

 ash

 v3.15.0

 [image: Logo]

 Table of contents

 	Home

 	Start Here

 	Get Started

 	About Ash

 	What is Ash?

 	Design Principles

 	Contributing to Ash

 	Alternatives

 	Changelog

 	Development

 	Project Structure

 	Working with LLMs

 	Generators

 	Error Handling

 	Testing

 	Development Utilities

 	Backwards Compatibility Config

 	Upgrade

 	Reference

 	Ash.Resource

 	Ash.Domain

 	Ash.Notifier.PubSub

 	Ash.Policy.Authorizer

 	Ash.DataLayer.Ets

 	Ash.DataLayer.Mnesia

 	Ash.Reactor

 	Ash.TypedStruct

 	Glossary

 	Expressions

 	Resources

 	Domains

 	Attributes

 	Relationships

 	Calculations

 	Aggregates

 	Validations

 	Changes

 	Preparations

 	Code Interface

 	Embedded Resources

 	Identities

 	Notifiers

 	Actions

 	Actions

 	Read Actions

 	Create Actions

 	Update Actions

 	Destroy Actions

 	Generic Actions

 	Manual Actions

 	Security

 	Actors & Authorization

 	Sensitive Data

 	Policies

 	Advanced

 	Manual Installation

 	Multi-Step Actions

 	Reactor

 	Monitoring

 	Pagination

 	Combination Queries

 	Timeouts

 	Multitenancy

 	Writing Extensions

 	How To

 	Write Queries

 	Define Polymorphic Relationships

 	Test Resources

 	Authorize Access to Resources

 	Encrypt Attributes

 	Prevent concurrent writes

 	Wrap External APIs

 	Moved

 	Upgrade

 	
 Modules

 	Core API

 	Ash

 	Ash.ActionInput

 	Ash.Changeset

 	Ash.Query

 	Resources

 	Ash.CodeInterface

 	Ash.Domain

 	Ash.Notifier

 	Ash.Notifier.Notification

 	Ash.Resource.Calculation

 	Ash.Resource.Calculation.Builtins

 	Ash.Resource.ManualCreate

 	Ash.Resource.ManualDestroy

 	Ash.Resource.ManualRead

 	Ash.Resource.ManualRelationship

 	Ash.Resource.ManualUpdate

 	Queries

 	Ash.Query.Aggregate

 	Ash.Query.Calculation

 	Ash.Resource.Preparation

 	Ash.Resource.Preparation.Builtins

 	Changes

 	Ash.Resource.Change

 	Ash.Resource.Change.Builtins

 	Validations

 	Ash.Resource.Validation

 	Ash.Resource.Validation.Builtins

 	Authorization

 	Ash.Authorizer

 	Ash.Policy.Check

 	Ash.Policy.FilterCheck

 	Ash.Policy.SimpleCheck

 	Ash.Policy.Check.Builtins

 	Extensions

 	Ash.DataLayer.Ets

 	Ash.DataLayer.Mnesia

 	Ash.DataLayer.Simple

 	Ash.Notifier.PubSub

 	Ash.Policy.Authorizer

 	Ash.Reactor

 	Ash.Resource

 	Introspection

 	Ash.DataLayer.Ets.Info

 	Ash.DataLayer.Mnesia.Info

 	Ash.Domain.Info

 	Ash.Notifier.PubSub.Info

 	Ash.Policy.Info

 	Ash.Resource.Info

 	Ash.TypedStruct.Info

 	Visualizations

 	Ash.Domain.Info.Diagram

 	Ash.Domain.Info.Livebook

 	Ash.Policy.Chart.Mermaid

 	Testing

 	Ash.Generator

 	Ash.Seed

 	Ash.Test

 	Builtins

 	Ash.Policy.Check.AccessingFrom

 	Ash.Policy.Check.Action

 	Ash.Policy.Check.ActionType

 	Ash.Policy.Check.ActorAbsent

 	Ash.Policy.Check.ActorAttributeEquals

 	Ash.Policy.Check.ActorPresent

 	Ash.Policy.Check.ChangingAttributes

 	Ash.Policy.Check.ChangingRelationships

 	Ash.Policy.Check.ContextEquals

 	Ash.Policy.Check.Expression

 	Ash.Policy.Check.FilteringOn

 	Ash.Policy.Check.Loading

 	Ash.Policy.Check.Matches

 	Ash.Policy.Check.RelatesToActorVia

 	Ash.Policy.Check.RelatingToActor

 	Ash.Policy.Check.Resource

 	Ash.Policy.Check.Selecting

 	Ash.Policy.Check.Static

 	Ash.Resource.Change.AtomicSet

 	Ash.Resource.Change.CascadeDestroy

 	Ash.Resource.Change.CascadeUpdate

 	Ash.Resource.Change.Context

 	Ash.Resource.Change.GetAndLock

 	Ash.Resource.Change.GetAndLockForUpdate

 	Ash.Resource.Change.Increment

 	Ash.Resource.Change.OptimisticLock

 	Ash.Resource.Validation.ActionIs

 	Ash.Resource.Validation.Context

 	Tracing

 	Ash.Tracer

 	Ash.Tracer.Simple

 	Ash.Tracer.Simple.Span

 	Utilities

 	Ash.BulkResult

 	Ash.Changeset.ManagedRelationshipHelpers

 	Ash.CiString

 	Ash.Expr

 	Ash.Filter

 	Ash.Filter.Runtime

 	Ash.Filter.Simple

 	Ash.Filter.Simple.Not

 	Ash.ForbiddenField

 	Ash.Mix.Tasks.Helpers

 	Ash.NotLoaded

 	Ash.OptionsHelpers

 	Ash.Page

 	Ash.Page.Keyset

 	Ash.Page.Offset

 	Ash.PlugHelpers

 	Ash.ProcessHelpers

 	Ash.Resource.Builder

 	Ash.SatSolver

 	Ash.Sort

 	Ash.UUID

 	Ash.UUIDv7

 	Ash.Union

 	Ash.Vector

 	Types

 	Ash.Type

 	Ash.Type.Atom

 	Ash.Type.Binary

 	Ash.Type.Boolean

 	Ash.Type.CiString

 	Ash.Type.Comparable

 	Ash.Type.CompositeTypeHelpers

 	Ash.Type.Date

 	Ash.Type.DateTime

 	Ash.Type.Decimal

 	Ash.Type.Duration

 	Ash.Type.DurationName

 	Ash.Type.Enum

 	Ash.Type.File

 	Ash.Type.File.Implementation

 	Ash.Type.File.Source

 	Ash.Type.Float

 	Ash.Type.Function

 	Ash.Type.Integer

 	Ash.Type.Keyword

 	Ash.Type.Map

 	Ash.Type.Module

 	Ash.Type.NaiveDatetime

 	Ash.Type.NewType

 	Ash.Type.String

 	Ash.Type.Struct

 	Ash.Type.Term

 	Ash.Type.Time

 	Ash.Type.TimeUsec

 	Ash.Type.Tuple

 	Ash.Type.UUID

 	Ash.Type.UUIDv7

 	Ash.Type.Union

 	Ash.Type.UrlEncodedBinary

 	Ash.Type.UtcDatetime

 	Ash.Type.UtcDatetimeUsec

 	Ash.Type.Vector

 	Errors

 	Ash.Error

 	Ash.Error.Action.InvalidArgument

 	Ash.Error.Changes.ActionRequiresActor

 	Ash.Error.Changes.InvalidArgument

 	Ash.Error.Changes.InvalidAttribute

 	Ash.Error.Changes.InvalidChanges

 	Ash.Error.Changes.InvalidRelationship

 	Ash.Error.Changes.NoSuchAttribute

 	Ash.Error.Changes.NoSuchRelationship

 	Ash.Error.Changes.Required

 	Ash.Error.Changes.StaleRecord

 	Ash.Error.Exception

 	Ash.Error.Forbidden

 	Ash.Error.Forbidden.CannotFilterCreates

 	Ash.Error.Forbidden.DomainRequiresActor

 	Ash.Error.Forbidden.DomainRequiresAuthorization

 	Ash.Error.Forbidden.ForbiddenField

 	Ash.Error.Forbidden.InitialDataRequired

 	Ash.Error.Forbidden.MustPassStrictCheck

 	Ash.Error.Forbidden.Placeholder

 	Ash.Error.Forbidden.Policy

 	Ash.Error.Framework

 	Ash.Error.Framework.AssumptionFailed

 	Ash.Error.Framework.CanNotBeAtomic

 	Ash.Error.Framework.FlagAssertionFailed

 	Ash.Error.Framework.InvalidReturnType

 	Ash.Error.Framework.MustBeAtomic

 	Ash.Error.Framework.PendingCodegen

 	Ash.Error.Framework.SynchronousEngineStuck

 	Ash.Error.Framework.UnsupportedSubject

 	Ash.Error.Invalid

 	Ash.Error.Invalid.ActionRequiresPagination

 	Ash.Error.Invalid.AtomicsNotSupported

 	Ash.Error.Invalid.InvalidActionType

 	Ash.Error.Invalid.InvalidCustomInput

 	Ash.Error.Invalid.InvalidPrimaryKey

 	Ash.Error.Invalid.LimitRequired

 	Ash.Error.Invalid.MultipleResults

 	Ash.Error.Invalid.NoIdentityFound

 	Ash.Error.Invalid.NoMatchingBulkStrategy

 	Ash.Error.Invalid.NoPrimaryAction

 	Ash.Error.Invalid.NoSuchAction

 	Ash.Error.Invalid.NoSuchInput

 	Ash.Error.Invalid.NoSuchResource

 	Ash.Error.Invalid.NonCountableAction

 	Ash.Error.Invalid.NonStreamableAction

 	Ash.Error.Invalid.PaginationRequired

 	Ash.Error.Invalid.ResourceNotAllowed

 	Ash.Error.Invalid.TenantRequired

 	Ash.Error.Invalid.Timeout

 	Ash.Error.Invalid.TimeoutNotSupported

 	Ash.Error.Invalid.Unavailable

 	Ash.Error.Load.InvalidQuery

 	Ash.Error.Load.NoSuchRelationship

 	Ash.Error.Page.InvalidKeyset

 	Ash.Error.Query.AggregatesNotSupported

 	Ash.Error.Query.CalculationRequiresPrimaryKey

 	Ash.Error.Query.CalculationsNotSupported

 	Ash.Error.Query.InvalidArgument

 	Ash.Error.Query.InvalidCalculationArgument

 	Ash.Error.Query.InvalidExpression

 	Ash.Error.Query.InvalidFilterReference

 	Ash.Error.Query.InvalidFilterValue

 	Ash.Error.Query.InvalidLimit

 	Ash.Error.Query.InvalidLoad

 	Ash.Error.Query.InvalidOffset

 	Ash.Error.Query.InvalidPage

 	Ash.Error.Query.InvalidQuery

 	Ash.Error.Query.InvalidSortOrder

 	Ash.Error.Query.LockNotSupported

 	Ash.Error.Query.NoComplexSortsWithKeysetPagination

 	Ash.Error.Query.NoReadAction

 	Ash.Error.Query.NoSuchAttribute

 	Ash.Error.Query.NoSuchField

 	Ash.Error.Query.NoSuchFilterPredicate

 	Ash.Error.Query.NoSuchFunction

 	Ash.Error.Query.NoSuchOperator

 	Ash.Error.Query.NoSuchRelationship

 	Ash.Error.Query.NotFound

 	Ash.Error.Query.ReadActionRequired

 	Ash.Error.Query.ReadActionRequiresActor

 	Ash.Error.Query.Required

 	Ash.Error.Query.UnsortableField

 	Ash.Error.Query.UnsupportedPredicate

 	Ash.Error.SimpleDataLayer.NoDataProvided

 	Ash.Error.Stacktrace

 	Ash.Error.Unknown

 	Ash.Error.Unknown.UnknownError

 	DSL Transformers

 	Ash.DataLayer.Verifiers.RequirePreCheckWith

