

 ash

 v3.5.22

 [image: Logo]

 Table of contents

 	Home

 	Start Here

 	Get Started

 	About Ash

 	What is Ash?

 	Design Principles

 	Contributing to Ash

 	Alternatives

 	Changelog

 	Development

 	Project Structure

 	Working with LLMs

 	Generators

 	Error Handling

 	Testing

 	Development Utilities

 	Backwards Compatibility Config

 	Upgrade

 	Reference

 	Ash.Resource

 	Ash.Domain

 	Ash.Notifier.PubSub

 	Ash.Policy.Authorizer

 	Ash.DataLayer.Ets

 	Ash.DataLayer.Mnesia

 	Ash.Reactor

 	Glossary

 	Expressions

 	Resources

 	Domains

 	Attributes

 	Relationships

 	Calculations

 	Aggregates

 	Validations

 	Changes

 	Preparations

 	Code Interface

 	Embedded Resources

 	Identities

 	Notifiers

 	Actions

 	Actions

 	Read Actions

 	Create Actions

 	Update Actions

 	Destroy Actions

 	Generic Actions

 	Manual Actions

 	Security

 	Actors & Authorization

 	Sensitive Data

 	Policies

 	Advanced

 	Manual Installation

 	Multi-Step Actions

 	Reactor

 	Monitoring

 	Pagination

 	Combination Queries

 	Timeouts

 	Multitenancy

 	Writing Extensions

 	How To

 	Write Queries

 	Define Polymorphic Relationships

 	Test Resources

 	Authorize Access to Resources

 	Encrypt Attributes

 	Prevent concurrent writes

 	Wrap External APIs

 	Moved

 	Upgrade

 	
 Modules

 	Core API

 	Ash

 	Ash.ActionInput

 	Ash.Changeset

 	Ash.Query

 	Resources

 	Ash.CodeInterface

 	Ash.Domain

 	Ash.Notifier

 	Ash.Notifier.Notification

 	Ash.Resource.Calculation

 	Ash.Resource.Calculation.Builtins

 	Ash.Resource.ManualCreate

 	Ash.Resource.ManualDestroy

 	Ash.Resource.ManualRead

 	Ash.Resource.ManualRelationship

 	Ash.Resource.ManualUpdate

 	Queries

 	Ash.Query.Aggregate

 	Ash.Query.Calculation

 	Ash.Resource.Preparation

 	Ash.Resource.Preparation.Builtins

 	Changes

 	Ash.Resource.Change

 	Ash.Resource.Change.Builtins

 	Validations

 	Ash.Resource.Validation

 	Ash.Resource.Validation.Builtins

 	Authorization

 	Ash.Authorizer

 	Ash.Policy.Check

 	Ash.Policy.FilterCheck

 	Ash.Policy.SimpleCheck

 	Ash.Policy.Check.Builtins

 	Extensions

 	Ash.DataLayer.Ets

 	Ash.DataLayer.Mnesia

 	Ash.DataLayer.Simple

 	Ash.Notifier.PubSub

 	Ash.Policy.Authorizer

 	Ash.Reactor

 	Ash.Resource

 	Introspection

 	Ash.DataLayer.Ets.Info

 	Ash.DataLayer.Mnesia.Info

 	Ash.Domain.Info

 	Ash.Notifier.PubSub.Info

 	Ash.Policy.Info

 	Ash.Resource.Info

 	Visualizations

 	Ash.Domain.Info.Diagram

 	Ash.Domain.Info.Livebook

 	Ash.Policy.Chart.Mermaid

 	Testing

 	Ash.Generator

 	Ash.Seed

 	Ash.Test

 	Builtins

 	Ash.Policy.Check.AccessingFrom

 	Ash.Policy.Check.Action

 	Ash.Policy.Check.ActionType

 	Ash.Policy.Check.ActorAbsent

 	Ash.Policy.Check.ActorAttributeEquals

 	Ash.Policy.Check.ActorPresent

 	Ash.Policy.Check.ChangingAttributes

 	Ash.Policy.Check.ChangingRelationships

 	Ash.Policy.Check.ContextEquals

 	Ash.Policy.Check.Expression

 	Ash.Policy.Check.FilteringOn

 	Ash.Policy.Check.Loading

 	Ash.Policy.Check.Matches

 	Ash.Policy.Check.RelatesToActorVia

 	Ash.Policy.Check.RelatingToActor

 	Ash.Policy.Check.Resource

 	Ash.Policy.Check.Selecting

 	Ash.Policy.Check.Static

 	Ash.Resource.Change.CascadeDestroy

 	Ash.Resource.Change.CascadeUpdate

 	Ash.Resource.Change.Context

 	Ash.Resource.Change.GetAndLock

 	Ash.Resource.Change.GetAndLockForUpdate

 	Ash.Resource.Change.Increment

 	Ash.Resource.Change.OptimisticLock

 	Ash.Resource.Validation.ActionIs

 	Ash.Resource.Validation.Context

 	Tracing

 	Ash.Tracer

 	Ash.Tracer.Simple

 	Ash.Tracer.Simple.Span

 	Utilities

 	Ash.BulkResult

 	Ash.Changeset.ManagedRelationshipHelpers

 	Ash.CiString

 	Ash.Expr

 	Ash.Filter

 	Ash.Filter.Runtime

 	Ash.Filter.Simple

 	Ash.Filter.Simple.Not

 	Ash.ForbiddenField

 	Ash.Mix.Tasks.Helpers

 	Ash.NotLoaded

 	Ash.OptionsHelpers

 	Ash.Page

 	Ash.Page.Keyset

 	Ash.Page.Offset

 	Ash.PlugHelpers

 	Ash.ProcessHelpers

 	Ash.Resource.Builder

 	Ash.SatSolver

 	Ash.Sort

 	Ash.UUID

 	Ash.UUIDv7

 	Ash.Union

 	Ash.Vector

 	Types

 	Ash.Type

 	Ash.Type.Atom

 	Ash.Type.Binary

 	Ash.Type.Boolean

 	Ash.Type.CiString

 	Ash.Type.Comparable

 	Ash.Type.Date

 	Ash.Type.DateTime

 	Ash.Type.Decimal

 	Ash.Type.Duration

 	Ash.Type.DurationName

 	Ash.Type.Enum

 	Ash.Type.File

 	Ash.Type.File.Implementation

 	Ash.Type.File.Source

 	Ash.Type.Float

 	Ash.Type.Function

 	Ash.Type.Integer

 	Ash.Type.Keyword

 	Ash.Type.Map

 	Ash.Type.Module

 	Ash.Type.NaiveDatetime

 	Ash.Type.NewType

 	Ash.Type.String

 	Ash.Type.Struct

 	Ash.Type.Term

 	Ash.Type.Time

 	Ash.Type.TimeUsec

 	Ash.Type.Tuple

 	Ash.Type.UUID

 	Ash.Type.UUIDv7

 	Ash.Type.Union

 	Ash.Type.UrlEncodedBinary

 	Ash.Type.UtcDatetime

 	Ash.Type.UtcDatetimeUsec

 	Ash.Type.Vector

 	Errors

 	Ash.Error

 	Ash.Error.Action.InvalidArgument

 	Ash.Error.Changes.ActionRequiresActor

 	Ash.Error.Changes.InvalidArgument

 	Ash.Error.Changes.InvalidAttribute

 	Ash.Error.Changes.InvalidChanges

 	Ash.Error.Changes.InvalidRelationship

 	Ash.Error.Changes.NoSuchAttribute

 	Ash.Error.Changes.NoSuchRelationship

 	Ash.Error.Changes.Required

 	Ash.Error.Changes.StaleRecord

 	Ash.Error.Exception

 	Ash.Error.Forbidden

 	Ash.Error.Forbidden.CannotFilterCreates

 	Ash.Error.Forbidden.DomainRequiresActor

 	Ash.Error.Forbidden.DomainRequiresAuthorization

 	Ash.Error.Forbidden.ForbiddenField

 	Ash.Error.Forbidden.InitialDataRequired

 	Ash.Error.Forbidden.MustPassStrictCheck

 	Ash.Error.Forbidden.Placeholder

 	Ash.Error.Forbidden.Policy

 	Ash.Error.Framework

 	Ash.Error.Framework.AssumptionFailed

 	Ash.Error.Framework.CanNotBeAtomic

 	Ash.Error.Framework.FlagAssertionFailed

 	Ash.Error.Framework.InvalidReturnType

 	Ash.Error.Framework.MustBeAtomic

 	Ash.Error.Framework.PendingCodegen

 	Ash.Error.Framework.SynchronousEngineStuck

 	Ash.Error.Invalid

 	Ash.Error.Invalid.ActionRequiresPagination

 	Ash.Error.Invalid.AtomicsNotSupported

 	Ash.Error.Invalid.InvalidActionType

 	Ash.Error.Invalid.InvalidCustomInput

 	Ash.Error.Invalid.InvalidPrimaryKey

 	Ash.Error.Invalid.LimitRequired

 	Ash.Error.Invalid.MultipleResults

 	Ash.Error.Invalid.NoIdentityFound

 	Ash.Error.Invalid.NoMatchingBulkStrategy

 	Ash.Error.Invalid.NoPrimaryAction

 	Ash.Error.Invalid.NoSuchAction

 	Ash.Error.Invalid.NoSuchInput

 	Ash.Error.Invalid.NoSuchResource

 	Ash.Error.Invalid.NonCountableAction

 	Ash.Error.Invalid.NonStreamableAction

 	Ash.Error.Invalid.PaginationRequired

 	Ash.Error.Invalid.ResourceNotAllowed

 	Ash.Error.Invalid.TenantRequired

 	Ash.Error.Invalid.Timeout

 	Ash.Error.Invalid.TimeoutNotSupported

 	Ash.Error.Invalid.Unavailable

 	Ash.Error.Load.InvalidQuery

 	Ash.Error.Load.NoSuchRelationship

 	Ash.Error.Page.InvalidKeyset

 	Ash.Error.Query.AggregatesNotSupported

 	Ash.Error.Query.CalculationRequiresPrimaryKey

 	Ash.Error.Query.CalculationsNotSupported

 	Ash.Error.Query.InvalidArgument

 	Ash.Error.Query.InvalidCalculationArgument

 	Ash.Error.Query.InvalidExpression

 	Ash.Error.Query.InvalidFilterReference

 	Ash.Error.Query.InvalidFilterValue

 	Ash.Error.Query.InvalidLimit

 	Ash.Error.Query.InvalidLoad

 	Ash.Error.Query.InvalidOffset

 	Ash.Error.Query.InvalidPage

 	Ash.Error.Query.InvalidQuery

 	Ash.Error.Query.InvalidSortOrder

 	Ash.Error.Query.LockNotSupported

 	Ash.Error.Query.NoComplexSortsWithKeysetPagination

 	Ash.Error.Query.NoReadAction

 	Ash.Error.Query.NoSuchAttribute

 	Ash.Error.Query.NoSuchField

 	Ash.Error.Query.NoSuchFilterPredicate

 	Ash.Error.Query.NoSuchFunction

 	Ash.Error.Query.NoSuchOperator

 	Ash.Error.Query.NoSuchRelationship

 	Ash.Error.Query.NotFound

 	Ash.Error.Query.ReadActionRequired

 	Ash.Error.Query.ReadActionRequiresActor

 	Ash.Error.Query.Required

 	Ash.Error.Query.UnsortableField

 	Ash.Error.Query.UnsupportedPredicate

 	Ash.Error.SimpleDataLayer.NoDataProvided

 	Ash.Error.Stacktrace

 	Ash.Error.Unknown

 	Ash.Error.Unknown.UnknownError

 	DSL Transformers

 	Ash.DataLayer.Verifiers.RequirePreCheckWith

 	Ash.Notifier.PubSub.Verifiers.VerifyActionNames

 	Ash.Domain.Verifiers.EnsureNoEmbeds

 	Ash.Domain.Verifiers.ValidateArgumentsToCodeInterface

 	Ash.Domain.Verifiers.ValidateRelatedResourceInclusion

 	Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies

 	Ash.Policy.Authorizer.Transformers.CacheFieldPolicies

 	Ash.Resource.Transformers.AttributesByName

 	Ash.Resource.Transformers.BelongsToAttribute

 	Ash.Resource.Transformers.CacheActionInputs

 	Ash.Resource.Transformers.CacheCalculations

 	Ash.Resource.Transformers.CachePrimaryKey

 	Ash.Resource.Transformers.CacheRelationships

 	Ash.Resource.Transformers.CacheUniqueKeys

 	Ash.Resource.Transformers.CreateJoinRelationship

 	Ash.Resource.Transformers.DefaultAccept

 	Ash.Resource.Transformers.GetByReadActions

 	Ash.Resource.Transformers.HasDestinationField

 	Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource

 	Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource

 	Ash.Resource.Transformers.RequireUniqueActionNames

 	Ash.Resource.Transformers.RequireUniqueFieldNames

 	Ash.Resource.Transformers.SetPrimaryActions

 	Ash.Resource.Transformers.SetRelationshipSource

 	Ash.Resource.Transformers.ValidationsAndChangesForType

 	Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation

 	Ash.Resource.Verifiers.NoReservedFieldNames

 	Ash.Resource.Verifiers.ValidateAccept

 	Ash.Resource.Verifiers.ValidateActionTypesSupported

 	Ash.Resource.Verifiers.ValidateAggregatesSupported

 	Ash.Resource.Verifiers.ValidateArgumentsToCodeInterface

 	Ash.Resource.Verifiers.ValidateEagerIdentities

 	Ash.Resource.Verifiers.ValidateManagedRelationshipOpts

 	Ash.Resource.Verifiers.ValidateMultitenancy

 	Ash.Resource.Verifiers.ValidatePrimaryKey

 	Ash.Resource.Verifiers.ValidateRelationshipAttributes

 	Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch

 	Ash.Resource.Verifiers.VerifyActionsAtomic

 	Ash.Resource.Verifiers.VerifyGenericActionReactorInputs

 	Ash.Resource.Verifiers.VerifyIdentityFields

 	Ash.Resource.Verifiers.VerifyPrimaryKeyPresent

 	Ash.Resource.Verifiers.VerifyPrimaryReadActionHasNoArguments

 	Ash.Resource.Verifiers.VerifyReservedCalculationArguments

 	Ash.Resource.Verifiers.VerifySelectedByDefault

 	Expressions

 	Ash.Filter.Predicate

 	Ash.Query.BooleanExpression

 	Ash.Query.Call

 	Ash.Query.Exists

 	Ash.Query.Function

 	Ash.Query.Not

 	Ash.Query.Operator

 	Ash.Query.Parent

 	Ash.Query.Ref

 	Ash.Query.Function.Ago

 	Ash.Query.Function.At

 	Ash.Query.Function.CompositeType

 	Ash.Query.Function.Contains

 	Ash.Query.Function.CountNils

 	Ash.Query.Function.DateAdd

 	Ash.Query.Function.DateTimeAdd

 	Ash.Query.Function.Error

 	Ash.Query.Function.Fragment

 	Ash.Query.Function.FromNow

 	Ash.Query.Function.GetPath

 	Ash.Query.Function.If

 	Ash.Query.Function.IsNil

 	Ash.Query.Function.Lazy

 	Ash.Query.Function.Length

 	Ash.Query.Function.Minus

 	Ash.Query.Function.Now

 	Ash.Query.Function.Rem

 	Ash.Query.Function.Round

 	Ash.Query.Function.StartOfDay

 	Ash.Query.Function.StringDowncase

 	Ash.Query.Function.StringJoin

 	Ash.Query.Function.StringLength

 	Ash.Query.Function.StringPosition

 	Ash.Query.Function.StringSplit

 	Ash.Query.Function.StringTrim

 	Ash.Query.Function.Today

 	Ash.Query.Function.Type

 	Ash.Query.Operator.Eq

 	Ash.Query.Operator.GreaterThan

 	Ash.Query.Operator.GreaterThanOrEqual

 	Ash.Query.Operator.In

 	Ash.Query.Operator.IsNil

 	Ash.Query.Operator.LessThan

 	Ash.Query.Operator.LessThanOrEqual

 	Ash.Query.Operator.NotEq

 	DSL Structs

 	Ash.Notifier.PubSub.Publication

 	Ash.Policy.FieldPolicy

 	Ash.Policy.Policy

 	Ash.Resource.Actions

 	Ash.Resource.Actions.Action

 	Ash.Resource.Actions.Argument

 	Ash.Resource.Actions.Create

 	Ash.Resource.Actions.Destroy

 	Ash.Resource.Actions.Implementation

 	Ash.Resource.Actions.Implementation.Context

 	Ash.Resource.Actions.Metadata

 	Ash.Resource.Actions.Read

 	Ash.Resource.Actions.Read.Pagination

 	Ash.Resource.Actions.Update

 	Ash.Resource.Aggregate

 	Ash.Resource.Aggregate.CustomAggregate

 	Ash.Resource.Aggregate.JoinFilter

 	Ash.Resource.Attribute

 	Ash.Resource.Calculation.Argument

 	Ash.Resource.Calculation.Context

 	Ash.Resource.Calculation.LoadAttribute

 	Ash.Resource.Calculation.LoadRelationship

 	Ash.Resource.CalculationInterface

 	Ash.Resource.Identity

 	Ash.Resource.Interface

 	Ash.Resource.Interface.CustomInput

 	Ash.Resource.Interface.CustomInput.Transform

 	Ash.Resource.Relationships

 	Ash.Resource.Relationships.BelongsTo

 	Ash.Resource.Relationships.HasMany

 	Ash.Resource.Relationships.HasOne

 	Ash.Resource.Relationships.ManyToMany

 	Other

 	Ash.Actions.BulkManualActionHelpers

 	Ash.Actions.Read.AsyncLimiter

 	Ash.Can

 	Ash.Changeset.OriginalDataNotAvailable

 	Ash.Context

 	Ash.CustomExpression

 	Ash.DataLayer

 	Ash.Domain.Dsl.ResourceReference

 	Ash.Domain.Igniter

 	Ash.Extension

 	Ash.Igniter

 	Ash.Info

 	Ash.Policy.PolicyGroup

 	Ash.Query.Combination

 	Ash.Query.UpsertConflict

 	Ash.Reactor.ActionStep

 	Ash.Reactor.AshStep

 	Ash.Reactor.BulkCreateStep

 	Ash.Reactor.BulkUpdateStep

 	Ash.Reactor.ChangeStep

 	Ash.Reactor.CreateStep

 	Ash.Reactor.DestroyStep

 	Ash.Reactor.Dsl.Action

 	Ash.Reactor.Dsl.ActionLoad

 	Ash.Reactor.Dsl.ActionTransformer

 	Ash.Reactor.Dsl.Actor

 	Ash.Reactor.Dsl.AshStep

 	Ash.Reactor.Dsl.BulkCreate

 	Ash.Reactor.Dsl.BulkUpdate

 	Ash.Reactor.Dsl.Change

 	Ash.Reactor.Dsl.Context

 	Ash.Reactor.Dsl.Create

 	Ash.Reactor.Dsl.Destroy

 	Ash.Reactor.Dsl.Inputs

 	Ash.Reactor.Dsl.Load

 	Ash.Reactor.Dsl.MiddlewareTransformer

 	Ash.Reactor.Dsl.Read

 	Ash.Reactor.Dsl.ReadOne

 	Ash.Reactor.Dsl.Tenant

 	Ash.Reactor.Dsl.Transaction

 	Ash.Reactor.Dsl.Update

 	Ash.Reactor.LoadStep

 	Ash.Reactor.MergeInputsStep

 	Ash.Reactor.Notifications

 	Ash.Reactor.ReadOneStep

 	Ash.Reactor.ReadStep

 	Ash.Reactor.Tracer

 	Ash.Reactor.TransactionStep

 	Ash.Reactor.UpdateStep

 	Ash.Resource.Dsl.Filter

 	Ash.Resource.Igniter

 	Ash.Resource.ManualCreate.BulkContext

 	Ash.Resource.ManualCreate.Context

 	Ash.Resource.ManualDestroy.BulkContext

 	Ash.Resource.ManualDestroy.Context

 	Ash.Resource.ManualRelationship.Context

 	Ash.Resource.ManualUpdate.BulkContext

 	Ash.Resource.ManualUpdate.Context

 	Ash.Resource.Preparation.Context

 	Ash.Scope

 	Ash.Scope.ToOpts

 	Ash.ToTenant

 	Comp

 	Comparable

 	Comparable.Type.Any.To.Any

 	Comparable.Type.Ash.CiString.To.Ash.CiString

 	Comparable.Type.Ash.CiString.To.BitString

 	Comparable.Type.Atom.To.BitString

 	Comparable.Type.BitString.To.Ash.CiString

 	Comparable.Type.BitString.To.Atom

 	Comparable.Type.BitString.To.Decimal

 	Comparable.Type.Date.To.Date

 	Comparable.Type.DateTime.To.DateTime

 	Comparable.Type.Decimal.To.BitString

 	Comparable.Type.Decimal.To.Decimal

 	Comparable.Type.Decimal.To.Float

 	Comparable.Type.Decimal.To.Integer

 	Comparable.Type.Float.To.Decimal

 	Comparable.Type.Integer.To.Decimal

 	Comparable.Type.List.To.List

 	Comparable.Type.Map.To.Map

 	Comparable.Type.NaiveDateTime.To.NaiveDateTime

 	Comparable.Type.Time.To.Time

 	Comparable.Type.Tuple.To.Tuple

 	
 Mix Tasks

 	mix ash

 	mix ash.codegen

 	mix ash.extend

 	mix ash.gen.base_resource

 	mix ash.gen.change

 	mix ash.gen.custom_expression

 	mix ash.gen.domain

 	mix ash.gen.enum

 	mix ash.gen.preparation

 	mix ash.gen.resource

 	mix ash.gen.validation

 	mix ash.generate_livebook

 	mix ash.generate_policy_charts

 	mix ash.generate_resource_diagrams

 	mix ash.install

 	mix ash.migrate

 	mix ash.patch.extend

 	mix ash.reset

 	mix ash.rollback

 	mix ash.setup

 	mix ash.tear_down

 Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: OpenSSF Scorecard]
[image: OpenSSF Best Practices]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
Ash Framework
Welcome! Here you will find everything you need to know to get started with and use Ash. This documentation is best viewed on hexdocs.
Dive In
	What is Ash?
	Getting Started Tutorial
	See the roadmap

About the Documentation
The Get Started Livebook Tutorial introduces you to the core concepts of Ash like resources, actions, and relationships. It’s a great place to start if you are a beginner.

Topics provide a high level overview of a specific concept or feature of Ash. These are understanding-oriented, and are perfect for discovering design patterns, features, and tools.

How-to guides are goal-oriented recipes for accomplishing specific popular tasks. Browse to get an idea of how Ash works and what is possible with it.

Reference documentation is information-oriented, covering every Ash module, function, expression, and DSL. It is produced automatically from our source code. Use the sidebar and the top search
bar to find relevant reference information. Place the text dsl before your search to quickly jump to a particular DSL — e.g. try comparing the results of searching for name with the results for dsl name.

Topics
About Ash
	What is Ash?
	Our Design Principles
	Contributing to Ash
	Alternatives

Development
	Project Structure
	Generators
	Testing
	Working with LLM Assistance
	Development Utilities
	Backwards Compatibility Config
	Upgrading to 3.0
	Error Handling

Resources
	Domains
	Attributes
	Relationships
	Calculations
	Aggregates
	Code Interfaces
	Identities
	Validations
	Changes
	Preparations
	Embedded Resources
	Notifiers

Actions
	Actions
	Read Actions
	Create Actions
	Update Actions
	Destroy Actions
	Generic Actions
	Manual Actions

Security
	Actors & Authorization
	Sensitive Data
	Policies

Advanced
	Multi-step Actions
	Monitoring
	Multitenancy
	Reactor
	Combination Queries
	Timeouts
	Writing Extensions

How-to
	Write Queries
	Test Resources
	Authorize Access to Resources
	Encrypt Attributes
	Prevent Concurrent Writes
	Wrap External APIs
	Define Polymorphic Relationships

Reference
	Ash.Resource DSL
	Ash.Domain DSL
	Ash.Reactor DSL
	Ash.Notifier.PubSub DSL
	Ash.Policy.Authorizer DSL
	Ash.DataLayer.Ets DSL
	Ash.DataLayer.Mnesia DSL
	Glossary
	Expressions
	For other reference documentation, see the sidebar & search bar

Packages
The Ash ecosystem consists of numerous packages, all of which have their own documentation. If you can't find something in this documentation, don't forget to search in any potentially relevant package.
Data Layers
	AshPostgres | PostgreSQL data layer

	AshSqlite | SQLite data layer

	AshCsv | CSV data layer

	AshCubdb | CubDB data layer

API Extensions
	AshJsonApi | JSON:API builder

	AshGraphql | GraphQL builder

AI
	AshAI | Structured Outpus, MCP, Vectorization and more

Web
	AshPhoenix | Phoenix integrations

	AshAuthentication | Authenticate users with password, OAuth, and more

	AshAuthenticationPhoenix | Integrations for AshAuthentication and Phoenix

Finance
	AshMoney | A money data type for Ash

	AshDoubleEntry | A double entry system backed by Ash Resources

Resource Utilities
	AshOban | Background jobs and scheduled jobs for Ash, backed by Oban

	AshArchival | Archive resources instead of deleting them

	AshStateMachine | Create state machines for resources

	AshPaperTrail | Keep a history of changes to resources

	AshCloak | Encrypt attributes of a resource

Admin & Monitoring
	AshAdmin | A push-button admin interface

	AshAppsignal | Monitor your Ash resources with AppSignal

Testing
	Smokestack | Declarative test factories for Ash resources

Examples & External Resources
	Ash Real World | Ash + Phoenix LiveView codebase containing real world examples (CRUD, auth, advanced patterns, etc)

 Get Started

Learn with Livebook
We have a basic step by step tutorial in Livebook that introduces you to Ash. No prior Ash knowledge is required.
The Livebook tutorial is self contained and separate from the documentation below.
[image: Run in Livebook]
Goals
In this guide we will:
	Create a new Elixir application and add Ash as a dependency
	Create a simple set of resources and see how they can be used
	Go over some core concepts of Ash
	Find out what material might be good to visit next

Requirements
If you want to follow along yourself, you will need the following things:
	Elixir and Erlang installed
	A text editor to make the changes that we make
	A terminal to run the examples using iex

Steps
For this tutorial, we'll use examples based around creating a help desk.
We will make the following resources:
	Helpdesk.Support.Ticket
	Helpdesk.Support.Representative

The actions we will be able to take on these resources include:
	Opening a new Ticket
	Closing a Ticket
	Assigning a Ticket to a representative

Create a new project
This guide focuses on getting you introduced to Ash quickly. For that reason, we recommend starting a fresh
project to explore the concepts. You can, however, add Ash to your existing project if desired.
See the options below for more.
What is igniter?
Igniter is a code generation and project setup tool that automates the installation and configuration of Elixir packages. Instead of manually adding dependencies and writing boilerplate code, Igniter handles this for you. When you run mix igniter.install ash, it automatically adds Ash to your project and sets up the necessary configuration files.
New project
First, to use mix igniter.new, the archive must be installed.
install igniter.new
mix archive.install hex igniter_new

create a new application with Ash in it
mix igniter.new helpdesk --install ash && cd helpdesk

New Phoenix project
If you already know that you want to use Phoenix and Ash together, you can use
install the archive
mix archive.install hex phx_new
mix archive.install hex igniter_new

use the `--with` flag to generate the project with phx.new and add Ash
mix igniter.new helpdesk --install ash,ash_phoenix --with phx.new && cd helpdesk

Existing Project
You can use igniter to add Ash to your existing project as well.
mix archive.install hex igniter_new
mix igniter.install ash

Manual Installation Instructions
Finally, if you want to install Ash manually, step by step, follow the manual installation guide.
Picosat installation issues?
If you have trouble compiling picosat_elixir, then alter your mix.exs file to replace {:picosat_elixir, "~> 0.2"} with {:simple_sat, "~> 0.1"} to use a simpler (but mildly slower) solver. You can always switch back to picosat_elixir later once you're done with the tutorial.
Then, run mix deps.get && mix deps.compile ash --force
Building your first Ash Domain
The basic building blocks of an Ash application are Ash resources. They are tied together by a domain module, which will allow you to interact with those resources.
Creating our first resource
Generators
We have CLI commands that will do this for you, for example mix ash.gen.resource
In this getting started guide, we will create the resources by hand. This is primarily
because there are not actually very many steps, and we want you to be familiar with
each moving piece. For more on the generators, run mix help ash.gen.resource.
Let's start by creating our first resource along with our first domain. We will create the following files:
	The domain Helpdesk.Support, in lib/helpdesk/support.ex
	Our Ticket resource Helpdesk.Support.Ticket, in lib/helpdesk/support/ticket.ex.

To create the required folders and files, you can use the following command in your terminal:
mkdir -p lib/helpdesk/support && \
 touch $_/ticket.ex && \
 touch lib/helpdesk/support.ex

Your project structure should now include the following files:
lib/
├─ helpdesk/
│ ├─ support/
│ │ ├─ ticket.ex
│ ├─ support.ex
Add the following to the files we created
lib/helpdesk/support.ex

defmodule Helpdesk.Support do
 use Ash.Domain

 resources do
 resource Helpdesk.Support.Ticket
 end
end
lib/helpdesk/support/ticket.ex

defmodule Helpdesk.Support.Ticket do
 # This turns this module into a resource
 use Ash.Resource, domain: Helpdesk.Support

 actions do
 # Use the default implementation of the :read action
 defaults [:read]

 # and a create action, which we'll customize later
 create :create
 end

 # Attributes are the simple pieces of data that exist on your resource
 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:subject`
 attribute :subject, :string
 end
end
Next, add your domain to your config.exs, and configure some backwards compatibility configuration.
Run the following to create your config.exs if it doesn't already exist
mkdir -p config
touch config/config.exs
and add the following contents to it.
in config/config.exs
import Config

This tells Ash about your domain, which is used to find
available resource and actions
config :helpdesk, :ash_domains, [Helpdesk.Support]
Try our first resource out
Run iex -S mix in your project's root directory and try out the following.
To create a ticket, we first make an Ash.Changeset for the :create action of the Helpdesk.Support.Ticket resource. Then we pass it to the Ash.create!/1 function.
Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:create)
|> Ash.create!()
This returns what we call a record which is an instance of a resource.
#Helpdesk.Support.Ticket<
 ...,
 id: "c0f8dc32-a018-4eb4-8656-d5810118f4ea",
 subject: nil,
 ...
>
Customizing our Actions
One thing you may have noticed earlier is that we created a ticket without providing any input, and as a result our ticket had a subject of nil. Additionally, we don't have any other data on the ticket. Lets add a status attribute, ensure that subject can't be nil, and provide a better interface by giving the :create action a better name, and accepting :subject as part of the action.
We'll start with the attribute changes:
lib/helpdesk/support/ticket.ex

attributes do
 ...
 attribute :subject, :string do
 # Don't allow `nil` values
 allow_nil? false

 # Allow this attribute to be public. By default, all attributes are private.
 public? true
 end

 # status is either `open` or `closed`. We can add more statuses later
 attribute :status, :atom do
 # Constraints allow you to provide extra rules for the value.
 # The available constraints depend on the type
 # See the documentation for each type to know what constraints are available
 # Since atoms are generally only used when we know all of the values
 # it provides a `one_of` constraint, that only allows those values
 constraints [one_of: [:open, :closed]]

 # The status defaulting to open makes sense
 default :open

 # We also don't want status to ever be `nil`
 allow_nil? false
 end
end
And then replace the :create action with :open, and accept :subject as input.
lib/helpdesk/support/ticket.ex

actions do
 ...
 create :open do
 accept [:subject]
 end
end
Let's try these changes in iex:
We use create! with an exclamation point here because that will raise the error which gives a nicer view of the error in iex
Use this to pick up changes you've made to your code, or restart your session
recompile()

Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
|> Ash.create!()
And we can see our newly created ticket with a subject and a status.
#Helpdesk.Support.Ticket<
 ...
 id: "3c94d310-7b5e-41f0-9104-5b193b831a5d",
 status: :open,
 subject: "My mouse won't click!",
 ...
>
If we didn't include a subject, or left off the arguments completely, we would see an error instead
** (Ash.Error.Invalid) Invalid Error

* attribute subject is required
Updates and validations
Now let's add some logic to close a ticket. This time we'll add an update action.
Here we will use a change. Changes allow you to customize how an action executes with very fine-grained control. There are built-in changes that are automatically available as functions, but you can define your own and pass it in as shown below. You can add multiple, and they will be run in order. See the Ash.Changeset module documentation for more.
lib/helpdesk/support/ticket.ex

actions do
 ...
 update :close do
 # We don't want to accept any input here
 accept []

 validate attribute_does_not_equal(:status, :closed) do
 message "Ticket is already closed"
 end

 change set_attribute(:status, :closed)
 # A custom change could be added like so:
 #
 # change MyCustomChange
 # change {MyCustomChange, opt: :val}
 end
end
Try out opening and closing a ticket in iex:
Use this to pick up changes you've made to your code, or restart your session
recompile()

parenthesis so you can paste into iex
ticket = (
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
 |> Ash.create!()
)

ticket = (
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Ash.update!()
)

#Helpdesk.Support.Ticket<
 ...
 status: :closed,
 subject: "My mouse won't click!",
 ...
>
What if we would try to close the ticket again?
ticket
|> Ash.Changeset.for_update(:close)
|> Ash.update!()
The application would halt with an error:
...
** (Ash.Error.Invalid)
Bread Crumbs:
 > Returned from bulk query update: Helpdesk.Support.Ticket.close

Invalid Error

* Invalid value provided for status: Ticket is already closed.
...
Note the 'Ticket is already closed' message that we have defined in the attribute_does_not_equal validation.
And if we'd use the non-bang version:
ticket
|> Ash.Changeset.for_update(:close)
|> Ash.update()
we get an error tuple with a %Ash.Error.Invalid struct that contains the message:
{:error,
 %Ash.Error.Invalid{
...
 message: "Ticket is already closed",
...
Querying without persistence
So far we haven't used a data layer that does any persistence, like storing records in a database. All that this simple resource does is return the record back to us. You can see this lack of persistence by attempting to use a read action:
Ash.read!(Helpdesk.Support.Ticket)
Which will raise an error explaining that there is no data to be read for that resource.
In order to save our data somewhere, we need to add a data layer to our resources. Before we do that, however, let's go over how Ash allows us to work against many different data layers (or even no data layer at all).
Resources without a data layer will implicitly be using Ash.DataLayer.Simple. This data is not persisted anywhere, and must be provided when running queries. It provides a utility for just this purpose, Ash.DataLayer.Simple.set_data/2.
Try the following in iex. We will open some tickets, and close some of them, and then use Ash.DataLayer.Simple.set_data/2 to use those tickets.
Ash.Query is a macro, so it must be required
require Ash.Query

tickets =
 for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Ash.create!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Ash.update!()
 else
 ticket
 end
 end
Find the tickets where the subject contains "2". Note that the we're setting the ticket data that we're querying using set_data.
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Ash.read!()
Find the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Ash.read!()
The examples above could be easily implemented with Enum.filter, but the real power here is to allow you to use the same tools when working with any data layer.
Even though it doesn't persist data in any way, Ash.DataLayer.Simple can be useful to model static data, or be used for resources where all the actions are manual and inject data from other sources.
Adding basic persistence
Before we get into working with relationships, let's add some real persistence to our resource. This will let us add relationships and try out querying data.
There is a built in data layer that is useful for testing and prototyping, that uses ETS. ETS (Erlang Term Storage) is OTP's in-memory database, so the data won't actually stick around beyond the lifespan of your program, but it's a simple way to try things out.
To add it to your resource, modify it like so:
lib/helpdesk/support/ticket.ex

use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: Ash.DataLayer.Ets
Now we can slightly modify our code above, by removing the Ash.DataLayer.Simple.set_data/2 calls, and we can see our persistence in action. Remember, ETS is in-memory, meaning restarting your application/iex session will remove all of the data.
Use this to pick up changes you've made to your code, or restart your session
recompile()

require Ash.Query

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Ash.create!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Ash.update!()
 end
end

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.read!()

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.read!()
Adding relationships
Now we want to be able to assign a Ticket to a Representative. First, let's create the Representative resource:
lib/helpdesk/support/representative.ex

defmodule Helpdesk.Support.Representative do
 # This turns this module into a resource using the in memory ETS data layer
 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: Ash.DataLayer.Ets

 actions do
 # Add the default simple actions
 defaults [:read]

 create :create do
 accept [:name]
 end
 end

 # Attributes are the simple pieces of data that exist on your resource
 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:name`
 attribute :name, :string do
 # Make the attribute public in order to give a name when calling functions from `Ash.Changeset`.
 public? true
 end
 end

 relationships do
 # `has_many` means that the destination attribute is not unique, therefore many related records could exist.
 # We assume that the destination attribute is `representative_id` based
 # on the module name of this resource and that the source attribute is `id`.
 has_many :tickets, Helpdesk.Support.Ticket
 end
end
Now let's modify our Ticket resource to have the inverse relationship to the Representative.
lib/helpdesk/support/ticket.ex

relationships do
 # belongs_to means that the destination attribute is unique, meaning only one related record could exist.
 # We assume that the destination attribute is `representative_id` based
 # on the name of this relationship and that the source attribute is `representative_id`.
 # We create `representative_id` automatically.
 belongs_to :representative, Helpdesk.Support.Representative
end
Finally, let's add our new Representative resource to our domain module
lib/helpdesk/support.ex

resources do
 ...
 resource Helpdesk.Support.Representative
end
You may notice that if you don't add the resource to your domain, or if you don't add the belongs_to relationship, that you'll get helpful errors at compile time. Helpful compile time validations are a core concept of Ash as we really want to ensure that your application is valid.
Working with relationships
The simplest way to work with belongs to relationships is to allow directly editing the underlying id field.
managing relationships
There are a wide array of options when managing relationships, and we won't cover all of them here. See the Managing Relationships guide for more.
Add the assign action to allow us to assign a Ticket to a Representative.
lib/helpdesk/support/ticket.ex

update :assign do
 accept [:representative_id]
end
Let's try it out in our iex console!
Use recompile to pick up changes you've made to your code, or just restart your session.
recompile()
Open a Ticket
ticket = (
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "I can't find my hand!"})
 |> Ash.create!()
)
Create a Representative
representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Ash.create!()
)
Assign that Representative to the Ticket
ticket
|> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
|> Ash.update!()
What next?
What you've seen above barely scratches the surface of what Ash can do. In a lot of ways, it will look very similar to other tools that you've seen. If all that you ever used was the above, then realistically you won't see much benefit to using Ash.
Where Ash shines however, is all of the tools that can work with your resources. You have the ability to extend the framework yourself, and apply consistent design patterns that enable unparalleled efficiency, power and flexibility as your application grows.
Get Help
	Check out ElixirForum
	Join our Discord server
	Open a GitHub issue

Persist your data
See The AshPostgres getting started guide to see how to back your resources with Postgres.
This is highly recommended, as the Postgres data layer provides tons of advanced capabilities.
Add a web API
Check out AshJsonApi and AshGraphql extensions to build APIs around your resource
Authorize access and work with users
See AshAuthentication for setting up users and allowing them to
log in. It supports password, magic link, oauth (google, github, apple etc.) out of the box!
See the Policies guide for information on how to authorize access to your resources using actors and policies.
Clean up your code that uses Ash?
Creating and using changesets manually can be verbose, and they all look very similar. Luckily, Ash has your back and can help you build high quality interfaces for you!
Check out the Code Interface Guide to derive things like Helpdesk.Support.Ticket.assign!(representative.id)

 What is Ash?

Ash is an opinionated, declarative application framework that brings the batteries-included experience to Elixir. It shines when building web apps, APIs and services, but can be used for any kind of Elixir application. It integrates with the best that the Elixir ecoystem has to offer, often used with Phoenix and PostgreSQL, slotting directly into a standard Elixir codebase. Ash is built for velocity at day 1, but also for maintainability at year 5, a place where many frameworks and tools leave you high and dry.
Through its declarative extensibility, Ash delivers more than you'd expect: Powerful APIs with filtering/sorting/pagination/calculations/aggregations, pub/sub, authorization, rich introspection, GraphQL... It's what empowers this solo developer to build an ambitious ERP!
— Frank Dugan III, System Specialist, SunnyCor Inc.

At its heart, Ash is a framework for modeling your application's domain through Resources and their Actions. These are the fundamental abstractions that everything else builds upon.
Why Ash?
If you've ever built software professionally, you've almost certainly experienced one or more of the following:
The problem:
	Repetitive work - The same business logic scattered across our application
	Inconsistencies - Different parts of your app handling the same data differently
	Maintenance burden - Changing one thing requires updating five different places
	Knowledge silos - Each developer builds everything slightly differently, leading to inconsistencies and inefficiencies.

Ash's solution: Model your application's behavior first, as data, and derive everything else automatically. Ash resources center around actions that represent domain logic. Instead of exposing raw data models, you define meaningful operations like :publish_post, :approve_order, or :calculate_shipping_cost that encapsulate your business logic, validation, and authorization rules. This is coupled with a rich suite of extensions to fill the most common needs of Elixir applications.
Ash fills the gap that brings Phoenix up to feature parity with a batteries included framework like Django.
Ash Admin (Django admin), Ash Resource & Domain (Django models & ORM), AshJsonApi (Django REST Framework), Ash Authentication (Django Allauth), Ash Phoenix (Django Forms), Ash Policies (Django Permissions)
But you aren't required to use Phoenix with an Ash project. Ash will happily work as a standalone CLI, terminal app or some other Elixir web framework that comes out tomorrow.
Scott Woodall - Principal Software Engineer, Microsoft

Built for Flexibility
Ash was born out of the battle-scars from inflexible abstractions that eventually paint you into a corner. That's why Ash is designed with multi-tiered configurability and escape hatches all the way down. Instead of deciding that abstraction was bad, we decided that it just needed to be done better. Elixir & the BEAM have our backs, providing a solid foundation upon which to build high quality applications.
You're never locked out of custom behavior. Need to customize how an action works? Use preparations, changes, and validations. Need to override how data is fetched? Implement a manual action. Need to completely bypass Ash for a specific operation? Drop down to Ecto or raw SQL. Need to extend Ash itself? Use the same extension toolkit that powers AshPostgres and AshGraphql.
This isn't accidental - it's core to Ash's design. We provide powerful defaults that work for 80% of cases, extensive configuration options for the next 15%, and escape hatches for the remaining 5%. Your Ash application is just an Elixir application, so when you need to do something completely custom, Ash won't get in your way.
The framework acts as a spinal cord for your application: providing structure and coordination while allowing complete customization at every level.
Essential Context
Elixir Developers
Ash builds on the best of the Elixir ecosystem rather than replacing it. Ash leverages Ecto for database operations, Phoenix for web interfaces, Oban for background jobs, Absinthe for GraphQL, etc. Ash unifies all of this tooling and significantly simplifies and enhances they way you use them together.
Compile-time guarantees come from Ash's declarative nature - many errors that would be runtime failures in other frameworks become compile-time checks in Ash.
The ecosystem advantage: Instead of learning entirely new patterns, Ash enhances familiar Elixir concepts. Your existing knowledge of pattern matching, process supervision, and OTP principles all apply - Ash just provides structure and automation on top, acting as a spinal cord for your application.
Non-Elixir Developers
Elixir is a functional programming language built on the Erlang VM, known for fault-tolerance and concurrency. It's used by WhatsApp, Discord, and Pinterest for systems that need high availability. If you know Ruby or Python, think of Elixir as optimized specifically for distributed, concurrent systems.
Functional vs Object-Oriented: Unlike OOP frameworks, Elixir (and Ash) focus on transforming data through functions rather than encapsulating data in objects. This leads to more predictable, testable code.
Immutability means data doesn't change in-place - instead, you create new versions. This eliminates many common bugs around shared state and makes concurrent operations safer.
Actor Model Concurrency: Instead of threads and locks, Elixir uses lightweight processes (actors) that communicate via messages. This makes Ash naturally suited for high-concurrency applications.
Modules (defmodule) are Elixir's equivalent to classes/namespaces - they group related functions together. Unlike OOP classes, they don't hold state.
New Programmers
Programming languages like Elixir are tools for writing instructions that computers can follow. Elixir is specifically designed for building web applications that can handle lots of users at once.
Modules (the defmodule blocks you'll see) are containers that group related code together. Think of them like chapters in a book - each chapter covers a specific topic.
Business Leaders
Ash reduces software development costs by eliminating repetitive code. When your development team defines a business process once, Ash automatically generates the database structure, API endpoints, and user interfaces - work that normally requires separate specialists.
Faster time-to-market because features that typically take weeks can be built in days. Adding a new feature like "customer reviews" or "order tracking" requires defining the business rules once, rather than building separate systems for web, mobile, and internal tools.
Lower maintenance costs because changes to business rules automatically update all related systems. When you change how orders work, your database, APIs, and documentation stay synchronized without manual updates.
Reduced technical risk through built-in security, data validation, and error handling. Your team spends time building your competitive advantages instead of solving the same infrastructure problems every software company faces.
Developer productivity increases because the framework handles the "plumbing" while your team focuses on what makes your business unique. This means you need fewer developers to build the same functionality.
Eliminates technical debt through enforced consistency. When every part of your application follows the same patterns, there's no accumulation of "quick fixes" and inconsistent approaches that slow down future development and create maintenance headaches.
Faster developer onboarding because new team members learn one set of patterns that apply everywhere. Instead of each developer building things differently, Ash provides a shared vocabulary and approach that new hires can quickly understand and contribute to. Ash is still niche, so developers may not know it right out of the gate, but if you think of Ash as a replacement for your internal framework, which are universally poorly documented and hard to train on, you can see the benefit of Ash being an open source, well documented project with a strong community.
Resources and Actions: The Core Abstractions
The foremost abstraction in Ash is Actions - the things you can do in your domain like :create_user, :publish_post, :approve_order, or :calculate_shipping. These actions are organized into Resources that group related behaviors around domain concepts like User, Post, Order, or Invoice. Using resources, you can easily model actions, alongside the state that they operate on, or just actions in isolation.
These actions are introspectable and fully typed. This means the rest of your application (and extensions - add-on packages that enhance Ash) can automatically understand and build functionality around them. When you define a create action that accepts a :title string and :content text, extensions like AshGraphql can automatically generate GraphQL mutations, AshJsonApi can create REST endpoints, and AshPostgres can handle database persistence - all without additional configuration.
This declarative approach means your resources become the single source of truth for your entire application. Database schemas, API endpoints, authorization rules, state machines, background jobs, and more all stem directly from your resource definitions.
Beyond Simple CRUD
Ash is not a web framework, like Phoenix or Rails. It is a framework for building your application layer, independent of how it is exposed or consumed. It is not an alternative to frameworks like Phoenix, rather a complement to them.
Ash Framework enabled us to build a robust platform for delivering financial services using bitcoin. Ash proved itself to our team by handling innovative use cases with ease and it continues to evolve ahead of our growing list of needs.
— Yousef Janajri, CTO & Co-Founder, Coinbits

The intent behind Ash is not to have you building simple CRUD-style applications, although we do provide conveniences for these cases. The real power comes from defining rich, domain-specific actions with meaningful names like :publish_post, :approve_order, or :calculate_shipping. These actions encapsulate your business logic and can be composed, validated, authorized, and extended in powerful ways.
Model your domain, derive the rest
Ash derives significant portions of your application directly from your resources, with little to no effort required. This allows you to focus on what matters most: your business logic.
We leverage the best of the Elixir ecosystem under the hood, providing a single unified tool-chain for our users.
Community
Ash has a vibrant community of developers who contribute to the project, provide support, and share knowledge. Join us on Discord, ElixirForum and GitHub to contribute, ask questions, and stay updated on the latest developments.
Our community is one of the best features of Ash and you should use it. Lots of folks using Ash in production, with a shared mission of making better software.
I'm constantly blown away with the quality of work and support the Ash community has put into this project. It's gotten to the point that I can't imagine starting a new Elixir project that doesn't use Ash.
— Brett Kolodny, Full stack engineer, MEW

An Example: From Simple to Sophisticated
Introduction
If you're the "just show me the code" type, click through these tabs to see an example of evolving a blog post resource over time with Ash & its extensions to get a sense for how it works.
Don't worry about understanding all the code
You're not expected to understand every detail of the syntax - focus on the concepts and how it changes over time. If you want a gentler introduction, head over to the getting started guide.
Actions
lib/my_blog/blog.ex
defmodule MyBlog.Blog do
 use Ash.Domain

 resources do
 resource MyBlog.Blog.Post do
 # Defines the `analyze_text/1` function which calls
 # the action of the same name on the Post resource.
 define :analyze_text, args: [:text]
 end
 end
end

lib/my_blog/blog/post.ex
defmodule MyBlog.Blog.Post do
 use Ash.Resource

 actions do
 # Start with pure behavior - a simple action that processes text
 action :analyze_text, :map do
 argument :text, :string, allow_nil?: false

 run fn input, _context ->
 text = input.arguments.text
 words = String.split(text)

 analysis = %{
 word_count: length(words),
 character_count: String.length(text),
 estimated_reading_time: div(length(words), 200) + 1
 }

 {:ok, analysis}
 end
 end
 end
end
Notice how we have not defined any "state" here. A common misconception is that the purpose of Ash is to abstract state. Ash provides tons of useful features around state, but those are features on top of the core concept, which centers around typed actions.
{:ok, analysis} = MyBlog.Blog.analyze_text("This is some sample blog content to analyze.")
=> {:ok, %{word_count: 9, character_count: 49, estimated_reading_time: 1}}
Why not just write a regular function? You could write def analyze_text(text) and get the same result. But here's what the Ash action gives you that a function doesn't:
	Type safety - Arguments are automatically validated (try passing a number instead of string)
	Introspection - Other tools can discover this action exists and what it does
	Extensibility - You can add authorization, logging, or other behaviors later without changing callers
	API generation - Extensions can automatically expose this as a REST endpoint or GraphQL query
	Consistent interface - All actions work the same way, making your codebase predictable

The action is typed (it knows it takes a string and returns a map) and introspectable (your application can examine it at runtime). This means extensions can automatically understand and build on top of it.
You could stop here
You could stop at this step and still derive significant value from Ash. You wouldn't be
using it wrong. You can build your own custom state system under the hood, use Phoenix contexts,
call directly into Ecto, totally up to you.
Persistence
Now let's add state to support persistent storage, while keeping our existing behavior:
lib/my_blog/blog.ex
defmodule MyBlog.Blog do
 use Ash.Domain

 resources do
 resource MyBlog.Blog.Post do
 define :analyze_text, args: [:text]
 define :create_post, action: :create, args: [:title, :content]
 end
 end
end

lib/my_blog/blog/post.ex
defmodule MyBlog.Blog.Post do
 use Ash.Resource,
 domain: MyBlog.Blog,
 data_layer: AshPostgres.DataLayer # data_layer tells Ash where to store data

 postgres do
 table "posts"
 repo MyBlog.Repo
 end

 attributes do
 uuid_primary_key :id
 attribute :title, :string, allow_nil?: false, public?: true
 attribute :content, :string, public?: true
 attribute :status, :atom, constraints: [one_of: [:draft, :published]], default: :draft, public?: true

 create_timestamp :created_at, public?: true
 update_timestamp :updated_at, public?: true
 end

 actions do
 action :analyze_text, :map do
 argument :text, :string, allow_nil?: false

 run fn input, _context ->
 text = input.arguments.text
 words = String.split(text)

 analysis = %{
 word_count: length(words),
 character_count: String.length(text),
 estimated_reading_time: div(length(words), 200) + 1
 }

 {:ok, analysis}
 end
 end

 defaults [:read, :destroy, create: [:title, :content], update: [:title, :content, :status]]
 end
end
Now your resource combines behavior and state. The original analyze_text action still works, plus you can create and persist posts:
Behavior still works exactly the same
{:ok, analysis} = MyBlog.Blog.analyze_text("Some text to analyze")

Now we can also persist state
{:ok, post} = MyBlog.Blog.create_post("My First Post", "This is some content")
GraphQL
This is just one example of an API extension. We also have ash_json_api with more on the way.
Ash also comes with all the tools you need to build your own API extension.
Add to your domain
defmodule MyBlog.Blog do
 use Ash.Domain,
 extensions: [AshGraphql.Domain]

 graphql do
 queries do
 action MyApp.Blog.Post, :analyze_text, :analyze_text
 end

 mutations do
 create MyApp.Blog.Post, :create_post, :create
 end
 end

 # ... resources
end

Add to your resource
defmodule MyBlog.Blog.Post do
 use Ash.Resource,
 domain: MyBlog.Blog,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshGraphql.Resource]

 graphql do
 # you just tell us the name of the type
 # we can take care of the rest
 # there is deep configuration with plenty of escape hatches
 # for when you need something bespoke
 type :post
 end

 # ... rest of resource definition
end
Now you have a full GraphQL API with queries, mutations, and custom actions automatically generated from your resource definition.
That is actually all of the code you need to do it.
The ease of defining our domain model and configuring Ash to generate a powerful GraphQL API has been a game-changer. What used to be complex and time-consuming has become simplicity itself.
— Alan Heywood, CTO, HereTask

Encryption
Cloak is a powerful library for encrypting data at rest and in transit. Ash provides a first class extension that integrates with it directly.
defmodule MyBlog.Blog.Post do
 use Ash.Resource,
 domain: MyBlog.Blog,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshGraphql.Resource, AshCloak.Resource]

 cloak do
 vault MyBlog.Vault
 attributes [:content] # Encrypt the content attribute
 end

 # ... rest of resource definition
end
Your post content is now automatically encrypted at rest and decrypted when read, with no changes to your existing API or business logic.
State Machines
A state machine is a way to model the valid states for some piece of data. It allows you to define the states a record can be in, and the transitions between those states.
defmodule MyBlog.Blog.Post do
 use Ash.Resource,
 domain: MyBlog.Blog,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshGraphql.Resource, AshCloak.Resource, AshStateMachine]

 state_machine do
 initial_states [:draft]
 default_initial_state :draft

 transitions do
 transition :publish, from: :draft, to: :published
 transition :unpublish, from: :published, to: :draft
 end
 end

 actions do
 # ... same actions as before
 update :publish do
 change transition_state(:published)
 # ... additional custom logic on publish
 end

 update :unpublish do
 change transition_state(:draft)
 # ... additional custom logic on publish
 end
 end

 # ... rest of resource definition
end
Now your posts have a proper state machine with transition actions, state validation, and automatic GraphQL mutations for state changes.
The Ash Advantage
This example demonstrates Ash's core philosophy: Model your domain, derive the rest. Notice how:
	The resource definition remained largely unchanged as we added each extension
	Each extension automatically understood and enhanced the existing actions
	Complex functionality (encryption, state machines, APIs) required minimal configuration
	Everything remains introspectable and type-safe
	Your business logic stays focused on the domain, not infrastructure concerns
	These extensions are built with the same suite of tools we provide to the user for extending Ash.
Those using Ash will often end up crafting their own extensions, making the framework truly their own.

