:date - Ash.Type.Date
	:time - Ash.Type.Time
	:decimal - Ash.Type.Decimal
	:ci_string - Ash.Type.CiString
	:naive_datetime - Ash.Type.NaiveDatetime
	:utc_datetime - Ash.Type.UtcDatetime
	:utc_datetime_usec - Ash.Type.UtcDatetimeUsec
	:datetime - Ash.Type.DateTime
	:url_encoded_binary - Ash.Type.UrlEncodedBinary
	:union - Ash.Type.Union
	:module - Ash.Type.Module
	:vector - Ash.Type.Vector

 Lists/Arrays

To specify a list of values, use {:array, Type}. Arrays are special, and have special constraints:
	:items (term/0) - Constraints for the elements of the list. See the contained type's docs for more.

	:min_length (non_neg_integer/0) - A minimum length for the items

	:max_length (non_neg_integer/0) - A maximum length for the items

	:nil_items? (boolean/0) - Whether or not the list can contain nil items The default value is false.

	:empty_values (list of term/0) - A set of values that, if encountered, will be considered an empty list. The default value is [""].

 Defining Custom Types

Generally you add use Ash.Type to your module (it is possible to add @behaviour Ash.Type and define everything yourself, but this is more work and error-prone).
Overriding the {:array, type} behaviour. By defining the *_array versions
of cast_input, cast_stored, dump_to_native and apply_constraints, you can
override how your type behaves as a collection. This is how the features of embedded
resources are implemented. No need to implement them unless you wish to override the
default behaviour. Your type is responsible for handling nil values in each callback as well.
Simple example of a float custom type
defmodule GenTracker.AshFloat do
 use Ash.Type

 @impl Ash.Type
 def storage_type(_), do: :float

 @impl Ash.Type
 def cast_input(nil, _), do: {:ok, nil}
 def cast_input(value, _) do
 Ecto.Type.cast(:float, value)
 end

 @impl Ash.Type
 def cast_stored(nil, _), do: {:ok, nil}
 def cast_stored(value, _) do
 Ecto.Type.load(:float, value)
 end

 @impl Ash.Type
 def dump_to_native(nil, _), do: {:ok, nil}
 def dump_to_native(value, _) do
 Ecto.Type.dump(:float, value)
 end
end
All the Ash built-in types are implemented with use Ash.Type so they are good
examples to look at to create your own Ash.Type.

 Short names

You can define short :atom_names for your custom types by adding them to your Ash configuration:
config :ash, :custom_types, [ash_float: GenTracker.AshFloat]
Doing this will require a recompilation of the :ash dependency which can be triggered by calling:
$ mix deps.compile ash --force

 Composite Types

Composite types are composite in the data layer. Many data layers do not support this, but some (like AshPostgres),
do. To define a composite type, the following things should be true:
	A casted value should be a map or struct, for example for a point: %{x: 1, y: 2}
	The data layer must support composite types, and the data layer representation will be a tuple, i.e {1, 2}
	Define def composite?(_), do: true in your composite type
	Define the type & constraints of each item in the tuple, and its name in the map
representation: def composite_types(_), do: [{:x, :integer, []}, {:y, :integer, []}].
You can also define a storage key for each item in the tuple, if the underlying type implementation
has a different reference for an item, i.e def composite_types(_), do: [{:x, :x_coord, :integer, []}, {:y, :y_coord, :integer, []}]

With the above implemented, your composite type can be used in expressions, for example:
Ash.Query.filter(expr(coordinates[:x] == 1))k
And you can also construct composite types in expressions, for example:
calculate :coordinates, :composite_point, expr(composite_type(%{x: some_value, y: some_other_value}, Point))

 Summary

 Types

 constraint_error()

 constraints()

 error()

 load_context()

 merge_load_context()

 rewrite()

 rewrite_data()

 t()

 Callbacks

 apply_constraints(term, constraints)

 apply_constraints_array(list, constraints)

 array_constraints()

 can_load?(constraints)

 cast_atomic(new_value, constraints)

 cast_atomic_array(new_value, constraints)

 cast_in_query?(constraints)

 cast_input(term, constraints)

 cast_input_array(list, constraints)

 cast_stored(term, constraints)

 cast_stored_array(list, constraints)

 composite?(constraints)

 composite_types(constraints)

 constraints()

 custom_apply_constraints_array?()

 describe(constraints)

 dump_to_embedded(term, constraints)

 dump_to_embedded_array(list, constraints)

 dump_to_native(term, constraints)

 dump_to_native_array(list, constraints)

 ecto_type()

 embedded?()

 equal?(term, term)

 evaluate_operator(term)

 The implementation for any overloaded implementations.

 generator(constraints)

 get_rewrites(merged_load, calculation, path, constraints)

 handle_change(old_term, new_term, constraints)

 handle_change_array(old_term, new_term, constraints)

 handle_change_array?()

 include_source(constraints, t)

 init(constraints)

 Useful for typed data layers (like ash_postgres) to instruct them not to attempt to cast input values.

 load(values, load, constraints, context)

 loaded?(value, path_to_load, constraints, opts)

 merge_load(left, right, constraints, context)

 operator_overloads()

 A map of operators with overloaded implementations.

 prepare_change(old_term, new_uncasted_term, constraints)

 prepare_change_array(old_term, new_uncasted_term, constraints)

 prepare_change_array?()

 rewrite(value, list, constraints)

 simple_equality?()

 storage_type()

 storage_type(constraints)

 Functions

 apply_constraints(type, term, constraints)

 Confirms if a casted value matches the provided constraints.

 array_constraints(type)

 Gets the array constraints for a type

 ash_type?(module)

 Returns true if the value is a builtin type or adopts the Ash.Type behaviour

 builtin?(type)

 Returns true if the type is an ash builtin type

 can_load?(type, constraints \\ [])

 Returns true if the type supports nested loads

 cast_atomic(type, term, constraints)

 cast_in_query?(type, constraints \\ [])

 Returns true if the type should be cast in underlying queries

 cast_input(type, term, constraints \\ nil)

 Casts input (e.g. unknown) data to an instance of the type, or errors

 cast_stored(type, term, constraints \\ [])

 Casts a value from the data store to an instance of the type, or errors

 composite?(type, constraints)

 Returns true if the type is a composite type

 composite_types(type, constraints)

 Returns the wrapped composite types

 constraints(type)

 Returns the constraint schema for a type

 describe(type, constraints)

 Calls the type's describe function with the given constraints

 determine_types(types, values)

 Determine types for a given function or operator.

 dump_to_embedded(type, term, constraints \\ [])

 Casts a value from the Elixir type to a value that can be embedded in another data structure.

 dump_to_native(type, term, constraints \\ [])

 Casts a value from the Elixir type to a value that the data store can persist

 ecto_type(type)

 Returns the ecto compatible type for an Ash.Type.

 embedded_type?(type)

 Returns true if the type is an embedded resource

 equal?(type, left, right)

 Determines if two values of a given type are equal.

 generator(type, constraints)

 Returns the StreamData generator for a given type

 get_rewrites(type, merged_load, calculation, path, constraints)

 Gets the load rewrites for a given type, load, calculation and path.

 get_type(value)

 Gets the type module for a given short name or module

 handle_change(type, old_value, new_value, constraints)

 Process the old casted values alongside the new casted values.

 handle_change_array?(type)

 Handles the change of a given array of values for an attribute change. Runs after casting.

 include_source(type, changeset_or_query, constraints)

 init(type, constraints)

 Initializes the constraints according to the underlying type

 load(type, value, loads, constraints, context)

 loaded?(type, values, load, constraints, opts \\ [])

 merge_load(type, left, right, constraints, context)

 prepare_change(type, old_value, new_value, constraints)

 Process the old casted values alongside the new uncasted values.

 prepare_change_array?(type)

 Prepares a given array of values for an attribute change. Runs before casting.

 rewrite(type, value, rewrites, constraints)

 Applies rewrites to a given value.

 short_names()

 Returns the list of available type short names

 simple_equality?(type)

 Determines if a type can be compared using the == operator.

 storage_type(type, constraints \\ [])

 Returns the underlying storage type (the underlying type of the ecto type of the ash type)

 Types

 Link to this type

 constraint_error()

 View Source

 @type constraint_error() :: String.t() | {String.t(), Keyword.t()}

 Link to this type

 constraints()

 View Source

 @type constraints() :: Keyword.t()

 Link to this type

 error()

 View Source

 @type error() :: :error | {:error, String.t() | Keyword.t()}

 Link to this type

 load_context()

 View Source

 @type load_context() :: %{
 domain: Ash.Domain.t(),
 actor: term() | nil,
 tenant: term(),
 tracer: [Ash.Tracer.t()] | Ash.Tracer.t() | nil,
 authorize?: boolean() | nil
}

 Link to this type

 merge_load_context()

 View Source

 @type merge_load_context() :: %{
 domain: Ash.Domain.t(),
 calc_name: term(),
 calc_load: term(),
 calc_path: [atom()],
 relationship_path: [atom()],
 initial_data: {:ok, [Ash.Resource.record()]} | :error
}

 Link to this type

 rewrite()

 View Source

 @type rewrite() :: {{[atom()], rewrite_data(), atom(), atom()}, source :: term()}

 Link to this type

 rewrite_data()

 View Source

 @type rewrite_data() ::
 {type :: :calc | :agg, rewriting_name :: atom(), rewriting_load :: atom()}
 | {:rel, rewriting_name :: atom()}

 Link to this type

 t()

 View Source

 @type t() :: atom() | {:array, atom()}

 Callbacks

 Link to this callback

 apply_constraints(term, constraints)

 View Source

 @callback apply_constraints(term(), constraints()) ::
 {:ok, new_value :: term()}
 | :ok
 | {:error, constraint_error() | [constraint_error()]}

 Link to this callback

 apply_constraints_array(list, constraints)

 View Source

 (optional)

 @callback apply_constraints_array([term()], constraints()) ::
 {:ok, new_values :: [term()]}
 | :ok
 | {:error, constraint_error() | [constraint_error()]}

 Link to this callback

 array_constraints()

 View Source

 (optional)

 @callback array_constraints() :: constraints()

 Link to this callback

 can_load?(constraints)

 View Source

 @callback can_load?(constraints()) :: boolean()

 Link to this callback

 cast_atomic(new_value, constraints)

 View Source

 @callback cast_atomic(new_value :: Ash.Expr.t(), constraints()) ::
 {:atomic, Ash.Expr.t()} | {:error, Ash.Error.t()} | {:not_atomic, String.t()}

 Link to this callback

 cast_atomic_array(new_value, constraints)

 View Source

 @callback cast_atomic_array(new_value :: Ash.Expr.t(), constraints()) ::
 {:atomic, Ash.Expr.t()} | {:error, Ash.Error.t()} | {:not_atomic, String.t()}

 Link to this callback

 cast_in_query?(constraints)

 View Source

 @callback cast_in_query?(constraints()) :: boolean()

 Link to this callback

 cast_input(term, constraints)

 View Source

 @callback cast_input(term(), constraints()) :: {:ok, term()} | error()

 Link to this callback

 cast_input_array(list, constraints)

 View Source

 (optional)

 @callback cast_input_array([term()], constraints()) :: {:ok, [term()]} | error()

 Link to this callback

 cast_stored(term, constraints)

 View Source

 @callback cast_stored(term(), constraints()) :: {:ok, term()} | error()

 Link to this callback

 cast_stored_array(list, constraints)

 View Source

 (optional)

 @callback cast_stored_array([term()], constraints()) :: {:ok, [term()]} | error()

 Link to this callback

 composite?(constraints)

 View Source

 @callback composite?(constraints()) :: boolean()

 Link to this callback

 composite_types(constraints)

 View Source

 @callback composite_types(constraints()) :: [
 {name, type, constraints()} | {name, storage_key, type, constraints()}
]
when name: atom(), type: t(), storage_key: atom()

 Link to this callback

 constraints()

 View Source

 @callback constraints() :: constraints()

 Link to this callback

 custom_apply_constraints_array?()

 View Source

 @callback custom_apply_constraints_array?() :: boolean()

 Link to this callback

 describe(constraints)

 View Source

 @callback describe(constraints()) :: String.t() | nil

 Link to this callback

 dump_to_embedded(term, constraints)

 View Source

 (optional)

 @callback dump_to_embedded(term(), constraints()) :: {:ok, term()} | :error

 Link to this callback

 dump_to_embedded_array(list, constraints)

 View Source

 (optional)

 @callback dump_to_embedded_array([term()], constraints()) :: {:ok, term()} | error()

 Link to this callback

 dump_to_native(term, constraints)

 View Source

 @callback dump_to_native(term(), constraints()) :: {:ok, term()} | error()

 Link to this callback

 dump_to_native_array(list, constraints)

 View Source

 (optional)

 @callback dump_to_native_array([term()], constraints()) :: {:ok, term()} | error()

 Link to this callback

 ecto_type()

 View Source

 @callback ecto_type() :: Ecto.Type.t()

 Link to this callback

 embedded?()

 View Source

 @callback embedded?() :: boolean()

 Link to this callback

 equal?(term, term)

 View Source

 @callback equal?(term(), term()) :: boolean()

 Link to this callback

 evaluate_operator(term)

 View Source

 (optional)

 @callback evaluate_operator(term()) :: {:known, term()} | :unknown | {:error, term()}

The implementation for any overloaded implementations.