 	Ash.Notifier.PubSub.Verifiers.VerifyActionNames

 	Ash.Domain.Verifiers.EnsureNoEmbeds

 	Ash.Domain.Verifiers.ValidateArgumentsToCodeInterface

 	Ash.Domain.Verifiers.ValidateRelatedResourceInclusion

 	Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies

 	Ash.Policy.Authorizer.Transformers.CacheFieldPolicies

 	Ash.Resource.Transformers.AttributesByName

 	Ash.Resource.Transformers.BelongsToAttribute

 	Ash.Resource.Transformers.CacheActionInputs

 	Ash.Resource.Transformers.CacheCalculations

 	Ash.Resource.Transformers.CachePrimaryKey

 	Ash.Resource.Transformers.CacheRelationships

 	Ash.Resource.Transformers.CacheUniqueKeys

 	Ash.Resource.Transformers.CreateJoinRelationship

 	Ash.Resource.Transformers.DefaultAccept

 	Ash.Resource.Transformers.GetByReadActions

 	Ash.Resource.Transformers.HasDestinationField

 	Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource

 	Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource

 	Ash.Resource.Transformers.RequireUniqueActionNames

 	Ash.Resource.Transformers.RequireUniqueFieldNames

 	Ash.Resource.Transformers.SetPrimaryActions

 	Ash.Resource.Transformers.SetRelationshipSource

 	Ash.Resource.Transformers.ValidationsAndChangesForType

 	Ash.Resource.Verifiers.NoReservedFieldNames

 	Ash.Resource.Verifiers.ValidateAccept

 	Ash.Resource.Verifiers.ValidateActionTypesSupported

 	Ash.Resource.Verifiers.ValidateAggregateField

 	Ash.Resource.Verifiers.ValidateAggregatesSupported

 	Ash.Resource.Verifiers.ValidateArgumentsToCodeInterface

 	Ash.Resource.Verifiers.ValidateAtomicValidationDefaultTargetAttribute

 	Ash.Resource.Verifiers.ValidateEagerIdentities

 	Ash.Resource.Verifiers.ValidateManagedRelationshipOpts

 	Ash.Resource.Verifiers.ValidateMultitenancy

 	Ash.Resource.Verifiers.ValidatePrimaryKey

 	Ash.Resource.Verifiers.ValidateRelationshipAttributes

 	Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch

 	Ash.Resource.Verifiers.VerifyActionsAtomic

 	Ash.Resource.Verifiers.VerifyCalculations

 	Ash.Resource.Verifiers.VerifyFilterExpressions

 	Ash.Resource.Verifiers.VerifyGenericActionReactorInputs

 	Ash.Resource.Verifiers.VerifyIdentityFields

 	Ash.Resource.Verifiers.VerifyPrimaryKeyPresent

 	Ash.Resource.Verifiers.VerifyPrimaryReadActionHasNoArguments

 	Ash.Resource.Verifiers.VerifyReservedCalculationArguments

 	Ash.Resource.Verifiers.VerifySelectedByDefault

 	Expressions

 	Ash.Filter.Predicate

 	Ash.Query.BooleanExpression

 	Ash.Query.Call

 	Ash.Query.Exists

 	Ash.Query.Function

 	Ash.Query.Not

 	Ash.Query.Operator

 	Ash.Query.Parent

 	Ash.Query.Ref

 	Ash.Query.Function.Ago

 	Ash.Query.Function.At

 	Ash.Query.Function.CompositeType

 	Ash.Query.Function.Contains

 	Ash.Query.Function.CountNils

 	Ash.Query.Function.DateAdd

 	Ash.Query.Function.DateTimeAdd

 	Ash.Query.Function.Error

 	Ash.Query.Function.Fragment

 	Ash.Query.Function.FromNow

 	Ash.Query.Function.GetPath

 	Ash.Query.Function.Has

 	Ash.Query.Function.If

 	Ash.Query.Function.Intersects

 	Ash.Query.Function.IsDistinctFrom

 	Ash.Query.Function.IsNil

 	Ash.Query.Function.IsNotDistinctFrom

 	Ash.Query.Function.Lazy

 	Ash.Query.Function.Length

 	Ash.Query.Function.Minus

 	Ash.Query.Function.Now

 	Ash.Query.Function.Rem

 	Ash.Query.Function.Round

 	Ash.Query.Function.StartOfDay

 	Ash.Query.Function.StringDowncase

 	Ash.Query.Function.StringJoin

 	Ash.Query.Function.StringLength

 	Ash.Query.Function.StringPosition

 	Ash.Query.Function.StringSplit

 	Ash.Query.Function.StringTrim

 	Ash.Query.Function.Today

 	Ash.Query.Function.Type

 	Ash.Query.Operator.Eq

 	Ash.Query.Operator.GreaterThan

 	Ash.Query.Operator.GreaterThanOrEqual

 	Ash.Query.Operator.Has

 	Ash.Query.Operator.In

 	Ash.Query.Operator.IsNil

 	Ash.Query.Operator.LessThan

 	Ash.Query.Operator.LessThanOrEqual

 	Ash.Query.Operator.NotEq

 	Ash.Query.Operator.Overlaps

 	DSL Structs

 	Ash.Notifier.PubSub.Publication

 	Ash.Policy.FieldPolicy

 	Ash.Policy.Policy

 	Ash.Resource.Actions

 	Ash.Resource.Actions.Action

 	Ash.Resource.Actions.Argument

 	Ash.Resource.Actions.Create

 	Ash.Resource.Actions.Destroy

 	Ash.Resource.Actions.Implementation

 	Ash.Resource.Actions.Implementation.Context

 	Ash.Resource.Actions.Metadata

 	Ash.Resource.Actions.Read

 	Ash.Resource.Actions.Read.Pagination

 	Ash.Resource.Actions.Update

 	Ash.Resource.Aggregate

 	Ash.Resource.Aggregate.CustomAggregate

 	Ash.Resource.Aggregate.JoinFilter

 	Ash.Resource.Attribute

 	Ash.Resource.Calculation.Argument

 	Ash.Resource.Calculation.Context

 	Ash.Resource.Calculation.LoadAttribute

 	Ash.Resource.Calculation.LoadRelationship

 	Ash.Resource.CalculationInterface

 	Ash.Resource.Identity

 	Ash.Resource.Interface

 	Ash.Resource.Interface.CustomInput

 	Ash.Resource.Interface.CustomInput.Transform

 	Ash.Resource.Relationships

 	Ash.Resource.Relationships.BelongsTo

 	Ash.Resource.Relationships.HasMany

 	Ash.Resource.Relationships.HasOne

 	Ash.Resource.Relationships.ManyToMany

 	Other

 	Ash.Actions.BulkManualActionHelpers

 	Ash.Actions.Read.AsyncLimiter

 	Ash.Can

 	Ash.Changeset.OriginalDataNotAvailable

 	Ash.Context

 	Ash.CustomExpression

 	Ash.DataLayer

 	Ash.Domain.Dsl.ResourceReference

 	Ash.Domain.Igniter

 	Ash.Extension

 	Ash.Igniter

 	Ash.Info

 	Ash.Policy.PolicyGroup

 	Ash.Query.Combination

 	Ash.Query.UpsertConflict

 	Ash.Reactor.ActionStep

 	Ash.Reactor.AshStep

 	Ash.Reactor.BulkCreateStep

 	Ash.Reactor.BulkDestroyStep

 	Ash.Reactor.BulkUpdateStep

 	Ash.Reactor.ChangeStep

 	Ash.Reactor.CreateStep

 	Ash.Reactor.DestroyStep

 	Ash.Reactor.Dsl.Action

 	Ash.Reactor.Dsl.ActionLoad

 	Ash.Reactor.Dsl.ActionTransformer

 	Ash.Reactor.Dsl.Actor

 	Ash.Reactor.Dsl.AshStep

 	Ash.Reactor.Dsl.BulkCreate

 	Ash.Reactor.Dsl.BulkDestroy

 	Ash.Reactor.Dsl.BulkUpdate

 	Ash.Reactor.Dsl.Change

 	Ash.Reactor.Dsl.Context

 	Ash.Reactor.Dsl.Create

 	Ash.Reactor.Dsl.Destroy

 	Ash.Reactor.Dsl.Inputs

 	Ash.Reactor.Dsl.Load

 	Ash.Reactor.Dsl.MiddlewareTransformer

 	Ash.Reactor.Dsl.Read

 	Ash.Reactor.Dsl.ReadOne

 	Ash.Reactor.Dsl.Tenant

 	Ash.Reactor.Dsl.Transaction

 	Ash.Reactor.Dsl.Update

 	Ash.Reactor.LoadStep

 	Ash.Reactor.MergeInputsStep

 	Ash.Reactor.Notifications

 	Ash.Reactor.ReadOneStep

 	Ash.Reactor.ReadStep

 	Ash.Reactor.Tracer

 	Ash.Reactor.TransactionStep

 	Ash.Reactor.UpdateStep

 	Ash.Resource.Dsl.Filter

 	Ash.Resource.Igniter

 	Ash.Resource.ManualCreate.BulkContext

 	Ash.Resource.ManualCreate.Context

 	Ash.Resource.ManualDestroy.BulkContext

 	Ash.Resource.ManualDestroy.Context

 	Ash.Resource.ManualRelationship.Context

 	Ash.Resource.ManualUpdate.BulkContext

 	Ash.Resource.ManualUpdate.Context

 	Ash.Resource.Preparation.Context

 	Ash.Scope

 	Ash.Scope.ToOpts

 	Ash.Subject

 	Ash.ToTenant

 	Ash.TypedStruct

 	Ash.TypedStruct.Field

 	Comp

 	Comparable

 	Comparable.Type.Any.To.Any

 	Comparable.Type.Ash.CiString.To.Ash.CiString

 	Comparable.Type.Ash.CiString.To.BitString

 	Comparable.Type.Atom.To.BitString

 	Comparable.Type.BitString.To.Ash.CiString

 	Comparable.Type.BitString.To.Atom

 	Comparable.Type.BitString.To.Decimal

 	Comparable.Type.Date.To.Date

 	Comparable.Type.DateTime.To.DateTime

 	Comparable.Type.Decimal.To.BitString

 	Comparable.Type.Decimal.To.Decimal

 	Comparable.Type.Decimal.To.Float

 	Comparable.Type.Decimal.To.Integer

 	Comparable.Type.Float.To.Decimal

 	Comparable.Type.Integer.To.Decimal

 	Comparable.Type.List.To.List

 	Comparable.Type.Map.To.Map

 	Comparable.Type.NaiveDateTime.To.NaiveDateTime

 	Comparable.Type.Time.To.Time

 	Comparable.Type.Tuple.To.Tuple

 	
 Mix Tasks

 	Other

 	mix ash

 	mix ash.codegen

 	mix ash.extend

 	mix ash.gen.base_resource

 	mix ash.gen.change

 	mix ash.gen.custom_expression

 	mix ash.gen.domain

 	mix ash.gen.enum

 	mix ash.gen.preparation

 	mix ash.gen.resource

 	mix ash.gen.validation

 	mix ash.generate_livebook

 	mix ash.generate_policy_charts

 	mix ash.generate_resource_diagrams

 	mix ash.install

 	mix ash.migrate

 	mix ash.patch.extend

 	mix ash.reset

 	mix ash.rollback

 	mix ash.setup

 	mix ash.tear_down

Ash

The primary interface to call actions and interact with resources.