Extensions work together seamlessly because they all operate on the same well-defined resource and action abstractions. In the example above, we went from a single action to a full-featured system with database persistence, GraphQL API, encryption, and state management - by adding configuration, not writing code.
The productivity gain is measurable: What normally requires separate database migration files, API endpoint definitions, validation logic, GraphQL schema files, and state management code becomes a single, cohesive resource definition that stays automatically synchronized.

 Design Principles

The design principles behind Ash allows us to build an extremely flexible and powerful set of tools, without locking users into specific choices at any level. The framework acts as a spinal cord for your application, with extension points at every level to allow for custom behavior. What follows are the core tenets behind Ash Framework.
Anything, not Everything
"Anything, not Everything" means building a framework capable of doing anything, not providing a framework that already does everything. The first is possible, the second is not. Our primary goal is to provide a framework that unlocks potential, and frees developers to work on the things that make their application special.
To this end, there are many prebuilt extensions to use, but there is also a rich suite of tools to build your own extensions. In this way, you can make the framework work for you, instead of struggling to fit your application to a strictly prescribed pattern. Use as much of Ash as you can, and leverage the amazing Elixir ecosystem for everything else.
Declarative, Introspectable, Derivable
The real superpower behind Ash is the declarative design pattern. All behavior is driven by explicit, static declarations. A resource, for example, is really just a configuration file. On its own it does nothing. It is provided to code that reads that configuration and acts accordingly.
You can read more about some simple declarative design patterns outside of the context of Ash Framework in An Incremental Approach to Declarative Design.
Configuration over Convention
While convention has value, we believe that explicit configuration ultimately leads to more discoverable, maintainable and flexible applications than a convention driven approach. This means that we never do things like assume that files with a given name are a certain type of thing, or that because a file is in a certain location, it should perform a specific function.
Pragmatism First
While Ash does have lofty goals and a roadmap, the priority for development is always what the current users of Ash need or are having trouble with. We focus on simple, pragmatic, and integrated solutions that meld well with the rest of the framework.
A high priority is placed on ensuring that our users don't experience feature whip-lash due to poorly thought out implementations, and that any breaking changes (a rare occurrence) have a clean and simple upgrade path. This is something made much easier by the declarative pattern.
Community
The Ash community comes together and collaborates to make sure that we can all build our software quickly, effectively and in a way that will age gracefully. We have a strict code of conduct, and love working with people of any experience level or background. To experience this first-hand, participate on ElixirForum or join our discord!
Domain Driven Design?
 Ash is not a Domain Driven Design framework, if we're talking about "proper" Domain Driven Design as it is taught and discussed today. Domain Driven Design comes with a considerable amount of baggage and unnecessary complexity. While we identify with the goals of Domain Driven Design, we believe that a simpler approach is more effective, and that much of what DDD teaches are actually implementation details, and not design concepts. If the name wasn't taken, we would surely have claimed it for ourselves. If you must have a similar term for Ash, consider it a "Resource-oriented, Declarative Design Application Framework".

 Contributing to Ash

Welcome!
We are delighted to have anyone contribute to Ash, regardless of their skill level or background. We welcome contributions both large and small, from typos and documentation improvements, to bug fixes and features. There is a place for everyone's contribution here. Check the issue tracker or join the ElixirForum/discord server to see how you can help! Make sure to read the rules below as well.
Contributing to Documentation
Documentation contributions are one of the most valuable kinds of contributions you can make! Good documentation helps everyone in the community understand and use Ash more effectively.
Protocol for Documentation Improvements
We prefer Pull Requests over issues for documentation improvements. Here's why and how:
	Make a PR directly - This is the preferred approach! Even if you're not 100% sure about your changes, submitting a PR with your suggested improvement is much more helpful than opening an issue to discuss it.
	PRs represent tangible suggestions - They're easy to review, approve, reject, or modify. We can see exactly what you're proposing and act on it quickly.
	Issues are okay too - If you're really unsure or want to discuss a larger documentation restructuring, you can open an issue first. But for most cases, just make the PR!
	Don't worry about rejection - If a PR doesn't fit or needs changes, we'll provide feedback or close it with explanation. This is much more efficient than back-and-forth discussion in issues.

Making Documentation Changes
The best way to contribute to documentation is often through GitHub's web interface, which allows you to make changes without having to clone the code locally:
For Guides:
	While viewing any guide on the documentation website, look for the </> button in the top right of the page
	Clicking this button will take you directly to GitHub's editing interface for that file

[image: Guide Edit Button]
For Module Documentation:
	When viewing module documentation, the </> button will also be in the top right of the page

For Function Documentation:
	When viewing individual functions, you'll find the </> button next to the function header

[image: Function Edit Button]
Once you click the </> button, GitHub will:
	Fork the repository for you (if you haven't already)
	Open the file in GitHub's web editor
	Allow you to make your changes directly in the browser
	Help you create a pull request with your improvements

This workflow makes it incredibly easy to fix typos, clarify explanations, add examples, or improve any part of the documentation you encounter while using Ash.
Important Note About DSL Documentation
DSL documentation cannot be edited directly on GitHub. The documentation you see for DSL options (like those for Ash.Resource, Ash.Domain, etc.) is generated from the source code of the DSL definition modules.
For example, if you want to improve documentation for Ash.Resource options, you need to edit the source code in the Ash.Resource.Dsl module, not the generated documentation files. The DSL documentation is automatically generated from the @doc attributes and option definitions in these modules.
To find the right module to edit:
	For Ash.Resource DSL docs → edit lib/ash/resource/dsl.ex
	For Ash.Domain DSL docs → edit lib/ash/domain/dsl.ex
	And so on for other DSL modules

When making DSL documentation improvements, make sure to:
	Edit the appropriate DSL definition module (not generated docs)
	Test that your changes generate correctly by running mix docs

Rules
	We have a zero tolerance policy for failure to abide by our code of conduct. It is very standard, but please make sure
you have read it.
	Issues may be opened to propose new ideas, to ask questions, or to file bugs.
	Before working on a feature, please talk to the core team/the rest of the community via a proposal. We are
building something that needs to be cohesive and well thought out across all use cases. Our top priority is
supporting real life use cases like yours, but we have to make sure that we do that in a sustainable way. The
best compromise there is to make sure that discussions are centered around the use case for a feature, rather
than the proposed feature itself.
	Before starting work, please comment on the issue and/or ask in the discord if anyone is handling an issue. Be aware that if you've commented on an issue that you'd like to tackle it, but no one can reach you and/or demand/need arises sooner, it may still need to be done before you have a chance to finish. However, we will make all efforts to allow you to finish anything you claim.

Local Development & Testing
Setting Up Your Development Environment
	Fork and clone the repository:
git clone https://github.com/your-username/ash.git
cd ash

	Install dependencies:
mix deps.get

	Compile the project:
mix compile

Running Tests and Checks
Before submitting any pull request, please run the full test suite and quality checks locally:
mix check

This command runs a comprehensive suite of checks including:
	Compilation
	Tests
	Code formatting (via spark.formatter)
	Credo (static code analysis)
	Dialyzer (type checking)
	Documentation generation and validation
	Sobelow (security analysis)
	And other quality checks

You can also run individual checks:
	mix test - Run the test suite
	mix format - Format code
	mix credo - Run static analysis
	mix dialyzer - Run type checking
	mix docs - Generate documentation

Testing Ash with Your Application
If you want to test your Ash changes with your own application, you can use Ash as a local dependency. In your application's mix.exs, replace the hex dependency with a path dependency:
defp deps do
 [
 # Replace this:
 # {:ash, "~> 3.0"}

 # With this (adjust path as needed):
 {:ash, path: "../ash"},

 # Your other dependencies...
]
end
Then run:
mix deps.get
mix compile

This allows you to:
	Test your changes against real-world usage
	Verify that your changes don't break existing functionality
	Develop features iteratively with immediate feedback

Testing in your own application is not sufficient, you must also include automated tests.
Development Workflow
	Create a feature branch:
git checkout -b feature/your-feature-name

	Make your changes and write tests

	Run the full check suite:
mix check

	Commit your changes:
git add .
git commit -m "Add feature description"

	Push and create a pull request

Common Development Tasks
	Generate documentation: mix docs
	Run tests in watch mode: mix test.watch
	Check formatting: mix format --check-formatted
	Run specific test file: mix test test/path/to/test_file.exs
	Run tests with coverage: mix test --cover

 Alternatives

There aren't really any alternatives to Ash that we are aware of that do all of the same things, but there are many different packages out there that do some of the things that Ash does.
This is a living document, and is not comprehensive. We are not vouching for any of these packages, but rather listing them here for your convenience to investigate on your own.
Want to add or edit this list? Open a pull request. Want a more comprehensive list? Check out the Awesome Elixir.
Application Frameworks
These frameworks have similar overarching goals of helping you build your application layer.
	Commanded - An event sourced application framework.
	Sleeky - Billed as a lightweight alternative to Ash. Inspired by Ash, but more tightly built on top of ecto.

Application Design
	Boundary - A library for defining boundaries in your application.
	Phoenix Contexts - Phoenix ships with a concept called "contexts", which provide some generators with application design guidance.

Building APIs
	Absinthe - A GraphQL toolkit for Elixir. This is what AshGraphql uses under the hood, but you can also use Absinthe directly.
	Phoenix - Phoenix is a web framework for Elixir. It is not necessarily an API framework, but has all the tools you need to build APIs by hand.
	JSONAPI Elixir - A library for building JSONAPI compliant APIs in Elixir on top of Ecto.
	Open API Spex - A library for generating OpenAPI (Swagger) documentation for your API. We generate these for you in AshJsonApi, but you can use this library to build open api specifications of your hand-written API

Working with Data
	Ecto - Ecto is a database wrapper and query generator for Elixir. In many cases, Ash uses Ecto under the hood, but it is also available to build on top of directly.
	Flop - A library designed to easily apply filtering, ordering, and pagination to Ecto queries.

Authentication
	mix phx.gen.auth - A mix task that generates authentication for a Phoenix application. Some folks prefer to use this over AshAuthentication even if they are using Ash.
	Assent - Multi-provider authentication framework.

Authorization
	Bodyguard - A phoenix-context-based policy authorization framework.

Validation
	Ecto - Ecto can be used to validate data at the edge, using things like schema-less changesets.
	Drops - a collection of small modules that provide useful extensions and functions that can be used to work with data effectively.
	GuardedStruct - validation, sanitization, and construction of structs, supporting nested structs.

 Changelog

v3.5.22 (2025-06-18)
Bug Fixes:
	template opts in conditions in atomic changes by @zachdaniel

	properly detect existing timestamp attributes in igniter tasks by @zachdaniel

Improvements:
	improve message for --dev migrations message by @zachdaniel

	add mix ash command by @zachdaniel

	handle changes to nil for unknown attribute values by @zachdaniel

v3.5.21 (2025-06-16)
Bug Fixes:
	support read actions and arguments in Ash.Generator.action_input/3 (#2137) by @barnabasJ

	combination_of typespec (#2135) by @barnabasJ

Improvements:
	allow update_query when expr_error is nto supported by @zachdaniel

	only require atomicity when update_query and expr_error supported by @zachdaniel

	make installer avoid protocol consolidation by @zachdaniel

v3.5.20 (2025-06-13)
Bug Fixes:
	support private_arguments in code interface and bulk actions (#2133) by @barnabasJ
	combination_of typespec (#2135) by @barnabasJ

v3.5.19 (2025-06-12)
Bug Fixes:
	bad pattern match in query inspect logic by @zachdaniel

v3.5.18 (2025-06-11)
Improvements:
	support regexes in match constraint/validation again by @zachdaniel

v3.5.17 (2025-06-10)
Bug Fixes:
	set_tenant on combination query (#2123) by @barnabasJ

v3.5.16 (2025-06-10)
Bug Fixes:
	ensure context is properly threaded through bulk update/atomic upgrades by @zachdaniel

	ensure actor: nil key is retained on scope to opts by @zachdaniel

	ensure stream_batch_size is properly set to batch_size on stream by @zachdaniel

	set batch size option when streaming by @zachdaniel

	keep union types in order by @zachdaniel

	resolve accidentally backwards incompatible inspect implementation by @zachdaniel

	better error message on mismatch action types in changesets by @zachdaniel

	add clause in Ash.Type.String.match/1 to handle the OTP 28 regex tuples (#2119) by Simon Bergström

	underlying ecto type casting should use coercion, not cast_input by @zachdaniel

	make decimal type less strict by @zachdaniel

	Fix typespecs for Ash.get! and Ash.load! (#2117) by Moxley Stratton

	implement Scope.to_opts for policy authorizer by @zachdaniel

	simplify relationship loading, to prevent losing set query info by @zachdaniel

	typo in Ash.Error.Framework module (#2108) by Samuel Wrenn

	ash.gen.validation generates invalid callback (#2103) by KasparKipp

Improvements:
	show action when inspecting query by @zachdaniel

	add assert_stripped test helper (#2107) by Samuel Wrenn

	fix misleading value in invalid attribute error by @zachdaniel

	better error message on unexpected argument inputs to code interfaces (#2102) by Abhishek Tripathi

v3.5.15 (2025-06-04)
Bug Fixes:
	only override bulk options if method is :id in code interfaces

	handle missing primary keys more explicitly, and gracefully

	Omit nil values in Ash.Scope.to_opts/2 (#2088)

	Correct error message, example and doc for match constraint. (#2086)

	handle context opt in Ash.calculate/2 (#2083)

Improvements:
	put meta and relationships at the end when inspecting (#2096)

	usage-rules: Add more guidance around codegen. (#2100)

	update usage rules (#2095)

v3.5.14 (2025-06-01)
Bug Fixes:
	ensure the proper dependency on igniter

	ensure map module loaded when calling it

	raise if integer primary key is not supplied in ETS (#2079)

v3.5.13 (2025-05-30)
OTP 28 Compatibility
Ash.Type.String, Ash.Type.CiString and the built in match validation all now warn on the use
of regexes. OTP 28 no longer supports building regexes at compile time. The warning will explain.
Notable Features
	:shared context key is now automatically passed down to child actions. See the actions guide for more information.

	add Ash.Scope, mirroring the Phoenix pattern, and extend that to all Ash callback contexts. See Ash.Scope for more. (#2050)

Bug Fixes:
	[Ash.Query] Allow non-list input to skip_unknown_inputs opt of query (#2074)

	[Ash.Query] handle single tuple & string values in sort

	[Ash.Query] use proper read action calls when building aggregates

	[Ash.Generator] don't generate values for attributes that are writable?: false and generated?: true

	[:embedded resources] ensure we detect all cases where embedded attributes can't be atomically updated

	[Ash.Type.NewType] fix issue with expanding constraints for lazy initialized new types

	[Ash.Changeset] properly pass tenant in bulk_update to managed_relationships (#2061)

Improvements:
	[mix ash.codegen] add Ash.Error.Framework.PendingCodegen error, used for the new AshPhoenix.Plug.CheckCodegenStatus plug

	[Ash.Generator] support upsert/upsert_identity in changeset generator

	[usage-rules.md] Improve LLM rules in usage-rules.md. See usage_rules for more.

	[Ash.Type.Decimal] - Add precision and scale constraints.

v3.5.12 (2025-05-22)
Features:
	add duration type, functions and operator support (#2036)

Bug Fixes:
	properly split lazy & non-lazy new type initialization

	Ash.Reactor: Don't import Ash.Expr in the bulk update DSL. (#2055)

	don't lift query info to aggregate info on aggregation

	ensure managed relationship context is kept for belongs_to relationships

Improvements:
	Support manage relationship debug (#2021)

	add strict_load key to Ash.Query.build

	Add an Ash.OptionsHelpers.calculation_type/0 (#2051)

v3.5.11 (2025-05-20)
Bug Fixes:
	ensure we fully initialize new types

	Tuple loader and serializer (#2049)

	make sure after_action is called in generate_many (#2047)

	properly pass select into combinations

	add_new_code_interface/5 when do block occurs after resource (#2020)

Improvements:
	add experimental new tool Ash.data_layer_query

v3.5.10 (2025-05-15)
Bug Fixes:
	ensure field policies are logged on success

	various additional fixes for bulk action input ordering

	Fix batch order of bulk_create (#2027)

	make lazy_init? a callback so it can be checked on new types

	don't raise error when no policies apply to request

	ensure tenant is set on bulk created records.

	don't try to cast input before cast atomic

	properly prevent embedded attribute updates in atomics

	preserve validation messages in non-atomic-bulk-update validations

	add types for times operator

	properly handle pre-expanded newtype constraints

	shortcircuit queries properly

	only print topic if present (#2013)

Improvements:
	support :time_usec (#2023)

	support limit on has_many relationships (#2016)

v3.5.9 (2025-05-06)
Bug Fixes:
	shortcircuit queries properly

	ensure that context is set on authorizers in nested field policies

	accept private_arguments option in the same way as defaults in generators

	handle case where atomic change isn't cleared when converted to static

	handle case where atomic condition isn't applied to generated validations

Improvements:
	normalize authorizer context in more locations

	aggressively prune ets logs while retaining important info

	combination queries (#2009)

v3.5.8 (2025-04-30)
Bug Fixes:
	handle nil type or invalid types more gracefully in type determination

	properly type expressions based on return values

Improvements:
	add rem/2 expr (#2004)

	add Ash.Info for general application information

v3.5.7 (2025-04-29)
Bug Fixes:
	Accept field opt in query aggregate (#2001)

	only return the changeset (#2003)

	expand types when typing expressions

	Allow soft-deleting of many-to-many relationships (#1999)

	properly show timeout errors on read transactions

	handle values that generate as nil in map generators

	sort lazy loaded records post-linking

	properly attach nested transient calculation dependencies

	be more lax with lazy_init? newtypes

	properly return subtype constraints on constraint call

	handle error cases in atomic changesets better

	CodeInterface: logic error in get_by code interfaces. (#1961)

	CodeInterface: logic error in get_by code interfaces.

	crash when sorting by aggregates with non-attribute field (#1986)

	handle atomic conditions on {:atomic, ...} changes

	ensure data layer is loaded before using function_exported?/3

	ensure that bulk callbacks are only called when appropriate

	properly update belongs_to records on relate_and_update

Improvements:
	Skip reading query for filter false (#2002)

	generator for union types

	Add various DSL options for inspecting resources

	hide calculations and aggregates when empty

	hide calculation dep calculations while inspecting

	Raise an ArgumentError when generating a changeset using a non-existent action (#1992)

	add :tuple builtin type

	set changeset.load on bulk destroy actions

	return the error when atomically cascade destroying

	add a description to map/keyword/struct types

	Remove duplicate impl of default policy functions (#1985)

	eagerly expand aggregates in Ash.aggregate

	accept context option in generic action code interfaces

v3.5.6 (2025-04-15)
Bug Fixes:
	properly deduplicate on lazy relationship loading

	use correct exceptions and add missing fields to them (#1960)

	undo incorrect change to trimmed string casting

Improvements:
	add :__skip__ value to seed

	Allow update action types in Ash.Generator.generate (#1967)

v3.5.5 (2025-04-14)
Bug Fixes:
	don't trim strings when trim?: false is set

	remove flawed optimization about is_nil: false

	properly evaluate ci_string concatenation in Elixir

	don't validate types in gen.resource task.

Improvements:
	add calculation tools to Ash.Resource.Igniter

	support a load option on changeset building

v3.5.4 (2025-04-10)
Bug Fixes:
	ensure after hooks force return_records on bulk update/destroy

	add action to changeset for opts fetching in bulk create

	avoid coercion of datetime to date in start_of_day function (#1958)

	incorrect start_of_day value when timezone specified

v3.5.3 (2025-04-09)
Bug Fixes:
	avoid defining default actions when actions w/ that name exist

	use the notification logic from bulk update in create (#1951)

	honor stream_options in read code interfaces

	Fix filtering with aggregates refers calculation error (#1954)

	properly provide the changeset to after action hooks

	set calculation context in Ash.can

	honor :* in skip_unknown_inputs in generic actions

	honor action's skip_unknown_inputs in generic actions

	set accessfrom in cascade<update/destroy> (#1948)

	maintain order of enum values (#1942)

	carry context around to nested calculations better

	fill templates in more necessary places

	set tenant when building query in managed_relationships

Improvements:
	optimize args handling in code interfaces

	tasks for generating custom modules (#1940)

v3.5.2 (2025-03-31)
Bug Fixes:
	match errors on cascade destroy/update

	handle templated opts in bulk update after batch results

	support refs and args option for define_calculation

	don't cast arbitrary maps to structs in struct type

Improvements:
	add default_sort on relationships and queries (#1928)

	new type recursive validation (#1913)

	task for generating custom changes module (#1926)

	better error on case in ash expressions (#1927)

	helpful error on incorrectly implemented change modules

	support custom_inputs in code interfaces

	Ash.Type.Enum - Add optional description and label value â�¦ (#1925)

	support exclude_inputs for define_calculation

	add exclude_inputs to code interface definitions

	fix hint for read/generic actions in NoSuchInput

v3.5.1 (2025-03-27)
Bug Fixes:
	when reading a record to simulate an update, merge with data

	more consistent error messaging from present validation

	can't atomically update a query w/ after_action hooks

Improvements:
	add Ash.transaction(resources, func, opts) (#1914)

	set query_for context on queries

v3.5.0 (2025-03-26)
Bug Fixes:
	don't set accessing_from on lookups for managed relationships

This may be a breaking change for some cases, but ultimately we
felt it was too confusing to leave as it was. The semantics of
accessing_from meant that "all actions done as part of manage_relationship
were allowed to be performed. This was the intended design, but made it easy
to implement an authorization related bug. Specifcaly, the on_lookup behavior
would set that context as well, potentially allowing a user to relate something
to a resource that you did not intend them to be able to see.
Improvements:
	add tenant() filter template expression (#1909)

	Ash.Domain.Igniter.add_new_code_interface/5

	add unsafe_to_atom? constraint for Ash.Type.Atom

	support expr(exists(relation)) (#1912)

v3.4.73 (2025-03-25)
Bug Fixes:
	use attribute names, not structs, for retaining ets update attrs

	supply reactor with nil values for non-supplied arguments

v3.4.72 (2025-03-25)
Bug Fixes:
	retain loaded fields on ETS data layer update

	Fixes processing of manual bulk actions, with tests. (#1903)

	Ensure batch_size is correctly set, return values are nil if not requested.

	batch_size cond statement, fix batch -> changeset typo.

	ensure consistent bulk result for return_records? and return_errors? types.

	add action to base query if not present

	update spark to get missing builders in spark.formatter

	handle tenancy for built query in cascade destroy/update

	Improve processing of manual actions during bulk operations (#1883)

Improvements:
	attach a limit to related queries if from_many?: true

	support atomic actions in can_ code interfaces

	import the :reactor dep in .formatter.exs on install

	maps,structs,keywords can be atomically updated

	support anonymous functions in error_handler option

v3.4.71 (2025-03-21)
Bug Fixes:
	prefer new loads when loading relationships

	put notifications in process context when inside an action

	consider query tenant when validating aggregate multitenancy

	update Validations.ActionIs to accept atom or list(atom) (#1893)

Improvements:
	set bulk_actions_default_to_errors? to true in installer

v3.4.70 (2025-03-20)
Bug Fixes:
	compose get_by and action filters properly

	fields could be nil on exceptions

	apply runtime supplied loads over top of action loads

	return records from bulk soft destroy if requested (#1884)

	ensure error classes are used in code interfaces

Improvements:
	validate multitenancy earlier in bulk actions

	initialize all types properly at compile time

v3.4.69 (2025-03-18)
Bug Fixes:
	apply strict load in Ash.get properly (#1881)

	honor tenant in Ash.Seed.update!

	pattern match error in bulk result

	match on {:not_atomic pattern in update actions

	fix typo: atomcis -> atomics

	properly evaluate Exists{} expressions in runtime filter

	Fix upsert identity type error (#1872)

	Fix bulk_create for manual create actions with bulk_create/3 (#1869)

	ensure loading maps & structs properly load as keyword

	make the --example installer flag idempotent

	don't add tenant attribute for all_tenant? identities upsert keys

	handle case clause error in Ash.Filter

	validate return type of Ash.Resource.Calculation.init/1

	make lazy_init work on NewTypes

	properly parse maps with tuple values in filter parser

	dump values to native storage type when doing atomic upgrades

	fix required error deduplication logic

	undo breaking change, use primary read action loads in Ash.load!

	don't derive fields for resources in map types

	make sequence unshrinkable in generators

	properly handle bulk soft destroy (#1854)

Improvements:
	support a resource & attrs tuple in seed_generator

	allow is_equal and is_not_equal for compare validation (#1853)

	return errors and stop on errors by default in bulk actions

	add config to do read after_action hooks in order

	add compile flag requiring atomic for default actions

	types support atomic update by default for non-expr values

	add actions.read.pagination.stable_sort customization

	support inferring struct types from a resource

	show value in match validation errors

	disambiguation message on NoSuchFunction

v3.4.68 (2025-03-11)
Bug Fixes:
	init nested types in map/keyword/struct types

	properly handle change with where validations in bulk (#1843)

	properly construct parent_stack for loaded relationships

	update context tenant from changeset for each change (#1837)

Improvements:
	allow manual reads return full_count for pagination

	validate action types in Ash functions

v3.4.67 (2025-03-04)
Bug Fixes:
	Pass tenant option when seeding resource given by the generator (#1834)

v3.4.66 (2025-03-03)
Bug Fixes:
	handle unparseable relationship sorts & single atom sorts

	don't allow modifying changeset with atomic conditions

	don't prevent changing values to nil when original data is not available

	propagate invalid reference error when adding calc context to sort (#1827)

	ensure that we don't try to compare not loaded or forbidden values

	use filter not filters in stale record error

Improvements:
	add touching? option to changing validation

	don't show required errors for fields with other errors

	validate aggregate multitenancy

	ignore action-defined loads when using Ash.load

v3.4.65 (2025-02-25)
Bug Fixes:
	properly enumerate :_pkey in notifier

	Always rollback input.resource when running generic actions. (#1817)

	fix case where batch before/after action callbacks could be skipped

	return NotFound error in proper cases on bulk interfaces

	don't eagerly return records on bulk update/destroys

	ensure actor templates are hydrated for aggregates

	properly use operator overloads for evaluating operators at runtime

	Missing case clause for bulk update/destroy with get?: true in interface (#1806)

	always run update filter on skipped updates

	don't change update defaults unless something changes

Improvements:
	better parent resource tracking in expressions

	Generic actions to raise if they don't have return type but have an return value (#1805)

v3.4.64 (2025-02-17)
Bug Fixes:
	use undo action in generic action undo

	handle generic actions with no return

	ensure atomic set_attribute behaves the same as non-atomic

	Missing actor on aggregate resource call (#1796)

	Missing actor on aggregate call (#1793)

Improvements:
	support receiving the inputs when undoing generic actions

	simplify & unify sort/sort_input logic

	support related sorts everywhere (not just sort_input)

	add field names to identities (#1786)

v3.4.63 (2025-02-11)
Bug Fixes:
	set read_after_writes to true if generated

	type cast errors w/ floats & vectors

	handle case clause error in filters

	don't return invalid type from vector type

	don't double process string interpolation expressions

	Include warning for arguments only when 'things' are arguments (#1785)

	empty bulk create inputs must still return a stream

	don't use authorize_with: :error on data layers that can't do it

	pass tenant to load in cascade destroy (#1775)

	add tenant to load in cascade update (#1773)

	raise errors on partial_success results in bulk actions

	add reuse_values? opt to Ash.can and disable it automatically

	compile Ash.PlugHelpers even without Plug available

	expand opts when using calculate/3

	handle base resources in ash.extend

	type system warning on apps w/o solvers

	Fix no read action exception for through relationship (#1750)

	always recompile domain on resource changes

	fix handling of generic action returns with transaction enabled (#1758)

	type struct handle instance of return error tuple (#1756)

	Compilation failure when using the ash_step Reactor DSL. (#1753)

	pass authorize? option to bulk_create in Ash.Generator.generate_many/2

Improvements:
	Add string_position expression (#1782)

	add dimensions to vector type

	add filter & transform options for pubsub notifier

	verify pub_sub actions at compile time

	more clean boolean filter optimization for or ==

	add reuse_values? option for calculate!

	prefer calculate/3 when reusing values

	add Ash.Type.coerce/2 callback

v3.4.62 (2025-01-31)
Bug Fixes:
	[Ash.Changeset] always start transactions when managing relationships

	[Ash.Changeset] handle parent in rel in managed belongs to (#1746)

v3.4.61 (2025-01-31)
Bug Fixes:
	[Ash.Generator] don't prevent setting manage_relationship inputs in generators

	[Ash.Reactor] Fix referring to outer steps and inputs in transaction steps. (#1741)

	[Ash.Expr] always return utc timestamp as result of start_of_day

	[Ash.Resource.Change.CascadeDestroy] support after_action? option on cascade destroys & better error when it should be used (#1734)

Improvements:
	[Ash.Resource] warning on args, preparations or filters on primary reads

	[Ash.Reactor] Support guards in Ash.Reactor steps. (#1739)

	[mix ash.extend] use ash.extend and use it instead of ash.patch.extend

v3.4.60 (2025-01-27)
Bug Fixes:
	[Ash.Expr] traverse custom expressions when listing refs

v3.4.59 (2025-01-27)
Bug Fixes:
	[Ash.Query] better placed validations of aggregate support for data layers

v3.4.58 (2025-01-26)
Bug Fixes:
	[Ash.Query.Aggregate] properly check query aggregate support

Improvements:
	[Ash] support authorize_with option in Ash.get (#1732)

v3.4.57 (2025-01-23)
Bug Fixes:
	[Ash.Resource.Validation.Compare] ensure compare validation doesn't put functions in exceptions

3.4.56 (2025-01-21)
Bug Fixes:
	[Ash] don't use JSON due to library compatibility issues

	[Ash.Changeset] matching in managed_relationships handle_update (#1719)

	[Ash.Query.Calculation] properly load doubly nested calculation's explicit dependencies

	[Ash.Query.Calculation] handle related non-expr calculations referenced from expr calcs

	[Ash.Query.Calculation] simplify and fix path generation for nested relationship path deps

	[Ash] don't require multitenancy attribute in get (#1716)

Improvements:
	[Ash.Changeset] make atomics work even if expr err is not supported (#1718)

	[Ash.Query] support error shorthand for Ash.Query.add_error/2-3

	[Ash.Generator] add uses option for changeset_generator

	[Ash.Generator] add uses option for seed_generator

	[Ash.Changeset] Use clearer error message for match validation atomic errors (#1721)

	[Ash.Type] Add autogenerate_enabled? to Ash.Type for Ecto compatibility (#1715)

	[Ash.Policy.Authorizer] warn when domain policies would be ignored by resources

	[Ash.Domain] allow policy authorizer to be in authorizers key in domains

v3.4.55 (2025-01-13)
Bug Fixes:
	[code interfaces] ensure can_* code interfaces pass arguments to actions

	[Ash] case clause error in Ash.can?

	[Ash] reset ash_started_transaction? on bulk create

	[Ash.Generator] handle embedded attributes in attribute generator

	[Ash.Generator] Fix typo in skipped import name (#1704)

	[Ash.Generator] set max_concurrency to 0 for generate_many

	[Ash.Generator] ensure that once and sequence behave predictably across tests

Improvements:
	[Ash.Changeset] destroy missing records first in manage_relationship

	[Ash.Expr] add start_of_day function

	[Ash.Type.DateTime] add cast_dates_as constraint to Ash.Type.DateTime

v3.4.54 (2025-01-09)
Bug Fixes:
	[Ash.Generator] Fix issues in Ash.Generator.generate_many/2 (#1703)

	[Ash.Generator] Don't error if no after_action is provided to generate_many

	[Ash.Generator] Reuse the changeset actor when calling bulk_create

Improvements:
	[Ash.Generator] run notifications for generators

	[Ash.Changeset] order_is_key option for sorted relationships

v3.4.53 (2025-01-08)
Bug Fixes:
	[Ash.Generator] properly delegate and handle conflicts in Ash.Generator

	[Ash.Generator] Replace calls to create and create_many with generate and generate_many (#1701)

	[calculations] use nested calculation dependencies from expr if not in expression

	[Ash.Changeset] pattern match error on expression parse failure

	[Ash.Test.Resource.Validation.StringLengthTest] handle string_length on arguments when atomic

v3.4.52 (2025-01-06)
Bug Fixes:
	[Ash.Type.Map] handle keyword errors from map field type casting

	[mix ash.gen.resource] ensure extensions & subjects args are unique

Improvements:
	[ash.gen.resource] validate that names given to ash.gen.resource

	[Ash.Generator] add Ash.Generator.changeset_generator/3

	[Ash.Generator] add Ash.Generator.seed_generator/2

	[Ash.Generator] only use known keys in generators in Ash.Generator

	[Ash] support after_action option to Ash.bulk_create

	[mix ash.install] set yes_to_deps when fetching dependencies

	[Ash.Query] better error message on non-resource in Ash.Query.new/2

	[Ash.bulk_destroy] handle limited bulk destroys from streams

	[Code interfaces] bulk actions use full_read from code interfaces given ids

	[Code Interfaces] set limit in code interface to update or destroy one thing

v3.4.51 (2025-01-03)
Bug Fixes:
	[Ash.Resource] handle ambiguous case of empty params in code interfaces (#1694)

	[Ash.Changeset] discard manage_relationships added inside changes on atomic upgrade

v3.4.50 (2025-01-01)
Bug Fixes:
	[Ash.DataLayer.Ets, Ash.DataLayer.Mnesia] properly handle aggregate defaults in ets/mnesia (#1684)

	[Ash.Resource.Validation.Changing] use context message instead of default if provided in changing validation (#1677)

	[Ash.Changeset] ensure that changed? context is set to true for atomics

	[Ash] properly match on return_query? option, avoid raised pattern match error

	[Ash.Policy.Authorizer] ensure that old config applies all aggregate policies

Improvements:
	[Ash.Generator] add Ash.Generator.once/2

	[Ash.Type.Map, Ash.Type.Keyword, Ash.Type.Struct] define generate/1 callback for maps, structs, keywords

	[Ash] add data_layer? option to Ash.calculate/3

	[Ash.Resource] Add default code interface options (#1681)

	[Ash.Resource] add allow_forbidden_field? option to relationships

	[Ash.Resource] add authorize_read_with option to relationships

	[Ash] support default option in Ash.first (#1683)

	[Ash.Notifier.PubSub] allow exclusion of certain actions from publish_all (#1680)

	[mix igniter.install ash] no prompt about SAT solver unless user is on windows

	[Ash.Domain] add otp_app option to use Ash.Domain

		[Ash] add support for strict? in read options (#1669)

v3.4.49 (2024-12-22)
Improvements:
	[read actions] - add support for strict? in Ash.read options. (#1669)

Bug Fixes:
	[Ash.Policy.Authorizer] ensure that old config applies all aggregate policies

If you've upgraded to the following configuration this does not affect you:
config :ash, :policies, no_filter_static_forbidden_reads?: false
You should upgrade regardless, and adopt that new configuration.
v3.4.48 (2024-12-20)
Bug Fixes:
	[calculations] properly update sort calculation expressions

	[Ash.Type.Module] handle nil values in Ash.Type.Module

	[Ash.Resource] ensure that select_by_default? is honored on loads

	[Ash.Type.Union] Verify union types constraint on init

	[loading data] ensure tenant is set on reselection query

Improvements:
	[Igniter] handle igniter not being compiled, and make it optional

	[Ash.Generator] add Ash.Generator.next_in_sequence/3

	[performance] don't reselect unnecessary attributes

	[pagination] add show_keysets_for_all_actions? configuration
Set config :ash, show_keysets_for_all_actions?, false for significant performance
improvements when reading resources that support keyset pagination. This causes
keysets to only be shown for actions that are actively being paginated with
keyset pagination.

v3.4.47 (2024-12-17)
Bug Fixes:
	[Ash.Query] handle indexed maps and string keys in calculation arguments

	[Ash.Changeset] throw validation error when trying to set public arguments in private_arguments (#1663)

	[Ash.Policy.Authorizer] include changeset in preflight authorization context

	[embedded resources] include presence of authorizers in embedded resource optimization

	[Ash.DataLayer] don't check data layer compatibility for manual actions

Improvements:
	[Ash.Reactor]: Always add the notification middleware any time the extension is added. (#1657)

v3.4.46 (2024-12-12)
Bug Fixes:
	[Ash.Tracer] use proper telemetry name for actions

	[Ash.Sort] use atoms for paths in related sorts

v3.4.45 (2024-12-10)
Bug Fixes:
	[Ash] don't ignore tenant when calling aggregate functions

Improvements:
	[Ash.Policy.Authorizer] don't log field policies unless logging successful policy breakdowns

v3.4.44 (2024-12-06)
Bug Fixes:
	[Ash.Changeset] use Ash.read when eager validating relationships

	[Ash.Expr] allow strings in get_path/2

	[Ash.Sort] don't expand calculations until after authorization is complete

	[Ash.Resource.Change.GetAndLock] don't automatically skip get_and_lock changes

	[Ash.Filter] handle indexed maps in filter map syntax

	[Ash.Filter] handle case where %{or is composing a single map

	[Ash.Policy.Authorizer] ensure that subject is properly set when running field policies

	[Ash.Type] fix logic errors in matches_type?/list logic

	[pagination] add tenant to Aggregate opts when building count query (#1630)

	[notifications] some notifications not being sent for bulk create actions

	[validations] negate atomic validation expressions when used as where conditions (#1624)

	[Ash.Policy.Authorizer] don't double apply action-filters when attaching policy filters (optimization)

	[Ash.read] Fix not working skip_unknown_inputs opt of read action (#1596)

	[Ash.read] Fix warning when actions.read.argument constraint is violated (#1607)

	[aggregates] use last relationship's read action properly in aggregate queries

	[Ash.Changeset] finish conversion from append? to prepend? option (#1601)

Improvements:
	[Ash.Type.NewType] add lazy_init? option. Allows for recursive embedded types.

	[mix ash.gen.resource] More Descriptive Error Messages for ash.gen.resource (#1645)

	[Ash.Expr] better type signatures for division

	[Ash.Expr] converge on known types better

	[Ash.Changeset] add Ash.Changeset.force_delete_argument/2

	[Ash.Policy.Check.Builtins] add actor_absent builtin check

	[Ash.Changeset] Warn when manage_relationship is called without opts (#1408)

	[Ash.Resource.Validation.Builtins] use Comp with attribute_equals and attribute_does_not_equal (#1623)

v3.4.43 (2024-11-20)
Bug Fixes:
	[generic actions] store notifications from simple results (#1591)

v3.4.42 (2024-11-07)
Bug Fixes:
	[mix ash.generate_livebook] Allow multi-line descriptions to be rendered in Livebook without error (#1590)

	[Ash.Policy.Check.ChangingAttributes] properly handle changing_attributes check with from in create (#1584)

Improvements:
	[Ash.Type.Union] support map w/ keys _union_type and _union_value for union inputs

v3.4.41 (2024-11-05)
Bug Fixes:
	[Ash.Type.Struct] don't double wrap casted struct instances in {:ok, {:ok, ...}}

	[Ash.Type.Struct] support mixed key types in input maps for structs

v3.4.40 (2024-11-04)
Bug Fixes:
	[Ash.Actions.Read] don't call .name on a potentially nil action

	[Ash.Expr] properly detect Ash.CustomExpression as an expr

	[Ash.Expr] accept fragments pointing at non-aliases

	[Ash.Expr] smarter type detection, preferring more concrete types

v3.4.39 (2024-11-01)
Bug Fixes:
	[Ash.Changeset] emit warnings about already validated actions in before_action hooks too

	[Ash.Changeset] add missing case clause for Changeset.atomic_update type cast (#1569)

	[Ash.Type.Map] handle case of invalid map/keyword key when type casting

	[Ash.Type.Keyword] handle case of invalid map/keyword key when type casting

Improvements:
	[error messages] more better error bread crumbs

v3.4.38 (2024-10-31)
Bug Fixes:
	[Ash.Changeset] detect transaction hooks added by around_transaction and before_transaction & manual actions

	[Ash.Changeset] don't special case nil change on force_change_attribute

Improvements:
	[Ash.Domain] default backwards compatible interface to false for domains

	[Ash.Changeset, create actions] more and better bread crumbs for changesets & create actions

v3.4.37 (2024-10-30)
Bug Fixes:
	[Ash.Type.Union] handle nil union changing to nil

	[multitenancy] enforce multitenancy on bulk creation

	[Ash.Changeset] force_change_attribute no longer cares what the old value is

Improvements:
	[Ash.Changeset] allow specifying return_skipped_upsert? as an option to changeset

	[Ash.DataLayer] add prefer_transaction_for_atomic_updates? data layer callback

	[Ash.DataLayer] support prefer_transaction? on DataLayer

	[loading data] allow data loading when no primary read action exists

v3.4.36 (2024-10-24)
Bug Fixes:
	[Ash.stream!] ensure opts are passed through to constructed query in stream

Improvements:
	[Ash.Policy.Check.Builtins] add just_created_with_action/1 check

v3.4.35 (2024-10-22)
Bug Fixes:
	[code interfaces] allow optional code interface args for fields with defaults

	[atomic updates] write all attributes to atomics list before dispatching to data layer on update query

	[mix ash.gen.resource] remove multichar aliases from mix ash.gen.resource

	[Ash.Type.Decimal] check nil before calling Decimal.eq? in Type.Decimal.equal? (#1538)

v3.4.34 (2024-10-21)
Bug Fixes:
	[mix ash.gen.resource] properly accept options for ash.gen.resource in installer

v3.4.33 (2024-10-18)
Bug Fixes:
	[bulk updates] apply attribute multitenancy on bulk update queries

	[Ash.Type.Decimal] use Decimal.eq? in Ash.Type.Decimal (#1532)

	[Ash.Reactor]: Don't validate inputs keys when being transformed. (#1527)

	[atomic updates] set argument defaults in fully atomic changesets

	[Ash.Changeset] ensure that default values are included in attribute changes

	[manage_relationship] properly unrelate belongs_to relationships

	[manage_relationship] ensure unrelated records are removed from the current records list

Improvements:
	[Ash.Resource] Conditionally enable transactions on default actions. (#1525)

	[Ash.Seed] ash seed upsert! function (#1522)

	[code interfaces] Add compile-time checks for code_interface arguments in Resource and Domain (#1523)

v3.4.32 (2024-10-14)
Improvements:
	[mix ash.gen.resource] use new :csv option type from igniter

v3.4.31 (2024-10-14)
Bug Fixes:
	[all actions] allow strings in generic action skip_unknown_inputs

v3.4.30 (2024-10-14)
Bug Fixes:
	[all actions] add tracer option to generic action opts

v3.4.29 (2024-10-13)
Bug Fixes:
	[Ash.Changeset] clear change from atomics as well

	[read actions] properly invoke notify callback in read actions

Improvements:
	[Ash.Changeset] better ergonomics for atomic updates

	[changeset, action inputs, queries] add private_arguments option

	[Ash.ActionInput] validate Ash.ActionInput.for_action opts

	[Ash.Type.NewType] allow additional callbacks in Ash.Type.NewType

v3.4.28 (2024-10-10)
Improvements:
	[upserts] support lazy evaluation of skipped upsert records

v3.4.27 (2024-10-10)
Improvements:
	[upserts] emit StaleRecordError on skipped upsert

v3.4.26 (2024-10-08)
Bug Fixes:
	[query building] properly hydrate sort with parent context

	[query building] handle nested parent references in runtime expression logic

	[query building] set parent stack when hydrating references in related queries

v3.4.25 (2024-10-07)
Bug Fixes:
	[igniter] honor --yes or -y option when adding a satsolver

	[query building] don't error on type casting against expressions

v3.4.24 (2024-10-07)
Bug Fixes:
	[policies] short-circuit policy condition evaluation when checking all conditions

	[query building] properly hydrate aggregate calculations & fields

Improvements:
	[policies] re-introduce removed behavior to short circuit policy conditions

v3.4.23 (2024-10-03)
Bug Fixes:
	[loading data] don't rewrite calculation dependencies through not loaded/forbidden fields

	[loading data] honor reuse_values? when lazy loading relationships

v03.4.22 (2024-10-01)
Features:
	[Ash.Reactor] Add the ability to specify action context in steps. (#1477)

Bug Fixes:
	[Ash.Query] properly merge query calculations when one side is empty

	[Ash.Query] remove expensive calculation reification step that is no longer necessary

	[Ash.Sort] handle expression calculations that reference fields in input sorting

	[Ash.Sort] properly apply field policies to all filter expressions

	[Ash.Type.Struct] better error message on missing instance_of constraint on load-through

	[authorization] select minimal data in authorization queries

	[Ash.Query] calling for_read/2..4 should raise an ArgumentError when the specified action doesn't exist. (#1479)

	[Ash.Changeset] detect non-changing but setting attributes to honor require_attributes on update

	[Ash.Changeset] set right defaults for action_select (#1476)

	[Ash.Expr] don't resolve references when falling back to elixir handling for expressions

Improvements:
	[Ash.Policy.Authorizer] disallow 2-tuple expression checks, to resolve ambiguity

	[Ash.Policy.Authorizer] rewrite and drastically simplify policy -> solver expression logic

	[Ash.Changeset] properly handle bypasses of atomic constraint casting

	[Ash.Changeset] ensure that action_select sets attributes to %Ash.NotLoaded{}

	[Ash.Query.Calculation] add Ash.Query.Calculation.from_resource_calculation

	[Ash.Query.Calculation] fallback to runtime calculations when expressions aren't supported

	[Ash.Type.DateTime] handle iso8601 dates in datetime cast

	[Ash.DataLayer] add data layer capability for action select

	[Ash.Query.Calculation] inspect calculations in queries more fluidly

	[Ash.Resource.Igniter] add_identity for Ash.Resource.Igniter

v3.4.21 (2024-09-24)
Bug Fixes:
	[Ash] handle nil result in Ash.first

	[bulk actions] add checks for around_transaction and around_action in bulk (#1474)

	[Ash.Query.Aggregate] include distinct from queries in aggregate query

	[read actions] reselect required attributes unless reuse_values? is true

	[Ash.Changeset] properly return {:not_atomic while applying atomic changes

Improvements:
	[Ash.Query.Aggregate] proper error on unsupported aggregates

v3.4.20 (2024-09-23)
Bug Fixes:
	[read actions] don't double-load data on bulk update reads

Improvements:
	[Ash] support more formats in Ash.can

	[Ash] add validate? option to Ash.can/Ash.can?

v3.4.19 (2024-09-21)
Bug Fixes:
	[Ash.Resource] properly generate bypasses with Ash.Resource.Igniter.add_bypass/2

Improvements:
	[Ash.Sort] support nested fields in input sorts

	[optimization] optimize the reselection of necessary attributes on lazy loading

	[Ash.Resource, optimization] optimize Ash.Resource.selected?/2 in light of 3.0 changes

v3.4.18 (2024-09-20)
Bug Fixes:
	[Ash.Resource.Change.OptimisticLock] properly increment version in optimist lock's non-atomic branch

	[Ash.Policy.Authorizer] ensure that policy group compile time validations are enforced

	[bulk updates] ensure that around_transaction and around_action hooks incur simple updates

v3.4.17 (2024-09-19)
Bug Fixes:
	[Ash.Query] handle more types in Ash.Query.unload

	[Ash.Changeset] properly escape changeset.select in Ash.Changeset.ensure_selected (#1466)

Improvements:
	[Ash.Tracer] add span & telemetry events for running calculations

	[Ash.Policy.Check.Builtins] validate action types in action_type check

v3.4.16 (2024-09-18)
Bug Fixes:
	[Ash.Seed] ensure Ash.Seed always sets action_select

Improvements:
	[Ash.Policy.Authorizer] properly log successful policy breakdowns with extra info

	[Ash.Filter] add Ash.Filter.fetch_simple_equality_predicate

v3.4.15 (2024-09-17)
Improvements:
	[Ash.Query] add load option to Ash.Query.for_read

v3.4.14 (2024-09-17)
Bug Fixes:
	[mix ash.gen.domain] properly detect domains that don't exist yet in ash.gen.domain

v3.4.13 (2024-09-17)
Bug Fixes:
	[Ash.Changeset] honor skip_global_validations? on fully atomic changesets

	[Ash.Sort] ensure calculation context is fully propagated to sort statements

	[Ash.Policy.Authorizer] ensure that resource context is set for expanding filter descriptions

v3.4.12 (2024-09-16)
Bug Fixes:
	[Ash.Seed] ensure that action_select is set on seeding data

Improvements:
	[Ash.Resource.Igniter] add more resource updating logic

	[Ash.Resource.Igniter] add _new options for Ash.Resource.Igniter

v3.4.11 (2024-09-13)
Improvements:
	[igniter] update igniter and fix deprecation warnings

v3.4.10 (2024-09-13)
Bug Fixes:
	[mix ash.patch.extend] properly add all types of extensions in mix ash.patch.extend

v3.4.9 (2024-09-13)
Bug Fixes:
	[field policies] ensure that field policies don't interfere with relationship loading

	[bulk actions] properly merge provided context in atomic bulk actions

	[managed relationships] properly handle rollbacks from DBConnection failures for belongs to relationships

	[Ash.Resource.Igniter] don't generate doubly nested policies when adding policies in igniter

	[Ash.Changeset] fix Ash.Changeset.manage_relationships/4 for list primary keys (#1455)

	[Ash.Filter] Handle Ash.Query.filter for array values (#1452)

	[Ash.Type.Time] cast embedded time properly (#1451)

	[create actions] require private/non-accepted attributes after before action hooks instead of before

	[built in after_action change] we cannot assume that after_action/1 can be done atomically
Previously, when you did change after_action/3 in a resource, we would assume it was safe to be done atomically.
But because we cannot guarantee that your hook does not access changeset.data, it is not safe to make that assumption.
Instead, you must define a module change, and explicitly define atomic/3.