 Link to this callback

 generator(constraints)

 View Source

 (optional)

 @callback generator(constraints()) :: Enumerable.t()

 Link to this callback

 get_rewrites(merged_load, calculation, path, constraints)

 View Source

 (optional)

 @callback get_rewrites(
 merged_load :: term(),
 calculation :: Ash.Query.Calculation.t(),
 path :: [atom()],
 constraints :: Keyword.t()
) :: [rewrite()]

 Link to this callback

 handle_change(old_term, new_term, constraints)

 View Source

 @callback handle_change(old_term :: term(), new_term :: term(), constraints()) ::
 {:ok, term()} | error()

 Link to this callback

 handle_change_array(old_term, new_term, constraints)

 View Source

 (optional)

 @callback handle_change_array(old_term :: [term()], new_term :: [term()], constraints()) ::
 {:ok, term()} | error()

 Link to this callback

 handle_change_array?()

 View Source

 @callback handle_change_array?() :: boolean()

 Link to this callback

 include_source(constraints, t)

 View Source

 (optional)

 @callback include_source(constraints(), Ash.Changeset.t()) :: constraints()

 Link to this callback

 init(constraints)

 View Source

 (optional)

 @callback init(constraints()) :: {:ok, constraints()} | {:error, Ash.Error.t()}

Useful for typed data layers (like ash_postgres) to instruct them not to attempt to cast input values.
You generally won't need this, but it can be an escape hatch for certain cases.

 Link to this callback

 load(values, load, constraints, context)

 View Source

 (optional)

 @callback load(
 values :: [term()],
 load :: Keyword.t(),
 constraints :: Keyword.t(),
 context :: load_context()
) :: {:ok, [term()]} | {:error, Ash.Error.t()}

 Link to this callback

 loaded?(value, path_to_load, constraints, opts)

 View Source

 @callback loaded?(
 value :: term(),
 path_to_load :: [atom()],
 constraints :: Keyword.t(),
 opts :: Keyword.t()
) :: boolean()

 Link to this callback

 merge_load(left, right, constraints, context)

 View Source

 (optional)

 @callback merge_load(
 left :: term(),
 right :: term(),
 constraints :: Keyword.t(),
 context :: merge_load_context() | nil
) :: {:ok, term()} | {:error, error()} | :error

 Link to this callback

 operator_overloads()

 View Source

 (optional)

 @callback operator_overloads() :: %{optional(atom()) => %{optional(term()) => module()}}

A map of operators with overloaded implementations.
These will only be honored if the type is placed in config :ash, :known_types, [...Type]
A corresponding evaluate_operator/1 clause should match.

 Link to this callback

 prepare_change(old_term, new_uncasted_term, constraints)

 View Source

 @callback prepare_change(old_term :: term(), new_uncasted_term :: term(), constraints()) ::
 {:ok, term()} | error()

 Link to this callback

 prepare_change_array(old_term, new_uncasted_term, constraints)

 View Source

 (optional)

 @callback prepare_change_array(
 old_term :: [term()],
 new_uncasted_term :: [term()],
 constraints()
) :: {:ok, term()} | error()

 Link to this callback

 prepare_change_array?()

 View Source

 @callback prepare_change_array?() :: boolean()

 Link to this callback

 rewrite(value, list, constraints)

 View Source

 (optional)

 @callback rewrite(value :: term(), [rewrite()], constraints :: Keyword.t()) ::
 value :: term()

 Link to this callback

 simple_equality?()

 View Source

 @callback simple_equality?() :: boolean()

 Link to this callback

 storage_type()

 View Source

 (optional)

 @callback storage_type() :: Ecto.Type.t()

 Link to this callback

 storage_type(constraints)

 View Source

 @callback storage_type(constraints()) :: Ecto.Type.t()

 Functions

 Link to this function

 apply_constraints(type, term, constraints)

 View Source

 @spec apply_constraints(t(), term(), constraints()) ::
 {:ok, term()} | {:error, String.t()}

Confirms if a casted value matches the provided constraints.

 Link to this function

 array_constraints(type)

 View Source

Gets the array constraints for a type

 Link to this function

 ash_type?(module)

 View Source

 @spec ash_type?(term()) :: boolean()

Returns true if the value is a builtin type or adopts the Ash.Type behaviour

 Link to this function

 builtin?(type)

 View Source

Returns true if the type is an ash builtin type

 Link to this function

 can_load?(type, constraints \\ [])

 View Source

 @spec can_load?(t(), Keyword.t()) :: boolean()

Returns true if the type supports nested loads

 Link to this function

 cast_atomic(type, term, constraints)

 View Source

 @spec cast_atomic(t(), term(), constraints()) ::
 {:atomic, Ash.Expr.t()} | {:error, Ash.Error.t()} | {:not_atomic, String.t()}

 Link to this function

 cast_in_query?(type, constraints \\ [])

 View Source

Returns true if the type should be cast in underlying queries

 Link to this function

 cast_input(type, term, constraints \\ nil)

 View Source

 @spec cast_input(t(), term(), constraints() | nil) ::
 {:ok, term()} | {:error, Keyword.t()} | :error

Casts input (e.g. unknown) data to an instance of the type, or errors
Maps to Ecto.Type.cast/2

 Link to this function

 cast_stored(type, term, constraints \\ [])

 View Source

 @spec cast_stored(t(), term(), constraints() | nil) ::
 {:ok, term()} | {:error, keyword()} | :error

Casts a value from the data store to an instance of the type, or errors
Maps to Ecto.Type.load/2

 Link to this function

 composite?(type, constraints)

 View Source

 @spec composite?(
 t(),
 constraints()
) :: Enumerable.t()

Returns true if the type is a composite type

 Link to this function

 composite_types(type, constraints)

 View Source

 @spec composite_types(
 t(),
 constraints()
) :: Enumerable.t()

Returns the wrapped composite types

 Link to this function

 constraints(type)

 View Source

 @spec constraints(t()) :: constraints()

Returns the constraint schema for a type

 Link to this function

 describe(type, constraints)

 View Source

Calls the type's describe function with the given constraints

 Link to this function

 determine_types(types, values)

 View Source

Determine types for a given function or operator.

 Link to this function

 dump_to_embedded(type, term, constraints \\ [])

 View Source

 @spec dump_to_embedded(t(), term(), constraints() | nil) ::
 {:ok, term()} | {:error, keyword()} | :error

Casts a value from the Elixir type to a value that can be embedded in another data structure.
Embedded resources expect to be stored in JSON, so this allows things like UUIDs to be stored
as strings in embedded resources instead of binary.

 Link to this function

 dump_to_native(type, term, constraints \\ [])

 View Source

 @spec dump_to_native(t(), term(), constraints() | nil) ::
 {:ok, term()} | {:error, keyword()} | :error

Casts a value from the Elixir type to a value that the data store can persist
Maps to Ecto.Type.dump/2

 Link to this function

 ecto_type(type)

 View Source

 @spec ecto_type(t()) :: Ecto.Type.t()

Returns the ecto compatible type for an Ash.Type.
If you use Ash.Type, this is created for you. For builtin types
this may return a corresponding ecto builtin type (atom)

 Link to this function

 embedded_type?(type)

 View Source

Returns true if the type is an embedded resource

 Link to this function

 equal?(type, left, right)

 View Source

 @spec equal?(t(), term(), term()) :: boolean()

Determines if two values of a given type are equal.
Maps to Ecto.Type.equal?/3

 Link to this function

 generator(type, constraints)

 View Source

 @spec generator(
 module() | {:array, module()},
 constraints()
) :: Enumerable.t()

Returns the StreamData generator for a given type

 Link to this function

 get_rewrites(type, merged_load, calculation, path, constraints)

 View Source

Gets the load rewrites for a given type, load, calculation and path.
This is used for defining types that support a nested load statement.
See the embedded type and union type implementations for examples of how
to use this.

 Link to this function

 get_type(value)

 View Source

 @spec get_type(atom() | module() | {:array, atom() | module()}) ::
 atom() | module() | {:array, atom() | module()}

Gets the type module for a given short name or module

 Link to this function

 handle_change(type, old_value, new_value, constraints)

 View Source

Process the old casted values alongside the new casted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

 Link to this function

 handle_change_array?(type)

 View Source

 @spec handle_change_array?(t()) :: boolean()

Handles the change of a given array of values for an attribute change. Runs after casting.

 Link to this function

 include_source(type, changeset_or_query, constraints)

 View Source

 @spec include_source(
 t(),
 Ash.Changeset.t() | Ash.Query.t() | Ash.ActionInput.t(),
 constraints()
) :: constraints()

 Link to this function

 init(type, constraints)

 View Source

 @spec init(t(), constraints()) :: {:ok, constraints()} | {:error, Ash.Error.t()}

Initializes the constraints according to the underlying type

 Link to this function

 load(type, value, loads, constraints, context)

 View Source

 @spec load(
 type :: t(),
 values :: [term()],
 load :: Keyword.t(),
 constraints :: Keyword.t(),
 context :: load_context()
) :: {:ok, [term()]} | {:error, Ash.Error.t()}

 Link to this function

 loaded?(type, values, load, constraints, opts \\ [])

 View Source

 @spec loaded?(
 type :: t(),
 value_or_values :: term(),
 path_to_load :: [atom()],
 constraints :: Keyword.t(),
 opts :: Keyword.t()
) :: boolean()

 Link to this function

 merge_load(type, left, right, constraints, context)

 View Source

 @spec merge_load(
 type :: t(),
 left :: term(),
 right :: term(),
 constraints :: Keyword.t(),
 context :: merge_load_context() | nil
) :: {:ok, [term()]} | :error | {:error, Ash.Error.t()}

 Link to this function

 prepare_change(type, old_value, new_value, constraints)

 View Source

Process the old casted values alongside the new uncasted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

 Link to this function

 prepare_change_array?(type)

 View Source

 @spec prepare_change_array?(t()) :: boolean()

Prepares a given array of values for an attribute change. Runs before casting.

 Link to this function

 rewrite(type, value, rewrites, constraints)

 View Source

Applies rewrites to a given value.
This is used for defining types that support a nested load statement.
See the embedded type and union type implementations for examples of how
to use this.

 Link to this function

 short_names()

 View Source

Returns the list of available type short names

 Link to this function

 simple_equality?(type)

 View Source

 @spec simple_equality?(t()) :: boolean()

Determines if a type can be compared using the == operator.

 Link to this function

 storage_type(type, constraints \\ [])

 View Source

Returns the underlying storage type (the underlying type of the ecto type of the ash type)

 Ash.Type.Atom - ash v3.0.0-rc.6

Ash.Type.Atom

Stores an atom as a string in the database
A builtin type that can be referenced via :atom

 Constraints

	:one_of (term/0) - Allows constraining the value of an atom to a pre-defined list

 Ash.Type.Binary - ash v3.0.0-rc.6

Ash.Type.Binary

Represents a binary.
A builtin type that can be referenced via :binary

 Ash.Type.Boolean - ash v3.0.0-rc.6

Ash.Type.Boolean

Represents a boolean.
A builtin type that can be referenced via :boolean

 Ash.Type.CiString - ash v3.0.0-rc.6

Ash.Type.CiString

Stores a case insensitive string in the database
See Ash.CiString for more information.
A builtin type that can be referenced via :ci_string

 Constraints

	:max_length (non_neg_integer/0) - Enforces a maximum length on the value

	:min_length (non_neg_integer/0) - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? (boolean/0) - Trims the value. The default value is true.

	:allow_empty? (boolean/0) - Sets the value to nil if it's empty. The default value is false.

	:casing - Lowercases or uppercases the value, fully discarding case information.
For example, if you don't set this, a value of FrEd could be saved to the data layer.
FrEd and fReD would still compare as equal, but the original casing information is retained.
In many cases, this is what you want. In some cases, however, you want to remove all case information.
For example, in an email, you may want to support a user inputting an upper case letter, but discard it
when saved.
 Valid values are :upper, :lower, nil The default value is nil.

 Summary

 Functions

 match(regex)

 Functions

 Link to this function

 match(regex)

 View Source

 Ash.Type.Comparable - ash v3.0.0-rc.6

Ash.Type.Comparable

Helpers for working with Comparable

 Summary

 Functions

 defcomparable(arg1, arg2, list)

 Functions

 Link to this macro

 defcomparable(arg1, arg2, list)

 View Source

 (macro)

 Ash.Type.Date - ash v3.0.0-rc.6

Ash.Type.Date

Represents a date in the database
A builtin type that can be referenced via :date

 Ash.Type.DateTime - ash v3.0.0-rc.6

Ash.Type.DateTime

Represents a datetime, with configurable precision and timezone.

