

    

        ash

        v2.17.7


          [image: Logo]



    



  

    Table of contents

    
      


          	Tutorials
            


            	Extending Resources


            	Get Started


            	Philosophy


            	Using Hexdocs


            	Why Ash



            

          




          	How To
            


            	Contribute


            	Define Idiomatic Actions


            	Defining Manual Relationships


            	Handle Errors


            	Structure Your Project


            	Upgrade


            	Use Without Data Layers


            	Validate Changes



            

          




          	Topics
            


            	Actions


            	Aggregates


            	Atomics


            	Attributes


            	Bulk Actions


            	Calculations


            	Code Interface


            	Constraints


            	Development Utilities


            	Embedded Resources


            	Expressions


            	Flows


            	Glossary


            	Identities


            	Managing Relationships


            	Manual Actions


            	Monitoring


            	Multitenancy


            	Notifiers


            	Pagination


            	Phoenix


            	Policies


            	Pub Sub


            	Relationships


            	Security


            	Store Context In Process


            	Testing


            	Timeouts


            	Validations



            

          




          	DSLs
            


            	DSL: Ash.Api


            	DSL: Ash.DataLayer.Ets


            	DSL: Ash.DataLayer.Mnesia


            	DSL: Ash.Flow


            	DSL: Ash.Notifier.PubSub


            	DSL: Ash.Policy.Authorizer


            	DSL: Ash.Registry


            	DSL: Ash.Resource



            

          




  	Modules
    

    	Ash.Api


    	Ash.DataLayer.Ets


    	Ash.DataLayer.Mnesia


    	Ash.DataLayer.Simple


    	Ash.Notifier.PubSub


    	Ash.Policy.Authorizer


    	Ash.Registry


    	Ash.Resource


    	Ash.Calculation


    	Ash.CodeInterface


    	Ash.DataLayer


    	Ash.Filter.TemplateHelpers


    	Ash.Notifier


    	Ash.Notifier.Notification


    	Ash.Resource.Attribute.Helpers


    	Ash.Resource.Calculation.Builtins


    	Ash.Resource.ManualCreate


    	Ash.Resource.ManualDestroy


    	Ash.Resource.ManualRead


    	Ash.Resource.ManualRelationship


    	Ash.Resource.ManualUpdate


    	Ash.Query


    	Ash.Query.Aggregate


    	Ash.Query.Calculation


    	Ash.Resource.Preparation


    	Ash.Resource.Preparation.Builtins


    	Ash.Changeset


    	Ash.Resource.Change


    	Ash.Resource.Change.Builtins


    	Ash.Resource.Validation


    	Ash.Resource.Validation.Builtins


    	Ash.Authorizer


    	Ash.Policy.Check


    	Ash.Policy.Check.Builtins


    	Ash.Policy.FilterCheck


    	Ash.Policy.FilterCheckWithContext


    	Ash.Policy.SimpleCheck


    	Ash.Api.Info


    	Ash.DataLayer.Ets.Info


    	Ash.DataLayer.Mnesia.Info


    	Ash.Flow.Info


    	Ash.Notifier.PubSub.Info


    	Ash.Policy.Info


    	Ash.Registry.Info


    	Ash.Resource.Info


    	Ash


    	Ash.Changeset.ManagedRelationshipHelpers


    	Ash.CiString


    	Ash.Expr


    	Ash.Filter


    	Ash.Filter.Runtime


    	Ash.Filter.Simple


    	Ash.Filter.Simple.Not


    	Ash.NotLoaded


    	Ash.OptionsHelpers


    	Ash.Page


    	Ash.Page.Keyset


    	Ash.Page.Offset


    	Ash.Resource.Builder


    	Ash.Sort


    	Ash.Tracer


    	Ash.UUID


    	Ash.Union


    	Ash.Generator


    	Ash.Seed


    	Ash.Test


    	Ash.Flow


    	Ash.Flow.Chart.Mermaid


    	Ash.Flow.Executor


    	Ash.Flow.Step


    	Ash.Flow.StepHelpers


    	Ash.Type


    	Ash.Type.Atom


    	Ash.Type.Binary


    	Ash.Type.Boolean


    	Ash.Type.CiString


    	Ash.Type.Comparable


    	Ash.Type.Date


    	Ash.Type.DateTime


    	Ash.Type.Decimal


    	Ash.Type.DurationName


    	Ash.Type.Enum


    	Ash.Type.Float


    	Ash.Type.Function


    	Ash.Type.Integer


    	Ash.Type.Keyword


    	Ash.Type.Map


    	Ash.Type.Module


    	Ash.Type.NaiveDatetime


    	Ash.Type.NewType


    	Ash.Type.String


    	Ash.Type.Struct


    	Ash.Type.Term


    	Ash.Type.Time


    	Ash.Type.UUID


    	Ash.Type.Union


    	Ash.Type.UrlEncodedBinary


    	Ash.Type.UtcDatetime


    	Ash.Type.UtcDatetimeUsec


    	Ash.Type.Vector


    	Ash.Error


    	Ash.Error.Action.InvalidArgument


    	Ash.Error.Action.InvalidOptions


    	Ash.Error.Changes.InvalidArgument


    	Ash.Error.Changes.InvalidAttribute


    	Ash.Error.Changes.InvalidChanges


    	Ash.Error.Changes.InvalidRelationship


    	Ash.Error.Changes.NoSuchAttribute


    	Ash.Error.Changes.NoSuchRelationship


    	Ash.Error.Changes.Required


    	Ash.Error.Changes.StaleRecord


    	Ash.Error.EngineError


    	Ash.Error.Exception


    	Ash.Error.Flow.Halted


    	Ash.Error.Forbidden


    	Ash.Error.Forbidden.ApiRequiresActor


    	Ash.Error.Forbidden.CannotFilterCreates


    	Ash.Error.Forbidden.ForbiddenField


    	Ash.Error.Forbidden.MustPassStrictCheck


    	Ash.Error.Forbidden.Policy


    	Ash.Error.Framework


    	Ash.Error.Framework.AssumptionFailed


    	Ash.Error.Framework.FlagAssertionFailed


    	Ash.Error.Framework.InvalidReturnType


    	Ash.Error.Framework.SynchronousEngineStuck


    	Ash.Error.Invalid


    	Ash.Error.Invalid.AtomicsNotSupported


    	Ash.Error.Invalid.DuplicatedPath


    	Ash.Error.Invalid.ImpossiblePath


    	Ash.Error.Invalid.InvalidPrimaryKey


    	Ash.Error.Invalid.LimitRequired


    	Ash.Error.Invalid.MultipleResults


    	Ash.Error.Invalid.NoIdentityFound


    	Ash.Error.Invalid.NoPrimaryAction


    	Ash.Error.Invalid.NoSuchAction


    	Ash.Error.Invalid.NoSuchResource


    	Ash.Error.Invalid.NonStreamableAction


    	Ash.Error.Invalid.PageRequiresPagination


    	Ash.Error.Invalid.PaginationRequired


    	Ash.Error.Invalid.ResourceNotAllowed


    	Ash.Error.Invalid.TenantRequired


    	Ash.Error.Invalid.Timeout


    	Ash.Error.Invalid.TimeoutNotSupported


    	Ash.Error.Invalid.Unavailable


    	Ash.Error.Load.InvalidQuery


    	Ash.Error.Load.NoSuchRelationship


    	Ash.Error.Page.InvalidKeyset


    	Ash.Error.Query.AggregatesNotSupported


    	Ash.Error.Query.CalculationsNotSupported


    	Ash.Error.Query.InvalidArgument


    	Ash.Error.Query.InvalidCalculationArgument


    	Ash.Error.Query.InvalidExpression


    	Ash.Error.Query.InvalidFilterReference


    	Ash.Error.Query.InvalidFilterValue


    	Ash.Error.Query.InvalidLimit


    	Ash.Error.Query.InvalidLoad


    	Ash.Error.Query.InvalidOffset


    	Ash.Error.Query.InvalidQuery


    	Ash.Error.Query.InvalidSortOrder


    	Ash.Error.Query.LockNotSupported


    	Ash.Error.Query.NoComplexSortsWithKeysetPagination


    	Ash.Error.Query.NoReadAction


    	Ash.Error.Query.NoSuchAttribute


    	Ash.Error.Query.NoSuchAttributeOrRelationship


    	Ash.Error.Query.NoSuchFilterPredicate


    	Ash.Error.Query.NoSuchFunction


    	Ash.Error.Query.NoSuchOperator


    	Ash.Error.Query.NoSuchRelationship


    	Ash.Error.Query.NotFound


    	Ash.Error.Query.ReadActionRequired


    	Ash.Error.Query.ReadActionRequiresActor


    	Ash.Error.Query.Required


    	Ash.Error.Query.UnsortableAttribute


    	Ash.Error.Query.UnsupportedPredicate


    	Ash.Error.SimpleDataLayer.NoDataProvided


    	Ash.Error.Stacktrace


    	Ash.Error.Unknown


    	Ash.Error.Unknown.UnknownError


    	Ash.Flow.Transformers.SetApi


    	Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies


    	Ash.Policy.Authorizer.Transformers.CacheFieldPolicies


    	Ash.Registry.ResourceValidations


    	Ash.Registry.Transformers.WarnOnEmpty


    	Ash.Resource.Transformers.AttributesByName


    	Ash.Resource.Transformers.BelongsToAttribute


    	Ash.Resource.Transformers.CachePrimaryKey


    	Ash.Resource.Transformers.CacheRelationships


    	Ash.Resource.Transformers.CreateJoinRelationship


    	Ash.Resource.Transformers.DefaultAccept


    	Ash.Resource.Transformers.DefaultPrimaryKey


    	Ash.Resource.Transformers.GetByReadActions


    	Ash.Resource.Transformers.HasDestinationField


    	Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource


    	Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource


    	Ash.Resource.Transformers.RequireUniqueActionNames


    	Ash.Resource.Transformers.RequireUniqueFieldNames


    	Ash.Resource.Transformers.SetRelationshipSource


    	Ash.Resource.Transformers.ValidatePrimaryActions


    	Ash.Resource.Transformers.ValidationsAndChangesForType


    	Ash.ActionInput


    	Ash.Actions.Flows.Read


    	Ash.Actions.Flows.Read.FakeResult


    	Ash.Api.Dsl


    	Ash.Api.Dsl.ResourceReference


    	Ash.Api.GlobalInterface


    	Ash.Api.Info.Diagram


    	Ash.Api.Info.Livebook


    	Ash.Api.Verifiers.EnsureNoEmbeds


    	Ash.Api.Verifiers.EnsureResourcesCompiled


    	Ash.Api.Verifiers.ValidateRelatedResourceInclusion


    	Ash.BulkResult


    	Ash.DataLayer.Verifiers.RequirePreCheckWith


    	Ash.Engine


    	Ash.Engine.Request


    	Ash.Engine.Request.UnresolvedField


    	Ash.Filter.Predicate


    	Ash.Flags


    	Ash.Flow.Argument


    	Ash.Flow.Dsl


    	Ash.Flow.Executor.AshEngine


    	Ash.Flow.Result


    	Ash.Flow.Step.Branch


    	Ash.Flow.Step.Create


    	Ash.Flow.Step.Custom


    	Ash.Flow.Step.Debug


    	Ash.Flow.Step.Destroy


    	Ash.Flow.Step.Map


    	Ash.Flow.Step.Read


    	Ash.Flow.Step.RunFlow


    	Ash.Flow.Step.Transaction


    	Ash.Flow.Step.Update


    	Ash.Flow.Template


    	Ash.Flow.Verifiers.ValidateNoEmptySteps


    	Ash.Flow.Verifiers.ValidateUniqueNames


    	Ash.Flow.Verifiers.VerifyReturn


    	Ash.ForbiddenField


    	Ash.Mix.Tasks.Helpers


    	Ash.Notifier.PubSub.Publication


    	Ash.PlugHelpers


    	Ash.Policy.Chart.Mermaid


    	Ash.Policy.Check.Expression


    	Ash.Policy.FieldPolicy


    	Ash.Policy.Policy


    	Ash.Query.BooleanExpression


    	Ash.Query.Call


    	Ash.Query.Exists


    	Ash.Query.Function


    	Ash.Query.Function.Ago


    	Ash.Query.Function.At


    	Ash.Query.Function.CompositeType


    	Ash.Query.Function.Contains


    	Ash.Query.Function.DateAdd


    	Ash.Query.Function.DateTimeAdd


    	Ash.Query.Function.FromNow


    	Ash.Query.Function.GetPath


    	Ash.Query.Function.If


    	Ash.Query.Function.IsNil


    	Ash.Query.Function.Length


    	Ash.Query.Function.Minus


    	Ash.Query.Function.Now


    	Ash.Query.Function.Round


    	Ash.Query.Function.StringJoin


    	Ash.Query.Function.StringSplit


    	Ash.Query.Function.Today


    	Ash.Query.Function.Type


    	Ash.Query.Not


    	Ash.Query.Operator


    	Ash.Query.Operator.Basic


    	Ash.Query.Operator.Eq


    	Ash.Query.Operator.GreaterThan


    	Ash.Query.Operator.GreaterThanOrEqual


    	Ash.Query.Operator.In


    	Ash.Query.Operator.IsNil


    	Ash.Query.Operator.LessThan


    	Ash.Query.Operator.LessThanOrEqual


    	Ash.Query.Operator.NotEq


    	Ash.Query.Parent


    	Ash.Query.Ref


    	Ash.Registry.Dsl


    	Ash.Registry.Entry


    	Ash.Registry.ResourceValidations.Verifiers.EnsureNoEmbeds


    	Ash.Registry.ResourceValidations.Verifiers.EnsureResourcesCompiled


    	Ash.Registry.ResourceValidations.Verifiers.ValidateRelatedResourceInclusion


    	Ash.Resource.Actions


    	Ash.Resource.Actions.Action


    	Ash.Resource.Actions.Argument


    	Ash.Resource.Actions.Create


    	Ash.Resource.Actions.Destroy


    	Ash.Resource.Actions.Implementation


    	Ash.Resource.Actions.Metadata


    	Ash.Resource.Actions.Read


    	Ash.Resource.Actions.Read.Pagination


    	Ash.Resource.Actions.Update


    	Ash.Resource.Aggregate


    	Ash.Resource.Aggregate.CustomAggregate


    	Ash.Resource.Attribute


    	Ash.Resource.Calculation


    	Ash.Resource.Calculation.Argument


    	Ash.Resource.Calculation.LoadAttribute


    	Ash.Resource.Calculation.LoadRelationship


    	Ash.Resource.CalculationInterface


    	Ash.Resource.Change.GetAndLock


    	Ash.Resource.Change.GetAndLockForUpdate


    	Ash.Resource.Change.Increment


    	Ash.Resource.Change.OptimisticLock


    	Ash.Resource.Identity


    	Ash.Resource.Interface


    	Ash.Resource.Relationships


    	Ash.Resource.Relationships.BelongsTo


    	Ash.Resource.Relationships.HasMany


    	Ash.Resource.Relationships.HasOne


    	Ash.Resource.Relationships.ManyToMany


    	Ash.Resource.Validation.ActionIs


    	Ash.Resource.Verifiers.CountableActions


    	Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation


    	Ash.Resource.Verifiers.NoReservedFieldNames


    	Ash.Resource.Verifiers.ValidateAccept


    	Ash.Resource.Verifiers.ValidateActionTypesSupported


    	Ash.Resource.Verifiers.ValidateAggregatesSupported


    	Ash.Resource.Verifiers.ValidateEagerIdentities


    	Ash.Resource.Verifiers.ValidateManagedRelationshipOpts


    	Ash.Resource.Verifiers.ValidateMultitenancy


    	Ash.Resource.Verifiers.ValidatePrimaryKey


    	Ash.Resource.Verifiers.ValidateRelationshipAttributes


    	Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch


    	Ash.Resource.Verifiers.VerifyIdentityFields


    	Ash.Resource.Verifiers.VerifyReservedCalculationArguments


    	Ash.SatSolver


    	Ash.Tracer.Simple


    	Ash.Tracer.Simple.Span


    	Ash.Vector


    	Comparable.Type.Ash.CiString.To.Ash.CiString


    	Comparable.Type.Ash.CiString.To.BitString


    	Comparable.Type.BitString.To.Ash.CiString


    	Comparable.Type.BitString.To.Decimal


    	Comparable.Type.Decimal.To.BitString


    	Comparable.Type.Decimal.To.Decimal


    	Comparable.Type.Decimal.To.Float


    	Comparable.Type.Decimal.To.Integer


    	Comparable.Type.Float.To.Decimal


    	Comparable.Type.Integer.To.Decimal


    	Mix.Mermaid


    

  



  	Mix Tasks
    

    	mix ash.codegen


    	mix ash.generate_flow_charts


    	mix ash.generate_livebook


    	mix ash.generate_policy_charts


    	mix ash.generate_resource_diagrams


    	mix ash.migrate


    	mix ash.reset


    	mix ash.setup


    	mix ash.tear_down


    

  


      

    


  

    
Extending Resources
    

Resource extensions allow you to make powerful modifications to resources, and extend the DSL to configure how those modifications are made. If you are using AshPostgres, AshGraphql or AshJsonApi, they are all integrated into a resource using extensions. In this guide we will build a simple extension that adds timestamps to your resource. We'll also show some simple patterns that can help ensure that all of your resources are using your extension.

  
    
  
  Creating an extension


Extensions are modules that expose a set of DSL Transformers and DSL Sections. We'll start with the transformers.
Here we create an extension called MyApp.Extensions.Base, and configure a single transformer, called MyApp.Extensions.Base.AddTimestamps
defmodule MyApp.Extensions.Base do
  use Spark.Dsl.Extension, transformers: [MyApp.Extensions.Base.AddTimestamps]
end

  
    
  
  Creating a transformer


Transformers are all run serially against a map of data called dsl_state, which is the data structure that we build as we use the DSL. For example:
attributes do
  attribute :name, :string
end
Would, under the hood, look something like this:
%{
  [:attributes] => %{entities: [
      %Ash.Resource.Attribute{name: :name, type: :string}
    ]
  },
  ...
}
Spark.Dsl.Transformer provides utilities to work with this data structure, and most introspection utilities also work with that data structure (i.e Ash.Resource.Info.attributes(dsl_state)). A transformer exposes transform/1, which takes the dsl_state and returns either {:ok, dsl_state} or {:error, error}
defmodule MyApp.Extensions.Base.AddTimestamps do
  use Spark.Dsl.Transformer
  alias Spark.Dsl.Transformer

  def transform(dsl_state) do
    {:ok, inserted_at} =
      Transformer.build_entity(Ash.Resource.Dsl, [:attributes], :create_timestamp,
        name: :inserted_at
      )

    {:ok, updated_at} =
      Transformer.build_entity(Ash.Resource.Dsl, [:attributes], :update_timestamp,
        name: :updated_at
      )

    {:ok,
     dsl_state
     |> Transformer.add_entity([:attributes], inserted_at)
     |> Transformer.add_entity([:attributes], updated_at)}
  end
end

This transformer builds and adds a create_timestamp called :inserted_at and an update_timestamp called :updated_at.

  
    
  
  Introspecting the resource


If the resource we are extending already has an attribute called inserted_at or updated_at, we'd most likely want to avoid adding one ourselves (this would cause a compile error about duplicate attribute names). We can check for an existing attribute and make that change like so:
  def transform(dsl_state) do
    {:ok,
      dsl_state
      |> add_attribute_if_not_exists(:create_timestamp, :inserted_at)
      |> add_attribute_if_not_exists(:update_timestamp, :updated_at)}
  end

  defp add_attribute_if_not_exists(dsl_state, type, name) do
    if Ash.Resource.Info.attribute(dsl_state, name) do
      dsl_state
    else
      {:ok, attribute} =
        Transformer.build_entity(Ash.Resource.Dsl, [:attributes], type,
          name: name
        )

      dsl_state
      |> Transformer.add_entity([:attributes], attribute)
    end
  end
This is just one example of what you can do with transformers. Check out the functions in Spark.Dsl.Transformer to see what utilities are available.