Improvements:
	[Ash.Error.Forbidden.Policy] small improvements for policy breakdown formatting

	[Ash.Type.Union] honor a _union_type type param when casting unions

	[create/update/destroy actions] add system for action_select, which can limit selects from mutations
Callers can select when calling create/update/destroy actions, but those selects were not previously honored
by data layers. The reason for this is that often actions will require more fields than the fields that the caller
requests. Now, you can specify action_select in the action, and the data layer will honor that.
Additionally, the new select_by_default? flag on attributes causes the attribute to automatically not be selected
for update actions.

	[attributes] support select_by_default? flag on attributes. This defaults to true.

v3.4.8 (2024-09-09)
Bug Fixes:
	[Ash.Policy.Authorizer] support passing a forbidden error for policy breakdowns per the docs

	[Ash.Policy.Authorizer] don't report the action as the actor for policy breakdowns

	[Ash.Changeset] check changeset.action before raising a required primary action error

	[bulk actions] ensure proper return types for :stream strategy bulk update/destroys

v3.4.7 (2024-09-06)
Improvements:
	[Ash.Resource.Igniter] add add_bypass and add_policy igniter utilities

v3.4.6 (2024-09-06)
Bug Fixes:
	[loading relationships] don't select destination attributes that don't exist

	[Ash.Filter.Runtime] properly pass actor when running filters at runtime

	[Ash.Type.Struct] misplaced curly bracket when handling struct type casting

	[bulk/atomic updates] properly leverage atomic upgrade read action for an update action

Improvements:
	[Ash.Policy.Authorizer] show informative error explaining the use of filter checks with create actions

	[Ash.Policy.Authorizer] show the actor's primary key in policy breakdowns

	[Ash.Policy.Authorizer] add an expanded description option to checks

	[Ash.Policy.Authorizer] use expanded description to display filled in filter templates in policy breakdowns

	[Ash.Changeset] Add Ash.Changeset.is_valid/1 guard. (#1437)

v3.4.5 (2024-09-05)
Bug Fixes:
	[update actions] fix type definition for atomic_upgrade_with

v3.4.4 (2024-09-05)
v3.4.3 (2024-09-04)
Bug Fixes:
	[loading relationships] properly await tasks from lazy loading multiple relationships

v3.4.2 (2024-09-04)
Bug Fixes:
	[soft destroys] honor return_destroyed? in soft destroy actions

	[Ash.Resource.Change] correctly handle return values of batch callbacks (#1424)

	[read actions] ensure that async limiter is cleared up front

	[bulk creates] honor bulk upsert condition (#1432)

	[bulk updates] ensure that update_defaults are set on streaming updates

	[bulk actions] honor skip_global_validations? in bulk actions

	[pagination] honor the countable option in pagination

	[read actions] return proper data shape when doing a read in a transaction

	[notifications] ensure that from is properly set on all notifications

	[notifications] fix typo in bulk destroy not clearing ash_started_transaction state

	[calculations] traverse calculated relationships when rewriting transient calculation values

	[calculations] don't unload calculation dependencies when lazy? is set

	[Ash.DataLayer.Ets] handle no_attributes when joining lateral join relationship data

	[Ash.DataLayer.Ets] fix ets lateral join source field usage

	[Ash.DataLayer.Ets] properly apply distinct in ets

Improvements with backwards compatibility configurations
These configurations default to the current behavior, but in 4.0 (someday) will
be removed, and the new option will be the only option.
	[pagination] make default page type configurable, defaulting to :offset.

set this configuration to adopt the new preferred behavior
config :ash,
 default_page_type: :keyset
	[Ash.Policy.Authorizer] make read policies more consistent, always preferring to filter over raise

Currently, some read actions can still return a Forbidden error, even
though policies are meant to filter out records by default. Now, it will always
filter, unless you set access_type :strict in the policy.
set this configuration to adopt the new preferred behavior
config :ash, :policies,
 no_filter_static_forbidden_reads?: false
Improvements:
	[Ash.Policy.Authorizer] show an explanation when a forbidden is because no policies applied

	[Ash.Policy.Authorizer] error at compile for bypasses that will have no effect

	[Ash.Resource.ManualRead] add load_relationships/5 callback to manual reads

	[mix ash.gen.resource] add uuid-v7-primary-key option to mix ash.gen.resource

	[Ash.Resource.Change.CascadeUpdate] add cascade update built in change (#1398)

	[Ash.Resource.Change.CascadeDestroy] add read_action option to cascade_destroy

	[inline aggregates] support expr and expr_type options when building aggregates

	[create actions] Implement condition for upsert (#1386)

	[optimization] do not add relationship filter when building relationship authorization

	[optimization] don't list telemetry handlers if app is compiling

	[optimization] do not call tracer set_metadata with span type that it ignores (#1400)

	[optimization] optimize filter expr traversal

	[optimization] Add a case for handling mapsets in Filter.map (#1427)

	[optimization] Cache always selected fields and use mapsets for building select list (#1428)

	[optimization] add pattern for Ash.Query.Call in Filter.map (#1416)

	[optimization] prevent unnecessary calls to Ash.load

	[optimization] cache action known inputs individually

	[optimization] cache action required inputs all together

	[optimization] optimize to avoid inspects in changesets

	[optimization] optimize to avoid expensive String.valid? check in uuid type

	[optimization] add async? option to calculations, default to false

	[optimization] optimize field checking for loading fields in query

	[optimization] allow functions in tracers for lazy loading metadata

	[optimization] don't start processes for single items in list

	[optimization] Optimize option validation with compile time validators (#1387)

v3.4.1 (2024-08-13)
Bug Fixes:
	[authorization] properly pass actor, action, tenant etc. to lazy loaded relationships

v3.4.0 (2024-08-12)
Features:
	[Ash.Policy.Authorizer] add policy groups

	[authorization] support authorize_with option on Ash.read, allowing to error if any forbidden matching data exists

	[Ash.Resource] Add @type t typespec to resource if it doesn't exist

Bug Fixes:
	[calculations] remove pattern match error when exceptions come from calculations

	[calculations] resolve nested expression calculation references in runtime filters

	[arrays] Fix error with nil value on structure types (#1380)

	[bulk actions] Pass options without :templated tuple to after_batch (#1376)

	[bulk actions] after_batch arguments for bulk_create with return_records? disabled (#1371)

	[bulk actions] set upsert? option when managing relationships in bulk creation

	[Ash.Resource] check for nil resource_calculation in Ash.Resource.loaded?/2

	[Ash.Expr] properly consider not-loaded record calculations as :unknown

	[atomic updates] handle nil in atomic array casting

	[aggregates] respect previously validated-for-action query for aggregates

	[mix ash.gen.resource] use timestamps() instead of timestamps

	[belongs_to relationships] prefer source_attribute is required, instead of relationship name

Improvements:
	[performance] optimizations around allocating strings

	[performance] optimizations around list operations for embedded resources

	[performance] prune calculations made unnecessary by field policies

	[performance] add optimized path for casting embeds when they are simple

	[performance] add include_embedded_source_by_default? config to optimize embeds

	[error messages] show proper error message when trying to accept non-writable attributes

	[error messages] add "hints" to NoSuchInput errors to make any errors clearer

	[Ash.Expr] warn on usage of == nil

	[Ash.Expr] implement Comp for atoms & strings, comparing atoms as strings

	[embedded resources] increase cases where embedded attribute can be updated atomically

	[Ash.Type.Struct] support :fields constraint on :struct type, enabling persistence

	[bulk actions] Warn on bulk action return_stream? without any other return_*? options enabled. (#1370)

	[calculations] ensure the called calculation function is always in the stacktrace

	[dependencies] remove :comparable as a dependency

	[Ash.Resource] Add default values to resulting Resource struct (#1364)

v3.3.3 (2024-08-01)
Bug Fixes:
	delete ash_notifications from pdict after reading

v3.3.2 (2024-08-01)
Bug Fixes:
	[Ash.Igniter] properly parse multiple occurrences of :keep arguments

	[calculations] properly key nested calculations and add additional tests

	[calculations] pass relationship path down when merging query loads

	[mix ash.codegen] don't set --name nil when calling codegen tasks

	[Ash.Filter] fix behavior of synthesized joins across data layers

Improvements:
	[mix ash.gen.resource] add --timestamps argument to add timestamps to the resource

v3.3.1 (2024-07-30)
Bug Fixes:
	[mix ash.gen.domain] properly parse domain module in mix ash.gen.domain

	[Ash.Resource.Change, Ash.Resource.Validation] properly handle mixed atomic & non-atomic validations/changes

	[Ash.Filter] properly find data layer predicates when name is provided as a string

	[relationships] set accessing_from and join read action for many_to_many relationships correctly (#1355)

Improvements:
	[Ash.Resource.Change] implement change/3 automatically if batch callbacks are defined

v3.3.0 (2024-07-27)
Features:
	[Ash.Type.File] Add Ash.Type.File (#1337)

Bug Fixes:
	[bulk actions] ensure that statuses are set correctly on bulk actions

	[bulk actions] properly transfer process context(tracers) for bulk actions

	[embedded resources] properly display identity/primary key mismatch error on lists of embeds

	[Ash.Type.NewType] apply constraints to NewType even when casting an array (#1341)

	[Ash.Query] pass reuse_values? true when loading in Ash.Query.apply_to/2 (#1346)

	[code interfaces] honor skip_unknown_inputs in code interfaces

	[notifications] don't gather notifications except for in the top level transaction starter

	[generic actions] support skip_unknown_inputs on generic actions

	[atomic updates] ensure changed? context is set on atomic changesets (we assume it is true, its up to extensions to handle)

	[Ash.Type.CiString, Ash.Type.String] Update string/ci_string generators to ensure min_length (#1335)

	[Ash] handle {record, action, input} types in Ash.can?

	[bulk actions] only call batch_change if it is defined, never change in bulk create

Improvements:
	[mix ash.gen.resource] better positional argument handling with igniter

	[Ash.Expr] use :utc_datetime_usec for now() return type

	[mix ash.install] don't install sat solver in initial installation

	[Ash.Policy.Authorizer] validate that a solver exists at compile time when using policies

	[Ash.Type.Enum] Expose type t() on Ash.Type.Enum implementations (#1338)

	[Ash.Resource] add :* as a valid value in skip_unknown_inputs

	[Ash.Resource] add skip_unknown_inputs to individual actions

	[embedded resources] add skip_unknown_inputs constraint to embedded resources

	[embedded resources] automatically fall back to a default domain when working with embeds

	[Ash] handle 3 tuple in Ash.can?

	[Ash.Error] add Ash.Error.error_descriptions

v3.2.6 (2024-07-22)
Bug Fixes:
	[bulk actions] fallback to authorize_with when authorizing bulk destroy actions

	[bulk actions] don't refer to non-existent batch_change/4

Improvements:
	[bulk actions] Replace incorrect function_exported?-checks in bulk-actions, add has-defs for change modules (#1330)

v3.2.5 (2024-07-22)
Bug Fixes:
	[destroy actions] apply atomic validations on non-bulk destroy actions

	[Ash.Policy.Info] add default to private_fields_policy in Ash.Policy.Info (#1329)

	[relating_to_actor] make relating_to_actor built-in-check aware of atomics

	[Ash.Expr] remove redundant overload of Ash.Expr.get_path (#1328)

	[Ash.Type.NewType] cast_input/2 of Ash.Type.NewType returning :ok (#1324)

	[Ash.Reactor] warnings emitted by removed reactor behaviour function. (#1325)

Improvements:
	[bulk actions] add authorize_with fallback option to bulk actions

	[Ash.Policy.Authorizer] allow policy conditions to be applied inside their block

v3.2.4 (2024-07-18)
Bug Fixes:
	[transaction hooks] fix warning on transaction hooks violating their semantics

v3.2.3 (2024-07-18)
Bug Fixes:
	[mix ash.patch.extend] properly convert extension string into a module

	[mix ash.patch.extend] only display available to extend

	[mix ash.install] mix igniter.install ash --example case clause error (#1317)

	[multitenancy] only use attribute for filtering when multitenancy strategy == :attribute

Improvements:
	[Ash.Resource.Igniter] Add Ash.Resource.Igniter.domain to get the domain of a resource

v3.2.2 (2024-07-17)
Features:
	[Ash.Reactor] Add ash_step wrapper (#1311)

Bug Fixes:
	[bulk destroys] honor atomic validations in destroy actions using filter

	[Ash.Type.Vector] handle casting nil vectors (#1316)

	[Ash.Type] don't override nil handling in Ash.Type.cast_input/3

v3.2.1 (2024-07-17)
Bug Fixes:
	properly honor the include_nil? option

	store after_action hooks added outside of changes for atomic upgrade

	don't use type/3 in string interpolation

	properly pass include_nil? from when building query aggregates

Improvements:
	allow skipping initialization of types in unions

v3.2.0 (2024-07-15)
Features:
	[field policies] Allow field policies to hide private fields (#1289)

Use the private_fields :include | :show | :hide option in the field_policies section of your resource to control how private fields are handled by field policies.
For example:
hide all private fields when authorizing
field_policies :hide

the current behavior. Private fields are ignored by field policies
field_policies :show

private fields can have field policies like any other field
field_policies :include
Improvements:
	[Ash.Domain.Igniter] add Ash.Domain.Igniter.list_domains/1

	[Ash.Resource.Igniter] add Ash.Resource.Igniter.list_resources/1

v3.1.8 (2024-07-14)
Bug Fixes:
	[bulk actions] use unpaginated_read when simulating streaming for low limit queries

v3.1.7 (2024-07-14)
Bug Fixes:
	[Ash.Query] don't use :same return type for most operators

	[Ash.Query] don't use returns as basis type unless explicitly allowed

v3.1.6 (2024-07-14)
Bug Fixes:
	[Ash.Query] ensure today has properly configured returns type

	[Ash.Type] module type apply_constraints for nil fix (#1313)

v3.1.5 (2024-07-14)
Bug Fixes:
	[Ash.Type] don't specify that get_path is a predicate function

Improvements:
	[Ash.Expr] add Ash.Expr.determine_type(mod, children)

	[Ash.Query] add return typing to functions

v3.1.4 (2024-07-13)
Bug Fixes:
	[code interface] properly omit destroyed result in code interfaces

	[Ash.Type.Integer] properly compare expr to min with min integer constraint

	[Ash.Reactor] Make action ctx-values from reactor-ctx take precedence if set. (#1308)

Improvements:
	[Ash.Resource.Change] support returning a list of atomics from atomic change callbacks

	[Ash.Type] add cast_atomic_constraints callback and use it in core types

	[Ash.Expr] improve type signature for if/3

	[Ash.Expr] simpler and/or short circuiting

v3.1.3 (2024-07-11)
Bug Fixes:
	[bulk actions] ensure that errors in queries do not raise in atomic upgrades/single atomics

	[Ash.Type.Integer] use correct constraint when validating min int (#1298)

	[Ash.Filter] don't refer to private attributes when parsing filter inputs that refer to relationships (#1280)

Improvements:
	[Ash.Query] add strict? option to Ash.Query.load (#1302)

v3.1.2 (2024-07-10)
Bug Fixes:
	[bulk actions] ensure that manual action configurations are honored for bulk actions

v3.1.1 (2024-07-10)
Bug Fixes:
	[ash.install] installer doesn't need to add spark as a dependency, just run its installer

v3.1.0 (2024-07-09)
Features:
	[Generators] add mix ash.install (call with mix igniter.install ash)

	[Generators] add mix ash.gen.resource

	[Generators] add mix ash.gen.base_resource

	[Generators] add mix ash.gen.domain

	[Generators] add mix ash.extend

	[Ash.Type.UUIDv7] Add built in Ash.Type.UUIDv7 type, and uuid_v7_primary_key builder

Bug Fixes:
	[atomics] sort primary key changes ahead of others in atomic changes

	[Ash.Changeet] fix typespec for Changeset.around_transaction/2 (#1292)

	[multitenancy] ensure tenancy is always enforced on create/update/destroy actions

	[loading relationships] lateral join on from_many? true relationships

	[calculations] don't reuse calculations/aggregates if authorize? is true

	[aggregates] ensure aggregate context is fully configured in Ash.aggregate

	[bulk actions] properly transfer changeset.context on streamed batch changesets

	[bulk actions] ensure notifications are dispatched from bulk actions

	[lazy loading] lazy-loading logic for calculations/aggregates was inversed (#1275)

	[error handling] properly match on async task exceptions

	[policies] ensure context is available in policy template expressions

	[policies] ensure forbidden errors behave the same when using implicit bulk version of code interface functions

	[manual relationships] compare keys in manual relationships when using 'complex' types (#1270)

	[Ash.Filter] cover more cases in filter input parsing (#1261)

	[has_one relationships] automatically set from_many? if a has_one has a sort applied

	[Ash.Filter] fix match error when synthesizing joins across data layers

	[Ash.DataLayer.Ets] properly support multitenancy when referencing relationships

	[Ash.Type.Union] initialize & validate each subtype of a union

Improvements:
	[Ash.Type.Enum] allow overriding cast_stored/2 and dump_to_native/2

	[Ash.DataLayer.Simple] support offset in the simple data layer

	[Ash.Changeset] allow after_action hooks in fully atomic changesets

v3.0.16 (2024-06-21)
Bug Fixes:
	[bulk updates] use the proper opts when calling manual updates in bulk updates

	[pagination] apply pagination at runtime for non lateral join queries

	[multitenancy] consider multitenancy when checking if through-join is unique

	[Ash.Changeset] don't run any before_action hooks if changeset is invalidated in prior hook

	[atomic upgrade] only prevent atomic upgrade when hooks were explicitly added

Improvements:
	[Ash.Error] retain error context on overridden messages

v3.0.15 (2024-06-18)
Improvements:
	[Ash.Type] add optional matches_type?/2 callback to Ash.Type

	[Ash.Domain] add backwards_compatible_interface? option to use Ash.Domain

v3.0.14 (2024-06-18)
Bug Fixes:
	[many-to-many relationships] apply join relationship filter when loading many_to_many relationships

	[Ash.Query] ensure we honor any computed select changes when loading through attributes

Improvements:
	[Ash.Policy.Authorier] add subject and context keys to policy context

v3.0.13 (2024-06-17)
Bug Fixes:
	[parallelism] don't start async limiter tasks if async is disabled

	[Ash.Domain] properly set default timeout to :infinity

	[upserts] pass down identity when doing upserts, for new feature support

	[Ash.Changeset] ensure that before_transaction hook errors fail the operation

	[Ash.Changeset] ensure that before_transaction hook errors still trigger after_transaction hooks

	[bulk updates] abort bulk updates on before transaction hook errors

v3.0.12 (2024-06-14)
Bug Fixes:
	[atomic updates] fix expression interpolation for cast_atomic for integer, decimal, float

	[generic actions] set default argument values on generic actions

	[generic actions] support ^arg/1 and similar constructions in filter policies on generic actions

Improvements:
	[Ash.Resource] set a module when validating accepts

v3.0.11 (2024-06-11)
Bug Fixes:
	[loading through attributes] only apply load through for attributes that are being selected directly

	[relationship loading] ensure we lateral join with from_many?: true or any :many cardinality relationships

	[create/update/destroy actions] correctly load paginated relationships after create, update, delete (#1229)

	[bulk create/update/destroy] load relationships on bulk operations (#1234)

	[Ash.Type.Atom] return proper {:ok, value} from Ash.Type.Atom.apply_constraints/2

	[Ash.Filter] fix the compare/2 implementations (#1232)

	[Ash.Filter] return proper value from short-circuit filter hydration

	[Ash.Seed] fix seed not working when :keep_nil is generated using seed_input (#1228)

	[Ash.Generator] pass resource to Ash.Seed.seed! in Ash.Generator.seed! (#1227)

Improvements:
	[Ash.Resource] validate require_attributes (error) and allow_nil_input (warning) at compile time

	[Ash.Seed] add tenant option to Ash.Seed.seed! (#1230)

v3.0.10 (2024-06-06)
Bug Fixes:
	[Ash.Union] ensure that union types w/ explicit tags have constraints applied

	[multitenancy] don't update tenant on update, instead enforce it

	[compare/2 validation] Do not compare nil values in compare validation (#1223)

	[bulk actions] ensure context is properly set on bulk manual action invocations

Improvements:
	[Ash.Resource] detect invalid resources placed in relationships on domains verifier

	[Ash.Resource] warn at compile time on types that don't define atomic_update/2

v3.0.9 (2024-05-31)
Bug Fixes:
	[Ash.Filter] use correct boolean operation names in Filter.find/4 (#1214)

	[aggregates] when hydrating nested aggregates, use correct related resource/path pair

	[aggregates] retain ref_path when authorizing aggregates

	[relationship loading] ensure that belongs_to relationships are properly not reloaded with lazy?: true

	[bulk actions] implement rollback on after hooks for bulk actions

	[bulk actions] check if in transaction before trying to roll it back

Improvements:
	compatibility with elixir 1.17

v3.0.8 (2024-05-28)
Bug Fixes:
	[bulk updates] missing else caused manual updates not to work with bulk_update

	[Ash.Policy.Authorizer] properly compose multiple filter-checks in policy conditions

	[Ash.Policy.Authorizer] properly honor trailing policies that are constantly false

Improvements:
	[Ash.Notifier] verify notifiers all use the Ash.Notifier behaviour

v3.0.7 (2024-05-24)
Improvements:
	[identities] support nils_distinct? on identities

	[identities] support where option on identities

	[identities] allow calculations in identity keys

v3.0.6 (2024-05-23)
Bug Fixes:
	[policies] don't raise an error when authorizing against previous values without atomic upgrades

	[calculations] handle subquery-requiring calculations in calculate/2, ensuring we have a primary key

	[Ash.DataLayer] resolve mixup between atomic upsert vs update capability of datalayers (#1198)

v3.0.5 (2024-05-23)
Bug Fixes:
	[mix ash.*] only use Mix.deps_tree if defined (its only defined for elixir 1.15+)

Improvements:
	[atomic upgrade] add atomic_upgrade? flag to update/destroy actions

	[atomic upgrade] do not do atomic upgrade by default unless require_atomic? is true

	[atomic upgrade] allow configuring the read action used by atomic upgrades

v3.0.4 (2024-05-22)
Bug Fixes:
	[bulk update/destroy] ensure that all notifications are sent

3.0.3 (2024-05-22)
Features:
	[relationship pagination] allow retrieving the count of paginated relationships (#1183)

	[Ash.Reactor] Add bulk_create step type.

	[Ash.Reactor] Add bulk_update step type. (#1185)

Bug Fixes:
	[Ash.Actions.Read] properly hydrate and scope sorts with query context

	[Ash.Changeset] handle list of atomic conditions coming from atomic validation implementation (#1194) (#1195)

	[embedded resources] handle nil value for old_values when casting arrays (#1191)

	[Ash.Query] use Ash.Sort.parse_input/3 in Ash.Query.sort_input/2

	[Ash.Resource.Validation.Changing] works correctly in atomics, and can eagerly detect changing (#1178)

	[atomic updates] check the where condition before checking validation atomicity (#1177)

	[bulk actions] don't emit after batch notifications if notify?: false

	[Ash.Resource] prefer resource domain over option domain (#1176)

	[bulk update/destroy] don't require domain for empty stream bulk update and destroy (#1175)

	[Ash.Generator] only return valid non nil values items from generator (#1121)

	[bulk destroy] properly validate action when calling bulk destroy

	[code interface] allow all strategies for bulk actions in code interfaces by default

	[code interfaces] honor get? for bulk update/bulk destroy

Improvements:
	[Ash.Query] support anonymous aggregates and calculations in sorts

	[sensitive fields] Implement show_sensitive? config (#1180)

	[Ash.Query] support filter_input and sort_input in Ash.Query.build/2

	[Ash.Changeset] add template_requires_actor check for changesets

	[bulk update/destroy] don't use queries for streaming if they have hooks

	[Ash.Policy.Check.ChangingAttributes] consider from: nil in changing_attributes/1 check

v3.0.2 (2024-05-15)
Improvements:
	[Ash.Expr] add pattern matching for clarity on values accepted by ref/1 and ref/2

	[Ash.Expr] add can_return_nil?/1 callback to Ash expressions, allowing for various optimizations

	[Ash.Type.NewType] raise argument error on unknown options in Ash.Type.NewType. Helps with typos & misunderstandings

	[embedded resources] use the source configuration for attributes in embedded resources (it was previously just ignored)

	[Ash.Policy.Authorizer] better type specification for checks, to get better autocomplete and compile time validation

	[Ash.Error.Invalid.NoSuchInput] added a did_you_mean field and used it in the error message

Bug Fixes:
	[Ash.Resource] properly persist simple_notifiers (they were being ignored before)

	[code interface] accept single ids in code interface as subject for destroy/update

	[bulk update] ensure that the changed? context is set in after action hooks on batches

	[relationships] allow for inferred domains when authorizing join queries

	[Ash.Expr] don't treat nil as not a valid value when type casting lists

	[atomic upgrade] keep data's metadata in atomic upgraded update (#1165)

v3.0.1 (2024-05-14)
Features:
	[Ash.Resource.Change.Builtins] Add cascade_destroy to builtin changes.

Bug Fixes:
	[calculations] calculation eager evaluation bug caused exists to eager evaluate when we didn't actually have the related data

	[field policies] fix field policy rewrite errors on non-success cases (#1163)

	[embedded resources] fix embedded resource authorization (#1159) (#1160)

	infinite recursion if query is empty (#1158)

	[Ash.DataLayer.Ets] ensure that changeset filters are honored in ETS destroy/update_query

	[update/destroy actions] don't rollback transactions on stale records, ignore stale records in bulk actions

	[bulk creates] don't check required belongs to fields until after setting them in bulk creation

	[code interface] check require_reference? when generating update code interface (#1152)

v3.0.0
3.0
We are starting the changelog fresh. See documentation/2.0-CHANGELOG.md in GitHub for the old changelogs.
Breaking Changes:
For a guide on adjusting to these breaking changes, see the upgrade guide
	[Ash.Api] has been renamed to Ash.Domain, and references to the concept have been renamed as well, i.e in options and in the DSL
	[Ash] we now call functions on this, instead of the domain. i.e Ash.create and Ash.read. The generated functions are now marked as deprecated
	[Ash] remove process context functionality. You can no longer store the actor/tenant in the context with Ash.set_actor and so on
	[private?] deprecate private?: false in favor of the more explicit public?: true
	[default_accept] default default_accept is now []
	[action lifecycle] after transaction hooks cannot be added from inside of other lifecycle hooks
	[Ash.NotLoaded] use %Ash.NotLoaded{} for unselected values, instead of nil
	[require_atomic?] now defaults to true, requiring opt-out of atomic behavior
	[authorization] default api.authorization.authorize to :by_default
	[Ash.Registry] has been removed
	[actions] domain must always be known when constructing changesets
	[Ash.Notifier] requires_original_data?/2 callback defaults to false
	[Ash.Notifier.PubSub] default to previous_values?: false, allowing notifications to be sent for atomic updates
	[unknown inputs] all action invocations now use UnknownInput errors when given an input they don't accept
	[policies] requires_original_data?/2 callback on checks defaults to false
	[Ash.Calculation] has been renamed to Ash.Resource.Calculation
	[Ash.Resource.Calculation] "strict mode" has been added and defaults to true. This causes only explicitly requested fields from relationships to be loaded
	[Ash.Query.Calculation] positional arguments are now an options list
	[calculations] anonymous function calculations in a resource now take lists and return lists, instead of a single record (like standard calculations do)
	[context] The context argument passed to many different callbacks is now a struct, tailored to that specific context. For example, in a calculation you will receive an Ash.Resource.Calculation.Context
	[after_action/before_action] These builtin changes now accept a 3rd context argument
	[picosat_elixir] is now optional (simple_sat is now an alternative)
	[Ash.Changeset] Ash.Changeset.new! has been removed
	[Ash.Changeset] Ash.Changeset.new/2 has been removed (Ash.Changeset.new/1 is still available)
	[Ash.Changeset] changeset.filters is now changeset.filter
	[Ash.Changeset] reverse order of before action & before transaction hooks. They now run in the action they are added. They used to run in reverse order.
	[Ash.CiString] Ash.CiString.new/1 returns nil on nil input
	[belongs_to.attribute_writable?] add attribute_public? for controlling publicity, and default attribute_writable? to true.
	[Ash.Filter.TemplateHelpers] removed, all functions needed for expressions are now defined in Ash.Expr
	[Ash.Expr] keyword lists are no longer special cased in ash expressions, and requiring pinning like any other value.
	[Ash.Resource] default read actions are now paginatable with keyset and offset pagination (but pagination is not required)
	[Ash.Resource] default actions require explicit accept lists (or will use default_accept). i.e defaults [:read, create: [:first_name, :last_name]]
	[Ash.Resource] simple_notifiers is now an option to use Ash.Resource, instead of being in the DSL at resource.simple_notifiers
	[Ash.Flow] has been removed and put in its own package ash_flow. It is being deprecated in favor of Reactor
	[Ash.Error] the implementation has been extracted out to Splode. Defining new Ash.Errors is now done by defining a new Splode.Error
	[Ash.Query] swap position of sort order and arguments in calculation sorting, i.e instead of calculation: {:asc, %{...args}} it is now calculation: {%{...args}, :asc}
	[Ash.Resource.Aggregate] add include_nil? aggregate option, and default it to false (so list and first aggregates do not consider nil values by default)
	[Ash.Policy.FilterCheck] now accepts context arguments, like Ash.Policy.FilterCheckWithContext
	[Ash.Policy.FilterCheckWithContext] has been removed, use Ash.Policy.FilterCheck

Features:
	[Ash.Type] add new remove_nil_items? array type constraint (#1116)
	[Ash.Query] Paginatable relationships (#1050)
	[Ash.DataLayer] new calculate/3 callback that allows for data layers to compute the result of expressions outside the context of a query. Used to power Ash.calculate/3.
	[validations] new builtin validations, attributes_present/2 and attributes_absent/2
	[multitenancy] configurable multitenancy behaviour on read actions (#1030)
	[Ash.Reactor] Add new change step type which can be used to modify changesets.
	[Ash.Changeset] add Ash.Changeset.update_change/2 function and builtin change (#976)
	[Ash.Domain] code interfaces can now be defined on the domain
	[Ash.Domain] policies can now be defined on the domain, and will run before resource policies
	[Ash.ToTenant] add Ash.ToTenant, allowing for passing arbitrary values as tenants
	[Ash] add Ash.read_first (like Ash.read_one, but applies a limit automatically)
	[Ash] support a second optional input option for create, update and destroy, allowing for things like Ash.create!(Post, %{text: "text"}, opts)
	[sensitive?] support sensitive? option in query aggregate/calculation (#963)
	[Ash.Resource] support require_reference?: false on code interfaces, for when an update or destroy action uniquely identifies a record (or for bulk update/destroy)
	[Ash.Resource] notifiers can now be specified for specific actions, using the notifiers option
	[mix ash.rollback] delegates to extensions to trigger their rollback tasks
	[Ash.Query] add Ash.Query.apply_to/3, to "apply" the query to a set of records (i.e filter, sort, distinct, etc.)
	[Ash.CustomExpression] Use Ash.CustomExpression to extend Ash's expression syntax in a data-layer agnostic way
	[code interface] Code interface functions now support bulk actions, in a "do what I mean" way. For example: Domain.deactive(post) can also be Post |> Ash.Query.filter(active == true) |> Domain.deactive()

Improvements:
	[Ash.Actions.Sort] allow providing a stream of records to sort, and performance improvements
	[bulk actions] add read_action option to bulk actions (#1088)
	[Ash.stream] support streaming with offset, or even no pagination
	[Ash.DataLayer.Ets] add debug logging, similar to ecto query debug logging
	[Ash.DataLayer.Ets] support update_query, destroy_query and Ash.Changeset.filter/2
	[Embedded resources] don't add autogenerated_id to embeds if they don't have a primary key
	[Ash.Resource] you can now omit the return type of generic actions, indicating it either succeeds or fails, returning :ok or {:error, error}
	[Ash.Resource] Generic actions can now accept a Reactor module, running it directly. (#993)
	[Ash.Resource] support allow_nil_input dsl option in update/destroy actions (#964)
	[Ash.Resource] The filter option can now be supplied multiple times in read actions and in relationships. They will be combined with and
	[Ash.Resource] private attributes can now be accepted as action inputs
	[Ash.Expr] is now imported automatically into places you will likely use it, like changes, validations, checks and calculations.
	[Ash.Query] is now required automatically in places you will likely use it, as above
	[sortable?] fields may mark themselves as unusable in sorts by using sortable? false
	[sensitive?] calculations and aggregates may now also be marked as sensitive?

Bug Fixes:
	[Ash.Type] apply array type nil_items? constraint after item constraints are applied (#1115)
	[Ash.DataLayer.Ets] fix ETS data layer's support for lateral joining
	[bulk actions] ensure transaction is rolled back on data layer errors during streaming
	[bulk actions] set notify?: true when return_notifications?: true is set
	[Ash.Changeset] attributes_present?/2 -> attribute_present?/2
	[Ash.Filter] don't eager evaluate type/3 because data layers require type information
	[Ash.Changeset] when comparing identities for manage_relationship, we now properly cast the values. Before, "1" and 1 were not considered equal for integer primary keys/identity fields
	Many more bug fixes were added, but few are relevant enough to list here

 Project Structure

In this guide we'll discuss some best practices for how to structure your project. These recommendations align well with Elixir conventions around file and module naming. These conventions allow for a logical coupling of module and file names, and help keep your project organized and easy to navigate.
These are recommendations
None of the things we show you here are requirements, only recommendations.
Feel free to plot your own course here. Ash avoids any pattern that requires
you to name a file or module in a specific way, or put them in a specific
place. This ensures that all connections between one module and another
module are explicit rather than implicit.
These recommendations all correspond to standard practice in most Elixir/Phoenix applications
lib/
├── my_app/ # Your application's main namespace
│ ├── accounts.ex # Accounts domain module
│ ├── helpdesk.ex # Helpdesk domain module
│ │
│ ├── accounts/ # Accounts context
│ │ ├── user.ex # User resource
│ │ ├── user/ # User resource files
│ │ ├── token.ex # Token resource
│ │ └── password_helper.ex # Support module
│ │
│ └── helpdesk/ # Helpdesk context
│ ├── ticket.ex # Ticket resource
│ ├── notification.ex # Notification resource
│ ├── other_file.ex # Support module
│ └── ticket/ # Ticket resource files
│ ├── preparations/
│ ├── changes/
│ └── checks/
Place your Ash application in the standard Elixir application directory lib/my_app. Your Ash.Domain modules should be at the root level of this directory. Each domain should have a directory named after it, containing the domain's Ash.Resource modules and any of the domain's supporting modules. All resource interaction ultimately goes through a domain module.
For resources that require additional files, create a dedicated folder in the domain context named after the resource. We suggest organizing these supplementary files into subdirectories by type (like changes/, preparations/, etc.), though this organization is optional.
Where do I put X thing
The purpose of Ash is to be both the model of and the interface to your domain logic (A.K.A business logic). Applying this generally looks like building as much of your domain logic "behind" your resources. This does not mean, however, that everything has to go inside of your resources. For example, if you have a Purchase resource, and you want to be able to display a list of purchases that were taxable, and also calculate the percentage of the purchase that was taxable. You might have an action called :taxable and a calculation called :percentage_tax.
Example 1: Reads & Calculations
actions do
 ...

 read :taxable do
 filter expr(taxable == true)
 end
end

calculations do
 calculate :percentage_tax, :decimal, expr(
 sum(line_items, field: :amount, query: [filter: tax == true]) /
 sum(line_items, field: :amount)
)
end
In practice, you may not need the taxable action, i.e perhaps you simply want a "taxable" checkbox on a list view in your application, in which case you may use the primary read, or some other read like :transaction_report. You would then, on the consumer, provide the filter for taxable == true, and load the :percentage_tax calculation.
Example 2: Using external data in create actions
Lets say you want the user to fill in a github issue id, and you will fetch information from that github issue to use as part of creating a "ticket" in your system.. You might be tempted to do something like this in a LiveView:
def handle_event("link_ticket", %{"issue_id" => issue_id}, socket) do
 issue_info = GithubApi.get_issue(issue_id)

 MyApp.Support.update_ticket(socket.assigns.ticket_id, %{issue_info: %{
 title: issue_info.title,
 body: issue_info.body
 }})
end
But this is putting business logic inside of your UI/representation layer. Instead, you should write an action and put this logic inside of it.
defmodule MyApp.Ticket.FetchIssueInfo do
 use Ash.Resource.Change

 def change(changeset, _, _) do
 Ash.Changeset.before_transaction(changeset, fn changeset ->
 issue_info = GithubApi.get_issue(changeset.arguments.issue_id)

 Ash.Changeset.force_change_attributes(changeset, %{
 issue_info: %{
 title: issue_info.title,
 body: issue_info.body
 }
 })
 end)
 end
end
Then you'd have an action like this:
update :link_ticket do
 argument :issue_id, :string, allow_nil?: false

 change MyApp.Ticket.FetchIssueInfo
end
This cleanly encapsulates the operation behind the resource, even while the code for fetching the github issue still lives in a GitHubApi module.

 Working with LLMs

LLMs are a new technology, and the patterns on how best to leverage them evolve every day. It is also quite debatable whether it is a good idea to use them at all. Nothing in Ash will ever be predicated on the usage of these tools, but we do want to provide at least some level of base guidance on what we think are the best practices for those that do. This is also to help those who are interested in trying these tools but don't yet know where to start.
This guide is about working with LLM dev assistants, not about building LLM-related features or integrating them into your application. For that, see Ash AI.
Getting Support with LLM generated code
Please note that LLMs often hallucinate despite our best intentions. If you need help with something, and you come to our support channels, you must make it clear when the code you are asking for help with was generated by an LLM. You must first understand the code you've written yourself, and provide a detailed explanation of the code and the issue you are facing when requesting help. The discord and forums are not a place for others to debug LLM hallucinations.
What to know
To take advantage of LLMs, you will want to explore the following. You will have to make up your own mind on which avenues to explore and leverage in the following areas. This is essentially a "big list of stuff you should research on your own".
	Language models - OpenAI, Anthropic, Gemini, etc. Choice of language model will make the most difference in your experience.
	Agentic editors - Zed, Windsurf, Cursor
	Agentic assistants - Claude Code, Aider, Codex
	Rules files - The name of these files are often specific to the editor, but they essentially boil down to "stuff to put in the system prompt" to guide the LLM's behavior.

Tools
We suggest setting up, where applicable, the following tools:
	Tidewave: Tidewave gives your LLMs the ability to interact with your running application. This can significantly improve the quality of the code generated by LLMs, and allows them to observe and interact with the running application, like reading logs and working with processes.
	Ash AI: Ash AI contains tools for building AI enabled applications, but it also comes with a dev MCP server where we will experiment with tools similar to what tidewave offers, but tailored to Ash and the way we work.

Rules
We are working on establishing a pattern whereby packages can provide a usage-rules.md which you can then combine into your own rules file. The idea here is to democratize the process of building rules, allowing you to adopt well vetted and quality rules files from the maintainers of projects. This has only been done for a few packages so far.
To leverage these rules files, you can simply copy them yourself if you'd prefer something more manual, or you can use a new mix task provided by the usage_rules package to combine them into your own rules file.
Combine all of your (direct) dependencies usage rules
mix usage_rules.sync .rules --all
Pick specific dependencies
mix usage_rules.sync .rules \
 ash ash_postgres ash_phoenix ash_graphql ash_json_api ash_ai
You can replace the .rules file with your own current rules file, and it will be appended to the contents. Repeated calls will only replace the package rules contents of the file, not the whole file contents.
Only dependencies of your current project will be added, and any dependencies that don't have rules are skipped.

 Generators

Ash comes with multiple generators, packages as mix tasks, to help you generate and make modifications to your applications.
See the documentation for each mix task for more information. What is presented here is merely an overview.
Installer
Ash can be installed into a project using igniter. Some examples of how this can work:
	Install Ash & AshPostgres into your current project
mix igniter.install ash ash_postgres

	Create a new mix project with Ash & AshPostgres installed
mix archive.install hex igniter_new
mix igniter.new my_project --install ash,ash_postgres

	Create a new phoenix project with Ash & AshPostgres installed
mix igniter.new my_project --install ash,ash_postgres,ash_phoenix --with phx.new
install hex archives
The archives have to be installed to use them. This only needs to be done once, until you change elixir versions.
mix archive.install hex igniter_new
mix archive.install hex phx_new

Generators
	mix ash.gen.resource - Generates a new Ash.Resource.
	mix ash.gen.domain - Generates a new Ash.Domain.
	mix ash.gen.enum - Generates a new Ash.Type.Enum.
	mix ash.gen.base_resource - Generates a new base resource.
	mix ash.gen.change - Generates a new Ash.Resource.Change.
	mix ash.gen.validation - Generates a new Ash.Resource.Validation.
	mix ash.gen.preparation - Generates a new Ash.Resource.Preparation.
	mix ash.gen.custom_expression - Generates a new Ash.CustomExpression.

Patchers
	mix ash.extend - Adds an extension or extensions to a domain or resource.