 Ash.Type.Decimal - ash v3.0.0-rc.6

Ash.Type.Decimal

Represents a decimal.
A builtin type that can be referenced via :decimal

 Constraints

	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value

	:greater_than - Enforces a minimum on the value (exclusive)

	:less_than - Enforces a maximum on the value (exclusive)

 Ash.Type.DurationName - ash v3.0.0-rc.6

Ash.Type.DurationName

An interval of time, primarily meant to be used in expression functions
Valid intervals are (as strings or atoms): [:year, :month, :week, :day, :hour, :minute, :second, :millisecond, :microsecond]

 Ash.Type.Enum - ash v3.0.0-rc.6

Ash.Type.Enum behaviour

A type for abstracting enums into a single type.
For example, your existing attribute might look like:
attribute :status, :atom, constraints: [one_of: [:open, :closed]]
But as that starts to spread around your system, you may find that you want
to centralize that logic. To do that, use this module to define an Ash type
easily:
defmodule MyApp.TicketStatus do
 use Ash.Type.Enum, values: [:open, :closed]
end
Then, you can rewrite your original attribute as follows:
attribute :status, MyApp.TicketStatus
Valid values are:
	The atom itself, e.g :open
	A string that matches the atom, e.g "open"
	A string that matches the atom after being downcased, e.g "OPEN" or "oPeN"
	A string that matches the stringified, downcased atom, after itself being downcased.
This allows for enum values like :Open, :SomeState and :Some_State

 Value descriptions

It's possible to associate a description with a value by passing a {value, description} tuple
inside the values list, which becomes a keyword list:
defmodule MyApp.TicketStatus do
 use Ash.Type.Enum,
 values: [
 open: "An open ticket",
 closed: "A closed ticket"
]
end
This can be used by extensions to provide detailed descriptions of enum values.
The description of a value can be retrieved with description/1:
MyApp.TicketStatus.description(:open)
iex> "An open ticket"

 Summary

 Callbacks

 description(atom)

 The description of the value, if existing

 match(term)

 finds the valid value that matches a given input term

 match?(term)

 true if a given term matches a value

 values()

 The list of valid values (not all input types that match them)

 Callbacks

 Link to this callback

 description(atom)

 View Source

 @callback description(atom()) :: String.t() | nil

The description of the value, if existing

 Link to this callback

 match(term)

 View Source

 @callback match(term()) :: {:ok, atom()} | :error

finds the valid value that matches a given input term

 Link to this callback

 match?(term)

 View Source

 @callback match?(term()) :: boolean()

true if a given term matches a value

 Link to this callback

 values()

 View Source

 @callback values() :: [atom()]

The list of valid values (not all input types that match them)

 Ash.Type.Float - ash v3.0.0-rc.6

Ash.Type.Float

Represents a float (floating point number)
A builtin type that be referenced via :float

 Constraints

	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value

	:greater_than - Enforces a minimum on the value (exclusive)

	:less_than - Enforces a maximum on the value (exclusive)

 Ash.Type.Function - ash v3.0.0-rc.6

Ash.Type.Function

Represents a function.
If the type would be dumped to a native format, :erlang.term_to_binary(term, [:safe]) is used.
Please keep in mind, this is NOT SAFE to use with external input.
More information available here: https://erlang.org/doc/man/erlang.html#binary_to_term-2

 Ash.Type.Integer - ash v3.0.0-rc.6

Ash.Type.Integer

Represents a simple integer
A builtin type that can be referenced via :integer

 Constraints

	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value

 Ash.Type.Keyword - ash v3.0.0-rc.6

Ash.Type.Keyword

Represents a keyword list, stored as a :map in the database.
A builtin type that can be referenced via :keyword_list
	:fields (keyword/0) - Required. The types of the fields in the keyword, and their constraints.
If constraints are specified, only those fields will be in the casted keyword.
For example: fields: [
 amount: [
 type: :integer,
 constraints: [
 max: 10
]
],
 currency: [
 type: :string,
 allow_nil?: false,
 constraints: [
 max_length: 3
]
]
]
allow_nil? is true by default	:type (an Ash.Type) - Required.

	:allow_nil? (boolean/0) - The default value is true.

	:constraints (keyword/0) - The default value is [].

 Summary

 Functions

 field_types(value)

 Functions

 Link to this function

 field_types(value)

 View Source

 Ash.Type.Map - ash v3.0.0-rc.6

Ash.Type.Map

Represents a map stored in the database.
In postgres, for example, this represents binary encoded json
A builtin type that can be referenced via :map
	:fields (keyword/0) - The types of the fields in the map, and their constraints.
If constraints are specified, only those fields will be in the casted map.
For example: fields: [
 amount: [
 type: :integer,
 constraints: [
 max: 10
]
],
 currency: [
 type: :string,
 allow_nil?: false,
 constraints: [
 max_length: 3
]
]
]
allow_nil? is true by default	:type (an Ash.Type) - Required.

	:allow_nil? (boolean/0) - The default value is true.

	:constraints (keyword/0) - The default value is [].

 Summary

 Functions

 field_types(value)

 Functions

 Link to this function

 field_types(value)

 View Source

 Ash.Type.Module - ash v3.0.0-rc.6

Ash.Type.Module

Stores a module as a string in the database.
A builtin type that can be referenced via :module.

 Constraints

	:behaviour (atom/0) - Allows constraining the module a one which implements a behaviour

	:protocol (atom/0) - Allows constraining the module a one which implements a protocol

 Ash.Type.NaiveDatetime - ash v3.0.0-rc.6

Ash.Type.NaiveDatetime

Represents a Naive datetime
A builtin type that can be referenced via :naive_datetime

 Ash.Type.NewType - ash v3.0.0-rc.6

Ash.Type.NewType behaviour

Allows defining a new type that is the combination of an existing type and custom constraints
A subtle difference between this type and its supertype (one that will almost certainly not matter
in any case) is that we use the apply_constraints logic of the underlying type in the same step
as cast_input. We do this because new types like these are, generally speaking, considering the constraint
application as part of the core type. Other types, if you simply do Ash.Type.cast_input/3 you will not be
also applying their constraints.
For Example:
defmodule MyApp.Types.SSN do
 use Ash.Type.NewType, subtype_of: :string, constraints: [match: ~r/regex for ssn/]
end

defmodule MyApp.Types.Metadata do
 use Ash.Type.NewType, subtype_of: :union, constraints: [types: [
 foo: [...],
 bar: [...]
]]
end

 Summary

 Types

 t()

 Callbacks

 subtype_constraints()

 Returns the underlying subtype constraints

 subtype_of()

 Returns the type that the NewType is a subtype of.

 type_constraints(constraints, subtype_constraints)

 Returns the modified NewType constraints

 Functions

 constraints(type, constraints)

 Returns the constraints schema.

 new_type?(type)

 Returns true if the corresponding type is an Ash.Type.NewType

 subtype_of(type)

 Returns the type that the given newtype is a subtype of

 Types

 Link to this type

 t()

 View Source

 @type t() :: module() | atom() | {:array, module() | atom()}

 Callbacks

 Link to this callback

 subtype_constraints()

 View Source

 @callback subtype_constraints() :: Keyword.t()

Returns the underlying subtype constraints

 Link to this callback

 subtype_of()

 View Source

 @callback subtype_of() :: module() | atom()

Returns the type that the NewType is a subtype of.

 Link to this callback

 type_constraints(constraints, subtype_constraints)

 View Source

 @callback type_constraints(constraints :: Keyword.t(), subtype_constraints :: Keyword.t()) ::
 Keyword.t()

Returns the modified NewType constraints

 Functions

 Link to this function

 constraints(type, constraints)

 View Source

 @spec constraints(Ash.Type.t(), Keyword.t()) :: Keyword.t()

Returns the constraints schema.

 Link to this function

 new_type?(type)

 View Source

 @spec new_type?(Ash.Type.t()) :: boolean()

Returns true if the corresponding type is an Ash.Type.NewType

 Link to this function

 subtype_of(type)

 View Source

 @spec subtype_of(t()) :: Ash.Type.t()

Returns the type that the given newtype is a subtype of

 Ash.Type.String - ash v3.0.0-rc.6

Ash.Type.String

Stores a string in the database.
A built-in type that can be referenced via :string.
By default, values are trimmed and empty values are set to nil.
You can use the allow_empty? and trim? constraints to change these behaviors.

 Constraints

	:max_length (non_neg_integer/0) - Enforces a maximum length on the value

	:min_length (non_neg_integer/0) - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? (boolean/0) - Trims the value. The default value is true.

	:allow_empty? (boolean/0) - If false, the value is set to nil if it's empty. The default value is false.

 Summary

 Functions

 match(regex)

 Functions

 Link to this function

 match(regex)

 View Source

 Ash.Type.Struct - ash v3.0.0-rc.6

Ash.Type.Struct

Represents a struct.
This cannot be loaded from a database, it can only be used to cast input.
Use the instance_of constraint to specify that it must be an instance of a specific struct.

 Ash.Type.Term - ash v3.0.0-rc.6

Ash.Type.Term

Represents a raw elixir term in the database
A builtin type that can be referenced via :binary

 Ash.Type.Time - ash v3.0.0-rc.6

Ash.Type.Time

Represents a time in the database
A builtin type that can be referenced via :time

 Ash.Type.UUID - ash v3.0.0-rc.6

Ash.Type.UUID

Represents a UUID.
A builtin type that can be referenced via :uuid

 Ash.Type.Union - ash v3.0.0-rc.6

Ash.Type.Union

A union between multiple types, distinguished with a tag or by attempting to validate.

 Constraints

	:storage - How the value will be stored when persisted.
:type_and_value will store the type and value in a map like so {type: :type_name, value: the_value}
:map_with_tag will store the value directly. This only works if all types have a tag and tag_value configured.
 Valid values are :type_and_value, :map_with_tag The default value is :type_and_value.

	:types - The types to be unioned, a map of an identifier for the enum value to its configuration.
When using tag and tag_value we are referring to a map key that must equal a certain value
in order for the value to be considered an instance of that type.
For example:
types: [
 int: [
 type: :integer,
 constraints: [
 max: 10
]
],
 object: [
 type: MyObjectType,
 # The default value is `true`
 # this passes the tag key/value to the nested type
 # when casting input
 cast_tag?: true,
 tag: :type,
 tag_value: "my_object"
],
 other_object: [
 type: MyOtherObjectType,
 cast_tag?: true,
 tag: :type,
 tag_value: "my_other_object"
],
 other_object_without_type: [
 type: MyOtherObjectTypeWithoutType,
 cast_tag?: false,
 tag: :type,
 tag_value: nil
]
]
IMPORTANT:
This is stored as a map under the hood. Filters over the data will need to take this into account.
Additionally, if you are not using a tag, a value will be considered to be of the given type if it successfully casts.
This means that, for example, if you try to cast "10" as a union of a string and an integer, it will end up as "10" because
it is a string. If you put the integer type ahead of the string type, it will cast first and 10 will be the value.

 Ash.Type.UrlEncodedBinary - ash v3.0.0-rc.6

Ash.Type.UrlEncodedBinary

Represents a binary that attempts to decode input strings as a url encoded base64 string.
A builtin type that can be referenced via :url_encoded_binary

 Ash.Type.UtcDatetime - ash v3.0.0-rc.6

Ash.Type.UtcDatetime

Represents a utc datetime. A wrapper around :datetime for backwards compatibility.

 Ash.Type.UtcDatetimeUsec - ash v3.0.0-rc.6

Ash.Type.UtcDatetimeUsec

Represents a utc datetime with nanosecond precision. A wrapper around :datetime for backwards compatibility.