 Summary

 Types

 actor()

 The actor performing the action - can be any term.

 aggregate()

 Aggregate specification for queries.

 data_layer_query()

 A data layer query structure with execution and counting functions.

 load_statement()

 Load statement for relationships and calculations.

 page_request()

 Page request options for paginated queries.

 record_or_records()

 A single record or a list of records.

 Functions

 aggregate(query, aggregate_or_aggregates, opts \\ [])

 Runs an aggregate or aggregates over a resource query

 aggregate!(query, aggregate_or_aggregates, opts \\ [])

 Runs an aggregate or aggregates over a resource query, returning the result or raising an error.

 avg(query, field, opts \\ [])

 Fetches the average of all values of a given field.

 avg!(query, field, opts \\ [])

 Fetches the average of all values of a given field or raises an error.

 bulk_create(inputs, resource, action, opts \\ [])

 Creates many records.

 bulk_create!(inputs, resource, action, opts \\ [])

 Creates many records, raising any errors that are returned. See bulk_create/4 for more.

 bulk_destroy(query_or_stream, action, input, opts \\ [])

 Destroys all items in the provided enumerable or query with the provided input.

 bulk_destroy!(stream_or_query, action, input, opts \\ [])

 Destroys all items in the provided enumerable or query with the provided input.

 bulk_update(query_or_stream, action, input, opts \\ [])

 Updates all items in the provided enumerable or query with the provided input.

 bulk_update!(stream_or_query, action, input, opts \\ [])

 Updates all items in the provided enumerable or query with the provided input.

 calculate(resource_or_record, calculation, opts \\ [])

 Evaluates the calculation on the resource.

 calculate!(resource_or_record, calculation, opts \\ [])

 Evaluates the calculation on the resource or raises an error. See calculate/3 for more.

 can(action_or_query_or_changeset, actor_or_scope, opts \\ [])

 Returns whether or not the user can perform the action, or :maybe, returning any errors.

 can?(action_or_query_or_changeset, actor_or_scope, opts \\ [])

 Returns whether or not the user can perform the action, or raises on errors.

 context_to_opts(map, add_to \\ [])

 deprecated

 See Ash.Context.to_opts/2.

 count(query, opts \\ [])

 Fetches the count of results that would be returned from a given query.

 count!(query, opts \\ [])

 Fetches the count of results that would be returned from a given query, or raises an error.

 create(changeset_or_resource, params_or_opts \\ %{}, opts \\ [])

 Create a record.

 create!(changeset_or_resource, params \\ %{}, opts \\ [])

 Create a record. See create/2 for more information.

 data_layer_query(query, opts \\ [])

 Gets the full query and any runtime calculations that would be loaded

 data_layer_query!(query, opts \\ [])

 Gets the full query and any runtime calculations that would be loaded, raising any errors.

 destroy(changeset_or_record, opts \\ [])

 Destroy a record.

 destroy!(changeset_or_record, opts \\ [])

 Destroy a record. See destroy/2 for more information.

 exists(query, opts \\ [])

 Returns whether or not the query would return any results.

 exists?(query, opts \\ [])

 Returns whether or not the query would return any results, or raises an error.

 first(query, field, opts \\ [])

 Fetches the first value for a given field.

 first!(query, field, opts \\ [])

 Fetches the first value for a given field, or raises an error.

 get(resource, id, opts \\ [])

 Get a record by an identifier.

 get!(resource, id, opts \\ [])

 Get a record by an identifier, or raises an error. See get/3 for more.

 list(query, field, opts \\ [])

 Fetches a list of all values of a given field.

 list!(query, field, opts \\ [])

 Fetches a list of all values of a given field or raises an error.

 load(data, query, opts \\ [])

 Load fields or relationships on already fetched records.

 load!(data, query, opts \\ [])

 Load fields or relationships on already fetched records. See load/3 for more information.

 max(query, field, opts \\ [])

 Fetches the greatest of all values of a given field.

 max!(query, field, opts \\ [])

 Fetches the greatest of all values of a given field or raises an error.

 min(query, field, opts \\ [])

 Fetches the least of all values of a given field.

 min!(query, field, opts \\ [])

 Fetches the least of all values of a given field or raises an error.

 page(page, n)

 Fetch a page relative to the provided page.

 page!(page, request)

 Fetch a page relative to the provided page or raises an error

 read(query, opts \\ [])

 Runs an Ash.Query.

 read!(query, opts \\ [])

 Run an Ash.Query. See read/2 for more.

 read_first(query, opts \\ [])

 Runs a query on a resource, returning a first result, nil, or an error.

 read_first!(query, opts \\ [])

 Runs an Ash query, returning the first result or nil, or raising an error. See read_first/2 for more.

 read_one(query, opts \\ [])

 Runs a query on a resource, returning a single result, nil, or an error.

 read_one!(query, opts \\ [])

 Runs an ash query, returning a single result or raise an error. See read_one/2 for more.

 reload(record, opts \\ [])

 Refetches a record by primary key. See get/2 for more.

 reload!(record, opts \\ [])

 Refetches a record by primary key or raises an error. See reload/2 for more.

 run_action(input, opts \\ [])

 Runs a generic action.

 run_action!(input, opts \\ [])

 Runs a generic action or raises an error. See run_action/2 for more

 stream!(query, opts \\ [])

 Streams the results of a query.

 sum(query, field, opts \\ [])

 Fetches the sum of a given field.

 sum!(query, field, opts \\ [])

 Fetches the sum of a given field or raises an error.

 transact(resource_or_resources, func, opts \\ [])

 Wraps the execution of the function in a transaction with the resource's data_layer.

 transaction(resource_or_resources, func, opts \\ [])

 deprecated

 Wraps the execution of the function in a transaction with the resource's data_layer.

 update(changeset_or_record, params_or_opts \\ %{}, opts \\ [])

 Update a record.

 update!(changeset_or_record, params_or_opts \\ %{}, opts \\ [])

 Update a record. See update/2 for more information.

 Types

 actor()

 @type actor() :: any()

The actor performing the action - can be any term.

 aggregate()

 @type aggregate() ::
 Ash.Query.Aggregate.t()
 | {name :: atom(), kind :: atom()}
 | {name :: atom(), kind :: atom(), opts :: Keyword.t()}

Aggregate specification for queries.
Can be an Ash.Query.Aggregate struct, a {name, kind} tuple, or a {name, kind, opts} tuple with options.

 data_layer_query()

 @type data_layer_query() :: %{
 query: Ash.DataLayer.data_layer_query(),
 ash_query: Ash.Query.t(),
 count: (-> {:ok, integer() | nil} | {:error, Ash.Error.t()}),
 run: (Ash.DataLayer.data_layer_query() ->
 {:ok, [Ash.Resource.record()] | Ash.Page.page() | no_return()}
 | {:error, Ash.Error.t()}),
 load: ([Ash.Resource.record()] | Ash.Page.page() ->
 {:ok, [Ash.Resource.record()] | Ash.Page.page()}
 | {:error, Ash.Error.t()})
}

A data layer query structure with execution and counting functions.
Contains the query that would be executed along with functions for counting,
running the query, and loading any runtime data needed for the operation.

 load_statement()

 @type load_statement() ::
 Ash.Query.t()
 | [atom()]
 | atom()
 | Keyword.t()
 | [atom() | {atom(), atom() | Keyword.t()}]

Load statement for relationships and calculations.
Can be a query, a list of atoms, a single atom, keywords, or a list of atoms and tuples with options.

 page_request()

 @type page_request() :: :next | :prev | :first | :last | :self | integer()

Page request options for paginated queries.
Can be atoms for navigation (:next, :prev, :first, :last, :self) or an integer for specific page numbers.

 record_or_records()

 @type record_or_records() :: Ash.Resource.record() | [Ash.Resource.record()]

A single record or a list of records.

 Functions

 aggregate(query, aggregate_or_aggregates, opts \\ [])

 @spec aggregate(
 Ash.Query.t() | Ash.Resource.t(),
 aggregates :: aggregate() | [aggregate()],
 opts :: Keyword.t()
) :: {:ok, term()} | {:error, Ash.Error.t()}

Runs an aggregate or aggregates over a resource query
If you pass an %Ash.Query.Aggregate{}, gotten from Ash.Query.Aggregate.new(),
the query provided as the first argument to this function will not apply. For this
reason, it is preferred that you pass in the tuple format, i.e
Prefer this:
Api.aggregate(query, {:count_of_things, :count})
Over this:
Api.aggregate(query, Ash.Query.Aggregate.new(...))
Examples
iex> MyApp.Post |> Ash.aggregate({:count, :count})
{:ok, %{count: 42}}

iex> query |> Ash.aggregate([{:avg_likes, :avg, field: :likes}, {:count, :count}])
{:ok, %{avg_likes: 10.5, count: 42}}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.aggregate({:sum_views, :sum, field: :view_count})
{:ok, %{sum_views: 1542}}
See also
	aggregate!/3 for the raising version
	count/2 for counting records specifically
	sum/3 for summing field values
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

Options
	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 aggregate!(query, aggregate_or_aggregates, opts \\ [])

 @spec aggregate!(
 Ash.Query.t() | Ash.Resource.t(),
 aggregate() | [aggregate()],
 opts :: Keyword.t()
) :: term() | no_return()

Runs an aggregate or aggregates over a resource query, returning the result or raising an error.
This is the bang version of aggregate/3 that raises an error if the operation fails.
Examples
iex> MyApp.Post |> Ash.aggregate!({:count, :count})
42

iex> query |> Ash.aggregate!([{:avg_likes, :avg, field: :likes}, {:count, :count}])
%{avg_likes: 10.5, count: 42}
See also
	aggregate/3 for the non-raising version
	count!/2 for counting records specifically
	sum!/3 for summing field values
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 avg(query, field, opts \\ [])

 @spec avg(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, number()} | {:error, Ash.Error.t()}

Fetches the average of all values of a given field.
Examples
iex> MyApp.Post |> Ash.avg(:view_count)
{:ok, 42.5}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.avg(:likes)
{:ok, 15.8}
See also
	avg!/3 for the raising version
	sum/3 for getting the total sum
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 avg!(query, field, opts \\ [])