 Error Handling

As of 3.0, Ash uses Splode to as our basis for errors. The documentation below still applies, but it is powered by Splode under the hood.
There is a difficult balance to cut between informative errors and enabling simple reactions to those errors. Since many extensions may need to work with and/or adapt their behavior based on errors coming from Ash, we need rich error messages. However, when you have a hundred different exceptions to represent the various kinds of errors a system can produce, it becomes difficult to say something like "try this code, and if it is invalid, do x, if it is forbidden, do y. To this effect, exceptions in Ash have one of four classes mapping to the top level exceptions.
Error Classes
	forbidden - Ash.Error.Forbidden
	invalid - Ash.Error.Invalid
	framework - Ash.Error.Framework
	unknown - Ash.Error.Unknown

Since many actions can be happening at once, we want to support the presence of multiple errors as a result of a request to Ash. We do this by grouping up the errors into one before returning or raising.
We choose an exception based on the order of the exceptions listed above. If there is a single forbidden, we choose Ash.Error.Forbidden, if there is a single invalid, we choose Ash.Error.Invalid and so on. The actual errors will be included in the errors key on the exception. The exception's message will contain a bulleted list of all the underlying exceptions that occurred. This makes it easy to react to specific kinds of errors, as well as to react to any/all of the errors present.
An example of a single error being raised, representing multiple underlying errors:
AshExample.Representative
|> Ash.Changeset.for_create(:create, %{employee_id: "the best"})
|> Ash.create!()
 ** (Ash.Error.Invalid) Invalid Error
 * employee_id: must be absent.
 * first_name, last_name: at least 1 must be present.
This allows easy rescuing of the major error classes, as well as inspection of the underlying cases
try do
 AshExample.Representative
 |> Ash.Changeset.for_create(:create, %{employee_id: "dabes"})
 |> Ash.create!()
rescue
 e in Ash.Error.Invalid ->
 "Encountered #{Enum.count(e.errors)} errors"
end

"Encountered 2 errors"
This pattern does add some additional overhead when you want to rescue specific kinds of errors. For example, you may need to do something like this:
try do
 AshExample.Representative
 |> Ash.Changeset.for_create(:create, %{employee_id: "dabes"})
 |> Ash.create!()
rescue
 e in Ash.Error.Invalid ->
 case Enum.find(e.errors, &(&1.__struct__ == A.Specific.Error)) do
 nil ->
 ...handle errors
 error ->
 ...handle specific error you found
 end
end
Error Handlers
Create, update and destroy actions can be provided with an error_handler, which can be used to modify the errors
before they are returned. This is not an error recovery mechanism, rather a way to control the shape of
errors that are returned. For more information on the callback itself, see Ash.Changeset.handle_errors/2.
Example usage:
create :upsert_article_by_slug do
 upsert? true
 accept [:slug, :title, :body]
 upsert_identity :unique_slug
 upsert_condition expr(user_id == ^actor(:id))
 error_handler fn
 _changeset, %Ash.Error.Changes.StaleRecord{} ->
 Ash.Error.Changes.InvalidChanges.exception(field: :slug, message: "has already been taken")

 _ changeset, other ->
 # leave other errors untouched
 other
 end
end
Generating Errors
When returning errors from behaviors or adding errors to a
changeset/query/action input, multiple formats are supported. You can return a
simple String, which will be converted into an Ash.Error.Unknown exception.
You can also return a keyword list containing field or fields and message,
which will be used to construct an Ash.Error.Invalid.InvalidChanges error.
Finally, you can pass an exception directly, which will be used as is if it is
an Ash error, or wrapped in an Ash.Error.Unknown if it is not.
Technically any value can be used as an error, but will be wrapped in an
Ash.Error.Unknown accordingly.
Use exception modules
You should prefer to use the exception modules provided by Ash, or ones
that you have defined manually. This allows you to document your error
types, and to show those errors over API interfaces. See the section
on APIs below for more.
Examples of using non standard errors
Keyword list (Ash.Error.Changes.InvalidChanges)
def change(changeset, _, _) do
 if under_21?(changeset) do
 Ash.Changeset.add_error(changeset, field: :age, message: "must be 21 or older")
 else
 changeset
 end
end
String (Ash.Error.Unknown.UnknownError)
def change(changeset, _, _) do
 if under_21?(changeset) do
 Ash.Changeset.add_error(changeset, "must be 21 or older")
 else
 changeset
 end
end
Using an exception module
These are all modules under Ash.Error.*. You can create a new one with error.exception(options), and the options are documented in each exception. This documentation is missing in some cases. Go to the source code of the exception to see its special options. All of them support the vars option, which are values to be interpolated into the message, useful for things like translation.
For example:
def change(changeset, _, _) do
 if under_21?(changeset) do
 error = Ash.Error.Changes.Required.exception(
 field: :foo,
 type: :attribute,
 resource: changeset.resource
)

 Ash.Changeset.add_error(changeset, error)
 else
 changeset
 end
end
Using a Custom Exception
You can create a custom exception like so. This is an example of a builtin exception that you could mirror to build your own
defmodule MyApp.Errors.Invalid.TooYoung do
 @moduledoc "Used when a user who is too young is attempted to be created"
 use Splode.Error, fields: [:age], class: :invalid

 def message(error) do
 """
 Must be 21 or older, got: #{error.age}.
 """
 end
end

def change(changeset, _, _) do
 if under_21?(changeset) do
 error = MyApp.Errors.Invalid.TooYoung.exception(
 age: Ash.Changeset.get_attribute(changeset, :age)
)

 Ash.Changeset.add_error(changeset, error)
 else
 changeset
 end
end
Showing errors over APIs
AshJsonApi and AshGraphql both use a special protocol to determine how (and if) a raised or returned error should be displayed.
See the relevant docs:
	handling errors in AshGraphql
	AshJsonApi.ToJsonApiError

 Testing

Take a look at the how-to guide for a practical look at writing tests
The configuration you likely want to add to your config/test.exs is:
config/test.exs
config :ash, :disable_async?, true
config :ash, :missed_notifications, :ignore
Each option is explained in more detail below.
Async tests
The first thing you will likely want to do, especially if you are using AshPostgres, is to add the following config to your config/test.exs.
config/test.exs
config :ash, :disable_async?, true
This ensures that Ash does not spawn tasks when executing your requests, which is necessary for doing transactional tests with AshPostgres.
Missed notifications
If you are using Ecto's transactional features to ensure that your tests all run in a transaction, Ash will detect that it had notifications to send (if you have any notifiers set up) but couldn't because it was still in a transaction. The default behavior when notifications are missed is to warn. However, this can get pretty noisy in tests. So we suggest adding the following config to your config/test.exs.
config/test.exs
config :ash, :missed_notifications, :ignore

 Development Utilities

Formatting DSLs
All Ash packages that ship with extensions provide exports in their .formatter.exs. This prevents the formatter from turning, for example, attribute :name, :string into attribute(:name, :string). To enable this, add :ash (and any other Ash libraries you are using) to your .formatter.exs file:
[
 # ...
 import_deps: [..., :ash],
 # ...
]
ElixirSense Plugin
Ash uses Spark to build all of our DSLs (like Ash.Resource and Ash.Domain) and to validate options lists to functions. Spark ships with an extension that is automatically picked up by ElixirLS to provide autocomplete for all of our DSLs, and options list. You don't need to do anything to enable this, but it only works with ElixirLS (not other language server tools).
Formatter plugin
Spark also ships with a formatter plugin that can help you keep your resources formatted consistently. This plugin can sort the sections of your DSL to make your resources more consistent, and it can remove any accidentally added parentheses around DSL code.
Adding the plugin
Add the following to your .formatter.exs
[
 plugins: [Spark.Formatter], # <- add the plugin here
 inputs: ...
]
Configuration
Minimal config for your Ash Resources
config :spark, :formatter,
 remove_parens?: true,
 "Ash.Domain": [],
 "Ash.Resource": [
 section_order: [
 # any section not in this list is left where it is
 # but these sections will always appear in this order in a resource
 :actions,
 :attributes,
 :relationships,
 :identities
]
]
If you use a different module than Ash.Resource
config :spark, :formatter,
 [
 "Ash.Resource": [
 section_order: [
 :resource,
 :identities,
 :attributes,
 :relationships,
 ...
]
],
 # If you use a different module than Ash.Resource
 "MyApp.Resource": [
 type: Ash.Resource,
 # What extensions might be added by your base module
 extensions: [...],
 section_order: [
 :resource,
 :identities,
 :attributes,
 :relationships,
 ...
]
]
]

 Backwards Compatibility Config

All of these configurations are potentially breaking changes when applied
to your application. However, we highly encourage setting as many of
them as possible. In 4.0, some will be removed entirely, and any that remain
will have their defaults changed to the new value.
The ash installer automatically sets all of these.
allow_forbidden_field_for_relationships_by_default?
config :ash, allow_forbidden_field_for_relationships_by_default?: true
Old Behavior
Loaded relationships that produced a Forbidden error would fail the entire
request. i.e in Ash.load(post, [:comments, :author]), if author returned
a Forbidden error, the entire request would fail with a forbidden error.
New Behavior
Now the relationships that produced a forbidden error are instead populated
with %Ash.ForbiddenField{}.
include_embedded_source_by_default?
config :ash, include_embedded_source_by_default?: false
Old Behavior
When working with embedded types, the __source__ constraint is populated with
the original changeset. This can be very costly in terms of memory when working with
large sets of embedded resources.
New Behavior
Now, the source is only included when you say constraints: [include_source?: true] on
the embedded resource's usage.
show_keysets_for_all_actions?
config :ash, show_keysets_for_all_actions?: false
Old Behavior
For all actions, the records would be returned with __metadata__.keyset populated
with a keyset computed for the sort that was used to produce those records. This
is expensive as it requires loading all things that are used by the sort.
New Behavior
Only when actually performing keyset pagination will the __metadata__.keyset be
computed.
default_page_type
config :ash, default_page_type: :keyset
Old Behavior
When an action supports offset and keyset pagination, and a page is requested
with only limit set, i.e page: [limit: 10], you would get back an %Ash.Page.Offset{}.
New Behavior
Now we will return a %Ash.Page.Keyset{} choosing it whenever it is ambiguous.
You can always force returning an %Ash.Page.Offset{} by providing the offset option,
i.e page: [offset: 0]
policies.no_filter_static_forbidden_reads?
config :ash, policies: [no_filter_static_forbidden_reads?: false]
Old Behavior
On read action policies, we can often tell statically that they cannot pass, for example:
policy action_type(:read) do
 authorize_if actor_attribute_equals(:active, true)
end
In these cases, you would get an Ash.Error.Forbidden, despite the fact that the
default access_type for a policy is :filter. If you instead had:
policy action_type(:read) do
 authorize_if expr(private == false)
end
You would get a filter. This made it difficult to predict when you would get a forbidden
error and when the query results would be filtered.
New Behavior
Now, we always filter the query even if we know statically that the request would be
forbidden. For example the following policy:
policy action_type(:read) do
 authorize_if actor_attribute_equals(:active, true)
end
would yield filter: false. This makes the behavior consistent and predictable.
You can always annotate that a given policy should result in a forbidden error
by setting access_type :strict in the policy.
keep_read_action_loads_when_loading?
config :ash, keep_read_action_loads_when_loading?: false
Old Behavior
If you had an action with a preparation, or a global preparation that loaded data, i.e
prepare build(load: :comments)
this wold be applied when using Ash.load, because we build a query for the primary
read action as a basis for loading data. This could be expensive because now you are always
loading :comments even if you only intended to load something else, and could also be
unpredictable because it could "overwrite" the already loaded comments on the data you
passed in.
New Behavior
When using Ash.load only the explicitly provided load statement is applied.
default_actions_require_atomic?
config :ash, default_actions_require_atomic?: true
Old Behavior
When building actions like so: defaults [:read, create: :*, update: :*] the default
action is generated with require_atomic? false. This could make it difficult to spot
actions that cannot safely be done asynchronously.
New Behavior
The default generated actions are generated with require_atomic? true
read_action_after_action_hooks_in_order?
config :ash, read_action_after_action_hooks_in_order?: true
Old Behavior
In 3.0, we modified hooks on changesets to always be added in order instead of in
reverse order. This was missed for Ash.Query. Meaning if you had something like this:
read :read do
 prepare fn query, _ ->
 Ash.Query.after_action(query, fn query, results ->
 IO.puts("hook 1")
 {:ok, results}
 end)
 end

 prepare fn query, _ ->
 Ash.Query.after_action(query, fn query, results ->
 IO.puts("hook 2")
 {:ok, results}
 end)
 end
end
running that action would print hook 2 before hook 1.
New Behavior
Read action hooks are now run in the order they were added
bulk_actions_default_to_errors?
config :ash, bulk_actions_default_to_errors?: true
Old Behavior
Bulk action options defaulted to return_errors?: false, and stop_on_error?: false,
which was often a footgun for users unfamiliar to bulk actions, wondering "why did I not
get an error even though nothing was created?"
New Behavior
Now, return_errors? and stop_on_error? default to true

 Upgrade

Other Packages
Other packages have had a major version bump in addition to Ash core. While all packages have been changed to refer to domain instead of api, they did not receive a major version bump because there were no special breaking changes to account for when using that package. You will also need to factor in the following upgrade guides, if you use those packages.
	AshPostgres
	AshJsonApi
	AshGraphql

Upgrading to 3.0
This section contains each breaking change, and the steps required to address it in your application
Dependency Changes
Ash.Flow
If you use Ash.Flow, include {:ash_flow, "~> 0.1.0"} in your application.
Picosat Elixir
In 2.0, Ash had a dependency on picosat_elixir. In 3.0, this is an optional dependency, to help folks handle certain compatibility issues. To upgrade, add {:picosat_elixir, "~> 0.2"} to your mix.exs.
Ash.Api is now Ash.Domain
The previous name was often confusing as this is an overloaded term for many. To that end, Ash.Api has been renamed to Ash.Domain, which better fits our usage and concepts.
What you'll need to change
To make this change you will need to do two things:
	replace Ash.Api with Ash.Domain in your application
	replace places where an :api option is passed to a function with the :domain option. For example, AshPhoenix.Form.for_create(..., api: MyApp.SomeApi) should now be AshPhoenix.Form.for_create(..., domain: MyApp.SomeDomain)
	Update your application config to define ash_domains instead of ash_apis, eg. config :my_app, ash_domains: [MyApp.MyDomain]

DSL Changes
	code_interface.define_for is now code_interface.domain. Additionally, it is set automatically if the domain option is specified on use Ash.Resource.

	domain.execution.timeout used to default to 30 seconds, but now it defaults to :infinity. This is because a timeout requires copying memory across process boundaries, and is an unnecessary expense a vast majority of the time. We recommend putting timeouts on specific actions that may need them.

	actions.create.reject, actions.update.reject and actions.destroy.reject have been removed. Blacklisting inputs makes it too easy to make mistakes. Instead, specify an explicit accept list.

	relationships.belongs_to.attribute_writable? no longer makes the underlying attribute both public and writable. It defaults to the value of writable? on the relationship (which itself defaults to true), and only controls the generated attributes writable? true property. So now, by default, it will be true, which is safe when coupled with changes to the default_accept, discussed below. Generally, this means you should be safe to remove any occurrences of attribute_writable? true.

	relationships.belongs_to.attribute_public? has been added, which controls the underlying attribute's public? value. This, similar to attribute_writable? defaults to the public? attribute of the relationship.

	resource.simple_notifiers has been removed, in favor of specifying non-DSL notifiers in the simple_notifiers option to use Ash.Resource.

	resource.actions.read.filter can now be specified multiple times. Multiple filters will be combined with and.

Ash.Registry has been removed
Ash.Registry is no longer needed. Place each resource in the domain instead.
resources do
 resource Resource1
 resource Resource2
end
Expression changes
When calling a calculation with arguments, this is done via passing a keyword list to the calculation, for example: full_name(separator: ""). In 2.0, keyword lists were not evaluated as part of the expression in the same way as other values, meaning two things:
	You did not have to pin usage of template functions, i.e full_name(separator: arg(:separator)). Now, you will need to do so: full_name(separator: ^arg(:separator))

	You had to use expr to pass an expression to a calculation argument (this only works if allow_expr? true is configured on the calculation argument). For example: full_name(separator: expr(sep_1 <> sep_2)) would now be full_name(separator: sep_1 <> sep_2)

If you do not have any expression calculations that accept arguments, you likely need to do nothing. To make these changes, you will need to look at each place you build an expression that you may be calling a calculation w/ arguments, i.e Ash.Query.filter, and the expression callback in Ash.Calculation, and see if they must be modified as described above.
Module/function changes
Ash.Policy.FilterCheck and Ash.Policy.FilterCheckWithContext are combined
Ash.Policy.FilterCheck and Ash.Policy.FilterCheckWithContext have been combined into Ash.Policy.FilterCheck. If you have any usages of FilterCheckWithContext, you'll need to change that to FilterCheck. If you have usages of FilterCheck, you will need to add the context arguments to the callbacks. Compiler warnings will show you what callbacks mismatch.
Ash.Filter
Ash.Filter.parse/5 is now Ash.Filter.parse/3. Ash.Filter.parse_input/5 is now Ash.Filter.parse_input/2 The third and fourth optional arguments are unnecessary and were previously ignored, and the fifth argument is not necessary for parse_input.
Ash.Filter.used_aggregates/3 no longer accepts :all as a relationship path, instead using :*. Its very unlikely that this is used in your application.
Ash.Filter.TemplateHelpers
Tools for templating expressions were previously in Ash.Filter.TemplateHelpers. This often led to confusion because it was a hard to remember module name, and didn't really make sense to be separate from the rest of our utilities. Now, all the functions/macros you need for expressions are in Ash.Expr. This means that in any given file where you want to work with expressions, you only need to do import Ash.Expr. Additionally, this import Ash.Expr has been added to changes, preparations, validations and calculations automatically.
Ash.CiString
	Ash.CiString.new(nil) now returns nil instead of %Ash.CiString{value: nil}

Ash.Resource.Validation
validate/2 is now validate/3, with the third argument being the context of the validation.
Ash.Query.Calculation
The function signature of Ash.Query.Calculation.new has been changed. We use an options list over optional arguments, and now require constraints to be provided. You will need to adjust your calls to this function.
Ash.Calculation
This module has been renamed to Ash.Resource.Calculation. You will need to rename your references to it.
Ash.Query
Ash.Query.to_query has been removed. Use Ash.Query.new instead.
Ash.Query.expr has been removed. Use Ash.Expr.expr instead.
Aggregates
first and list aggregates have a new option called include_nil?, which defaults to false. You may need to add include_nil?: true to your resource aggregates if you wish to retain the old behavior.
New format for sorting on calculations with arguments
The format for sorting on calculations that take input has been swapped. Previously, you would use sort(calculation: {:desc, %{arg: :value}}), but for the sake of consistency, you now use sort(calculation: {%{arg: :value}, :desc}).
Ash.Changeset
Ash.Changeset.new/2 has been removed. Ash.Changeset.new/1 is still available for creating a new changeset, but attributes and arguments should, with few exceptions, be passed to the relevant Ash.Changeset.for_<action_type> functions, not to Ash.Changeset.new/2. Removing the second argument helps clarify the purpose of Ash.Changeset.new/1.
Ash.Changeset.after_transaction/2 can no longer be called from within other lifecycle hooks. We need to know whether or not an after action hook, before we start processing any hooks.
Ash.Changeset.manage_relationship/4 no longer uses :all to signal that all changes will be sent to the join relationship. Instead, use :*.
Ash.Changeset.filter now accepts expressions. The value of the filter is no longer a simple equality map, but rather a regular Ash expression. We add to it on successive calls to Ash.Changeset.filter. Additionally, this value is stored in changeset.filter instead of changeset.filters.
Ash.Policy.FilterCheckWithContext
Ash.Policy.FilterCheck and Ash.Policy.FilterCheckWithContext have been combined. The name is Ash.Policy.FilterCheck, but the callbacks take the extra arguments present in Ash.Policy.FilterCheckWithContext.
Builtin Changes & Preparations
The functions provided to after_action/1, after_transaction/1, before_transaction/1 and before_action/1 must all now take an additional argument, which is the change context.
For example,
change after_action(fn changeset, result -> ... end)
is now
change after_action(fn changeset, result, context -> ... end)
This is true for both preparations and changes.
Expressions
Previously, in expressions, you could say expr(ref(^some_atom)). This is a tool for building dynamic references, but it was an exception to the standard pattern of prefixing "external" things in an expression, i.e arg with ^. Now, you must do the same with ref/1 and ref/2. You will need to search for ref(in your application, and ensure that if it is inside of an expression you have prefixed it with ^. The original example becomes: expr(^ref(some_atom)).
Exception changes
Ash exceptions have been simplified and are now backed by Splode
Usage of def_ash_error/2 will show you what to change in its warnings.
Instead of combining def_ash_error with defimpl Ash.ErrorKind, you create a custom error like so:
defmodule MyCustomError do
 use Splode.Error, class: :invalid, fields: [:foo, :bar]

 def message(error) do
 "Message: #{error.foo} - #{error.bar}"
 end
end
Ash exception changes
When sorting or filtering, if a field is not found, an Ash.Query.Error.NoSuchField is used, where it would have previously been an Ash.Query.Error.NoSuchAttribute. This was wrong as sometimes the field reference was not an attribute. Places that would previously return Ash.Query.Error.NoSuchAttributeOrRelationship now return Ash.Query.Error.NoSuchField as well.
Additionally, the following exceptions have had keys remapped:
NoSuchAttribute: name -> attribute
NoSuchRelationship: name -> relationship
NoSuchFunction: name -> function
NoSuchOperator: name -> operator

Significant Changes
Ash.set_* functions have been removed
In 2.0, a set of features allowed storing the actor, tenant and context in the process dictionary. There were fundamental issues with this pattern that manifested in subtle bugs. We suggest making this change before you upgrade, as this change can be made and verified without upgrading to 3.0.
What you'll need to change
You need to manually thread through your tenant, actor, and context values wherever you were using Ash.set_*. For example:
Ash.set_actor(current_user)
Ash.set_tenant(current_tenant)

Ash.Changeset.for_create!(..)
Ash.Query.for_read(..)
would become
Ash.Changeset.for_create!(.., tenant: current_tenant, actor: current_user)
Ash.Query.for_read(.., tenant: current_tenant, actor: current_user)
The Domain of a resource must now be known when constructing a changeset, query or action input
In order to honor rules on the Domain module about authorization and timeouts, we have to know the Domain when building the changeset.
What you'll need to change
Embedded Resources
The domain for the calls to embedded resources is gotten from the parent changeset. No need to change them at all. a domain constraint has been added in case you wish to make a given embedded resource use a specific domain always.
For example:
attribute :bio, MyApp.Bio do
 constraints domain: MyApp.SomeDomain
end
Single Domain resources
While it is possible for resources to be used with multiple domains, it almost never happens in practice. Any resources that are only used from a single domain only (not including embedded resources) should be modified to have a domain option specified in their call to use Ash.Resource. For example:
use Ash.Resource,
 domain: MyApp.MyDomain
Using Ash.* to interact with your resources
Calling functions on the domain has been deprecated. You must now use the functions defined in the Ash module to interact with your resources. They are the same as what was previously available in your domain module. For example:
MyDomain1.create!(changeset)
MyDomain2.read!(query)
MyDomain3.calculate!(...)
can now be written as
Ash.create!(changeset)
Ash.read!(query)
Ash.calculate!(query)
This makes refactoring resources easier, as you no longer need to change the call site, it remains the same regardless of what Domain a resource is in.
Multi Domain resources
For these, you will need to include the domain option when you construct a changeset.
For example:
MyResource
|> Ash.Changeset.for_create(:create, input, domain: MyApp.MyDomain)

Actions no longer default to accepting all public writable attributes
For more context, see the original discussion: https://github.com/ash-project/ash/issues/512
In 2.0, all public, writable attributes were accepted by each action by default. This made it very easy to accidentally expose writing to an attribute in an action where that was not the intent. Additionally, new attributes added were automatically writable across a wide array of actions, which was error prone for the same reason.
In 2.0, as well as 3.0, there is an option called default_accept, which modifies all actions that do not have an accept list. In 2.0, the default value for default_accept was "all public, writable attributes". In 3.0, the default value for default_accept is []. This encourages a pattern of explicitly listing inputs to actions, and is safer and less error prone.
What you'll need to change
For those who want to upgrade, you would use the new :* option to default_accept (also usable in an action's accept option) to accept all public attributes. Go to each resource and, inside the actions block, add:
actions do
 default_accept :*
 ...
end
Then mark the attributes and relationships you want to accept as public?: true (see this section for more information on this change).
For those who want to be more explicit, or after your upgrade has complete if you wish to refactor existing resources and actions, the general best path forward is to copy the default_accept into each action (or put it in a module attribute and reference it) as the accept option. This way when a new action is added, it does not "inherit" some list of accepted attributes.
:* private attributes can now be accepted
In 2.0, accepting a private attribute as a change required adding an argument with the same name, and using change set_attribute(...). Now that we require explicit accept lists, you can place private attributes in that list, which will allow them to be written to (but not read back).
:* includes belongs_to attributes!
The change to explicit accepts also included a change that defaults belongs_to attributes to writable?: true and public?: false. You may want to add attribute_writable?: false to your belongs_to relationships if you are adding default_accept :* and don't currently have attribute_writable?: true on them currently.

Default actions :create and :update can now have an accept list
For example:
defaults [:read, :destroy, create: :*, update: :*]
Default read actions are now paginatable
In 2.0, if you have :read in your default actions list, it would generate an action like this:
read :read do
 primary? true
end
Now, it generates an action like this:
read :read do
 primary? true
 pagination [keyset?: true, offset?: true, countable: true, required?: false]
end

What you will need to change
For most cases, this won't affect you. However, if you are using AshGraphql, and have any queries connected to a default :read action, it will default to making those queries paginatable with keyset pagination. To keep the old behavior, you will need to add paginate_with nil to the query, for example:
graphql do
 queries do
 list :list_things, :read, paginate_with: nil
 end
end

Before action and before transaction hooks order has been reversed
In Ash 2.0, before_action and before_transaction hooks that were added to a changeset were prepended to the list of hooks by default. These hooks were then run in order. What this meant is that, given an action like the following:
create :foo do
 change before_action(fn changeset, _context ->
 IO.puts("first")
 changeset
 end)

 change before_action(fn changeset, _context ->
 IO.puts("second")
 changeset
 end)
end
You would see second printed before first.
What you'll need to change
In many cases, this won't matter to you. However, if you have a situation where the order of your before action/transaction hooks matters, you can do one of two things:
	reorder the changes that add those before action/transaction hooks
	use the :prepend option to Ash.Changeset.before_action/2 and Ash.Changeset.before_transaction/2 to explicitly prepend the hook to the list of hooks

Context in changes, preparations, validations, calculations are now structs
To help make it clear what keys are available in the context provided to callbacks on these modules, they have been adjusted to provide a struct instead of a map. This helps avoid potential ambiguity, and
acts as documentation.
What you'll need to change
If you are using something like Keyword.new(context) to generate options to pass into an action, change that to Ash.Context.to_opts(context).

Calculation arguments are now in context.arguments
Per the above change, we have specified the values available in the context of a calculation, with Ash.Resource.Calculation.Context. In Ash 2.0, context was merged with arguments, which was problematic in various ways. Now, arguments are in context.arguments.
What you'll need to change
You will need to update your module-backed calculations to account for this.
def calculate(records, _opts, context) do
 Enum.map(records, fn record ->
 record.first_name <> context.delimiter <> record.last_name
 end)
end
would need to be adjusted to access arguments in the context:
def calculate(records, _opts, %{arguments: arguments}) do
 Enum.map(records, fn record ->
 record.first_name <> arguments.delimiter <> record.last_name
 end)
end

private?: true -> public?: true
There is no longer a private? option for attributes, relationships, calculations and aggregates. Instead of attributes defaulting to private?: false, they now default to public?: false. It was too easy to add an attribute and not realize that you had exposed it over your api.
What you'll need to change
If you are using api extensions (i.e AshGraphql and AshJsonApi), you will need to go to your resources and "invert" the definitions. i.e remove private?: true and add public?: true to every other attribute, relationship and calculation. Don't forget the relationships and calculations!
Embedded resources too!
The above includes embedded resources as well! Don't forget to make sure that all fields on your embedded resources are also marked as public?: true (if applicable). The goal here is to have a clear visual indicator of what in your application can be shown publicly.

Anonymous calculations now operate on a list, just like module calculations
Previously, anonymous function calculations were special cased to operate on a single record. For consistency, these anonymous functions now take the list of records.
What you'll need to change
Update any anonymous function calculations to take and return a list, for example:
calculate :full_name, :string, fn record, _context ->
 record.first_name <> " " <> record.last_name
end
would become
calculate :full_name, :string, fn records, _context ->
 # note, you can also return `{:ok, list}` or `{:error, error}`
 Enum.map(records, fn record ->
 record.first_name <> " " <> record.last_name
 end)
end

Calculation loads do not select all related fields by default
In 2.0 relationship loads from the load/3 callback in a calculation will select all fields of that relationship and make them available to the calculation.
For example, the following calculation load/3 callback expresses a dependency on all fields of the relationship :relationship.
def load(_, _, _) do
 [:relationship]
end
What you'll need to change
Refactor
In 3.0, relationship dependencies alone will only make the related primary keys available. You now need to select explicit fields that you want to use in your calculation, for example:
def load(_, _, _) do
 [relationship: [:field1, :field2]]
end
Keep the old behavior
Each calculation can still opt into the old behavior by adding the callback strict_loads/0 and returning false.
def load(_, _, _) do
 [:relationship]
end

def strict_loads, do: false

Calculations do not have a select/3 callback any more
In 2.0 calculations had a select/3 callback, but load/3 is now a superset of select/3 and so the former is no longer needed.
What you'll need to change
If you have a select/3 callback in your calculations, you will need to remove the select/3 callback. You must then add those fields to the load/3 callback.
For example:
def select(_, _, _), do: [:some_attribute]
def load(_, _, _), do: [:some_calculation, some_relationship: [:some_field1, :some_field2]]
can now be written more simply as:
def load(_, _, _), do: [:some_attribute, :some_calculation, some_relationship: [:some_field1, :some_field2]]

Embedded resources no longer have autogenerated_id
A private primary key called autogenerated_id was added to embedded resources if no primary key was added manually.
This should have no real effect on your application, except for the fact that your embedded attributes will have autogenerated_id in the database which won't be reflected by an attribute any more. If it is updated, then the autogenerated_id field will go away.
This is listed as a breaking change in case someone is depending on this feature, but that should be very uncommon/unlikely.

PubSub notifier no longer publishes events for previous values by default
Previously, the Ash notifier would publish a message containing both the old and new values for changing attributes. Typically, we use
things like IDs in notification topics, that do not change, so for most this will not have an impact.
If you wish to send a notification for the old value and the new value, then an action cannot be done atomically. Bulk actions must update each record in turn, and atomic updates can't be leveraged.
If you're comfortable with the performance implications, you can restore the previous behavior by adding previous_values?: true to your publications in your pub_sub notifier
publish :update, ["user:updated", :email], previous_values?: true

Custom checks and notifiers will not have access to the original data by default
In your notifiers and policy checks, when you get a changeset you currently have access to the data field,
which is the original record prior to being updated or destroyed. However, this is not compatible with atomic/bulk
updates/destroys, where we may be given a query and told to destroy it. In those cases, changeset.data will be
%Ash.Changeset.OriginalDataNotAvailable{}. When you write a custom check or a custom notifier, if you need access to the original data, you must add the following function:
in custom checks
def requires_original_data?(_authorizer, _opts), do: true

in notifiers
def requires_original_data?(_resource, _action), do: true
Keep in mind, this will prevent the usage of these checks/notifiers with atomic actions.

Domain.authorization.authorize now defaults to :by_default
Previously, the default was :when_requested. This meant that, unless you said actor: some_actor or authorize?: true, authorization was skipped. This has the obvious drawback of making it easy to accidentally bypass authorization unintentionally. In 3.0, this now defaults to :by_default.
What you'll need to change
Keep old behavior
To avoid making a significant refactor, and to keep your current behavior, you can go to your domain and set the configuration below. Otherwise skip to the refactor steps below. We advise that you take this route to start, but we highly suggest that you change your domains to authorize :by_default in the future. authorize :when_requested will not be deprecated, so there is no time constraint.
authorization do
 authorize :when_requested
end
Refactor
For each domain that has the old configuration, after setting it to the new config, you'll need to revisit each call to that domain that doesn't set an actor or the authorize? option, and add authorize?: false.
This may be a good time to do the refactor from YourDomain.func to Ash.func, if you want to. See the section about domains being required when building changesets.

require_atomic? defaults to true
On :update actions, and :destroy actions, they now default to require_atomic? true. This means that the following things will cause errors when attempting to run the action:
	changes or validations exist that do not have the atomic callback. This includes anonymous function changes/validations.
	attributes are being changed that do not support atomic updates. This most notably includes (for now) embedded resources.
	the action has a manual implementation
	the action has applicable notifiers that require the original data.

Updates and destroys that can be made fully atomic are always safe to do concurrently, and as such we now require that actions meet this criteria, or that it is explicitly stated that they do not have to. See the update actions guide for more.
Upgrade config
You can set the following configuration, which will be removed in Ash 3.1. This configuration will retain the 2.0 default behavior of require_atomic? defaulting to false. You can then safely do the rest of the upgrade. Then, you can perform this one change after confirming that your system works as expected.
config :ash, :require_atomic_by_default?, false
What you'll need to change
The vast majority of cases will be caught by warnings emitted at compile time.
Anonymous function changes
Anonymous function changes can never be made atomic, because we don't know what they contain. You will either need to transfer it to a module change and then follow the next section, or set require_atomic? false
Module changes
If you have a module change, you can make it atomic by defining the atomic/3 callback. This callback can replace the change/3 callback, but it is very important to keep in mind that later changes will no longer have access to the value. For example, if you have
def change(changeset, _, _) do
 # this is not concurrency safe
 Ash.Changeset.change_attribute(changeset, :value, changeset.data.value + 1)
end
If you have a subsequent change that does something like Ash.Changeset.get_attribute(changeset, :value) it will get the new value (i.e old value + 1). With atomics, Ash.Changeset.get_attribute(changeset, :value) would return the old value. This is because atomics are scheduling an update that happens when call the data layer. For example:
def atomic(changeset, _, _) do
 {:atomic, %{value: expr(value + 1)}}
end
This should not typically matter unless you have complex actions w/ multiple changes where subsequent changes need to know the results of previous steps. In those cases, if you can't make them all atomic, then its best just not to worry about it and set require_atomic? false
Non-atomic castable types
If you are using change atomic_update/2 or Ash.Changeset.atomic_update/2 or Ash.Changeset.atomic_update/3, and the type does not support atomic updates, you will get an error unless you do one of the following:
	for change atomic_update/2 add the cast_atomic?: false option.
	for Ash.Changeset.atomic_update, pass the value as {:atomic, expr}, i.e Ash.Changeset.atomic_update(changeset, :value, {:atomic, expr(value + 1)})

For builtin types, the above applies to :union, :map, :keyword, embedded types. It also applies to :string, but only if the match? constraint is present.

Ash.Error.Invalid.NoSuchInput errors on unknown action inputs
In 2.0, inputs to actions that don't match an accepted attribute or argument were silently ignored. This made it very easy to make certain kinds of mistakes, like assuming that an input is being used by an action when it actually is not. Now, unknown action inputs will cause an Ash.Error.Invalid.NoSuchInput.
What you'll need to change
If you have action calls that are erroneously passing in extra values, you will need to do remove them.
A logic error was fixed in this behavior for embedded resources. If you are using embedded resources in {:array, _} types, and are relying on including the primary key of that embedded resource to match records up for updating/destroy behavior, you will need to make sure that you do one of the following
	add the writable?: true flag to the uuid of the embedded resource (probably what you want)
	modify the actions to accept an id argument and set the argument to the provided value

%Ash.NotLoaded{} for attributes
In 2.0, attributes that were not selected were replaced with nil values. This could lead to confusion when dealing with records that didn't have all attributes selected. If you passed these records to a function it might see that an attribute is nil when actually it just wasn't selected. To find out if it was selected, you could look into record.__metadata__.selected, but you'd have to know to do that. To alleviate these issues, attributes that are not selected are now filled in with %Ash.NotLoaded{}, just like calculations and aggregates.
What you'll need to change
If you have logic that was looking at attribute values that may not be selected, you may have been accidentally working with non selected values. For example:
if record.attribute do
 handle_present_attribute(...)
else
 # unselected attributes would have ended up in this branch
 handle_not_present_attribute(...)
end
Now, if it is possible for that attribute to have not been selected, you'll want to do something like this instead:
case record.attribute do
 %Ash.NotLoaded{} ->
 handle_not_selected(...)
 nil ->
 handle_not_present_attribute(...)
 value ->
 handle_present_attribute(...)
end

Calculations do not reuse values by default
When loading data in 2.0 the option reselect_all? defaulted to false. What this would mean is that existing values for attributes would be reused, instead of visiting the data layer, by default. This can be an extremely valuable piece of behavior, but defaulting to it often means accidentally using data as a cache that you did not intent to use as a cache. Take the following example:
user = %User{first_name: "fred", last_name: "weasley"}

Ash.update!(user, first_name: "george")

user |> Ash.load!(:full_name)
in 2.0 -> fred weasley
in 3.0 -> george weasley
To opt into the old behavior, which we recommend doing on a case-by-case basis, you can pass reuse_values?: true. For example:
user |> Ash.load!(:full_name, reuse_values?: true)

Resources are not interchangeable with Ash.Type anymore
In 2.0 it was possible to pass an Ash resource in all places where some instance of Ash.Type was supported. In 3.0 resources (except for embedded resources) don't implement the Ash.Type behaviour anymore.
What you'll need to change
If you were using a resource in one of the places that accept an Ash.Type (arguments, calculation return values or fields of a union) you have to refactor your code to use the :struct type together with an instance_of constraint
calculation :random_post, :struct do
 constraints instance_of: Post
 calculate Calculations.RandomPost
end

 Ash.Resource

attributes
A section for declaring attributes on the resource.
Nested DSLs
	attribute
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key
	uuid_v7_primary_key

Examples
attributes do
 uuid_primary_key :id

 attribute :first_name, :string do
 allow_nil? false
 end

 attribute :last_name, :string do
 allow_nil? false
 end

 attribute :email, :string do
 allow_nil? false

 constraints [
 match: ~r/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$/
]
 end

 attribute :type, :atom do
 constraints [
 one_of: [:admin, :teacher, :student]
]
 end

 create_timestamp :inserted_at
 update_timestamp :updated_at
end

attributes.attribute
attribute name, type
Declares an attribute on the resource.
Examples
attribute :name, :string do
 allow_nil? false
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.
	type	module		The type of the attribute. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword		Constraints to provide to the type when casting the value. For more, see Ash.Type.
	description	String.t		An optional description for the attribute.
	sensitive?	boolean	false	Whether or not the attribute value contains sensitive information, like PII(Personally Identifiable Information). See the Sensitive Data guide for more.
	source	atom		If the field should be mapped to a different name in the data layer. Support varies by data layer.
	select_by_default?	boolean	true	Whether or not the attribute is selected by default.
	always_select?	boolean	false	Whether or not to ensure this attribute is always selected when reading from the database, regardless of applied select statements.
	primary_key?	boolean	false	Whether the attribute is the primary key. Composite primary key is also possible by using primary_key? true in more than one attribute. If primary_key? is true, allow_nil? must be false.
	allow_nil?	boolean	true	Whether or not the attribute can be set to nil. If nil value is given error is raised.
	generated?	boolean	false	Whether or not the value may be generated by the data layer.
	writable?	boolean	true	Whether or not the value can be written to. Non-writable attributes can still be written with Ash.Changeset.force_change_attribute/3.
	public?	boolean	false	Whether or not the attribute should be shown over public interfaces. See the sensitive data guide for more.
	default	(-> any) | mfa | any		A value to be set on all creates, unless a value is being provided already. Note: The default value is casted according to the type's Ash.Type.* module, before it is saved. For :string, for example, if constraints: [allow_empty?: _] is false, the value "" will be cast to nil. See the :constraints option, the :allow_nil? option, and the relevant Ash.Type.* documentation.
	update_default	(-> any) | mfa | any		A value to be set on all updates, unless a value is being provided already.
	filterable?	boolean | :simple_equality	true	Whether or not the attribute can be referenced in filters.
	sortable?	boolean	true	Whether or not the attribute can be referenced in sorts.
	match_other_defaults?	boolean	false	Ensures that other attributes that use the same "lazy" default (a function or an mfa), use the same default value. Has no effect unless default is a zero argument function.

Introspection
Target: Ash.Resource.Attribute
attributes.create_timestamp
create_timestamp name
Declares a non-writable attribute with a create default of &DateTime.utc_now/0
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except it sets
the following different defaults:
writable? false
default &DateTime.utc_now/0
match_other_defaults? true
type Ash.Type.UTCDatetimeUsec
allow_nil? false
Examples
create_timestamp :inserted_at
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.

Introspection
Target: Ash.Resource.Attribute
attributes.update_timestamp
update_timestamp name
Declares a non-writable attribute with a create and update default of &DateTime.utc_now/0
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except it sets
the following different defaults:
writable? false
default &DateTime.utc_now/0
match_other_defaults? true
update_default &DateTime.utc_now/0
type Ash.Type.UTCDatetimeUsec
allow_nil? false
Examples
update_timestamp :updated_at
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.

Introspection
Target: Ash.Resource.Attribute
attributes.integer_primary_key
integer_primary_key name
Declares a generated, non writable, non-nil, primary key column of type integer.
Generated integer primary keys must be supported by the data layer.
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except for allow_nil?, but it sets
the following different defaults:
public? true
writable? false
primary_key? true
generated? true
type :integer
Examples
integer_primary_key :id
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.

Introspection
Target: Ash.Resource.Attribute
attributes.uuid_primary_key
uuid_primary_key name
Declares a non writable, non-nil, primary key column of type uuid, which defaults to Ash.UUID.generate/0.
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except for allow_nil?, but it sets
the following different defaults:
writable? false
public? true
default &Ash.UUID.generate/0
primary_key? true
type :uuid
Examples
uuid_primary_key :id
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.

Introspection
Target: Ash.Resource.Attribute
attributes.uuid_v7_primary_key
uuid_v7_primary_key name
Declares a non writable, non-nil, primary key column of type uuid_v7, which defaults to Ash.UUIDv7.generate/0.
Accepts all the same options as d:Ash.Resource.Dsl.attributes.attribute, except for allow_nil?, but it sets
the following different defaults:
writable? false
public? true
default &Ash.UUIDv7.generate/0
primary_key? true
type :uuid_v7
Examples
uuid_v7_primary_key :id
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the attribute.

Introspection
Target: Ash.Resource.Attribute
relationships
A section for declaring relationships on the resource.
Relationships are a core component of resource oriented design. Many components of Ash
will use these relationships. A simple use case is loading relationships (done via the Ash.Query.load/2).
See the relationships guide for more.
Nested DSLs
	has_one	filter

	has_many	filter

	many_to_many	filter

	belongs_to	filter

Examples
relationships do
 belongs_to :post, MyApp.Post do
 primary_key? true
 end

 belongs_to :category, MyApp.Category do
 primary_key? true
 end
end

relationships do
 belongs_to :author, MyApp.Author

 many_to_many :categories, MyApp.Category do
 through MyApp.PostCategory
 destination_attribute_on_join_resource :category_id
 source_attribute_on_join_resource :post_id
 end
end

relationships do
 has_many :posts, MyApp.Post do
 destination_attribute :author_id
 end

 has_many :composite_key_posts, MyApp.CompositeKeyPost do
 destination_attribute :author_id
 end
end

relationships.has_one
has_one name, destination
Declares a has_one relationship. In a relational database, the foreign key would be on the other table.
Generally speaking, a has_one also implies that the destination table is unique on that foreign key.
See the relationships guide for more.
Nested DSLs
	filter

Examples
In a resource called `Word`
has_one :dictionary_entry, DictionaryEntry do
 source_attribute :text
 destination_attribute :word_text
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

Options
	Name	Type	Default	Docs
	manual	(any, any -> any) | module		A module that implements Ash.Resource.ManualRelationship. Also accepts a 2 argument function that takes the source records and the context.
	no_attributes?	boolean		All existing entities are considered related, i.e this relationship is not based on any fields, and source_attribute and destination_attribute are ignored. See the See the relationships guide for more.
	allow_nil?	boolean	true	Marks the relationship as required. Has no effect on validations, but can inform extensions that there will always be a related entity.
	from_many?	boolean	false	Signal that this relationship is actually a has_many where the first record is given via the sort. This will allow data layers to properly deduplicate when necessary.
	description	String.t		An optional description for the relationship
	destination_attribute	atom		The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	default_sort	any		A default sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.
	authorize_read_with	:error | :filter		If set to :error, any authorization filter added to the relationship will result in an error if any record matches the filter in the database.
	allow_forbidden_field?	boolean	false	If set to true, the relationship will be set to %Ash.ForbiddenField{} if its query produces a forbidden error.

relationships.has_one.filter
filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.
Examples
filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

Arguments
	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.

Introspection
Target: Ash.Resource.Dsl.Filter
Introspection
Target: Ash.Resource.Relationships.HasOne
relationships.has_many
has_many name, destination
Declares a has_many relationship. There can be any number of related entities.
See the relationships guide for more.
Nested DSLs
	filter

Examples
In a resource called `Word`
has_many :definitions, DictionaryDefinition do
 source_attribute :text
 destination_attribute :word_text
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

Options
	Name	Type	Default	Docs
	manual	(any, any -> any) | module		A module that implements Ash.Resource.ManualRelationship. Also accepts a 2 argument function that takes the source records and the context.
	no_attributes?	boolean		All existing entities are considered related, i.e this relationship is not based on any fields, and source_attribute and destination_attribute are ignored. See the See the relationships guide for more.
	limit	integer		An integer to limit entries from loaded relationship.
	description	String.t		An optional description for the relationship
	destination_attribute	atom		The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	default_sort	any		A default sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.
	authorize_read_with	:error | :filter		If set to :error, any authorization filter added to the relationship will result in an error if any record matches the filter in the database.
	allow_forbidden_field?	boolean	false	If set to true, the relationship will be set to %Ash.ForbiddenField{} if its query produces a forbidden error.

relationships.has_many.filter
filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.
Examples
filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

Arguments
	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.

Introspection
Target: Ash.Resource.Dsl.Filter
Introspection
Target: Ash.Resource.Relationships.HasMany
relationships.many_to_many
many_to_many name, destination
Declares a many_to_many relationship. Many to many relationships require a join resource.
A join resource is a resource that consists of a relationship to the source and destination of the many to many.
See the relationships guide for more.
Nested DSLs
	filter

Examples
In a resource called `Word`
many_to_many :books, Book do
 through BookWord
 source_attribute :text
 source_attribute_on_join_resource :word_text
 destination_attribute :id
 destination_attribute_on_join_resource :book_id
end

And in `BookWord` (the join resource)
belongs_to :book, Book, primary_key?: true, allow_nil?: false
belongs_to :word, Word, primary_key?: true, allow_nil?: false

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

Options
	Name	Type	Default	Docs
	source_attribute_on_join_resource	atom		The attribute on the join resource that should line up with source_attribute on this resource. Defaults to <snake_cased_last_part_of_source_module_name>_id.
	destination_attribute_on_join_resource	atom		The attribute on the join resource that should line up with destination_attribute on the related resource. Defaults to <snake_cased_last_part_of_destination_module_name>_id.
	through	module		The resource to use as the join resource.
	join_relationship	atom		The has_many relationship to the join resource. Defaults to <relationship_name>_join_assoc.
	description	String.t		An optional description for the relationship
	destination_attribute	atom	:id	The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom	:id	The field on this resource that should match the destination_attribute on the related resource.
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	default_sort	any		A default sort statement to be applied when loading the relationship.
	could_be_related_at_creation?	boolean	false	Whether or not related values may exist for this relationship at creation.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.
	authorize_read_with	:error | :filter		If set to :error, any authorization filter added to the relationship will result in an error if any record matches the filter in the database.
	allow_forbidden_field?	boolean	false	If set to true, the relationship will be set to %Ash.ForbiddenField{} if its query produces a forbidden error.

relationships.many_to_many.filter
filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.
Examples
filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

Arguments
	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.

Introspection
Target: Ash.Resource.Dsl.Filter
Introspection
Target: Ash.Resource.Relationships.ManyToMany
relationships.belongs_to
belongs_to name, destination
Declares a belongs_to relationship. In a relational database, the foreign key would be on the source table.
This creates a field on the resource with the corresponding name and type, unless define_attribute?: false is provided.
See the relationships guide for more.
Nested DSLs
	filter

Examples
In a resource called `Word`
belongs_to :dictionary_entry, DictionaryEntry do
 source_attribute :text,
 destination_attribute :word_text
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the relationship
	destination	module		The destination resource

Options
	Name	Type	Default	Docs
	primary_key?	boolean	false	Whether the generated attribute is, or is part of, the primary key of a resource.
	allow_nil?	boolean	true	Whether this relationship must always be present, e.g: must be included on creation, and never removed (it may be modified). The generated attribute will not allow nil values.
	attribute_writable?	boolean		Whether the generated attribute will be marked as writable. If not set, it will default to the relationship's writable? setting.
	attribute_public?	boolean		Whether or not the generated attribute will be public. If not set, it will default to the relationship's public? setting.
	define_attribute?	boolean	true	If set to false an attribute is not created on the resource for this relationship, and one must be manually added in attributes, invalidating many other options.
	attribute_type	any	:uuid	The type of the generated created attribute. See Ash.Type for more.
	description	String.t		An optional description for the relationship
	destination_attribute	atom	:id	The attribute on the related resource that should match the source_attribute configured on this resource.
	validate_destination_attribute?	boolean	true	Whether or not to validate that the destination field exists on the destination resource
	source_attribute	atom		The field on this resource that should match the destination_attribute on the related resource. - Defaults to <name>_id
	relationship_context	any		Context to be set on any queries or changesets generated for managing or querying this relationship.
	public?	boolean	false	Whether or not the relationship will appear in public interfaces
	not_found_message	String.t		A message to show if there is a conflict with this relationship in the database on update or create, or when managing relationships.
	writable?	boolean	true	Whether or not the relationship may be managed.
	read_action	atom		The read action on the destination resource to use when loading data and filtering.
	domain	atom		The domain module to use when working with the related entity.
	filterable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sortable?	boolean	true	If set to false, the relationship will not be usable in filters.
	sort	any		A sort statement to be applied when loading the relationship.
	default_sort	any		A default sort statement to be applied when loading the relationship.
	violation_message	String.t		A message to show if there is a conflict with this relationship in the database on destroy.
	authorize_read_with	:error | :filter		If set to :error, any authorization filter added to the relationship will result in an error if any record matches the filter in the database.
	allow_forbidden_field?	boolean	false	If set to true, the relationship will be set to %Ash.ForbiddenField{} if its query produces a forbidden error.

relationships.belongs_to.filter
filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.
Examples
filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

Arguments
	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.

Introspection
Target: Ash.Resource.Dsl.Filter
Introspection
Target: Ash.Resource.Relationships.BelongsTo
actions
A section for declaring resource actions.
All manipulation of data through the underlying data layer happens through actions.
There are four types of action: create, read, update, and destroy. You may
recognize these from the acronym CRUD. You can have multiple actions of the same
type, as long as they have different names. This is the primary mechanism for customizing
your resources to conform to your business logic. It is normal and expected to have
multiple actions of each type in a large application.
Nested DSLs
	action	argument

	create	change
	validate
	argument
	metadata

	read	argument
	prepare
	pagination
	metadata
	filter

	update	change
	validate
	metadata
	argument

	destroy	change
	validate
	metadata
	argument

Examples
actions do
 create :signup do
 argument :password, :string
 argument :password_confirmation, :string
 validate confirm(:password, :password_confirmation)
 change {MyApp.HashPassword, []} # A custom implemented Change
 end

 read :me do
 # An action that auto filters to only return the user for the current user
 filter [id: actor(:id)]
 end

 update :update do
 accept [:first_name, :last_name]
 end

 destroy do
 change set_attribute(:deleted_at, &DateTime.utc_now/0)
 # This tells it that even though this is a delete action, it
 # should be treated like an update because `deleted_at` is set.
 # This should be coupled with a `base_filter` on the resource
 # or with the read actions having a `filter` for `is_nil: :deleted_at`
 soft? true
 end
end

Options
	Name	Type	Default	Docs
	defaults	list(:create | :read | :update | :destroy | {atom, atom | list(atom)})		Creates a simple action of each specified type, with the same name as the type. These will be primary? unless one already exists for that type. Embedded resources, however, have a default of all resource types.
	default_accept	list(atom) | :*		A default value for the accept option for each action. Use :* to accept all public attributes.

actions.action
action name, returns \\ nil
Declares a generic action. A combination of arguments, a return type and a run function.
For calling this action, see the Ash.Domain documentation.
Nested DSLs
	argument

Examples
action :top_user_emails, {:array, :string} do
 argument :limit, :integer, default: 10, allow_nil?: false
 run fn input, context ->
 with {:ok, top_users} <- top_users(input.arguments.limit) do
 {:ok, Enum.map(top_users, &(&1.email))}
 end
 end
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the action
	returns	module		The return type of the action. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword		Constraints for the return type. See Ash.Type for more.
	allow_nil?	boolean	false	Whether or not the action can return nil. Unlike attributes & arguments, this defaults to false.
	run	(any, any -> any) | module | module		Module may be an Ash.Resource.Actions.Implementation or Reactor.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)	[]	A list of unknown fields to skip, or :* to skip all unknown fields.

actions.action.argument
argument name, type
Declares an argument on the action
Examples
argument :password_confirmation, :string
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Argument
Introspection
Target: Ash.Resource.Actions.Action
actions.create
create name
Declares a create action. For calling this action, see the Ash.Domain documentation.
Nested DSLs
	change
	validate
	argument
	metadata

Examples
create :register do
 primary? true
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the action

Options
	Name	Type	Default	Docs
	manual	(any, any -> any) | module		Override the creation behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	upsert?	boolean	false	Forces all uses of this action to be treated as an upsert.
	upsert_identity	atom		The identity to use for the upsert. Cannot be overridden by the caller. Ignored if upsert? is not set to true.
	upsert_fields	:replace_all | {:replace, atom | list(atom)} | {:replace_all_except, atom | list(atom)} | atom | list(atom)		The fields to overwrite in the case of an upsert. If not provided, all fields except for fields set by defaults will be overwritten.
	upsert_condition	any		An expression to check if the record should be updated when there's a conflict.
	return_skipped_upsert?	boolean		Returns the record that would have been upserted against but was skipped due to a filter or no fields being changed. How this works depends on the data layer. Keep in mind that read policies are not applied to the read of the record in question.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)	[]	A list of unknown fields to skip, or :* to skip all unknown fields.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	action_select	list(atom)		A list of attributes that the action requires to do its work. Defaults to all attributes except those with select_by_default? false. On actions with no changes/notifiers, it defaults to the externally selected attributes. Keep in mind that action_select is applied before notifiers.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	allow_nil_input	list(atom)		A list of attributes that would normally be required, but should not be for this action. They will still be validated just before the data layer step.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	error_handler	mfa | (any, any -> any)		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

actions.create.change
change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.
Examples
change relate_actor(:reporter)
change {MyCustomChange, :foo}
Arguments
	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

Options
	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Change
actions.create.validate
validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation.Builtins or Ash.Resource.Validation for more.
Examples
validate changing(:email)
Arguments
	Name	Type	Default	Docs
	validation	(any, any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a function that receives the changeset and its context.