  
    
  
  Make the extension configurable


So far we've covered transformers, and using them to modify resources, but now lets say we want to make this behavior opt-out. Perhaps certain resources really shouldn't have timestamps, but we want it to be the default. Lets add a "DSL Section" to our extension.
defmodule MyApp.Extensions.Base do
  @base %Spark.Dsl.Section{
    name: :base,
    describe: """
    Configure the behavior of our base extension.
    """,
    examples: [
      """
      base do
        timestamps? false
      end
      """
    ],
    schema: [
      timestamps?: [
        type: :boolean,
        doc: "Set to false to skip adding timestamps",
        default: true
      ]
    ]
  }

  defmodule Info do
    def timestamps?(resource) do
      Spark.Dsl.Extension.get_opt(resource, [:base], :timestamps?, true)
    end
  end

  use Spark.Dsl.Extension,
    transformers: [MyApp.Extensions.Base.AddTimestamps],
    sections: [@base]
end
Now we can use this configuration in our transformer, like so:
  def transform(dsl_state) do
    if MyApp.Extensions.Base.Info.timestamps?(dsl_state) do
      {:ok,
        dsl_state
        |> add_attribute_if_not_exists(:create_timestamp, :inserted_at)
        |> add_attribute_if_not_exists(:update_timestamp, :updated_at)}
    else
      {:ok, dsl_state}
    end
  end

  defp add_attribute_if_not_exists(dsl_state, type, name) do
    if Ash.Resource.Info.attribute(dsl_state, name) do
      dsl_state
    else
      {:ok, attribute} =
        Transformer.build_entity(Ash.Resource.Dsl, [:attributes], type,
          name: name
        )

      dsl_state
      |> Transformer.add_entity([:attributes], attribute)
    end
  end
And now we have a configurable base extension

  
    
  
  A note on the ordering of transformers


In this case, this transformer can run in any order. However, as we start adding transformers and/or modify the behavior of this one, we may need to ensure that our transformer runs before or after specific transformers. As of the writing of this guide, the best way to look at the list of transformers is to look at the source of the extension, and see what transformers it has and what they do. The Resource DSL for example.
If you need to affect the ordering, you can define before?/1 and after?/1 in your transformer, i.e
# I go after any other transformer
def after?(_), do: true

# except I go before `SomeOtherTransformer`
def before?(SomeOtherTransformer), do: true
def before?(_), do: false

  
    
  
  Using your extension


Now it can be used like any other extension:
defmodule MyApp.Tweet do
  use Ash.Resource,
    extensions: [MyApp.Extensions.Base]

  base do
    # And you can configure it like so
    timestamps? false
  end
end
Your extension will be automatically supported by the elixir_sense extension, showing inline documentation and auto complete as you type. For more on that, see pDevelopment Utilities

  
    
  
  Making a Base Resource


The "Base Resource" pattern has been adopted by some as a way to make it easy to ensure that your base extension is used everywhere. Instead of using Ash.Resource you use MyApp.Resource. Take a look at the Development Utilities guide if you do this, as you will need to update your formatter configuration, if you are using it.
defmodule MyApp.Resource do
  defmacro __using__(opts) do
    quote do
      use Ash.Resource,
        unquote(Keyword.update(opts, :extensions, [MyApp.Extensions.Base], &[MyApp.Extensions.Base | &1]))
    end
  end
end
And now you can use it with your resources like this:
defmodule MyApp.Tweet do
  use MyApp.Resource
end

  
    
  
  Ensuring that all resources use your base extension


To do this, you could create an extension very similar to Ash.Registry.ResourceValidations, that ensures that any resource present uses your extension. Spark.extensions/1 can be used to see what extensions a given module or dsl_config has adopted.



  

    
Get Started
    

HexDocs
Hexdocs does not support multi-package search. To assist with this, we provide a mirror of this documentation at ash-hq.org. Use Ctrl+K or Cmd+K to search all packages on that site. For the best way to use the hex documentation, see the hexdocs guide.


  
    
  
  Learn with Livebook


We have a basic step by step tutorial in Livebook that introduces you to Ash. No prior Ash knowledge is required.
The Livebook tutorial is self contained and separate from the documentation below.
[image: Run in Livebook]

  
    
  
  Watch the ElixirConf Talk



  
    
  
  Goals


In this guide we will:
	Create a new Elixir application and add Ash as a dependency
	Create a simple set of resources and show they can be used
	Illustrate some core concepts of Ash
	Point you to good next resources so you can explore Ash further


  
    
  
  Things you may want to read first


	Install Elixir
	Philosophy Guide
	Using Hexdocs


  
    
  
  Requirements


If you want to follow along yourself, you will need the following things:
	Elixir and Erlang installed
	A text editor to make the changes that we make
	A terminal to run the examples using iex


  
    
  
  Steps


For this tutorial, we'll use examples based around creating a help desk.
We will make the following resources:
	Helpdesk.Support.Ticket
	Helpdesk.Support.Representative

The actions we will be able to take on these resources include:
	Opening a new Ticket
	Closing a Ticket
	Assigning a Ticket to a representative


  
    
  
  Create a new project


We first create a new project with the --sup flag to add a supervision tree. This will be necessary for later steps.
# In your terminal
mix new --sup helpdesk && cd helpdesk

It is a good idea to make it a git repository and commit the initial project. You'll be able to see what changes we made, and can save your changes once we're done.
# Run in your terminal
git init
git add -A
git commit -m "first commit"
git branch -M main

Open the project in your text editor, and we'll get started.

  
    
  
  Add Ash to your application


Add the ash dependency to your mix.exs
defp deps do
  [
    # {:dep_from_hexpm, "~> 0.3.0"},
    # {:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git", tag: "0.1.0"},
    {:ash, "~> 2.17.7"} # <-- add this line
  ]
end
Add :ash to your .formatter.exs file
# Used by "mix format"
[
  import_deps: [:ash], # <-- add this line, if you have more import_deps, just add it within the list
  inputs: [
    "{mix,.formatter}.exs",
    "{config,lib,test}/**/*.{ex,exs}"
  ]
]
And run mix deps.get

  
    
  
  Building your first Ash API


The basic building blocks of an Ash application are Ash resources. They are tied together by an API module (not to be confused with a web API), which will allow you to interact with those resources.
It might be helpful to think of an Ash API as a Bounded Context (in the Domain Driven Design sense), or as a Service (in the microservice sense).

  
    
  
  Creating our first resource


Let's start by creating our first resource along with our first API. We will create the following files:
	The API [Helpdesk.Support] - lib/helpdesk/support.ex
	An accompanying registry which lists the resources for our api. - lib/helpdesk/support/registry.ex
	Our Ticket resource [Helpdesk.Support.Ticket] - lib/helpdesk/support/resources/ticket.ex.

To create the required folders and files, you can use the following command in your terminal:
mkdir -p lib/helpdesk/support/resources && touch $_/ticket.ex
touch lib/helpdesk/support/registry.ex
touch lib/helpdesk/support.ex

Your project structure should now look like this:
lib/
├─ helpdesk/
│  ├─ support/
│  │  ├─ registry.ex
│  │  ├─ resources/
│  │  │  ├─ ticket.ex
│  ├─ support.ex
Add the following to the files we created
# lib/helpdesk/support/resources/ticket.ex

defmodule Helpdesk.Support.Ticket do
  # This turns this module into a resource
  use Ash.Resource

  actions do
    # Add a set of simple actions. You'll customize these later.
    defaults [:create, :read, :update, :destroy]
  end

  # Attributes are the simple pieces of data that exist on your resource
  attributes do
    # Add an autogenerated UUID primary key called `:id`.
    uuid_primary_key :id

    # Add a string type attribute called `:subject`
    attribute :subject, :string
  end
end
# lib/helpdesk/support/registry.ex

defmodule Helpdesk.Support.Registry do
  use Ash.Registry

  entries do
    entry Helpdesk.Support.Ticket
  end
end
# lib/helpdesk/support.ex

defmodule Helpdesk.Support do
  use Ash.Api

  resources do
    # This defines the set of resources that can be used with this API
    registry Helpdesk.Support.Registry
  end
end
Next, add your api to your config.exs
Run the following to create your config.exs if it doesn't already exist
mkdir -p config
touch config/config.exs
and add the following contents to it (if the file already exists, just make sure the config line is added)
# in config/config.exs
import Config

config :helpdesk, :ash_apis, [Helpdesk.Support]

  
    
  
  Try our first resource out


Run iex -S mix in your project and try it out.
To create a ticket, we first make an Ash.Changeset for the :create action of the Helpdesk.Support.Ticket resource. Then we pass it to the create!/1 function on our API module Helpdesk.Support.
Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:create)
|> Helpdesk.Support.create!()
This returns what we call a record which is an instance of a resource.
#Helpdesk.Support.Ticket<
  ...,
  id: "c0f8dc32-a018-4eb4-8656-d5810118f4ea",
  subject: nil,
  ...
>

  
    
  
  Customizing our Actions


One thing you may have noticed earlier is that we created a ticket without providing any input, and as a result our ticket had a subject of nil. Additionally, we don't have any other data on the ticket. Lets add a status attribute, ensure that subject can't be nil, and provide a better interface by making a custom action for opening a ticket, called :open.
We'll start with the attribute changes:
# lib/helpdesk/support/resources/ticket.ex

attributes do
  ...
  attribute :subject, :string do
    # Don't allow `nil` values
    allow_nil? false
  end

  # status is either `open` or `closed`. We can add more statuses later
  attribute :status, :atom do
    # Constraints allow you to provide extra rules for the value.
    # The available constraints depend on the type
    # See the documentation for each type to know what constraints are available
    # Since atoms are generally only used when we know all of the values
    # it provides a `one_of` constraint, that only allows those values
    constraints [one_of: [:open, :closed]]

    # The status defaulting to open makes sense
    default :open

    # We also don't want status to ever be `nil`
    allow_nil? false
  end
end
And then add our customized open action which should take a subject argument:
# lib/helpdesk/support/resources/ticket.ex

actions do
  ...
  create :open do
    # By default you can provide all public attributes to an action
    # This action should only accept the subject
    accept [:subject]
  end
end
Let's try these changes in iex:
We use create! with an exclamation point here because that will raise the error which gives a nicer view of the error in iex
# Use this to pick up changes you've made to your code, or restart your session
recompile()

Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
|> Helpdesk.Support.create!()
And we can see our newly created ticket with a subject and a status.
#Helpdesk.Support.Ticket<
  ...
  id: "3c94d310-7b5e-41f0-9104-5b193b831a5d",
  status: :open,
  subject: "My mouse won't click!",
  ...
>
If we didn't include a subject, or left off the arguments completely, we would see an error instead
** (Ash.Error.Invalid) Input Invalid

* attribute subject is required

  
    
  
  Updates and validations


Now let's add some logic to close a ticket. This time we'll add an update action.
Here we will use a change. Changes allow you to customize how an action executes with very fine-grained control. There are built-in changes that are automatically available as functions, but you can define your own and pass it in as shown below. You can add multiple, and they will be run in order. See the Actions guide for more.
# lib/helpdesk/support/resources/ticket.ex

actions do
  ...
  update :close do
    # We don't want to accept any input here
    accept []

    change set_attribute(:status, :closed)
    # A custom change could be added like so:
    #
    # change MyCustomChange
    # change {MyCustomChange, opt: :val}
  end
end
Try out opening and closing a ticket in iex:
# Use this to pick up changes you've made to your code, or restart your session
recompile()

# parenthesis so you can paste into iex
ticket = (
  Helpdesk.Support.Ticket
  |> Ash.Changeset.for_create(:open, %{subject: "My mouse won't click!"})
  |> Helpdesk.Support.create!()
)

ticket
|> Ash.Changeset.for_update(:close)
|> Helpdesk.Support.update!()

#Helpdesk.Support.Ticket<
  ...
  status: :closed,
  subject: "My mouse won't click!",
  ...
>

  
    
  
  Querying without persistence


So far we haven't used a data layer that does any persistence, like storing records in a database. All that this simple resource does is return the record back to us. You can see this lack of persistence by attempting to use a read action:
Helpdesk.Support.read!(Helpdesk.Support.Ticket)
Which will raise an error explaining that there is no data to be read for that resource.
In order to save our data somewhere, we need to add a data layer to our resources. Before we do that, however, let's go over how Ash allows us to work against many different data layers (or even no data layer at all).
Resources without a data layer will implicitly be using Ash.DataLayer.Simple, which will just return structs and won't actually store anything. The way that we make our queries return some data is by leveraging context, a free-form map available on queries and changesets. The simple data layer looks for query.context[:data_layer][:data][resource]. It provides a utility, Ash.DataLayer.Simple.set_data/2 to set it.
Try the following in iex. We will open some tickets, and close some of them, and then use Ash.DataLayer.Simple.set_data/2 to use those tickets.
# Ash.Query is a macro, so it must be required
require Ash.Query

tickets =
  for i <- 0..5 do
    ticket =
      Helpdesk.Support.Ticket
      |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
      |> Helpdesk.Support.create!()

    if rem(i, 2) == 0 do
      ticket
      |> Ash.Changeset.for_update(:close)
      |> Helpdesk.Support.update!()
    else
      ticket
    end
  end
Find the tickets where the subject contains "2". Note that the we're setting the ticket data that we're querying using set_data.
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Helpdesk.Support.read!()
Find the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.DataLayer.Simple.set_data(tickets)
|> Helpdesk.Support.read!()
The examples above could be easily implemented with Enum.filter, but the real power here is to allow you to use the same tools when working with any data layer. If you were using the AshPostgres.DataLayer data layer.
Even though it doesn't persist data in any way, Ash.DataLayer.Simple can be useful to model static data, or be used for resources where all the actions are manual and inject data from other sources.

  
    
  
  Adding basic persistence


Before we get into working with relationships, let's add some real persistence to our resource. This will let us add relationships and try out querying data.
There is a built in data layer that is useful for testing and prototyping, that uses ETS. ETS (Erlang Term Storage) is OTP's in-memory database, so the data won't actually stick around beyond the lifespan of your program, but it's a simple way to try things out.
To add it to your resource, modify it like so:
# lib/helpdesk/support/resources/ticket.ex

use Ash.Resource,
  data_layer: Ash.DataLayer.Ets
Now we can slightly modify our code above, by removing the Ash.DataLayer.Simple.set_data/2 calls, and we can see our persistence in action. Remember, ETS is in-memory, meaning restarting your application/iex session will remove all of the data.
# Use this to pick up changes you've made to your code, or restart your session
recompile()

require Ash.Query

for i <- 0..5 do
  ticket =
    Helpdesk.Support.Ticket
    |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
    |> Helpdesk.Support.create!()

  if rem(i, 2) == 0 do
    ticket
    |> Ash.Changeset.for_update(:close)
    |> Helpdesk.Support.update!()
  end
end

# Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Helpdesk.Support.read!()

# Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Helpdesk.Support.read!()

  
    
  
  Adding relationships


Now we want to be able to assign a Ticket to a Representative. First, let's create the Representative resource:
# lib/helpdesk/support/resources/representative.ex

defmodule Helpdesk.Support.Representative do
  # This turns this module into a resource using the in memory ETS data layer
  use Ash.Resource,
    data_layer: Ash.DataLayer.Ets

  actions do
    # Add the default simple actions
    defaults [:create, :read, :update, :destroy]
  end

  # Attributes are the simple pieces of data that exist on your resource
  attributes do
    # Add an autogenerated UUID primary key called `:id`.
    uuid_primary_key :id

    # Add a string type attribute called `:name`
    attribute :name, :string
  end

  relationships do
    # `has_many` means that the destination attribute is not unique, therefore many related records could exist.
    # We assume that the destination attribute is `representative_id` based
    # on the module name of this resource and that the source attribute is `id`.
    has_many :tickets, Helpdesk.Support.Ticket
  end
end
Now let's modify our Ticket resource to have the inverse relationship to the Representative.
# lib/helpdesk/support/resources/ticket.ex

relationships do
  # belongs_to means that the destination attribute is unique, meaning only one related record could exist.
  # We assume that the destination attribute is `representative_id` based
  # on the name of this relationship and that the source attribute is `representative_id`.
  # We create `representative_id` automatically.
  belongs_to :representative, Helpdesk.Support.Representative
end
Finally, let's add our new Representative resource to our registry
# lib/helpdesk/support/registry.ex

entries do
 ...
 entry Helpdesk.Support.Representative
end
You may notice that if you don't add the resource to the registry, or if you don't add the belongs_to relationship, that you'll get helpful errors at compile time. Helpful compile time validations are a core concept of Ash as we really want to ensure that your application is valid.

  
    
  
  Working with relationships


There are a wide array of options when managing relationships, and we won't cover all of them here. See the guide on Managing Relationships for a full explanation.
In this example we'll demonstrate the use of action arguments, the method by which you can accept additional input to an action.
Add the assign action to allow us to assign a Ticket to a Representative.
# lib/helpdesk/support/resources/ticket.ex

update :assign do
  # No attributes should be accepted
  accept []

  # We accept a representative's id as input here
  argument :representative_id, :uuid do
    # This action requires representative_id
    allow_nil? false
  end

  # We use a change here to replace the related Representative
  # If there is a different representative for this Ticket, it will be changed to the new one
  # The Representative itself is not modified in any way
  change manage_relationship(:representative_id, :representative, type: :append_and_remove)
end
Let's try it out in our iex console!
Use recompile to pick up changes you've made to your code, or just restart your session.
recompile()

  
    
  
  Open a Ticket


ticket = (
  Helpdesk.Support.Ticket
  |> Ash.Changeset.for_create(:open, %{subject: "I can't find my hand!"})
  |> Helpdesk.Support.create!()
)

  
    
  
  Create a Representative


representative = (
  Helpdesk.Support.Representative
  |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
  |> Helpdesk.Support.create!()
)

  
    
  
  Assign that Representative to the Ticket


ticket
|> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
|> Helpdesk.Support.update!()

  
    
  
  Assigning the Representative to a Ticket during its creation


With the current definition of the Ticket resource the following will execute without error, but the representative_id field of the newly generated ticket will still remain empty:
Helpdesk.Support.Ticket
|> Ash.Changeset.for_create(:open, %{subject: "My spoon is too big!", representative_id: representative.id})
|> Helpdesk.Support.create!()
The reason is that belongs_to relationships are not marked as public and writable by default (refer to the define_attribute? option of belongs_to).
With the following modification the attribute can be written to, during the :create action:
# lib/helpdesk/support/resources/ticket.ex
...
actions do
  create :open do
    accept([:subject, :representative_id])
  end
end
...
relationships do
  belongs_to :representative, Helpdesk.Support.Representative do
    attribute_writable? true
  end
end

  
    
  
  What next?


What you've seen above barely scratches the surface of what Ash can do. In a lot of ways, it will look very similar to other tools that you've seen. If all that you ever used was the above, then realistically you won't see much benefit to using Ash.
Where Ash shines however, is all of the tools that can operate on your resources. You have the ability to extend the framework yourself, and apply consistent design patterns that enable unparalleled efficiency, power and flexibility as your application grows.
Get Help
	Check out ElixirForum
	Join our Discord server
	Open a GitHub issue

Clean up your code that uses Ash?
Creating and using changesets manually can be verbose, and they all look very similar. Luckily, Ash has your back and can generate these for you using Code Interfaces!
Check out the Code Interface Guide to derive things like Helpdesk.Support.Ticket.assign!(representative.id)
Persist your data
See The AshPostgres getting started guide to see how to back your resources with Postgres. This is highly recommended, as the Postgres data layer provides tons of advanced capabilities.
Add an API
Check out the AshJsonApi and AshGraphql extensions to effortlessly build APIs around your resources
Authorize access and work with users
See the Policies guide for information on how to authorize access to your resources using actors and policies.



  

    
Philosophy
    

The philosophy behind Ash allows us to build an extremely flexible and powerful set of tools, without locking users into specific choices at any level. The framework acts as a spinal cord for your application, with extension points at every level to allow for custom behavior. What follows are the core tenets behind Ash Framework.

  
    
  
  Anything, not Everything


"Anything, not Everything" means building a framework capable of doing anything, not providing a framework that already does everything. The first is possible, the second is not. Our primary goal is to provide a framework that unlocks potential, and frees developers to work on the things that make their application special.
To this end, there are many prebuilt extensions to use, but there is also a rich suite of tools to build your own extensions. In this way, you can make the framework work for you, instead of struggling to fit your application to a strictly prescribed pattern. Use as much of Ash as you can, and leverage the amazing Elixir ecosystem for everything else.

  
    
  
  Declarative, Introspectable, Derivable


The real superpower behind Ash is the declarative design pattern. All behavior is driven by explicit, static declarations. A resource, for example, is really just a configuration file. On its own it does nothing. It is provided to code that reads that configuration and acts accordingly.
You can read more about some simple declarative design patterns outside of the context of Ash Framework in An Incremental Approach to Declarative Design.

  
    
  
  Pragmatism First


While Ash does have lofty goals and a roadmap, the priority for development is always what the current users of Ash need or are having trouble with. We focus on simple, pragmatic, and integrated solutions that meld well with the rest of the framework.
A high priority is placed on ensuring that our users don't experience feature whip-lash due to poorly thought out implementations, and that any breaking changes (a rare occurrence) have a clean and simple upgrade path. This is something made much easier by the declarative pattern.

  
    
  
  Community


The Ash community comes together and collaborates to make sure that we can all build our software quickly, effectively and in a way that will age gracefully. We have a strict code of conduct, and love working with people of any experience level or background. To experience this first-hand, participate on ElixirForum or join our discord!



  

    
Using Hexdocs
    

Ash is split across various packages. Each package has its own documentation. However, there is a global documentation search available at https://ash-hq.org. Do use it, use Ctrl-K or Cmd-K on that site.

  
    
  
  Packages


	Ash: The core framework, providing all the features and goodies that power and enable the rest of the ecosystem.
	AshPostgres: A PostgreSQL data layer for Ash resources, allowing for rich query capabilities and seamless persistence.
	AshPhoenix: Utilities for using Ash resources with Phoenix Framework, from building forms to running queries in sockets & LiveViews.
	AshGraphql: A GraphQL extension that allows you to build a rich and customizable GraphQL API with minimal configuration required.
	AshJsonApi: A JSON:API extension that allows you to effortlessly create a JSON:API spec compliant API.
	AshAuthentication: Provides drop-in support for user authentication with various strategies and tons of customizability.
	AshAuthenticationPhoenix: Phoenix helpers and UI components in support of AshAuthentication.
	AshStateMachine: An Ash.Resource extension for building finite state machines.
	AshCsv: A CSV data layer allowing resources to be queried from and persisted in a CSV file.
	AshDoubleEntry: A customizable double entry bookkeeping system backed by Ash resources.
	AshArchival: A light-weight resource extension that modifies resources to simulate deletion by setting an archived_at attribute.
	Reactor: Reactor is a dynamic, concurrent, dependency resolving saga orchestrator.
	Spark: The core DSL and extension tooling, allowing for powerful, extensible DSLs with minimal effort.