 Ash.Type.Vector - ash v3.0.0-rc.6

Ash.Type.Vector

Represents a vector.
A builtin type that can be referenced via :vector

 Ash.Error - ash v3.0.0-rc.6

Ash.Error

Tools and utilities used by Ash to manage and conform errors

 Summary

 Types

 class()

 class_module()

 error_class()

 t()

 Functions

 ash_error?(value)

 splode_error?(arg1, splode)

 to_ash_error(value, stacktrace \\ nil, opts \\ [])

 to_error_class(value, opts \\ [])

 Types

 Link to this type

 class()

 View Source

 @type class() :: %{
 :__struct__ => class_module(),
 :__exception__ => true,
 :errors => [t()],
 :class => error_class(),
 :bread_crumbs => [String.t()],
 :vars => Keyword.t(),
 :stacktrace => Splode.Stacktrace.t() | nil,
 :context => map(),
 optional(atom()) => any()
}

 Link to this type

 class_module()

 View Source

 @type class_module() ::
 Ash.Error.Unknown
 | Ash.Error.Framework
 | Ash.Error.Invalid
 | Ash.Error.Forbidden

 Link to this type

 error_class()

 View Source

 @type error_class() :: :unknown | :framework | :invalid | :forbidden

 Link to this type

 t()

 View Source

 @type t() :: %{
 :__struct__ => module(),
 :__exception__ => true,
 :class => error_class(),
 :bread_crumbs => [String.t()],
 :vars => Keyword.t(),
 :stacktrace => Splode.Stacktrace.t() | nil,
 :context => map(),
 optional(atom()) => any()
}

 Functions

 Link to this function

 ash_error?(value)

 View Source

 Link to this function

 splode_error?(arg1, splode)

 View Source

 Link to this function

 to_ash_error(value, stacktrace \\ nil, opts \\ [])

 View Source

 Link to this function

 to_error_class(value, opts \\ [])

 View Source

 Ash.Error.Action.InvalidArgument - ash v3.0.0-rc.6

Ash.Error.Action.InvalidArgument exception

Used when an invalid value is provided for an action argument

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.InvalidArgument - ash v3.0.0-rc.6

Ash.Error.Changes.InvalidArgument exception

Used when an invalid value is provided for an action argument

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.InvalidAttribute - ash v3.0.0-rc.6

Ash.Error.Changes.InvalidAttribute exception

Used when an invalid value is provided for an attribute change

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.InvalidChanges - ash v3.0.0-rc.6

Ash.Error.Changes.InvalidChanges exception

Used when a change is provided that covers multiple attributes/relationships

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.InvalidRelationship - ash v3.0.0-rc.6

Ash.Error.Changes.InvalidRelationship exception

Used when an invalid value is provided for a relationship change

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.NoSuchAttribute - ash v3.0.0-rc.6

Ash.Error.Changes.NoSuchAttribute exception

Used when a change is provided for an attribute that does not exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.NoSuchRelationship - ash v3.0.0-rc.6

Ash.Error.Changes.NoSuchRelationship exception

Used when a change is provided for an relationship that does not exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.Required - ash v3.0.0-rc.6

Ash.Error.Changes.Required exception

Used when an attribute or relationship is required

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Changes.StaleRecord - ash v3.0.0-rc.6

Ash.Error.Changes.StaleRecord exception

Used when a stale record is attempted to be updated or deleted

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Exception - ash v3.0.0-rc.6

Ash.Error.Exception

Tooling for creating an Ash exception

 Summary

 Functions

 def_ash_error(fields, opts \\ [])

 Functions

 Link to this macro

 def_ash_error(fields, opts \\ [])

 View Source

 (macro)

 Ash.Error.Forbidden - ash v3.0.0-rc.6

Ash.Error.Forbidden exception

Used when authorization for an action fails

 Summary

 Types

 t()

 Functions

 exception()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Error.Forbidden{
 __exception__: true,
 action_input: term(),
 bread_crumbs: term(),
 changeset: term(),
 class: term(),
 errors: term(),
 path: term(),
 query: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.CannotFilterCreates - ash v3.0.0-rc.6

Ash.Error.Forbidden.CannotFilterCreates exception

Used when a create action would be filtered

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.DomainRequiresActor - ash v3.0.0-rc.6

Ash.Error.Forbidden.DomainRequiresActor exception

Used when a domain that has require_actor? true is provided no actor

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.DomainRequiresAuthorization - ash v3.0.0-rc.6

Ash.Error.Forbidden.DomainRequiresAuthorization exception

Used when a domain that has authorize :always is provided authorize?: false

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.ForbiddenField - ash v3.0.0-rc.6

Ash.Error.Forbidden.ForbiddenField exception

Raised in cases where access to a specific field was prevented

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.InitialDataRequired - ash v3.0.0-rc.6

Ash.Error.Forbidden.InitialDataRequired exception

Used when

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.MustPassStrictCheck - ash v3.0.0-rc.6

Ash.Error.Forbidden.MustPassStrictCheck exception

Used when unreachable code/conditions are reached in the framework

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.Placeholder - ash v3.0.0-rc.6

Ash.Error.Forbidden.Placeholder exception

A placeholder exception that the user should never see

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Forbidden.Policy - ash v3.0.0-rc.6

Ash.Error.Forbidden.Policy exception

Raised when policy authorization for an action fails

 Summary

 Functions

 exception()

 get_breakdown(facts, filter, policies, opts \\ [])

 Print a report of an authorization failure from authorization information.

 report(error, opts \\ [])

 Print a report of an authorization failure from a forbidden error

 Functions

 Link to this function

 exception()

 View Source

 Link to this function

 get_breakdown(facts, filter, policies, opts \\ [])

 View Source

Print a report of an authorization failure from authorization information.
Options:
	:help_text?: Defaults to true. Displays help text at the top of the policy breakdown.
	:success?: Defaults to false. Changes the messaging/graphics around to indicate successful policy authorization.
	:must_pass_strict_check?: Defaults to false. Adds a message about this authorization requiring passing strict check.

 Link to this function

 report(error, opts \\ [])

 View Source

Print a report of an authorization failure from a forbidden error
Options:
	:help_text?: Defaults to true. Displays help text at the top of the policy breakdown.

 Ash.Error.Framework - ash v3.0.0-rc.6

Ash.Error.Framework exception

Used when an unknown/generic framework error occurs

 Summary

 Types

 t()

 Functions

 exception()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Error.Framework{
 __exception__: true,
 action_input: term(),
 bread_crumbs: term(),
 changeset: term(),
 class: term(),
 errors: term(),
 path: term(),
 query: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Framework.AssumptionFailed - ash v3.0.0-rc.6

Ash.Error.Framework.AssumptionFailed exception

Used when unreachable code/conditions are reached in the framework

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Framework.FlagAssertionFailed - ash v3.0.0-rc.6

Ash.Error.Framework.FlagAssertionFailed exception

Used when unreachable code/conditions are reached in the framework

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Framework.InvalidReturnType - ash v3.0.0-rc.6

Ash.Error.Framework.InvalidReturnType exception

Used when a callback returns an invalid type

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Framework.MustBeAtomic - ash v3.0.0-rc.6

Ash.Error.Framework.MustBeAtomic exception

Used when an action that must be atomic cannot be done atomically

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Framework.SynchronousEngineStuck - ash v3.0.0-rc.6

Ash.Error.Framework.SynchronousEngineStuck exception

Used when the sycnrhonous engine cannot proceed

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid - ash v3.0.0-rc.6

Ash.Error.Invalid exception

The top level invalid error

 Summary

 Types

 t()

 Functions

 exception()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Error.Invalid{
 __exception__: true,
 action_input: term(),
 bread_crumbs: term(),
 changeset: term(),
 class: term(),
 errors: term(),
 path: term(),
 query: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.ActionRequiresPagination - ash v3.0.0-rc.6

Ash.Error.Invalid.ActionRequiresPagination exception

Used when page option is passed but pagination is not enabled.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.AtomicsNotSupported - ash v3.0.0-rc.6

Ash.Error.Invalid.AtomicsNotSupported exception

Used when atomics for the given action type are not not supported by the data layer, but one is used.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.InvalidPrimaryKey - ash v3.0.0-rc.6

Ash.Error.Invalid.InvalidPrimaryKey exception

Used when an invalid primary key is given to Ash.get/2

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.LimitRequired - ash v3.0.0-rc.6

Ash.Error.Invalid.LimitRequired exception

Used when no limit is provided, pagination is required, and no default page size is configured

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.MultipleResults - ash v3.0.0-rc.6

Ash.Error.Invalid.MultipleResults exception

Used when multiple requests with the same path are passed to the internal engine

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoIdentityFound - ash v3.0.0-rc.6

Ash.Error.Invalid.NoIdentityFound exception

Used when an identity name is used that does not reference identity on the resource

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoMatchingBulkStrategy - ash v3.0.0-rc.6

Ash.Error.Invalid.NoMatchingBulkStrategy exception

Used when an identity name is used that does not reference identity on the resource

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoPrimaryAction - ash v3.0.0-rc.6

Ash.Error.Invalid.NoPrimaryAction exception

Used when an action name is provided that doesn't exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoSuchAction - ash v3.0.0-rc.6

Ash.Error.Invalid.NoSuchAction exception

Used when an action name is provided that doesn't exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoSuchInput - ash v3.0.0-rc.6

Ash.Error.Invalid.NoSuchInput exception

Used when an input is provided to an action or calculation that is not accepted

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NoSuchResource - ash v3.0.0-rc.6

Ash.Error.Invalid.NoSuchResource exception

Used when a resource or alias is provided that doesn't exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.NonStreamableAction - ash v3.0.0-rc.6

Ash.Error.Invalid.NonStreamableAction exception

Used when Ash.stream is used with an action that does not support keyset pagination

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.PaginationRequired - ash v3.0.0-rc.6

Ash.Error.Invalid.PaginationRequired exception

Used when page: false is provided but pagination is required

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.ResourceNotAllowed - ash v3.0.0-rc.6

Ash.Error.Invalid.ResourceNotAllowed exception

Used when a resource or alias is provided that cannot be used with the given domain

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.TenantRequired - ash v3.0.0-rc.6

Ash.Error.Invalid.TenantRequired exception

Used when a tenant is not specified

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.Timeout - ash v3.0.0-rc.6

Ash.Error.Invalid.Timeout exception

Used when a request to a domain times out.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.TimeoutNotSupported - ash v3.0.0-rc.6

Ash.Error.Invalid.TimeoutNotSupported exception

Used when timeouts are not supported by the data layer, but one is set

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Invalid.Unavailable - ash v3.0.0-rc.6

Ash.Error.Invalid.Unavailable exception

Used when a given resource is unavailable.
This might happen due to locking at the data layer, or something
you implement yourself.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Load.InvalidQuery - ash v3.0.0-rc.6

Ash.Error.Load.InvalidQuery exception

Used when an invalid query is provided in a load

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Load.NoSuchRelationship - ash v3.0.0-rc.6

Ash.Error.Load.NoSuchRelationship exception

Used when attempting to load a relationship that does not exist

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Page.InvalidKeyset - ash v3.0.0-rc.6

Ash.Error.Page.InvalidKeyset exception

Used when a value is provided for a keyset that cannot be Base64 decoded.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.AggregatesNotSupported - ash v3.0.0-rc.6

Ash.Error.Query.AggregatesNotSupported exception

Used when the data_layer does not support aggregates, or filtering/sorting them

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.CalculationsNotSupported - ash v3.0.0-rc.6

Ash.Error.Query.CalculationsNotSupported exception

Used when the data_layer does not support calculations, or filtering/sorting them

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidArgument - ash v3.0.0-rc.6

Ash.Error.Query.InvalidArgument exception

Used when an invalid value is provided for an action argument

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidCalculationArgument - ash v3.0.0-rc.6

Ash.Error.Query.InvalidCalculationArgument exception

Used when an invalid value is provided for a calculation argument

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidExpression - ash v3.0.0-rc.6

Ash.Error.Query.InvalidExpression exception

Used when an invalid expression is used in a filter

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidFilterReference - ash v3.0.0-rc.6

Ash.Error.Query.InvalidFilterReference exception

Used when an invalid reference is used in a filter

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidFilterValue - ash v3.0.0-rc.6

Ash.Error.Query.InvalidFilterValue exception

Used when an invalid value is provided for a filter

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidLimit - ash v3.0.0-rc.6

Ash.Error.Query.InvalidLimit exception

Used when an invalid limit is provided

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidLoad - ash v3.0.0-rc.6

Ash.Error.Query.InvalidLoad exception

Used when an invalid load is provided

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidOffset - ash v3.0.0-rc.6

Ash.Error.Query.InvalidOffset exception

Used when an invalid offset is provided

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidQuery - ash v3.0.0-rc.6

Ash.Error.Query.InvalidQuery exception

A generic error that can be used to add an error to a query for a specific field

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.InvalidSortOrder - ash v3.0.0-rc.6

Ash.Error.Query.InvalidSortOrder exception

Used when an invalid sort order is provided

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.LockNotSupported - ash v3.0.0-rc.6

Ash.Error.Query.LockNotSupported exception

Used when the data_layer does not support a given lock type

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoComplexSortsWithKeysetPagination - ash v3.0.0-rc.6

Ash.Error.Query.NoComplexSortsWithKeysetPagination exception

Due to the filter-based implementation of keyset pagination, it cannot be used with sorts on calculations.
We could solve this problem by making the keyset only be the primary key of the record,
and then fetching that value loading the calculations/aggregates that we need. If we do this
we should either: 1.) make it a new pagination mode or 2.) add an option like mode: :strict | :fetch
to pagination options.
Let me know if you're reading this and want to help implement it.