 @spec avg!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 number() | no_return()

Fetches the average of all values of a given field or raises an error.
Examples
iex> MyApp.Post |> Ash.avg!(:view_count)
42.5

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.avg!(:likes)
15.8
See also
	avg/3 for the non-raising version
	sum!/3 for getting the total sum
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 bulk_create(inputs, resource, action, opts \\ [])

 @spec bulk_create(
 Enumerable.t(map()),
 resource :: Ash.Resource.t(),
 action :: atom(),
 opts :: Keyword.t()
) ::
 Ash.BulkResult.t()
 | Enumerable.t(
 {:ok, Ash.Resource.record()}
 | {:error, Ash.Changeset.t() | Ash.Error.t()}
 | {:notification, Ash.Notifier.Notification.t()}
)

Creates many records.
Assumptions
We assume that the input is a list of changesets all for the same action, or a list of input maps for the
same action with the :resource and :action option provided to illustrate which action it is for.
Performance/Feasibility
The performance of this operation depends on the data layer in question.
Data layers like AshPostgres will choose reasonable batch sizes in an attempt
to handle large bulk actions, but that does not mean that you can pass a list of
500k inputs and expect things to go off without a hitch (although it might).
If you need to do large data processing, you should look into projects like
GenStage and Broadway. With that said, if you want to do things like support CSV upload
and you place some reasonable limits on the size this is a great tool. You'll need to
test it yourself, YMMV.
Passing return_records?: true can significantly increase the time it takes to perform the operation,
and can also make the operation completely unreasonable due to the memory requirement. If you want to
do very large bulk creates and display all of the results, the suggestion is to annotate them with a
"bulk_create_id" in the data layer, and then read the records with that bulk_create_id so that they can
be retrieved later if necessary.
Changes/Validations
Changes will be applied in the order they are given on the actions as normal. Any change that exposes
the bulk_change callbacks will be applied on the entire list.
After Action Hooks
The following requirements must be met for after_action hooks to function properly. If they are not met,
and an after_action hook being applied to a changeset in a change.
	return_records? must be set to true.
	The changeset must be setting the primary key as part of its changes, so that we know which result applies to which
changeset.

It is possible to use after_action hooks with bulk_change/3, but you need to return the hooks along with the changesets.
This allows for setting up after_action hooks that don't need access to the returned record,
or after_action hooks that can operate on the entire list at once. See the documentation for that callback for more on
how to do accomplish that.
See also
	bulk_create!/4 for the raising version
	create/3 for creating single records
	Create Actions Guide for understanding create operations
	Actions Guide for general action concepts

Options
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used. Unlike singular create, bulk_create with upsert? requires that upsert_fields be specified explicitly in one of these two locations.

	:after_action (function of arity 2) - An after_action hook to be added to each processed changeset

	:upsert_condition (term/0) - An expression to check if the record should be updated when there's a conflict.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:read_action (atom/0) - The action to use when building the read query.

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:private_arguments (map/0) - Private argument values to set on each changeset before validations and changes are run. The default value is %{}.

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether to return all errors that occur during the operation. Defaults to the value of :bulk_actions_default_to_errors? in your config, or false if not set. Returning all errors may be expensive for large inserts. The default value is true.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an individual error. The default value is false.

	:return_nothing? (boolean/0) - Mutes warnings about returning nothing.
Only relevant if return_stream? is set to true and all other
return_*? options are set to false. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is true.

	:notify? (boolean/0) - Whether or not to generate any notifications. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions.
Notifications will be automatically sent unless return_notifications? is set to true. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

 bulk_create!(inputs, resource, action, opts \\ [])

 @spec bulk_create!(Enumerable.t(map()), Ash.Resource.t(), atom(), Keyword.t()) ::
 Ash.BulkResult.t() | no_return()

Creates many records, raising any errors that are returned. See bulk_create/4 for more.

 bulk_destroy(query_or_stream, action, input, opts \\ [])

 @spec bulk_destroy(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 atom(),
 input :: map(),
 Keyword.t()
) :: Ash.BulkResult.t()

Destroys all items in the provided enumerable or query with the provided input.
The input is a map of valid inputs for the action. The input will be applied to all records in the enumerable/query.
If the data layer supports destroying from a query, and the destroy action can be done fully atomically,
it will be updated in a single pass using the data layer.
Otherwise, this will stream each record and update it.
Options
	:resource (Ash.Resource) - The resource being destroyed. This must be provided if the input given is a stream, so we know ahead of time what the resource being updated is.

	:stream_batch_size (integer/0) - Batch size to use if provided a query and the query must be streamed

	:authorize_query? (boolean/0) - If a query is given, determines whether or not authorization is run on that query. The default value is true.

	:strategy - The strategy or strategies to enable. :stream is used in all cases if the data layer does not support atomics. Valid values are :atomic, :atomic_batches, :stream The default value is :atomic.

	:filter (term/0) - A filter to apply to records. This is also applied to a stream of inputs.

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:read_action (atom/0) - The action to use when building the read query.

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:private_arguments (map/0) - Private argument values to set on each changeset before validations and changes are run. The default value is %{}.

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether to return all errors that occur during the operation. Defaults to the value of :bulk_actions_default_to_errors? in your config, or false if not set. Returning all errors may be expensive for large inserts. The default value is true.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an individual error. The default value is false.

	:return_nothing? (boolean/0) - Mutes warnings about returning nothing.
Only relevant if return_stream? is set to true and all other
return_*? options are set to false. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is true.

	:notify? (boolean/0) - Whether or not to generate any notifications. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions.
Notifications will be automatically sent unless return_notifications? is set to true. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

 bulk_destroy!(stream_or_query, action, input, opts \\ [])

 @spec bulk_destroy!(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 action :: atom(),
 input :: map(),
 opts :: Keyword.t()
) :: Ash.BulkResult.t() | no_return()

Destroys all items in the provided enumerable or query with the provided input.
See bulk_destroy/4 for more.

 bulk_update(query_or_stream, action, input, opts \\ [])

 @spec bulk_update(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 atom(),
 input :: map(),
 Keyword.t()
) :: Ash.BulkResult.t()

Updates all items in the provided enumerable or query with the provided input.
The input is a map of valid inputs for the action. The input will be applied to all records in the enumerable/query.
If the data layer supports updating from a query, and the update action can be done fully atomically,
it will be updated in a single pass using the data layer.
Otherwise, this will stream each record and update it.
Options
	:resource (Ash.Resource) - The resource being updated. This must be provided if the input given is a stream, so we know ahead of time what the resource being updated is.

	:atomic_update (map/0) - A map of atomic updates to apply. See Ash.Changeset.atomic_update/3 for more.

	:stream_batch_size (integer/0) - Batch size to use if provided a query and the query must be streamed

	:authorize_query? (boolean/0) - If a query is given, determines whether or not authorization is run on that query. The default value is true.

	:filter (term/0) - A filter to apply to records. This is also applied to a stream of inputs.

	:strategy - The strategy or strategies to enable. :stream is used in all cases if the data layer does not support atomics. Valid values are :atomic, :atomic_batches, :stream The default value is [:atomic].

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:read_action (atom/0) - The action to use when building the read query.

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:load (term/0) - A load statement to apply to records. Ignored if return_records? is not true.

	:select (list of atom/0) - A select statement to apply to records. Ignored if return_records? is not true.

	:authorize_query_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_changeset_with - If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error. Uses authorize_with if not set. Valid values are :filter, :error

	:authorize_with - If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error. Valid values are :filter, :error The default value is :filter.

	:context (map/0) - Context to set on each changeset

	:private_arguments (map/0) - Private argument values to set on each changeset before validations and changes are run. The default value is %{}.

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether to return all errors that occur during the operation. Defaults to the value of :bulk_actions_default_to_errors? in your config, or false if not set. Returning all errors may be expensive for large inserts. The default value is true.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an individual error. The default value is false.

	:return_nothing? (boolean/0) - Mutes warnings about returning nothing.
Only relevant if return_stream? is set to true and all other
return_*? options are set to false. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is true.

	:notify? (boolean/0) - Whether or not to generate any notifications. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions.
Notifications will be automatically sent unless return_notifications? is set to true. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

 bulk_update!(stream_or_query, action, input, opts \\ [])

 @spec bulk_update!(
 Enumerable.t(Ash.Resource.record()) | Ash.Query.t(),
 action :: atom(),
 input :: map(),
 opts :: Keyword.t()
) :: Ash.BulkResult.t() | no_return()

Updates all items in the provided enumerable or query with the provided input.
See bulk_update/4 for more.

 calculate(resource_or_record, calculation, opts \\ [])

 @spec calculate(
 resource_or_record :: Ash.Resource.t() | Ash.Resource.record(),
 calculation :: atom(),
 opts :: Keyword.t()
) :: {:ok, term()} | {:error, term()}

Evaluates the calculation on the resource.
If a record is provided, its field values will be used to evaluate the calculation.
Examples
iex> Ash.calculate(post, :word_count)
{:ok, 142}

iex> Ash.calculate(MyApp.User, :age, args: %{birth_date: ~D[1990-01-01]})
{:ok, 34}
See also
	calculate!/3 for the raising version
	d:Ash.Resource.Dsl.calculations for defining calculations on resources
	Calculations Guide for understanding calculations

Options
	:args (map/0) - Values for arguments referenced by the calculation. The default value is %{}.

	:refs (map/0) - Values for references used by the calculation. The default value is %{}.

	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol. Will overwrite any actor, tenant or context provided. See Ash.Context for more.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant, supplied to calculation context.

	:context (map/0) - Context to set on the calculation input.

	:authorize? (boolean/0) - Whether or not the request is being authorized, provided to calculation context. The default value is true.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer, provided to the calculation context.

	:record (term/0) - A record to use as the base of the calculation

	:data_layer? (boolean/0) - Set to true to require that the value be computed within the data layer. Only works for calculations that define an expression.

	:reuse_values? (boolean/0) - Set to true to reuse existing values on any provided record. Only necessary if providing a record as the basis for calculation. The default value is false.