  
    
  
  DSL documentations


Some helpful tips on using Hex Docs. DSLs are each documented in their own area. Find them in the bottom of the sidebar on the left.

  
    
  
  Searching


In the sidebar
When searching for a dsl, prefix your search with DSL:. If you know the path
to the DSL you are looking for, use it separated by dots. For example, DSL: attributes.attribute. Only five results will show up in the sidebar, so be as specific as possible. If you don't find it, press enter and you will be taken to the search page. An important limitation is that the sidebar only shows "entities" not "options". We are looking into adding something to ex_doc to improve this, but until we do, you will need to use the search page to find options. For example, you can find attributes.attribute but not attributes.attribute.primary_key? in the sidebar search.
In the search page
The fastest way to get to the search page is to click on the sidebar search and press enter without selecting anything. Use type:dsl to filter for DSLs on the search page. By default, search terms are considered optional. You can prefix them with + to make them required. Something you would do to find a specific DSL option is to search for +type:dsl +attributes.attribute.primary_key?.



  

    
Why Ash?
    

One of the fundamental ideas behind Ash is that when the various components of your system can have consistent expectations of how the other components around them work, you can ultimately do a significant amount more, with less.

  
    
  
  Example: Policies


Policy authorization is a good example of this. When you're trying to write a flexible system that has secure access patterns, there are tons of ways to do it wrong. For example, lets say you have this policy on your "posts" resource.
policy action_type(:read) do
  authorize_if relates_to_actor_via(:author)
  authorize_if relates_to_actor_via([:author, :friends])
end
Using Ash, if I were to make a simple query like MyApp.Blog.read!(MyApp.Blog.Post, actor: current_user), what it would do is automatically translate those policies to a filter statement. So it is the equivalent to saying:
MyApp.Blog.Post
|> Ash.Query.filter(exists(author, id == ^current_user.id) or exists(author.friends, id == ^current_user.id))
|> MyApp.Blog.read!()
And that is something you could potentially hand roll. But what about when you want to say something like this:
MyApp.Blog.Comment
|> Ash.Query.filter(exists(author, email == "daarb@daarb.com"))
|> MyApp.Blog.read!()
Ash is aware of the policies on author and will translate this under the hood to
MyApp.Blog.Comment
|> Ash.Query.filter(exists(author, id == ^current_user.id and #Ash.Filter<policies for reading authors>))
Or if you want to display aggregate information, i.e in Ash
# on an Organization resource
aggregates do
  count :count_of_posts, :posts
end
That should realistically show "the number of posts the user can see" (by default). So Ash is aware of the policies and details of the resource you are aggregating, meaning that aggregate will just "do the right thing"
Policies are just one example of how a tool that is built for this kind of thing can often come with features that would be entirely unreasonable for developers to write by hand for every platform they are building. The declarative design patterns behind Ash allow us to build features that are context aware and extremely powerful.

  
    
  
  It isn't about "less code"


In all reality "writing less code" is not really a goal that Ash has. The real goal behind helping people to not reinvent the wheel is that if we keep reinventing the wheel every time, the wheel will never be properly iterated on.
Policies are one example of this.
By ensuring that the various pieces of our system have consistent, stable and rich interfaces, we can easily write reusable extensions. For example, AshArchival will ensure that any given resource is "soft deleted" instead of actually deleted, and AshPaperTrail will keep a log of all changes that happen on a given resource. Both of these behaviors can be introduced to your resources with a single line of code, e.g extensions: [AshPaperTrail.Resource] because resources are composed of elements that have consistent, declarative structures.



  

    
Contributing to Ash
    


  
    
  
  Welcome!


We are delighted to have anyone contribute to Ash, regardless of their skill level or background. We welcome contributions both large and small, from typos and documentation improvements, to bug fixes and features. There is a place for everyone's contribution here. Check the issue tracker or join the ElixirForum/discord server to see how you can help! Make sure to read the rules below as well.

  
    
  
  Rules


	We have a zero tolerance policy for failure to abide by our code of conduct. It is very standard, but please make sure
you have read it.
	Issues may be opened to propose new ideas, to ask questions, or to file bugs.
	Before working on a feature, please talk to the core team/the rest of the community via a proposal. We are
building something that needs to be cohesive and well thought out across all use cases. Our top priority is
supporting real life use cases like yours, but we have to make sure that we do that in a sustainable way. The
best compromise there is to make sure that discussions are centered around the use case for a feature, rather
than the proposed feature itself.
	Before starting work, please comment on the issue and/or ask in the discord if anyone is handling an issue. Be aware that if you've commented on an issue that you'd like to tackle it, but no one can reach you and/or demand/need arises sooner, it may still need to be done before you have a chance to finish. However, we will make all efforts to allow you to finish anything you claim.




  

    
Defining Idiomatic Actions
    

The best practice is typically to try to push things as far down into your resources as possible. 

  
    
  
  The Non-idiomatic Way


If you were doing a twitter front page, you might have a tweet resource with a simple action like this:
# use a simple primary read
defaults [:read, ...]
And in doing that, you could get all the tweets with something like this:
Tweet
|> Ash.Query.for_read(:read)
|> Ash.Query.sort(posted_at: :desc)
|> Ash.Query.filter(author.id == ^current_user.id or exists(author.friends, id == ^current_user.id))
# assuming the name of your api was `Tweets`
|> Tweets.read!()
And that works and in some cases might be the right way to do what you're trying to do
And lets say there was a sort drop down that made it sort by popular instead of recent, you could do something like this:
Tweet
|> Ash.Query.for_read(:read)
|> then(fn query -> 
  case sort do
    :recent ->
      Ash.Query.sort(query, posted_at: :desc)
    :popular ->
      Ash.Query.sort(query, like_count: :desc)
  end
end)
|> Ash.Query.filter(author.id == ^current_user.id or exists(author.friends, id == ^current_user.id))
# assuming the name of your api was `Tweets`
|> Tweets.read!()

  
    
  
  The Idiomatic Way


But the better way to model this would be something like this:
code_interface do
  define_for MyApp.Tweets
  define :front_page, args: [:sort_by]
end
  
read :front_page do
  argument :sort_by, :atom do
    constraints one_of: [:recent, :popular]
  end

  prepare MyApp.Tweets.Tweet.Preparations.SortFrontPage
  filter expr(author.id == ^actor(:id) or exists(author.friends, id == ^actor(:id))
end
Custom preparations allow you to do all sorts of things, in this case handle custom sorting
defmodule MyApp.Tweets.Tweet.Preparations.SortFrontPage do
  use Ash.Resource.Preparation

  def prepare(query, _, _) do
    # We use `prepend?` to put the sort ahead of any other specified sort on the query
    case Ash.Changeset.get_argument(query, :sort_by) do
      :recent ->
        Ash.Query.sort(query, [posted_at: :desc], prepend?: true)

      :popular ->
        Ash.Query.sort(query, [like_count: :desc], prepend?: true)
    end
  end
end
And then you can get the front page of tweets far more cleanly:
Tweet.front_page!(socket.assigns.sort_by)
If you were using AshGraphql, you could do something like this:
graphql do
  type :tweet

  queries do
    query :front_page, :front_page
  end
end
And because you've made the action encompass the entire logic of fetching the front page, you've got automatic support for API access to your system.
This is just one example of the benefits of having idiomatic and complete actions.



  

    
Defining Manual Relationships
    

Manual relationships allow you to express complex or non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.
By default, the only thing manual relationships support is being loaded.

  
    
  
  Example


In our Helpdesk example, we'd like to have a way to find tickets
In the Rep? resource, define a has_many relationship as manual and point to the module where
it will be implemented.
relationships do
  has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
    manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
  end
end
Using Ash to get the destination records is ideal, so you can authorize access like normal
but if you need to use a raw ecto query here, you can. As long as you return the right structure.
The TicketsAboveThreshold module is implemented as follows.
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
  use Ash.Resource.ManualRelationship
  require Ash.Query

  def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
    # Use existing records to limit resultds
    rep_ids = Enum.map(records, & &1.id)

    {:ok,
     query
     |> Ash.Query.filter(representative_id in ^rep_ids)
     |> Ash.Query.filter(priority > representative.priority_threshold)
     |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
     # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
     |> Enum.group_by(& &1.representative_id)}
  end
end

  
    
  
  Using the Query


Since you likely want to support things like filtering your relationship when being loaded, you will want to make sure that you use the query being provided. However, depending on how you're loading the relationship, you may need to do things like fetch extra records. To do this, you might do things like
def load(records, _opts, %{query: query, ..}) do
  # unset some fields
  fetch_query = Ash.Query.unset(query, [:limit, :offset])

  # or, to be more safe/explicit, you might make a new query, explicitly setting only a few fields
  fetch_query = query.resource |> Ash.Query.filter(^query.filter) |> Ash.Query.sort(query.sort)

  ...
end



  

    
Errors
    

There is a difficult balance to cut between informative errors and enabling simple reactions to those errors. Since many extensions may need to work with and/or adapt their behavior based on errors coming from Ash, we need rich error messages. However, when you have a hundred different exceptions to represent the various kinds of errors a system can produce, it becomes difficult to say something like "try this code, and if it is invalid, do x, if it is forbidden, do y. To this effect, exceptions in Ash have one of four classes mapping to the top level exceptions.

  
    
  
  Error Classes


	forbidden - Ash.Error.Forbidden
	invalid - Ash.Error.Invalid
	framework - Ash.Error.Framework
	unknown - Ash.Error.Unknown

Since many actions can be happening at once, we want to support the presence of multiple errors as a result of a request to Ash. We do this by grouping up the errors into one before returning or raising.
We choose an exception based on the order of the exceptions listed above. If there is a single forbidden, we choose Ash.Error.Forbidden, if there is a single invalid, we choose Ash.Error.Invalid and so on. The actual errors will be included in the errors key on the exception. The exception's message will contain a bulleted list of all the underlying exceptions that occurred. This makes it easy to react to specific kinds of errors, as well as to react to any/all of the errors present.
An example of a single error being raised, representing multiple underlying errors:
AshExample.Representative
|> Ash.Changeset.new(%{employee_id: "the best"})
|> AshExample.Api.create!()
 ** (Ash.Error.Invalid) Input Invalid
 * employee_id: must be absent.
 * first_name, last_name: at least 1 must be present.
    (ash 1.3.0) lib/ash/api/api.ex:534: Ash.Api.unwrap_or_raise!/1
This allows easy rescuing of the major error classes, as well as inspection of the underlying cases
try do
  AshExample.Representative
  |> Ash.Changeset.new(%{employee_id: "dabes"})
  |> AshExample.Api.create!()
rescue
  e in Ash.Error.Invalid ->
    "Encountered #{Enum.count(e.errors)} errors"
end

"Encountered 2 errors"
This pattern does add some additional overhead when you want to rescue specific kinds of errors. For example, you may need to do something like this:
try do
  AshExample.Representative
  |> Ash.Changeset.new(%{employee_id: "dabes"})
  |> AshExample.Api.create!()
rescue
  e in Ash.Error.Invalid ->
    case Enum.find(e.errors, &(&1.__struct__ == A.Specific.Error)) do
      nil ->
        ...handle errors
      error ->
        ...handle specific error you found
    end
end

  
    
  
  Generating Errors


When returning errors in your application, you can a few different things:

  
    
  
  Return a keyword list in changes and validations


A shortcut for creating errors is to return a keyword list containing field
and message. This works in changes and validations. For example:
# in a change, you use `Ash.Changeset.add_error/2`
def change(changeset, _, _) do
  if under_21?(changeset) do
    Ash.Changeset.add_error(changeset, field: :age, message: "must be 21 or older")
  else
    changeset
  end
end

# in a validation, you return the error in an `{:error, error}` tuple.
def change(changeset, _, _) do
  if under_21?(changeset) do
    {:error,  field: :age, message: "must be 21 or older"}
  else
    :ok
  end
end

  
    
  
  Using a Builtin Exception


These are all modules under Ash.Error.*. You can create a new one with error.exception(options), and the options are documented in each exception. This documentation is missing in some cases. Go to the source code of the exception to see its special options. All of them support the vars option, which are values to be interpolated into the message, useful for things like translation.
For example:
def change(changeset, _, _) do
  if some_condition(changeset) do
    error = Ash.Error.Changes.Required.new(
      field: :foo,
      type: :attribute,
      resource: changeset.resource
    )

    Ash.Changeset.add_error(changeset, error)
  else
    changeset
  end
end

  
    
  
  Use a Custom Exception


You can create a custom exception like so. This is an example of a builtin exception that you could mirror to build your own
defmodule Ash.Error.Action.InvalidArgument do
  @moduledoc "Used when an invalid value is provided for an action argument"
  use Ash.Error.Exception

  def_ash_error([:field, :message, :value], class: :invalid)

  defimpl Ash.ErrorKind do
    def id(_), do: Ash.UUID.generate()

    def code(_), do: "invalid_argument"

    def message(error) do
      """
      Invalid value provided#{for_field(error)}#{do_message(error)}

      #{inspect(error.value)}
      """
    end

    defp for_field(%{field: field}) when not is_nil(field), do: " for #{field}"
    defp for_field(_), do: ""

    defp do_message(%{message: message}) when not is_nil(message) do
      ": #{message}."
    end

    defp do_message(_), do: "."
  end
end



  

    
Structure your project
    

In this guide we'll discuss some best practices for how to structure your project.

  
    
  
  A few notes


	None of the things we show you here are requirements, only recommendations.

	We avoid any pattern that requires you to name a file or module in a specific way, or put them in a specific place. This ensures that all connections between one module and another module are explicit rather than implicit.

	We break a common Elixir pattern of having the module name match the file name in one specific way. If the resource has a folder, we suggest putting the resource.ex in the folder with the same name. See the example below for more.


lib/ # top level lib folder for your whole project
├─ my_app/ # your app's main namespace
│  ├─ accounts/ # The Accounts context
│  │  ├─ user/ # resource w/ additional files
│  │  ├─ token.ex # A resource without additional files
│  │  ├─ password_helper.ex # A non-resource file
│  │  ├─ accounts.ex # The Accounts API module
│  ├─ helpdesk/ # A Helpdesk context
│  │  ├─ notification.ex # A resource without additional files
│  │  ├─ other_file.ex # A non-resource file
│  │  ├─ ticket/ # A resource with additional files
│  │  │  ├─ preparations/ # Components of the reosurce, grouped by type
│  │  │  ├─ changes/
│  │  │  ├─ checks/
│  │  │  ├─ ticket.ex # The resource file
Generally speaking, your Ash application lives in the standard place within your elixir application, i.e lib/my_app. Within that folder, you create one folder for each context that you have. Each context has an Ash.Api module within it, and the resources that live within that context. All resource interaction ultimately goes through an Api module.
Alongside the API module, you have your resources, as well as any other files used in the context. If a resource has any additional files that are used to implement it, they should be placed in a folder with the same name as the resource, in subfolders grouping the files type, and the resource should be placed there too. This is optional, as stated above, but we've found that with large contexts it keeps things very simple.



  

    
Upgrading
    


  
    
  
  Upgrading to 2.0


All deprecations will be finalized in version 2.1.

  
    
  
  Ash.Flow


While still more experimental than the rest of the framework, Ash.Flow is no longer feature-gated behind a configuration flag. It has been changed only slightly, and now returns an Ash.Flow.Result in all cases.

  
    
  
  New DSL tooling


The DSL tooling has been moved out of the Ash name space and into a more generalized tool called Spark. If you have written your own extensions, you will need
to refer to those modules. They are all the same, but they have different names. You will get compiler errors/warnings on the modules you need to change, for example: Ash.Dsl -> Spark.Dsl and Ash.Dsl.Transformer -> Spark.Dsl.Transformer. One exception, Ash.Error.Dsl.DslError, has been changed to Spark.Error.DslError.

  
    
  
  DSL name changes


These should all be straight forward enough to do a simple find and replace in your resources.
	source_field -> source_attribute
	destination_field -> destination_attribute
	define_field? -> define_attribute?
	field_type -> attribute_type
	source_field_on_join_table -> source_attribute_on_join_resource
	destination_field_on_join_table -> destination_attribute_on_join_resource
	no_fields? -> no_attributes?
	expensive? -> before_action? (on validations)
	required? -> allow_nil? (on belongs_to relationships) Be sure to flip the boolean value!!


  
    
  
  DSL changes


A new option has been added to the pub_sub notifier. If you are using it with phoenix, and you want it to publish a %Phoenix.Socket.Broadcast{} struct (which is what it used to do if you specified the name option with pub sub), then you'll need to set broadcast_type :phoenix_broadcast

  
    
  
  Validation Changes


validate match/3 is now validate match/2. It used to accept a message as its third argument, but there is now support for setting a message on all validations like so:
validate match(:attribute, ~r/regex/), message: "message"

  
    
  
  Policy Changes


When using a filter template that references the actor, it was previously acceptable for the actor to be nil and still have the check pass. For example, instead of:
authorize_if expr(actor(:field) != 10)
you might want
authorize_if is_nil(actor(:field))
forbid_if expr(actor(:field) != 10)

  
    
  
  Function Changes


The following functions have been moved from Ash.Resource.Info to Ash.Resource. The old functions still exist, but will warn as deprecated.
	set_metadata/2
	put_metadata/3
	unload_many/2
	unload/2
	get_metadata/2
	selected?/2

The following functions have been moved from Ash.Api to Ash.Api.Info. The old functions still exist, but will warn as deprecated.
	resource/2
	resources/1
	registry/1
	allow/1
	timeout/1
	require_actor?/1
	authorize/1
	allow_unregistered?/1

The following functions have been moved from Ash.Notifier.PubSub to Ash.Notifier.PubSub.Info. The old functions still exist, but will warn as deprecated.
	publications/1
	module/1
	prefix/1
	name/1

The following functions have been moved. The old functions still exist, but will warn as deprecated.
	Ash.DataLayer.Ets.private?/1 -> Ash.DataLayer.Ets.Info.private?/1
	Ash.DataLayer.Ets.table/1 -> Ash.DataLayer.Ets.Info.table/1
	Ash.DataLayer.Mnesia.table/1 -> Ash.DataLayer.Mnesia.table/1
	Ash.Registry.warn_on_empty?/1 -> Ash.Registry.Info.warn_on_empty?/1
	Ash.Registry.entries/1 -> Ash.Registry.Info.entries/1

The following functions have been moved:
	Ash.Resource.extensions/1 -> Spark.extensions/1

The following functions have been deprecated, and will be removed in 2.1
	Ash.Changeset.replace_relationship/4 - use manage_relationship/4 instead. 
	Ash.Changeset.append_to_relationship/4 - use manage_relationship/4 instead. 
	Ash.Changeset.remove_from_relationship/4 - use manage_relationship/4 instead. 


  
    
  
  Expression Changes


The has operator has been removed from expressions. This is a holdover from when expressions only had partial support for nesting, and is unnecessary now. Now you can do item in list so has is unnecessary.

  
    
  
  Upgrading to 1.53



  
    
  
  Default actions


Before 2.0.0, a resource would automatically get the four action types defined. Now, you need to specify them using the defaults option. For example:
actions do
  defaults [:create, :read, :update, :destroy]
end

  
    
  
  Primary Actions


Primary actions have been simplified for 2.0.0. If there was a single action of a given type before, it would have been marked as primary? automatically. Now, primary? actions are fully optional, although you may still want to configure them. Certain things like managing relationships can be much simpler when paired with primary actions. For a fully explicit experience everywhere, however, you may want to skip primary actions altogether. To make sure your application behaves the same, go to each of your resources and check to see if they only have one action of each type. If they do, mark that single action as primary?. Additionally, the primary_actions? option has been removed now that all primary actions are explicit.

  
    
  
  Ash.Error.Query.NotFound


We used to return/raise this error directly when something wasn't found, but it was the only place in the framework not using an Error Class. So if you had anything matching on %Ash.Error.Query.NotFound{} it should instead now match on %Ash.Error.Invalid{errors: [%Ash.Error.Query.NotFound{}]}.



  

    
Use Without Data Layers
    

If a resource is configured without a data layer, then it will always be working off of a temporary data set that lives only for the life of that query. This can be a powerful way to model input validations and/or custom/complex reads. Technically, resources without a data layer use Ash.DataLayer.Simple, which does no persistence, and expects to find any data it should use for read actions in a context on the query

  
    
  
  Example


defmodule MyApp.MyComplexResource do
  use Ash.Resource
  # notice no data layer is configured
  
  attributes do
    #A primary key is always necessary on a resource, but this will generate one for you automatically
    uuid_primary_key :id
    attribute :some_complex_derived_number, :integer
  end

  actions do
    read :read do
      prepare MyApp.FetchComplexResources
    end

    create :validate_input do
       ...
       # will validate required inputs, and you can add 
       # validations like you would for any normal resource
    end
  end
end

defmodule MyApp.FetchComplexResources do
  use Ash.Resource.Preparation
 
  def prepare(query, _, _) do
    case fetch_data(query) do
      {:ok, data} ->
        Ash.DataLayer.Simple.set_data(query, data)
      {:error, error} ->
        Ash.Query.add_error(query, SomeBuiltinOrCustomAshError.exception(...))
    end
  end
end

  
    
  
  Usage


They are used in exactly the same way as regular resources
# You can construct changeset over them
changeset =
Ash.Changeset.for_create(MyApp.FetchComplexResource, :validate_input, %{})

# This will return the structs by default
# Although you are free to do custom persistence in your resource changes
MyApp.MyApi.create!(changeset)
# %MyApp.FetchComplexResource{...}



  

    
Validate Changes
    

In Ash, there are three kinds of validations.
	The simple allow_nil? and writable? validations provided for attributes
	Type constraints, specific to each type
	The validations section


  
    
  
  allow_nil/writable?