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoReadAction - ash v3.0.0-rc.6

Ash.Error.Query.NoReadAction exception

Used when a resource would be read but has no read action

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchAttribute - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchAttribute exception

Used when an attribute that doesn't exist is used in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchField - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchField exception

Used when a field(attrbute, calculation, aggregate or relationship) that doesn't exist is used in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchFilterPredicate - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchFilterPredicate exception

Used when a filter predicate that does not exist is referenced

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchFunction - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchFunction exception

Used when an function that doesn't exist is used in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchOperator - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchOperator exception

Used when an operator that doesn't exist is used in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NoSuchRelationship - ash v3.0.0-rc.6

Ash.Error.Query.NoSuchRelationship exception

Used when an relationship that doesn't exist is used in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.NotFound - ash v3.0.0-rc.6

Ash.Error.Query.NotFound exception

Used when an entity that not exist is referenced

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.ReadActionRequired - ash v3.0.0-rc.6

Ash.Error.Query.ReadActionRequired exception

Used when a relationship is filtered and the destination does not have a default read action

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.ReadActionRequiresActor - ash v3.0.0-rc.6

Ash.Error.Query.ReadActionRequiresActor exception

Used when an actor is referenced in a filter template, but no actor exists

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.Required - ash v3.0.0-rc.6

Ash.Error.Query.Required exception

Used when a filter or argument is required in a query

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.UnsortableField - ash v3.0.0-rc.6

Ash.Error.Query.UnsortableField exception

Used when attempting to sort on a field that cannot be used for sorting

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Query.UnsupportedPredicate - ash v3.0.0-rc.6

Ash.Error.Query.UnsupportedPredicate exception

Used when the data_layer does not support a provided predicate

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.SimpleDataLayer.NoDataProvided - ash v3.0.0-rc.6

Ash.Error.SimpleDataLayer.NoDataProvided exception

Used when no data was provided to the simple data layer

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Stacktrace - ash v3.0.0-rc.6

Ash.Error.Stacktrace

A placeholder for a stacktrace so that we can avoid printing it everywhere

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Error.Stacktrace{stacktrace: list()}

 Ash.Error.Unknown - ash v3.0.0-rc.6

Ash.Error.Unknown exception

The top level unknown error container

 Summary

 Types

 t()

 Functions

 exception()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Error.Unknown{
 __exception__: true,
 action_input: term(),
 bread_crumbs: term(),
 changeset: term(),
 class: term(),
 errors: term(),
 path: term(),
 query: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 Link to this function

 exception()

 View Source

 Ash.Error.Unknown.UnknownError - ash v3.0.0-rc.6

Ash.Error.Unknown.UnknownError exception

Used when an unknown error occurs

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

 Ash.DataLayer.Verifiers.RequirePreCheckWith - ash v3.0.0-rc.6

Ash.DataLayer.Verifiers.RequirePreCheckWith

Ensures that all identities have a pre_check_with configured, or raises.

 Ash.Domain.Verifiers.EnsureNoEmbeds - ash v3.0.0-rc.6

Ash.Domain.Verifiers.EnsureNoEmbeds

Ensures that all resources for a given domain are not embeds.

 Ash.Domain.Verifiers.ValidateRelatedResourceInclusion - ash v3.0.0-rc.6

Ash.Domain.Verifiers.ValidateRelatedResourceInclusion

Ensures that all related resources are included in a domain.

 Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies - ash v3.0.0-rc.6

Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies

Adds field policies for any missing fields

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Policy.Authorizer.Transformers.CacheFieldPolicies - ash v3.0.0-rc.6

Ash.Policy.Authorizer.Transformers.CacheFieldPolicies

Cache field policies for each field

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.AttributesByName - ash v3.0.0-rc.6

Ash.Resource.Transformers.AttributesByName

Persists attribute_names and attributes_by_name.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.BelongsToAttribute - ash v3.0.0-rc.6

Ash.Resource.Transformers.BelongsToAttribute

Creates the attribute for belongs_to relationships that have define_attribute?: true

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.CacheActionInputs - ash v3.0.0-rc.6

Ash.Resource.Transformers.CacheActionInputs

Stores the set of valid input keys for each action

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.CachePrimaryKey - ash v3.0.0-rc.6

Ash.Resource.Transformers.CachePrimaryKey

Validates and caches the primary key of a resource

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.CacheRelationships - ash v3.0.0-rc.6

Ash.Resource.Transformers.CacheRelationships

Persists commonly used relationship information.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.CacheUniqueKeys - ash v3.0.0-rc.6

Ash.Resource.Transformers.CacheUniqueKeys

Stores the set of unique keys for a resource

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.CreateJoinRelationship - ash v3.0.0-rc.6

Ash.Resource.Transformers.CreateJoinRelationship

Creates an automatically named has_many relationship for each many_to_many.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(arg1)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.DefaultAccept - ash v3.0.0-rc.6

Ash.Resource.Transformers.DefaultAccept

Sets the default accept for each action

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.DefaultPrimaryKey - ash v3.0.0-rc.6

Ash.Resource.Transformers.DefaultPrimaryKey

Creates the default primary key if one applies.
Currently, the only resources that get a default primary key are embedded resources.
The reason for this is that resources must have a primary key, and embedded resources
actually make sense without one. But this is simulated with a private uuid primary key.

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.GetByReadActions - ash v3.0.0-rc.6

Ash.Resource.Transformers.GetByReadActions

Transform any read actions which contain a get_by option.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Ash.Resource.Transformers.HasDestinationField - ash v3.0.0-rc.6

Ash.Resource.Transformers.HasDestinationField

Guesses the destination_attribute for has many and has one relationships unless provided

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource - ash v3.0.0-rc.6

Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource

Guesses the destination_attribute_on_join_resource for many to many relationships unless provided.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource - ash v3.0.0-rc.6

Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource

Guesses the source_attribute_on_join_resource for many to many relationships unless provided.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.RequireUniqueActionNames - ash v3.0.0-rc.6

Ash.Resource.Transformers.RequireUniqueActionNames

Ensures that all actions have unique names.

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.RequireUniqueFieldNames - ash v3.0.0-rc.6

Ash.Resource.Transformers.RequireUniqueFieldNames

Confirms that a resource does not have multiple fields(attributes, calculations, aggregates, and relationships) with the same name.

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.SetRelationshipSource - ash v3.0.0-rc.6

Ash.Resource.Transformers.SetRelationshipSource

Sets the source key on relationships to be the resource they were defined on

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.ValidatePrimaryActions - ash v3.0.0-rc.6

Ash.Resource.Transformers.ValidatePrimaryActions

Validates the primary action configuration
If multiple primary actions exist this results in an error.

 Summary

 Functions

 after?(arg1)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(arg1)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Transformers.ValidationsAndChangesForType - ash v3.0.0-rc.6

Ash.Resource.Transformers.ValidationsAndChangesForType

Persists global changes/validations and what type they go on.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

 Ash.Resource.Verifiers.CountableActions - ash v3.0.0-rc.6

Ash.Resource.Verifiers.CountableActions

Ensures that countable paginated actions do not exist for resources that are not countable

 Summary

 Functions

 verify(dsl_state)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation - ash v3.0.0-rc.6

Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation

Ensures that the field at the end of the path is an attribute or calculation.

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.NoReservedFieldNames - ash v3.0.0-rc.6

Ash.Resource.Verifiers.NoReservedFieldNames

Confirms that a resource does not use reserved names for field names.
Reserved field names are: [:struct, :meta, :metadata, :order, :lateral_join_source, :*, :calculations, :aggregates, :relationships, :as].

 Summary

 Functions

 verify(dsl_state)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.ValidateAccept - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateAccept

Validates that accept and reject lists only contain valid attributes

 Ash.Resource.Verifiers.ValidateActionTypesSupported - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateActionTypesSupported

Confirms that all action types declared on a resource are supported by its data layer

 Ash.Resource.Verifiers.ValidateAggregatesSupported - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateAggregatesSupported

Confirms that all aggregates are supported by the data layer

 Ash.Resource.Verifiers.ValidateEagerIdentities - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateEagerIdentities

Confirms that eager identities are not declared on a resource with no primary read.

 Ash.Resource.Verifiers.ValidateManagedRelationshipOpts - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateManagedRelationshipOpts

Confirms that all action types declared on a resource are supported by its data layer

 Ash.Resource.Verifiers.ValidateMultitenancy - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateMultitenancy

Ensures that the multitenancy configuration is valid for the given resource

 Ash.Resource.Verifiers.ValidatePrimaryKey - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidatePrimaryKey

Validates and caches the primary key of a resource

 Ash.Resource.Verifiers.ValidateRelationshipAttributes - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateRelationshipAttributes

Validates that all relationships point to valid fields

 Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch - ash v3.0.0-rc.6

Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch

Shows a warning on potentially incompatible relationship attributes.

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.VerifyActionsAtomic - ash v3.0.0-rc.6

Ash.Resource.Verifiers.VerifyActionsAtomic

Raises an error on update or destroy actions with require_atomic? set to
true when it is known at compile time that they will not be atomic.

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.VerifyIdentityFields - ash v3.0.0-rc.6

Ash.Resource.Verifiers.VerifyIdentityFields

Raises an error on potentially incompatible identity attributes.

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.VerifyPrimaryKeyPresent - ash v3.0.0-rc.6

Ash.Resource.Verifiers.VerifyPrimaryKeyPresent

Raises an error when a required primary key is missing

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Resource.Verifiers.VerifyReservedCalculationArguments - ash v3.0.0-rc.6

Ash.Resource.Verifiers.VerifyReservedCalculationArguments

Verifies that standard context keys are not used as calculation arguments

 Summary

 Functions

 verify(dsl)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Functions

 Link to this function

 verify(dsl)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

 Ash.Filter.Predicate - ash v3.0.0-rc.6

Ash.Filter.Predicate behaviour

Represents a predicate which can be simplified and/or compared with other predicates
Simplification and comparison will need more documentation, but ultimately it
is the logic that allows us to have a flexible and powerful authorization
system.

 Summary

 Types

 comparison()

 predicate()

 Callbacks

 bulk_compare(list)

 As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).

 compare(predicate, predicate)

 Compare two predicates. If possible, use bulk_compare/1 instead

 simplify(predicate)

 Simplify to a more primitive statement.

 Functions

 compare(same, same)

 Checks with each predicate module to see if it has a comparison
with

 Types

 Link to this type

 comparison()

 View Source

 @type comparison() ::
 :unknown
 | :right_includes_left
 | :left_includes_right
 | :mutually_inclusive
 | :mutually_exclusive

 Link to this type

 predicate()

 View Source

 @type predicate() :: struct()

 Callbacks

 Link to this callback

 bulk_compare(list)

 View Source

 (optional)

 @callback bulk_compare([predicate()]) :: term()

As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).
The best way to do it is to find lists of predicates that are mutually
exclusive or mutually inclusive, and pass those lists into
Ash.SatSolver.mutually_exclusive/1 and Ash.SatSolver.mutually_inclusive/1

 Link to this callback

 compare(predicate, predicate)

 View Source

 (optional)

 @callback compare(predicate(), predicate()) :: comparison()

Compare two predicates. If possible, use bulk_compare/1 instead

 Link to this callback

 simplify(predicate)

 View Source

 (optional)

 @callback simplify(predicate()) :: term()

Simplify to a more primitive statement.
For example, x in [1, 2] simplifies to x == 1 or x == 2.
Simplifying to filter expressions that already have comparisons
lets you avoid writing that logic for a given predicate.

 Functions

 Link to this function

 compare(same, same)

 View Source

Checks with each predicate module to see if it has a comparison
with

 Ash.Query.BooleanExpression - ash v3.0.0-rc.6

Ash.Query.BooleanExpression

Represents a boolean expression

 Summary

 Functions

 new(op, left, right)

 optimized_new(op, left, right)

 Functions

 Link to this function

 new(op, left, right)

 View Source

 Link to this function

 optimized_new(op, left, right)

 View Source

 Ash.Query.Call - ash v3.0.0-rc.6

Ash.Query.Call

Represents a function call/AST node in an Ash query expression

 Ash.Query.Exists - ash v3.0.0-rc.6

Ash.Query.Exists

Determines if a given related entity exists.

 Summary

 Functions

 new(path, expr, at_path \\ [])

 Functions

 Link to this function

 new(path, expr, at_path \\ [])

 View Source

 Ash.Query.Function - ash v3.0.0-rc.6

Ash.Query.Function behaviour

A function is a predicate with an arguments list.
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. A function must meet both behaviours.

 Summary

 Types

 arg()

 Callbacks

 args()

 The number and types of arguments supported.

 eager_evaluate?()

 evaluate(func)

 evaluate_nil_inputs?()

 If true, will be allowed to evaluate nil inputs.

 name()

 new(list)

 partial_evaluate(func)

 predicate?()

 private?()

 Functions

 evaluate(func)

 Evaluate the operator with provided inputs

 new(mod, args)

 ordinal(num)

 Attaches the appropriate suffix to refer to an ordinal number, e.g 1 -> "1st"

 try_cast_arguments(configured_args, args)

 Types

 Link to this type

 arg()

 View Source

 @type arg() :: any()

 Callbacks

 Link to this callback

 args()

 View Source

 @callback args() :: [arg()] | :var_args

The number and types of arguments supported.