Options
	Name	Type	Default	Docs
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Validation
actions.create.argument
argument name, type
Declares an argument on the action
Examples
argument :password_confirmation, :string
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Argument
actions.create.metadata
metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.
Examples
metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Metadata
Introspection
Target: Ash.Resource.Actions.Create
actions.read
read name
Declares a read action. For calling this action, see the Ash.Domain documentation.
Nested DSLs
	argument
	prepare
	pagination
	metadata
	filter

Examples
read :read_all do
 primary? true
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the action

Options
	Name	Type	Default	Docs
	manual	(any, any, any -> any) | module		Delegates running of the query to the provided module. Accepts a module or module and opts, or a function that takes the ash query, the data layer query, and context. See the manual actions guide for more.
	get?	boolean	false	Expresses that this action innately only returns a single result. Used by extensions to validate and/or modify behavior. Causes code interfaces to return a single value instead of a list. See the code interface guide for more.
	modify_query	mfa | (any, any -> any)		Allows direct manipulation of the data layer query via an MFA. The ash query and the data layer query will be provided as additional arguments. The result must be {:ok, new_data_layer_query} | {:error, error}.
	get_by	atom | list(atom)		A helper to automatically generate a "get by X" action. Sets get? to true, add args for each of the specified fields, and adds a filter for each of the arguments.
	timeout	pos_integer		The maximum amount of time, in milliseconds, that the action is allowed to run for. Ignored if the data layer doesn't support transactions and async is disabled.
	multitenancy	:enforce | :allow_global | :bypass	:enforce	This setting defines how this action handles multitenancy. :enforce requires a tenant to be set (the default behavior), :allow_global allows using this action both with and without a tenant, :bypass completely ignores the tenant even if it's set. This is useful to change the behaviour of selected read action without the need of marking the whole resource with global? true.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)	[]	A list of unknown fields to skip, or :* to skip all unknown fields.

actions.read.argument
argument name, type
Declares an argument on the action
Examples
argument :password_confirmation, :string
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Argument
actions.read.prepare
prepare preparation
Declares a preparation, which can be used to prepare a query for a read action.
Examples
prepare build(sort: [:foo, :bar])

Arguments
	Name	Type	Default	Docs
	preparation	(any, any -> any) | module		The module and options for a preparation. Also accepts functions take the query and the context.

Introspection
Target: Ash.Resource.Preparation
actions.read.pagination
Adds pagination options to a resource
Options
	Name	Type	Default	Docs
	keyset?	boolean	false	Whether or not keyset based pagination is supported
	offset?	boolean	false	Whether or not offset based pagination is supported
	default_limit	pos_integer		The default page size to apply, if one is not supplied
	countable	true | false | :by_default	true	Whether not a returned page will have a full count of all records. Use :by_default to do it automatically.
	max_page_size	pos_integer	250	The maximum amount of records that can be requested in a single page
	stable_sort	any		A stable sort statement to add to a query (after any existing sorts). Only added if the sort does not already contain a stable sort (sorting on fields that uniquely identify a record). Defaults to the primary key.
	required?	boolean	true	Whether or not pagination can be disabled (by passing page: false to Ash.Api.read!/2, or by having required?: false, default_limit: nil set). Only relevant if some pagination configuration is supplied.

Introspection
Target: Ash.Resource.Actions.Read.Pagination
actions.read.metadata
metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.
Examples
metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Metadata
actions.read.filter
filter filter
Applies a filter. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.
Examples
filter expr(first_name == "fred")
filter expr(last_name == "weasley" and magician == true)

Arguments
	Name	Type	Default	Docs
	filter	any		The filter to apply. Can use ^arg/1, ^context/1 and ^actor/1 templates. Multiple filters are combined with and.

Introspection
Target: Ash.Resource.Dsl.Filter
Introspection
Target: Ash.Resource.Actions.Read
actions.update
update name
Declares a update action. For calling this action, see the Ash.Domain documentation.
Nested DSLs
	change
	validate
	metadata
	argument

Examples
update :flag_for_review, primary?: true
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the action

Options
	Name	Type	Default	Docs
	manual	(any, any -> any) | module		Override the update behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	require_atomic?	boolean	true	Require that the update be atomic. This means that all changes and validations implement the atomic callback. See the guide on atomic updates for more.
	atomic_upgrade?	boolean	false	If set to true, atomic upgrades will be performed. Ignored if required_atomic? is true. See the update actions guide for more.
	atomic_upgrade_with	atom | nil		Configure the read action used when performing atomic upgrades. Defaults to the primary read action.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)	[]	A list of unknown fields to skip, or :* to skip all unknown fields.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	action_select	list(atom)		A list of attributes that the action requires to do its work. Defaults to all attributes except those with select_by_default? false. On actions with no changes/notifiers, it defaults to the externally selected attributes. Keep in mind that action_select is applied before notifiers.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	allow_nil_input	list(atom)		A list of attributes that would normally be required, but should not be for this action. They will still be validated just before the data layer step.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	error_handler	mfa | (any, any -> any)		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

actions.update.change
change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.
Examples
change relate_actor(:reporter)
change {MyCustomChange, :foo}
Arguments
	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

Options
	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Change
actions.update.validate
validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation.Builtins or Ash.Resource.Validation for more.
Examples
validate changing(:email)
Arguments
	Name	Type	Default	Docs
	validation	(any, any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a function that receives the changeset and its context.

Options
	Name	Type	Default	Docs
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Validation
actions.update.metadata
metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.
Examples
metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Metadata
actions.update.argument
argument name, type
Declares an argument on the action
Examples
argument :password_confirmation, :string
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Argument
Introspection
Target: Ash.Resource.Actions.Update
actions.destroy
destroy name
Declares a destroy action. For calling this action, see the Ash.Domain documentation.
Nested DSLs
	change
	validate
	metadata
	argument

Examples
destroy :destroy do
 primary? true
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the action

Options
	Name	Type	Default	Docs
	soft?	boolean	false	If specified, the destroy action behaves as an update internally
	manual	(any, any -> any) | module		Override the update behavior. Accepts a module or module and opts, or a function that takes the changeset and context. See the manual actions guide for more.
	require_atomic?	boolean	true	Require that the update be atomic. Only relevant if soft? is set to true. This means that all changes and validations implement the atomic callback. See the guide on atomic updates for more.
	atomic_upgrade?	boolean	false	If set to true, atomic upgrades will be performed. See the update actions guide for more.
	atomic_upgrade_with	atom | nil		Configure the read action used when performing atomic upgrades. Defaults to the primary read action.
	primary?	boolean	false	Whether or not this action should be used when no action is specified by the caller.
	description	String.t		An optional description for the action
	transaction?	boolean		Whether or not the action should be run in transactions. Reads default to false, while create/update/destroy actions default to true.
	touches_resources	list(atom)		A list of resources that the action may touch, used when building transactions.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)	[]	A list of unknown fields to skip, or :* to skip all unknown fields.
	accept	atom | list(atom) | :*		The list of attributes to accept. Use :* to accept all public attributes.
	action_select	list(atom)		A list of attributes that the action requires to do its work. Defaults to all attributes except those with select_by_default? false. On actions with no changes/notifiers, it defaults to the externally selected attributes. Keep in mind that action_select is applied before notifiers.
	require_attributes	list(atom)		A list of attributes that would normally allow_nil?, to require for this action. No need to include attributes that already do not allow nil?
	allow_nil_input	list(atom)		A list of attributes that would normally be required, but should not be for this action. They will still be validated just before the data layer step.
	delay_global_validations?	boolean	false	If true, global validations will be done in a before_action hook, regardless of their configuration on the resource.
	skip_global_validations?	boolean	false	If true, global validations will be skipped. Useful for manual actions.
	error_handler	mfa | (any, any -> any)		Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more
	notifiers	list(module)		Notifiers that will be called specifically for this action.
	manual?	boolean		Instructs Ash to skip the actual update/create/destroy step at the data layer. See the manual actions guide for more.

actions.destroy.change
change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.
Examples
change relate_actor(:reporter)
change {MyCustomChange, :foo}
Arguments
	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

Options
	Name	Type	Default	Docs
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Change
actions.destroy.validate
validate validation
Declares a validation to be applied to the changeset.
See Ash.Resource.Validation.Builtins or Ash.Resource.Validation for more.
Examples
validate changing(:email)
Arguments
	Name	Type	Default	Docs
	validation	(any, any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a function that receives the changeset and its context.

Options
	Name	Type	Default	Docs
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Validation
actions.destroy.metadata
metadata name, type
A special kind of attribute that is only added to specific actions. Nothing sets this value, it must be set in a custom
change after_action hook via Ash.Resource.put_metadata/3.
Examples
metadata :api_token, :string, allow_nil?: false

metadata :operation_id, :string, allow_nil?: false

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the metadata
	type	any		The type of the metadata. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	constraints	keyword	[]	Type constraints on the metadata
	description	String.t		An optional description for the metadata.
	allow_nil?	boolean	true	Whether or not the metadata may return nil
	default	any		The default value for the metadata to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Metadata
actions.destroy.argument
argument name, type
Declares an argument on the action
Examples
argument :password_confirmation, :string
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	public?	boolean	true	Whether or not the argument should appear in public interfaces
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

Introspection
Target: Ash.Resource.Actions.Argument
Introspection
Target: Ash.Resource.Actions.Destroy
code_interface
Functions that will be defined on the resource. See the code interface guide for more.
Nested DSLs
	define	custom_input	transform

	define_calculation	custom_input	transform

Examples
code_interface do
 define :create_user, action: :create
 define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
end

Options
	Name	Type	Default	Docs
	domain	module	false	Use the provided Domain instead of the resources configured domain when calling actions.
	define?	boolean		Whether or not to define the code interface in the resource.

code_interface.define
define name
Defines a function with the corresponding name and arguments. See the code interface guide for more.
Nested DSLs
	custom_input	transform

Examples
define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

Options
	Name	Type	Default	Docs
	action	atom		The name of the action that will be called. Defaults to the same name as the function.
	args	list(atom | {:optional, atom})		Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.
	not_found_error?	boolean	true	If the action or interface is configured with get?: true, this determines whether or not an error is raised or nil is returned.
	require_reference?	boolean	true	For update and destroy actions, require a resource or identifier to be passed in as the first argument. Not relevant for other action types.
	exclude_inputs	list(atom)	[]	A list of action inputs to not accept in the defined interface
	get?	boolean	false	Expects to only receive a single result from a read action or a bulk update/destroy, and returns a single result instead of a list. Sets require_reference? to false automatically.
	get_by	atom | list(atom)		Takes a list of fields and adds those fields as arguments, which will then be used to filter. Sets get? to true and require_reference? to false automatically. Adds filters for read, update and destroy actions, replacing the record first argument.
	get_by_identity	atom		Takes an identity, gets its field list, and performs the same logic as get_by with those fields. Adds filters for read, update and destroy actions, replacing the record first argument.
	default_options	keyword	[]	Default options to be merged with client-provided options. These can override domain or action defaults. :load, :bulk_options, and :page options will be deep merged.

code_interface.define.custom_input
custom_input name, type
Define or customize an input to the action.
See the code interface guide for more.
Nested DSLs
	transform

Examples
custom_input :artist, :struct do
 transform to: :artist_id, using: &(&1.id)

 constraints instance_of: Artist
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

code_interface.define.custom_input.transform
A transformation to be applied to the custom input.
Examples
transform do
 to :artist_id
 using &(&1.id)
end

transform do
 to :points
 using &try_parse_integer/1
end

Options
	Name	Type	Default	Docs
	to	atom		A key to rewrite the argument to. If the custom input is also a required positional argument, then the to is automatically added to the exclude_inputs list.
	using	(any -> any)		A function to use to transform the value. Must return value or nil

Introspection
Target: Ash.Resource.Interface.CustomInput.Transform
Introspection
Target: Ash.Resource.Interface.CustomInput
Introspection
Target: Ash.Resource.Interface
code_interface.define_calculation
define_calculation name
Defines a function with the corresponding name and arguments, that evaluates a calculation. Use :_record to take an instance of a record. See the code interface guide for more.
Nested DSLs
	custom_input	transform

Examples
define_calculation :referral_link, args: [:id]
define_calculation :referral_link, args: [{:arg, :id}, {:ref, :id}]
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

Options
	Name	Type	Default	Docs
	calculation	atom		The name of the calculation that will be evaluated. Defaults to the same name as the function.
	exclude_inputs	list(atom)	[]	A list of calculation inputs to not accept in the defined interface
	args	any	[]	Supply field or argument values referenced by the calculation, in the form of :name, {:arg, :name} and/or {:ref, :name}. See the code interface guide for more.

code_interface.define_calculation.custom_input
custom_input name, type
Define or customize an input to the action.
See the code interface guide for more.
Nested DSLs
	transform

Examples
custom_input :artist, :struct do
 transform to: :artist_id, using: &(&1.id)

 constraints instance_of: Artist
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

code_interface.define_calculation.custom_input.transform
A transformation to be applied to the custom input.
Examples
transform do
 to :artist_id
 using &(&1.id)
end

transform do
 to :points
 using &try_parse_integer/1
end

Options
	Name	Type	Default	Docs
	to	atom		A key to rewrite the argument to. If the custom input is also a required positional argument, then the to is automatically added to the exclude_inputs list.
	using	(any -> any)		A function to use to transform the value. Must return value or nil

Introspection
Target: Ash.Resource.Interface.CustomInput.Transform
Introspection
Target: Ash.Resource.Interface.CustomInput
Introspection
Target: Ash.Resource.CalculationInterface
resource
General resource configuration
Examples
resource do
 description "A description of this resource"
 base_filter [is_nil: :deleted_at]
end

Options
	Name	Type	Default	Docs
	description	String.t		A human readable description of the resource, to be used in generated documentation
	base_filter	any		A filter statement to be applied to any queries on the resource
	default_context	any		Default context to apply to any queries/changesets generated for this resource.
	trace_name	String.t		The name to use in traces. Defaults to the short_name stringified. See the monitoring guide for more.
	short_name	atom		A short identifier for the resource, which should be unique. See the monitoring guide for more.
	inspect_private_fields?	boolean	true	Whether to include private fields in the inspect output. show_inspect_fields takes precedence over this option.
	hide_inspect_fields	list(atom)	[]	A deny-list of fields to hide from the inspect output. Takes precedence over show_inspect_fields.
	show_inspect_fields	list(atom)		An allow-list of fields to show in the inspect output. Sensitive fields are always hidden.
	plural_name	atom		A pluralized version of the resource short_name. May be used by generators or automated tooling.
	require_primary_key?	boolean	true	Allow the resource to be used without any primary key fields. Warning: this option is experimental, and should not be used unless you know what you're doing.

identities
Unique identifiers for the resource
Nested DSLs
	identity

Examples
identities do
 identity :full_name, [:first_name, :last_name]
 identity :email, [:email]
end

identities.identity
identity name, keys
Represents a unique constraint on the resource.
See the identities guide for more.
Examples
identity :name, [:name]
identity :full_name, [:first_name, :last_name]
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the identity.
	keys	atom | list(atom)		The names of the attributes that uniquely identify this resource.

Options
	Name	Type	Default	Docs
	where	any		A filter that expresses only matching records are unique on the provided keys. Ignored on embedded resources.
	nils_distinct?	boolean	true	Whether or not nil values are considered always distinct from eachother. nil values won't conflict with eachother unless you set this option to false.
	eager_check?	boolean	false	Whether or not this identity is validated to be unique at validation time.
	eager_check_with	module		Validates that the unique identity provided is unique at validation time, outside of any transactions, using the domain module provided. Will default to resource's domain.
	pre_check?	boolean	false	Whether or not this identity is validated to be unique in a before_action hook.
	pre_check_with	module		Validates that the unique identity provided is unique in a before_action hook.
	description	String.t		An optional description for the identity
	field_names	atom | list(atom)		The field names to hold errors when unique identity is violated.
	message	String.t		An error message to use when the unique identity would be violated
	all_tenants?	boolean	false	Whether or not this identity is unique across all tenants. If the resource is not multitenant, has no effect.

Introspection
Target: Ash.Resource.Identity
changes
Declare changes that occur on create/update/destroy actions against the resource
See Ash.Resource.Change for more.
Nested DSLs
	change

Examples
changes do
 change {Mod, [foo: :bar]}
 change set_context(%{some: :context})
end

changes.change
change change
A change to be applied to the changeset.
See Ash.Resource.Change for more.
Examples
change relate_actor(:reporter)
change {MyCustomChange, :foo}
Arguments
	Name	Type	Default	Docs
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

Options
	Name	Type	Default	Docs
	on	:create | :update | :destroy | list(:create | :update | :destroy)	[:create, :update]	The action types the change should run on. Destroy actions are omitted by default as most changes don't make sense for a destroy.
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	description	String.t		An optional description for the change
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	always_atomic?	boolean	false	By default, changes are only run atomically if all changes will be run atomically or if there is no change/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Change
preparations
Declare preparations that occur on all read actions for a given resource
Nested DSLs
	prepare

Examples
preparations do
 prepare {Mod, [foo: :bar]}
 prepare set_context(%{some: :context})
end

preparations.prepare
prepare preparation
Declares a preparation, which can be used to prepare a query for a read action.
Examples
prepare build(sort: [:foo, :bar])

Arguments
	Name	Type	Default	Docs
	preparation	(any, any -> any) | module		The module and options for a preparation. Also accepts functions take the query and the context.

Introspection
Target: Ash.Resource.Preparation
validations
Declare validations prior to performing actions against the resource
Nested DSLs
	validate

Examples
validations do
 validate {Mod, [foo: :bar]}
 validate at_least_one_of_present([:first_name, :last_name])
end

validations.validate
validate validation
Declares a validation for creates and updates.
See Ash.Resource.Validation.Builtins or Ash.Resource.Validation for more.
Examples
validate {Mod, [foo: :bar]}
validate at_least_one_of_present([:first_name, :last_name])
Arguments
	Name	Type	Default	Docs
	validation	(any, any -> any) | module		The module (or module and opts) that implements the Ash.Resource.Validation behaviour. Also accepts a function that receives the changeset and its context.

Options
	Name	Type	Default	Docs
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this validation to apply. Any of these validations failing will result in this validation being ignored.
	on	:create | :update | :destroy | list(:create | :update | :destroy)	[:create, :update]	The action types the validation should run on. Many validations don't make sense in the context of deletion, so by default it is not included.
	only_when_valid?	boolean	false	If the validation should only run on valid changes. Useful for expensive validations or validations that depend on valid data.
	message	String.t		If provided, overrides any message set by the validation error
	description	String.t		An optional description for the validation
	before_action?	boolean	false	If set to true, the validation will be run in a before_action hook
	always_atomic?	boolean	false	By default, validations are only run atomically if all changes will be run atomically or if there is no validate/3 callback defined. Set this to true to run it atomically always.

Introspection
Target: Ash.Resource.Validation
aggregates
Declare named aggregates on the resource.
These are aggregates that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
See the aggregates guide for more.
Nested DSLs
	count	join_filter

	exists	join_filter

	first	join_filter

	sum	join_filter

	list	join_filter

	max	join_filter

	min	join_filter

	avg	join_filter

	custom	join_filter

Examples
aggregates do
 count :assigned_ticket_count, :reported_tickets do
 filter [active: true]
 end
end

aggregates.count
count name, relationship_path
Declares a named count aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the count)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
count :assigned_ticket_count, :assigned_tickets do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate

Options
	Name	Type	Default	Docs
	uniq?	boolean	false	Whether or not to count unique values only
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.count.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.exists
exists name, relationship_path
Declares a named exists aggregate on the resource
Supports filter, but not sort (because that wouldn't affect if something exists)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
exists :has_ticket, :assigned_tickets

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.exists.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.first
first name, relationship_path, field
Declares a named first aggregate on the resource
First aggregates return the first value of the related record
that matches. Supports both filter and sort.
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
first :first_assigned_ticket_subject, :assigned_tickets, :subject do
 filter [active: true]
 sort [:subject]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	include_nil?	boolean	false	Whether or not to include nil values in the aggregate. Only relevant for list and first aggregates.
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.first.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.sum
sum name, relationship_path, field
Declares a named sum aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the sum)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
sum :assigned_ticket_price_sum, :assigned_tickets, :price do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.sum.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.list
list name, relationship_path, field
Declares a named list aggregate on the resource.
A list aggregate selects the list of all values for the given field
and relationship combination.
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
list :assigned_ticket_prices, :assigned_tickets, :price do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	include_nil?	boolean	false	Whether or not to include nil values in the aggregate. Only relevant for list and first aggregates.
	uniq?	boolean	false	Whether or not to count unique values only
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.list.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.max
max name, relationship_path, field
Declares a named max aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the max)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
max :first_assigned_ticket_subject, :assigned_tickets, :severity do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.max.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.min
min name, relationship_path, field
Declares a named min aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the min)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
min :first_assigned_ticket_subject, :assigned_tickets, :severity do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.min.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.avg
avg name, relationship_path, field
Declares a named avg aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the avg)
See the aggregates guide for more.
Nested DSLs
	join_filter

Examples
avg :assigned_ticket_price_sum, :assigned_tickets, :price do
 filter [active: true]
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	filter	any	[]	A filter to apply to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.avg.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
aggregates.custom
custom name, relationship_path, type
Declares a named custom aggregate on the resource
Supports filter and sort.
Custom aggregates provide an implementation which must implement data layer specific callbacks.
See the relevant data layer documentation and the aggregates guide for more.
Nested DSLs
	join_filter

Examples
custom :author_names, :authors, :string do
 implementation {StringAgg, delimiter: ","}
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field to place the aggregate in
	relationship_path	atom | list(atom)		The relationship or relationship path to use for the aggregate
	type	module		The type of the value returned by the aggregate

Options
	Name	Type	Default	Docs
	implementation	module		The module that implements the relevant data layer callbacks
	read_action	atom		The read action to use when building the aggregate. Defaults to the primary read action. Keep in mind this action must not have any required arguments.
	field	atom		The field to aggregate. Defaults to the first field in the primary key of the resource
	filter	any	[]	A filter to apply to the aggregate
	sort	any		A sort to be applied to the aggregate
	description	String.t		An optional description for the aggregate
	default	any		A default value to use in cases where nil would be used. Count defaults to 0.
	public?	boolean	false	Whether or not the aggregate will appear in public interfaces
	filterable?	boolean | :simple_equality	true	Whether or not the aggregate should be usable in filters.
	sortable?	boolean	true	Whether or not the aggregate should be usable in sorts.
	sensitive?	boolean	false	Whether or not the aggregate should be considered sensitive.
	authorize?	boolean	true	Whether or not the aggregate query should authorize based on the target action, if the parent query is authorized. Requires filter checks on the target action.

aggregates.custom.join_filter
join_filter relationship_path, filter
Declares a join filter on an aggregate. See the aggregates guide for more.
Examples
join_filter [:comments, :author], expr(active == true)

Arguments
	Name	Type	Default	Docs
	relationship_path	atom | list(atom)		The relationship path on which to apply the join filter
	filter	any		The filter to apply. Can be an expression or a filter template.

Introspection
Target: Ash.Resource.Aggregate.JoinFilter
Introspection
Target: Ash.Resource.Aggregate
calculations
Declare named calculations on the resource.
These are calculations that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
See the calculations guide for more.
Nested DSLs
	calculate	argument

Examples
calculations do
 calculate :full_name, :string, MyApp.MyResource.FullName
end

calculations.calculate
calculate name, type, calculation \\ nil
Declares a named calculation on the resource.
Takes a module that must adopt the Ash.Resource.Calculation behaviour. See that module
for more information.
To ensure that the necessary fields are loaded:
1.) Specifying the load option on a calculation in the resource.
2.) Define a load/3 callback in the calculation module
3.) Set always_select? on the attribute in question
See the calculations guide for more.
Nested DSLs
	argument

Examples
Ash.Resource.Calculation implementation example:
calculate :full_name, :string, {MyApp.FullName, keys: [:first_name, :last_name]}, load: [:first_name, :last_name]
expr/1 example:
calculate :full_name, :string, expr(first_name <> " " <> last_name)
Example with options:
calculate :full_name, :string, expr(first_name <> " " <> last_name), allow_nil?: false
Example with options in do block:
calculate :full_name, :string, expr(first_name <> " " <> last_name) do
 allow_nil? false
 public? true
end

Arguments
	Name	Type	Default	Docs
	name	atom		The field name to use for the calculation value
	type	any		The type of the calculation. See Ash.Type for more.
	calculation	(any, any -> any) | module | any		The module, {module, opts} or expr(...) to use for the calculation. Also accepts a function that takes a list of records and the context, and produces a result for each record.

Options
	Name	Type	Default	Docs
	async?	boolean	false	
	constraints	keyword	[]	Constraints to provide to the type. See Ash.Type for more.
	description	String.t		An optional description for the calculation
	public?	boolean	false	Whether or not the calculation will appear in public interfaces.
	sensitive?	boolean	false	Whether or not references to the calculation will be considered sensitive.
	load	any	[]	A load statement to be applied if the calculation is used.
	allow_nil?	boolean	true	Whether or not the calculation can return nil.
	filterable?	boolean | :simple_equality	true	Whether or not the calculation should be usable in filters.
	sortable?	boolean	true	Whether or not the calculation can be referenced in sorts.

calculations.calculate.argument
argument name, type
An argument to be passed into the calculation's arguments map
See the calculations guide for more.
Examples
argument :params, :map do
 default %{}
end

argument :retries, :integer do
 allow_nil? false
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	default	(-> any) | mfa | any		A default value to use for the argument if not provided
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided)
	allow_expr?	boolean	false	Allow passing expressions as argument values. Expressions cannot be type validated.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. See the type's documentation and Ash.Type for more.

Introspection
Target: Ash.Resource.Calculation.Argument
Introspection
Target: Ash.Resource.Calculation
multitenancy
Options for configuring the multitenancy behavior of a resource.
To specify a tenant, use Ash.Query.set_tenant/2 or
Ash.Changeset.set_tenant/2 before passing it to an operation.
See the multitenancy guide
Examples
multitenancy do
 strategy :attribute
 attribute :organization_id
 global? true
end

Options
	Name	Type	Default	Docs
	strategy	:context | :attribute	:context	Determine if multitenancy is performed with attribute filters or using data layer features.
	attribute	atom		If using the attribute strategy, the attribute to use, e.g org_id
	global?	boolean	false	Whether or not the data may be accessed without setting a tenant. For example, with attribute multitenancy, this allows accessing without filtering by the tenant attribute.
	parse_attribute	mfa	{Ash.Resource.Dsl, :identity, []}	An mfa ({module, function, args}) pointing to a function that takes a tenant and returns the attribute value

 Ash.Domain

domain
General domain configuration
Examples
domain do
 description """
 Resources related to the flux capacitor.
 """
end

Options
	Name	Type	Default	Docs
	description	String.t		A description for the domain.

resources
List the resources of this domain
Nested DSLs
	resource	define	custom_input	transform

	define_calculation	custom_input	transform

Examples
resources do
 resource MyApp.Tweet
 resource MyApp.Comment
end

Options
	Name	Type	Default	Docs
	allow	mfa		Support a dynamic resource list by providing a callback that checks whether or not the resource should be allowed.
	allow_unregistered?	boolean	false	Whether the domain will support only registered entries or not.

resources.resource
resource resource
A resource present in the domain
Nested DSLs
	define	custom_input	transform

	define_calculation	custom_input	transform

Examples
resource Foo
Arguments
	Name	Type	Default	Docs
	resource	module		

resources.resource.define
define name
Defines a function with the corresponding name and arguments. See the code interface guide for more.
Nested DSLs
	custom_input	transform

Examples
define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

Options
	Name	Type	Default	Docs
	action	atom		The name of the action that will be called. Defaults to the same name as the function.
	args	list(atom | {:optional, atom})		Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.
	not_found_error?	boolean	true	If the action or interface is configured with get?: true, this determines whether or not an error is raised or nil is returned.
	require_reference?	boolean	true	For update and destroy actions, require a resource or identifier to be passed in as the first argument. Not relevant for other action types.
	exclude_inputs	list(atom)	[]	A list of action inputs to not accept in the defined interface
	get?	boolean	false	Expects to only receive a single result from a read action or a bulk update/destroy, and returns a single result instead of a list. Sets require_reference? to false automatically.
	get_by	atom | list(atom)		Takes a list of fields and adds those fields as arguments, which will then be used to filter. Sets get? to true and require_reference? to false automatically. Adds filters for read, update and destroy actions, replacing the record first argument.
	get_by_identity	atom		Takes an identity, gets its field list, and performs the same logic as get_by with those fields. Adds filters for read, update and destroy actions, replacing the record first argument.
	default_options	keyword	[]	Default options to be merged with client-provided options. These can override domain or action defaults. :load, :bulk_options, and :page options will be deep merged.

resources.resource.define.custom_input
custom_input name, type
Define or customize an input to the action.
See the code interface guide for more.
Nested DSLs
	transform

Examples
custom_input :artist, :struct do
 transform to: :artist_id, using: &(&1.id)

 constraints instance_of: Artist
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

resources.resource.define.custom_input.transform
A transformation to be applied to the custom input.
Examples
transform do
 to :artist_id
 using &(&1.id)
end

transform do
 to :points
 using &try_parse_integer/1
end

Options
	Name	Type	Default	Docs
	to	atom		A key to rewrite the argument to. If the custom input is also a required positional argument, then the to is automatically added to the exclude_inputs list.
	using	(any -> any)		A function to use to transform the value. Must return value or nil

Introspection
Target: Ash.Resource.Interface.CustomInput.Transform
Introspection
Target: Ash.Resource.Interface.CustomInput
Introspection
Target: Ash.Resource.Interface
resources.resource.define_calculation
define_calculation name
Defines a function with the corresponding name and arguments, that evaluates a calculation. Use :_record to take an instance of a record. See the code interface guide for more.
Nested DSLs
	custom_input	transform

Examples
define_calculation :referral_link, User, args: [:id]
define_calculation :referral_link, User, args: [{:arg, :id}, {:ref, :id}]
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the function that will be defined

Options
	Name	Type	Default	Docs
	calculation	atom		The name of the calculation that will be evaluated. Defaults to the same name as the function.
	exclude_inputs	list(atom)	[]	A list of calculation inputs to not accept in the defined interface
	args	any	[]	Supply field or argument values referenced by the calculation, in the form of :name, {:arg, :name} and/or {:ref, :name}. See the code interface guide for more.

resources.resource.define_calculation.custom_input
custom_input name, type
Define or customize an input to the action.
See the code interface guide for more.
Nested DSLs
	transform

Examples
custom_input :artist, :struct do
 transform to: :artist_id, using: &(&1.id)

 constraints instance_of: Artist
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument
	type	module		The type of the argument. See Ash.Type for more.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description for the argument.
	constraints	keyword	[]	Constraints to provide to the type when casting the value. For more information, see Ash.Type.
	allow_nil?	boolean	true	Whether or not the argument value may be nil (or may be not provided). If nil value is given error is raised.
	sensitive?	boolean	false	Whether or not the argument value contains sensitive information, like PII(Personally Identifiable Information). See the security guide for more.
	default	any		The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

resources.resource.define_calculation.custom_input.transform
A transformation to be applied to the custom input.
Examples
transform do
 to :artist_id
 using &(&1.id)
end

transform do
 to :points
 using &try_parse_integer/1
end

Options
	Name	Type	Default	Docs
	to	atom		A key to rewrite the argument to. If the custom input is also a required positional argument, then the to is automatically added to the exclude_inputs list.
	using	(any -> any)		A function to use to transform the value. Must return value or nil

Introspection
Target: Ash.Resource.Interface.CustomInput.Transform
Introspection
Target: Ash.Resource.Interface.CustomInput
Introspection
Target: Ash.Resource.CalculationInterface
Introspection
Target: Ash.Domain.Dsl.ResourceReference
execution
Options for how requests are executed using this domain
Examples
execution do
 timeout :timer.seconds(30)
end

Options
	Name	Type	Default	Docs
	timeout	timeout	:infinity	The default timeout in milliseconds to use for requests using this domain. See the timeouts guide for more.
	trace_name	String.t		The name to use in traces. Defaults to the last part of the module. See the monitoring guide for more

authorization
Options for how requests are authorized using this domain. See the Sensitive Data guide for more.
Examples
authorization do
 authorize :always
end

Options
	Name	Type	Default	Docs
	require_actor?	boolean	false	Requires that an actor has been supplied.
	authorize	:always | :by_default | :when_requested	:by_default	When to run authorization for a given request.

 Ash.Notifier.PubSub

A builtin notifier to help you publish events over any kind of pub-sub tooling.
This is plug and play with Phoenix.PubSub, but could be used with any pubsub system.
You configure a module that defines a broadcast/3 function, and then add some "publications"
which configure under what conditions an event should be sent and what the topic should be.
Example
defmodule MyApp.User do
 use Ash.Resource,
 # ...
 notifiers: [Ash.Notifier.PubSub]

 # ...

 pub_sub do
 module MyAppWeb.Endpoint

 prefix "user"
 publish :update, ["updated", :_pkey]
 end
end
Debugging PubSub
It can be quite frustrating when setting up pub_sub when everything appears to be set up properly, but
you aren't receiving events. This usually means some kind of mismatch between the event names produced
by the resource/config of your publications, and you can use the following flag to display debug
information about all pub sub events.
config :ash, :pub_sub, debug?: true
Topic Templates
Often you want to include some piece of data in the thing being changed, like the :id attribute. This
is done by providing a list as the topic, and using atoms which will be replaced by their corresponding
values. They will ultimately be joined with :.
For example:
prefix "user"

publish :create, ["created", :user_id]
This might publish a message to "user:created:1" for example.
For updates, if the field in the template is being changed, a message is sent
to both values. So if you change user 1 to user 2, the same message would
be published to user:updated:1 and user:updated:2. If there are multiple
attributes in the template, and they are all being changed, a message is sent for
every combination of substitutions.
Important
If the previous value was nil or the field was not selected on the data passed into the action, then a
notification is not sent for the previous value.
If the new value is nil then a notification is not sent for the new value.
Template parts
Templates may contain lists, in which case all combinations of values in the list will be used. Add
nil to the list if you want to produce a pattern where that entry is omitted.
The atom :_tenant may be used. If the changeset has a tenant set on it, that
value will be used, otherwise that combination of values is ignored.
The atom :_pkey may be used. It will be a stringified, concatenation of the primary key fields,
or just the primary key if there is only one primary key field.
The atom nil may be used. It only makes sense to use it in the context of a list of alternatives,
and adds a pattern where that part is skipped.
publish :updated, [[:team_id, :_tenant], "updated", [:id, nil]]
Would produce the following messages, given a team_id of 1, a tenant of org_1, and an id of 50:
"1:updated:50"
"1:updated"
"org_1:updated:50"
"org_1:updated"
Custom Delimiters
It's possible to change the default delimiter used when generating topics. This is useful when working with message brokers
like RabbitMQ, which rely on a different set of delimiters for routing.
pub_sub do
 delimiter "."
end
Named Pubsub modules
If you are using a phoenix Endpoint module for pubsub then this is unnecessary. If you want to use a custom pub sub started
with something like {Phoenix.PubSub, name: MyName}, then you can provide MyName to here.
Broadcast Types
Configured with broadcast_type.
	:notification just sends the notification
	:phoenix_broadcast sends a %Phoenix.Socket.Broadcast{} (see above)
	:broadcast sends %{topic: (topic), event: (event), payload: (notification)}

pub_sub
A section for configuring how resource actions are published over pubsub
Nested DSLs
	publish
	publish_all

Examples
pub_sub do
 module MyEndpoint
 prefix "post"

 publish :destroy, ["destroyed", :id]
 publish :update, ["updated", :name], event: "name_change"
 publish_all :create, "created"
end

Options
	Name	Type	Default	Docs
	module	atom		The module to call broadcast/3 on e.g module.broadcast(topic, event, message).
	prefix	String.t		A prefix for all pubsub messages, e.g users. A message with created would be published as users:created
	delimiter	String.t		A delimiter for building topics. Default is a colon (:)
	filter	(any -> any)		A filter for notifications. Receives a notification, and ignores it if the function returns a falsy value. Both this and filters on specific publications must return a truthy value for a notification to be emitted.
	transform	(any -> any)		A transformer for notifications. Specific transformers on each publication override this option
	broadcast_type	:notification | :phoenix_broadcast | :broadcast	:notification	What shape the event payloads will be in. See
	name	atom		A named pub sub to pass as the first argument to broadcast.

pub_sub.publish
publish action, topic
Configure a given action to publish its results over a given topic.
Examples
publish :create, "created"
publish :assign, "assigned"

Arguments
	Name	Type	Default	Docs
	action	atom		The name of the action that should be published
	topic	any		The topic to publish

Options
	Name	Type	Default	Docs
	previous_values?	boolean	false	Whether or not to publish messages with both the new values and the old values for referencing changed attributes
	filter	(any -> any)		A filter for notifications. Receives a notification, and ignores it if the function returns a falsy value.
	transform	(any -> any)		A transformer for notifications. Receives a notification, and returns a new value to be broadcasted.
	event	String.t		The name of the event to publish. Defaults to the action name
	dispatcher	atom		The module to use as a dispatcher. If none is set, the pubsub module provided is used.

Introspection
Target: Ash.Notifier.PubSub.Publication
pub_sub.publish_all
publish_all type, topic
Works the same as publish, except that it takes a type and publishes all actions of that type.
Examples
publish_all :create, "created"
Arguments
	Name	Type	Default	Docs
	type	:create | :update | :destroy		Publish on all actions of a given type
	topic	any		The topic to publish

Options
	Name	Type	Default	Docs
	except	list(atom)	[]	Exclude these actions from notifications
	action	atom		The name of the action that should be published
	previous_values?	boolean	false	Whether or not to publish messages with both the new values and the old values for referencing changed attributes
	filter	(any -> any)		A filter for notifications. Receives a notification, and ignores it if the function returns a falsy value.
	transform	(any -> any)		A transformer for notifications. Receives a notification, and returns a new value to be broadcasted.
	event	String.t		The name of the event to publish. Defaults to the action name
	dispatcher	atom		The module to use as a dispatcher. If none is set, the pubsub module provided is used.

Introspection
Target: Ash.Notifier.PubSub.Publication

 Ash.Policy.Authorizer

An authorization extension for ash resources.
To add this extension to a resource, add it to the list of authorizers like so:
use Ash.Resource,
 ...,
 authorizers: [
 Ash.Policy.Authorizer
]
A resource can be given a set of policies, which are enforced on each call to a resource action.
For reads, policies can be configured to filter out data that the actor shouldn't see, as opposed to
resulting in a forbidden error.
See the policies guide for practical examples.
Policies are solved/managed via a boolean satisfiability solver. To read more about boolean satisfiability,
see this page: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. At the end of
the day, however, it is not necessary to understand exactly how Ash takes your
authorization requirements and determines if a request is allowed. The
important thing to understand is that Ash may or may not run any/all of your
authorization rules as they may be deemed unnecessary. As such, authorization
checks should have no side effects. Ideally, the checks built-in to ash should
cover the bulk of your needs.
policies
A section for declaring authorization policies.
Each policy that applies must pass independently in order for the
request to be authorized.
See the policies guide for more.
Nested DSLs
	policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

	policy_group	policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

	bypass	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Examples
policies do
 # Anything you can use in a condition, you can use in a check, and vice-versa
 # This policy applies if the actor is a super_user
 # Additionally, this policy is declared as a `bypass`. That means that this check is allowed to fail without
 # failing the whole request, and that if this check *passes*, the entire request passes.
 bypass actor_attribute_equals(:super_user, true) do
 authorize_if always()
 end

 # This will likely be a common occurrence. Specifically, policies that apply to all read actions
 policy action_type(:read) do
 # unless the actor is an active user, forbid their request
 forbid_unless actor_attribute_equals(:active, true)
 # if the record is marked as public, authorize the request
 authorize_if attribute(:public, true)
 # if the actor is related to the data via that data's `owner` relationship, authorize the request
 authorize_if relates_to_actor_via(:owner)
 end
end

Options
	Name	Type	Default	Docs
	default_access_type	:strict | :filter | :runtime	:filter	The default access type of policies for this resource.

policies.policy
policy condition \\ nil
A policy has a name, a condition, and a list of checks.
Checks apply logically in the order they are specified, from top to bottom.
If no check explicitly authorizes the request, then the request is forbidden.
This means that, if you want to "blacklist" instead of "whitelist", you likely
want to add an authorize_if always() at the bottom of your policy, like so:
policy action_type(:read) do
forbid_if not_logged_in()
forbid_if user_is_denylisted()
forbid_if user_is_in_denylisted_group()

authorize_if always()
end
If the policy should always run, use the always() check, like so:
policy always() do
...
end
See the policies guide for more.
Nested DSLs
	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

Options
	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results
	access_type	:strict | :filter | :runtime		Determines how the policy is applied. See the guide for more.

policies.policy.authorize_if
authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.
Examples
authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy.forbid_if
forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.
Examples
forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy.authorize_unless
authorize_unless check
If the check is true, run remaining checks, otherwise the request is authorized.
Examples
authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy.forbid_unless
forbid_unless check
If the check is true, run remaining checks, otherwise the request is forbidden.
Examples
forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
Introspection
Target: Ash.Policy.Policy
policies.policy_group
policy_group condition
Groups a set of policies together by some condition.
If the condition on the policy group does not apply, then none of the policies within it apply.
This is primarily syntactic sugar. At compile time, the conditions from the policy group are
added to each policy it contains, and the list is flattened out. This exists primarily to make it
easier to reason about and write policies.
The following are equivalent:
policy_group condition1 do
policy condition2 do
...
end

policy condition3 do
...
end
end
and
policy [condition1, condition2] do
...
end

policy [condition1, condition3] do
...
end
Nested DSLs
	policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

policies.policy_group.policy
policy condition \\ nil
A policy has a name, a condition, and a list of checks.
Checks apply logically in the order they are specified, from top to bottom.
If no check explicitly authorizes the request, then the request is forbidden.
This means that, if you want to "blacklist" instead of "whitelist", you likely
want to add an authorize_if always() at the bottom of your policy, like so:
policy action_type(:read) do
forbid_if not_logged_in()
forbid_if user_is_denylisted()
forbid_if user_is_in_denylisted_group()

authorize_if always()
end
If the policy should always run, use the always() check, like so:
policy always() do
...
end
See the policies guide for more.
Nested DSLs
	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

Options
	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results
	access_type	:strict | :filter | :runtime		Determines how the policy is applied. See the guide for more.

policies.policy_group.policy.authorize_if
authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.
Examples
authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy_group.policy.forbid_if
forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.
Examples
forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy_group.policy.authorize_unless
authorize_unless check
If the check is true, run remaining checks, otherwise the request is authorized.
Examples
authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.policy_group.policy.forbid_unless
forbid_unless check
If the check is true, run remaining checks, otherwise the request is forbidden.
Examples
forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
Introspection
Target: Ash.Policy.Policy
Introspection
Target: Ash.Policy.PolicyGroup
policies.bypass
bypass condition \\ nil
A policy that, if passed, will skip all following policies. If failed, authorization moves on to the next policy
Nested DSLs
	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	condition	any		A check or list of checks that must be true in order for this policy to apply.

Options
	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results
	access_type	:strict | :filter | :runtime		Determines how the policy is applied. See the guide for more.

policies.bypass.authorize_if
authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.
Examples
authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.bypass.forbid_if
forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.
Examples
forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.bypass.authorize_unless
authorize_unless check
If the check is true, run remaining checks, otherwise the request is authorized.
Examples
authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
policies.bypass.forbid_unless
forbid_unless check
If the check is true, run remaining checks, otherwise the request is forbidden.
Examples
forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
Introspection
Target: Ash.Policy.Policy
field_policies
Authorize access to specific fields via policies scoped to fields.
If any field policies exist then all fields must be authorized by a field policy.
If you want a "deny-list" style, then you can add policies for specific fields
and add a catch-all policy using the special field name :*. All policies that apply
to a field must be authorized.
The only exception to the above behavior is primary keys, which can always be read by everyone.
Additionally, keep in mind that adding Ash.Policy.Authorizer will require that all actions
pass policies. If you want to just add field policies, you will need to add a policy that allows
all access explicitly, i.e
policies do
policy always() do
authorize_if always()
end
end
Using expressions: unlike in regular policies, expressions in field policies cannot refer
to related entities currently. Instead, you will need to create aggregates or expression calculations
that return the results you want to reference.
In results, forbidden fields will be replaced with a special value: %Ash.ForbiddenField{}.
When these fields are referred to in filters, they will be replaced with an expression that evaluates
to nil. To support this behavior, only expression/filter checks are allowed in field policies.
Nested DSLs
	field_policy_bypass	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

	field_policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Examples
field_policies do
 field_policy :admin_only_field do
 authorize_if actor_attribute_equals(:admin, true)
 end
end

Example of denylist style
field_policies do
 field_policy [:sensitive, :fields] do
 authorize_if actor_attribute_equals(:admin, true)
 end

 field_policy :* do
 authorize_if always()
 end
end

Options
	Name	Type	Default	Docs
	private_fields	:show | :hide | :include	:show	How private fields should be handled by field policies in internal functions. See the Policies guide for more.

field_policies.field_policy_bypass
field_policy_bypass fields, condition \\ nil
A field policy that, if passed, will skip all following field policies for that field or fields. If failed, field authorization moves on to the next policy
Nested DSLs
	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	fields	atom | list(atom)		The field or fields that the policy applies to.
	condition	any		A check or list of checks that must be true in order for this field policy to apply. If not specified, it always applies.

Options
	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results

field_policies.field_policy_bypass.authorize_if
authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.
Examples
authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy_bypass.forbid_if
forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.
Examples
forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy_bypass.authorize_unless
authorize_unless check
If the check is true, run remaining checks, otherwise the request is authorized.
Examples
authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy_bypass.forbid_unless
forbid_unless check
If the check is true, run remaining checks, otherwise the request is forbidden.
Examples
forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
Introspection
Target: Ash.Policy.FieldPolicy
field_policies.field_policy
field_policy fields, condition \\ nil
Field policies behave similarly to policies. See d:Ash.Policy.Authorizer.field_policies
for more.
Nested DSLs
	authorize_if
	forbid_if
	authorize_unless
	forbid_unless

Arguments
	Name	Type	Default	Docs
	fields	atom | list(atom)		The field or fields that the policy applies to.
	condition	any		A check or list of checks that must be true in order for this field policy to apply. If not specified, it always applies.

Options
	Name	Type	Default	Docs
	description	String.t		A description for the policy, used when explaining authorization results

field_policies.field_policy.authorize_if
authorize_if check
If the check is true, the request is authorized, otherwise run remaining checks.
Examples
authorize_if logged_in()
authorize_if actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy.forbid_if
forbid_if check
If the check is true, the request is forbidden, otherwise run remaining checks.
Examples
forbid_if not_logged_in()
forbid_if actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy.authorize_unless
authorize_unless check
If the check is true, run remaining checks, otherwise the request is authorized.
Examples
authorize_unless not_logged_in()
authorize_unless actor_attribute_matches_record(:group, :blacklisted_groups)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
field_policies.field_policy.forbid_unless
forbid_unless check
If the check is true, run remaining checks, otherwise the request is forbidden.
Examples
forbid_unless logged_in()
forbid_unless actor_attribute_matches_record(:group, :group)
Arguments
	Name	Type	Default	Docs
	check	any | module		The check to run. See Ash.Policy.Check for more.

Options
	Name	Type	Default	Docs
	name	String.t		A short name or description for the check, used when explaining authorization results

Introspection
Target: Ash.Policy.Check
Introspection
Target: Ash.Policy.FieldPolicy

 Ash.DataLayer.Ets

An ETS (Erlang Term Storage) backed Ash Datalayer, for testing and lightweight usage.
Remember, this does not have support for transactions! This is not recommended for production
use, especially in multi-user applications. It can, however, be great for prototyping.
ets
A section for configuring the ets data layer
Examples
ets do
 # Used in testing
 private? true
end

Options
	Name	Type	Default	Docs
	private?	boolean	false	Sets the ets table protection to private, and scopes it to only this process. The table name will not be used directly if this is true, to allow multiple processes to use this resource separately.
	table	atom		The name of the table. Defaults to the resource name.

 Ash.DataLayer.Mnesia

An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.
mnesia
A section for configuring the mnesia data layer
Examples
mnesia do
 table :custom_table
end

Options
	Name	Type	Default	Docs
	table	atom		The table name to use, defaults to the name of the resource

 Ash.Reactor

Ash.Reactor is a Reactor extension
which provides steps for working with Ash resources and actions.
See the Ash Reactor Guide for more
information.
ash
Ash-related configuration for the Ash.Reactor extension
Options
	Name	Type	Default	Docs
	default_domain	module		A domain to use by default when calling actions

reactor.action
action name, resource, action \\ nil
Declares a step that will call a generic action on a resource.
Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	inputs
	tenant
	wait_for

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.action.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.action.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.action.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.action.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.action.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.action.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.action.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Action
reactor.ash_step
ash_step name, impl \\ nil
Specifies a Ash.Reactor step.
This is basically a wrapper around Reactor.step, in order to handle
any returned notifications from the run step/function.
See the Reactor.Step behaviour for more information.
Nested DSLs
	argument
	wait_for
	guard
	where

Examples
ash_step :create_post, MyApp.CreatePostStep do
 argument :title, input(:title)
end

ash_step :create_post do
 argument :title, input(:title)

 run fn %{title: title}, _ ->
 MyApp.Post.create(title, return_notifications?: true)
 end
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step. Used when choosing the return value of the Reactor and for arguments into other steps.
	impl	module | nil		A module that implements the Reactor.Step behaviour that provides the implementation.