These are considered simple/global enough to warrant being specified at the attribute level.
attributes do
  attribute :some_field, :integer, writable?: false
  attribute :some_other_field, :integer, allow_nil?: false
end
To see the equivalent statements using the validations section of a resource, see the
corresponding section below.

  
    
  
  Type constraints


Each type (including custom types) can expose constraints. When declaring an attribute
these constraints can be provided with the constraints option. For example:
attributes do
  attribute :some_field, :integer, constraints: [min: 1, max: 5]
  attribute :some_other_field, :string, constraints: [max_length: 255]
end

  
    
  
  Validations Section


The validations section allows you to create validations based on the changeset.
The only information available is the changeset. If you want to adjust the behavior based
on other details of the request, like the current user, you are most likely looking for
authorization.
A validation is a module that implements the Ash.Resource.Validation behaviour. The built in validations
expose utility functions that are imported into the resource's scope, to make them easier to read. You
can do this with custom validations as well. See the documentation in Ash.Resource.Validation for more information.
Right now, there are not very many built in validations, but the idea is that eventually we will have a rich
library of built in validations to choose from.
Validations can be scoped to the type (:create, :update, :destroy) of action (but not to specific actions). If you would like to adjust the validations for a specific action, you can place that validation directly in the action, i.e
create :create do
  validate attribute_equals(:name, "fred")
end

  
    
  
  Important Note


By default, validations in the global validations block will run on create and update only. Many validations don't make sense in the context of destroys. To make them run on destroy, use on: [:create, :update, :destroy]

  
    
  
  Examples


validations do
  validate present([:foo, :bar]), on: :update
  validate present([:foo, :bar, :baz], at_least: 2), on: :create
  validate absent([:foo, :bar, :baz], exactly: 1), on: [:update, :destroy]
  validate {MyCustomValidation, [foo: :bar]}, on: :create
end



  

    
Actions
    


  
    
  
  Action Types


Ash has 5 action types :read, :create, :update, :destroy and :action. The purpose of these action types is to provide expectations about what is required to run those actions, and what is returned from them.

  
    
  
  Generic Actions


The :action type is a special type of action that can do essentially whatever you want. We refer to it as a "generic" action, because there are no special rules about how it works, and minimal structure surrounding it.
A generic action takes arguments and returns a value. The struct used for building input for a generic action is Ash.ActionInput. Most of this document we will focus on the four main action types.

  
    
  
  Create/Read/Update/Destroy


The actions do not need to do exactly what their action type implies however. Using manual actions, you can define a create action that actually updates something, or using the soft? option for destroy actions you can treat them as updates. The important part to consider is their interface. More action types may be added in the future.
Actions either read data or mutate it. :read actions are fundamentally different from :create, :update and :destroy actions. For the most part, :create, :update and :destroy follow all of the same rules, and so will be grouped together when explaining how they behave. Small differences will be pointed out in a few places.

  
    
  
  Idiomatic Actions



  
    
  
  Name Your Actions


The intent behind Ash is not to have you building simple CRUD style applications. In a typical set up you may have a resource with four basic actions, there is even a shorthand to accomplish this:
actions do
  defaults [:create, :read, :update, :destroy]
end
But that is just a simple way to get started, or to create resources that really don't do anything beyond those four operations. You can have as many actions as you want. The best designed Ash applications will have numerous actions, named after the intent behind how they are used. They won't have all reads going through a single read action, and the same goes for the other action types. The richer the actions on the resource, the better interface you can have. With that said, many resources may only have those four basic actions, especially those that are "managed" through some parent resource. See the guide on Managing Relationships for more.

  
    
  
  Primary Actions


Primary actions are a way to inform the framework which actions should be used in certain "automated" circumstances, or in cases where an action has not been specified. If a primary action is attempted to be used but does not exist, you will get an error about it at runtime. The place you typically need primary actions is, when Managing Relationships. However, some prefer to be as explicit as possible, and so will always indicate an action name, and in that case will never use primary actions. When using the defaults option to add default actions, they are marked as primary.
A simple example where a primary action would be used:
# No action is specified, so we look for a primary read.
Api.get!(Resource, "8ba0ab56-c6e3-4ab0-9c9c-df70e9945281")
To mark an action as primary, add the option, i.e
read :action_name do
  primary? true
end

  
    
  
  Put everything inside the action!


Ash provides utilities to modify queries and changesets outside of the actions on the resources. This is a very important tool in our tool belt, but it is very easy to abuse. The intent is that as much behavior as possible is put into the action. Here is the "wrong way" to do it. There is a lot going on here, so don't hesitate to check out other relevant guides if you see something you don't understand.
def top_tickets(user_id) do
  Ticket
  |> Ash.Query.for_read(:read)
  |> Ash.Query.filter(priority in [:medium, :high])
  |> Ash.Query.filter(representative_id == ^user_id)
  |> Ash.Query.filter(status == :open)
  |> Ash.Query.sort(opened_at: :desc)
  |> Ash.Query.limit(10)
  |> Helpdesk.Support.read!()
end

# in the resource

defaults [:read, ...]
And here is the "right way", where the rules about getting the top tickets have been moved into the resource as a nicely named action, and included in the code_interface of that resource. The reality of the situation is that top_tickets/1 is meant to be obsoleted by your Ash resource! Here is how it should be done.
# in the resource

code_interface do
  define_for Helpdesk.Support

  define :top, args: [:user_id]
end

read :top do
  argument :user_id, :uuid do
    allow_nil? false
  end

  prepare build(limit: 10, sort: [opened_at: :desc])

  filter expr(priority in [:medium, :high] and representative_id == ^arg(:user_id) and status == :open)
end
Now, whatever code I had that would have called top_tickets/1 can now call Helpdesk.Support.Ticket.top(user.id). By doing it this way, you get the primary benefit of getting a nice simple Api to call into, but you also have a way to modify how the action is invoked in any way necessary, by going back to the old way of building the query manually. For example, if I also only want to see top tickets that were opened in the last 10 minutes:
Ticket
|> Ash.Query.for_read(:top, %{user_id: user.id})
|> Ash.Query.filter(opened_at > ago(10, :minute))
|> Helpdesk.Support.read!()
That is the best of both worlds! These same lessons transfer to changeset based actions as well.

  
    
  
  Action Lifecycle


defmodule AshChangesetLifeCycleExample do
  def change(changeset, _, _) do
    changeset
    # execute code both before and after the transaction
    |> Changeset.around_transaction(fn changeset, callback ->
      callback.(changeset)
    end)
    # execute code before the transaction is started. Use for things like external calls
    |> Changeset.before_transaction(fn changeset -> changeset end)
    # execute code in the transaction, before and after the data layer is called
    |> Changeset.around_action(fn changeset, callback ->
      callback.(changeset)
    end)
    # execute code in the transaction, before the data layer is called
    |> Changeset.before_action(fn changeset -> changeset end)
    # execute code in the transaction, after the data layer is called, only if the action is successful
    |> Changeset.after_action(fn changeset, result -> {:ok, result} end)
    # execute code after the transaction, both in success and error cases
    |> Changeset.after_transaction(fn changeset, success_or_error_result -> success_or_error_result end
  end
end
Ash uses an "engine" internally that takes lists of "requests" that have dependencies on each-other, and resolves them in some acceptable order. This engine allows for things like parallelizing steps and performing complex workflows without having to handwrite all of the control flow. It isn't important that you know how the engine works, but knowing the basic idea of "list of requests get sent to the engine" should help contextualize the following flow charts.

  
    
  
  Read Actions


Read actions operate on an Ash.Query. They take no input by default, but arguments can be added to the action. All read actions expect to work on lists. The act of pagination, or returning a single result, is handled as part of the interface, and is not a concern of the action itself. Here is an example of a read action:
# Giving your actions informative names is always a good idea
read :ticket_queue do
  # Use arguments to take in values to run your read action.
  argument :priorities, {:array, :atom} do
    constraints items: [one_of: [:low, :medium, :high]]
  end

  # This action may be paginated, and returns a total count of records by default
  pagination offset: true, countable: :by_default

  # Use arguments to modify filters
  # You can also use arguments in custom preparations using `Ash.Changeset.get_argument/2`
  # This is useful when a simple filter like the one below does not suffice
  filter expr(status == :open and priority in ^arg(:priorities))
end
Ash.Query.for_read/4
The following steps are performed when you call Ash.Query.for_read/4.
	Gather Process Context
	Cast input arguments - d:Ash.Resource.Dsl.actions.read.argument
	Set default argument values - d:Ash.Resource.Dsl.actions.read.argument|default
	Add errors for missing required arguments | d:Ash.Resource.Dsl.actions.read.argument|allow_nil?

	Run query preparations | d:Ash.Resource.Dsl.actions.read.prepare

	Add action filter | d:Ash.Resource.Dsl.actions.read|filter


Running the Read Action
If the query has not yet been run through Ash.Query.for_read/3 for the action in question, we do that first. Then we perform the following steps. These steps are trimmed down, and are aimed at helping users understand the general flow. Some steps are omitted.
	Run Ash.Query.for_read/3 if it has not already been run
	Apply tenant filters for attribute
	Apply pagination options
	Run before action hooks
	Multi-datalayer filter is synthesized. We run queries in other data layers to fetch ids and translate related filters to (destination_field in ^ids)
	Strict Check & Filter Authorization is run
	Data layer query is built and validated
	Data layer query is Run
	Authorizer "runtime" checks are run (you likely do not have any of these)

The following steps happen asynchronously during or after the main data layer query has been run
	If paginating and count was requested, the count is determined at the same time as the query is run.
	Any calculations & aggregates that were able to be run outside of the main query are run
	Any relationships are loaded


  
    
  
  Create/Update/Destroy Actions


These actions operate on an Ash.Changeset. While standard destroy actions don't care about the changes you add to a changeset, you may mark a destroy action as d:Ash.Resource.Dsl.actions.destroy|soft?, which means you will be performing an update that will in some way "hide" the resource. Generally this hiding is done by adding a d:Ash.Resource.Dsl.resource|base_filter i.e base_filter [is_nil: :archived_at]
Here is an example create action:
create :register do
  # By default all public attributes are accepted, but this should only take email
  accept [:email]

  # Accept additional input by adding arguments
  argument :password, :string do
    allow_nil? false
  end

  argument :password_confirmation, :string do
    allow_nil? false
  end

  # Use the built in `confirm/2` validation
  validate confirm(:password, :password_confirmation)

  # Call a custom change that will hash the password
  change MyApp.User.Changes.HashPassword
end
Changesets for actions
The following steps are run when calling Ash.Changeset.for_create/4, Ash.Changeset.for_update/4 or Ash.Changeset.for_destroy/4.
	Gather process context
	Cast input params | This is any arguments in addition to any accepted attributes

	Set argument defaults
	Require any missing arguments
	Validate all provided attributes are accepted
	Require any accepted attributes that are allow_nil? false
	Set any default values for attributes
	Run action changes & validations
	Run validations, or add them in before_action hooks if using d:Ash.Resource.Dsl.actions.create.validate|before_action?. Any global validations are skipped if the action has skip_global_validations? set to true.

Running the Create/Update/Destroy Action
All of these actions are run in a transaction if the data layer supports it. You can opt out of this behavior by supplying transaction?: false when creating the action. When an action is being run in a transaction, all steps inside of it are serialized, because generally speaking, transactions cannot be split across processes.
	Authorization is performed on the changes
	A before action hook is added to set up belongs_to relationships that are managed. This means potentially creating/modifying the destination of the relationship, and then changing the destination_attribute of the relationship.
	Before transaction hooks are called (Ash.Changeset.before_transaction/2). Keep in mind, any validations that are marked as before_action? true (or all global validations if your action has delay_global_validations? true) will not have happened at this point.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	Before action hooks are performed in reverse order they were added. (unless append? option was used)
	For manual actions, a before action hook must have set
	After action hooks are performed in the order they were added (unless prepend? option was used)
	For Manual Actions, one of these after action hooks must have returned a result, otherwise an error is returned.
	Non-belongs-to relationships are managed, creating/updating/destroying related records.
	A transaction is opened if the action is configured for it (by default they are) and the data layer supports transactions
	If an after_action option was passed when running the action, it is run with the changeset and the result. Only supported for create & update actions.
	The transaction is closed, if one was opened
	After transaction hooks are invoked with the result of the transaction (even if it was an error)


  
    
  
  Generic Actions


A generic action consists of three main components:
	the return type
	the arguments
	the run function

Here is an example:
action :hello, :string do
  argument :name, :string, allow_nil?: false

  run(fn input, _context ->
    {:ok, "Hello #{input.arguments.name}"}
  end)
end
Returning resource instances
It sometimes happens that you want to make a generic action which returns an
instance of the parent resource. It's natural to assume that you would want
to set your action's return type to the name of your resource. Unfortunately
this will result in a compile error as the resource struct is not yet defined
at the time of DSL transformation. The work around is to define an action
that returns :struct and is constrained to only be of a specific type, eg:
action :get, :struct do
  constraints instance_of: __MODULE__

  run # ...
end

The benefit of using generic actions instead of defining normal functions:
	They can be used with api extensions
	They support Ash authorization patterns (i.e policies)
	They be included in the code interface of a resource
	They can be made transactional with a single option (transaction? true)




  

    
Aggregates
    

Aggregates in Ash allow for retrieving summary information over groups of related data. A simple example might be to show the "count of published posts for a user". Aggregates allow us quick and performant access to this data, in a way that supports being filtered/sorted on automatically. More aggregate types can be added, but you will be restricted to only the supported types. In cases where aggregates don't suffice, use Calculations, which are intended to be much more flexible.

  
    
  
  Declaring aggregates on a resource


Example:
aggregates do
  count :count_of_posts, :posts do
    filter expr(published == true)
  end
end
The available aggregate types are:
	count - counts related items meeting the criteria
	first - gets the first related value matching the criteria. Must specify the field to get.
	sum - sums the related items meeting the criteria. Must specify the field to sum.
	list - lists the related values. Must specify the field to list.

See the docs on d:Ash.Resource.Dsl.aggregates for more information.
The aggregates declared on a resource allow for declaring a set of named aggregates that can be used by extensions.
As an escape hatch, they can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.Api.load/3. Aggregates declared on the resource will be keys in the resource's struct.

  
    
  
  Custom aggregates in the query


Custom aggregates can be added to the query and will be placed in the aggregates key of the results. This is an escape hatch, and is not the primary way that you should be using aggregates. It does, however, allow for dynamism, i.e if you are accepting user input that determines what the filter and/or field should be, that kind of thing.
Example:
User
|> Ash.Query.new()
|> Ash.Query.aggregate(
  :count_of_posts, 
  :count, 
  :posts, 
  query: [
    filter: [published: published?]
  ]
)
See the documentation for Ash.Query.aggregate/4 for more information.



  

    
Atomics
    

Atomics allow you to attach expression-based changes to changesets, to be executed in the data layer when the action is performed.
For example:
update :increment_score do
  argument :points, :integer, allow_nil?: false
  change atomic_update(:score, expr(score + ^arg(:points)))
end

  
    
  
  Current State


Atomics are new, and we will be progressively enhancing various features to support/be aware of atomics. Unless listed below, no other features are aware of atomics. There are many places that can be enriched to either be aware of or leverage atomics. For example, changes could have an atomic and a non-atomic version, policies could be made to support atomics by altering atomic expressions to raise errors, allowing for authorization of atomic changes that doesn't have to wait until after the query.

  
    
  
  What is supported


	Atomics are only supported in update actions upserts are not supported yet
	Attaching atomics to an action using set/2 in the action, as shown in the example below.
	Attaching atomics to a changeset by hand
	Using calculations that don't refer to aggregates in expressions

changeset
|> Ash.Changeset.atomic_update(:score, Ash.Expr.expr(score + 1))
|> Api.update!()

  
    
  
  What is not supported/may come in the future


	atomic support in upserts, with a special reference to the row being overwritten:

create :upsert do
  upsert? true
  change set_attribute(:points, 1) # set to 1
  set_on_upsert :points, expr(base.points + 1) # or increment existing
end
	using calculations that refer to aggregates/would need to join to other resources in atomics

	lowering validations, policies, and changes into atomics when data layers support it

	bulk updates using atomics, i.e


Resource
|> Ash.Query.for_read(:some_read_action)
|> Api.update(set: [points: expr(points + 1)])



  

    
Attributes
    

Attributes specify the name, type and properties of a piece of information in a resource.

  
    
  
  Ways of writing attributes


There are two ways to write an attribute:
attribute :name, :string, allow_nil?: false

# or ...
attribute :name, :string do
  allow_nil? false
end
Both ways will work. Though when you're using many options the latter is preferred. This is also true of any other keyword in the Ash DSL, so you can build a flexible yet concise domain model.
For more information on attribute types including composite types and defining your own custom type see Ash.Type
You can find a comprehensive of attribute options with detailed descriptions on the d:Ash.Resource.Dsl.attributes page.

  
    
  
  Special attributes


In Ash there are 4 special attributes these are:
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key

These are really just shorthand for an attribute with specific options set. They're outlined below.

  
    
  
  create_timestamp


You may recognise this if you have used Ecto before. This attribute will record the time at which each row is created, by default it uses DateTime.utc_now/1.
create_timestamp :inserted_at is equivalent to an attribute with these options:
attribute :inserted_at, :utc_datetime_usec do
  writable? false
  private? true
  default &DateTime.utc_now/0
  match_other_defaults? true
  allow_nil? false
end

  
    
  
  update_timestamp


This is also similar in Ecto. This attribute records the last time a row was updated, also using DateTime.utc_now/1 by default.
update_timestamp :updated_at is equivalent to:
attribute :updated_at, :utc_datetime_usec do
  writable? false
  private? true
  default &DateTime.utc_now/0
  update_default &DateTime.utc_now/0
  match_other_defaults? true
  allow_nil? false
end

  
    
  
  uuid_primary_key


This attribute is used in almost every resource. It generates a UUID every time a new record is made.
uuid_primary_key :id is equivalent to:
attribute :id, :uuid do
  writable? false
  default &Ash.UUID.generate/0
  primary_key? true
  allow_nil? false
end

  
    
  
  integer_primary_key


Don't use this attribute unless absolutely necessary, there are a lot of good reasons to not use autoincrementing integer ids. If you do, please make sure these resource are only accessed internally and aren't exposed via a public API.
integer_primary_key :id is equivalent to:
attribute :id, :integer do
  writable? false
  generated? true
  primary_key? true
  allow_nil? false
end



  

    
Bulk Actions
    

Bulk actions are ways to create, update or destroy many records at once, backed by scalable patterns.
Currently, only bulk creates are implemented. Bulk updates and bulk destroys will come next.

  
    
  
  Bulk Creates


Bulk creates take a list or stream of inputs for a given action, and batches calls to the underlying data layer. For example, with an action like this:
create :create do
  accept [:title, :subtitle]
end
You could then call YourApi.bulk_create like so:
YourApi.bulk_create([ %{title: "foo", subtitle: "bar"}, %{title: "baz", subtitle: "buz"}], Resource, :action)

  
    
  
  Considerations


Generally speaking, all regular Ash create actions are compatible (or can be made to be compatible) with bulk create actions. However, there are some important considerations.
	Ash.Resource.Change modules can be optimized for bulk actions by implementing batch_change/3, before_batch/3 and after_batch/3. If you implement batch_change/3, the change function will no longer be called, and you should swap any behavior implemented with before_action and after_action hooks to logic in the before_batch and after_batch callbacks.

	Actions that reference arguments in changes, i.e change set_attribute(:attr, ^arg(:arg)) will prevent us from using the batch_change/3 behavior. This is usually not a problem, for instance that change is lightweight and would not benefit from being optimized with batch_change/3

	If your action uses after_action hooks, or has after_batch/3 logic defined for any of its changes, then we must ask the data layer to return the records it inserted. Again, this is not generally a problem because we throw away the results of each batch by default. If you are using return_records?: true then you are already requesting all of the results anyway.



  
    
  
  Returning a Stream


Returning a stream allows you to work with a bulk action as an Elixir Stream. For example:
input_stream()
|> YourApi.bulk_create(Resource, :action, return_stream?: true, return_records?: true)
|> Stream.map(fn {:ok, result} -> 
  # process results
  {:error, error} ->
  # process errors
end)
|> Enum.reduce(%{}, fn {:ok, result}, acc -> 
   # process results
   {:error, error} ->
   # process errors
end)

  
    
  
  Considerations


Because streams are lazily evaluated, if you were to do something like this:
[input1, input2, ...] # has 300 things in it
|> YourApi.bulk_create(Resource, :action, return_stream?: true, return_records?: true, batch_size: 100) # the default is 100
|> Enum.take(150)
What would happen is that we would insert 200 records (assuming no errors were emitted). Because the stream would end after we process the first two batches. If you want to make sure that everything happens, just be sure you aren't using things like Stream.take or Enum.take to limit the amount of things pulled from the stream.



  

    
Calculations
    

Calculations in Ash allow for displaying complex values as a top level value of a resource.

  
    
  
  Primer



  
    
  
  Declaring calculations on a resource



  
    
  
  Expression Calculations


The simplest kind of calculation refers to an Ash expression. For example:
calculations do
  calculate :full_name, :string, expr(first_name <> " " <> last_name)
end
See the Expressions guide for more.