	:domain (Ash.Domain) - The domain to use for the action

 calculate!(resource_or_record, calculation, opts \\ [])

 @spec calculate!(
 resource_or_record :: Ash.Resource.t() | Ash.Resource.record(),
 calculation :: atom(),
 opts :: Keyword.t()
) :: term() | no_return()

Evaluates the calculation on the resource or raises an error. See calculate/3 for more.
Examples
iex> Ash.calculate!(post, :word_count)
142

iex> Ash.calculate!(MyApp.User, :age, args: %{birth_date: ~D[1990-01-01]})
34
See also
	calculate/3 for the non-raising version
	d:Ash.Resource.Dsl.calculations for defining calculations on resources
	Calculations Guide for understanding calculations

 can(action_or_query_or_changeset, actor_or_scope, opts \\ [])

 @spec can(Ash.Can.subject(), actor() | Ash.Scope.t(), Keyword.t()) ::
 {:ok, boolean() | :maybe}
 | {:ok, true, Ash.Changeset.t() | Ash.Query.t()}
 | {:ok, true, Ash.Changeset.t(), Ash.Query.t()}
 | {:ok, false, Exception.t()}
 | {:error, term()}

Returns whether or not the user can perform the action, or :maybe, returning any errors.
In cases with "runtime" checks (checks after the action), we may not be able to determine
an answer, and so the value :maybe will be returned from can/2. The can? function assumes that
:maybe means true. Keep in mind, this is just for doing things like "can they do this" in a UI,
so assuming :maybe is true is fine. The actual action invocation will be properly checked regardless.
If you have runtime checks, you may need to use can instead of can?, or configure what :maybe means.
Accepted inputs
You can pass many different inputs as the subject to can/3.
Can this user run this query.
Ash.Query.t()

Can this user run this changeset.
Ash.Changeset.t()

Can this user run this action.
Ash.ActionInput.t()

Can this user run this action.
{Ash.Resource.t(), :action}

Can this user run this action.
{Ash.Resource.t(), %Action{}}

Can this user run this action with this input.
{Ash.Resource.t(), :atom, %{...input}}

Can this user run this action with this input.
{Ash.Resource.t(), %Action{}, %{...input}}
Examples
no actor
Ash.can?({MyApp.Accounts.Organization, :create}, nil)
=> false

admin user actor
Ash.can?({MyApp.Accounts.Organization, :create}, %MyApp.Accounts.User{role: :admin})
=> true

check for permission to update a specific thing
user = MyApp.Accounts.get_post_by_id!(«uuid»)
Ash.can?({user, :update}, %{role: :user})
=> false

read actions
no logged in user. Will say `true` because the action
is allowed, but will just be filtered
Ash.can?({MyApp.Accounts.Organization, :read}, nil)
=> true

check for permission to read a specific thing
Ash.can?({organization, :read}, nil)
=> false
Code Interfaces
When you define code interfaces, they provide can_* functions, which can be used like so:
no actor
MyApp.Accounts.can_create_organization?(nil)
=> false

admin user actor
MyApp.Accounts.can_create_organization?(%MyApp.Accounts.User{role: :admin})
=> true

check for permission to update a specific thing
user = MyApp.Accounts.get_post_by_id!(«uuid»)
MyApp.Accounts.can_update_user(user, %{role: :user})
=> false

read actions
no logged in user. Will say `true` because the action
is allowed, but will just be filtered
MyApp.Accounts.can_read_organizations?(nil)
=> true

check for permission to read a specific thing
MyApp.Accounts.can_read_organizations?(nil, data: organization)
=> false
See also
	can?/3 for the raising version that returns true/false
	d:Ash.Policy.Authorizer.policies for defining authorization policies
	Actors and Authorization Guide for understanding authorization
	Policies Guide for defining authorization policies

Options
	:maybe_is (term/0) - If the actor may be able to perform the action, what value should be returned. The default value is :maybe.

	:filter_with - If set to :error, the query will raise an error on a match. If set to :filter the query will filter out unauthorized access. Valid values are :filter, :error The default value is :filter.

	:validate? (boolean/0) - Whether or not to treat an invalid action as a non-allowed action. The default value is false.

	:reuse_values? (boolean/0) - Whether or not loaded data like aggregates, calculations and relationships should be checked in memory if possible, instead of querying. No effect if pre_flight? is false. The default value is false.

	:pre_flight? (boolean/0) - Whether or not this is a pre_flight check (which may perform optimized in-memory checks) or the final proper check. The default value is true.

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol. Will overwrite any actor, tenant or context provided. See Ash.Context for more.

	:context (map/0) - Context to set on the query/changeset/action_input being authorized

	:run_queries? (boolean/0) - Whether or not to run queries. If set to true, :maybe will not be returned. The default value is true.

	:data - The record or records specifically attempting to be acted upon.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant to use for authorization

	:alter_source? (boolean/0) - If set to true, the source being authorized is returned so it can be run. The default value is false.

	:base_query (term/0) - A base query on which to apply an generated filters

	:no_check? (boolean/0) - Whether or not authorization must pass at the strict/filter step, or if post-checks are allowed to be run The default value is false.

	:on_must_pass_strict_check (term/0) - Override the value returned when no_check? is true but a check must be run.

	:atomic_changeset (term/0) - A base query on which to apply an generated filters

	:return_forbidden_error? (boolean/0) - Whether or not to return a forbidden error in cases of not being authorized. The default value is false.

	:log? (boolean/0) - Whether or not to log the authorization result. The default value is false.

 can?(action_or_query_or_changeset, actor_or_scope, opts \\ [])

 @spec can?(Ash.Can.subject(), actor() | Ash.Scope.t(), Keyword.t()) ::
 boolean() | no_return()

Returns whether or not the user can perform the action, or raises on errors.
Calls can/3 with a maybe_is: true. See can/3 for more info.
Examples
iex> Ash.can?({MyApp.Post, :create}, actor)
true

iex> Ash.can?({MyApp.Post, :read}, nil)
true

iex> Ash.can?({post, :update}, actor)
false
See also
	can/3 for the non-raising version that returns detailed results
	d:Ash.Policy.Authorizer.policies for defining authorization policies
	Actors and Authorization Guide for understanding authorization
	Policies Guide for defining authorization policies

Options
	:maybe_is (term/0) - If the actor may be able to perform the action, what value should be returned. The default value is true.

	:filter_with - If set to :error, the query will raise an error on a match. If set to :filter the query will filter out unauthorized access. Valid values are :filter, :error The default value is :filter.

	:validate? (boolean/0) - Whether or not to treat an invalid action as a non-allowed action. The default value is false.

	:reuse_values? (boolean/0) - Whether or not loaded data like aggregates, calculations and relationships should be checked in memory if possible, instead of querying. No effect if pre_flight? is false. The default value is false.

	:pre_flight? (boolean/0) - Whether or not this is a pre_flight check (which may perform optimized in-memory checks) or the final proper check. The default value is true.

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol. Will overwrite any actor, tenant or context provided. See Ash.Context for more.

	:context (map/0) - Context to set on the query/changeset/action_input being authorized

	:run_queries? (boolean/0) - Whether or not to run queries. If set to true, :maybe will not be returned. The default value is true.

	:data - The record or records specifically attempting to be acted upon.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant to use for authorization

	:alter_source? (boolean/0) - If set to true, the source being authorized is returned so it can be run. The default value is false.

	:base_query (term/0) - A base query on which to apply an generated filters

	:no_check? (boolean/0) - Whether or not authorization must pass at the strict/filter step, or if post-checks are allowed to be run The default value is false.

	:on_must_pass_strict_check (term/0) - Override the value returned when no_check? is true but a check must be run.

	:atomic_changeset (term/0) - A base query on which to apply an generated filters

	:return_forbidden_error? (boolean/0) - Whether or not to return a forbidden error in cases of not being authorized. The default value is false.

	:log? (boolean/0) - Whether or not to log the authorization result. The default value is false.

 context_to_opts(map, add_to \\ [])

 This function is deprecated. Converts a context map to opts to be passed into an action.
.

See Ash.Context.to_opts/2.

 count(query, opts \\ [])

 @spec count(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 {:ok, non_neg_integer()} | {:error, Ash.Error.t()}

Fetches the count of results that would be returned from a given query.
Examples
iex> MyApp.Post |> Ash.count()
{:ok, 42}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.count()
{:ok, 15}
See also
	count!/2 for the raising version
	aggregate/3 for running multiple aggregates
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 count!(query, opts \\ [])

 @spec count!(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 non_neg_integer() | no_return()

Fetches the count of results that would be returned from a given query, or raises an error.
Examples
iex> MyApp.Post |> Ash.count!()
42

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.count!()
15
See also
	count/2 for the non-raising version
	aggregate!/3 for running multiple aggregates
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 create(changeset_or_resource, params_or_opts \\ %{}, opts \\ [])

 @spec create(
 changeset_or_resource :: Ash.Changeset.t() | Ash.Resource.t(),
 params_or_opts :: map() | Keyword.t(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Create a record.
Examples
iex> Ash.create(MyApp.Post, %{title: "Hello World", content: "..."})
{:ok, %MyApp.Post{id: 1, title: "Hello World", content: "..."}}

iex> changeset = Ash.Changeset.for_create(MyApp.User, :create, %{name: "John"})
iex> Ash.create(changeset)
{:ok, %MyApp.User{id: 1, name: "John"}}

iex> Ash.create(MyApp.Post, %{title: "New Post"}, return_notifications?: true)
{:ok, %MyApp.Post{id: 2, title: "New Post"}, [%Ash.Notifier.Notification{}]}
See also
	create!/3 for the raising version
	d:Ash.Resource.Dsl.actions.create for defining create actions
	d:Ash.Resource.Dsl.attributes for defining attributes
	Create Actions Guide for understanding create operations
	Actions Guide for general action concepts

Options
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:return_skipped_upsert? (boolean/0) - If true, and a record was not upserted because its filter prevented the upsert, the original record (which was not upserted) will be returned. The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used, and if that is not set, then any fields not being set to defaults are written.

	:upsert_condition (term/0) - An expression to check if the record should be updated when there's a conflict.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:load (term/0) - A load statement to add onto the changeset

 create!(changeset_or_resource, params \\ %{}, opts \\ [])

 @spec create!(
 changeset_or_resource :: Ash.Changeset.t() | Ash.Resource.t(),
 params_or_opts :: map() | Keyword.t(),
 opts :: Keyword.t()
) ::
 Ash.Resource.record()
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Create a record. See create/2 for more information.
Examples
iex> Ash.create!(MyApp.Post, %{title: "Hello World", content: "..."})
%MyApp.Post{id: 1, title: "Hello World", content: "..."}

iex> changeset = Ash.Changeset.for_create(MyApp.User, :create, %{name: "John"})
iex> Ash.create!(changeset)
%MyApp.User{id: 1, name: "John"}

iex> Ash.create!(MyApp.Post, %{title: "New Post"}, return_notifications?: true)
{%MyApp.Post{id: 2, title: "New Post"}, [%Ash.Notifier.Notification{}]}
See also
	create/3 for the non-raising version
	Create Actions Guide for understanding create operations
	Actions Guide for general action concepts

 data_layer_query(query, opts \\ [])

 @spec data_layer_query(Ash.Query.t(), opts :: Keyword.t()) ::
 {:ok, data_layer_query()} | {:error, Ash.Error.t()}

Gets the full query and any runtime calculations that would be loaded
Examples
iex> query = MyApp.Post |> Ash.Query.filter(published: true)
iex> Ash.data_layer_query(query)
{:ok, %{query: #Ecto.Query<...>, ash_query: %Ash.Query{}, count: #Function<...>, run: #Function<...>, load: #Function<...>}}

iex> MyApp.Post |> Ash.Query.limit(10) |> Ash.data_layer_query()
{:ok, %{query: #Ecto.Query<...>, ...}}
See also
	data_layer_query!/2 for the raising version

 data_layer_query!(query, opts \\ [])