 Link to this callback

 eager_evaluate?()

 View Source

 @callback eager_evaluate?() :: boolean()

 Link to this callback

 evaluate(func)

 View Source

 @callback evaluate(func :: map()) :: :unknown | {:known, term()} | {:error, term()}

 Link to this callback

 evaluate_nil_inputs?()

 View Source

 @callback evaluate_nil_inputs?() :: boolean()

If true, will be allowed to evaluate nil inputs.
If false (the default), any nil inputs will cause a nil return.

 Link to this callback

 name()

 View Source

 @callback name() :: atom()

 Link to this callback

 new(list)

 View Source

 @callback new([term()]) :: {:ok, term()} | {:error, String.t() | Exception.t()}

 Link to this callback

 partial_evaluate(func)

 View Source

 (optional)

 @callback partial_evaluate(func) :: func when func: map()

 Link to this callback

 predicate?()

 View Source

 @callback predicate?() :: boolean()

 Link to this callback

 private?()

 View Source

 @callback private?() :: boolean()

 Functions

 Link to this function

 evaluate(func)

 View Source

Evaluate the operator with provided inputs

 Link to this function

 new(mod, args)

 View Source

 Link to this function

 ordinal(num)

 View Source

Attaches the appropriate suffix to refer to an ordinal number, e.g 1 -> "1st"

 Link to this function

 try_cast_arguments(configured_args, args)

 View Source

 Ash.Query.Not - ash v3.0.0-rc.6

Ash.Query.Not

Represents the negation of the contained expression

 Summary

 Functions

 new(expression)

 Functions

 Link to this function

 new(expression)

 View Source

 Ash.Query.Operator - ash v3.0.0-rc.6

Ash.Query.Operator behaviour

An operator is a predicate with a left and a right
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. An operator must meet both behaviours.

 Summary

 Callbacks

 evaluate(term)

 Evaluates the operator in Elixir

 evaluate_nil_inputs?()

 If true, will be allowed to evaluate nil inputs.

 new(term, term)

 Create a new predicate. There are various return types possible

 predicate?()

 to_string(struct, t)

 The implementation of the inspect protocol.

 types()

 The types accepted by the operator. Defaults to [:same, :any], which is any values of the same type.

 Functions

 evaluate(op)

 Evaluate the operator with provided inputs

 new(mod, left, right)

 Create a new operator. Pass the module and the left and right values

 operator_overloads(operator)

 Get type overloads for the given operator

 operator_symbols()

 operators()

 Callbacks

 Link to this callback

 evaluate(term)

 View Source

 @callback evaluate(term()) :: term()

Evaluates the operator in Elixir

 Link to this callback

 evaluate_nil_inputs?()

 View Source

 @callback evaluate_nil_inputs?() :: boolean()

If true, will be allowed to evaluate nil inputs.
If false (the default), any nil inputs will cause a nil return.

 Link to this callback

 new(term, term)

 View Source

 @callback new(term(), term()) ::
 {:ok, term(), term()} | {:ok, term()} | {:known, boolean()} | {:error, term()}

Create a new predicate. There are various return types possible:
	{:ok, left, right} - Return the left/right values of the operator
	{:ok, operator} - Return the operator itself, this or the one above are acceptable
	{:known, boolean} - If the value is already known, e.g 1 == 1
	{:error, error} - If there was an error creating the operator

 Link to this callback

 predicate?()

 View Source

 @callback predicate?() :: boolean()

 Link to this callback

 to_string(struct, t)

 View Source

 @callback to_string(
 struct(),
 Inspect.Opts.t()
) :: term()

The implementation of the inspect protocol.
If not defined, it will be inferred

 Link to this callback

 types()

 View Source

 @callback types() :: [
 :any | :same | [Ash.Type.t() | {Ash.Type.t(), constraints :: Keyword.t()}]
]

The types accepted by the operator. Defaults to [:same, :any], which is any values of the same type.

 Functions

 Link to this function

 evaluate(op)

 View Source

Evaluate the operator with provided inputs

 Link to this function

 new(mod, left, right)

 View Source

Create a new operator. Pass the module and the left and right values

 Link to this function

 operator_overloads(operator)

 View Source

Get type overloads for the given operator

 Link to this function

 operator_symbols()

 View Source

 Link to this function

 operators()

 View Source

 Ash.Query.Parent - ash v3.0.0-rc.6

Ash.Query.Parent

true if the provided field is nil
Used to access values from the "source" of a given expression.
This is used in cases where expressions are given for some relationship path, for example:any()
 has_many :foo, Foo do
 filter expr(priority == :foo and type == parent(foo_type))
 end
This is supported on a case by case basis by a given data layer and in specific usages.

 Summary

 Functions

 new(expr)

 Functions

 Link to this function

 new(expr)

 View Source

 Ash.Query.Ref - ash v3.0.0-rc.6

Ash.Query.Ref

Represents a relation/attribute reference

 Summary

 Functions

 name(ref)

 Returns the referenced field

 Functions

 Link to this function

 name(ref)

 View Source

Returns the referenced field

 Ash.Query.Function.Ago - ash v3.0.0-rc.6

Ash.Query.Function.Ago

Subtracts the given interval from the current time in UTC.
For example:
 deleted_at > ago(7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.At - ash v3.0.0-rc.6

Ash.Query.Function.At

Gets an element in the list by index

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.CompositeType - ash v3.0.0-rc.6

Ash.Query.Function.CompositeType

Constructs a composite type in a way that is natively understood by the data layer
To do this, provide a tuple matching the format expected by the type in question.
Check that type's documentation for this information.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Contains - ash v3.0.0-rc.6

Ash.Query.Function.Contains

Returns true if the first string contains the second.
Case insensitive strings are accounted for on either side.
 contains("foo", "fo")
 true
 contains(%Ash.CiString{:string "foo"}, "FoO")
 true
 contains("foo", %Ash.CiString{:string "FOO"})
 true

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.CountNils - ash v3.0.0-rc.6

Ash.Query.Function.CountNils

Returns the count of nil.
count_nil([nil, 1, nil]) # 2

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.DateAdd - ash v3.0.0-rc.6

Ash.Query.Function.DateAdd

Adds the given interval to the current time in UTC
For example:
 activates_at < date_add(today(), 7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.DateTimeAdd - ash v3.0.0-rc.6

Ash.Query.Function.DateTimeAdd

Adds the given interval to the current time in UTC
For example:
 activates_at < datetime_add(now(), 7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Error - ash v3.0.0-rc.6

Ash.Query.Function.Error

If the predicate is truthy, the provided exception is raised with the provided values.
This exception is not "raised" in the Elixir sense, but the entire expression fails to
evaluate with the given error. Various data layers will handle this differently.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Fragment - ash v3.0.0-rc.6

Ash.Query.Function.Fragment

Adds the given interval from the current time in UTC.
For example:
 expires_at < from_now(7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 casted_new(list)

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Link to this function

 casted_new(list)

 View Source

 Ash.Query.Function.FromNow - ash v3.0.0-rc.6

Ash.Query.Function.FromNow

Adds the given interval from the current time in UTC.
For example:
 expires_at < from_now(7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.GetPath - ash v3.0.0-rc.6

Ash.Query.Function.GetPath

Gets the value at the provided path in the value, which must be a map or embed.
If you are using a datalayer that provides a type function (like AshPostgres), it is a good idea to
wrap your call in that function, e.g type(author[:bio][:title], :string), since data layers that depend
on knowing types may not be able to infer the type from the path. Ash may eventually be able to figure out
the type, in the case that the path consists of only embedded attributes.
If an atom key is provided, access is indiscriminate of atoms vs strings. The atom key is checked first.
If a string key is provided, that is the only thing that is checked. If the value will or may be a struct, be sure to use atoms.
The data layer may handle this differently, for example, AshPostgres only checks
strings at the data layer (because thats all it can be in the database anyway).
Available in query expressions using bracket syntax, e.g foo[:bar][:baz].

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.If - ash v3.0.0-rc.6

Ash.Query.Function.If

If predicate is truthy, then the second argument is returned, otherwise the third.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 partial_evaluate(fun)

 Callback implementation for Ash.Query.Function.partial_evaluate/1.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Link to this function

 partial_evaluate(fun)

 View Source

Callback implementation for Ash.Query.Function.partial_evaluate/1.

 Ash.Query.Function.IsNil - ash v3.0.0-rc.6

Ash.Query.Function.IsNil

true if the provided field is nil

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Lazy - ash v3.0.0-rc.6

Ash.Query.Function.Lazy

Runs the provided MFA and returns the result as a known value.
Evaluated just before running the query.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Length - ash v3.0.0-rc.6

Ash.Query.Function.Length

Returns the length of a list attribute defined by the composite type {:array, Type}.
length(roles)
If the attribute allows nils:
length(roles || [])

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Minus - ash v3.0.0-rc.6

Ash.Query.Function.Minus

Multiplies the value by negative one

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Now - ash v3.0.0-rc.6

Ash.Query.Function.Now

Returns the current datetime

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Round - ash v3.0.0-rc.6

Ash.Query.Function.Round

Rounds a float, decimal or integer to the given number of points

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.StringDowncase - ash v3.0.0-rc.6

Ash.Query.Function.StringDowncase

Downcase a string

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.StringJoin - ash v3.0.0-rc.6

Ash.Query.Function.StringJoin

Joins a list of values.
Ignores nil values and concatenates the remaining non-nil values. An optional
joiner can be provided.
string_join([first_name, last_name], " ")

string_join([item_a, item_b])

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.StringLength - ash v3.0.0-rc.6

Ash.Query.Function.StringLength

Trims whitespace from a string

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.StringSplit - ash v3.0.0-rc.6

Ash.Query.Function.StringSplit

Split a string into a list of strings
Splits a string on the given delimiter. The delimiter defaults to a single space. Also supports options.
Keep in mind, this function does not support regexes the way that String.split/3 does, only raw strings.
string_split(employee_code)
string_split(full_name, "foo")
string_split(full_name, "foo", trim?: true)

 Options

	:trim? (boolean/0) - Whether or not to trim empty strings from the beginning or end of the result. Equivalent to the trim option to String.split/3 The default value is false.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.StringTrim - ash v3.0.0-rc.6

Ash.Query.Function.StringTrim

Trims whitespace from a string

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Today - ash v3.0.0-rc.6

Ash.Query.Function.Today

Returns the current datetime

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Function.Type - ash v3.0.0-rc.6

Ash.Query.Function.Type

Casts the value to a given type. Can also be used to provide type hints to data layers, where appropriate.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

 Ash.Query.Operator.Basic - ash v3.0.0-rc.6

Ash.Query.Operator.Basic

 Summary

 Functions

 operator_modules()

 Functions

 Link to this function

 operator_modules()

 View Source

 Ash.Query.Operator.Eq - ash v3.0.0-rc.6

Ash.Query.Operator.Eq

left == right
The simplest operator, matches if the left and right are equal.
For comparison, this compares as mutually exclusive with other equality
and is_nil checks that have the same reference on the left side

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.GreaterThan - ash v3.0.0-rc.6

Ash.Query.Operator.GreaterThan

left > right
In comparison, simplifies to not(left < right + 1), so it will never need to be compared against.

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.GreaterThanOrEqual - ash v3.0.0-rc.6

Ash.Query.Operator.GreaterThanOrEqual

left >= right
In comparison, simplifies to not(left < right), so it will never need to be compared against.

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.In - ash v3.0.0-rc.6

Ash.Query.Operator.In

left in [1, 2, 3]
this predicate matches if the left is in the list on the right
For comparison, this simplifies to a set of "or equals", e.g
{:or, {:or, {:or, left == 1}, left == 2}, left == 3}

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.IsNil - ash v3.0.0-rc.6

Ash.Query.Operator.IsNil

left is_nil true/false
This predicate matches if the left is nil when the right is true or if the
left is not nil when the right is false

 Summary

 Functions

 name()

 operator()

 Functions

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.LessThan - ash v3.0.0-rc.6

Ash.Query.Operator.LessThan

left < right
Does not simplify, but is used as the simplification value for
Ash.Query.Operator.LessThanOrEqual, Ash.Query.Operator.GreaterThan and
Ash.Query.Operator.GreaterThanOrEqual.
When comparing predicates, it is mutually exclusive with Ash.Query.Operator.IsNil.
Additionally, it compares as mutually inclusive with any Ash.Query.Operator.Eq and
any Ash.Query.Operator.LessThan who's right sides are less than it, and mutually
exclusive with any Ash.Query.Operator.Eq or Ash.Query.Operator.GreaterThan who's
right side's are greater than or equal to it.