  
    
  
  Module Calculations


When calculations require more complex code or can't be pushed down into the data layer, a module that uses Ash.Calculation can be used.
defmodule Concat do
  # An example concatenation calculation, that accepts the delimiter as an argument,
  #and the fields to concatenate as options
  use Ash.Calculation

  # Optional callback that verifies the passed in options (and optionally transforms them)
  @impl true
  def init(opts) do
    if opts[:keys] && is_list(opts[:keys]) && Enum.all?(opts[:keys], &is_atom/1) do
      {:ok, opts}
    else
      {:error, "Expected a `keys` option for which keys to concat"}
    end
  end

  @impl true
  # A callback to tell Ash what keys must be loaded/selected when running this calculation
  def load(_query, opts, _context) do
    opts[:keys]
  end

  @impl true
  def calculate(records, opts, %{separator: separator}) do
    Enum.map(records, fn record ->
      Enum.map_join(opts[:keys], separator, fn key ->
        to_string(Map.get(record, key))
      end)
    end)
  end

  # You can implement this callback to make this calculation possible in the data layer
  # *and* in elixir. Ash expressions are already executable in Elixir or in the data layer, but this gives you fine grain control over how it is done
  # @impl true
  # def expression(opts, context) do
  # end
end

# Usage in a resource
calculations do
  calculate :full_name, :string, {Concat, keys: [:first_name, :last_name]} do
    # You need to use the [allow_empty?: true, trim?: false] constraints here.
    # The separator could be an empty string or require a leading or trailing space,
    # but would be trimmed or even set to `nil` without the constraints shown below.
    argument :separator, :string do
      allow_nil? false
      constraints [allow_empty?: true, trim?: false]
      default ""
    end
  end
end
See the documentation for the calculations section in Resource DSL docs and the Ash.Calculation docs for more information.
The calculations declared on a resource allow for declaring a set of named calculations that can be used by extensions.
They can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.Api.load/3. Calculations declared on the resource will be keys in the resource's struct.

  
    
  
  Custom calculations in the query


Example:
User
|> Ash.Query.new()
|> Ash.Query.calculate(:full_name, {Concat, keys: [:first_name, :last_name]}, :string, %{separator: ","})
See the documentation for Ash.Query.calculate/4 for more information.

  
    
  
  Arguments in calculations


Using the above example with arguments, you can load a calculation with arguments like so:
load(full_name: [separator: ","])
If the calculation uses an expression, you can also filter and sort on it like so:
query
|> Ash.Query.filter(full_name(separator: ","))
|> Ash.Query.sort(full_name: {:asc, %{separator: ","}})



  

    
Code Interface
    

One of the ways that we interact with our resources is via hand-written code. The general pattern for that looks like building a query or a changeset for a given action, and dispatching it to the api using things like MyApi.read/3 and MyApi.create/3. This, however, is just one way to use Ash, and is designed to help you build tools that work with resources, and to power things like AshPhoenix.Form, AshGraphql.Resource and AshJsonApi.Resource. When working with your resources in code, we generally want something more idiomatic and simple. For example, on a resource called Helpdesk.Support.Ticket:
code_interface do
  define_for Helpdesk.Support

  define :open, args: [:subject]
end
This simple setup now allows you to open a ticket with Helpdesk.Support.Ticket.open(subject). You can cause it to raise errors instead of return them with Helpdesk.Support.Ticket.open!(subject). For information on the options and additional inputs these defined functions take, look at the generated function documentation, which you can do in iex with h Helpdesk.Support.Ticket.open. For more information on the code interface, read the DSL documentation: d:Ash.Resource.Dsl.code_interface.

  
    
  
  define_for and define_interface


Notice how we included a specific Api module using define_for above. Without this, no functions will be defined in the resource. This is because you might want to define the interface for multiple resources in a single module. While we encourage the use of define_for Api, it is not the only way to do it. You could also do something like this:
defmodule MyApp.MyApi.Interface do
  require Ash.CodeInterface

  Ash.CodeInterface.define_interface(MyApp.MyApi, MyApp.Resource1)
  Ash.CodeInterface.define_interface(MyApp.MyApi, MyApp.Resource2)
end
And then call functions on MyApp.MyApi.Interface instead.

  
    
  
  Using the code interface


If the action is an update or destroy, it will take a record or a changeset as its first argument.
If the action is a read action, it will take a starting query as an opt in the last argument.
All functions will have an optional last argument that accepts options. See Ash.Resource.Interface.interface_options/1 for valid options.
For reads:
	:query - a query to start the action with, can be used to filter/sort the results of the action.

For creates:
	:changeset - a changeset to start the action with

They will also have an optional second to last argument that is a freeform map to provide action input. It must be a map.
If it is a keyword list, it will be assumed that it is actually options (for convenience).
This allows for the following behaviour:
# Because the 3rd argument is a keyword list, we use it as options
Api.register_user(username, password, [tenant: "organization_22"])
# Because the 3rd argument is a map, we use it as action input
Api.register_user(username, password, %{key: "val"})
# When all arguments are provided it is unambiguous
Api.register_user(username, password, %{key: "val"}, [tenant: "organization_22"])

  
    
  
  Calculations


Resource calculations can be run dynamically using YourApi.calculate/3, but
you can also expose them using the code_interface with define_calculation.
For example:
calculations do
  calculate :full_name, :string, expr(first_name <> ^arg(:separator) <> last_name) do
    argument :separator, :string do
      allow_nil? false
      default " "
    end
  end
end

code_interface do
  define_for YourApi
  define_calculation :full_name, args: [:first_name, :last_name, {:optional, :separator}]
  # or if you want to take a record as an argument
  define_calculation :full_name, args: [:_record]
end
This could now be used like so:
User.full_name("Jessie", "James", "-")
# or with a record as an argument
User.full_name(user)
This allows for running calculations without an instance of a resource, i.e Api.load(user, :full_name)
By default, configured args will be provided for any matching named reference or argument. This is normally fine, but in the case that you have an argument and a reference with the same name, you can specify it by supplying {:arg, :name} and {:ref, :name}. For example:
define_calculation :id_matches, args: [{:arg, :id}, {:ref, :id}]
To make arguments optional, wrap them in {:optional, ..}, for example:
define_calculation :id_matches, args: [{:arg, :id}, {:optional, {:ref, :id}}]



  

    
Constraints
    

Constraints are a way of validating an input type. This validation can be used in both attributes and arguments. The kinds of constraints you can apply depends on the type the data. You can find all types in Ash.Type . Each type has its own page on which the available constraints are listed. For example in Ash.Type.String you can find 5 constraints:
	:max_length
	:min_length
	:match
	:trim?
	:allow_empty?

You can also discover these constraints from iex:
$ iex -S mix
iex(1)> Ash.Type.String.constraints
[
  max_length: [
    type: :non_neg_integer,
    doc: "Enforces a maximum length on the value"
  ],
  min_length: [
    type: :non_neg_integer,
    doc: "Enforces a minimum length on the value"
  ],
  match: [
    type: {:custom, Ash.Type.String, :match, []},
    doc: "Enforces that the string matches a passed in regex"
  ],
  trim?: [type: :boolean, doc: "Trims the value.", default: true],
  allow_empty?: [
    type: :boolean,
    doc: "If false, the value is set to `nil` if it's empty.",
    default: false
  ]
]


  
    
  
  Attributes with Constraints


To show how constraints can be used in a attribute, here is an example attribute describing a username:
defmodule MyProject.MyApi.Account do
  # ...

  code_interface do
    define_for MyProject.MyApi.Account
    define :create, action: :create
  end

  actions do
    default [:create, :read, :update, :destroy]
  end

  attributes do
    uuid_primary_key :id

    attribute :username, :string do
      constraints [
        max_length: 20,
        min_length: 3,
        match: ~r/^[a-z_-]*$/,
        trim?: true,
        allow_empty?: false
      ]
    end
  end

  # ...
end
If when creating or updating this attribute one of the constraints are not met, an error will be given telling you which constraint was broken. See below:
iex(1)> MyProject.MyApi.Account.create!(%{username: "hi"})

** (Ash.Error.Invalid) Input Invalid

* Invalid value provided for username: length must be greater than or equal to 3.

"hi"

iex(2)> MyProject.MyApi.Account.create!(%{username: "Hello there this is a long string"})

** (Ash.Error.Invalid) Input Invalid

* Invalid value provided for username: length must be less than or equal to 20.

"Hello there this is a long string"

iex(3)> MyProject.MyApi.Account.create!(%{username: "hello there"})
** (Ash.Error.Invalid) Input Invalid

* Invalid value provided for username: must match the pattern ~r/^[a-z_-]*$/.

"hello there"

iex(4)> MyProject.MyApi.Account.create!(%{username: ""})
** (Ash.Error.Invalid) Input Invalid

* attribute title is required
It will give you the resource as usual on successful requests:
iex(5)> MyProject.MyApi.Account.create!(%{username: "hello"})
#MyProject.MyApi.Account<
  __meta__: #Ecto.Schema.Metadata<:loaded, "account">,
  id: "7ba467dd-277c-4916-88ae-f62c93fee7a3",
  username: "hello",
  ...
>

  
    
  
  Arguments with Constraints


Arguments are used to input data into actions. As the data we pass in has a type we can apply constraints to validate the input arguments.
defmodule MyProject.MyApi.Account do
  # ...

  code_interface do
    define_for MyProject.MyApi.Account
    define :create_username_with_age, action: :create_username_with_age
  end

  actions do
    default [:create, :read, :update, :destroy]

    create :create_username_with_age do
      argument :title, :string, allow_nil?: false

      argument :age, :integer do
        allow_nil? false
        constraints min: 18, max: 99
      end

      change fn changeset, _ ->
        username = Ash.Changeset.get_argument(changeset, :username)
        age = Ash.Changeset.get_argument(changeset, :age)

        Ash.Changeset.change_attribute(changeset, :username, "#{username}-#{age}")
      end
    end
  end

  attributes do
    uuid_primary_key :id

    attribute :username, :string do
      constraints [
        max_length: 20,
        min_length: 3,
        match: ~r/^[a-z0-9_-]*$/,
        trim?: true,
        allow_empty?: false
      ]
    end
  end

  # ...
end
If you input argument is going to be used as a attribute directly, its best to put the constraint in the attributes block. But if you are combining multiple arguments to synthesize an attribute, then you should apply constraints to the arguments.
Above we have defined a custom action which takes 2 arguments :title and :age this action creates a username where the age of the user is embedded. However we have placed a limitation via the constraints so that only when age >= 18 and age <= 99 is the action allowed to occur. Lets see this in action.
iex(1)> MyProject.MyApi.Account.create_username_with_age!(%{username: "hello", age: 100})

** (Ash.Error.Invalid) Input Invalid

* Invalid value provided for age: must be less than or equal to 99.

100

iex(2)> MyProject.MyApi.Account.create_username_with_age!(%{username: "hello", age: 99})
#MyProject.MyApi.Account<
  __meta__: #Ecto.Schema.Metadata<:loaded, "accounts">,
  id: "5a28d5a1-25e6-4363-b173-3dd64e629dc8",
  title: "hello-99",
  ...
>



  

    
Development Utilities
    


  
    
  
  ElixirSense Plugin


The Ash ElixirSense plugin offers custom auto complete inside of any Ash DSL module (i.e resource/api/flow/registry)
As of this writing, this does not work with the currently released VSCode package. We are waiting for them to do another release
to resolve this issue. However, you can clone down the elixir-ls repository, run its release command, and configure VSCode to point
at the folder where you did that.

  
    
  
  Formatter plugin


The underlying DSL tooling Spark has a formatter plugin that can help you keep your resources consistent and neat.

  
    
  
  Adding the plugin


Add the following to your .formatter.exs
[
  plugins: [Spark.Formatter], # <- add the plugin here
  inputs: ...
]

  
    
  
  Configuration


Minimal config for your Ash Resources
config :spark, :formatter,
  remove_parens?: true,
  "Ash.Resource": [
    type: Ash.Resource,
    section_order: [
      :authentication,
      :token,
      :attributes,
      :relationships,
      :policies,
      :postgres
    ]
  ]
If you use a different module than Ash.Resource
config :spark, :formatter,
  [
    "Ash.Resource": [
      section_order: [
        :resource,
        :identities,
        :attributes,
        :relationships,
        ...
      ]
    ],
    # If you use a different module than Ash.Resource
    "MyApp.Resource": [
      type: Ash.Resource,
      # What extensions might be added by your base module
      extensions: [...],
      section_order: [
        :resource,
        :identities,
        :attributes,
        :relationships,
        ...
      ]
    ]
  ]



  

    
Embedded Resources
    

Embedded resources function very similarly to embedded schemas in Ecto.
The primary difference is the same as the primary difference between Ecto schemas and Ash resources: the full lifecycle
of the resource is managed by its configuration. For example, you can add validations, calculations, and even authorization policies to an embedded resource. Here is an example of a simple embedded resource:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end
end
Embedded resources cannot have relationships or aggregates.

  
    
  
  Adding embedded resource attributes


Embedded resources define an Ash.Type under the hood, meaning you can use them anywhere you would use an Ash type.
defmodule MyApp.User do
  use Ash.Resource, ...

  attributes do
    ...

    attribute :profile, MyApp.Profile
    attribute :profiles, {:array, MyApp.Profile} # You can also have an array of embeds
  end
end

  
    
  
  Editing embedded attributes


If you manually supply instances of the embedded structs, the structs you provide are used with no validation. For example:
Ash.Changeset.new(user, %{profile: %MyApp.Profile{first_name: "first_name", last_name: "last_name}})
However, you can also treat embedded resources like regular resources that can be "created", "updated", and "destroyed".
To do this, provide maps as the input, instead of structs. In the example above, if you just wanted to change the first_name, you'd provide:
Ash.Changeset.new(user, %{profile: %{first_name: "first_name"}})
This will call the primary update action on the resource. This allows you to define an action on the embed, and add validations to it. For example, you might have something like this:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end

  validations do
    validate present([:first_name, :last_name], at_least: 1)
  end
end

  
    
  
  Calculations


Calculations can be added to embedded resources. When you use an embedded resource, you declare what calculations to load via a constraint.
For example:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end

  calculations do
    calculate :full_name, :string, concat([:first_name, :last_name], " ")
  end
end

defmodule MyApp.User do
  use Ash.Resource,
    ...

  attributes do
    attribute :profile, MyApp.Profile do
      constraints [load: [:full_name]]
    end
  end
end

  
    
  
  Determining what action(s) will be called:


Remember: default actions are already implemented for a resource, with no need to add them. They are called :create, :update, :destroy, and :read. You can use those without defining them. You only need to define them if you wish to override their configuration.

  
    
  
  Single Embeds


	If the current value is nil - a create with the provided values
	If the current value is not nil - an update with the provided values
	If the current value is not nil and the new value is nil - a destroy with the original value


  
    
  
  Array Embeds


All values in the original array are destroyed, and all maps in the new array are used to create new records.

  
    
  
  Adding a primary key


Adding a primary key to your embedded resources is especially useful when managing lists of data. Specifically, it allows you to consider changes to elements with matching primary key values as updates.
For example:
defmodule MyApp.Tag do
  use Ash.Resource,
    data_layer: :embedded

  attributes do
    uuid_primary_key :id
    attribute :name, :string
    attribute :counter, :integer
  end

  validations do
    validate {Increasing, field: :counter}, on: :update
  end
end
Now, you can accept input meant to update individual list items. The entire list must still be provided, but any items with a matching id will be considered an update instead of a destroy + create.

  
    
  
  Determining what action(s) will be called with a primary key:


Single Embeds with primary keys
	If you provide a struct, instead of a map, the value provided is used as the new relationship value directly.
	If the current value is nil - a create with the provided values
	If the current value is not nil and the primary keys match - an update with the provided values
	If the current value is not nil and the primary keys don't match - a destroy of the original value and a create of the new value
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds with primary keys
	If you provide structs, instead of maps, the value provided is used as the new relationship value directly.
	Any values in the original list with no primary key matching in the new list are destroyed.
	Any values in the new list with no primary key matching in the original list are created.
	Any values with a primary key match in the original list and the new list are updated


  
    
  
  Identities


Identities can be added on an embedded resource, which will ensure that for any given list, they are unique on that identity. For example, if you had an embedded resource called Tag, you could add an identity on name to ensure that nothing has duplicate tag names.

  
    
  
  Usage in Extensions


The AshJsonApi extension exposes these attributes as maps. However, the AshGraphql extension allows you
to specify a type (but not queries/mutations) for an embedded resource. If you do, instead of being treated as a :json type it will get its own named input object type and field type.

  
    
  
  Accessing the source changeset


When building changesets for embedded resources, the source changeset will be available in action changes under changeset.context.__source__.
This allows you to customize the action based on the details of the parent changeset.



  

    
Expressions
    

Ash expressions are used in various places like calculations, filters, and policies, and are meant to be portable representations of elixir expressions. You can create an expression using the Ash.Query.expr/1 macro, like so:
Ash.Query.expr(1 + 2)
Ash.Query.expr(x + y)
Ash.Query.expr(post.title <> " | " <> post.subtitle)
Ash expressions have some interesting properties in their evaluation, primarily because they are made to be portable, i.e executable in some data layer (like SQL) or executable in Elixir. In general, these expressions will behave the same way they do in Elixir. The primary difference is how nil values work. They behave the way that NULL values behave in SQL. This is primarily because this pattern is easier to replicate to various popular data layers, and is generally safer when using expressions for things like authentication. The practical implications of this are that nil values will "poison" many expressions, and cause them to return nil. For example, x + nil would always evaluate to nil. Additionally, true and nil will always result in nil, this is also true with or and not, i.e true or nil will return nil, and not nil will return nil.

  
    
  
  Operators


The following operators are available and they behave the same as they do in Elixir, except for the nil addendum above.
	==
	!=
	>
	>=
	<
	<=
	in
	*
	-
	/
	<>
	||
	&&
	is_nil | Only works as an operator in maps/keyword list syntax. i.e [x: [is_nil: true]]



  
    
  
  Functions


The following functions are built in. Data Layers can add their own functions to expressions. For example, AshPostgres adds a fragment function that allows you to provide SQL directly.
The following functions are built in:
	if | Works like elixir's if.

	is_nil/1 | Works like elixir's is_nil

	get_path/2 | i.e get_path(value, ["foo", "bar"]). This is what expressions like value[:foo]["bar"] are turned into under the hood.

	contains/2 | if one string contains another string, i.e contains("fred", "red")

	length/1 | the length of a list, i.e. length([:foo, :bar])

	type/2 | Cast a given value to a specific type, i.e type(^arg(:id), :uuid) or type(integer_field, :string)

	string_join/1 | Concatenates a list of strings, and ignores any nil values

	string_join/2 | As above, but with a joiner

	string_split/1 | Splits a string on spaces

	string_split/2 | As above, but with a specific delimiter

	string_split/3 | As above, but with options. See the function for the available options.

	at/2 | Get an element from a list, i.e at(list, 1)

	round/1 | Round a float, decimal or int to 0 precision, i.e round(num)

	round/2 | Round a float, decimal or int to the provided precision or less, i.e round(1.1234, 3) == 1.1234 and round(1.12, 3) == 1.12



  
    
  
  Sub-expressions


	exists/2 | exists(foo.bar, name == "fred") takes an expression scoped to the destination resource, and checks if any related entry matches. See the section on exists below.

	path.exists/2 | Same as exists but the source of the relationship is itself a nested relationship. See the section on exists below.

	parent/1 | Allows an expression scoped to a resource to refer to the "outer" context. Used in relationship filters and exists



  
    
  
  DateTime Functions


	now/0 | Evaluates to the current time when the expression is evaluated

	today/0 | Evaluates to the current date when the expression is evaluated

	ago/2 | i.e deleted_at > ago(7, :day). The available time intervals are documented in Ash.Type.DurationName

	from_now/2 | Same as ago but adds instead of subtracting

	datetime_add/3 | add an interval to a datetime, i.e datetime_add(^datetime, 10, :hour)

	date/3 | add an interval to a date, i.e datetime_add(^date, 3, :day)



  
    
  
  Primitives


	cond - cond is transformed to a series of if expressions under the hood
	item[:key] or item["key"] - accesses keys in a map. In both cases, it prefers a matching atom key, falling back to a matching string key. This is to aid with data stores that store embeds as JSON with string keys (like AshPostgres), so that this expression behaves the same in the data layer as it does in Elixir.


  
    
  
  Inline Aggregates


Aggregates can be referenced in-line, with their relationship path specified and any options provided that match the options given to Ash.Query.Aggregate.new/4. For example:
calculate :grade, :decimal, expr(
  count(answers, query: [filter: expr(correct == true)]) /
  count(answers, query: [filter: expr(correct == false)])
)
The available aggregate kinds can also be seen in the Ash.Query.Aggregate module documentation.

  
    
  
  Templates


Most of the time, when you are using an expression, you will actually be creating a template. In this template, you have a few references that can be used, which will be replaced when before the expression is evaluated. The following references are available. The ones that start with ^ must be imported from Ash.Filter.TemplateHelpers.
^actor(:key) # equivalent to `get_in(actor || %{}, [:key])`
^actor([:key1, :key2]) # equivalent to `get_in(actor || %{}, [:key, :key2])`
^arg(:arg_name) # equivalent to `Map.get(arguments, :arg_name)`
^context(:key) # equivalent to `get_in(context, :key)`
^context([:key1, :key2]) # equivalent to `get_in(context, [:key1, :key2])`
ref(:key) # equivalent to referring to `key`. Allows for dynamic references
ref(:key, [:path]) # equivalent to referring to `path.key`. Allows for dynamic references with dynamic (or static) paths.