Options
	Name	Type	Default	Docs
	run	(any -> any) | mfa | (any, any -> any) | mfa		Provide an anonymous function which implements the run/3 callback. Cannot be provided at the same time as the impl argument.
	undo	(any -> any) | mfa | (any, any -> any) | mfa | (any, any, any -> any) | mfa		Provide an anonymous function which implements the undo/4 callback. Cannot be provided at the same time as the impl argument.
	compensate	(any -> any) | mfa | (any, any -> any) | mfa | (any, any, any -> any) | mfa		Provide an anonymous function which implements the undo/4 callback. Cannot be provided at the same time as the impl argument.
	max_retries	:infinity | non_neg_integer	:infinity	The maximum number of times that the step can be retried before failing. Only used when the result of the compensate/4 callback is :retry.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the entire argument map before it is passed to the step.

reactor.ash_step.argument
argument name, source \\ nil
Specifies an argument to a Reactor step.
Each argument is a value which is either the result of another step, or an input value.
Individual arguments can be transformed with an arbitrary function before
being passed to any steps.
Examples
argument :name, input(:name)

argument :year, input(:date, [:year])

argument :user, result(:create_user)

argument :user_id, result(:create_user) do
 transform & &1.id
end

argument :user_id, result(:create_user, [:id])

argument :three, value(3)

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument which will be used as the key in the arguments map passed to the implementation.
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the argument. See Reactor.Dsl.Argument for more information.

Options
	Name	Type	Default	Docs
	description	String.t | nil		An optional description for the argument.
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the argument before it is passed to the step.

Introspection
Target: Reactor.Dsl.Argument
reactor.ash_step.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
reactor.ash_step.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.ash_step.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
Introspection
Target: Ash.Reactor.Dsl.AshStep
reactor.bulk_create
bulk_create name, resource, action \\ nil
Declares a step which will call a create action on a resource with a collection of inputs.
Check the docs!
Make sure to thoroughly read and understand the documentation in Ash.bulk_create/4 before using. Read each option and note the default values. By default, bulk creates don't return records or errors, and don't emit notifications.
Caveats/differences from Ash.bulk_create/4:
	max_concurrency specifies the number of tasks that Ash will start to process batches, and has no effect on Reactor concurrency targets. It's could be possible to create a very large number of processes if a number of steps are running bulk actions with a high degree of concurrency.
	Setting notify? to true will cause both notify? and return_notifications? to be set to true in the underlying call to Ash.bulk_create/4. Notifications will then be managed by the Ash.Reactor.Notifications Reactor middleware.
	If you specify an undo action it must be a generic action which takes the bulk result as it's only argument.

Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	load
	tenant
	wait_for

Examples
bulk_create :create_posts, MyApp.Post, :create do
 initial input(:titles)
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	initial	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		A collection of inputs to pass to the create action. Must implement the Enumerable protocol.
	assume_casted?	boolean	false	Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting
	authorize_changeset_with	:filter | :error	:filter	If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error
	authorize_query_with	:filter | :error	:filter	If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error
	batch_size	nil | pos_integer		The number of records to include in each batch. Defaults to the default_limit or max_page_size of the action, or 100.
	max_concurrency	non_neg_integer	0	If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously.
	notification_metadata	map | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value	%{}	Metadata to be merged into the metadata field for all notifications sent from this operation.
	notify?	boolean	false	Whether or not to generate any notifications. This may be intensive for large bulk actions.
	read_action	atom		The action to use when building the read query.
	return_errors?	boolean	true	Whether or not to return all of the errors that occur. Defaults to false to account for large inserts.
	return_records?	boolean	false	Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts.
	return_stream?	boolean	false	If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
	rollback_on_error?	boolean	true	Whether or not to rollback the transaction on error, if the resource is in a transaction.
	select	atom | list(atom)		A select statement to apply to records. Ignored if return_records? is not true.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)		A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.
	sorted?	boolean	false	Whether or not to sort results by their input position, in cases where return_records? is set to true.
	stop_on_error?	boolean	true	If true, the first encountered error will stop the action and be returned. Otherwise, errors will be skipped.
	success_state	:success | :partial_success	:success	Bulk results can be entirely or partially successful. Chooses the Ash.BulkResult state to consider the step a success.
	timeout	timeout		If none is provided, the timeout configured on the domain is used (which defaults to 30_000).
	transaction	:all | :batch | false	:batch	Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
	upsert_fields	atom | list(atom)		The fields to upsert. If not set, the action's upsert_fields is used.
	upsert_identity	atom		The identity to use for the upsert
	upsert?	boolean	false	Whether or not this action should be executed as an upsert.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.bulk_create.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.bulk_create.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.bulk_create.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.bulk_create.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.bulk_create.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.bulk_create.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.bulk_create.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.BulkCreate
reactor.bulk_update
bulk_update name, resource, action \\ nil
Declares a step which will call an update action on a resource with a collection of inputs.
Check the docs!
Make sure to thoroughly read and understand the documentation in Ash.bulk_update/4 before using. Read each option and note the default values. By default, bulk updates don't return records or errors, and don't emit notifications.
Caveats/differences from Ash.bulk_update/4:
	max_concurrency specifies the number of tasks that Ash will start to process batches, and has no effect on Reactor concurrency targets. It's could be possible to create a very large number of processes if a number of steps are running bulk actions with a high degree of concurrency.
	Setting notify? to true will cause both notify? and return_notifications? to be set to true in the underlying call to Ash.bulk_create/4. Notifications will then be managed by the Ash.Reactor.Notifications Reactor middleware.
	If you specify an undo action it must be a generic action which takes the bulk result as it's only argument.

Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	inputs
	tenant
	wait_for

Examples
bulk_update :publish_posts, MyApp.Post, :publish do
 initial input(:posts),
 actor result(:get_user)
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	initial	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		A collection of inputs to pass to the create action. Must implement the Enumerable protocol.
	allow_stream_with	:keyset | :offset | :full_read	:keyset	The 'worst' strategy allowed to be used to fetch records if the :stream strategy is chosen. See the Ash.stream!/2 docs for more.
	assume_casted?	boolean	false	Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting
	atomic_update	map		A map of atomic updates to apply. See Ash.Changeset.atomic_update/3 for more.
	authorize_changeset_with	:filter | :error	:filter	If set to :error, instead of filtering unauthorized changes, unauthorized changes will raise an appropriate forbidden error
	authorize_query_with	:filter | :error	:filter	If set to :error, instead of filtering unauthorized query results, unauthorized query results will raise an appropriate forbidden error
	authorize_query?	boolean	true	If a query is given, determines whether or not authorization is run on that query.
	batch_size	nil | pos_integer		The number of records to include in each batch. Defaults to the default_limit or max_page_size of the action, or 100.
	filter	map | keyword		A filter to apply to records. This is also applied to a stream of inputs.
	lock	any		A lock statement to add onto the query.
	max_concurrency	non_neg_integer	0	If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously.
	notification_metadata	map | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value	%{}	Metadata to be merged into the metadata field for all notifications sent from this operation.
	notify?	boolean	false	Whether or not to generate any notifications. This may be intensive for large bulk actions.
	page	keyword	[]	Pagination options, see Ash.read/2 for more.
	read_action	atom		The action to use when building the read query.
	return_errors?	boolean	true	Whether or not to return all of the errors that occur. Defaults to false to account for large inserts.
	return_records?	boolean	false	Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts.
	return_stream?	boolean	false	If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
	reuse_values?	boolean	false	Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer.
	rollback_on_error?	boolean	true	Whether or not to rollback the transaction on error, if the resource is in a transaction.
	select	atom | list(atom)		A select statement to apply to records. Ignored if return_records? is not true.
	skip_unknown_inputs	atom | String.t | list(atom | String.t)		A list of inputs that, if provided, will be ignored if they are not recognized by the action. Use :* to indicate all unknown keys.
	sorted?	boolean	false	Whether or not to sort results by their input position, in cases where return_records? is set to true.
	stop_on_error?	boolean	true	If true, the first encountered error will stop the action and be returned. Otherwise, errors will be skipped.
	strategy	list(:atomic | :atomic_batches | :stream)	[:atomic]	The strategy or strategies to enable. :stream is used in all cases if the data layer does not support atomics.
	stream_batch_size	pos_integer		Batch size to use if provided a query and the query must be streamed.
	stream_with	:keyset | :offset | :full_read		The specific strategy to use to fetch records. See Ash.stream!/2 docs for more.
	success_state	:success | :partial_success	:success	Bulk results can be entirely or partially successful. Chooses the Ash.BulkResult state to consider the step a success.
	timeout	timeout		If none is provided, the timeout configured on the domain is used (which defaults to 30_000).
	transaction	:all | :batch | false	:batch	Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.bulk_update.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.bulk_update.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.bulk_update.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.bulk_update.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.bulk_update.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.bulk_update.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.bulk_update.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.BulkUpdate
reactor.change
change name, change
Declares a step that will modify a changeset.
Nested DSLs
	argument
	wait_for

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for this step.
	change	(any, any -> any) | module		The module and options for a change. Also accepts a function that takes the changeset and the context. See Ash.Resource.Change.Builtins for builtin changes.

Options
	Name	Type	Default	Docs
	initial	module | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The initial value to work from, either a resource or a changeset
	description	String.t | nil		An optional description for the change
	only_when_valid?	boolean	false	If the change should only be run on valid changes. By default, all changes are run unless stated otherwise here.
	where	(any, any -> any) | module | list((any, any -> any) | module)	[]	Validations that should pass in order for this change to apply. These validations failing will result in this change being ignored.
	fail_if_invalid?	boolean	false	Fail if the result of the change is an invalid changeset

reactor.change.argument
argument name, source \\ nil
Specifies an argument to a Reactor step.
Each argument is a value which is either the result of another step, or an input value.
Individual arguments can be transformed with an arbitrary function before
being passed to any steps.
Examples
argument :name, input(:name)

argument :year, input(:date, [:year])

argument :user, result(:create_user)

argument :user_id, result(:create_user) do
 transform & &1.id
end

argument :user_id, result(:create_user, [:id])

argument :three, value(3)

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the argument which will be used as the key in the arguments map passed to the implementation.
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the argument. See Reactor.Dsl.Argument for more information.

Options
	Name	Type	Default	Docs
	description	String.t | nil		An optional description for the argument.
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the argument before it is passed to the step.

Introspection
Target: Reactor.Dsl.Argument
reactor.change.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Change
reactor.create
create name, resource, action \\ nil
Declares a step that will call a create action on a resource.
Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	inputs
	load
	tenant
	wait_for

Examples
create :create_post, MyApp.Post, :create do
 inputs %{
 title: input(:post_title),
 author_id: result(:get_user, [:id])
 }
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	initial	nil | module | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The initial value passed into the action.
	upsert_identity	atom		The identity to use for the upsert
	upsert?	boolean	false	Whether or not this action should be executed as an upsert.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.create.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.create.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.create.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.create.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.create.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.create.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.create.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.create.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Create
reactor.destroy
destroy name, resource, action \\ nil
Declares a step that will call a destroy action on a resource.
Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	inputs
	load
	tenant
	wait_for

Examples
destroy :delete_post, MyApp.Post, :destroy do
 initial input(:post)
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	initial	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The record to update.
	return_destroyed?	boolean	false	Whether or not the step should return the destroyed record upon completion.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.destroy.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.destroy.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.destroy.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.destroy.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.destroy.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.destroy.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.destroy.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.destroy.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Destroy
reactor.load
load name, records, load
Declares a step that will load additional data on a resource.
Nested DSLs
	actor
	context
	guard
	where
	tenant
	wait_for

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	records	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The records upon which to add extra loaded data
	load	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		An Ash load statement

Options
	Name	Type	Default	Docs
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load statement before it is passed to the load.
	lazy?	boolean		If set to true, values will only be loaded if the related value isn't currently loaded.
	reuse_values?	boolean		Whether calculations are allowed to reuse values that have already been loaded, or must refetch them from the data layer.
	strict?	boolean		If set to true, only specified attributes will be loaded when passing a list of fields to fetch on a relationship, which allows for more optimized data-fetching.

reactor.load.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.load.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.load.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.load.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.load.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.load.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Load
reactor.read_one
read_one name, resource, action \\ nil
Declares a step that will call a read action on a resource returning a single record.
Nested DSLs
	actor
	context
	guard
	where
	inputs
	load
	tenant
	wait_for

Examples
read_one :post_by_id, MyApp.Post, :read do
 inputs %{id: input(:post_id)}
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	fail_on_not_found?	boolean	false	When set to true the step will fail if the resource is not found.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step

reactor.read_one.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.read_one.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.read_one.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.read_one.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.read_one.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.read_one.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.read_one.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.read_one.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.ReadOne
reactor.read
read name, resource, action \\ nil
Declares a step that will call a read action on a resource.
Nested DSLs
	actor
	context
	guard
	where
	inputs
	load
	tenant
	wait_for

Examples
read :read_posts, MyApp.Post, :read

read :read_posts_in_range, MyApp.Post, :read_in_range do
 inputs %{min_date: input(:min_date), max_date: input(:max_date)}
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step

reactor.read.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.read.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.read.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.read.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.read.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.read.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.read.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.read.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Read
reactor.transaction
transaction name, resources
Creates a group of steps which will be executed inside a data layer transaction.
Nested DSLs
	guard
	where
	wait_for

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resources	module | list(module)		A resource or list of resources to consider in the transaction.

Options
	Name	Type	Default	Docs
	return	atom		The name of the step whose result will be returned as the return value of the transaction.
	timeout	pos_integer | :infinity	15000	How long to allow the transaction to run before timing out.

reactor.transaction.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.transaction.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.transaction.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Transaction
reactor.update
update name, resource, action \\ nil
Declares a step that will call an update action on a resource.
Undo behaviour
This step has three different modes of undo.
	never - The result of the action is never undone. This is the default.
	always - The undo_action will always be called.
	outside_transaction - The undo_action will not be called when running inside a transaction block, but will be otherwise.

Nested DSLs
	actor
	context
	guard
	where
	inputs
	load
	tenant
	wait_for

Examples
update :publish_post, MyApp.Post, :update do
 initial input(:post)
 inputs %{
 published: value(true)
 }
 actor result(:get_user)
 tenant result(:get_organisation, [:id])
end

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the step.
	resource	module		The resource to call the action on.
	action	atom		The name of the action to call on the resource.

Options
	Name	Type	Default	Docs
	initial	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		The record to update.
	domain	module		The Domain to use when calling the action. Defaults to the Domain set on the resource or in the ash section.
	async?	boolean	true	When set to true the step will be executed asynchronously via Reactor's TaskSupervisor.
	authorize?	boolean | nil		Explicitly enable or disable authorization for the action.
	description	String.t		A description for the step
	undo_action	atom		The name of the action to call on the resource when the step is to be undone.
	undo	:always | :never | :outside_transaction	:never	How to handle undoing this action

reactor.update.actor
actor source
Specifies the action actor
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the actor.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the actor before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Actor
reactor.update.context
context context
A map to be merged into the action's context
Arguments
	Name	Type	Default	Docs
	context	nil | Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value | map		A map to be merged into the action's context.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the context before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Context
reactor.update.guard
guard fun
Provides a flexible method for conditionally executing a step, or replacing it's result.
Expects a two arity function which takes the step's arguments and context and returns one of the following:
	:cont - the guard has passed.
	{:halt, result} - the guard has failed - instead of executing the step use the provided result.

Examples
step :read_file_via_cache do
 argument :path, input(:path)
 run &File.read(&1.path)
 guard fn %{path: path}, %{cache: cache} ->
 case Cache.get(cache, path) do
 {:ok, content} -> {:halt, {:ok, content}}
 _ -> :cont
 end
 end
end

Arguments
	Name	Type	Default	Docs
	fun	(any, any -> any) | mfa		The guard function.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Guard
reactor.update.where
where predicate
Only execute the surrounding step if the predicate function returns true.
This is a simple version of guard which provides more flexibility at the cost of complexity.
Examples
step :read_file do
 argument :path, input(:path)
 run &File.read(&1.path)
 where &File.exists?(&1.path)
end

Arguments
	Name	Type	Default	Docs
	predicate	(any -> any) | mfa | (any, any -> any) | mfa		Provide a function which takes the step arguments and optionally the context and returns a boolean value.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description of the guard.

Introspection
Target: Reactor.Dsl.Where
reactor.update.inputs
inputs template
Specify the inputs for an action
Examples
inputs %{
 author: result(:get_user),
 title: input(:title),
 body: input(:body)
}

inputs(author: result(:get_user))

Arguments
	Name	Type	Default	Docs
	template	%{optional(atom) => Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value} | keyword(Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value)		

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which will transform the inputs before executing the action.

Introspection
Target: Ash.Reactor.Dsl.Inputs
reactor.update.load
load source
Allows the addition of an Ash load statement to the action
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the load

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the load before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.ActionLoad
reactor.update.tenant
tenant source
Specifies the action tenant
Arguments
	Name	Type	Default	Docs
	source	Reactor.Template.Element | Reactor.Template.Input | Reactor.Template.Result | Reactor.Template.Value		What to use as the source of the tenant.

Options
	Name	Type	Default	Docs
	transform	(any -> any) | module | nil		An optional transformation function which can be used to modify the tenant before it is passed to the action.

Introspection
Target: Ash.Reactor.Dsl.Tenant
reactor.update.wait_for
wait_for names
Wait for the named step to complete before allowing this one to start.
Desugars to argument :_, result(step_to_wait_for)
Examples
wait_for :create_user
Arguments
	Name	Type	Default	Docs
	names	atom | list(atom)		The name of the step to wait for.

Options
	Name	Type	Default	Docs
	description	String.t		An optional description.

Introspection
Target: Reactor.Dsl.WaitFor
Introspection
Target: Ash.Reactor.Dsl.Update

 Glossary

Action
An action describes an operation that can be performed for a given resource; it is the verb to a resource's noun. Examples of actions:
	User.create
	Comment.delete
	BlogPost.publish
	Article.search

Ash supports five different types of actions. create, read, update and destroy (collectively often abbreviated as CRUD), and action, referring to a generic action with a custom return type. A resource can define multiple actions per action type, eg. a publish action would be considered an update because it is updating an existing instance of a resource. Actions are much more flexible than simple CRUD, but these five action types serve as templates for anything you might want to do.
See the Actions guide for more.
Actor
The entity that performs an action.
Most actions are run on direct user request, eg. if a user presses a Create button on a page then the actor is the user.
The actor can be anything that you want it to be. It is most typically a map or a struct containing information about the "entity" that is performing the action.
In the vast majority of cases, the actor will be something like %MyApp.Accounts.User{}. We recommend that the actor be a struct, but it could also be a map or any other kind of value.
Some example actor types used in practice:
	%MyApp.Accounts.User{}
	%MyApp.Accounts.Device{}
	%MyApp.SystemUser{}

Actors can be used in a number of places, from modifying the behavior of an action to auditing who did what in your system. They are most prominent, however, when writing policies.
See the Actors & Authorization guide for more.
Aggregate
An aggregate is a special type of field for a resource, one that summarizes related information of the record. A more specialized type of a calculation.
If a Project resource has_many Ticket resources, an example of an aggregate on the Project might be to count the tickets associated to each project.
See the Aggregates guide for more.
Attribute
A piece of data belonging to a resource. The most basic building block; an attribute has a type and a value. For resources backed by a data layer, they typically represent a column in a database table, or a key in an object store, for example.
See the Attributes guide for more.
Authorizer
An authorizer is an extension that can be added to a resource that will be given the opportunity to modify and/or prevent requests to a resource. In practice, you will almost always be using Ash.Policy.Authorizer, but you can still write your own if you need to.
See the Actors & Authorization and Policies guides for more.
Calculation
A calculation is a special type of field for a resource, one that is not directly stored in the data layer but generated on-demand. Typically it will derive from other information on the record, but it may come from some other data source entirely.
See the Calculations guide for more.
Changeset
Changesets encapsulate data changes made while creating or updating an instance of a resource. Similarly to Ecto changesets, they include data validations but they also have their own callback hook lifecycle.
See Ash.Changeset for more.
Domain
A method of broadly separating resources into different domains, A.K.A bounded contexts.
See the Domains guide for more.
Extension
A packaged bundle of code that can be included in a resource to provide additional functionality. Built-in functionality such as the resource DSL itself is provided by an extension, and libraries like AshPostgres and AshAdmin also provide extensions that you can add to your resources with just one line of code.
See Extending Resources for more.
Filter
Filters are applied to queries to limit the data returned. They can also be applied to changesets, to ensure only data matching a certain condition is updated. For example:
	Fetching Articles that include a certain search term in the title
	Fetching Posts created by a specific user
	Fetching Tickets updated in the last week
	Updating a record only if it's version matches your in memory version (optimistic locking)

See Ash.Filter for more.
Identity
A way to uniquely identify an instance of a resource. A primary key is an example of an identity that is automatically generated; you can manually add others such as a user's email address, or a URL slug for a post. If using AshPostgres, constraints will be created by the migration generator to enforce identities at the database level.
See the Identities guide for more.
Notifier
Notifiers are modules that are called for each action that occurs on a resource (except generic actions). They are called at the end of transactions, meaning that if a notifier is called, it is guaranteed that the action they pertain to has completed successfully.
See the Notifiers guide for more.
Policy
A set of rules defining who is authorized to perform specific actions on a resource. Common policy checks include rules such as:
	Forbidding anyone other than the user who wrote a blog post, from editing it
	Allowing only admins to update site-wide settings

See the Policies guide for more.
Query
The tools and functions used for reading and filtering stored data, from the data layer.
See Ash.Query for more.
Record
A record is an "instance" of a resource. Keep in mind that this is not an "instance" in a mutable/object-oriented sense, but rather a snapshot of the data at a given point in time. When you call a read action, you get back records. You can provide a record to an update action to determine what data is being updated.
Relationship
Relationships are named links between resources, that define how they relate to each other. Relationships can be used to signify ownership of a record, membership of a group, or can be used in filtering and querying data.
See the Relationships guide for more.
Resource
The central concept in Ash, a resource can be used to model all kinds of things. Most often, they will map to a data store, and represent things like rows of a database table. However, they can also be backed by external data sources, be used for validating data with no persistence at all, or even be simple containers for generic actions, completely stateless.
See the Resource DSL docs for DSL documentation.
Tenant
Multitenancy is the siloing of your app's data into discrete non-overlapping groups, typically by customer or organization (the tenant). Ash supports multitenancy both at the code level and the data layer level (depending on the data layer; for example, AshPostgres uses schemas to fully separate data per tenant.)
See the Multitenancy guide for more.

 Expressions

Ash expressions are used in various places like calculations, filters, and policies, and are meant to be portable representations of elixir expressions. You can create an expression using the Ash.Expr.expr/1 macro, like so:
Ash.Expr.expr(1 + 2)
Ash.Expr.expr(x + y)
Ash.Expr.expr(post.title <> " | " <> post.subtitle)
Ash Expressions are SQL-ish
Ash expressions have some interesting properties in their evaluation, primarily because they are made to be
portable, i.e executable in some data layer (like SQL) or executable in Elixir. In general, these expressions
will behave the same way they do in Elixir. The primary difference is how nil values work. They behave the way
that NULL values behave in SQL. This is primarily because this pattern is easier to replicate to various popular
data layers, and is generally safer when using expressions for things like authentication. The practical
implications of this are that nil values will "poison" many expressions, and cause them to return nil.
For example, x + nil would always evaluate to nil. Additionally, true and nil will always result in
nil, this is also true with or and not, i.e true or nil will return nil, and not nil will return nil.
Additionally, atoms and strings compare as if the atom was a string. This is because most external data layers
do not know about atoms, and so they are converted to strings before comparison.
Operators
The following operators are available and they behave the same as they do in Elixir, except for the nil addendum above.
	==
	!=
	>
	>=
	<
	<=
	in
	*
	-
	/
	<>
	and - Boolean and operator
	or - Boolean or operator
	|| - Elixir-ish or operator, if left is not nil or false, then left. Othewise right.
	&& - Elixir-ish and operator, if left is not nil or false, then right. Otherwise left.
	is_nil | Only works as an operator in maps/keyword list syntax. i.e [x: [is_nil: true]]

Elixir-ish operators
Prefer to use and and or if you are dealing with booleans, as they will typically perform much
better in SQL data layers. && and || should only be used when you want to deal with more than boolaens.
For example:
calculate :identifier, expr(manual_identifier || employee_id <> " " <> location_code)
Functions
The following functions are built in. Data Layers can add their own functions to expressions. For example, AshPostgres adds trigram_similarity function.
The following functions are built in:
	if | Works like elixir's if.

	is_nil/1 | Works like elixir's is_nil

	get_path/2 | i.e get_path(value, ["foo", "bar"]). This is what expressions like value[:foo]["bar"] are turned into under the hood.

	contains/2 | if one string contains another string, i.e contains("fred", "red")

	length/1 | the length of a list, i.e. length([:foo, :bar])

	type/2 | Cast a given value to a specific type, i.e type(^arg(:id), :uuid) or type(integer_field, :string)

	string_downcase/1 | Downcases a string

	string_join/1 | Concatenates a list of strings, and ignores any nil values

	string_join/2 | As above, but with a joiner

	string_position/2 | Returns the zero-based position of a substring within a string, or nil, i.e. string_position("fred", "red") == 1

	string_split/1 | Splits a string on spaces

	string_split/2 | As above, but with a specific delimiter

	string_split/3 | As above, but with options. See the function for the available options.

	string_length/1 | Returns the length of a given string, as reported by String.length/1

	string_trim/1 | Trims unicode whitespace from the beginning and the end of a string

	at/2 | Get an element from a list, i.e at(list, 1)

	round/1 | Round a float, decimal or int to 0 precision, i.e round(num)

	round/2 | Round a float, decimal or int to the provided precision or less, i.e round(1.1234, 3) == 1.1234 and round(1.12, 3) == 1.12

	String interpolation | "#{first_name} #{last_name}", is remapped to the equivalent usage of <>

	fragment/* | Creates a fragment of a data layer expression. See the section on fragments below.

Fragments
Fragments come in two forms.
String Fragments
For SQL/query-backed data layers, they will be a string with question marks for interpolation. For example: fragment("(? + ?)", foo, bar).
Function Fragments
For elixir-backed data layers, they will be a function or an MFA that will be called with the provided arguments. For example: fragment(&Module.add/2, foo, bar) or fragment({Module, :add, []}, foo, bar). When using anonymous functions, you can only use the format &Module.function/arity. &Module.add/2 is okay, but fn a, b -> Module.add(a, b) end is not.
Sub-expressions
	exists/2 | exists(foo.bar, name == "fred") takes an expression scoped to the destination resource, and checks if any related entry matches. See the section on exists below.

	path.exists/2 | Same as exists but the source of the relationship is itself a nested relationship. See the section on exists below.

	parent/1 | Allows an expression scoped to a resource to refer to the "outer" context. Used in relationship filters and exists

DateTime Functions
	now/0 | Evaluates to the current time when the expression is evaluated

	today/0 | Evaluates to the current date when the expression is evaluated

	ago/2 | i.e deleted_at > ago(7, :day). The available time intervals are documented in Ash.Type.DurationName

	from_now/2 | Same as ago but adds instead of subtracting

	datetime_add/3 | add an interval to a datetime, i.e datetime_add(^datetime, 10, :hour)

	date_add/3 | add an interval to a date, i.e date_add(^date, 3, :day)

	start_of_day/1-2 | Converts a date or a datetime to the correspond start of its day (at 00:00 time).

Primitives
	cond - cond is transformed to a series of if expressions under the hood
	item[:key] or item["key"] - accesses keys in a map. In both cases, it prefers a matching atom key, falling back to a matching string key. This is to aid with data stores that store embeds as JSON with string keys (like AshPostgres), so that this expression behaves the same in the data layer as it does in Elixir.

Escape Hatches
	lazy/1 - Takes an MFA and evaluates it just before running the query. This is important for calculations, because the expression/2 callback should be stable (returns the same value given the same input). For example lazy({ULID, :generate, [timestamp_input]})

Inline Aggregates
Aggregates can be referenced in-line, with their relationship path specified and any options provided that match the options given to Ash.Query.Aggregate.new/4. For example:
calculate :grade, :decimal, expr(
 count(answers, query: [filter: expr(correct == true)]) /
 count(answers, query: [filter: expr(correct == false)])
)
The available aggregate kinds can also be seen in the Ash.Query.Aggregate module documentation.
Templates
Most of the time, when you are using an expression, you will actually be creating a template. In this template, you have a few references that can be used, which will be replaced before the expression is evaluated. The following references are available:
^actor(:key) # equivalent to `get_in(actor || %{}, [:key])`
^actor([:key1, :key2]) # equivalent to `get_in(actor || %{}, [:key, :key2])`
^arg(:arg_name) # equivalent to `Map.get(arguments, :arg_name)`
^context(:key) # equivalent to `get_in(context, :key)`
^context([:key1, :key2]) # equivalent to `get_in(context, [:key1, :key2])`
^ref(:key) # equivalent to referring to `key`. Allows for dynamic references
^ref([:path], :key) # equivalent to referring to `path.key`. Allows for dynamic references with dynamic (or static) paths.
Custom Expressions
Custom expressions allow you to extend Ash's expression language with your own expressions. To see more, see Ash.CustomExpression. To add a custom expression, configure it and recompile ash. For example:
config :ash, :custom_expressions, [
 MyApp.CustomExpression
]
mix deps.compile ash --force
These expressions will be available across all usages of Ash expressions within your application.
Filter semantics & joins
The semantics of Ash filters are probably slightly different than what you are used to, and they are important to understand. Every filter expression is always talking about a single row, potentially "joined" to single related rows. By referencing relationships, you are implicitly doing a join. For those familiar with SQL terminology, it is equivalent to a left join, although AshPostgres can detect when it is safe to do an inner join (for performance reasons). Lets use an example of posts and comments.
Given a filter like the following:
Ash.Query.filter(Post, comments.points > 10 and comments.tag.name == "elixir")
The filter refers to a single post/comment/tag combination. So in english, this is "posts where they have a comment with more than 10 points and that same comment has a tag with the name elixir". What this also means is that filters like the above do not compose nicely when new filters are added. For example:
def has_comment_with_more_points_than(query, score) do
 Ash.Query.filter(query, comments.points > ^score)
end

def has_comment_tagged(query, tag) do
 Ash.Query.filter(query, comments.tag.name == ^tag)
end

Post
|> has_comment_with_more_points_than(10)
|> has_comment_tagged("elixir")
That code seems like it ought to produce a filter over Post that would give us any post with a comment having more than 10 points, and with a comment tagged elixir. That is not the same thing as having a single comment that meets both those criteria. So how do we make this better?
Exists
Lets rewrite the above using exists:
def has_comment_with_more_points_than(query, score) do
 Ash.Query.filter(query, exists(comments, points > ^score))
end

def has_comment_tagged(query, tag) do
 Ash.Query.filter(query, exists(comments.tag, name == ^tag))
end

Post
|> has_comment_with_more_points_than(10)
|> has_comment_tagged("elixir")
Now, they will compose properly! Generally speaking, you should use exists when you are filtering across any relationships that are to_many relationships *even if you don't expect your filter to be composed. Currently, the filter syntax does not minimize(combine) these exists/2 statements, but doing so is not complex and can be added. While unlikely, please lodge an issue if you see any performance issues with exists.
Exists at path
Sometimes, you want the ability to say that some given row must have an existing related entry matching a filter. For example:
Ash.Query.filter(Post, author.exists(roles, name == :admin) and author.active)
While the above is not common, it can be useful in some specific circumstances, and is used under the hood by the policy authorizer when combining the filters of various resources to create a single filter.
Portability
Ash expressions being portable is more important than it sounds. For example, if you were using AshPostgres and had the following calculation, which is an expression capable of being run in elixir or translated to SQL:
calculate :full_name, :string, expr(first_name <> " " <> last_name)
And you did something like the following:
User
|> Ash.Query.load(:full_name)
|> Ash.Query.sort(:full_name)
|> Accounts.read!()
You would see that it ran a SQL query with the full_name calculation as SQL. This allows for sorting on that value. However, if you had something like this:
data can be loaded in the query like above, or on demand later
Accounts.load!(user, :full_name, reuse_values?: true)
you would see that no SQL queries are run. The calculation is run directly in Elixir without needing to visit the database.
Parent
Parent is a way to "jump out" of a scoped expression. Here are some examples:
Ash.Query.filter(exists(open_tickets, severity >= parent(severity_threshold)))
has_many :relevant_tickets, Ticket do
 no_attributes? true
 # this says that there is no matching source_attribute and destination_attribute on this relationship
 filter expr(status == :open and severity >= parent(severity_threshold))
end
count :count_of_relevant_tickets, :open_tickets do
 filter expr(status == :open and severity >= parent(severity_threshold))
end
Referencing related values
Related values can be references using dot delimiters, i.e Ash.Query.filter(user.first_name == "fred").
When referencing related values in filters, if the reference is a has_one or belongs_to, the filter does exactly what it looks like (matches if the related value matches). If it is a has_many or a many_to_many, it matches if any of the related records match.
Referencing aggregates and calculations
Aggregates are simple, as all aggregates can be referenced in filter expressions (if you are using a data layer that supports aggregates).
For calculations, only those that define an expression can be referenced in other expressions.
Here are some examples:
given a `full_name` calculation

Ash.Query.filter(User, full_name == "Hob Goblin")

given a `full_name` calculation that accepts an argument called `delimiter`

Ash.Query.filter(User, full_name(delimiter: "~") == "Hob~Goblin")
Case vs Cond Expressions
When working with conditional expressions in Ash, you should use cond instead of case statements. Here's an example:
This works - using cond
calculations do
 calculate :user_order, :integer, expr(
 cond do
 role == :principal -> 1
 role == :teacher -> 2
 role == :student -> 3
 end
)
end

This doesn't work - using case
calculations do
 calculate :user_order, :integer, expr(
 case role do
 :principal -> 1
 :teacher -> 2
 :student -> 3
 end
)
end
The cond expression is the correct way to handle conditional logic in Ash expressions.

 Domains

Domains serve three primary purposes:
	They group related resources together, providing organization and structure to your project.
	They allow you to define a centralized code interface
	They allow you to configure certain cross-cutting concerns of those resources in a single place.

If you are familiar with a Phoenix Context, you can think of a domain as the Ash equivalent.
Grouping Resources
In an Ash.Domain, you will typically see something like this:
defmodule MyApp.Tweets do
 use Ash.Domain

 resources do
 resource MyApp.Tweets.Tweet
 resource MyApp.Tweets.Comment
 end
end
With this definition, you can do things like placing all of these resources into a GraphQL Api with AshGraphql. You'd see a line like this:
use AshGraphql, domains: [MyApp.Tweets]
Centralized Code Interface
Working with our domain & resources in code can be done the long form way, by building changesets/queries/action inputs and calling the relevant function in Ash. However, we generally want to expose a well defined code API for working with our resources. This makes our code much clearer, and gives us nice things like auto complete and inline documentation.
defmodule MyApp.Tweets do
 use Ash.Domain

 resources do
 resource MyApp.Tweets.Tweet do
 # define a function called `tweet` that uses
 # the `:create` action on MyApp.Tweets.Tweet
 define :tweet, action: :create, args: [:text]
 end

 resource MyApp.Tweets.Comment do
 # define a function called `comment` that uses
 # the `:create` action on MyApp.Tweets.Comment
 define :comment, action: :create, args: [:tweet_id, :text]
 end
 end
end
With these definitions, we can now do things like this:
tweet = MyApp.Tweets.tweet!("My first tweet!", actor: user1)
comment = MyApp.Tweets.comment!(tweet.id, "What a cool tweet!", actor: user2)
Configuring Cross-cutting Concerns
Built in configuration
Ash.Domain comes with a number of built-in configuration options. See d:Ash.Domain for more.
For example:
defmodule MyApp.Tweets do
 use Ash.Domain

 resources do
 resource MyApp.Tweets.Tweet
 resource MyApp.Tweets.Comment
 end

 execution do
 # raise the default timeout for all actions in this domain from 30s to 60s
 timeout :timer.seconds(60)
 end

 authorization do
 # disable using the authorize?: false flag when calling actions
 authorize :always
 end
end
Extensions
Extensions will often come with "domain extensions" to allow you to configure the behavior of all resources within a domain, as it pertains to that extension. For example:
defmodule MyApp.Tweets do
 use Ash.Domain,
 extensions: [AshGraphql.Domain]

 graphql do
 # skip authorization for these resources
 authorize? false
 end

 resources do
 resource MyApp.Tweets.Tweet
 resource MyApp.Tweets.Comment
 end
end
Policies
You can also use Ash.Policy.Authorizer on your domains. This allows you to add policies that apply to all actions using this domain. For example:
defmodule MyApp.Tweets do
 use Ash.Domain,
 extensions: [Ash.Policy.Authorizer]

 resources do
 resource MyApp.Tweets.Tweet
 resource MyApp.Tweets.Comment
 end

 policies do
 # add a bypass up front to allow administrators to do whatever they want
 bypass actor_attribute_equals(:is_admin, true) do
 authorize_if always()
 end

 # forbid all access from disabled users
 policy actor_attribute_equals(:disabled, true) do
 forbid_if always()
 end
 end
end

 Attributes

Attributes specify the name, type and additional configuration of a simple property of a record. When using SQL data layers, for example, an attribute would correspond to a column in a database table. For information on types, see Ash.Type.
To see all of the options available when building attributes, see d:Ash.Resource.Dsl.attributes.attribute
If you are looking to compute values on demand, see the Calculations guide and the aggregates guide.
Special attributes
In Ash there are 4 special attributes these are:
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key

These are really just shorthand for an attribute with specific options set. They're outlined below.
create_timestamp
You may recognise this if you have used Ecto before. This attribute will record the time at which each row is created, by default it uses DateTime.utc_now/1.
create_timestamp :inserted_at is equivalent to an attribute with these options:
attribute :inserted_at, :utc_datetime_usec do
 writable? false
 default &DateTime.utc_now/0
 match_other_defaults? true
 allow_nil? false
end
update_timestamp
This is also similar in Ecto. This attribute records the last time a row was updated, also using DateTime.utc_now/1 by default.
update_timestamp :updated_at is equivalent to:
attribute :updated_at, :utc_datetime_usec do
 writable? false
 default &DateTime.utc_now/0
 update_default &DateTime.utc_now/0
 match_other_defaults? true
 allow_nil? false
end
uuid_primary_key
This attribute is used in almost every resource. It generates a UUID every time a new record is made.
uuid_primary_key :id is equivalent to:
attribute :id, :uuid do
 writable? false
 default &Ash.UUID.generate/0
 primary_key? true
 allow_nil? false
end
integer_primary_key
Creates a generated integer primary key. Keep in mind that not all data layers support auto incrementing ids, but for SQL data layers this is a very common practice. For those that don't, it is your own job to provide values for the primary key. We generally suggest using UUIDs over integers, as there are a lot of good reasons to not use autoincrementing integer ids.
integer_primary_key :id is equivalent to:
attribute :id, :integer do
 writable? false
 generated? true
 primary_key? true
 allow_nil? false
end

 Relationships

Relationships describe the connections between resources and are a core component of Ash. Defining relationships enables you to do things like
	Loading related data
	Filtering on related data
	Managing related records through changes on a single resource
	Authorizing based on the state of related data

Relationships Basics
A relationship exists between a source resource and a destination resource. These are defined in the relationships block of the source resource. For example, if MyApp.Tweet is the source resource, and MyApp.User is the destination resource, we could define a relationship called :owner like this:
defmodule MyApp.Tweet do
 use Ash.Resource,
 data_layer: my_data_layer

 attributes do
 uuid_primary_key :id
 attribute :body, :string
 end

 relationships do
 belongs_to :owner, MyApp.User
 end
end
Kinds of relationships
There are four kinds of relationships:
	belongs_to
	has_one
	has_many
	many_to_many

Each of these relationships has a source resource and a destination resource with a corresponding attribute on the source resource (source_attribute), and destination resource (destination_attribute). Relationships will validate that their configured attributes exist at compile time.
You don't need to have a corresponding "reverse" relationship for every relationship, i.e if you have a MyApp.Tweet resource with belongs_to :user, MyApp.User you aren't required to have a has_many :tweets, MyApp.Tweet on MyApp.User. All that is required is that the attributes used by the relationship exist.
Belongs To
on MyApp.Tweet
belongs_to :owner, MyApp.User
A belongs_to relationship means that there is an attribute (source_attribute) on the source resource that uniquely identifies a record with a matching attribute (destination_attribute) in the destination. In the example above, the source attribute on MyApp.Tweet is :owner_id and the destination attribute on MyApp.User is :id.
Attribute Defaults
By default, the source_attribute is defined as :<relationship_name>_id of the type :uuid on the source resource and the destination_attribute is assumed to be :id. You can override the attribute names by specifying the source_attribute and destination_attribute options like so:
belongs_to :owner, MyApp.User do
 # defaults to :<relationship_name>_id (i.e. :owner_id)
 source_attribute :custom_attribute_name

 # defaults to :id
 destination_attribute :custom_attribute_name
end
You can further customize the source_attribute using options such as:
	d:Ash.Resource.Dsl.relationships.belongs_to|define_attribute? to define it yourself
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_type to modify the default type
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_public? to make the source attribute public?: true

For example:
belongs_to :owner, MyApp.User do
 attribute_type :integer
 attribute_writable? false
end
Or if you wanted to define the attribute yourself,
attributes do
 attribute :owner_foo, MyApp.CustomType
end

...
relationships do
 belongs_to :owner, MyApp.User do
 define_attribute? false
 source_attribute :owner_foo
 end
end
Customizing default belongs_to attribute type
Destination attributes that are added by default are assumed to be :uuid. To change this, set the following configuration in config.exs:
config :ash, :default_belongs_to_type, :integer
See the docs for more: d:Ash.Resource.Dsl.relationships.belongs_to
Has One
on MyApp.User
has_one :profile, MyApp.Profile
A has_one relationship means that there is a unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Profile is :user_id.
A has_one is similar to a belongs_to except the reference attribute is on
the destination resource, instead of the source.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_one
Has Many
on MyApp.User
has_many :tweets, MyApp.Tweet
A has_many relationship means that there is a non-unique attribute (destination_attribute) on the destination resource that identifies a record with a matching attribute (source_attribute) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Tweet is :user_id.
A has_many relationship is similar to a has_one because the reference attribute exists on the destination resource. The only difference between this and has_one is that the destination attribute is not unique, and therefore will produce a list of related items. In the example above, :tweets corresponds to a list of MyApp.Tweet records.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_many
Many To Many
A many_to_many relationship can be used to relate many source resources to many destination resources. To achieve this, the source_attribute and destination_attribute are defined on a join resource. A many_to_many relationship can be thought of as a combination of a has_many relationship on the source/destination resources and a belongs_to relationship on the join resource.
For example, consider two resources MyApp.Tweet and MyApp.Hashtag representing tweets and hashtags. We want to be able to associate a tweet with many hashtags, and a hashtag with many tweets. To do this, we could define the following many_to_many relationship:
on MyApp.Tweet
many_to_many :hashtags, MyApp.Hashtag do
 through MyApp.TweetHashtag
 source_attribute_on_join_resource :tweet_id
 destination_attribute_on_join_resource :hashtag_id
end
The through option specifies the "join" resource that will be used to store the relationship. We need to define this resource as well:
defmodule MyApp.TweetHashtag do
 use Ash.Resource,
 data_layer: your_data_layer

 postgres do
 table "tweet_hashtags"
 repo MyApp.Repo
 end

 relationships do
 belongs_to :tweet, MyApp.Tweet, primary_key?: true, allow_nil?: false
 belongs_to :hashtag, MyApp.Hashtag, primary_key?: true, allow_nil?: false
 end

 actions do
 defaults [:read, :destroy, create: :*, update: :*]
 end
end
It is convention to name this resource <source_resource_name><destination_resource_name> however this is not required. The attributes on the join resource must match the source_attribute_on_join_resource and destination_attribute_on_join_resource options on the many_to_many relationship. The relationships on the join resource are standard belongs_to relationships, and can be configured as such. In this case, we have specified that the :tweet_id and :hashtag_id attributes form the primary key for the join resource, and that they cannot be nil.
Now that we have a resource with the proper attributes, Ash will use this automatically under the hood when
performing relationship operations like filtering and loading.
See the docs for more: d:Ash.Resource.Dsl.relationships.many_to_many
Loading related data
There are two ways to load relationships:
	in the query using Ash.Query.load/2
	directly on records using Ash.load/3

On records
Given a single record or a set of records, it is possible to load their relationships by calling the load function on the record's parent domain. For example:
user = %User{...}
Ash.load(user, :tweets)

users = [%User{...}, %User{...},]
Ash.load(users, :tweets)
This will fetch the tweets for each user, and set them in the corresponding tweets key.
%User{
 ...
 tweets: [
 %Tweet{...},
 %Tweet{...},
 ...
]
}
See Ash.load/3 for more information.
In the query
The following will return a list of users with their tweets loaded identically to the previous example:
User
|> Ash.Query.load(:tweets)
|> Ash.read()
At present, loading relationships in the query is fundamentally the same as loading on records. Eventually, data layers will be able to optimize these loads (potentially including them as joins in the main query).
See Ash.Query.load/2 for more information.
More complex data loading
Multiple relationships can be loaded at once, i.e
Ash.load(users, [:tweets, :followers])
Nested relationships can be loaded:
Ash.load(users, followers: [:tweets, :followers])
The queries used for loading can be customized by providing a query as the value.
followers = Ash.Query.sort(User, follower_count: :asc)

Ash.load(users, followers: followers)
Nested loads will be included in the parent load.
followers =
 User
 |> Ash.Query.sort(follower_count: :asc)
 |> Ash.Query.load(:followers)

Will load followers and followers of those followers
Ash.load(users, followers: followers)
no_attributes? true
This is really useful when creating customized relationships that aren't joined with simple attribute matches. For example:
has_many :higher_priority_tickets, __MODULE__ do
 no_attributes? true
 # parent/1 in this case puts the expression on this current resource
 # so this is "tickets with priority higher than this ticket"
 filter expr(priority > parent(priority))
end
This can also be useful when combined with schema-based multitenancy. Specifically, if you have a tenant resource like Organization,
you can use no_attributes? to do things like has_many :employees, Employee, no_attributes?: true, which lets you avoid having an
unnecessary organization_id field on Employee. The same works in reverse: has_one :organization, Organization, no_attributes?: true
allows relating the employee to their organization.
You can also use no_attributes? true with attribute-based multitenancy in the same situation described above, to avoid an unnecessary second
filter. If both resources have attribute multitenancy configured, they will already be filtered by organization_id by virtue of having
set the tenant.
Caveats for using no_attributes?
	 You can still manage relationships from one to the other, but "relate" and "unrelate" will have no effect, because there are no fields to change.
	 Loading the relationship on a list of resources will not behave as expected in all circumstances involving multitenancy. For example, if you get a list of Organization and then try to load employees, you would need to set a single tenant on the load query, meaning you'll get all organizations back with the set of employees from one tenant. This could eventually be solved, but for now it is considered an edge case.

Manual Relationships
Manual relationships allow you to express complex or non-typical relationships between resources in a standard way. Individual data layers may interact with manual relationships in their own way, so see their corresponding guides. In general, you should try to use manual relationships sparingly, as you can do a lot with filters on relationships, and the no_attributes? flag.
Example
In our Helpdesk example, we'd like to have a way to find tickets
In the Representative resource, define a has_many relationship as manual and point to the module where
it will be implemented.
relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end
Using Ash to get the destination records is ideal, so you can authorize access like normal
but if you need to use a raw ecto query here, you can. As long as you return the right structure.
The TicketsAboveThreshold module is implemented as follows.
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 require Ash.Query

 def load(records, _opts, %{query: query} = context) do
 # Use existing records to limit results
 rep_ids = Enum.map(records, & &1.id)

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Ash.read!(Ash.Context.to_opts(context))
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end
end
Reusing the Query
Since you likely want to support things like filtering your relationship when being loaded, you will want to make sure that you use the query being provided. However, depending on how you're loading the relationship, you may need to do things like fetch extra records. To do this, you might do things like
def load(records, _opts, %{query: query, ..}) do
 # unset some fields
 fetch_query = Ash.Query.unset(query, [:limit, :offset])

 # or, to be more safe/explicit, you might make a new query, explicitly setting only a few fields
 fetch_query = query.resource |> Ash.Query.filter(^query.filter) |> Ash.Query.sort(query.sort)

 ...
end
Query when loading with strict?: true
When using Ash.Query.load or Ash.load with the strict?: true option, the query
that is provided to the load callback might be configured with a select-statement that doesn't
load the attributes you want to group matching results by. If your codebase utilizes the strict
loading functionality, it is therefore recommended to use Ash.Query.ensure_selected on the
query to ensure the required attributes are indeed fetched.