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.LessThanOrEqual - ash v3.0.0-rc.6

Ash.Query.Operator.LessThanOrEqual

left <= right
In comparison, simplifies to left < right + 1, so it will never need to be compared against.

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Query.Operator.NotEq - ash v3.0.0-rc.6

Ash.Query.Operator.NotEq

left != right
In comparison, simplifies to not(left == right)

 Summary

 Functions

 evaluate(map)

 Callback implementation for Ash.Query.Operator.evaluate/1.

 name()

 operator()

 Functions

 Link to this function

 evaluate(map)

 View Source

Callback implementation for Ash.Query.Operator.evaluate/1.

 Link to this function

 name()

 View Source

 Link to this function

 operator()

 View Source

 Ash.Policy.Check.AccessingFrom - ash v3.0.0-rc.6

Ash.Policy.Check.AccessingFrom

This check is true when the current action is being run "through" a relationship.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Action - ash v3.0.0-rc.6

Ash.Policy.Check.Action

This check is true when the action name matches the provided action name.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ActionType - ash v3.0.0-rc.6

Ash.Policy.Check.ActionType

This check is true when the action type matches the provided type

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ActorAttributeEquals - ash v3.0.0-rc.6

Ash.Policy.Check.ActorAttributeEquals

This check is true when the value of the specified attribute of the actor equals the specified value.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ActorPresent - ash v3.0.0-rc.6

Ash.Policy.Check.ActorPresent

This check is true when there is an actor specified, and false when the actor is nil.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ChangingAttributes - ash v3.0.0-rc.6

Ash.Policy.Check.ChangingAttributes

This check is true when attribute changes correspond to the provided options.

 Summary

 Functions

 auto_filter(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.auto_filter/3.

 auto_filter_not(actor, authorizer, opts)

 check(actor, data, authorizer, opts)

 Callback implementation for Ash.Policy.Check.check/4.

 reject(actor, authorizer, opts)

 Callback implementation for Ash.Policy.FilterCheck.reject/3.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 strict_check_context(opts)

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 auto_filter(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.auto_filter/3.

 Link to this function

 auto_filter_not(actor, authorizer, opts)

 View Source

 Link to this function

 check(actor, data, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.check/4.

 Link to this function

 reject(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.FilterCheck.reject/3.

 Link to this function

 requires_original_data?(_, _)

 View Source

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 Link to this function

 strict_check(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 strict_check_context(opts)

 View Source

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ChangingRelationships - ash v3.0.0-rc.6

Ash.Policy.Check.ChangingRelationships

This check is true when the specified relationship is changing

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.ContextEquals - ash v3.0.0-rc.6

Ash.Policy.Check.ContextEquals

This check is true when the value of the specified key or path in the changeset or query context equals the specified value.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Expression - ash v3.0.0-rc.6

Ash.Policy.Check.Expression

The check module used for exprs in policies

 Summary

 Functions

 auto_filter(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.auto_filter/3.

 auto_filter_not(actor, authorizer, opts)

 check(actor, data, authorizer, opts)

 Callback implementation for Ash.Policy.Check.check/4.

 reject(actor, authorizer, opts)

 Callback implementation for Ash.Policy.FilterCheck.reject/3.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 strict_check_context(opts)

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 auto_filter(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.auto_filter/3.

 Link to this function

 auto_filter_not(actor, authorizer, opts)

 View Source

 Link to this function

 check(actor, data, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.check/4.

 Link to this function

 reject(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.FilterCheck.reject/3.

 Link to this function

 requires_original_data?(_, _)

 View Source

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 Link to this function

 strict_check(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 strict_check_context(opts)

 View Source

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.FilteringOn - ash v3.0.0-rc.6

Ash.Policy.Check.FilteringOn

This check is true when the field provided is being referenced anywhere in a filter statement.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Loading - ash v3.0.0-rc.6

Ash.Policy.Check.Loading

This check is true when the field or relationship, or path to field, is being loaded and false when it is not.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Matches - ash v3.0.0-rc.6

Ash.Policy.Check.Matches

This check is true when the specified function returns true

 Summary

 Functions

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 requires_original_data?(_, _)

 View Source

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.RelatesToActorVia - ash v3.0.0-rc.6

Ash.Policy.Check.RelatesToActorVia

This check passes if the data relates to the actor via the specified relationship or path of relationships.

 Summary

 Functions

 auto_filter(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.auto_filter/3.

 auto_filter_not(actor, authorizer, opts)

 check(actor, data, authorizer, opts)

 Callback implementation for Ash.Policy.Check.check/4.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 strict_check_context(opts)

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 auto_filter(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.auto_filter/3.

 Link to this function

 auto_filter_not(actor, authorizer, opts)

 View Source

 Link to this function

 check(actor, data, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.check/4.

 Link to this function

 requires_original_data?(_, _)

 View Source

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 Link to this function

 strict_check(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 strict_check_context(opts)

 View Source

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.RelatingToActor - ash v3.0.0-rc.6

Ash.Policy.Check.RelatingToActor

This check is true when the specified relationship is being changed to the current actor.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Resource - ash v3.0.0-rc.6

Ash.Policy.Check.Resource

This check is true when the resource matches the provided resource name or names.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Selecting - ash v3.0.0-rc.6

Ash.Policy.Check.Selecting

This check is true when the field is being selected and false when it is not.

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Policy.Check.Static - ash v3.0.0-rc.6

Ash.Policy.Check.Static

This check is always the result provided

 Summary

 Functions

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 strict_check(actor, context, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

 Ash.Resource.Change.Context - ash v3.0.0-rc.6

Ash.Resource.Change.Context

The context for a change.
This is passed into various callbacks for Ash.Resource.Change.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Change.Context{
 actor: Ash.Resource.record() | nil,
 authorize?: boolean() | nil,
 bulk?: boolean(),
 tenant: term(),
 tracer: Ash.Tracer.t() | [Ash.Tracer.t()] | nil
}

 Ash.Resource.Change.GetAndLock - ash v3.0.0-rc.6

Ash.Resource.Change.GetAndLock

Refetches the record being updated or destroyed, and locks it with the given type.

 Ash.Resource.Change.GetAndLockForUpdate - ash v3.0.0-rc.6

Ash.Resource.Change.GetAndLockForUpdate

Refetches the record being updated or destroyed, and locks it for update.

 Ash.Resource.Change.Increment - ash v3.0.0-rc.6

Ash.Resource.Change.Increment

Increments an attribute's value by the amount specified, which defaults to 1.

 Ash.Resource.Change.OptimisticLock - ash v3.0.0-rc.6

Ash.Resource.Change.OptimisticLock

Performs an optimistic lock on the changeset.
See Ash.Resource.Change.Builtins.optimistic_lock/1 for more.

 Ash.Resource.Validation.ActionIs - ash v3.0.0-rc.6

Ash.Resource.Validation.ActionIs

Validates that the action is the specified action.

 Ash.Resource.Validation.Context - ash v3.0.0-rc.6

Ash.Resource.Validation.Context

Context for a validation.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Validation.Context{
 actor: Ash.Resource.record() | nil,
 authorize?: boolean() | nil,
 bulk?: boolean(),
 message: String.t() | nil,
 tenant: term(),
 tracer: Ash.Tracer.t() | [Ash.Tracer.t()] | nil
}

 Ash.Actions.Read.AsyncLimiter - ash v3.0.0-rc.6

Ash.Actions.Read.AsyncLimiter

A utility for limiting the number of concurrent async operations
Because this is an optimization, we opt to run something synchronously
if there is no async task available in the slot. The idea here is that
the vast majority of things we do async will be fast enough not to
warrant always waiting for an async slot to be free. We may add in some
smarter heuristics later (i.e choosing to wait for a task instead of
doing the work sync), but for now this is a good start.

 Summary

 Functions

 async_or_inline(query, opts, func)

 await_all(list)

 await_at_least_one(list)

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(limit)

 Functions

 Link to this function

 async_or_inline(query, opts, func)

 View Source

 Link to this function

 await_all(list)

 View Source

 Link to this function

 await_at_least_one(list)

 View Source

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(limit)

 View Source

 Ash.Changeset.OriginalDataNotAvailable - ash v3.0.0-rc.6

Ash.Changeset.OriginalDataNotAvailable

A value placed in changeset.data to indicate that the original data is not available

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Changeset.OriginalDataNotAvailable{reason: :atomic_query_update}

 Ash.Context - ash v3.0.0-rc.6

Ash.Context

Functions for working with the context provided to various callbacks in Ash.

 Summary

 Functions

 to_opts(map, opts \\ [])

 Copies keys from the given context map into a keyword list. Does not copy the :domain key.

 Functions

 Link to this function

 to_opts(map, opts \\ [])

 View Source

Copies keys from the given context map into a keyword list. Does not copy the :domain key.
Keys copied:
	:actor
	:authorize?
	:tracer
	:tenant

 Ash.CustomExpression - ash v3.0.0-rc.6

Ash.CustomExpression behaviour

A module for defining custom functions that can be called in Ash expressions.
For example:
defmodule MyApp.Expressions.LevenshteinDistance do
 use Ash.CustomExpression,
 name: :levenshtein,
 arguments: [
 [:string, :string]
]

 def expression(AshPostgres.DataLayer, [left, right]) do
 {:ok, expr(fragment("levenshtein(?, ?)", left, right))}
 end

 # It is good practice to always define an expression for `Ash.DataLayer.Simple`,
 # as that is what Ash will use to run your custom expression in Elixir.
 # This allows us to completely avoid communicating with the database in some cases.

 def expression(data_layer, [left, right]) when data_layer in [
 Ash.DataLayer.Ets,
 Ash.DataLayer.Simple
] do
 {:ok, expr(fragment(&__MODULE__.levenshtein/2, left, right))}
 end

 # always define this fallback clause as well
 def expression(_data_layer, _args), do: :unknown

 @doc "Computes the levenshtein distance of two strings"
 def levenshtein(left, right) do
 #
 end
end

 Options

	name - The name of the custom expression. This is the name that will be used in Ash expressions.
	arguments - A list of lists of types that the custom expression accepts. Each list represents a set of arguments that the custom expression can accept.
	predicate? - Whether this expression can be exposed as a predicate in filter interfaces. Defaults to false.

 Summary

 Callbacks

 arguments()

 expression(data_layer, arguments)

 name()

 Callbacks

 Link to this callback

 arguments()

 View Source

 @callback arguments() :: [[Ash.Type.t() | {Ash.Type.t(), Keyword.t()}]]

 Link to this callback

 expression(data_layer, arguments)

 View Source

 @callback expression(
 data_layer :: Ash.DataLayer.t(),
 arguments :: [Ash.Expr.t()]
) :: {:ok, Ash.Expr.t()} | :unknown

 Link to this callback

 name()

 View Source

 @callback name() :: atom()

 Ash.Reactor.ActionStep - ash v3.0.0-rc.6

Ash.Reactor.ActionStep

The Reactor step which is used to execute generic actions.

 Ash.Reactor.CreateStep - ash v3.0.0-rc.6

Ash.Reactor.CreateStep

The Reactor step which is used to execute create actions.

 Ash.Reactor.DestroyStep - ash v3.0.0-rc.6

Ash.Reactor.DestroyStep

The Reactor step which is used to execute update actions.

 Ash.Reactor.Dsl.Action - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Action

The action entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Action{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :action,
 undo: :always | :never | :outside_transaction,
 undo_action: atom(),
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.ActionTransformer - ash v3.0.0-rc.6

Ash.Reactor.Dsl.ActionTransformer

Responsible for transforming actions.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Ash.Reactor.Dsl.Actor - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Actor

Specify the actor used to execute an action.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Actor{
 __identifier__: any(),
 source:
 Reactor.Template.Input.t()
 | Reactor.Template.Result.t()
 | Reactor.Template.Value.t(),
 transform: nil | (any() -> any()) | {module(), keyword()} | mfa()
}

 Ash.Reactor.Dsl.Create - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Create

The create entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Create{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :create,
 undo: :always | :never | :outside_transaction,
 undo_action: atom(),
 upsert?: boolean(),
 upsert_identity: nil | atom(),
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.Destroy - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Destroy

The destroy entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Destroy{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 initial: Reactor.Template.t(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 return_destroyed?: boolean(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :destroy,
 undo: :always | :never | :outside_transaction,
 undo_action: atom(),
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.Inputs - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Inputs

The inputs entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Inputs{
 __identifier__: any(),
 template:
 %{optional(atom()) => Reactor.Template.t()}
 | Keyword.t(Reactor.Template.t()),
 transform: nil | (any() -> any()) | {module(), keyword()} | mfa()
}

 Ash.Reactor.Dsl.MiddlewareTransformer - ash v3.0.0-rc.6

Ash.Reactor.Dsl.MiddlewareTransformer

Ensures that the required middlewares are added to the Reactor.