  
    
  
  Use cases for expressions



  
    
  
  Filters


The most obvious place we use expressions is when filtering data. For example:
Ash.Query.filter(Ticket, status == :open and opened_at >= ago(10, :day))
These filters will be run in the data layer, i.e in the SQL query.
Filter semantics & joins
The semantics of Ash filters are probably slightly different than what you are used to, and they are important to understand. Every filter expression is always talking about a single row, potentially "joined" to single related rows. By referencing relationships, you are implicitly doing a join. For those familiar with SQL terminology, it is equivalent to a left join, although AshPostgres can detect when it is safe to do an inner join (for performance reason). Lets use an example of posts and comments.
Given a filter like the following:
Ash.Query.filter(Post, comments.points > 10 and comments.tag.name == "elixir")
The filter refers to a single post/comment/tag combination. So in english, this is "posts where they have a comment with more than 10 points and that same comment has a tag with the name elixir". What this also means is that filters like the above do not compose nicely when new filters are added. For example:
def has_comment_with_more_points_than(query, score) do
  Ash.Query.filter(Post, comments.points > 10)
end

def has_comment_tagged(query, tag) do
  Ash.Query.filter(Post, comments.tag.name == ^tag)
end

Post
|> has_comment_with_more_points_than(query, 10)
|> has_comment_tagged("elixir")
That code seems like it ought to produce a filter over Post that would give us any post with a comment having more than 10 points, and with a comment tagged elixir. That is not the same thing as having a single comment that meets both those criteria. So how do we make this better?
Exists
Lets rewrite the above using exists:
def has_comment_with_more_points_than(query, score) do
  Ash.Query.filter(Post, exists(comments, points > ^score))
end

def has_comment_tagged(query, tag) do
  Ash.Query.filter(Post, exists(comments.tag.name == ^tag)
end

Post
|> has_comment_with_more_points_than(query, ^score)
|> has_comment_tagged("elixir")
Now, they will compose properly!  Generally speaking, you should use exists when you are filtering across any relationships that are to_many relationships *even if you don't expect your filter to be composed. Currently, the filter syntax does not minimize(combine) these exists/2 statements, but doing so is not complex and can be added. While unlikely, please lodge an issue if you see any performance issues with exists.
Exists at path
Sometimes, you want the ability to say that some given row must have an existing related entry matching a filter. For example:
Ash.Query.filter(Post, author.exists(roles, name == :admin) and author.active)
While the above is not common, it can be useful in some specific circumstances, and is used under the hood by the policy authorizer when combining the filters of various resources to create a single filter.

  
    
  
  Relationship Filters


When filtering relationships, you can use the parent/1 function to scope a part of the expression to "source" of the join. This allows for very expressive relationships! Keep in mind, however, that if you want to update and/or manage these relationships, you'll have to make sure that any attributes that make these things actually related are properly set.
has_many :descendents, __MODULE__ do
  description "All descendents in the same tree"
  no_attributes? true # this says that there is no matching source_attribute and destination_attribute on this relationship
  # This is an example using postgres' ltree extension.
  filter expr(tree_id == parent(tree_id) and fragment("? @> ?", parent(path), path))
end

  
    
  
  Portability


Ash expressions being portable is more important than it sounds. For example, if you were using AshPostgres and had the following calculation, which is an expression capable of being run in elixir or translated to SQL:
calculate :full_name, :string, expr(first_name <> " " <> last_name)
And you did something like the following:
User
|> Ash.Query.load(:full_name)
|> Ash.Query.sort(:full_name)
|> Accounts.read!()
You would see that it ran a SQL query with the full_name calculation as SQL. This allows for sorting on that value. However, if you had something like this:
# data can be loaded in the query like above, or on demand later
Accounts.load!(user, :full_name)
you would see that no SQL queries are run. The calculation is run directly in Elixir and the value is set.

  
    
  
  Parent


Parent is a way to "jump out" of a scoped expression. Here are some examples:
Ash.Query.filter(exists(open_tickets, severity >= parent(severity_threshold)))

  
    
  
  COMING SOON


The following two examples do not work currently, but are being worked on
has_many :relevant_tickets, Ticket do
  filter expr(status == :open and severity >= parent(severity_threshold))
end
count :count_of_relevant_tickets, :open_tickets do
  filter expr(status == :open and severity >= parent(severity_threshold))
end

  
    
  
  Referencing related values


Related values can be references using dot delimiters, i.e Ash.Query.filter(user.first_name == "fred").
When referencing related values in filters, if the reference is a has_one or belongs_to, the filter does exactly what it looks like (matches if the related value matches). If it is a has_many or a many_to_many, it matches if any of the related records match.

  
    
  
  Referencing aggregates and calculations


Aggregates are simple, as all aggregates can be referenced in filter expressions (if you are using a data layer that supports it).
For calculations, only those that define an expression can be referenced in other expressions.
Here are some examples:
# given a `full_name` calculation

Ash.Query.filter(User, full_name == "Hob Goblin")

# given a `full_name` calculation that accepts an argument called `delimiter`

Ash.Query.filter(User, full_name(delimiter: "~") == "Hob~Goblin")



  

    
Flows
    

A flow is a static definition of a set of steps to be run.
Flows are backed by executors, which determine how the workflow steps are performed.
The executor can be overridden on invocation, but not all executors will be capable of running all flows.
As of this writing, the default executor is the only one. It runs all steps in parallel unless values must be provided from one step to another, or in steps that are enclosed by a transaction.
Ash.Flow is still in its early days, so expect many features, step types, and executors to come in the future.
All explanations here pertain to the builtin executor, so be sure to read the documentation of any other executor you may use.
Flows are comprised of steps, which each have an input and an result. By default, each step is executed concurrently (or at least may be executed concurrently). When the result of one step is used in another, that will cause them to run in sequence. In the following flow, for example, the :create_user and :create_blank_project steps would happen concurrently, but both would wait on the :create_org step.
flow do
  # Flow arguments allow you to parameterize the flow
  argument :org_name, :string do
    allow_nil? false
  end

  argument :user_name, :string do
    allow_nil? false
  end

  # The flow returns the result of the `:create_user` step.
  returns :create_user
end

steps do
  # The step is called `:create_org`, and it creates an `Organization` using the `register_org` action.
  create :create_org, MyApp.Accounts.Organization, :register_org do
    # The input to the action refers to an argument of the flow
    input %{
      name: arg(:org_name)
    }
  end

  # The step is called :create_user, and it creates a `User` using the `:register_user` action.
  create :create_user, MyApp.Accounts.User, :register_user do
    input %{
      # The input refers to an argument of the flow
      name: arg(:user_name),
      # and to the result of another step
      org: result(:create_org)
    }
  end

  # The step is called :create_blank_project, and it creates a `Project` using the `:create_example` action.
  create :create_blank_project, MyApp.Accounts.Project, :create_example do
    input %{
      # The input refers to the result of another step
      org: result(:create_org)
    }
  end
end

  
    
  
  Return Values


returns determines what the flow returns, and may be one of three things:
	:step_name - will return the result of the configured step
	%{step_name: :key} will return a map of each key to the provided step name, i.e %{key: <step_name_result>}
	[:step_name] - which is equivalent to %{step_name: :step_name}

A flow always returns an %Ash.Flow.Result{}, and the return value of a successful flow will be available in %Ash.Flow.Result{result: result} when the flow did not encounter an error.
If the flow resulted in an error, error? is set to true, and the result will be nil.

  
    
  
  Halting and Resuming Flows


A flow can be halted by using the halt_if option on a step, or by a custom step returning {:error, Ash.Flow.Error.Halted.exception(reason: reason)}
In this case, the flow will be marked as complete?: false. The result of each step up until this point is saved, and you can then rerun the flow with different inputs by passing the incomplete result into the resume option when running the flow again. Individual steps can be rerun by deleting them from the data field of the flow. 

  
    
  
  Errors


Currently, any error anywhere in the flow will fail the flow and will return an error. Over time, error handling behavior will be added, as well as the ability to customize how transactions are rolled back, and to handle errors in a custom way.

  
    
  
  Custom steps


Custom steps allow you to implement any custom logic that you need. There aren't really any restrictions on what you do in a custom step, but there is one main consideration if you want your custom step to play nicely with transactions:
Generally speaking you should set the touches_resources if you set async? to true.
This ensures that the custom step will be run synchronously if any of those resource's data
layers is in a corresponding transaction. You don't necessarily need to set all of the
resources that will be touched. For example, all AshPostgres resources that share the same
repo share the same transaction state.



  

    
Glossary
    


  
    
  
  Action


An action describes an operation that can be performed for a given resource; it is the verb to a resource's noun. Examples of actions:
	User.create
	Comment.delete
	BlogPost.publish
	Article.search

Ash supports four different types of actions - create, read, update and destroy (collectively often abbreviated as CRUD). A resource can define multiple actions per action type, eg. a publish action would be considered an update because it is updating an existing instance of a resource. Actions are much more flexible than simple CRUD, but these four action types serve as templates for anything you might want to do.
See the Actions guide for more information.

  
    
  
  Actor


The entity that performs an action. Most actions are run on direct user request, eg. if a user presses a Create button on a page then the actor is the user; but an actor might also be an organization, a group, or the system itself.
Actors are referenced during authorization - ensuring that the actor is allowed to perform an action, before it takes place. The actor can also be used within actions, to record which entity performed the action.
See the Security guide for more information.

  
    
  
  Aggregate


An aggregate is a special type of field for a resource, one that summarizes related information of the record. A more specialized type of a calculation.
If a Project resource has_many Ticket resources, an example of an aggregate on the Project might be to count the tickets associated to each project.
See the Aggregates guide for more information.

  
    
  
  API


A method of broadly separating resources into different bounded contexts. Small apps might only have one API, in which case you can set-and-forget it, but apps with larger domains can benefit from different contexts having different views of the same resource.
See Ash.Api.Dsl for more information.

  
    
  
  Attribute


A piece of data belonging to a resource. The most basic building block; an attribute has a type and a value and is stored within the context of a domain model.
See d:Ash.Resource.Dsl.attributes for more information.

  
    
  
  Calculation


A calculation is a special type of field for a resource, one that is not directly stored in the data layer but generated on-demand when specifically requested as part of a query. Typically it will derive from other information on the record, but it may come from some other data source entirely.
See the Calculations guide for more information.

  
    
  
  Changeset


Changesets encapsulate data changes made while creating or updating an instance of a resource. Similarly to Ecto changesets, they include data validations but they also have their own callback hook lifecycle.
See Ash.Changeset for more information.

  
    
  
  Extension


A packaged bundle of code that can be included in a resource to provide additional functionality. Built-in functionality such as the resource DSL itself is provided by an extension, and libraries like AshPostgres and AshAdmin also provide extensions that you can add to your resources with just one line of code.
See Extending Resources for more information.

  
    
  
  Filter


The tools and functions used to reduce the amount of data returned when running queries on the data layer. This may look like:
	Fetching Articles that include a certain search term in the title
	Fetching Posts created by a specific user
	Fetching Tickets updated in the last week

See Ash.Filter for more information.

  
    
  
  Flow


Flows combine actions together into a static workflow, somewhat similarly to Ecto.Multi. The result of running one action in a flow can be used as input to another action, and flows can be halted and resumed on request. Flows also support transactions; steps can be grouped together into transactions or the whole flow can be run inside a single transaction.
See the Flows guide for more information.

  
    
  
  Identity


A way to uniquely identify an instance of a resource. A primary key is an example of an identity that is automatically generated; you can manually add others such as a user's email address, or a URL slug for a post. If using AshPostgres, constraints will be created to enforce identities at the database level.
See the Identities guide for more information.

  
    
  
  Notifier


Notifiers are modules that insert callbacks into the lifecycle of a resource action, to be notified when actions take place. When connected to a resource they are invoked after every action, but via pattern matching on the notification received, they can be made very granular.
See the Notifiers guide for more information.

  
    
  
  Policy


A set of rules defining who is authorized to perform specific actions on a resource. Common policy checks include rules such as:
	Forbidding anyone other than the user who wrote a blog post, from editing it
	Allowing only admins to update site-wide settings

See the Policies guide for more information.

  
    
  
  Query


The tools and functions used for reading and filtering stored data, from the data layer.
See Ash.Query for more information.

  
    
  
  Relationship


Relationships (also known as associations) are named links between resources, that define how they relate to each other. Relationships can be used to signify ownership of a record, membership of a group, or can be used in filtering and querying data.
See the Relationships guide for more information.

  
    
  
  Registry


A registry defines the set of resources available in your application, via listing entries. You'll probably never need to interact with one directly after setting it up, but it works efficiently for compile-time optimization.

  
    
  
  Resource


The central concept in Ash, a resource is a domain model object in your system, the nouns that your app revolves around. Resources contain definitions of the data they hold in the form of attributes, but also define actions that can be taken on that data and actors that are allowed to run them.
It is not a strict requirement that resources contain data - they can be used purely to create a standard interface for performing tasks - but in practice, most resources will be used to manage data.
See the Resource DSL docs for DSL documentation.

  
    
  
  Tenant


Multitenancy is the siloing of your app's data into discrete non-overlapping groups, typically by customer or organization (the tenant). Ash supports multitenancy both at the code level and the data layer level (depending on the data layer; for example, AshPostgres uses schemas to fully separate data per tenant.)
See the Multitenancy guide for more information.



  

    
Identities
    

Identities are a way to declare that a record (an instance of a resource) can be uniquely identified by a set of attributes. This information can be used in various ways throughout the framework. The primary key of the resource does not need to be listed as an identity.

  
    
  
  Using Api.get


This will allow these fields to be passed to Ash.Api.get/3, e.g get(Resource, [email: "foo"]).

  
    
  
  Using upserts


Create actions support the upsert?: true option, if the data layer supports it. An upsert? involves checking for a conflict on some set of attributes, and translating the behavior to an update in the case one is found. By default, the primary key is used when looking for duplicates, but you can set [upsert?: true, upsert_identity: :identity_name] to tell it to look for conflicts on a specific identity.

  
    
  
  Creating unique constraints


Tools like AshPostgres will create unique constraints in the database automatically for each identity. These unique constraints will honor other configuration on your resource, like the base_filter.

  
    
  
  Eager Checking


Setting eager_check_with: ApiName on an identity will allow that identity to be checked when building a create changeset over the resource. This allows for showing quick up-front validations about whether some value is taken, for example.
If you are using AshPhoenix.Form, for example, this looks for a conflicting record on each call to Form.validate/2.
For updates, it is only checked if one of the involved fields is being changed.
For creates, The identity is checked unless your are performing an upsert, and the upsert_identity is this identity. Keep in mind that for this to work properly, you will need to pass the upsert?: true, upsert_identity: :identity_name when creating the changeset instead of passing it to the Api when creating. The primary? read action is used to search for a record. This will error if you have not configured one.

  
    
  
  Pre Checking


pre_check_with: ApiName behaves the same as eager_check_with, but it runs just prior to the action being committed. Useful for data layers that don't support transactions/unique constraints, or manual resources with identities. Ash.DataLayer.Ets will actually require you to set pre_check_with since the ETS data layer has no built in support for unique constraints.



  

    
Managing Relationships
    

In Ash, managing related data is done via Ash.Changeset.manage_relationship/4. There are various ways to leverage the functionality expressed there. If you are working with changesets directly, you can call that function. However, if you want that logic to be portable (e.g available in ash_graphql mutations and ash_json_api actions), then you want to use the following argument + change pattern:
actions do
  update :update do
    argument :add_comment, :map do
      allow_nil? false
    end

    argument :tags, {:array, :uuid} do
      allow_nil? false
    end

    # First argument is the name of the action argument to use
    # Second argument is the relationship to be managed
    # Third argument is options. For more, see `Ash.Changeset.manage_relationship/4`. This accepts the same options.
    change manage_relationship(:add_comment, :comments, type: :create)

    # Second argument can be omitted, as the argument name is the same as the relationship
    change manage_relationship(:tags, type: :append_and_remove)
  end
end
With this, those arguments can be used in action input:
post
|> Ash.Changeset.for_update(:update, tags: [tag1.id, tag2.id], add_comment: %{text: "comment text"})
|> MyApi.update!()

  
    
  
  Argument Types


Notice how we provided a map as input to add_comment, and a list of UUIDs as an input to manage_relationship. When providing maps or lists of maps, you are generally just providing input that will eventually be passed into actions on the destination resource. However, you can also provide individual values or lists of values. By default, we assume that value maps to the primary key of the destination resource, but you can use the value_is_key option to modify that behavior. For example, if you wanted adding a comment to take a list of strings, you could say:
argument :add_comment, :string 

...
change manage_relationship(:add_comment, :comments, type: :create, value_is_key: :text)
And then you could use it like so:
post
|> Ash.Changeset.for_update(:update, tags: [tag1.id, tag2.id], add_comment: "comment text")
|> MyApi.update!()

  
    
  
  Derived behavior


Determining what will happen when managing related data can be complicated, as the nature of the problem itself is quite complicated. In some simple cases, like type: :create, there may be only one action that will be called. But in order to support all of the various ways that related resources may need to be managed, Ash provides a very rich set of options to determine what happens with the provided input. Tools like AshPhoenix.Form can look at your arguments that have a corresponding manage_relationship change, and derive the structure of those nested forms. Tools like AshGraphql can derive complex input objects to allow manipulating those relationships over a graphql Api. This all works because the options are, ultimately, quite explicit. It can be determined exactly what actions might be called, and therefore what input could be needed.



  

    
Manual Actions
    

Manual actions allow you to control how an action is performed instead of simply dispatching to a data layer. To do this, simply specify the manual option with a module that adopts the appropriate behavior. For example:
Manual actions are a way to implement an action in a fully custom way. This can be a very useful escape hatch when you have something that you are finding difficult to model with Ash's builtin tools.

  
    
  
  Manual Creates/Updates/Destroy


For manual create/update/destroy actions, you will provide
 everything works pretty much the same, with the exception that the after_action hooks on a resource will receive a nil value for creates, and the old unmodified value for updates, and you are expected to add an after action hook that changes that nil value into the result of the action.
For example:
in the action
create :special_create do
  manual MyApp.DoCreate
end

# The change
defmodule MyApp.DoCreate do
  use Ash.Resource.ManualCreate

  def create(changeset, _, _) do
    do_something_that_creates_the_record(changeset)
  end
end

  
    
  
  Manual Read Actions


Manual read actions work the same, except the will also get the "data layer query". For AshPostgres, this means you get the ecto query that would have been run.
# in the resource
actions do
  read :action_name do
    manual MyApp.ManualRead
    # or `{MyApp.ManualRead, ...opts}`
  end
end

# the implementation
defmodule MyApp.ManualRead do
  use Ash.Resource.ManualRead

  def read(ash_query, ecto_query, _opts, _context) do
    ...
    {:ok, query_results} | {:error, error}
  end
end

  
    
  
  Modifying the query


As an alternative to manual read actions, you can also provide the modify_query option, which takes an MFA and allows low level manipulation of the query just before it is dispatched to the data layer.
For example:
read :read do
  modify_query {MyApp.ModifyQuery, :modify, []}
end

defmodule MyApp.ModifyQuery do
  def modify(ash_query, data_layer_query) do
    {:ok, modify_data_layer_query(data_layer_query)}
  end
end
This can be used as a last-resort escape hatch when you want to still use resource actions but need to do something that you can't do easily with Ash tools. As with any low level escape hatch, here be dragons.



  

    
Instrumentation
    

Instrumentation Ash has two primary components, Ash.Tracer and :telemetry. Instrumentation is closely tied to observability and monitoring.

  
    
  
  Telemetry


Ash emits the following telemetry events, suffixed with :start and :stop. Start events have system_time measurements, and stop events have system_time and duration measurements. All times will be in the native time unit.

  
    
  
  Important


Note the mention of :start and :stop suffixes. The event below [:ash, (api_short_name), :create], is actually referring to two events, [:ash, (api_short_name), :create, :start] and [:ash, (api_short_name), :create, :stop].
Replace (api_short_name) with your API short name, from d:Ash.Api.Info.short_name.

  
    
  
  Events


	[:ash, (api_short_name), :create] - The execution of a create action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (api_short_name), :update] - The execution of a update action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (api_short_name), :read] - The execution of a read action. Use resource_short_name and action metadata to break down measurements.
	[:ash, (api_short_name), :destroy] - The execution of a destroy action. Use resource_short_name and action metadata to break down measurements.
	[:ash, :changeset] - A changeset being processed for a given action, i.e with Ash.Changeset.for_create. Use resource_short_name metadata to break down measurements.
	[:ash, :query] - A query being processed for an action, with Ash.Query.for_read. Use resource_short_name metadata to break down measurements.
	[:ash, :validation] - A validation being run on a changeset. Use resource_short_name and validation metadata to break down measurements.
	[:ash, :change] - A change being run on a changeset. Use resource_short_name and change metadata to break down measurements.
	[:ash, :before_action] - A before_action being run on a changeset. Use resource_short_name to break down measurements.
	[:ash, :after_action] - An after_action being run on a changeset. Use resource_short_name to break down measurements.
	[:ash, :preparation] - A preparation being run on a changeset. Use resource_short_name and preparation metadata to break down measurements.
	[:ash, :request_step] - The resolution of an internal request. Ash breaks up its operations internally into multiple requests, this can give you a high resolution insight onto the execution of those internal requests resolution. Use name metadata to break down measurements.
	[:ash, :flow] - The execution of an Ash flow. Use flow_short_name to break down measurements.
	[:ash, :flow, :custom_step] - The execution of a custom flow step (only if using the built in runner, which is currently the only runner). Use flow_short_name and name metadata to break down measurements.