Here only :id & :priority is set, which will then configure the relationship query to only
select those attributes
{:ok, rep} = Ash.load(representative, [tickets_above_threshold: [:id, :priority]], strict?: true)

defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 require Ash.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 rep_ids = Enum.map(records, & &1.id)

 {:ok,
 query
 # If this isn't added, representative_id would be set to %Ash.NotLoaded, causing the
 # Enum.group_by call below to fail mapping results to the correct records.
 |> Ash.Query.ensure_selected([:representative_id])
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 |> Enum.group_by(& &1.representative_id)}
 end
end
Fetching the records and then applying a query
Lets say the records come from some totally unrelated source, or you can't just modify the query to fetch the records you need. You can fetch the records you need and then apply the query to them in memory.
def load(records, _opts, %{query: query, ..}) do
 # fetch the data from the other source, which is capable of sorting
 data = get_other_data(data, query.sort)

 query
 # unset the sort since we already applied that
 |> Ash.Query.unset([:sort])
 # apply the query in memory (filtering, distinct, limit, offset)
 |> Ash.Query.apply_to(data)
end
Managing Relationships
Ash provides two primary approaches for managing related data, each suited to different scenarios:
	Using change manage_relationship/3 in actions - When input comes from action arguments
	Using Ash.Changeset.manage_relationship/4 directly - When building values programmatically in custom changes

When to Use Which Approach
Use change manage_relationship/3 when:
	Input comes from action arguments (API endpoints, form submissions)
	You want portable logic across different interfaces (GraphQL, JSON API)
	You need standard CRUD operations on relationships
	The relationship management logic is straightforward

Use Ash.Changeset.manage_relationship/4 when:
	Building relationship data programmatically in custom changes
	You need complex logic or data transformation before managing relationships
	Conditional relationship management based on changeset state
	Integration with external APIs or complex business rules

Order of operations
In destroy actions, relationships are managed after the main action is performed. This means if you're using manage_relationship to remove related records in a destroy action, and your database has foreign key constraints with "no action" or "restrict" settings, you may encounter constraint violations because Ash tries to destroy the primary resource first.
To work around this, you can:
	Use the cascade_destroy builtin change instead of manage_relationship
	Configure your database constraints to be deferred
	Use different constraint settings that allow the operation order

Using change manage_relationship/3 in Actions
This is the most common approach for managing relationships through action arguments:
actions do
 update :update do
 argument :add_comment, :map do
 allow_nil? false
 end

 argument :tags, {:array, :uuid} do
 allow_nil? false
 end

 # First argument is the name of the action argument to use
 # Second argument is the relationship to be managed
 # Third argument is options. For more, see `Ash.Changeset.manage_relationship/4`.
 change manage_relationship(:add_comment, :comments, type: :create)

 # Second argument can be omitted when argument name matches relationship name
 change manage_relationship(:tags, type: :append_and_remove)
 end
end
With this setup, you can use the arguments in action input:
post
|> Ash.Changeset.for_update(:update, %{
 tags: [tag1.id, tag2.id],
 add_comment: %{text: "comment text"}
})
|> Ash.update!()
Common Patterns with Actions
Creating with related data:
create :create_with_author do
 argument :author, :map, allow_nil?: false
 change manage_relationship(:author, type: :create)
end

Usage
Post
|> Ash.Changeset.for_create(:create_with_author, %{
 title: "My Post",
 author: %{name: "John Doe", email: "john@example.com"}
})
|> Ash.create!()
Managing many-to-many relationships:
update :manage_categories do
 argument :category_names, {:array, :string}

 change manage_relationship(:category_names, :categories,
 type: :append_and_remove,
 value_is_key: :name,
 on_lookup: :relate,
 on_no_match: :create
)
end
Different argument and relationship names:
update :assign_reviewer do
 argument :reviewer_id, :uuid
 change manage_relationship(:reviewer_id, :reviewer, type: :append_and_remove)
end
Using Ash.Changeset.manage_relationship/4 in Custom Changes
For more complex scenarios, you can use Ash.Changeset.manage_relationship/4 directly in custom changes:
defmodule MyApp.Changes.AssignProjectMembers do
 use Ash.Resource.Change

 def change(changeset, _opts, context) do
 # Get the current user from context
 current_user = context.actor

 # Build relationship data based on business logic
 members = determine_project_members(changeset, current_user)

 # Manage the relationship directly
 Ash.Changeset.manage_relationship(
 changeset,
 :members,
 members,
 type: :append_and_remove,
 authorize?: true
)
 end

 defp determine_project_members(changeset, current_user) do
 # Complex logic to determine who should be project members
 # based on changeset data and business rules
 # ...
 end
end
Conditional relationship management:
defmodule MyApp.Changes.ConditionalTagging do
 use Ash.Resource.Change

 def change(changeset, _opts, _context) do
 # Only manage tags if certain conditions are met
 if should_auto_tag?(changeset) do
 tags = generate_auto_tags(changeset)

 Ash.Changeset.manage_relationship(
 changeset,
 :tags,
 tags,
 type: :append,
 on_no_match: :create
)
 else
 changeset
 end
 end
end
Data transformation before relationship management:
defmodule MyApp.Changes.ProcessOrderItems do
 use Ash.Resource.Change

 def change(changeset, _opts, _context) do
 case Ash.Changeset.fetch_argument(changeset, :raw_items) do
 {:ok, raw_items} ->
 # Transform and validate the raw item data
 processed_items =
 raw_items
 |> validate_items()
 |> calculate_pricing()
 |> apply_discounts()

 Ash.Changeset.manage_relationship(
 changeset,
 :items,
 processed_items,
 type: :direct_control
)

 :error ->
 changeset
 end
 end
end
Management Types and Options
Ash provides several built-in management types that configure common relationship management patterns:
Management Types
:append - Add new related records, ignore existing ones
change manage_relationship(:tags, type: :append)
Equivalent to:
on_lookup: :relate, on_no_match: :error, on_match: :ignore, on_missing: :ignore
:append_and_remove - Add new related records, remove missing ones
change manage_relationship(:tags, type: :append_and_remove)
Equivalent to:
on_lookup: :relate, on_no_match: :error, on_match: :ignore, on_missing: :unrelate
:remove - Remove specified related records
change manage_relationship(:tags, type: :remove)
Equivalent to:
on_no_match: :error, on_match: :unrelate, on_missing: :ignore
:direct_control - Full CRUD control over the related records
change manage_relationship(:comments, type: :direct_control)
Equivalent to:
on_lookup: :ignore, on_no_match: :create, on_match: :update, on_missing: :destroy
:create - Only create new related records
change manage_relationship(:items, type: :create)
Equivalent to:
on_no_match: :create, on_match: :ignore
Key Options
on_lookup - How to handle records that might exist elsewhere:
	:ignore - Don't look up existing records
	:relate - Look up and relate existing records
	{:relate, :action_name} - Use specific action for relating

on_no_match - What to do when no matching record exists:
	:ignore - Skip these inputs
	:create - Create new records
	{:create, :action_name} - Use specific create action
	:error - Raise an error

on_match - What to do when a matching record is found:
	:ignore - Leave the record as-is
	:update - Update the existing record
	{:update, :action_name} - Use specific update action
	:unrelate - Remove the relationship
	:error - Raise an error

on_missing - What to do with related records not in the input:
	:ignore - Leave them as-is
	:unrelate - Remove the relationship
	:destroy - Delete the records
	{:destroy, :action_name} - Use specific destroy action

Advanced Options
value_is_key - Use a specific field as the key when providing simple values:
Allow using category names instead of IDs
change manage_relationship(:category_names, :categories,
 value_is_key: :name,
 type: :append_and_remove
)
use_identities - Specify which identities to use for lookups:
change manage_relationship(:tags,
 type: :append_and_remove,
 use_identities: [:name, :_primary_key]
)
join_keys - For many-to-many relationships, specify join table parameters:
change manage_relationship(:categories,
 type: :append_and_remove,
 join_keys: [:priority, :added_by]
)
Relationship Type Considerations
belongs_to Relationships
When managing belongs_to relationships, you're typically setting a parent:
create :create_with_parent do
 argument :parent, :map
 change manage_relationship(:parent, type: :create)
end

Or relating to existing parent
update :assign_parent do
 argument :parent_id, :uuid
 change manage_relationship(:parent_id, :parent, type: :append_and_remove)
end
has_one Relationships
For has_one relationships, you manage a single related record:
update :update_profile do
 argument :profile, :map
 change manage_relationship(:profile, type: :direct_control)
end
has_many Relationships
With has_many, you typically manage collections:
update :manage_comments do
 argument :comments, {:array, :map}
 change manage_relationship(:comments, type: :direct_control)
end
many_to_many Relationships
Many-to-many relationships often involve join table management:
update :update_post_tags do
 argument :tags, {:array, :map}

 change manage_relationship(:tags,
 type: :append_and_remove,
 join_keys: [:tagged_at, :tagged_by]
)
end
Advanced Patterns
Multiple manage_relationship Calls
You can call manage_relationship multiple times, and they'll be processed in order:
update :complex_update do
 argument :add_tags, {:array, :string}
 argument :remove_tags, {:array, :string}

 change manage_relationship(:add_tags, :tags,
 type: :append,
 value_is_key: :name,
 meta: [order: 1]
)

 change manage_relationship(:remove_tags, :tags,
 type: :remove,
 value_is_key: :name,
 meta: [order: 2]
)
end
Argument Types and Value Handling
Map and List Inputs
When providing maps or lists of maps, you're providing input for actions on the destination resource:
Maps become action input
argument :comment, :map
change manage_relationship(:comment, :comments, type: :create)

Usage:
%{comment: %{text: "Great post!", rating: 5}}
Simple Value Inputs
You can also provide simple values using value_is_key:
argument :tag_names, {:array, :string}
change manage_relationship(:tag_names, :tags,
 type: :append_and_remove,
 value_is_key: :name,
 on_lookup: :relate,
 on_no_match: :create
)

Usage:
%{tag_names: ["elixir", "phoenix", "ash"]}
Using Existing Records
You can also pass existing record structs directly:
In a custom change
existing_tags = Ash.read!(Tag, actor: actor)
Ash.Changeset.manage_relationship(changeset, :tags, existing_tags, type: :append)
Authorization considerations
When you pass existing record structs directly to manage_relationship, Ash assumes that the actor is already authorized to read those records. This bypasses the normal authorization checks that would occur if you had provided IDs instead.
If you provide ids/maps, Ash will read the records and properly check authorization. Only pass existing record structs when you're certain the actor has appropriate read permissions for those records, or authorization is not relevant.
Integration with Tools
The explicit nature of relationship management options enables rich integrations:
	AshPhoenix.Form - Automatically derives nested form structures
	AshGraphQL - Generates complex input objects for mutations
	AshJsonApi - Creates appropriate API endpoints for relationship management

This works because Ash can determine exactly what actions might be called and what input is needed based on your manage_relationship configuration.
For complete documentation of all available options, see Ash.Changeset.manage_relationship/4.

 Calculations

Calculations in Ash allow for displaying complex values as a top level value of a resource.
Primer
Declaring calculations on a resource
Expression Calculations
The simplest kind of calculation refers to an Ash expression. For example:
calculations do
 calculate :full_name, :string, expr(first_name <> " " <> last_name)
end
See the Expressions guide for more.
Module Calculations
When calculations require more complex code or can't be pushed down into the data layer, a module that uses Ash.Resource.Calculation can be used.
defmodule Concat do
 # An example concatenation calculation, that accepts the delimiter as an argument,
 #and the fields to concatenate as options
 use Ash.Resource.Calculation

 # Optional callback that verifies the passed in options (and optionally transforms them)
 @impl true
 def init(opts) do
 if opts[:keys] && is_list(opts[:keys]) && Enum.all?(opts[:keys], &is_atom/1) do
 {:ok, opts}
 else
 {:error, "Expected a `keys` option for which keys to concat"}
 end
 end

 @impl true
 # A callback to tell Ash what keys must be loaded/selected when running this calculation
 # you can include related data here, but be sure to include the attributes you need from said related data
 # i.e `posts: [:title, :body]`.
 def load(_query, opts, _context) do
 opts[:keys]
 end

 @impl true
 def calculate(records, opts, %{arguments: %{separator: separator}}) do
 Enum.map(records, fn record ->
 Enum.map_join(opts[:keys], separator, fn key ->
 to_string(Map.get(record, key))
 end)
 end)
 end

 # You can implement this callback to make this calculation possible in the data layer
 # *and* in elixir. Ash expressions are already executable in Elixir or in the data layer, but this gives you fine grain control over how it is done
 # See the expressions guide for more.
 # @impl true
 # def expression(opts, context) do
 # expr(your_expression_here)
 # end
end

Usage in a resource
calculations do
 calculate :full_name, :string, {Concat, keys: [:first_name, :last_name]} do
 # You need to use the [allow_empty?: true, trim?: false] constraints here.
 # The separator could be an empty string or require a leading or trailing space,
 # but would be trimmed or even set to `nil` without the constraints shown below.
 argument :separator, :string do
 allow_nil? false
 constraints [allow_empty?: true, trim?: false]
 default ""
 end
 end
end
See the documentation for the calculations section in Resource DSL docs and the Ash.Resource.Calculation docs for more information.
The calculations declared on a resource allow for declaring a set of named calculations that can be used by extensions.
They can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.load/3. Calculations declared on the resource will be keys in the resource's struct.
Custom calculations in the query
Example:
User
|> Ash.Query.calculate(:full_name, {Concat, keys: [:first_name, :last_name]}, :string, %{separator: ","})
See the documentation for Ash.Query.calculate/4 for more information.
Arguments in calculations
Using the above example with arguments, you can load a calculation with arguments like so:
load(full_name: [separator: ","])
If the calculation uses an expression, you can also filter and sort on it like so:
query
|> Ash.Query.filter(full_name(separator: " ") == "Zach Daniel")
|> Ash.Query.sort(full_name: {%{separator: " "}, :asc})
Loading Calculations
When loading calculations, you specify them in the load statement just like relationships and aggregates.
load
Ash.load!(user, [full_name: %{separator: ","}])
=> %User{full_name: "Zach,Daniel"}
Loading with a custom name
Every record in Ash also has a calculations field, where arbitrarily named calculations can live.
See Ash.Query.calculate/4 for more. To do this with load statements, you use the reserved
as key in the calculation arguments.
load
Ash.load!(user, [
 full_name: %{separator: " ", as: :full_name_with_spaces},
 full_name: %{separator: ",", as: :full_name_with_commas}
])
=> %User{calculations: %{full_name_with_spaces: "Zach Daniel", full_name_with_commas: "Zach,Daniel"}}
Loading "through" calculations
If you have calculations that produce records, or loadable types like Ash.Type.Map and Ash.Type.Struct
you can load further things on those records by providing a tuple of calculation input and further load statements.
here is a map type that contains a user and a status
defmodule MyApp.Types.UserAndStatus do
 use Ash.Type.NewType, subtype_of: :map, constraints: [
 fields: [
 user: [
 type: :struct,
 instance_of: MyApp.User
],
 status: [
 type: :atom,
 constraints: [one_of: [:active, :inactive]]
]
]
]
end

on our organization resource, we might have a calculation that returns a user and their status
calculate :user_statuses, {:array, MyApp.Types.UserAndStatus}, GetUsersAndTheirStatuses
You could then load this calculation like so:
Ash.load!(organization, :user_statuses)
=> [%{user: %User{}, status: :active}, %{user: %User{}, status: :inactive}]
But what if you wanted additional fields from the calculated user? To do this, we provide
a tuple of additional loads alongside their arguments. Maps support loading "through"
fields by using the configured fields in the map and providing further loads.
{arguments, additional_load_statement}
Ash.load!(organization, user_statuses: {%{}, [user: [full_name: %{separator: " "}]]}),
=> [%{user: %User{full_name: "Zach Daniel"}, status: :active}, %{user: %User{full_name: "Tobey Maguire"}, status: :inactive}]

 Aggregates

Aggregates in Ash allow for retrieving summary information over groups of related data. A simple example might be to show the "count of published posts for a user". Aggregates allow us quick and performant access to this data, in a way that supports being filtered/sorted on automatically. More aggregate types can be added, but you will be restricted to only the supported types. In cases where aggregates don't suffice, use Calculations, which are intended to be much more flexible.
Declaring aggregates on a resource
Aggregates are defined in an aggregates section. For all possible types, see below.
For a full reference, see d:Ash.Resource.Dsl.aggregates.
aggregates do
 count :count_of_posts, :posts do
 filter expr(published == true)
 end
end
Using an aggregate
Aggregates are loaded and filtered on in the same way that calculations are. Lets look at some examples:
Loading aggregates in a query or on records
User
|> Ash.Query.load(:count_of_posts)
|> Map.get(:count_of_posts)
=> 10

users
|> Ash.load!(:count_of_posts)
|> Enum.map(&(&1.count_of_posts))
=> [3, 5, 2]
Filtering on aggregates
require Ash.Query

User
|> Ash.Query.filter(count_of_posts > 10)
|> Ash.read!()
Sorting aggregates
User
|> Ash.Query.sort(count_of_posts: :asc)
|> Ash.read!()
Aggregate types
	count - counts related items meeting the criteria.
	exists - checks if any related items meet the criteria.
	first - gets the first related value matching the criteria. Must specify the field.
	sum - sums the related items meeting the criteria. Must specify the field.
	list - lists the related values. Must specify the field.
	max - gets the maximum related value. Must specify the field.
	min - gets the minimum related value. Must specify the field.
	avg - gets the average related value. Must specify the field.
	custom - allows for a custom aggregate. Implementation depends on the data layer. Must provide an implementation.

The declared set of named aggregates can be used by extensions and referred to throughout your application As an escape hatch, they can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.load/3. Aggregates declared on the resource will be keys in the resource's struct.
See the docs on d:Ash.Resource.Dsl.aggregates for more information.
Custom aggregates in the query
Custom aggregates can be added to the query and will be placed in the aggregates key of the results. This is an escape hatch, and is not the primary way that you should be using aggregates. It does, however, allow for dynamism, i.e if you are accepting user input that determines what the filter and/or field should be, that kind of thing.
Example:
User
|> Ash.Query.aggregate(
 :count_of_posts,
 :count,
 :posts,
 query: [
 filter: [published: published?]
]
)
See the documentation for Ash.Query.aggregate/4 for more information.
Join Filters
Join filters allows for more complex aggregate queries, including joining with predicates based on multiple related values.
Example
 aggregates do
 sum :saved_money, [:redeems, :deal], :amount do
 # where any redeem of the deal is redeemed
 filter expr(redeems.redeemed == true)

 # where the `redeems` are `redeemed`
 join_filter :redeems, expr(redeemed == true)

 # where the `redeems.deal.active` == `redeems.require_active`
 join_filter [:redeems, :deal], expr(active == parent(require_active))
 end
 end
Inline Aggregates
Aggregates can be created in-line in expressions, with their relationship path specified and any options provided that match the options given to Ash.Query.Aggregate.new/4. For example:
calculate :grade, :decimal, expr(
 count(answers, query: [filter: expr(correct == true)]) /
 count(answers, query: [filter: expr(correct == false)])
)
See the Expressions guide for more.

 Validations

Validations are similar to changes, except they cannot modify the changeset. They can only continue, or add an error.
Builtin Validations
There are a number of builtin validations that can be used, and are automatically imported into your resources. See Ash.Resource.Validation.Builtins for more.
Some examples of usage of builtin validations
validate match(:email, "@")

validate compare(:age, greater_than_or_equal_to: 18) do
 message "must be over 18 to sign up"
end

validate present(:last_name) do
 where [present(:first_name), present(:middle_name)]
 message "must also be supplied if setting first name and middle_name"
end
Custom Validations
defmodule MyApp.Validations.IsPrime do
 # transform and validate opts

 use Ash.Resource.Validation

 @impl true
 def init(opts) do
 if is_atom(opts[:attribute]) do
 {:ok, opts}
 else
 {:error, "attribute must be an atom!"}
 end
 end

 @impl true
 def validate(changeset, opts, _context) do
 value = Ash.Changeset.get_attribute(changeset, opts[:attribute])
 # this is a function I made up for example
 if is_nil(value) || Math.is_prime?(value) do
 :ok
 else
 # The returned error will be passed into `Ash.Error.to_ash_error/3`
 {:error, field: opts[:attribute], message: "must be prime"}
 end
 end
end
This could then be used in a resource via:
validate {MyApp.Validations.IsPrime, attribute: :foo}
Anonymous Function Validations
You can also use anonymous functions for validations. Keep in mind, these cannot be made atomic. This is great for prototyping, but we generally recommend using a module, both for organizational purposes, and to allow adding atomic behavior.
validate fn changeset, _context ->
 # put your code here
end
Where
The where can be used to perform validations conditionally.
The value of the where option can either be a validation or a list of validations. All of the where-validations must first pass for the main validation to be applied. For expressing complex conditionals, passing a list of built-in validations to where can serve as an alternative to writing a custom validation module.
Examples
validate present(:other_number), where: absent(:that_number)
validate present(:other_number) do
 where {MyApp.Validations.IsPrime, attribute: :foo}
end
validate present(:other_number),
 where: [
 numericality(:large_number, greater_than: 100),
 one_of(:magic_number, [7, 13, 123])
]
Action vs Global Validations
You can place a validation in any create, update, or destroy action. For example:
actions do
 create :create do
 validate compare(:age, greater_than_or_equal_to: 18)
 end
end
Or you can use the global validations block to validate on all actions of a given type. Where statements can be used in either. Note the warning about running on destroy actions below.
validations do
 validate present([:foo, :bar], at_least: 1) do
 on [:create, :update]
 where present(:baz)
 end
end
The validations section allows you to add validations across multiple actions of a changeset
Running on destroy actions
By default, validations in the global validations block will run on create and update only. Many validations don't make sense in the context of destroys. To make them run on destroy, use on: [:create, :update, :destroy]
Examples
validations do
 validate present([:foo, :bar]), on: :update
 validate present([:foo, :bar, :baz], at_least: 2), on: :create
 validate present([:foo, :bar, :baz], at_least: 2), where: [action_is([:action1, :action2])]
 validate absent([:foo, :bar, :baz], exactly: 1), on: [:update, :destroy]
 validate {MyCustomValidation, [foo: :bar]}, on: :create
end
Atomic Validations
To make a validation atomic, you have to implement the Ash.Resource.Validation.atomic/3 callback. This callback returns an atomic instruction, or a list of atomic instructions, or an error/indication that the validation cannot be done atomically. For our IsPrime example above, this would look something like:
defmodule MyApp.Validations.IsPrime do
 # transform and validate opts

 use Ash.Resource.Validation

 ...

 def atomic(changeset, opts, context) do
 # lets ignore that there is no easy/built-in way to check prime numbers in postgres
 {:atomic,
 # the list of attributes that are involved in the validation
 [opts[:attribute]],
 # the condition that should cause the error
 # here we refer to the new value or the current value
 expr(not(fragment("is_prime(?)", ^atomic_ref(opts[:attribute])))),
 # the error expression
 expr(
 error(^InvalidAttribute, %{
 field: ^opts[:attribute],
 # the value that caused the error
 value: ^atomic_ref(opts[:attribute]),
 # the message to display
 message: ^(context.message || "%{field} must be prime"),
 vars: %{field: ^opts[:attribute]}
 })
)
 }
 end
end
In some cases, validations operate on arguments only and therefore have no need of atomic behavior. for this, you can call validate/3 directly from atomic/3. The builtin Ash.Resource.Validation.Builtins.argument_equals/2 validation does this, for example.
@impl true
def atomic(changeset, opts, context) do
 validate(changeset, opts, context)
end

 Changes

Changes are the primary way of customizing create/update/destroy action behavior. If you are familiar with Plug, you can think of an Ash.Resource.Change as the equivalent of a Plug for changesets. At its most basic, a change will take a changeset and return a new changeset. Changes can be simple, like setting or modifying an attribute value, or more complex, attaching hooks to be executed within the lifecycle of the action.
Builtin Changes
There are a number of builtin changes that can be used, and are automatically imported into your resources. See Ash.Resource.Change.Builtins for more.
Some examples of usage of builtin changes
set the `owner` to the current actor
change relate_actor(:owner)

set `commited_at` to the current timestamp when the action is called
change set_attribute(:committed_at, &DateTime.utc_now/0)

optimistic lock using the `version` attribute
change optimistic_lock(:version)
Custom Changes
defmodule MyApp.Changes.Slugify do

 use Ash.Resource.Change

 # transform and validate opts
 @impl true
 def init(opts) do
 if is_atom(opts[:attribute]) do
 {:ok, opts}
 else
 {:error, "attribute must be an atom!"}
 end
 end

 @impl true
 def change(changeset, opts, _context) do
 case Ash.Changeset.fetch_change(changeset, opts[:attribute]) do
 {:ok, new_value} ->
 slug = String.replace(new_value, ~r/\s+/, "-")
 Ash.Changeset.force_change_attribute(changeset, opts[:attribute], slug)
 :error ->
 changeset
 end
 end
end
This could then be used in a resource via:
change {MyApp.Changes.Slugify, attribute: :foo}
Anonymous Function Changes
You can also use anonymous functions for changes. Keep in mind, these cannot be made atomic, or support batching. This is great for prototyping, but we generally recommend using a module, both for organizational purposes, and to allow adding atomic/batch behavior.
change fn changeset, _context ->
 # put your code here
end
Where
The where can be used to perform changes conditionally. This functions by running the validations in the where, and if the validation returns an error, we discard the error and skip the operation. This means that even custom validations can be used in conditions.
For example:
change {Slugify, attribute: :foo} do
 where [attribute_equals(:slugify, true)]
end
Action vs Global Changes
You can place a change on any create, update, or destroy action. For example:
actions do
 create :create do
 change {Slugify, attribute: :name}
 end
end
Or you can use the global changes block to apply to all actions of a given type. Where statements can be used in both cases. Use on to determine the types of actions the validation runs on. By default, it only runs on create and update actions.
changes do
 change {Slugify, attribute: :name} do
 on [:create]
 end
end
The changes section allows you to add changes across multiple actions of a resource.
Running on destroy actions
By default, changes in the global changes block will run on create and update only. Many changes don't make sense in the context of destroys. To make them run on destroy, use on: [:create, :update, :destroy]
Examples
changes do
 change relate_actor(:owner)
 change set_attribute(:committed_at, &DateTime.utc_now/0)
 change optimistic_lock(:version), on: [:create, :update, :destroy]
 change {Slugify, [attribute: :foo]}, on: :create
end
Atomic Changes
To make a change atomic, you have to implement the Ash.Resource.Change.atomic/3 callback. This callback returns a map of changes to attributes that should be changed atomically. We will also honor any Ash.Resource.Change.after_batch/3 functionality to run code after atomic changes have been applied (only if atomic/3 callback has also been defined). Note that Ash.Resource.Change.before_batch/3 is not supported in this scenario and will be ignored.
defmodule MyApp.Changes.Slugify do
 # transform and validate opts

 use Ash.Resource.Change

 ...

 def atomic(changeset, opts, context) do
 {:atomic, %{
 opts[:attribute] => expr(
 fragment("regexp_replace(?, ?, ?)", ^ref(opts[:attribute]), ~r/\s+/, "-")
)
 }}
 end
end
In some cases, changes operate only on arguments or context, or otherwise can do their work regardless of atomicity. In these cases, you can make your atomic callback call the change/3 function
@impl true
def atomic(changeset, opts, context) do
 {:ok, change(changeset, opts, context)}
end
In other cases, a change may not be necessary in a fully atomic action. For this, you can simply return :ok
@impl true
def atomic(_changeset, _opts, _context) do
 :ok
end
Batches
Changes can support being run on batches of changesets, using the Ash.Resource.Change.batch_change/3, Ash.Resource.Change.before_batch/3, and Ash.Resource.Change.after_batch/3 callbacks.
When do we use batch callbacks?
Ash.Resource.Change.batch_change/3 must be defined for Ash.Resource.Change.before_batch/3 and Ash.Resource.Change.after_batch/3 to be called!
The one exception is that after_batch/3 is called after atomic changes as well as batches, so it will be called in cases that atomic/3 is defined. before_batch/3 is ignored when calling changes atomically.
For some changes, this may not be necessary at all, i.e the Slugify example has no benefit from batching. If no batch callbacks are added, your change will be run on a loop over the changesets. For the sake of example, however, we will show what it might look like to implement batching for our Slugify example.
defmodule MyApp.Changes.Slugify do
 # transform and validate opts

 use Ash.Resource.Change

 @impl true
 def init(opts) do
 if is_atom(opts[:attribute]) do
 {:ok, opts}
 else
 {:error, "attribute must be an atom!"}
 end
 end

 @impl true
 def batch_change(changeset, opts, context) do
 # here we could run queries or do common work required
 # for a given batch of changesets.
 # in this example, however, we just return the changesets with
 # the change logic applied.
 Enum.map(changesets, &change(&1, opts, context))
 end
end

 Preparations

Preparations are the primary way of customizing read action behavior. If you are familiar with Plug, you can think of an Ash.Resource.Preparation as the equivalent of a Plug for queries. At its most basic, a preparation will take a query and return a new query. Queries can be simple, like adding a filter or a sort, or more complex, attaching hooks to be executed within the lifecycle of the action.
Builtin Preparations
There are builtin preparations that can be used, and are automatically imported into your resources. See Ash.Resource.Preparation.Builtins for more.
The primary preparation you will use is build/1, which passes the arguments through to Ash.Query.build/2 when the preparation is run. See that function for what options can be provided.
Some examples of usage of builtin preparations
sort by inserted at descending
prepare build(sort: [inserted_at: :desc])

only show the top 5 results
prepare build(sort: [total_points: :desc], limit: 5)
Custom Preparations
defmodule MyApp.Preparations.Top5 do
 use Ash.Resource.Preparation

 # transform and validate opts
 @impl true
 def init(opts) do
 if is_atom(opts[:attribute]) do
 {:ok, opts}
 else
 {:error, "attribute must be an atom!"}
 end
 end

 @impl true
 def prepare(query, opts, _context) do
 attribute = opts[:attribute]

 query
 |> Ash.Query.sort([{attribute, :desc}])
 |> Ash.Query.limit(5)
 end
end
This could then be used in a resource via:
prepare {MyApp.Preparations.Top5, attribute: :foo}
Anonymous Function Queries
You can also use anonymous functions for preparations. This is great for prototyping, but we generally recommend using a module for organizational purposes.
prepare fn query, _context ->
 # put your code here
end
Action vs Global Preparations
You can place a preparation on a read action, like so:
actions do
 read :read do
 prepare {Top5, attribute: :name}
 end
end
Or you can use the global preparations block to apply to all read actions.
preparations do
 prepare {Top5, attribute: :name}
end
The preparations section allows you to add preparations across multiple actions of a resource.

 Code Interface

One of the ways that we interact with our resources is via hand-written code. The general pattern for that looks like building a query or a changeset for a given action, and calling it via functions like Ash.read/2 and Ash.create/2. This, however, is just one way to use Ash, and is designed to help you build tools that work with resources, and to power things like AshPhoenix.Form, AshGraphql.Resource and AshJsonApi.Resource. When working with your resources in code, we generally want something more idiomatic and simple. For example, on a domain called Helpdesk.Support.
resources do
 resource Ticket do
 define :open_ticket, args: [:subject], action: :open
 end
end
This simple setup now allows you to open a ticket with Helpdesk.Support.open_ticket(subject). You can cause it to raise errors instead of return them with Helpdesk.Support.open_ticket!(subject). For information on the options and additional inputs these defined functions take, look at the generated function documentation, which you can do in iex with h Helpdesk.Support.open_ticket. For more information on the code interface, read the DSL documentation: d:Ash.Domain.Dsl.resources.resource.define.
Code interfaces on the resource
You can define a code interface on individual resources as well, using the code_interface block. The DSL is the same as the DSL for defining it in the domain. For example:
code_interface do
 # the action open can be omitted because it matches the function name
 define :open, args: [:subject]
end
These will then be called on the resource itself, i.e Helpdesk.Support.Ticket.open(subject).
Using the code interface
If the action is an update or destroy, it will take a record or a changeset as its first argument.
If the action is a read action, it will take a starting query as an opt in the last argument.
All functions will have an optional last argument that accepts options. See Ash.Resource.Interface for valid options.
For reads:
	:query - a query to start the action with, can be used to filter/sort the results of the action. This can be a keyword list of any of the options that Ash.Query.build/3 supports.

For creates:
	:changeset - a changeset to start the action with

They will also have an optional second to last argument that is a freeform map to provide action input. It must be a map.
If it is a keyword list, it will be assumed that it is actually options (for convenience).
This allows for the following behaviour:
Because the 3rd argument is a keyword list, we use it as options
Accounts.register_user(username, password, [tenant: "organization_22"])
Because the 3rd argument is a map, we use it as action input
Accounts.register_user(username, password, %{key: "val"})
When all arguments are provided it is unambiguous
Accounts.register_user(username, password, %{key: "val"}, [tenant: "organization_22"])
For a full list of options, see the functions in Ash.Resource.Interface, or use iex help on your generated
functions, i.e
iex> h Accounts.register_user/3
get_by functions
A common pattern in Ash applications is the "get by" function for retrieving individual records. This pattern provides a clean alternative to using Ash.get!/2 directly in your web modules.
Avoid this pattern:
In a LiveView or Controller - DON'T DO THIS
group =
 MyApp.Ash.Dashboards.DashboardGroup
 |> Ash.get!(group_id)
 |> Ash.load!(students: [:user])
This is similar to using Repo.get/2 and Repo.preload/2 directly outside of context modules, which is generally considered a bad practice.
Use this pattern instead:
In your domain
resource DashboardGroup do
 define :get_by_id, action: :read, get_by: [:id]
end

In your LiveView or Controller
group = MyApp.Dashboards.get_dashboard_group_by_id!(group_id)
The get_by option automatically creates a function that:
	Uses the primary read action with an applied filter
	Supports dynamic loading and filtering through the standard options
	Provides both raising (!) and non-raising versions

Dynamic loading and filtering:
Code interfaces automatically support loading and filtering options:
Load relationships
MyApp.Dashboards.get_dashboard_group_by_id!(id, load: [students: [:user]])

Apply additional filters
MyApp.Dashboards.get_dashboard_group_by_id!(id, query: [filter: [status: :active]])

Combine both
MyApp.Dashboards.get_dashboard_group_by_id!(id,
 load: [students: [:user]],
 query: [filter: [status: :active]]
)
The query option accepts either an Ash.Query struct or a keyword list that gets passed to Ash.Query.build/2.
When to use actions vs code interfaces:
	Actions define what operations are possible on your resource
	Code interfaces provide function-based access to those actions
	Actions don't require code interfaces and can be used by extensions like AshJsonApi
	Code interfaces make actions callable as functions (e.g., DashboardGroup.get_by_id/1)

This pattern encourages proper separation of concerns by keeping domain logic in your resources and providing clean interfaces for your web layer.
Calculations
Resource calculations can be run dynamically using Ash.calculate/3, but
you can also expose them using the code_interface with define_calculation.
For example:
calculations do
 calculate :full_name, :string, expr(first_name <> ^arg(:separator) <> last_name) do
 argument :separator, :string do
 allow_nil? false
 default " "
 end
 end
end

in your domain
resource User do
 define_calculation :full_name, args: [:first_name, :last_name, {:optional, :separator}]
 # or if you want to take a record as an argument
 define_calculation :full_name, args: [:_record]
end
This could now be used like so:
Accounts.full_name("Jessie", "James", "-")
or with a record as an argument
Accounts.full_name(user)
This allows for running calculations without an instance of a resource, normally done via Ash.load(user, :full_name)
By default, configured args will be provided for any matching named reference or argument. This is normally fine, but in the case that you have an argument and a reference with the same name, you can specify it by supplying {:arg, :name} and {:ref, :name}. For example:
define_calculation :id_matches, args: [{:arg, :id}, {:ref, :id}]
To make arguments optional, wrap them in {:optional, ..}, for example:
define_calculation :id_matches, args: [{:arg, :id}, {:optional, {:ref, :id}}]
Bulk & atomic actions
Bulk Updates & Destroys
Updates support a list, stream, or query as the first argument. This allows for bulk updates. In this mode, an %Ash.BulkResult{} is returned.
Valid inputs
You cannot provide "any enumerable", only lists, streams (a function or a %Stream{}), and queries. We have to be able to distinguish the input as a bulk input and not input to the action itself.
For example:
Post
|> Ash.Query.filter(author_id == ^author_id)
|> MyApp.Blog.archive_post!()
=> %Ash.BulkResult{}

[%Post{}, %Post{}]
|> MyApp.Blog.destroy_post!()
=> %Ash.BulkResult{}
end
You can pass options to the bulk operation with the bulk_options option to your code interface function.
Bulk Creates
For bulk creates, you can provide a list or stream of inputs. In this mode also, an %Ash.BulkResult{} is returned.
Valid inputs
You cannot provide "any enumerable", only lists, streams (a function or a %Stream{}). We have to be able to distinguish the input as a bulk input and not input to the action itself.
Any arguments on the code interface will be applied to all inputs given as a list, and the arguments will come first.
[%{title: "Post 1"}, %{title: "Post 2"}, ...]
if `:special` is an action argument, it will be applied to all inputs
|> MyApp.Blog.create_post!(:special, bulk_options: [batch_size: 10])
Returning streams from read actions
The :stream? option allows you to return a stream to be enumerated later.
For example:
MyApp.Blog.my_posts(stream?: true, actor: me)
=> #Stream<...>
Customizing the generated function
Often we want to have a slightly different interface when calling actions with functions,
or we want to maintain backwards compatibility for callers of our code interface while
changing the underlying action implementation.
You can define custom_inputs on your code interfaces to massage arguments from the function
into a shape expected by the action.
For example, lets say we have an action that accepts an artist_id as an argument. We want
it to use artist_id for two reasons: it is the only part of the artist required to perform
the action, and accepting ids is better for an action supporting usage over an API. However,
we want the function itself to accept either an artist or an artist_id.
define :follow_artist do
 action :follow

 # `artist` (from the custom input below) is a positional argument to the function
 args [:artist]

 # make a custom input called `artist`, that is a union type
 custom_input :artist, :union do
 # allow passing either an artist or an artist_id
 constraints types: [
 artist: [type: :struct, constraints: [instance_of: Artist]],
 artist_id: [type: :uuid]
]

 transform do
 # Pass it to the action as `artist_id`
 to :artist_id

 # Extracting the value using this function
 using fn
 %Ash.Union{type: :artist, value: value} ->
 value.id
 %Ash.Union{type: :artist_id, value: value} ->
 value
 end
 end
 end
end
The example above is a bit verbose. In practice we might create a type, called ArtistOrId,
for example, and extract that logic like so:
defmodule MyApp.Types.ArtistOrId do
 use Ash.Type.NewType, subtype_of: :union, constraints: [
 types: [
 artist: [type: :struct, constraints: [instance_of: Artist]],
 artist_id: [type: :uuid]
]
]

 def to_artist_id(%Ash.Union{type: :artist, value: artist}), do: artist.id
 def to_artist_id(%Ash.Union{type: :artist_id, value: artist_id}), do: artist_id
end
And then we can refactor the above example like so:
define :follow_artist do
 action :follow
 args [:artist]

 custom_input :artist, MyApp.Types.ArtistOrId do
 transform do
 to :artist_id
 using &MyApp.Types.ArtistOrId.to_artist_id/1
 end
 end
end
Authorization Functions
For each action defined in a code interface, Ash automatically generates corresponding authorization check functions:
	can_action_name?(actor, params \\ %{}, opts \\ []) - Returns true/false for authorization checks
	can_action_name(actor, params \\ %{}, opts \\ []) - Returns {:ok, true/false} or {:error, reason}

Example usage:
Check if user can create a post
if MyApp.Blog.can_create_post?(current_user) do
 # Show create button
end

Check if user can update a specific post
if MyApp.Blog.can_update_post?(current_user, post) do
 # Show edit button
end

Check if user can destroy a specific comment
if MyApp.Blog.can_destroy_comment?(current_user, comment) do
 # Show delete button
end
These functions are particularly useful for conditional rendering of UI elements based on user permissions.

 Embedded Resources

Embedded resources are stored as maps in attributes of other resources. They are great for storing structured data, and support a whole range of useful features that resources support. For example, you can have calculations, validations, policies and even relationships on embedded resources. Here is an example of a simple embedded resource:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string, public?: true
 attribute :last_name, :string, public?: true
 end
end
Embedded resources can't do everything
Embedded resources cannot have aggregates, or expression calculations that rely on data-layer-specific capabilities.
Adding embedded resource attributes
Embedded resources define an Ash.Type under the hood, meaning you can use them anywhere you would use an Ash type.
defmodule MyApp.User do
 use Ash.Resource, ...

 attributes do
 ...

 attribute :profile, MyApp.Profile, public?: true
 attribute :profiles, {:array, MyApp.Profile}, public?: true # You can also have an array of embeds
 end
end
Handling nil values
By default, all fields on an embedded resource will be included in the data layer, including keys with nil values. To prevent this, add the embed_nil_values? option to use Ash.Resource. For example:
defmodule YourEmbed do
 use Ash.Resource,
 data_layer: :embedded,
 embed_nil_values?: false
end
Editing embedded attributes
If you manually supply instances of the embedded structs, the structs you provide are used with no validation. For example:
Ash.Changeset.for_update(user, :update, %{profile: %MyApp.Profile{first_name: "first_name", last_name: "last_name"}})
However, you can also treat embedded resources like regular resources that can be "created", "updated", and "destroyed".
To do this, provide maps as the input, instead of structs. In the example above, if you just wanted to change the first_name, you'd provide:
Ash.Changeset.for_update(user, :update, %{profile: %{first_name: "first_name"}})
This will call the primary update action on the resource. This allows you to define an action on the embed, and add validations to it. For example, you might have something like this:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string, public?: true
 attribute :last_name, :string, public?: true
 end

 validations do
 validate present([:first_name, :last_name], at_least: 1)
 end
end
Calculations
Calculations can be added to embedded resources. When you use an embedded resource, you declare what calculations to load via a constraint.
For example:
defmodule MyApp.Profile do
 use Ash.Resource,
 data_layer: :embedded # Use the atom `:embedded` as the data layer.

 attributes do
 attribute :first_name, :string, public?: true
 attribute :last_name, :string, public?: true
 end

 calculations do
 calculate :full_name, :string, concat([:first_name, :last_name], " ")
 end
end

defmodule MyApp.User do
 use Ash.Resource,
 ...

 attributes do
 attribute :profile, MyApp.Profile do
 public? true
 constraints [load: [:full_name]]
 end
 end
end
Determining what action(s) will be called:
Remember: default actions are already implemented for a resource, with no need to add them. They are called :create, :update, :destroy, and :read. You can use those without defining them. You only need to define them if you wish to override their configuration.
Single Embeds
	If the current value is nil - a create with the provided values
	If the current value is not nil - an update with the provided values
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds
All values in the original array are destroyed, and all maps in the new array are used to create new records.
Adding a primary key
Adding a primary key to your embedded resources is especially useful when managing lists of data. Specifically, it allows you to consider changes to elements with matching primary key values as updates.
For example:
defmodule MyApp.Tag do
 use Ash.Resource,
 data_layer: :embedded

 attributes do
 uuid_primary_key :id
 attribute :name, :string, public?: true
 attribute :counter, :integer, public?: true
 end

 validations do
 validate {Increasing, field: :counter}, on: :update
 end
end
Now, you can accept input meant to update individual list items. The entire list must still be provided, but any items with a matching id will be considered an update instead of a destroy + create.
Determining what action(s) will be called with a primary key:
Single Embeds with primary keys
	If you provide a struct, instead of a map, the value provided is used as the new relationship value directly.
	If the current value is nil - a create with the provided values
	If the current value is not nil and the primary keys match - an update with the provided values
	If the current value is not nil and the primary keys don't match - a destroy of the original value and a create of the new value
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds with primary keys
	If you provide structs, instead of maps, the value provided is used as the new relationship value directly.
	Any values in the original list with no primary key matching in the new list are destroyed.
	Any values in the new list with no primary key matching in the original list are created.
	Any values with a primary key match in the original list and the new list are updated

Identities
Identities can be added on an embedded resource, which will ensure that for any given list, they are unique on that identity. For example, if you had an embedded resource called Tag, you could add an identity on name to ensure that nothing has duplicate tag names.
Usage in Extensions
The AshJsonApi extension exposes these attributes as maps. However, the AshGraphql extension allows you
to specify a type (but not queries/mutations) for an embedded resource. If you do, instead of being treated as a :json type it will get its own named input object type and field type.
Accessing the source changeset
When building changesets for embedded resources, the source changeset will be available in action changes under changeset.context.__source__.
This allows you to customize the action based on the details of the parent changeset.

 Identities

Identities are a way to declare that a record (an instance of a resource) can be uniquely identified by a set of attributes. This information can be used in various ways throughout the framework. The primary key of the resource does not need to be listed as an identity.
Defining an identity
Identities are defined at the top level of a resource module, eg.
defmodule MyApp.MyResource do
 use Ash.Resource #, ...
 # ...

 identities do
 # If the `email` attribute must be unique across all records
 identity :unique_email, [:email]

 # If the `username` attribute must be unique for every record with a given `site` value
 identity :special_usernames, [:username, :site]

 # If the `user_id` field should hold the errors for the uniqueness violation
 identity :unique_email, [:email], field_names: [:user_id]
 end
end
See d:Ash.Resource.Dsl.identities for the full range of options available when defining identities.
Using Ash.get
This will allow these fields to be passed to Ash.get/3, e.g Ash.get(Resource, %{email: "foo"}).
Using upserts
Create actions support the upsert?: true option, if the data layer supports it. An upsert? involves checking for a conflict on some set of attributes, and translating the behavior to an update in the case one is found. By default, the primary key is used when looking for duplicates, but you can set [upsert?: true, upsert_identity: :identity_name] to tell it to look for conflicts on a specific identity.
Creating unique constraints
Tools like AshPostgres will create unique constraints in the database automatically for each identity. These unique constraints will honor other configuration on your resource, like the base_filter and attribute multitenancy
Eager Checking
Setting eager_check?: true on an identity will allow that identity to be checked when building a create changeset over the resource. This allows for showing quick up-front validations about whether some value is taken, for example. If the resource does not have the domain configured, you can specify the domain to use with eager_check_with: DomainName.
If you are using AshPhoenix.Form, for example, this looks for a conflicting record on each call to Form.validate/2.
For updates, it is only checked if one of the involved fields is being changed.
For creates, The identity is checked unless your are performing an upsert, and the upsert_identity is this identity. Keep in mind that for this to work properly, you will need to pass the upsert?: true, upsert_identity: :identity_name when creating the changeset. The primary? read action is used to search for a record. This will error if you have not configured one.
Pre Checking
pre_check? behaves the same as eager_check?, but it runs just prior to the action being committed. Useful for data layers that don't support transactions/unique constraints, or manual resources with identities. Ash.DataLayer.Ets will require you to set pre_check? since the ETS data layer has no built in support for unique constraints. The domain can be manually specified with pre_check_with: DomainName.

 Notifiers

What are notifiers for?
Notifiers allow you to tap into create, update and destroy actions on a resource. Notifiers are called after
the current transaction is committed, which solves a lot of problems that can happen from performing a certain
kind of side effect in your action code.
A common example of one such issue is using Phoenix PubSub to notify another part of your app (often a LiveView or
phoenix channel) of a change. If you send a message to another process while your transaction is still open, and
that process tries to look up a record you just created, it won't find it yet, because your transaction is still open!
Notifiers are a solution for a certain kind of side effect, what we call "at most once" effects. An example is
sending an event to an analytics system, or our pubsub example above. It is "okay" if the event is fired and some
error in that process prevents it from being sent.
When you really need an event to happen
In these cases you are looking for something other than a notifier. For example, you may want to look into integrating
https://hexdocs.pm/oban into your application, allowing you to commit a "job" in the same transaction as your changes, to be processed later.
Alternatively, you could look into using Reactor, which is designed for writing "sagas" and has first-class support
for Ash via the AshReactor extension.
Including a notifier in a resource
If the notifier is also an extension, include it in the notifiers key:
defmodule MyResource do
 use Ash.Resource,
 notifiers: [ExampleNotifier]
end
Configuring a notifier for a specific action or actions can be a great way to avoid complexity in the implementation of a notifier. It allows you to avoid doing things like pattern matching on the action, and treat it more like a change module, that does its work whenever it is called.
create :create do
 notifiers [ExampleNotifier]
end
When your notifier is not an extension, and you want it to run on all actions, include it this way to avoid unnecessary compile time dependencies:
defmodule MyResource do
 use Ash.Resource,
 simple_notifiers: [ExampleNotifier]
end
Built-in Notifiers
Ash comes with a builtin pub_sub notifier: Ash.Notifier.PubSub. See the module documentation for more.
Creating your own notifier
A notifier is a simple extension that must implement a single callback notify/1. Notifiers do not have to implement an Ash DSL extension, but they may in order to configure how that notifier should behave. See Ash.Notifier.Notification for the currently available fields on a notification.
For more information on creating a DSL extension to configure your notifier, see the docs for Spark.Dsl.Extension.
Notifier performance
Notifiers should not do intensive synchronous work. If any heavy work needs to be done, they should delegate to something else to handle the notification, like sending it to a GenServer or GenStage.
Example notifier
defmodule ExampleNotifier do
 use Ash.Notifier

 def notify(%Ash.Notifier.Notification{resource: resource, action: %{type: :create}, actor: actor}) do
 if actor do
 Logger.info("#{actor.id} created a #{resource}")
 else
 Logger.info("A non-logged in user created a #{resource}")
 end
 end
end
Transactions
Domain calls involving resources who's datalayer supports transactions (like Postgres), notifications are saved up and sent after the transaction is closed. For example, the domain call below ultimately results in many many database calls.
Post
|> Ash.Changeset.for_update(:update, %{})
|> Ash.Changeset.manage_relationship(:related_posts, [1, 2, 3], type: :append)
|> Ash.Changeset.manage_relationship(:related_posts, [4, 5], type: :remove)
|> Ash.Changeset.manage_relationship(:comments, [10], type: :append)
|> Ash.update!()
Ash.Changeset.manage_relationship doesn't leverage bulk operations yet, so it performs the following operations:
	a read of the currently related posts
	a read of the currently related comments
	a creation of a post_link to relate to 1
	a creation of a post_link to relate to 2
	a creation of a post_link to relate to 3
	a destruction of the post_link related to 4
	a destruction of the post_link related to 5
	an update to comment 10, to set its post_id to this post

If all three of these resources have notifiers configured, we need to send a notification for each operation (notifications are not sent for reads). For data consistency reasons, if a data layer supports transactions, all writes are done in a transaction. However, if you try to read the record from the database that you have just received a notification about before the transaction has been closed, in a different process, the information will be wrong. For this reason, Ash accumulates notifications until they can be sent.
If you need to perform multiple operations against your resources in your own transaction, you will have to handle that case yourself. To support this, Ash.create/2, Ash.update/2 and Ash.destroy/2 support a return_notifications?: true option. This causes the domain call to return {:ok, result, notifications} in the successful case. Here is an example of how you might use it.
result =
 Ash.DataLayer.transaction(resource, fn ->
 {:ok, something, notifications1} = create_something()
 {:ok, result, notifications2} = create_another_thing(something)
 {:ok, notifications3} = destroy_something(something)

 {result, Enum.concat([notifications1, notifications2, notifications3])}
 end)

case result do
 {:ok, value, notifications} ->
 Ash.Notifier.notify(notifications)

 value
 {:error, error} ->
 handle_error(error)
end

 Actions

In Ash, actions are the primary way to interact with your resources. There are five types of actions:
	Read
	Create
	Update
	Destroy
	Generic

All actions can be run in a transaction. Create, update and destroy actions are run in a transaction by default, whereas read and generic actions require opting in with transaction? true in the action definition. Each action has its own set of options, ways of calling it, and ways of customizing it. See the relevant guide for specifics on each action type. This topic focuses on idiomatic ways to use actions, and concepts that cross all action types.
Primary Actions
Primary actions are a way to inform the framework which actions should be used in certain "automated" circumstances, or in cases where an action has not been specified. If a primary action is attempted to be used but does not exist, you will get an error about it at runtime.
The place you typically need primary actions is when Managing Relationships. When using the defaults option to add default actions, they are marked as primary.
A simple example where a primary action would be used:
No action is specified, so we look for a primary read.
Ash.get!(Resource, "8ba0ab56-c6e3-4ab0-9c9c-df70e9945281")
To mark an action as primary, add the option, i.e
read :action_name do
 primary? true
end
Accepting Inputs
Create and Update actions can accept attributes as input. There are two primary ways that you annotate this.
Using accept in specific actions
Each action can define what it accepts, for example:
create :create do
 accept [:name, :description]
end
You could then pass in %{name: "a name", description: "a description"} to this action.
Using default_accept for all actions
The resource can have a default_accept, declared in its actions block, which will be used as the accept list for create and update actions, if they don't define one.
actions do
 default_accept [:name, :description]

 create :create
 update :update

 update :special_update do
 accept [:something_else]
 end
end
In the example above, you can provide %{name: "a name", description: "a description"} to both the :create and :update actions, but only %{something_else: "some_value"} to :special_update.
Using module attributes for action specific accept lists
You can also use module attributes to define the accept list. This is useful if you have a lot of attributes and different variations for different actions.
@accepts_special_update [:name, :description, :foo, :bar, :baz]

@accepts_super_special_update @accepts_special_update ++ [:something_else, :another_thing]

actions do
 default_accept [:name, :description]

 create :create
 update :update

 update :special_update do
 accept @accepts_special_update
 end
end
This is extremely simple example
Context
There are two kinds of contexts in Ash:
	the context given to a changeset/action call, stored in changeset.context,
	the context given to a callback function like Ash.Resource.Change.change/3, which contains
the above context in it's source_context key, as well as additional information specific to the callback,
and/or commonly needed keys for callbacks (actor, tenant, etc.).