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Ash.Reactor.Dsl.Read - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Read

The read entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Read{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :create,
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.ReadOne - ash v3.0.0-rc.6

Ash.Reactor.Dsl.ReadOne

The read_one entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.ReadOne{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 fail_on_not_found?: boolean(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :create,
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.Tenant - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Tenant

Specify the actor used to execute an action.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Tenant{
 __identifier__: any(),
 source:
 Reactor.Template.Input.t()
 | Reactor.Template.Result.t()
 | Reactor.Template.Value.t(),
 transform: nil | (any() -> any()) | {module(), keyword()} | mfa()
}

 Ash.Reactor.Dsl.Transaction - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Transaction

The transaction entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Transaction{
 __identifier__: any(),
 arguments: [],
 description: nil | String.t(),
 name: atom(),
 resources: [Ash.Resource.t()],
 return: atom(),
 steps: [Reactor.Step.t()],
 timeout: timeout(),
 type: :transaction,
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.Dsl.Update - ash v3.0.0-rc.6

Ash.Reactor.Dsl.Update

The update entity for the Ash.Reactor reactor extension.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Reactor.Dsl.Update{
 __identifier__: any(),
 action: atom(),
 action_step?: true,
 actor: [Ash.Reactor.Dsl.Actor.t()],
 async?: boolean(),
 authorize?: boolean() | nil,
 description: String.t() | nil,
 domain: Ash.Domain.t(),
 initial: Reactor.Template.t(),
 inputs: [Ash.Reactor.Dsl.Inputs.t()],
 name: atom(),
 resource: module(),
 tenant: [Ash.Reactor.Dsl.Tenant.t()],
 transform: term(),
 type: :update,
 undo: :always | :never | :outside_transaction,
 undo_action: atom(),
 wait_for: [Reactor.Dsl.WaitFor.t()]
}

 Ash.Reactor.MergeInputsStep - ash v3.0.0-rc.6

Ash.Reactor.MergeInputsStep

A custom step which merges any number of inputs results into a single map.

 Ash.Reactor.Notifications - ash v3.0.0-rc.6

Ash.Reactor.Notifications

Reactor middleware used to collect and emit notifications upon successful
completion of the Reactor.

 Summary

 Functions

 complete(result, context)

 When the reactor completes successfully, publish any queued notifications.

 enqueue_notifications(context, notifications)

 Add notifications to the queue to be published on reactor success.

 error(errors, context)

 When the reactor fails, discard any queued notifications.

 halt(context)

 When halting the reactor, store any queued notifications in the context for
eventual resumption.

 init(context)

 When starting a reactor, start an agent to act as a temporary store of
notifications.

 publish(notifications)

 Dispatch notifications.

 Functions

 Link to this function

 complete(result, context)

 View Source

When the reactor completes successfully, publish any queued notifications.

 Link to this function

 enqueue_notifications(context, notifications)

 View Source

 @spec enqueue_notifications(
 Reactor.context(),
 Enumerable.t(Ash.Notifier.Notification.t())
) ::
 :ok | {:error, any()}

Add notifications to the queue to be published on reactor success.

 Link to this function

 error(errors, context)

 View Source

When the reactor fails, discard any queued notifications.

 Link to this function

 halt(context)

 View Source

When halting the reactor, store any queued notifications in the context for
eventual resumption.

 Link to this function

 init(context)

 View Source

When starting a reactor, start an agent to act as a temporary store of
notifications.

 Link to this function

 publish(notifications)

 View Source

 @spec publish(Ash.Notifier.Notification.t() | [Ash.Notifier.Notification.t()]) :: [
 Ash.Notifier.Notification.t()
]

Dispatch notifications.

 Ash.Reactor.ReadOneStep - ash v3.0.0-rc.6

Ash.Reactor.ReadOneStep

The Reactor step which is used to execute get actions.

 Summary

 Functions

 run(arguments, context, options)

 Callback implementation for Reactor.Step.run/3.

 Functions

 Link to this function

 run(arguments, context, options)

 View Source

Callback implementation for Reactor.Step.run/3.

 Ash.Reactor.ReadStep - ash v3.0.0-rc.6

Ash.Reactor.ReadStep

The Reactor step which is used to execute read actions.

 Summary

 Functions

 run(arguments, context, options)

 Callback implementation for Reactor.Step.run/3.

 Functions

 Link to this function

 run(arguments, context, options)

 View Source

Callback implementation for Reactor.Step.run/3.

 Ash.Reactor.Tracer - ash v3.0.0-rc.6

Ash.Reactor.Tracer

Reactor middleware which threads Ash's tracing information through to new
processes spawned by Reactor.

 Ash.Reactor.TransactionStep - ash v3.0.0-rc.6

Ash.Reactor.TransactionStep

The Reactor step which is used to wrap other steps in an Ash data layer
transaction.

 Summary

 Functions

 run(arguments, context, options)

 Callback implementation for Reactor.Step.run/3.

 Functions

 Link to this function

 run(arguments, context, options)

 View Source

Callback implementation for Reactor.Step.run/3.

 Ash.Reactor.UpdateStep - ash v3.0.0-rc.6

Ash.Reactor.UpdateStep

The Reactor step which is used to execute update actions.

 Ash.Resource.Dsl.Filter - ash v3.0.0-rc.6

Ash.Resource.Dsl.Filter

Introspection target for a filter for read actions and relationships

 Ash.Resource.ManualCreate.Context - ash v3.0.0-rc.6

Ash.Resource.ManualCreate.Context

The context passed into manual update action functions

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.ManualCreate.Context{
 actor: any(),
 authorize?: boolean(),
 batch_size: pos_integer(),
 domain: Ash.Domain.t(),
 return_records?: boolean(),
 select: [atom()],
 tenant: any(),
 tracer: [module()],
 upsert?: boolean(),
 upsert_fields: [atom()],
 upsert_keys: [atom()]
}

 Ash.Resource.ManualDestroy.Context - ash v3.0.0-rc.6

Ash.Resource.ManualDestroy.Context

The context passed into manual update action functions

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.ManualDestroy.Context{
 actor: any(),
 authorize?: boolean(),
 batch_size: pos_integer(),
 domain: Ash.Domain.t(),
 return_records?: boolean(),
 select: [atom()],
 tenant: any(),
 tracer: [module()]
}

 Ash.Resource.ManualRelationship.Context - ash v3.0.0-rc.6

Ash.Resource.ManualRelationship.Context

The context passed into manual relationship functions

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.ManualRelationship.Context{
 actor: term(),
 authorize?: boolean(),
 domain: module(),
 query: Ash.Query.t(),
 relationship: Ash.Resource.Relationships.relationship(),
 tenant: term()
}

 Ash.Resource.ManualUpdate.Context - ash v3.0.0-rc.6

Ash.Resource.ManualUpdate.Context

The context passed into manual update action functions

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.ManualUpdate.Context{
 actor: any(),
 authorize?: boolean(),
 batch_size: pos_integer(),
 domain: Ash.Domain.t(),
 return_records?: boolean(),
 select: [atom()],
 tenant: any(),
 tracer: [module()]
}

 Ash.Resource.Preparation.Context - ash v3.0.0-rc.6

Ash.Resource.Preparation.Context

The context for a preparation.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Ash.Resource.Preparation.Context{
 actor: Ash.Resource.record() | nil,
 authorize?: boolean() | nil,
 tenant: term(),
 tracer: Ash.Tracer.t() | [Ash.Tracer.t()] | nil
}

 Ash.ToTenant - ash v3.0.0-rc.6

Ash.ToTenant protocol

Converts a value to a tenant. To add this to a resource, implement the protocol like so:application
What this should do is entirely dependent on how you've set up your tenants. This example assumes
that you want the tenant to be org_#{organization_id}, but it could also be something like
organization.schema.
defmodule MyApp.Organization do
 use Ash.Resource, ...

 ...

 defimpl Ash.ToTenant do
 def to_tenant(%{id: id}), do: "org_#{id}"
 end
end

 Summary

 Types

 t()

 Functions

 to_tenant(resource, value)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Functions

 Link to this function

 to_tenant(resource, value)

 View Source

 @spec to_tenant(Ash.Resource.t(), t()) :: term()

 Comparable.Type.Ash.CiString.To.Ash.CiString - ash v3.0.0-rc.6

Comparable.Type.Ash.CiString.To.Ash.CiString

 Comparable.Type.Ash.CiString.To.BitString - ash v3.0.0-rc.6

Comparable.Type.Ash.CiString.To.BitString

 Comparable.Type.BitString.To.Ash.CiString - ash v3.0.0-rc.6

Comparable.Type.BitString.To.Ash.CiString

 Comparable.Type.BitString.To.Decimal - ash v3.0.0-rc.6

Comparable.Type.BitString.To.Decimal

 Comparable.Type.Decimal.To.BitString - ash v3.0.0-rc.6

Comparable.Type.Decimal.To.BitString

 Comparable.Type.Decimal.To.Decimal - ash v3.0.0-rc.6

Comparable.Type.Decimal.To.Decimal

 Comparable.Type.Decimal.To.Float - ash v3.0.0-rc.6

Comparable.Type.Decimal.To.Float

 Comparable.Type.Decimal.To.Integer - ash v3.0.0-rc.6

Comparable.Type.Decimal.To.Integer

 Comparable.Type.Float.To.Decimal - ash v3.0.0-rc.6

Comparable.Type.Float.To.Decimal

 Comparable.Type.Integer.To.Decimal - ash v3.0.0-rc.6

Comparable.Type.Integer.To.Decimal

 mix ash.codegen - ash v3.0.0-rc.6

mix ash.codegen

Runs all codegen tasks for any extension on any resource/domain in your application.

 Summary

 Functions

 run(argv)

 Runs all codegen tasks for any extension on any resource/domain in your application.

 Functions

 Link to this function

 run(argv)

 View Source

Runs all codegen tasks for any extension on any resource/domain in your application.

 mix ash.generate_livebook - ash v3.0.0-rc.6

mix ash.generate_livebook

Generates a Livebook for each Ash domain.

 Command line options

	--filename - Specify the name of the generated Livebook file. Default: livebook.livemd

 Summary

 Functions

 domains()

 run(argv)

 Generates a Livebook for each Ash domain

 Functions

 Link to this function

 domains()

 View Source

 Link to this function

 run(argv)

 View Source

Generates a Livebook for each Ash domain

 mix ash.generate_policy_charts - ash v3.0.0-rc.6

mix ash.generate_policy_charts

Generates a Mermaid Flow Chart for a given resource's policies.

 Prerequisites

This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

 Command line options

	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG

 Summary

 Functions

 run(argv)

 Generates a Mermaid Flow Chart for a given resource's policies.

 Functions

 Link to this function

 run(argv)

 View Source

Generates a Mermaid Flow Chart for a given resource's policies.

 mix ash.generate_resource_diagrams - ash v3.0.0-rc.6

mix ash.generate_resource_diagrams

Generates a Mermaid Resource Diagram for each Ash domain.

 Prerequisites

This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

 Command line options

	--type - er or class (defaults to class)
	--only - only generates for the given domain
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG

 Summary

 Functions

 run(argv)

 Generates Mermaid Resource Diagrams for each Ash domain

 Functions

 Link to this function

 run(argv)

 View Source

Generates Mermaid Resource Diagrams for each Ash domain

 mix ash.migrate - ash v3.0.0-rc.6

mix ash.migrate

Runs all migration tasks for any extension on any resource/domain in your application.

 Summary

 Functions

 run(argv)

 Runs all migration tasks for any extension on any resource/domain in your application.

 Functions

 Link to this function

 run(argv)

 View Source

Runs all migration tasks for any extension on any resource/domain in your application.

 mix ash.reset - ash v3.0.0-rc.6

mix ash.reset

Runs all tear down tasks for any extension on any resource/domain in your application, followed by setup tasks.

 Summary

 Functions

 run(argv)

 Runs all tear down & setup tasks for any extension on any resource/domain in your application.

 Functions

 Link to this function

 run(argv)

 View Source

Runs all tear down & setup tasks for any extension on any resource/domain in your application.

 mix ash.setup - ash v3.0.0-rc.6

mix ash.setup

Runs all setup tasks for any extension on any resource/domain in your application.

 Summary

 Functions

 run(argv)

 Runs all setup tasks for any extension on any resource/domain in your application.

 Functions

 Link to this function

 run(argv)

 View Source

Runs all setup tasks for any extension on any resource/domain in your application.

 mix ash.tear_down - ash v3.0.0-rc.6

mix ash.tear_down

Runs all tear down tasks for any extension on any resource/domain in your application.

 Summary

 Functions

 run(argv)

 Runs all tear_down tasks for any extension on any resource/domain in your application.

 Functions

 Link to this function

 run(argv)

 View Source

Runs all tear_down tasks for any extension on any resource/domain in your application.

OEBPS/dist/epub-TCI3LGHF.js