  
    
  
  Tracing


Tracing is very similar to telemetry, but gives you some additional hooks to set_span_context() and get_span_context(). This allows you to "move" some piece of context between two processes. Ash will call this whenever it starts a new process to do anything. What this means is that if you are using a tracing tool or library you can ensure that any processes spawned by Ash are properly included in the trace. Additionally, you should be able to integrate a tracing library to include Ash actions/spans relatively easily by implementing the other callbacks.
A tracer can be configured globally in application config.
config :ash, :tracer, MyApp.Tracer
Additionally, one can be provide when creating changesets or calling an api, i.e
Resource
# better to put it here, as changesets are traced as well. It will be carried over to the api action
|> Ash.Changeset.for_create(:create, %{}, tracer: MyApp.Tracer)
# but you can also pass it here.
|> Api.create!(tracer: MyApp.Tracer)
For customizing the names created for each span, see:
	d:Ash.Api.Dsl.execution|trace_name
	d:Ash.Resource.Dsl.resource|trace_name
	d:Ash.Flow.Dsl.flow|trace_name


  
    
  
  Trace types


These are the list of trace types.
	:custom
	:action
	:changeset
	:validation
	:change
	:before_transaction
	:before_action
	:after_transaction
	:after_action
	:request_step
	:custom_flow_step
	:flow
	:query
	:preparation


  
    
  
  After/Before Action Hooks


Due to the way before/after action hooks run, their execution time won't be included in the span created for the change. In practice, before/after action hooks are where the long running operations tend to be. We start a corresponding span and emit a telemetry event for before and after hooks, but they are only so useful. In a trace, they can highlight that "some hook" took a long time. In telemetry metrics they are of even less use. The cardinality of the metric would be extremely high, and we don't have a "name" or anything to distinguish them. To that end, you can use the macros & functions available in Ash.Tracer to create custom spans and/or emit custom telemetry events from your hooks. They automatically handle cases where the provided tracer is nil, for convenience. For example:
defmodule MyApp.CustomChange do
  use Ash.Resource.Change

  require Ash.Tracer

  def change(changeset, _, _) do
    changeset
    |> Ash.Changeset.before_action(fn changeset ->
      Ash.Tracer.span(:custom, "custom name", changeset.context[:private][:tracer]) do
        # optionally set some metadata
        metadata = %{...}
        Ash.Tracer.set_metadata(changeset.context[:private][:tracer], :custom, metadata)
        # will get `:start` and `:stop` suffixed events emitted
        Ash.Tracer.telemetry_span([:telemetry, :event, :name], metadata) do
          ## Your logic here
        end
      end
    end)
  end
end



  

    
Multitenancy
    

Multitenancy is the idea of splitting up your data into discrete areas, typically by customer. One of the most common examples of this, is the idea of splitting up a postgres database into "schemas" one for each customer that you have. Then, when making any queries, you ensure to always specify the "schema" you are querying, and you never need to worry about data crossing over between customers. The biggest benefits of this kind of strategy are the simplification of authorization logic, and better performance. Instead of all queries from all customers needing to use the same large table, they are each instead all using their own smaller tables. Another benefit is that it is much easier to delete a single customer's data on request.
In Ash, there are a two primary strategies for implementing multitenancy. The first (and simplest) works for any data layer that supports filtering, and requires very little maintenance/mental overhead. It is done via expecting a given attribute to line up with the tenant, and is called :attribute. The second, is based on the data layer backing your resource, and is called :context. For information on
context based multitenancy, see the documentation of your datalayer. For example, AshPostgres uses postgres schemas. While the :attribute strategy is simple to implement, it also offers fewer advantages, primarily acting as another way to ensure your data is filtered to the correct tenant.

  
    
  
  Attribute Multitenancy


defmodule MyApp.Users do
  use Ash.Resource, ...

  multitenancy do
    strategy :attribute
    attribute :organization_id
  end

  ...

  relationships do
    belongs_to :organization, MyApp.Organization
  end
end
In this case, if you were to try to run a query without specifying a tenant, you would get an error telling you that the tenant is required.
Setting the tenant when using the code API is done via Ash.Query.set_tenant/2 and Ash.Changeset.set_tenant/2. If you are using an extension, such as AshJsonApi or AshGraphql the method of setting tenant context is explained in that extension's documentation.
Example usage of the above:
# Error when not setting a tenant
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> MyApi.read!()
** (Ash.Error.Invalid)

* "Queries against the Helpdesk.Accounts.User resource require a tenant to be specified"
    (ash 1.22.0) lib/ash/api/api.ex:944: Ash.Api.unwrap_or_raise!/2

# Automatically filtering by `organization_id == 1`
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> Ash.Query.set_tenant(1)
|> MyApi.read!()

[...]

# Automatically setting `organization_id` to `1`
MyApp.Users
|> Ash.Changeset.new(name: "fred")
|> Ash.Changeset.set_tenant(1)
|> MyApi.create!()

%MyApp.User{organization_id: 1}
If you want to enable running queries without a tenant as well as queries with a tenant, the global? option supports this. You will likely need to incorporate this ability into any authorization rules though, to ensure that users from one tenant can't access other tenant's data.
multitenancy do
  strategy :attribute
  attribute :organization_id
  global? true
end
You can also provide the parse_attribute? option if the tenant being set doesn't exactly match the attribute value, e.g the tenant is org_10 and the attribute is organization_id, which requires just 10.

  
    
  
  Context Multitenancy


Context multitenancy allows for the data layer to dictate how multitenancy works. For example, a csv data layer might implement multitenancy via saving the file with different suffixes, or an API wrapping data layer might use different subdomains for the tenant.
For AshPostgres context multitenancy, which uses postgres schemas and is referred to ash "Schema Based Multitenancy", see the guide



  

    
Notifiers
    


  
    
  
  Built-in Notifiers


	PubSub: Ash.Notifier.PubSub


  
    
  
  Creating a notifier


A notifier is a simple extension that must implement a single callback notify/1. Notifiers do not have to implement an Ash DSL extension, but they may in order to configure how that notifier should behave. See Ash.Notifier.Notification for the currently available fields. Notifiers should not do anything intensive synchronously. If any heavy work needs to be done, they should delegate to something else to handle the notification, like sending it to a GenServer or GenStage.
Eventually, there may be built in notifiers that will make setting up a GenStage that reacts to your resource changes easy. Until then, you'll have to write your own.
For more information on creating a DSL extension to configure your notifier, see the docs for Spark.Dsl.Extension.

  
    
  
  Example notifier


defmodule ExampleNotifier do
  use Ash.Notifier

  def notify(%Ash.Notifier.Notification{resource: resource, action: %{type: :create}, actor: actor}) do
    if actor do
      Logger.info("#{actor.id} created a #{resource}")
    else
      Logger.info("A non-logged in user created a #{resource}")
    end
  end
end

  
    
  
  Including a notifier in a resource


When you need your notifier to also be an extension:
defmodule MyResource do
  use Ash.Resource,
    notifiers: [ExampleNotifier]
end
When your notifier is not an extension, include it this way to avoid a compile time dependency:
defmodule MyResource do
  use Ash.Resource
	
	resource do
	  simple_notifiers [ExampleNotifier]
  end
end


  
    
  
  Transactions


API calls involving resources who's datalayer supports transactions (like Postgres), notifications are saved up and sent after the transaction is closed. For example, the api call below ultimately results in many many database calls.
Post
|> Ash.Changeset.new(%{})
|> Ash.Changeset.manage_relationship(:related_posts, [1, 2, 3], type: :append)
|> Ash.Changeset.manage_relationship(:related_posts, [4, 5], type: :remove)
|> Ash.Changeset.manage_relationship(:comments, [10], type: :append)
|> Api.update!()
Ash doesn't support bulk database operations yet, so it performs the following operations:
	a read of the currently related posts
	a read of the currently related comments
	a creation of a post_link to relate to 1
	a creation of a post_link to relate to 2
	a creation of a post_link to relate to 3
	a destruction of the post_link related to 4
	a destruction of the post_link related to 5
	an update to comment 10, to set its post_id to this post

If all three of these resources have notifiers configured, we need to send a notification for each operation (notifications are not sent for reads). For data consistency reasons, if a data layer supports transactions, all writes are done in a transaction. However, if you try to read the record from the database that you have just received a notification about before the transaction has been closed, in a different process, the information will be wrong. For this reason, Ash accumulates notifications until they can be sent.
If you need to perform multiple operations against your resources in your own transaction, you will have to handle that case yourself. To support this, Ash.Api.create/2, Ash.Api.update/2 and Ash.Api.destroy/2 support a return_notifications?: true option. This causes the api call to return {:ok, result, notifications} in the successful case. Here is an example of how you might use it.
result =
  Ash.DataLayer.transaction(resource, fn ->
    {:ok, something, notifications1} = create_something()
    {:ok, result, notifications2} = create_another_thing(something)
    {:ok, notifications3} = destroy_something(something)

    {result, Enum.concat([notifications1, notifications2, notifications3])}
  end)

case result do
  {:ok, value, notifications} ->
     Ash.Notifier.notify(notifications)

     value
  {:error, error} ->
    handle_error(error)
end



  

    
Pagination
    

Pagination is configured at the action level. There are two kinds of pagination supported: keyset and offset. There are
pros and cons to each. An action can support both at the same time, or only one (or none). A full count of records can be
requested by passing page: [count: true], but it should be kept in mind that doing this requires running the same query
twice, one of which is a count of all records. Ash does these in parallel, but it can still be quite expensive on large
datasets. For more information on the options for configuring actions to support pagination, see d:Ash.Resource.Dsl.actions.read|prepare

  
    
  
  Offset Pagination


Offset pagination is done via providing a limit and an offset. A limit is how many records that should be returned on the page.
An offset is how many records from the beginning should be skipped. Using this, you might make requests like the following:
# Get the first ten records
Api.read(Resource, page: [limit: 10])
# Get the second ten records
Api.read(Resource, page: [limit: 10, offset: 10])
# No need to do this in practice, see `c:Ash.Api.page/2`

  
    
  
  Offset Pros


	Simple to think about
	Possible to skip to a page by number. E.g the 5th page of 10 records is offset: 40
	Easy to reason about what page you are currently on (if the total number of records is requested)
	Can go to the last page (even though, if done by using the full count, the data could have changed)


  
    
  
  Offset Cons


	Does not perform well on large datasets (if you have to ask if your dataset is "large", it probably isn't)
	When moving between pages, if data was created or deleted, records may appear on multiple pages


  
    
  
  Keyset Pagination


Keyset pagination is done via providing an after or before option, as well as a limit. The value of this option should be
a keyset that has been returned from a previous request. Keysets are returned when a request is made with a limit to an action
that supports keyset pagination, and they are stored in the __metadata__ key of each record. The keyset is a special value that
can be passed into the after or before options, to get records that occur after or before.
For example:
page = Api.read(Resource, page: [limit: 10])

last_record = List.last(page.results)

# No need to do this in practice, see `c:Ash.Api.page/2`
next_page = Api.read(Resource, page: [limit: 10, after: last_record.__metadata__.keyset])

  
    
  
  Keyset Pros


	Performs very well on large datasets (assuming indices exist on the columns being sorted on)
	Behaves well as data changes. The record specified will always be the first or last item in the page


  
    
  
  Keyset Cons


	A bit more complex to use
	Can't go to a specific page number


  
    
  
  Setting up overview



  
    
  
  Resource Action pagination setup


Setup the pagination for the Resource's Action you want to be paginated.
(In the defmodule which has use Ash.Resource as per Resource docs):
actions do
  ... 
  read :name_of_the_action do
        ...
        pagination offset?: true, default_limit: 3, countable: true
        ...
      end
  ...
end
All the options for setting the pagination in the Actions of a Resource are available here

  
    
  
  Querying the paginated Resource


All the options for Querying the paginated Resource via Api.read(Resource, page: [options]) are available here



  

    
Phoenix
    

Ash plays nicely with phoenix. There are a few things to consider when using them side-by-side.

  
    
  
  Adding Ash to an existing Phoenix app


To add Ash to an existing application is easy, generally only involves updating your Ecto.Repo to use AshPostgres.Repo if you are using AshPostgres. Other than that, you can follow the guides as usual.

  
    
  
  Creating a new Phoenix app


If you want to use AshPostgres, you have two options here:
	create a phoenix app as normal, and when you set up AshPostgres, ignore the steps for creating the repo, and instead update it to use AshPostgres.Repo.
	create the app with --no-ecto and follow the AshPostgres guide getting started guide fully.


  
    
  
  Using Extensions


If you are using extensions like AshGraphql or AshJsonApi, you will want to follow their getting started guides separately.



  

    
Policies
    

Policies determine what actions on a resource are permitted for a given actor, and can also filter the results of read actions to restrict the results to only records that should be visible.
To restrict access to specific fields (attributes, aggregates, calculations), the section on field policies.
Read and understand the Security guide before proceeding, which explains actors, how to set them, and other relevant configurations.

  
    
  
  Setup


You'll need to add the extension to your resource, like so:
use Ash.Resource, authorizers: [Ash.Policy.Authorizer]
Then you can start defining policies for your resource.

  
    
  
  Policies



  
    
  
  Anatomy of a Policy


Each policy defined in a resource has two parts -
	a condition, such as action_type(:read) or actor_attribute_equals(:admin, true) or always(). If this condition is true for a given action request, then the policy will be applied to the request.
	a set of policy checks, each of which will be evaluated individually if a policy applies to a request.

If more than one policy applies to any given request (eg. an admin actor calls a read action) then all applicable policies must pass for the action to be performed.
A policy will produce one of three results: :forbidden, :authorized, or :unknown. :unknown is treated the same as :forbidden.

  
    
  
  The Simplest Policy


Let's start with the simplest (most permissive) policy:
policies do
  policy always() do
    authorize_if always()
  end
end
The first argument to policy is the condition. In this case, the condition is always() - a built-in helper always returning true, meaning that the policy applies to every request.
Within this policy we have a single policy check, declared with authorize_if. Checks logically apply from top to bottom, based on their check type. In this case, we'd read the policy as "this policy always applies, and authorizes always".
There are four check types, all of which do what they sound like they do:
	authorize_if - if the check is true, the whole policy is authorized.
	authorize_unless - if the check is false, the whole policy is authorized.
	forbid_if - if the check is true, the whole policy is forbidden.
	forbid_unless - if the check is false, the whole policy is forbidden.

If a single check does not explicitly authorize or forbid the whole policy, then the flow moves to the next check. For example, if an authorize_if check does NOT return true, this does not mean the whole policy is forbidden - it means that further checking is required.

  
    
  
  How a Decision is Reached


Not every check in a policy must pass! This is described above, but is very important so another example is provided here. Checks go from top to bottom, are evaluated independently of each other, and the first one that reaches a decision determines the overall policy result. For example:
policy action_type(:create) do
  authorize_if IsSuperUser
  forbid_if Deactivated
  authorize_if IsAdminUser
  forbid_if RegularUserCanCreate
  authorize_if RegularUserAuthorized
end
We check those from top to bottom, so the first one of those that returns :authorized or :forbidden determines the entire outcome. For example:
authorize_if IsSuperUser # If this is true, the actor is a superuser

# None of the rest of the checks matter, even if the actor is deactivated.
forbid_if Deactivated
authorize_if IsAdminUser
forbid_if RegularUserCanCreate
authorize_if RegularUserAuthorized
Conversely:
authorize_if IsSuperUser # This can be false
forbid_if Deactivated # This can be false
authorize_if IsAdminUser # If this is true, then the policy is still authorized.

# And none of these checks matter
forbid_if RegularUserCanCreate
authorize_if RegularUserAuthorized

  
    
  
  Not all policy checks have yes/no answers


This will be covered in greater detail in Checks, but will be briefly mentioned here.
Ash provides two basic types of policy checks - simple checks and filter checks. Simple checks are what we commonly think of with authorization, and what the above example would suggest - is an actor allowed to perform a given operation, yes or no? But we can also use filter checks - given a list of resources, which ones is an actor allowed to perform the operation on?
Filter checks are frequently used with read actions, as they can refer to multiple instances (eg. "list all products"), but may also be applied to actions like bulk-deleting records (which is not currently supported, but will be eventually).

  
    
  
  Bypass policies


A bypass policy is just like a regular policy, except if a bypass passes, then other policies after it do not need to pass. This can be useful for writing complex access rules, or for a simple rule like "an admin can do anything" without needing to specify it as part of every other policy.

  
    
  
  A realistic policy


In this example, we use some of the provided built-in checks.
policies do
  # Anything you can use in a condition, you can use in a check, and vice-versa
  # This policy applies if the actor is a super_user
  # Additionally, this policy is declared as a `bypass`. That means that this check is allowed to fail without
  # failing the whole request, and that if this check *passes*, the entire request passes.
  bypass actor_attribute_equals(:super_user, true) do
    authorize_if always()
  end

  # This will likely be a common occurrence. Specifically, policies that apply to all read actions
  policy action_type(:read) do
    # unless the actor is an active user, forbid
    forbid_unless actor_attribute_equals(:active, true)
    # if the record is marked as public, authorize
    authorize_if attribute(:public, true)
    # if the actor is related to the data via that data's `owner` relationship, authorize
    authorize_if relates_to_actor_via(:owner)
  end
end

  
    
  
  Checks


Checks evaluate from top to bottom within a policy. A check can produce one of three results, the same that a policy can produce. While checks are not necessarily evaluated in order, they logically apply in that order, so you may as well think of it in that way. It can be thought of as a step-through algorithm.
For each check, starting from the top:
	Run the check.	If it returns :authorized, the policy is :authorized
	If it returns :forbidden, the policy is :forbidden
	If it returns :unknown, the next check down is checked



For the example from earlier:
	authorize_if IsSuperUser	If this check succeeds, it returns :authorized, the whole policy is :authorized, and checks stop running
	If this check fails, it returns :unknown and the next check is checked


	forbid_if Deactivated	We only care about this result if the previous check failed, ie. the actor is not a super user.
	If this check succeeds, it returns :forbidden, the whole policy is :forbidden, and checks stop running
	If this check fails, it returns :unknown and the next check is checked


	authorize_if IsAdminUser	We only care about this result if the previous checks failed, ie. the actor is not a super user and is not deactivated.
	If this check succeeds, it returns :authorized, the whole policy is :authorized and checks stop running.
	If this check fails, it returns :unknown and the next check is checked


	authorize_if RegularUserAuthorized	We only care about this result if the previous checks failed, ie. the actor is not a super user, not deactivated and not an admin user.
	If this check succeeds, it returns :authorized, the whole policy is :authorized and checks stop running.
	If this check fails, it returns :unknown. As there are no more checks to run, the whole policy returns :unknown, which is treated as forbidden and the actor is not allowed to perform the action.