Gets the full query and any runtime calculations that would be loaded, raising any errors.
Examples
iex> query = MyApp.Post |> Ash.Query.filter(published: true)
iex> Ash.data_layer_query!(query)
%{query: #Ecto.Query<...>, ash_query: %Ash.Query{}, count: #Function<...>, run: #Function<...>, load: #Function<...>}

iex> MyApp.Post |> Ash.Query.limit(10) |> Ash.data_layer_query!()
%{query: #Ecto.Query<...>, ...}
See also
	data_layer_query/2 for the non-raising version

See data_layer_query/2 for more.

 destroy(changeset_or_record, opts \\ [])

 @spec destroy(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
 :ok
 | {:ok, Ash.Resource.record()}
 | {:ok, [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Destroy a record.
Examples
iex> Ash.destroy(post)
:ok

iex> changeset = Ash.Changeset.for_destroy(user, :archive)
iex> Ash.destroy(changeset)
{:ok, :ok}

iex> Ash.destroy(post, return_destroyed?: true)
{:ok, %MyApp.Post{id: 1, title: "Deleted Post"}}

iex> Ash.destroy(user, return_notifications?: true)
{:ok, [%Ash.Notifier.Notification{}]}
See also
	destroy!/2 for the raising version
	d:Ash.Resource.Dsl.actions.destroy for defining destroy actions
	Destroy Actions Guide for understanding destroy operations
	Actions Guide for general action concepts

Options
	:return_destroyed? (boolean/0) - If true, the destroyed record is included in the return result, e.g {:ok, destroyed} or {:ok, destroyed, notifications} The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:load (term/0) - A load statement to add onto the changeset

 destroy!(changeset_or_record, opts \\ [])

 @spec destroy!(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
 :ok
 | Ash.Resource.record()
 | [Ash.Notifier.Notification.t()]
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Destroy a record. See destroy/2 for more information.
Examples
iex> Ash.destroy!(post)
:ok

iex> changeset = Ash.Changeset.for_destroy(user, :archive)
iex> Ash.destroy!(changeset)
:ok

iex> Ash.destroy!(post, return_destroyed?: true)
%MyApp.Post{id: 1, title: "Deleted Post"}

iex> Ash.destroy!(user, return_notifications?: true)
[%Ash.Notifier.Notification{}]
See also
	destroy/2 for the non-raising version
	d:Ash.Resource.Dsl.actions.destroy for defining destroy actions
	Destroy Actions Guide for understanding destroy operations
	Actions Guide for general action concepts

 exists(query, opts \\ [])

 @spec exists(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 {:ok, boolean()} | {:error, Ash.Error.t()}

Returns whether or not the query would return any results.
Examples
iex> MyApp.Post |> Ash.exists()
{:ok, true}

iex> MyApp.Post |> Ash.Query.filter(published: false) |> Ash.exists()
{:ok, false}
See also
	exists?/2 for the raising version
	count/2 for getting the actual count
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations

 exists?(query, opts \\ [])

 @spec exists?(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 boolean() | no_return()

Returns whether or not the query would return any results, or raises an error.
Examples
iex> MyApp.Post |> Ash.exists?()
true

iex> MyApp.Post |> Ash.Query.filter(published: false) |> Ash.exists?()
false
See also
	exists/2 for the non-raising version
	count!/2 for getting the actual count
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations

 first(query, field, opts \\ [])

 @spec first(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, term()} | {:error, Ash.Error.t()}

Fetches the first value for a given field.
Examples
iex> MyApp.Post |> Ash.first(:title)
{:ok, "Hello World"}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.first(:view_count)
{:ok, 42}
See also
	first!/3 for the raising version
	list/3 for getting all values of a field
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 first!(query, field, opts \\ [])

 @spec first!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 term() | no_return()

Fetches the first value for a given field, or raises an error.
Examples
iex> MyApp.Post |> Ash.first!(:title)
"Hello World"

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.first!(:view_count)
42
See also
	first/3 for the non-raising version
	list!/3 for getting all values of a field
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 get(resource, id, opts \\ [])

 @spec get(Ash.Resource.t(), term(), Keyword.t()) ::
 {:ok, Ash.Resource.record() | nil} | {:error, term()}

Get a record by an identifier.
For a resource with a composite primary key, pass a keyword list or map, e.g
Ash.get(MyResource, %{first_key: 1, second_key: 2})
Additionally, a keyword list or map of keys matching an identity can be provided.
Examples
iex> Ash.get(MyApp.Post, 1)
{:ok, %MyApp.Post{id: 1, title: "Hello World"}}

iex> Ash.get(MyApp.User, %{email: "user@example.com"})
{:ok, %MyApp.User{id: 5, email: "user@example.com"}}

iex> Ash.get(MyApp.Post, %{first_key: 1, second_key: 2})
{:ok, %MyApp.Post{first_key: 1, second_key: 2}}
See also
	get!/3 for the raising version
	Read Actions Guide for understanding read operations

Options
	:error? (boolean/0) - Whether or not an error should be returned or raised when the record is not found. If set to false, nil will be returned. The default value is true.

	:load (term/0) - Fields or relationships to load in the query. See Ash.Query.load/2

	:lock (term/0) - A lock statement to add onto the query

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:authorize_with - If set to :error, instead of applying authorization filters as a filter, any records not matching the authorization filter will cause an error to be returned. Valid values are :filter, :error The default value is :filter.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 get!(resource, id, opts \\ [])

 @spec get!(Ash.Resource.t(), term(), Keyword.t()) ::
 Ash.Resource.record() | nil | no_return()

Get a record by an identifier, or raises an error. See get/3 for more.
Examples
iex> Ash.get!(MyApp.Post, 1)
%MyApp.Post{id: 1, title: "Hello World"}

iex> Ash.get!(MyApp.User, %{email: "user@example.com"})
%MyApp.User{id: 5, email: "user@example.com"}

iex> Ash.get!(MyApp.Post, %{first_key: 1, second_key: 2})
%MyApp.Post{first_key: 1, second_key: 2}
See also
	get/3 for the non-raising version
	Read Actions Guide for understanding read operations

 list(query, field, opts \\ [])

 @spec list(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, [term()]} | {:error, Ash.Error.t()}

Fetches a list of all values of a given field.
Examples
iex> MyApp.Post |> Ash.list(:title)
{:ok, ["Hello World", "Another Post", "Final Post"]}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.list(:view_count)
{:ok, [42, 15, 89]}
See also
	list!/3 for the raising version
	first/3 for getting just the first value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 list!(query, field, opts \\ [])

 @spec list!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 [term()] | no_return()

Fetches a list of all values of a given field or raises an error.
Examples
iex> MyApp.Post |> Ash.list!(:title)
["Hello World", "Another Post", "Final Post"]

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.list!(:view_count)
[42, 15, 89]
See also
	list/3 for the non-raising version
	first!/3 for getting just the first value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 load(data, query, opts \\ [])

 @spec load(
 record_or_records ::
 record_or_records()
 | Ash.Page.page()
 | {:ok, record_or_records()}
 | {:ok, Ash.Page.page()}
 | {:error, term()}
 | :ok
 | nil,
 query :: load_statement(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.record() | [Ash.Resource.record()] | nil}
 | {:error, term()}

Load fields or relationships on already fetched records.
Accepts a list of non-loaded fields and loads them on the provided records or a query, in
which case the loaded fields of the query are used. Relationship loads can be nested, for
example: Ash.load(record, [posts: [:comments]]).
Examples
iex> Ash.load(post, :comments)
{:ok, %MyApp.Post{comments: [%MyApp.Comment{}, ...]}}

iex> Ash.load(posts, [:author, :comments])
{:ok, [%MyApp.Post{author: %MyApp.User{}, comments: [...]}, ...]}

iex> Ash.load(user, [posts: [:comments]])
{:ok, %MyApp.User{posts: [%MyApp.Post{comments: [...]}]}}
See also
	load!/3 for the raising version
	d:Ash.Resource.Dsl.relationships for defining relationships to load
	d:Ash.Resource.Dsl.calculations for defining calculations to load

Options
	:lazy? (boolean/0) - If set to true, values will only be loaded if the related value isn't currently loaded. The default value is false.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 load!(data, query, opts \\ [])

 @spec load!(
 record_or_records ::
 record_or_records()
 | Ash.Page.page()
 | {:ok, record_or_records()}
 | {:ok, Ash.Page.page()}
 | {:error, term()}
 | :ok
 | nil,
 query :: load_statement(),
 opts :: Keyword.t()
) :: Ash.Resource.record() | [Ash.Resource.record()] | nil | no_return()

Load fields or relationships on already fetched records. See load/3 for more information.
Examples
iex> Ash.load!(post, :comments)
%MyApp.Post{comments: [%MyApp.Comment{}, ...]}

iex> Ash.load!(posts, [:author, :comments])
[%MyApp.Post{author: %MyApp.User{}, comments: [...]}, ...]

iex> Ash.load!(user, [posts: [:comments]])
%MyApp.User{posts: [%MyApp.Post{comments: [...]}]}
See also
	load/3 for the non-raising version
	d:Ash.Resource.Dsl.relationships for defining relationships to load
	d:Ash.Resource.Dsl.calculations for defining calculations to load
	Relationships Guide for understanding relationships
	Calculations Guide for understanding calculations

 max(query, field, opts \\ [])

 @spec max(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, term()} | {:error, Ash.Error.t()}

Fetches the greatest of all values of a given field.
Examples
iex> MyApp.Post |> Ash.max(:view_count)
{:ok, 1542}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.max(:created_at)
{:ok, ~U[2023-12-25 10:30:00Z]}
See also
	max!/3 for the raising version
	min/3 for getting the minimum value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 max!(query, field, opts \\ [])

 @spec max!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 term() | no_return()

Fetches the greatest of all values of a given field or raises an error.
Examples
iex> MyApp.Post |> Ash.max!(:view_count)
1542

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.max!(:created_at)
~U[2023-12-25 10:30:00Z]
See also
	max/3 for the non-raising version
	min!/3 for getting the minimum value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 min(query, field, opts \\ [])

 @spec min(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, term()} | {:error, Ash.Error.t()}

Fetches the least of all values of a given field.
Examples
iex> MyApp.Post |> Ash.min(:view_count)
{:ok, 5}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.min(:created_at)
{:ok, ~U[2023-01-01 08:00:00Z]}
See also
	min!/3 for the raising version
	max/3 for getting the maximum value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 min!(query, field, opts \\ [])

 @spec min!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 term() | no_return()

Fetches the least of all values of a given field or raises an error.
Examples
iex> MyApp.Post |> Ash.min!(:view_count)
5

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.min!(:created_at)
~U[2023-01-01 08:00:00Z]
See also
	min/3 for the non-raising version
	max!/3 for getting the maximum value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 page(page, n)

 @spec page(Ash.Page.page(), page_request()) ::
 {:ok, Ash.Page.page()} | {:error, Ash.Error.t()}

Fetch a page relative to the provided page.
Examples
iex> Ash.page(page, :next)
{:ok, %Ash.Page.Offset{results: [...], more?: true}}

iex> Ash.page(page, :prev)
{:ok, %Ash.Page.Offset{results: [...], more?: false}}

iex> Ash.page(page, 3)
{:ok, %Ash.Page.Offset{results: [...], offset: 40}}
See also
	page!/2 for the raising version

 page!(page, request)

 @spec page!(Ash.Page.page(), page_request()) :: Ash.Page.page() | no_return()

Fetch a page relative to the provided page or raises an error
Examples
iex> Ash.page!(page, :next)
%Ash.Page.Offset{results: [...], more?: true}

iex> Ash.page!(page, :prev)
%Ash.Page.Offset{results: [...], more?: false}

iex> Ash.page!(page, 3)
%Ash.Page.Offset{results: [...], offset: 40}
See also
	page/2 for the non-raising version

 read(query, opts \\ [])

 @spec read(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 {:ok, [Ash.Resource.record()] | Ash.Page.page()} | {:error, term()}

Runs an Ash.Query.
For more information on building a query, see Ash.Query.
Examples
iex> Ash.read(MyApp.Post)
{:ok, [%MyApp.Post{id: 1, title: "Hello"}, %MyApp.Post{id: 2, title: "World"}]}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.read()
{:ok, [%MyApp.Post{id: 1, title: "Hello", published: true}]}

iex> MyApp.Post |> Ash.Query.limit(5) |> Ash.read()
{:ok, [%MyApp.Post{}, %MyApp.Post{}, ...]}
See also
	read!/2 for the raising version
	d:Ash.Resource.Dsl.actions.read for defining read actions
	d:Ash.Resource.Dsl.actions.read.pagination for pagination configuration
	Read Actions Guide for understanding read operations
	Actions Guide for general action concepts

Options
	:page - Pagination options, see Ash.read/2 for more.