Actions accept a free-form map of context, which can be used for whatever you like. Whenever context is set, it is deep merged. I.e if you do changeset |> Ash.Changeset.set_context(%{a: %{b: 1}}) |> Ash.Changeset.set_context(%{a: %{c: 2}}), the resulting context will be %{a: %{b: 1, c: 2}}. Structs are not merged.
There are some special keys in context to note:
:private
The :private key is reserved for use by Ash itself. You shouldn't read from or write to it.
:shared
The :shared key will be passed to all nested actions built by Ash, and should be passed by you to any actions you call within changes/preparations etc. Whenever :shared context
is set, it is also written to the outer context. For example set_context(%{shared: %{locale: "en"}}) is equivalent to set_context(%{shared: %{locale: "en"}, locale: "en"})
This will generally happen automatically if you use one of the two abstractions provided by Ash for threading options through to nested action calls.
Careful with shared
Shared context is passed to all nested actions, so don't pass massive values around, and also don't set context
:query_for
This is set on queries when they are being run for a "special" purpose. The values this can take are:
	none, if a read action is being run, then no value is set for this context
	:bulk_update, if the query is being built to power a bulk update action
	:bulk_destroy, if the query is being built to power a bulk destroy action
	:load, if the query is being built to power an Ash.load call

You can use this to adjust the behavior of your query preparations as needed.
:bulk_create, :bulk_update, :bulk_destroy
This is set on changesets when they are being run in bulk. The value will be a map with the following keys (more may be added in the future):
:index -> The index of the changeset in the bulk operation.
Ash.Scope.ToOpts
Ash.Scope.ToOpts is newer and is the recommended way to do this. In action callbacks in Ash, you will be provided with a context, which can be passed down as a scope option when running nested actions or building nested changesets/queries. For example:
def change(changeset, opts, context) do
 Ash.Changeset.after_action(changeset, fn changeset, result ->
 # automatically passes the `shared` context to the nested action
 MyApp.MyDomain.create_something_else(..., scope: context, other: :options)
 end)
end
To get the opts for a given scope, you can use Ash.Scope.to_opts(scope), but this is typically not
necessary.
Ash.Context.to_opts/2
Ash.Context.to_opts/2 is a helper function that converts a context map into a list of options that can be passed to nested actions. It automatically passes the shared context to the nested action as well.
def change(changeset, opts, context) do
 Ash.Changeset.after_action(changeset, fn changeset, result ->
 # automatically passes the `shared` context to the nested action
 MyApp.MyDomain.create_something_else(..., Ash.Context.to_opts(context, other: :options))
 end)
end
Idiomatic Actions
Name Your Actions
The intent behind Ash is not to have you building simple CRUD style applications. In a typical set up you may have a resource with four basic actions, there is even a shorthand to accomplish this:
actions do
 defaults [:read, :destroy, create: :*, update: :*]
end
But that is just a simple way to get started, or to create resources that really don't do anything beyond those four operations. You can have as many actions as you want. The best designed Ash applications will have numerous actions, named after the intent behind how they are used. They won't have all reads going through a single read action, and the same goes for the other action types. The richer the actions on the resource, the better interface you can have. With that said, many resources may only have those four basic actions, especially those that are "managed" through some parent resource. See the guide on Managing Relationships for more.
Put everything inside the action
Ash provides utilities to modify queries and changesets outside of the actions on the resources. This is a very important tool in our tool belt, but it is very easy to abuse. The intent is that as much behavior as possible is put into the action. Here is the "wrong way" to do it. There is a lot going on here, so don't hesitate to check out other relevant guides if you see something you don't understand.
def top_tickets(user_id) do
 Ticket
 |> Ash.Query.for_read(:read)
 |> Ash.Query.filter(priority in [:medium, :high])
 |> Ash.Query.filter(representative_id == ^user_id)
 |> Ash.Query.filter(status == :open)
 |> Ash.Query.sort(opened_at: :desc)
 |> Ash.Query.limit(10)
 |> Helpdesk.Support.read!()
end

in the resource

actions do
 defaults [:read, ...]
end
And here is the "right way", where the rules about getting the top tickets have been moved into the resource as a nicely named action, and included in the code_interface of that resource. The reality of the situation is that top_tickets/1 is meant to be obsoleted by your Ash resource! Here is how it should be done.
in the resource

code_interface do
 define :top, args: [:user_id]
end

actions do
 read :top do
 argument :user_id, :uuid do
 allow_nil? false
 end

 prepare build(limit: 10, sort: [opened_at: :desc])

 filter expr(priority in [:medium, :high] and representative_id == ^arg(:user_id) and status == :open)
 end
end
Now, whatever code I had that would have called top_tickets/1 can now call Helpdesk.Support.Ticket.top(user.id). By doing it this way, you get the primary benefit of getting a nice simple interface to call into, but you also have a way to modify how the action is invoked in any way necessary, by going back to the old way of building the query manually. For example, if I also only want to see top tickets that were opened in the last 10 minutes:
Ticket
|> Ash.Query.for_read(:top, %{user_id: user.id})
|> Ash.Query.filter(opened_at > ago(10, :minute))
|> Helpdesk.Support.read!()
That is the best of both worlds! These same lessons transfer to changeset based actions as well.
Private Inputs
The concept of a "private input" can be somewhat paradoxical, but it can be used by actions that require something provided by the "system",
as well as something provided by the caller. For example, you may want an ip_address input that can't be set by the user. For this,
you have two options.
Private Options
create :create do
 argument :ip_address, :string, allow_nil?: false, public?: false

 ...
end
Ash.Changeset.for_create(Resource, :create, %{}, private_arguments: %{ip_address: "<ip_address>"})
Context
You can also provide things to the action via context. Context is a map that is a free form map provided to the action.
Context is occasionally used by callers to provide additional information that the action may or may not use.
Context is deep merged with any existing context, and also contains a private key that is reserved for use by Ash internals.
You should not remove or manipulate the private context key in any way.
create :create do
 ...
 change fn changeset, _ ->
 changeset.context # %{ip_address: "<ip_address>"}
 end
end
Ash.Changeset.for_create(Resource, :create, %{}, context: %{ip_address: "<ip_address>"})
Action Lifecycle
This section provides a comprehensive overview of the Ash resource action lifecycle, detailing when each phase executes in relation to database transactions.
Overview
Ash resource actions follow a well-defined lifecycle that ensures proper data validation, transformation, and persistence. The lifecycle is divided into three main phases:
	Pre-Transaction Phase - Operations before database transaction
	Transaction Phase - Operations within database transaction
	Post-Transaction Phase - Operations after database transaction

Important Notes:
	Query Actions: Read queries do not currently have before_transaction, after_transaction, or around_transaction callbacks
	Around Action Behavior: around_action hooks do not complete their "end" phase if the action fails
	Generic Actions: Generic actions are left out because they currently do not support hooks of any kind, or preparations/changes/validations.

Complete Lifecycle Flow
graph TD
 subgraph "Pre-Transaction Phase"
 START["Action Invocation
(Ash.create, Ash.read, etc.)"] --> PREP["Changeset/Query Creation"]
 PREP --> AROUND_START["around_transaction (start)
🚫 Not available for read/query actions"]
 AROUND_START --> BEFORE_TRANS["before_transaction
🚫 Not available for read/query actions"]
 end

 subgraph "Transaction Phase"
 TRANS_START["🔒 Transaction Begins"] --> ACTION_PREP["Action Preparations/Validations/Changes
(In order of definition)"]
 ACTION_PREP --> GLOBAL_PREP["Global Preparations/Validations/Changes
(Resource-level, in order of definition)"]
 GLOBAL_PREP --> AROUND_ACTION_START["around_action (start)"]
 AROUND_ACTION_START --> BEFORE_ACTION["before_action"]
 BEFORE_ACTION --> DATA_LAYER["💾 Data Layer Operation
(Database interaction)"]
 DATA_LAYER --> SUCCESS{"Success?"}
 SUCCESS -->|Yes| AFTER_ACTION["after_action
(Success only)"]
 SUCCESS -->|No| ERROR_HANDLE["Error Handling"]
 AFTER_ACTION --> AROUND_ACTION_END["around_action (end)
✅ Only on success"]
 ERROR_HANDLE --> TRANS_ROLLBACK["🔓 Transaction Rollback"]
 AROUND_ACTION_END --> TRANS_COMMIT["🔓 Transaction Commit"]
 end

 subgraph "Post-Transaction Phase"
 AFTER_TRANS["after_transaction
(Always runs - success/error)
🚫 Not available for read/query actions"] --> AROUND_END["around_transaction (end)
🚫 Not available for read/query actions"]
 AROUND_END --> NOTIFICATIONS["Notifications
(If enabled)"]
 NOTIFICATIONS --> RESULT["Return Result"]
 end

 %% Flow connections
 BEFORE_TRANS --> TRANS_START
 TRANS_COMMIT --> AFTER_TRANS
 TRANS_ROLLBACK --> AFTER_TRANS
Detailed Phase Breakdown
Pre-Transaction Phase (Outside Database Transaction)
1. Action Invocation
	Entry point: Ash.create/2, Ash.update/2, Ash.read/2, Ash.destroy/2
	Initial setup and parameter validation

2. Changeset/Query Creation
	Creates appropriate changeset or query structure
	Applies initial transformations and validations

3. around_transaction (Start)
	When: Before transaction begins
	Purpose: Wrap entire transaction with setup/cleanup logic
	Use Cases:	External service setup
	Resource allocation
	Logging/monitoring setup

	Transaction Context: Outside transaction
	Note: Not available for query/read actions

4. before_transaction
	When: Just before transaction starts
	Purpose: Operations that must happen before database transaction
	Use Cases:	External API calls
	File system operations
	Cache warming
	Non-transactional preparations

	Transaction Context: Outside transaction
	Note: Not available for query/read actions

Transaction Phase (Inside Database Transaction)
5. Transaction Begins 🔒
	Database transaction is initiated
	All subsequent operations until commit/rollback are atomic

6. Action Preparations/Validations/Changes
	When: First operations inside transaction
	Purpose: Execute action-specific preparations, validations, and changes
	Order: Run in the order they are defined in the action (not grouped by type)
	Operations:	Action-level preparations (query modifications, filters, sorts)
	Action-level validations (business rules, constraints)
	Action-level changes (data transformations, attribute modifications)

	Transaction Context: Inside transaction

7. Global Preparations/Validations/Changes
	When: After action-level operations, before action hooks
	Purpose: Execute resource-level preparations, validations, and changes
	Order: Run in the order they are defined at the resource level (not grouped by type)
	Operations:	Resource-level preparations
	Resource-level validations
	Resource-level changes
	Global business logic

	Transaction Context: Inside transaction

8. around_action (Start)
	When: Just before data layer operation
	Purpose: Wrap the actual database operation
	Use Cases:	Performance monitoring
	Debugging and development tools
	Advanced error handling
	Action timing

	Transaction Context: Inside transaction
	Note: Must call the callback function

9. before_action
	When: Immediately before data layer operation
	Purpose: Final modifications before database interaction
	Use Cases:	Last-minute data modifications
	Transactional side effects
	Audit logging
	Final validations

	Transaction Context: Inside transaction

10. Data Layer Operation 💾
	When: Core of the transaction
	Purpose: Actual database interaction
	Operations:	INSERT, UPDATE, DELETE, SELECT operations
	Constraint enforcement
	Database-level validations
	Index updates

	Transaction Context: Inside transaction

11. Success/Error Decision Point
	Determines if the operation succeeded or failed
	Affects which subsequent hooks are called

12. after_action (Success Path Only)
	When: After successful data layer operation
	Purpose: Post-success operations within transaction
	Use Cases:	Success-only side effects
	Transactional cleanup
	Related record updates
	Success logging

	Transaction Context: Inside transaction
	Note: Only runs on successful operations

13. Error Handling (Error Path)
	When: After failed data layer operation
	Purpose: Handle errors within transaction context
	Operations:	Error processing
	Rollback preparation
	Error logging

	Transaction Context: Inside transaction

14. around_action (End)
	When: After successful action completion only
	Purpose: Cleanup and finalization within transaction
	Use Cases:	Resource cleanup
	Final transaction operations
	Monitoring completion

	Transaction Context: Inside transaction
	Note: This phase does NOT execute if the action fails

15. Transaction Commits/Rollbacks 🔓
	Success: Transaction commits, changes are persisted
	Error: Transaction rolls back, changes are discarded
	End of transactional context

Post-Transaction Phase (Outside Database Transaction)
16. after_transaction
	When: After transaction completion (success or error)
	Purpose: Operations that should happen regardless of outcome
	Use Cases:	External service notifications
	Cache invalidation
	Cleanup operations
	Logging (success and error cases)
	Retry mechanisms - can change error results to success

	Transaction Context: Outside transaction
	Special Capability: Can transform the final result (e.g., retry failed operations)
	Note: Always runs, regardless of success/failure (not available for query/read actions)

17. around_transaction (End)
	When: Final cleanup phase
	Purpose: Complete the transaction wrapper
	Use Cases:	Resource deallocation
	Final cleanup
	Monitoring completion

	Transaction Context: Outside transaction
	Note: Not available for query/read actions

18. Notifications
	When: After all hooks complete
	Purpose: Broadcast events and notifications
	Operations:	PubSub notifications
	Event broadcasting
	External system integrations
	Webhook calls

	Transaction Context: Outside transaction

19. Return Result
	Success: Returns data with metadata
	Error: Returns error details and context

Hook Execution Order
The hooks execute in the following order (as of Ash 3.0+):
For Create/Update/Destroy Actions:
	around_transaction (start)
	before_transaction
	Transaction begins
	Action preparations/validations/changes (in order of definition)
	Global preparations/validations/changes (in order of definition)
	around_action (start)
	before_action
	Data layer operation
	after_action (success only) OR Error handling
	around_action (end) - Only on success
	Transaction commits/rollbacks
	after_transaction
	around_transaction (end)

For Read/Query Actions:
	Transaction begins (if applicable)
	Action preparations/validations/changes (in order of definition)
	Global preparations/validations/changes (in order of definition)
	around_action (start)
	before_action
	Data layer operation
	after_action (success only) OR Error handling
	around_action (end) - Only on success
	Transaction commits/rollbacks (if applicable)

Key Points
Transaction Boundaries
	Outside Transaction: around_transaction, before_transaction, after_transaction (not available for read/query actions)
	Inside Transaction: Action preparations/validations/changes, Global preparations/validations/changes, around_action, before_action, after_action

Error Handling
	after_action only runs on successful operations
	around_action (end) only runs on successful operations
	after_transaction always runs (success and error) - not available for read/query actions
	after_transaction can change the final result - can transform errors into successes (useful for retries)
	Transaction rollback occurs automatically on errors

Execution Order Details
	Preparations/Validations/Changes: Run in the order they are defined, NOT grouped by type
	Action-level preparations/validations/changes run first (in definition order)
	Then global (resource-level) preparations/validations/changes run (in definition order)
	Hook Order Changes (Ash 3.0+): Before/after action hooks now run in the order they are added (not reverse order)
	Restriction: after_transaction hooks cannot be added from within other lifecycle hooks

Performance Considerations
	Operations inside the transaction should be fast and focused
	Long-running operations should be in before_transaction or after_transaction
	Database connections are held during the entire transaction phase

Action Type Differences
Create/Update/Destroy Actions
	Have full lifecycle including all transaction hooks
	Support before_transaction, after_transaction, around_transaction
	Run in transactions by default, unless no hooks of any kind are added to the changeset.
	Have complete error handling and rollback capabilities

Read/Query Actions
	Do not support before_transaction, after_transaction, or around_transaction hooks
	Only support before_action, after_action, and around_action hooks
	Do not run in transactions by default
	Focus on data retrieval and filtering

Best Practices
	Use before_transaction for external API calls (create/update/destroy only)
	Use before_action for final data modifications
	Use after_action for transactional side effects
	Use after_transaction for external notifications (create/update/destroy only)
	Use after_transaction for retry mechanisms and result transformation
	Keep transaction phase operations fast and focused
	Handle errors appropriately at each phase
	Remember that around_action cleanup won't run on failures

Example Implementation
defmodule MyApp.User do
 use Ash.Resource

 actions do
 create :create do
 accept [:name, :email]
 argument :retries, :integer, default: 3, allow_nil?: false

 change before_transaction(fn changeset, _context ->
 # External API call before transaction
 case ExternalService.validate_email(changeset.attributes.email) do
 :ok -> changeset
 {:error, reason} -> Ash.Changeset.add_error(changeset, reason)
 end
 end)

 change before_action(fn changeset, _context ->
 # Final modifications before database
 Ash.Changeset.change_attribute(changeset, :created_at, DateTime.utc_now())
 end)

 change after_action(fn changeset, result, _context ->
 # Success-only operations within transaction
 Logger.info("User created: #{result.id}")
 {:ok, result}
 end)

 change fn changeset, context ->
 # Retry mechanism using after_transaction
 if changeset.arguments[:retries] > 0 do
 Ash.Changeset.after_transaction(changeset, fn
 changeset, {:ok, result} ->
 # Success case - send notification and return result
 NotificationService.send_welcome_email(result)
 {:ok, result}
 changeset, {:error, _error} ->
 # Error case - retry with decremented counter
 __MODULE__
 |> Ash.Changeset.for_create(
 changeset.action.name,
 Map.put(changeset.params, :retries, changeset.arguments.retries - 1),
 scope: context
)
 |> Ash.create()
 end)
 else
 # No retries left - add final after_transaction for cleanup
 Ash.Changeset.after_transaction(changeset, fn changeset, result ->
 case result do
 {:ok, user} ->
 NotificationService.send_welcome_email(user)
 result
 error ->
 Logger.error("User creation failed after all retries")
 error
 end
 end)
 end
 end
 end
 end
end
Key Points from Example:
	Retry Logic: The after_transaction hook can transform a failed result into a new attempt
	Result Transformation: Failed operations can become successful ones through retries
	Context Preservation: The retry maintains the original context and decrements the retry counter
	Conditional Behavior: Different after_transaction hooks based on retry availability
	Final Cleanup: Even after retries are exhausted, cleanup operations still occur

This lifecycle ensures data consistency, proper error handling, and allows for complex business logic while maintaining transactional integrity.

 Read Actions

Read actions operate on an Ash.Query. Read actions always return lists of data. The act of pagination, or returning a single result, is handled as part of the interface, and is not a concern of the action itself. Here is an example of a read action:
Giving your actions informative names is always a good idea
read :ticket_queue do
 # Use arguments to take in values you need to run your read action.
 argument :priorities, {:array, :atom} do
 constraints items: [one_of: [:low, :medium, :high]]
 end

 # This action may be paginated,
 # and returns a total count of records by default
 pagination offset: true, countable: :by_default

 # Arguments can be used in preparations and filters
 filter expr(status == :open and priority in ^arg(:priorities))
end
For a full list of all of the available options for configuring read actions, see the Ash.Resource.Dsl documentation.
Calling Read Actions
The basic formula for calling a read action looks like this:
Resource
|> Ash.Query.for_read(:action_name, %{argument: :value}, ...opts)
|> Ash.read!()
See below for variations on action calling, and see the code interface guide guide for how to
define idiomatic and convenient functions that call your actions.
Ash.get!
The Ash.get! function is a convenience function for running a read action, filtering by a unique identifier, and expecting only a single result. It is equivalent to the following code:
action can be omitted to use the primary read action
Ash.get!(Resource, 1, action: :read_action)

is roughly equivalent to

Resource
|> Ash.Query.filter(id == 1)
|> Ash.Query.limit(2)
|> Ash.Query.for_read(:read_action, %{})
|> Ash.read!()
|> case do
 [] -> # raise not found error
 [result] -> result
 [_, _] -> # raise too many results error
end
Ash.read_one!
The Ash.read_one! function is a similar convenience function to Ash.get!, but it does not take a unique identifier. It is useful when you expect an action to return only a single result, and want to enforce that and return a single result.
Ash.read_one!(query)

is roughly equivalent to

query
|> Ash.Query.limit(2)
|> Ash.read!()
|> case do
 [] -> nil
 [result] -> result
 [_, _] -> # raise too many results error
end
Pagination
Ash provides built-in support for pagination when reading resources and their relationships. You can find more information about this in the pagination guide.
Pagination configuration on default vs custom read actions
The default read action supports keyset pagination automatically. You need to explicitly enable pagination strategies you want to support when defining your own read actions.
What happens when you call Ash.Query.for_read/4
The following steps are performed when you call Ash.Query.for_read/4.
	Cast input arguments - d:Ash.Resource.Dsl.actions.read.argument
	Set default argument values - d:Ash.Resource.Dsl.actions.read.argument|default
	Add errors for missing required arguments | d:Ash.Resource.Dsl.actions.read.argument|allow_nil?

	Run query preparations | d:Ash.Resource.Dsl.actions.read.prepare

	Add action filter | d:Ash.Resource.Dsl.actions.read|filter

What happens when you run the action
These steps are trimmed down, and are aimed at helping users understand the general flow. Some steps are omitted.
	Run Ash.Query.for_read/3 if it has not already been run
	Apply tenant filters for attribute
	Apply pagination options
	Run before action hooks
	Multi-datalayer filter is synthesized. We run queries in other data layers to fetch ids and translate related filters to (destination_field in ^ids)
	Strict Check & Filter Authorization is run
	Data layer query is built and validated
	Field policies are added to the query
	Data layer query is Run
	Authorizer "runtime" checks are run (you likely do not have any of these)

The following steps happen while(asynchronously) or after the main data layer query has been run
	If paginating and count was requested, the count is determined at the same time as the query is run.
	Any calculations & aggregates that were able to be run outside of the main query are run
	Relationships, calculations, and aggregates are loaded

 Create Actions

Create actions are used to create new records in the data layer. For example:
on a ticket resource
create :open do
 accept [:title]
 change set_attribute(:status, :open)
end
Here we have a create action called :open that allows setting the title, and sets the status to :open. It could be called like so:
Ticket
|> Ash.Changeset.for_create(:open, %{title: "Need help!"})
|> Ash.create!()
For a full list of all of the available options for configuring create actions, see the Ash.Resource.Dsl documentation.
See the Code Interface guide for creating an interface to call the action more elegantly, like so:
Support.open_ticket!("Need help!")
Bulk creates
Bulk creates take a list or stream of inputs for a given action, and batches calls to the underlying data layer.
Given our example above, you could call Ash.bulk_create like so:
Ash.bulk_create([%{title: "Foo"}, %{title: "Bar"}], Ticket, :open)
Check the docs!
Make sure to thoroughly read and understand the documentation in Ash.bulk_create/4 before using. Read each option and note the default values. By default, bulk creates don't return records or errors, and don't emit notifications.
Performance
Generally speaking, all regular Ash create actions are compatible (or can be made to be compatible) with bulk create actions. However, there are some important considerations.
	Ash.Resource.Change modules can be optimized for bulk actions by implementing batch_change/3, before_batch/3 and after_batch/3. If you implement batch_change/3, the change function will no longer be called, and you should swap any behavior implemented with before_action and after_action hooks to logic in the before_batch and after_batch callbacks.

	Actions that reference arguments in changes, i.e change set_attribute(:attr, ^arg(:arg)) will prevent us from using the batch_change/3 behavior. This is usually not a problem, for instance that change is lightweight and would not benefit from being optimized with batch_change/3

	If your action uses after_action hooks, or has after_batch/3 logic defined for any of its changes, then we must ask the data layer to return the records it inserted. Again, this is not generally a problem because we throw away the results of each batch by default. If you are using return_records?: true then you are already requesting all of the results anyway.

Returning a Stream
Returning a stream allows you to work with a bulk action as an Elixir Stream. For example:
input_stream()
|> Ash.bulk_create(Resource, :action, return_stream?: true, return_records?: true)
|> Stream.map(fn {:ok, result} ->
 # process results
 {:error, error} ->
 # process errors
end)
|> Enum.reduce(%{}, fn {:ok, result}, acc ->
 # process results
 {:error, error} ->
 # process errors
end)
Be careful with streams
Because streams are lazily evaluated, if you were to do something like this:
[input1, input2, ...] # has 300 things in it
|> Ash.bulk_create(
 Resource,
 :action,
 return_stream?: true,
 return_records?: true,
 batch_size: 100 # default is 100
)
|> Enum.take(150) # stream has 300, but we only take 150
What would happen is that we would insert 200 records. The stream would end after we process the first two batches of 100. Be sure you aren't using things like Stream.take or Enum.take to limit the amount of things pulled from the stream, unless you actually want to limit the number of records created.
Upserts
Upserting is the process of "creating or updating" a record, modeled with a single simple create. Both bulk creates and regular creates support upserts. Upserts can be declared in the action, like so:
create :create_user do
 accept [:email]
 upsert? true
 upsert_identity :unique_email
end
Or they can be done with options when calling the create action.
Ash.create!(changeset, upsert?: true, upsert_identity: :unique_email)
Upserts do not use an update action
While an upsert is conceptually a "create or update" operation, it does not result in an update action being called.
The data layer contains the upsert implementation. This means that if you have things like global changes that are only run on update,
they will not be run on upserts that result in an update. Additionally, notifications for updates will not be emitted from upserts.
Most importantly, there are no read or update policies applied! You must take care that an upsert can only target records that
the user has permission to update.
Targeting Upserts
Lets imagine that you want a user to upsert an article by its slug, but only if it is their article:
If your action looked like this:
create :upsert_article_by_slug do
 upsert? true
 accept [:slug, :title, :body]
 upsert_identity :unique_slug
end
And one way it could be called is like so:
Article
|> Ash.Changeset.for_create(
 :upsert_article_by_slug,
 %{slug: "foo", title: "new title", slug: "new slug"},
 actor: current_user
)
|> Ash.create!()
This would create an article, unless there is an article with a matching slug in which case it would
update the title and the body to match the provided input. Let's add the "only if it is their article"
functionality.
For this we use a filter change to further scope the upsert:
create :upsert_article_by_slug do
 upsert? true
 accept [:slug, :title, :body]
 upsert_identity :unique_slug
 upsert_condition expr(user_id == ^actor(:id))
end
What is ^actor(:id) ?
Many places in Ash that support expression support templates. These are ways to refer
to certain things that are commonly available, like the actor, or action argument values.
For more information, see the expressions guide
Now, when we perform this upsert, there are three possible outcomes:
	There is no article with that slug, in which case the article is created
	There is an article with that slug, and the user_id matches the provided actor's id, so
it is updated with the new title and body.
	There is an article with that slug, and the user_id does not match the provided actor's,
id, in which case the action results in a Ash.Error.Changes.StaleRecord error. This is
the same error that would occur if the actor attempted to update something that had changed
in some unexpected way in the database.

Improving the stale record error
You may wish to transform this into an error message that can be displayed to the user, using
the d:actions.create.error_handler option. For example:
create :upsert_article_by_slug do
 upsert? true
 accept [:slug, :title, :body]
 upsert_identity :unique_slug
 upsert_condition expr(user_id == ^actor(:id))
 error_handler fn
 _changeset, %Ash.Error.Changes.StaleRecord{} ->
 Ash.Error.Changes.InvalidChanges.exception(field: :slug, message: "has already been taken")"

 _ changeset, other ->
 # leave other errors untouched
 other
 end
end
Atomic Updates
Upserts support atomic updates. These atomic updates do not apply to the data being created. They are only applied in the case of an update. For example:
create :create_game do
 accept [:identifier]
 upsert? true
 upsert_identity :identifier
 change set_attribute(:score, 0)
 change atomic_update(:score, expr(score + 1))
end
This will result in creating a game with a score of 0, and if the game already exists, it will increment the score by 1.
For information on options configured in the action, see d:Ash.Resource.Dsl.actions.create.
For information on options when calling the action, see Ash.create/2.
What happens when you run a create Action
All actions are run in a transaction if the data layer supports it. You can opt out of this behavior by supplying transaction?: false when creating the action. When an action is being run in a transaction, all steps inside of it are serialized because transactions cannot be split across processes.
	Authorization is performed on the changes
	A before action hook is added to set up belongs_to relationships that are managed. This means potentially creating/modifying the destination of the relationship, and then changing the destination_attribute of the relationship.
	before_transaction and around_transaction hooks are called (Ash.Changeset.before_transaction/2). Keep in mind, any validations that are marked as before_action? true (or all global validations if your action has delay_global_validations? true) will not have happened at this point.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	before_action hooks are performed in order
	The main action is sent to the data layer
	after_action hooks are performed in order
	Non-belongs-to relationships are managed, creating/updating/destroying related records.
	The transaction is closed, if one was opened
	after_transaction hooks are invoked with the result of the transaction (even if it was an error)

 Update Actions

Update actions are used to update records in the data layer. For example:
on a ticket resource
update :close do
 accept [:close_reason]
 change set_attribute(:status, :closed)
end
Here we have an update action called :close that allows setting the close_reason, and sets the status to :closed. It could be called like so:
ticket # providing an initial ticket to close
|> Ash.Changeset.for_update(:close, %{close_reason: "I figured it out."})
|> Ash.update!()
For a full list of all of the available options for configuring update actions, see the Ash.Resource.Dsl documentation.
See the Code Interface guide for creating an interface to call the action more elegantly, like so:
Support.close_ticket!(ticket, "I figured it out.")
You can also provide an id
Support.close_ticket!(ticket.id, "I figured it out.")
Atomics
Atomic updates can be added to a changeset, which will update the value of an attribute given by an expression. Atomics can be a very powerful way to model updating data in a simple way. An action does not have to be fully atomic in order to leverage atomic updates. For example:
update :add_to_name do
 argument :to_add, :string, allow_nil? false
 change atomic_update(:name, expr("#{name}_#{to_add}"))
end
Changing attributes in this way makes them safer to use in concurrent environments, and is typically more performant than doing it manually in memory.
Atomics are not stored with other changes
While we recommend using atomics wherever possible, it is important to note that they are stored in their own map in the changeset,
i.e changeset.atomics, meaning if you need to do something later in the action with the new value for an attribute, you won't be
able to access the new value. This is because atomics are evaluated in the data layer. You can, however, access "the old or new value"
in a similar way to Ash.Changeset.get_attribute, using the template expression, atomic_ref(:name). See the section below for more.
atomic_ref/1
Lets say that you have an action that may perform multiple atomic update on a single column, or for some other reason needs to refer to the new value.
The only way to access that new value is also in an atomic update, change, or validation, using atomic_ref/1. There is no way to access the new value
prior to the action being run with something like Ash.Changeset.get_attribute/2.
For example, lets say you have a postgres function that will slugify a string, and you want to make sure to always set it to the slugified version of name,
whenever name is changing.
changes do
 change atomic_update(:slug, expr(fragment("slugify(?)", ^atomic_ref(:name)))), where: changing(:name), on: [:update]
end
By using atomic_ref/1 here, you are always referring to the new value of name, even if another atomic update has been made that modifies name.
Because the validation changing/1 can be done atomically, and the change atomic_update/2 (naturally) can be done atomically, this is a fully atomic update.
Lets say that you paired this with an action like this:
update :add_to_name do
 argument :to_add, :string, allow_nil? false
 change atomic_update(:name, expr("#{name}_#{to_add}"))
end
and would produce a SQL update along the lines of:
UPDATE table
 SET name = name || $1,
 slug = CASE
 WHEN name = name || $1 THEN
 slug
 ELSE
 slugify(name || $1)
 END
WHERE id = $2
This is a fully atomic update, because all changes are done atomically in the data layer. We now have the benefits of composable building blocks and
atomic updates.
Fully Atomic updates
Atomic updates are a special case of update actions that can be done completely atomically. If your update action can't be done atomically, you will get an error unless you have set require_atomic? false. This is to encourage you to opt for atomic updates wherever reasonable. Not all actions can reasonably be made atomic, and not all non-atomic actions are problematic for concurrency. The goal is only to make sure that you are aware and have considered the implications.
What does atomic mean?
An atomic update is one that can be done in a single operation in the data layer. This ensures that there are no issues with concurrent access to the record being updated, and that it is as performant as possible.
For example, the following action cannot be done atomically, because it has
an anonymous function change on it.
update :increment_score do
 change fn changeset, _ ->
 Ash.Changeset.change_attribute(changeset, :score, changeset.data.score + 1)
 end
end
The action shown above is not safe to run concurrently. If two separate processes fetch the record with score 1, and then call increment_score, they will both set the score to 2, when what you almost certainly intended to do was end up with a score of 3
By contrast, the following action can be done atomically
update :increment_score do
 change atomic_update(:score, expr(score + 1))
end
In a SQL data layer, this would produce SQL along the lines of
"UPDATE table SET score = score + 1 WHERE id = post_id"
What makes an action not atomic?
Types that can't be atomically casted
Not all types support being casted atomically. For instance, :union types, and embedded resources that have primary keys(and therefore may need to use an update action) cannot currently be casted atomically.
Changes without an atomic callback
Changes can be enhanced to support atomics by defining Ash.Resource.Change.atomic/3. This callback can return a map of atomic updates to be made to attributes. Here is a simplified example from the built in Ash.Resource.Change.Builtins.increment/2 change:
@impl true
def atomic(_changeset, opts, _context) do
 # Set the requested attribute to its current value (atomic_ref) + the amount
 {:atomic, %{opts[:attribute] => expr(^atomic_ref(opts[:attribute]) + ^opts[:amount])}}
end
Validations without an atomic callback
Validations can be enhanced to support atomics by defining Ash.Resource.Validation.atomic/3. This callback can return an atomic validation (or a list of atomic validations), which is represented by a list of affected attributes (not currently used), an expression that should trigger an error, and the expression producing the error. Here is an example from the built in Ash.Resource.Validations.Builtins.attribute_equals/2 validation:
@impl true
def atomic(_changeset, opts, context) do
 {:atomic, [opts[:attribute]], expr(^atomic_ref(opts[:attribute]) != ^opts[:value]),
 expr(
 error(^InvalidAttribute, %{
 field: ^opts[:attribute],
 value: ^atomic_ref(opts[:attribute]),
 message: ^(context.message || "must equal %{value}"),
 vars: %{field: ^opts[:attribute], value: ^opts[:value]}
 })
)}
end
Bulk updates
There are three strategies for bulk updating data. They are, in order of preference: :atomic, :atomic_batches, and :stream. When calling Ash.bulk_update/4, you can provide a strategy or strategies that can be used, and Ash will choose the best one available. The implementation of the update action and the capabilities of the data layer determine what strategies can be used.
Atomic
Atomic bulk updates are used when the subject of the bulk update is a query, and the update action can be done atomically and the data layer supports updating a query. They map to a single statement to the data layer to update all matching records. The data layer must support updating a query.
Example
Ticket
|> Ash.Query.filter(status == :open)
|> Ash.bulk_update!(:close, %{reason: "Closing all open tickets."})
If using a SQL data layer, this would produce a query along the lines of
UPDATE tickets
SET status = 'closed',
 reason = 'Closing all open tickets.'
WHERE status = 'open';
Atomic Batches
Atomic batches is used when the subject of the bulk update is an enumerable (i.e list or stream) of records and the update action can be done atomically and the data layer supports updating a query. The records are pulled out in batches, and then each batch follows the logic described above. The batch size is controllable by the batch_size option.
Example

Ash.bulk_update!(one_hundred_tickets, :close, %{reason: "Closing all open tickets."}, batch_size: 10)
If using a SQL data layer, this would produce ten queries along the lines of
UPDATE tickets
SET status = 'closed',
 reason = 'Closing all open tickets.'
WHERE id IN (...ids)
Stream
Stream is used when the update action cannot be done atomically or if the data layer does not support updating a query. If a query is given, it is run and the records are used as an enumerable of inputs. If an enumerable of inputs is given, each one is updated individually. There is nothing inherently wrong with doing this kind of update, but it will naturally be slower than the other two strategies.
The benefit of having a single interface (Ash.bulk_update/4) is that the caller doesn't need to change based on the performance implications of the action.
Running a standard update action
All actions are run in a transaction if the data layer supports it. You can opt out of this behavior by supplying transaction?: false when creating the action. When an action is being run in a transaction, all steps inside of it are serialized because transactions cannot be split across processes.
	Authorization is performed on the changes
	A before action hook is added to set up belongs_to relationships that are managed. This means potentially creating/modifying the destination of the relationship, and then changing the destination_attribute of the relationship.
	before_transaction and around_transaction hooks are called (Ash.Changeset.before_transaction/2). Keep in mind, any validations that are marked as before_action? true (or all global validations if your action has delay_global_validations? true) will not have happened at this point.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	before_action hooks are performed in order
	The main action is sent to the data layer
	after_action hooks are performed in order
	Non-belongs-to relationships are managed, creating/updating/destroying related records.
	The transaction is closed, if one was opened
	after_transaction hooks are invoked with the result of the transaction (even if it was an error)

Atomic Upgrade
Update actions that are run as "normal" update actions will, at the time of execution, be "upgraded" to an atomic action if possible. This means taking the original inputs and building a corresponding atomic action. This behavior is primarily useful for using things like AshPhoenix.Form, where you want to validate and see the effects of an action before running it, but want the ultimate invocation to be atomic (i.e concurrency safe).
You can disable this by adding atomic_upgrade? false to the action configuration. Additionally, you may want to configure the read action used for atomic upgrades (defaults to the primary read), with atomic_upgrade_with option, i.e atomic_upgrade_with :list_all

 Destroy Actions

Destroy actions are comparatively simple. They expect to remove a given record, and by default return :ok in the successful case.
Most destroy actions are one-liners, for example:
destroy :destroy
Can be added with the defaults
defaults [:read, :destroy]
Soft Destroy
You can mark a destroy action as soft? true, in which case it is handled by the update action logic.
For example:
destroy :archive do
 soft? true
 change set_attribute(:archived_at, &DateTime.utc_now/0)
end
For a full list of all of the available options for configuring destroy actions, see the Ash.Resource.Dsl documentation.
Calling Destroy Actions
The basic formula for calling a destroy action looks like this:
record
|> Ash.Changeset.for_destroy(:action_name, %{argument: :value}, ...opts)
|> Ash.destroy!()
See below for variations on action calling, and see the code interface guide guide for how to
define idiomatic and convenient functions that call your actions.
Returning the destroyed record
You can use the return_destroyed? option to return the destroyed record.
when a resource is passed, or a query w/ no action, the primary destroy action is used.
ticket = Ash.get!(Ticket, 1)
Ash.destroy!(ticket)
=> :ok
ticket = Ash.get!(Ticket, 2)
Ash.destroy!(ticket, return_destroyed?: true)
=> {:ok, %Ticket{}}
Loading on destroyed records
Keep in mind that using Ash.load on destroyed data will produced mixed results. Relationships may appear as empty, or may be loaded as expected (depending on the data layer/relationship implementation) and calculations/aggregates may show as nil if they must be run in the data layer.
Bulk Destroys
There are three strategies for bulk destroying data. They are, in order of preference: :atomic, :atomic_batches, and :stream. When calling Ash.bulk_destroy/4, you can provide a strategy or strategies that can be used, and Ash will choose the best one available. The capabilities of the data layer determine what strategies can be used.
Atomic
Atomic bulk destroys are used when the subject of the bulk destroy is a query and the data layer supports destroying a query. They map to a single statement to the data layer to destroy all matching records.
Example
Ticket
|> Ash.Query.filter(status == :open)
|> Ash.bulk_destroy!(:close, %{})
If using a SQL data layer, this would produce a query along the lines of
DELETE FROM tickets
WHERE status = 'open';
Atomic Batches
Atomic batches are used when the subject of the bulk destroy is an enumerable (i.e list or stream) of records and the data layer supports destroying a query. The records are pulled out in batches, and then each batch follows the logic described above. The batch size is controllable by the batch_size option.
Example

Ash.bulk_destroy!(one_hundred_tickets, :close, %{}, batch_size: 10)
If using a SQL data layer, this would produce ten queries along the lines of
DELETE FROM tickets
WHERE id IN (...ids)
Stream
Stream is used when the data layer does not support destroying a query. If a query is given, it is run and the records are used as an enumerable of inputs. If an enumerable of inputs is given, each one is destroyed individually. There is nothing inherently wrong with doing this kind of destroy, but it will naturally be slower than the other two strategies.
The benefit of having a single interface (Ash.bulk_destroy/4) is that the caller doesn't need to change based on the performance implications of the action.
Check the docs!
Make sure to thoroughly read and understand the documentation in Ash.bulk_destroy/4 before using. Read each option and note the default values. By default, bulk destroys don't return records or errors, and don't emit notifications.
Destroying records
If you provide an enumerable of records, they will be destroyed in batches. For example:
Ash.bulk_destroy([%Ticket{}, %Ticket{}], :destroy, %{})
Destroying
Running the Destroy Action
All actions are run in a transaction if the data layer supports it. You can opt out of this behavior by supplying transaction?: false when creating the action. When an action is being run in a transaction, all steps inside of it are serialized because transactions cannot be split across processes.
	Authorization is performed on the changes
	A before action hook is added to set up belongs_to relationships that are managed. This means potentially creating/modifying the destination of the relationship, and then changing the destination_attribute of the relationship.
	before_transaction and around_transaction hooks are called (Ash.Changeset.before_transaction/2). Keep in mind, any validations that are marked as before_action? true (or all global validations if your action has delay_global_validations? true) will not have happened at this point.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	before_action hooks are performed in order
	The main action is sent to the data layer
	after_action hooks are performed in order
	Non-belongs-to relationships are managed, creating/updating/destroying related records.
	The transaction is closed, if one was opened
	after_transaction hooks are invoked with the result of the transaction (even if it was an error)

 Generic Actions

Generic actions are so named because there are no special rules about how they work. A generic action takes arguments and returns a value. The struct used for building input for a generic action is Ash.ActionInput.
action :say_hello, :string do
 argument :name, :string, allow_nil?: false

 run fn input, _ ->
 {:ok, "Hello: #{input.arguments.name}"}
 end
end
A generic action declares its arguments, return type, and implementation, as illustrated above.
No return? No problem!
Generic actions can omit a return type, in which case running them returns :ok if successful.
action :schedule_job do
 argument :job_name, :string, allow_nil?: false
 run fn input, _ ->
 # Schedule the job
 :ok
 end
end
For a full list of all of the available options for configuring generic actions, see the Ash.Resource.Dsl documentation.
Calling Generic Actions
The basic formula for calling a generic action looks like this:
Resource
|> Ash.ActionInput.for_action(:action_name, %{argument: :value}, ...opts)
|> Ash.run_action!()
See the code interface guide guide for how to
define idiomatic and convenient functions that call your actions.
Why use generic actions?
The example above could be written as a normal function in elixir, i.e
def say_hello(name), do: "Hello: #{name}"
The benefit of using generic actions instead of defining normal functions:
	They can be used with api extensions like ash_json_api and ash_graphql
	Their inputs are type checked and casted
	They support Ash authorization patterns (i.e policies)
	They can be included in the code interface of a resource
	They can be made transactional with a single option (transaction? true)

If you don't need any of the above, then there is no problem with writing regular Elixir functions!
Return types and constraints
Generic actions do not cast their return types. It is expected that the action return a valid value for the type that they declare. However, declaring additional constraints can inform API usage, and make the action more clear. For example:
action :priority, :integer do
 constraints [min: 1, max: 3]
 argument :status, :atom, constraints: [one_of: [:high, :medium, :low]]

 run fn input, _ ->
 case input.arguments.status do
 :high -> {:ok, 3}
 :medium -> {:ok, 2}
 :low -> {:ok, 1}
 end
 end
end
Returning resource instances
It sometimes happens that you want to make a generic action which returns an
instance or instances of the resource. It's natural to assume that you can
set your action's return type to the name of your resource. This won't work
as resources do not define a type, unless they are embedded. In embedded resources, this won't work because the module is still being compiled, so referencing yourself as a type causes a compile error. Instead, use the :struct type and the instance_of constraint, like so:
action :get, :struct do
 constraints instance_of: __MODULE__

 run # ...
end
For returning many instances of the resource, you can set your action's return type to
{:array, :struct} and set the items constraint to the name of your resource.
 action :list_resources, {:array, :struct} do
 constraints items: [instance_of: __MODULE__]

 run # ...
 end
Calling Generic Actions
To execute a generic action in Ash, follow these steps:
	Prepare the action input: Use Ash.ActionInput.for_action/4 to specify the resource, the action and its arguments.
	Run the action: Use Ash.run_action/2 to execute the action with the prepared input.

Example Usage
Consider an Ash.Resource with the action :say_hello:
action :say_hello, :string do
 argument :name, :string, allow_nil?: false

 run fn input, _ ->
 {:ok, "Hello: #{input.arguments.name}"}
 end
end
Call this action:
{:ok, greeting} = Resource
|> Ash.ActionInput.for_action(:say_hello, %{name: "Alice"})
|> Ash.run_action()

IO.puts(greeting) # Output: Hello: Alice
Using Code Interface
You can also use Code Interfaces to call actions:
Given a definition like:
define :say_hello, args: [:name]
{:ok, greeting} = Resource.say_hello("Alice")
greeting = Resource.say_hello!("Alice")

 Manual Actions

Manual actions allow you to control how an action is performed instead of dispatching to a data layer. To do this, specify the manual option with a module that adopts the appropriate behavior.
Manual actions are a way to implement an action in a fully custom way. This can be a very useful escape hatch when you have something that you are finding difficult to model with Ash's builtin tools.
Manual Creates/Updates/Destroy
For manual create, update and destroy actions, a module is passed that uses one of the following (Ash.Resource.ManualCreate, Ash.Resource.ManualUpdate and Ash.Resource.ManualDestroy).
For example:
create :special_create do
 manual MyApp.DoCreate
end

The implementation
defmodule MyApp.DoCreate do
 use Ash.Resource.ManualCreate

 def create(changeset, _, _) do
 record = create_the_record(changeset)
 {:ok, record}

 # An `{:error, error}` tuple should be returned if something failed
 end
end
The underlying record can be retrieved from changeset.data for update and destroy manual actions. The changeset given to the manual action will be after any before_action hooks, and before any after_action hooks.
Manual Read Actions
Manual read actions work the same, except the will also get the "data layer query". For AshPostgres, this means you get the ecto query that would have been run. You can use Ash.Query.apply_to/3 to apply a query to records in memory. This allows you to fetch the data in a way that is not possible with the data layer, but still honor the query that was provided to.
in the resource
actions do
 read :action_name do
 manual MyApp.ManualRead
 # or `{MyApp.ManualRead, ...opts}`
 end
end

the implementation
defmodule MyApp.ManualRead do
 use Ash.Resource.ManualRead

 def read(ash_query, ecto_query, _opts, _context) do
 ...
 {:ok, query_results} | {:error, error}
 end
end
In addition to returning query results, you can return a t:Ash.Resource.ManualRead.extra_info().
This contains a full_count key, which can be used when paginating to set the total count of records.
defmodule MyApp.ManualRead do
 use Ash.Resource.ManualRead

 def read(ash_query, ecto_query, _opts, _context) do
 %{"data" => data, "count" => count} = make_some_api_request(...)
 if ash_query.page[:count] do
 {:ok, query_results}
 else
 {:ok, query_results, %{full_count: count}}
 end
 end
end

Modifying the query
As an alternative to manual read actions, you can also provide the modify_query option, which takes an MFA and allows low level manipulation of the query just before it is dispatched to the data layer.
For example:
read :read do
 modify_query {MyApp.ModifyQuery, :modify, []}
end

defmodule MyApp.ModifyQuery do
 def modify(ash_query, data_layer_query) do
 {:ok, modify_data_layer_query(data_layer_query)}
 end
end
This can be used as a last-resort escape hatch when you want to still use resource actions but need to do something that you can't do easily with Ash tools. As with any low level escape hatch, here be dragons.

 OEBPS/dist/epub-4WIP524F.js