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:authorize_with - If set to :error, instead of applying authorization filters as a filter, any records not matching the authorization filter will cause an error to be returned. Valid values are :filter, :error The default value is :filter.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

Pagination
Limit/offset pagination
	:offset (non_neg_integer/0) - The number of records to skip from the beginning of the query

	:limit (pos_integer/0) - The number of records to include in the page

	:filter (term/0) - A filter to apply for pagination purposes, that should not be considered in the full count.
This is used by the liveview paginator to only fetch the records that were already on the
page when refreshing data, to avoid pages jittering.

	:count (boolean/0) - Whether or not to return the page with a full count of all records

Keyset pagination
	:before (String.t/0) - Get records that appear before the provided keyset (mutually exclusive with after)

	:after (String.t/0) - Get records that appear after the provided keyset (mutually exclusive with before)

	:limit (pos_integer/0) - How many records to include in the page

	:filter (term/0) - See the filter option for offset pagination, this behaves the same.

	:count (boolean/0) - Whether or not to return the page with a full count of all records

 read!(query, opts \\ [])

 @spec read!(Ash.Query.t() | Ash.Resource.t(), Keyword.t()) ::
 [Ash.Resource.record()] | Ash.Page.page() | no_return()

Run an Ash.Query. See read/2 for more.
Examples
iex> Ash.read!(MyApp.Post)
[%MyApp.Post{id: 1, title: "Hello"}, %MyApp.Post{id: 2, title: "World"}]

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.read!()
[%MyApp.Post{id: 1, title: "Hello", published: true}]

iex> MyApp.Post |> Ash.Query.limit(5) |> Ash.read!()
[%MyApp.Post{}, %MyApp.Post{}, ...]
See also
	read/2 for the non-raising version
	Read Actions Guide for understanding read operations

 read_first(query, opts \\ [])

 @spec read_first(
 resource_or_query :: Ash.Query.t() | Ash.Resource.t(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.record() | nil} | {:error, Ash.Error.t()}

Runs a query on a resource, returning a first result, nil, or an error.
Query is automatically limited to only return one result, unlike read_one/3
Examples
iex> Ash.read_first(MyApp.Post)
{:ok, %MyApp.Post{id: 1, title: "First Post"}}

iex> MyApp.Post |> Ash.Query.sort(:created_at) |> Ash.read_first()
{:ok, %MyApp.Post{id: 1, created_at: ~U[2023-01-01 00:00:00Z]}}

iex> MyApp.Post |> Ash.Query.filter(published: false) |> Ash.read_first()
{:ok, nil}
See also
	read_first!/2 for the raising version

Options
	:not_found_error? (boolean/0) - Whether or not to return an Ash.Error.Query.NotFound if no record is found. The default value is false.

	:page - Pagination options, see Ash.read/2 for more.

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:authorize_with - If set to :error, instead of applying authorization filters as a filter, any records not matching the authorization filter will cause an error to be returned. Valid values are :filter, :error The default value is :filter.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 read_first!(query, opts \\ [])

 @spec read_first!(
 resource_or_query :: Ash.Query.t() | Ash.Resource.t(),
 opts :: Keyword.t()
) ::
 Ash.Resource.record() | nil

Runs an Ash query, returning the first result or nil, or raising an error. See read_first/2 for more.
Examples
iex> Ash.read_first!(MyApp.Post)
%MyApp.Post{id: 1, title: "First Post"}

iex> MyApp.Post |> Ash.Query.sort(:created_at) |> Ash.read_first!()
%MyApp.Post{id: 1, created_at: ~U[2023-01-01 00:00:00Z]}

iex> MyApp.Post |> Ash.Query.filter(published: false) |> Ash.read_first!()
nil
See also
	read_first/2 for the non-raising version

 read_one(query, opts \\ [])

 @spec read_one(
 resource_or_query :: Ash.Query.t() | Ash.Resource.t(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.record() | nil} | {:error, Ash.Error.t()}

Runs a query on a resource, returning a single result, nil, or an error.
If more than one result would be returned, an error is returned instead.
Examples
iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.read_one()
{:ok, %MyApp.Post{id: 1, published: true}}

iex> MyApp.User |> Ash.Query.filter(email: "nonexistent@example.com") |> Ash.read_one()
{:ok, nil}
See also
	read_one!/2 for the raising version

Options
	:not_found_error? (boolean/0) - Whether or not to return an Ash.Error.Query.NotFound if no record is found. The default value is false.

	:page - Pagination options, see Ash.read/2 for more.

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:authorize_with - If set to :error, instead of applying authorization filters as a filter, any records not matching the authorization filter will cause an error to be returned. Valid values are :filter, :error The default value is :filter.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 read_one!(query, opts \\ [])

 @spec read_one!(
 resource_or_query :: Ash.Query.t() | Ash.Resource.t(),
 opts :: Keyword.t()
) ::
 Ash.Resource.record() | nil

Runs an ash query, returning a single result or raise an error. See read_one/2 for more.
Examples
iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.read_one!()
%MyApp.Post{id: 1, published: true}

iex> MyApp.User |> Ash.Query.filter(email: "nonexistent@example.com") |> Ash.read_one!()
nil
See also
	read_one/2 for the non-raising version

 reload(record, opts \\ [])

 @spec reload(record :: Ash.Resource.record(), opts :: Keyword.t()) ::
 {:ok, Ash.Resource.record()} | {:error, Ash.Error.t()}

Refetches a record by primary key. See get/2 for more.
Examples
iex> Ash.reload(post)
{:ok, %MyApp.Post{id: 1, title: "Updated Title", updated_at: ~U[2023-12-25 10:30:00Z]}}

iex> Ash.reload(user, load: [:posts])
{:ok, %MyApp.User{id: 1, posts: [%MyApp.Post{}, ...]}}
See also
	reload!/2 for the raising version

 reload!(record, opts \\ [])

 @spec reload!(record :: Ash.Resource.record(), opts :: Keyword.t()) ::
 Ash.Resource.record() | no_return()

Refetches a record by primary key or raises an error. See reload/2 for more.
Examples
iex> Ash.reload!(post)
%MyApp.Post{id: 1, title: "Updated Title", updated_at: ~U[2023-12-25 10:30:00Z]}

iex> Ash.reload!(user, load: [:posts])
%MyApp.User{id: 1, posts: [%MyApp.Post{}, ...]}
See also
	reload/2 for the non-raising version
	d:Ash.Resource.Dsl.relationships for defining relationships to load

 run_action(input, opts \\ [])

 @spec run_action(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
 :ok | {:ok, term()} | {:error, Ash.Error.t()}

Runs a generic action.
Examples
iex> input = Ash.ActionInput.for_action(MyApp.Post, :send_email, %{email: "test@example.com"})
iex> Ash.run_action(input)
{:ok, :ok}

iex> input = Ash.ActionInput.for_action(MyApp.Calculator, :calculate_tax, %{amount: 100})
iex> Ash.run_action(input)
{:ok, 8.25}
See also
	run_action!/2 for the raising version
	d:Ash.Resource.Dsl.actions.action for defining generic actions
	Generic Actions Guide for understanding generic actions
	Actions Guide for general action concepts

Options
	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol. Will overwrite any actor, tenant or context provided. See Ash.Context for more.

	:tenant (value that implements the Ash.ToTenant protocol) - The tenant, supplied to calculation context.

	:authorize? (boolean/0) - Whether or not the request should be authorized.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer, provided to the calculation context.

	:domain (Ash.Domain) - The domain to use for the action

	:context (map/0) - Context to set on the action input

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:load (term/0) - A load statement to apply on the resulting records after the action is invoked.

 run_action!(input, opts \\ [])

 @spec run_action!(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
 term() | no_return()

Runs a generic action or raises an error. See run_action/2 for more
Examples
iex> input = Ash.ActionInput.for_action(MyApp.Post, :send_email, %{email: "test@example.com"})
iex> Ash.run_action!(input)
:ok

iex> input = Ash.ActionInput.for_action(MyApp.Calculator, :calculate_tax, %{amount: 100})
iex> Ash.run_action!(input)
8.25
See also
	run_action/2 for the non-raising version
	d:Ash.Resource.Dsl.actions.action for defining generic actions
	Generic Actions Guide for understanding generic actions
	Actions Guide for general action concepts

 stream!(query, opts \\ [])

 @spec stream!(query :: Ash.Query.t() | Ash.Resource.t(), opts :: Keyword.t()) ::
 Enumerable.t(Ash.Resource.record())

Streams the results of a query.
Strategies
There are three strategies supported, and the best one available is always chosen. They are,
in order from best to worst:
	:keyset
	:offset
	:full_read

By default, only :keyset is supported. If you want to allow worse strategies to be used, pass
the worst one you wish to allow as the allow_stream_with option, i.e allow_stream_with: :full_read.
If you wish to specify a specific strategy to use, pass stream_with: :strategy_name.
Keyset
This utilizes keyset pagination to accomplish this stream. The action must support keyset pagination.
This is the most efficient way to stream a query, because it works by using filters which can benefit
from indexes in the data layer.
Offset
This utilizes offset/limit to accomplish this stream. If the action supports offset pagination, that will
be used. Otherwise, if the data layer supports limit/offset, then explicit limits/offsets will be used.
This is a much less efficient way of streaming a resource than keyset. To use limit/offset to reliably
stream, a sort must always be applied, and limit/offset in the data layer will generally require sorting
the entire table to figure out what is in each batch.
Full Read
This reads the entire table into memory with no limit. This is, generally speaking, the least efficient.
Examples
iex> MyApp.Post |> Ash.stream!() |> Enum.take(10)
[%MyApp.Post{}, %MyApp.Post{}, ...]

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.stream!(strategy: :keyset) |> Enum.map(& &1.title)
["Hello World", "Another Post", ...]

iex> MyApp.Post |> Ash.stream!(strategy: :offset, batch_size: 50) |> Stream.filter(& &1.likes > 10) |> Enum.to_list()
[%MyApp.Post{likes: 15}, ...]
See also
	read/2 for non-streaming reads
	d:Ash.Resource.Dsl.actions.read for defining read actions
	d:Ash.Resource.Dsl.actions.read.pagination for pagination configuration

Options
	:batch_size (integer/0) - How many records to request in each query run. Defaults to the pagination limits on the resource, or 250.

	:allow_stream_with - The 'worst' strategy allowed to be used to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read The default value is :keyset.

	:stream_with - The specific strategy to use to fetch records. See Ash.stream!/2 docs for more. Valid values are :keyset, :offset, :full_read

	:load (term/0) - A load statement to add onto the query

	:max_concurrency (non_neg_integer/0) - The maximum number of processes allowed to be started for parallel loading of relationships and calculations. Defaults to System.schedulers_online() * 2

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:reuse_values? (boolean/0) - Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer. The default value is false.

	:strict? (boolean/0) - If set to true, only specified attributes will be loaded when passing
 a list of fields to fetch on a relationship, which allows for more
 optimized data-fetching.
 See Ash.Query.load/2. The default value is false.

	:authorize_with - If set to :error, instead of applying authorization filters as a filter, any records not matching the authorization filter will cause an error to be returned. Valid values are :filter, :error The default value is :filter.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

 sum(query, field, opts \\ [])

 @spec sum(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 {:ok, number()} | {:error, Ash.Error.t()}

Fetches the sum of a given field.
Examples
iex> MyApp.Post |> Ash.sum(:view_count)
{:ok, 1542}

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.sum(:likes)
{:ok, 238}
See also
	sum!/3 for the raising version
	avg/3 for getting the average value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources
	Read Actions Guide for understanding read operations
	Aggregates Guide for resource-level aggregates

 sum!(query, field, opts \\ [])

 @spec sum!(Ash.Query.t() | Ash.Resource.t(), atom(), Keyword.t()) ::
 number() | no_return()

Fetches the sum of a given field or raises an error.
Examples
iex> MyApp.Post |> Ash.sum!(:view_count)
1542

iex> MyApp.Post |> Ash.Query.filter(published: true) |> Ash.sum!(:likes)
238
See also
	sum/3 for the non-raising version
	avg!/3 for getting the average value
	d:Ash.Resource.Dsl.aggregates for defining aggregates on resources

 transact(resource_or_resources, func, opts \\ [])

 @spec transact(
 resource_or_resources :: Ash.Resource.t() | [Ash.Resource.t()],
 func :: (-> term()),
 opts :: Keyword.t()
) ::
 {:ok, term()}
 | {:ok, term(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Wraps the execution of the function in a transaction with the resource's data_layer.
Collects notifications during the function's execution and sends them if the transaction was successful.
Examples
iex> Ash.transact(MyApp.Post, fn ->
...> post = Ash.create!(MyApp.Post, %{title: "Hello"})
...> Ash.update!(post, %{content: "World"})
...> end)
{:ok, %MyApp.Post{title: "Hello", content: "World"}}

Automatic rollback on error

iex> Ash.transact(MyApp.Post, fn ->
...> Ash.create(MyApp.Post, %{title: "Valid Post"})
...> {:error, :something_went_wrong}
...> end)
{:error, :something_went_wrong}

Transaction was automatically rolled back, no post was created

iex> Ash.transact(MyApp.Post, fn ->
...> Ash.create!(MyApp.Post, %{title: "Test"})
...> end, return_notifications?: true)
{:ok, %MyApp.Post{title: "Test"}, [%Ash.Notifier.Notification{}]}
See also
	Actions Guide for understanding action concepts
	Development Testing Guide for testing with transactions

Options
	:timeout (timeout/0) - The time in milliseconds (as an integer) to wait for the transaction to finish or :infinity to wait indefinitely.
If not specified then default behaviour is adapter specific - for Ecto-based data layers it will be 15_000.

	:return_notifications? (boolean/0) - Use this if you want to manually handle sending notifications.
If true the returned tuple will contain notifications list as the last element.
To send notifications use Ash.Notifier.notify(notifications). It sends any notifications that can be sent, and returns the rest. The default value is false.

 transaction(resource_or_resources, func, opts \\ [])

 This function is deprecated. Use Ash.transact/3 instead..

 @spec transaction(
 resource_or_resources :: Ash.Resource.t() | [Ash.Resource.t()],
 func :: (-> term()),
 opts :: Keyword.t()
) ::
 {:ok, term()}
 | {:ok, term(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Wraps the execution of the function in a transaction with the resource's data_layer.
Collects notifications during the function's execution and sends them if the transaction was successful.
Examples
iex> Ash.transaction(MyApp.Post, fn ->
...> post = Ash.create!(MyApp.Post, %{title: "Hello"})
...> Ash.update!(post, %{content: "World"})
...> end)
{:ok, %MyApp.Post{title: "Hello", content: "World"}}

iex> Ash.transaction([MyApp.User, MyApp.Post], fn ->
...> user = Ash.create!(MyApp.User, %{name: "John"})
...> Ash.create!(MyApp.Post, %{title: "Hello", author_id: user.id})
...> end)
{:ok, %MyApp.Post{title: "Hello"}}

iex> Ash.transaction(MyApp.Post, fn ->
...> Ash.create!(MyApp.Post, %{title: "Test"})
...> end, return_notifications?: true)
{:ok, %MyApp.Post{title: "Test"}, [%Ash.Notifier.Notification{}]}
See also
	Ash.transact/3 - recommended replacement that always rolls back on error
	Actions Guide for understanding action concepts
	Development Testing Guide for testing with transactions

Options
	:timeout (timeout/0) - The time in milliseconds (as an integer) to wait for the transaction to finish or :infinity to wait indefinitely.
If not specified then default behaviour is adapter specific - for Ecto-based data layers it will be 15_000.

	:return_notifications? (boolean/0) - Use this if you want to manually handle sending notifications.
If true the returned tuple will contain notifications list as the last element.
To send notifications use Ash.Notifier.notify(notifications). It sends any notifications that can be sent, and returns the rest. The default value is false.

 update(changeset_or_record, params_or_opts \\ %{}, opts \\ [])

 @spec update(
 changeset_or_record :: Ash.Changeset.t() | Ash.Resource.record(),
 params_or_opts :: map() | Keyword.t(),
 opts :: Keyword.t()
) ::
 {:ok, Ash.Resource.record()}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | {:error, term()}

Update a record.
Examples
iex> Ash.update(post, %{title: "Updated Title"})
{:ok, %MyApp.Post{id: 1, title: "Updated Title"}}

iex> changeset = Ash.Changeset.for_update(user, :update, %{name: "Jane"})
iex> Ash.update(changeset)
{:ok, %MyApp.User{id: 1, name: "Jane"}}

iex> Ash.update(post, %{content: "New content"}, return_notifications?: true)
{:ok, %MyApp.Post{id: 1, content: "New content"}, [%Ash.Notifier.Notification{}]}
See also
	update!/3 for the raising version
	d:Ash.Resource.Dsl.actions.update for defining update actions
	d:Ash.Resource.Dsl.changes for defining changes
	Update Actions Guide for understanding update operations
	Actions Guide for general action concepts

Options
	:params (map/0) - Parameters to supply, ignored if the input is a changeset, only used when an identifier is given.

	:atomic_upgrade? (boolean/0) - If true the action will be done atomically if it can (and is configured to do so), ignoring the in memory transformations and validations. You should not generally need to disable this. The default value is true.

	:domain (Ash.Domain) - The domain to use.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the domain is used.

	:tracer (one or a list of module that adopts Ash.Tracer) - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:context (map/0) - Context to set on the query, changeset, or input

	:tenant (value that implements the Ash.ToTenant protocol) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:scope (term/0) - A value that implements the Ash.Scope.ToOpts protocol, for passing around actor/tenant/context in a single value. See Ash.Scope.ToOpts for more.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want to manually handle sending notifications.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.

	:skip_unknown_inputs - A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.

	:load (term/0) - A load statement to add onto the changeset

 update!(changeset_or_record, params_or_opts \\ %{}, opts \\ [])

 @spec update!(
 changeset_or_record :: Ash.Changeset.t() | Ash.Resource.record(),
 params_or_opts :: map() | Keyword.t(),
 opts :: Keyword.t()
) ::
 Ash.Resource.record()
 | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | no_return()

Update a record. See update/2 for more information.
Examples
iex> Ash.update!(post, %{title: "Updated Title"})
%MyApp.Post{id: 1, title: "Updated Title"}

iex> changeset = Ash.Changeset.for_update(user, :update, %{name: "Jane"})
iex> Ash.update!(changeset)
%MyApp.User{id: 1, name: "Jane"}

iex> Ash.update!(post, %{content: "New content"}, return_notifications?: true)
{%MyApp.Post{id: 1, content: "New content"}, [%Ash.Notifier.Notification{}]}
See also
	update/3 for the non-raising version
	d:Ash.Resource.Dsl.actions.update for defining update actions
	Update Actions Guide for understanding update operations
	Actions Guide for general action concepts

Ash.ActionInput

 Ash.Changeset - ash v3.15.0

Ash.Changeset

 Ash.Query - ash v3.15.0

Ash.Query

 Ash.CodeInterface - ash v3.15.0

Ash.CodeInterface

 Ash.Domain - ash v3.15.0

Ash.Domain behaviour

 Ash.Notifier - ash v3.15.0

Ash.Notifier behaviour

 Ash.Notifier.Notification - ash v3.15.0

Ash.Notifier.Notification

 Ash.Resource.Calculation - ash v3.15.0

Ash.Resource.Calculation behaviour

 Ash.Resource.Calculation.Builtins - ash v3.15.0

Ash.Resource.Calculation.Builtins

 Ash.Resource.ManualCreate - ash v3.15.0

Ash.Resource.ManualCreate behaviour

 Ash.Resource.ManualDestroy - ash v3.15.0

Ash.Resource.ManualDestroy behaviour

 Ash.Resource.ManualRead - ash v3.15.0

Ash.Resource.ManualRead behaviour

 Ash.Resource.ManualRelationship - ash v3.15.0

Ash.Resource.ManualRelationship behaviour

 Ash.Resource.ManualUpdate - ash v3.15.0

Ash.Resource.ManualUpdate behaviour

 Ash.Query.Aggregate - ash v3.15.0

Ash.Query.Aggregate

 Ash.Query.Calculation - ash v3.15.0

Ash.Query.Calculation

 Ash.Resource.Preparation - ash v3.15.0

Ash.Resource.Preparation behaviour

 Ash.Resource.Preparation.Builtins - ash v3.15.0

Ash.Resource.Preparation.Builtins

 Ash.Resource.Change - ash v3.15.0

Ash.Resource.Change behaviour

 Ash.Resource.Change.Builtins - ash v3.15.0