  
    
  
  Types of checks


As mentioned earlier, there are two distinct types of checks - simple checks and filter checks. So far we've seen examples of both - let's look in a bit more detail.
(Both simple and filter checks are a subset of a third type of check - a manual check - but you will almost always want to write simple or filter checks.)
Simple checks
Simple checks are determined at the outset of a request, and can only cause a request to be authorized or forbidden. These are typically yes/no questions - is the actor an admin? Did the actor create the post they want to call the update action on? Is the actor old enough to drink alcohol?
You can write a simple check by creating a new module and using the Ash.Policy.SimpleCheck module:
defmodule MyApp.Checks.ActorIsOldEnough do
  use Ash.Policy.SimpleCheck

  # This is used when logging a breakdown of how a policy is applied - see Logging below.
  def describe(_) do
    "actor is old enough"
  end

  # The context here may have a changeset, query, resource, and api module, depending
  # on the action being run.
  # `match?` should return true or false, and answer the statement being posed in the description,
  # i.e "is the actor old enough?"
  def match?(%MyApp.User{age: age} = _actor, %{resource: MyApp.Beer} = _context, _opts) do
    age >= 21
  end

  def match?(_, _, _), do: true
end
You can then use this module as the check name, as part of a policy:
defmodule MyApp.Beer do
  # ...

  policies do
    policy action(:drink) do
      authorize_if MyApp.Checks.ActorIsOldEnough
    end
  end

  # ...
end
Ash will internally convert the true/false return value from match?/3 to a :authorized/:forbidden/:unknown response, depending on how the check is being run (ie. whether it's part of an authorize_if/forbid_if/etc.)
Filter checks
Many checks won't return a status yes/no, but instead return a "filter" to apply to a collection of data. They are most commonly used for read actions, but can be used for all types of actions.
For update and destroy actions, they apply to the data before the action is run.
For read actions, they will automatically restrict the returned data to be compliant with the filter. Using the drinking example from earlier, we could write a filter check to list only users that are old enough to drink alcohol.
There are two ways to write a filter check - by creating a module and using the Ash.Policy.FilterCheck module, or by using inline expression syntax.
defmodule MyApp.Checks.ActorOverAgeLimit do
  use Ash.Policy.FilterCheck

  require Ash.Query
  import Ash.Filter.TemplateHelpers, only: [actor: 1]

  # A description is not necessary, as it will be derived from the filter, but one could be added
  # def describe(_opts), do: "actor is over the age limit"

  # Filter checks don't have a `context` available to them
  def filter(_options) do
    Ash.Query.expr(age_limit <= ^actor(:age))
  end
end
You can then use this module as the check name, as part of a policy:
defmodule MyApp.User do
  # ...

  policies do
    policy action(:of_drinking_age) do
      authorize_if MyApp.Checks.ActorOverAgeLimit
    end
  end

  # ...
end
Inline checks
Inline checks are filter checks, but are different enough to warrant their own documentation. These are written directly in a policy, eg.
policy action_type(:read) do
  # Allow records with the attribute `public` set to true to be read
  authorize_if attribute(:public, true)

  # Allow records with the attribute `level` less than the value of the `level`
  # argument to the action to be read
  authorize_if expr(level <= ^arg(:level))
end
Keep in mind that, for create actions, many expr/1 checks won't make sense, and may return false when you wouldn't expect. Expression (and other filter) policies apply to "a synthesized result" of applying the action, so related values won't be available. For this reason, you may end up wanting to use other checks that are built for working against changesets, or only simple attribute-based filter checks. Custom checks may also be warranted here.
Ash also comes with a set of built-in helpers for writing inline checks - see Ash.Policy.Check.Builtins for more information.
Referencing the actor
In expression checks, the actor template can be used (other templates that may work in filter expressions, for example, are not available). For example:
# Authorize records that have an author relationship with the author ID the same as the actor ID
# ie. records authored by the actor
authorize_if expr(author.id == ^actor(:id))
Using exists
A common mistake when using related data in filters is to be too restrictive. Imagine a scenario where you have an action like this:
read :friends_of_ted do
  filter expr(friends.first_name == "ted")
end
If this was in a User resource, it would return users that have a friend with the first name "ted". So far so good. Then someone calls it like so:
Resource
|> Ash.Query.for_read(:friends_of_ted)
|> Ash.Query.filter(friends.last_name == "dansen")
The resulting filter is friends.first_name == "ted" and friends.last_name == "dansen"- this means that you'll get users that have a friend with the full name "ted dansen". That might be what you meant, but more likely you would want "users that have a friend with the first name "ted", that also have a friend with the last name 'dansen'".
To accomplish that, we can use the exists helper and rework the example like so:
# There exists a friend with the first name "ted"
read :friends_of_ted do
  filter expr(exists(friends, first_name == "ted"))
end

# And there also exists a friend with the last name "dansen"
# They may be the same friend if the user is friends with Ted Dansen!
Resource
|> Ash.Query.for_read(:friends_of_ted)
|> Ash.Query.filter(exists(friends, last_name == "dansen"))
In policies (and often any time you mean "a related thing exists where some condition is true"), it is advised to use exists/2 when referring to relationships because of the way that the policy authorizer may mix & match your policies when building filters. This is also true when adding filters to actions. If you use exists, then your policies can be used in filters without excluding unnecessary data.

  
    
  
  Field Policies


Field policies allow you to authorize access to specific fields via policies scoped to fields.
For example:
field_policies do
  field_policy :role do
    authorize_if actor_attribute_equals(:role, :supervisor)
  end
end
If any field policies exist then all fields must be authorized by a field policy.
If you want a "deny-list" style, then you can add policies for specific fields.
and add a catch-all policy using the special field name :*. All policies that apply
to a field must be authorized.
The only exception to the above behavior is primary keys, which can always be read by everyone.
Additionally, keep in mind that adding Ash.Policy.Authorizer will require that all actions
pass policies. If you want to just add field policies, you will need to add a policy that allows
all access explicitly, i.e
policies do
  policy always() do
    authorize_if always()
  end
end

  
    
  
  Using Expressions In Field Policies


Unlike in regular policies, expressions in field policies cannot refer to related entities currently (except when using exists). Instead, you will need to create aggregates or expression calculations that return the results you want to reference.
In results, forbidden fields will be replaced with a special value: %Ash.ForbiddenField{}.
When these fields are referred to in filters, they will be replaced with an expression that evaluates to nil. To support this behavior, only simple and filter checks are allowed in field policies.

  
    
  
  Debugging and Logging



  
    
  
  Policy Breakdowns


Policy breakdowns can be fetched on demand for a given forbidden error (either an Ash.Error.Forbidden that contains one ore more Ash.Error.Forbidden.Policy errors, or an Ash.Error.Forbidden.Policy error itself), via Ash.Error.Forbidden.Policy.report/2.
Here is an example policy breakdown from tests:
Policy Breakdown
A check status of `?` implies that the solver did not need to determine that check.
Some checks may look like they failed when in reality there was no need to check them.
Look for policies with `✘` and `✓` in check statuses.

A check with a `⬇` means that it didn't determine if the policy was authorized or forbidden, and so moved on to the next check.
`🌟` and `⛔` mean that the check was responsible for producing an authorized or forbidden (respectively) status.

If no check results in a status (they all have `⬇`) then the policy is assumed to have failed. In some cases, however, the policy
may have just been ignored, as described above.

  Admins and managers can create posts | ⛔:
    authorize if: actor.admin == true | ✘ | ⬇
    authorize if: actor.manager == true | ✘ | ⬇
To remove the help text, you can pass the help_text?: false option, which would leave you with:
Policy Breakdown
  Admins and managers can create posts | ⛔:
    authorize if: actor.admin == true | ✘ | ⬇
    authorize if: actor.manager == true | ✘ | ⬇

  
    
  
  Including in error messages


IMPORTANT WARNING: The following configuration should only ever be used in development mode!
For security reasons, authorization errors don't include any extra information, aside from forbidden. To have authorization errors include a policy breakdown (without help text) use the following config.
config :ash, :policies, show_policy_breakdowns?: true

  
    
  
  Logging


It is generally safe to log authorization error details, even in production. This can be very helpful when investigating certain classes of issue.
To have Ash automatically log each authorization failure, use
config :ash, :policies, log_policy_breakdowns: :error # Use whatever log level you'd like to use here
To have Ash log all policy breakdowns, even successful ones (this will be lots of noise, and should only be used for dev testing)
config :ash, :policies, log_successful_policy_breakdowns: :error # Use whatever log level you'd like to use here



  

    
PubSub
    

Ash includes a builtin notifier to help you publish events over any kind of pub-sub pattern. This is plug and play with Phoenix.PubSub, but could be used with any pubsub pattern.
You configure a module that defines a broadcast/3 function, and then add some "publications" which configure under what conditions an event should be sent and what the topic should be.
For the full DSL spec see Ash.Notifier.PubSub

  
    
  
  Debugging PubSub


It can be quite frustrating when setting up pub_sub when everything appears to be set up properly, but you aren't receiving events. This usually means some kind of mismatch between the event names produced by the resource/config
of your publications, and you can use the following flag to display debug information about pub sub events coming from Ash.Notifier.PubSub
config :ash, :pub_sub, debug?: true

  
    
  
  Topic Templates


Often you want to include some piece of data in the thing being changed, like the :id attribute. This is done by providing a list as the topic, and using atoms which will be replaced by their corresponding values. They will ultimately be joined with :.
For example:
prefix "user"

publish :create, ["created", :user_id]
This might publish a message to "user:created:1" for example.
For updates, if the field in the template is being changed, a message is sent
to both values. So if you change user 1 to user 2, the same message would
be published to user:updated:1 and user:updated:2. If there are multiple
attributes in the template, and they are all being changed, a message is sent for
every combination of substitutions.

  
    
  
  Important


If the previous value was nil or the field was not selected on the data passed into the action, then a notification is not sent for the previous value.
If the new value is nil then a notification is not sent for the new value.

  
    
  
  Template parts


Templates may contain lists, in which case all combinations of values in the list will be used. Add
nil to the list if you want to produce a pattern where that entry is omitted.
The atom :_tenant may be used. If the changeset has a tenant set on it, that
value will be used, otherwise that combination of values is ignored.
The atom :_pkey may be used. It will be a stringified, concatenation of the primary key fields,
or just the primary key if there is only one primary key field.
The atom nil may be used. It only makes sense to use it in the context of a list of alternatives,
and adds a pattern where that part is skipped.
publish :updated, [[:team_id, :_tenant], "updated", [:id, nil]]
Would produce the following messages, given a team_id of 1, a tenant of org_1, and an id of 50:
"1:updated:50"
"1:updated"
"org_1:updated:50"
"org_1:updated"

  
    
  
  Named Pubsub modules


If you are using a phoenix Endpoint module for pubsub then this is unnecessary. If you want to use a custom pub sub started with something like {Phoenix.PubSub, name: MyName}, then you can provide MyName to
here.

  
    
  
  Broadcast Types


Configured with broadcast_type.
	:notification just sends the notification
	:phoenix_broadcast sends a %Phoenix.Socket.Broadcast{} (see above)
	:broadcast sends %{topic: (topic), event: (event), notification: (notification)}




  

    
Relationships
    

Relationships describe the connections between resources and are a core component of Ash. Defining relationships enables you to do things like
	Loading related data
	Filtering on related data
	Managing related records through changes on a single resource
	Authorizing based on the state of related data


  
    
  
  Relationships Basics


A relationship exists between a source resource and a destination resource. These are defined in the relationships block of the source resource. For example, if MyApp.Tweet is the source resource, and MyApp.User is the destination resource, we could define a relationship called :owner like this:
defmodule MyApp.Tweet do
  use Ash.Resource,
    data_layer: my_data_layer

  attributes do
    uuid_primary_key :id
    attribute :body, :string
  end

  relationships do
    belongs_to :owner, MyApp.User
  end
end

  
    
  
  Managing related data


See Managing Relationships for more information.
Your data layer may enforce foreign key constraints, see the following guides for more information:
	AshPostgres references


  
    
  
  Kinds of relationships


There are four kinds of relationships:
	belongs_to
	has_one
	has_many
	many_to_many

Each of these relationships has a source resource and a destination resource with a corresponding attribute on the source resource (source_attribute), and destination resource (destination_attribute). Relationships will validate that their configured attributes exist at compile time.
You don't need to have a corresponding "reverse" relationship for every relationship, i.e if you have a MyApp.Tweet resource with belongs_to :user, MyApp.User you aren't required to have a has_many :tweets, MyApp.Tweet on MyApp.User. All that is required is that the attributes used by the relationship exist.

  
    
  
  Belongs To


# on MyApp.Tweet
belongs_to :owner, MyApp.User
A belongs_to relationship means that there is an attribute (source_attribute) on the source resource that uniquely identifies a record with a matching attribute (destination_attribute) in the destination. In the example above, the source attribute on MyApp.Tweet is :owner_id and the destination attribute on MyApp.User is :id.
Attribute Defaults
By default, the source_attribute is defined as :<relationship_name>_id of the type :uuid on the source resource and the destination_attribute is assumed to be :id. You can override the attribute names by specifying the source_attribute and destination_attribute options like so:
belongs_to :owner, MyApp.User do
  # defaults to :<relationship_name>_id (i.e. :owner_id)
  source_attribute :custom_attribute_name

  # defaults to :id
  destination_attribute :custom_attribute_name
end
You can further customize the source_attribute using options such as:
	d:Ash.Resource.Dsl.relationships.belongs_to|define_attribute? to define it yourself
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_type to modify the default type
	d:Ash.Resource.Dsl.relationships.belongs_to|attribute_writable? to make the source attribute private?: false, writable?: true (both are not the default)

For example:
belongs_to :owner, MyApp.User do
  attribute_type :integer
  attribute_writable? true
end
Or if you wanted to define the attribute yourself,
attributes do
  attribute :owner_foo, MyApp.CustomType
end

...
relationships do
  belongs_to :owner, MyApp.User do
    define_attribute? false
    source_attribute :owner_foo
  end
end
Customizing default belongs_to attribute type
Destination attributes that are added by default are assumed to be :uuid. To change this, set the following configuration in config.exs:
config :ash, :default_belongs_to_type, :integer
See the docs for more: d:Ash.Resource.Dsl.relationships.belongs_to

  
    
  
  Has One


# on MyApp.User
has_one :profile, MyApp.Profile
A has_one relationship means that there is a unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Profile is :user_id.
A has_one is similar to a belongs_to except the reference attribute is on
the destination resource, instead of the source.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_one

  
    
  
  Has Many


# on MyApp.User
has_many :tweets, MyApp.Tweet
A has_many relationship means that there is a non-unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Tweet is :user_id.
A has_many relationship is similar to a has_one because the reference attribute exists on the destination resource. The only difference between this and has_one is that the destination attribute is not unique, and therefore will produce a list of related items. In the example above, :tweets corresponds to a list of MyApp.Tweet records.
Attribute Defaults
By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.
See the docs for more: d:Ash.Resource.Dsl.relationships.has_many

  
    
  
  Many To Many


A many_to_many relationship can be used to relate many source resources to many destination resources. To achieve this, the source_attribute and destination_attribute are defined on a join resource. A many_to_many relationship can be thought of as a combination of a has_many relationship on the source/destination resources and a belongs_to relationship on the join resource.
For example, consider two resources MyApp.Tweet and MyApp.Hashtag representing tweets and hashtags. We want to be able to associate a tweet with many hashtags, and a hashtag with many tweets. To do this, we could define the following many_to_many relationship:
# on MyApp.Tweet
many_to_many :hashtags, MyApp.Hashtag do
  through MyApp.TweetHashtag
  source_attribute_on_join_resource :tweet_id
  destination_attribute_on_join_resource :hashtag_id
end
The through option specifies the "join" resource that will be used to store the relationship. We need to define this resource as well:
defmodule MyApp.TweetHashtag do
  use Ash.Resource,
    data_layer: your_data_layer

  relationships do
    belongs_to :tweet, MyApp.Tweet, primary_key?: true, allow_nil?: false
    belongs_to :hashtag, MyApp.Hashtag, primary_key?: true, allow_nil?: false
  end
end
It is convention to name this resource <source_resource_name><destination_resource_name> however this is not required. The attributes on the join resource must match the source_attribute_on_join_resource and destination_attribute_on_join_resource options on the many_to_many relationship. The relationships on the join resource are standard belongs_to relationships, and can be configured as such. In this case, we have specified that the :tweet_id and :hashtag_id attributes form the primary key for the join resource, and that they cannot be nil.
Now that we have a resource with the proper attributes, Ash will use this automatically under the hood when
performing relationship operations like filtering and loading.
See the docs for more: d:Ash.Resource.Dsl.relationships.many_to_many

  
    
  
  Relationships across APIs


You will need to specify the api option in the relationship if the destination resource is part of a different API:
many_to_many :authors, MyApp.OtherApi.Resource do
  api MyApp.OtherApi
  ...
end

  
    
  
  Loading related data


There are two ways to load relationships:
	in the query using Ash.Query.load/2
	directly on records using Ash.Api.load/3


  
    
  
  On records


Given a single record or a set of records, it is possible to load their relationships by calling the load function on the record's parent API. For example:
# user = %User{...}
YourApi.load(user, :tweets)

# users = [%User{...}, %User{...}, ....]
YourApi.load(users, :tweets)
This will fetch the tweets for each user, and set them in the corresponding tweets key.
%User{
  ...
  tweets: [
    %Tweet{...},
    %Tweet{...},
    ...
  ]
}
See Ash.Api.load/3 for more information.

  
    
  
  In the query


The following will return a list of users with their tweets loaded identically to the previous example:
User
|> Ash.Query.load(:tweets)
|> YourApi.read()
At present, loading relationships in the query is fundamentally the same as loading on records. Eventually, data layers will be able to optimize these loads (potentially including them as joins in the main query).
See Ash.Query.load/2 for more information.

  
    
  
  More complex data loading


Multiple relationships can be loaded at once, i.e
YourApi.load(users, [:tweets, :followers])
Nested relationships can be loaded:
YourApi.load(users, followers: [:tweets, :followers])
The queries used for loading can be customized by providing a query as the value.
followers = Ash.Query.sort(User, follower_count: :asc)

YourApi.load(users, followers: followers)
Nested loads will be included in the parent load.
followers =
  User
  |> Ash.Query.sort(follower_count: :asc)
  |> Ash.Query.load(:followers)

# Will load followers and followers of those followers
YourApi.load(users, followers: followers)

  
    
  
  no_attributes? true


This can be very useful when combined with multitenancy. Specifically, if you have a tenant resource like Organization,
you can use no_attributes? to do things like has_many :employees, Employee, no_attributes?: true, which lets you avoid having an
unnecessary organization_id field on Employee. The same works in reverse: has_one :organization, Organization, no_attributes?: true
allows relating the employee to their organization.
Some important caveats here:
	You can still manage relationships from one to the other, but "relate" and "unrelate"
will have no effect, because there are no fields to change.

	Loading the relationship on a list of resources will not behave as expected in all circumstances involving multitenancy. For example,
if you get a list of Organization and then try to load employees, you would need to set a single tenant on the load query, meaning
you'll get all organizations back with the set of employees from one tenant. This could eventually be solved, but for now it is considered an
edge case.





  

    
Security
    


  
    
  
  Important Note!


A great thing to do early on is to be explicit about your security configuration. To that end, once you've read this guide, we highly recommend that you place the configuration found at the bottom of your guide into your api modules, even if you are simply setting them to their default values. Especially the authorize option.

  
    
  
  Sensitive Attributes


Using sensitive? true will cause the argument to be ** Redacted ** from the resource when logging or inspecting. In filter statements, any value used in the same expression as a sensitive attribute will also be redacted. For example, you might see: email == "** Redacted **" in a filter statement if email is marked as sensitive.

  
    
  
  Authorization


Authorization in Ash is done via authorizers. Generally, you won't need to create your own  authorizer, as the builtin policy authorizer Ash.Policy.Authorizer should work well for any use case. Authorization is performed with a given actor and a query or changeset.

  
    
  
  Actors


An actor is the "entity performing the action". This is generally a user, but could potentially be an organization, a group, whatever makes sense for your use case. By default, when using Ash in code, authorization does not happen.
# Does not perform authorization
Api.read!(User)
However, if you either 1. provide an actor or 2. use the authorize?: true option, then authorization will happen.
# Authorize with a `nil` actor (which is valid, i.e if no one is logged in and they are trying to list users)
Api.read!(User, actor: nil)

# Authorize with a `nil` actor
Api.read!(User, authorize?: true)

# Authorize with an actor
Api.read!(User, actor: current_user)

# Authorize with an actor, but being explicit
Api.read!(User, actor: current_user, authorize?: true)

# Skip authorization, but set an actor. The actor can be used in other things than authorization
# so this may make sense depending on what you are doing.
Api.read!(User, actor: current_user, authorize?: false)
Where to set the actor
When setting an actor, if you are building a query or changeset, you should do so at the time that you call the various for_* functions. This makes the actor available in the context of any change that is run. For example:
# DO THIS
Resource
|> Ash.Query.for_read(:read, input, actor: current_user)
|> Api.read()

# DON'T DO THIS
Resource
|> Ash.Query.for_read(:read, input, actor: current_user)
|> Api.read(actor: current_user)
The second option "works" in most cases, but not all, because some changes might need to know the actor

  
    
  
  Context


Ash can store the actor, query context, or tenant in the process dictionary. This can help simplify things like live views, controllers, or channels where all actions performed share these pieces of context.
This can be useful, but the general recommendation is to be explicit by passing options.
# in socket connect, liveview mount, or a plug
Ash.set_actor(current_user)

# This will now use the actor set in the context.
Api.read!(User)

  
    
  
  Authorization Configuration


The default behavior is illustrated above, but it can be customized with the options in the d:Ash.Api.authorization section of the Api module you are calling.
d:Ash.Api.Dsl.authorization|require_actor?
Requires that an actor is set for all requests.
Important: nil is still a valid actor, so this won't prevent providing actor: nil.
d:Ash.Api.Dsl.authorization|authorize
Important!
The default value for this is relatively loose, and we intend to change it in the 3.0 release (which is not scheduled for anytime soon). Right now, it is :when_requested, but a better default would be :by_default, and is what you should choose when starting out.
When to run authorization for a given request.
	:always forces authorize?: true on all requests to the Api.
	:by_default sets authorize?: true if the authorize? option was not set (so it can be set to false).
	:when_requested sets authorize?: true whenever an actor is set or authorize?: true is explicitly passed. This is the default behavior.




  

    
Store Context In Process
    

There are various things that can be stored in the process dictionary as opposed to passing them to every function. This is a stylistic choice, and in many cases could lead to less clear code, so use with caution. See the functions in the Ash module for more.
The following things can be stored in the process:
	Query/changeset context, will be merged with the context of any query/changeset before it is run.
	The current actor (i.e current_user)
	Whether or not to run authorization, i.e authorize?
	The current tracer
	The current tenant




  

    
Testing
    

The configuration you likely want to add to your config/test.exs is:
# config/test.exs
config :ash, :disable_async?, true
config :ash, :missed_notifications, :ignore
Each option is explained in more detail below.

  
    
  
  Async tests


The first thing you will likely want to do, especially if you are using AshPostgres, is to add the following config to your config/test.exs.
# config/test.exs
config :ash, :disable_async?, true
This ensures that Ash does not spawn tasks when executing your requests, which is necessary for doing transactional tests with AshPostgres.

  
    
  
  Missed notifications


If you are using Ecto's transactional features to ensure that your tests all run in a transaction, Ash will detect that it had notifications to send (if you have any notifiers set up) but couldn't because it was still in a transaction. The default behavior when notifications are missed is to warn. However, this can get pretty noisy in tests. So we suggest adding the following config to your config/test.exs.
# config/test.exs
config :ash, :missed_notifications, :ignore



  

    
Timeouts
    

Timeouts in Ash work a bit differently than other tools. The following considerations must be taken into account:
	If you run a resource action in a transaction, then the timeout applies to the entire transaction.
	If the resource action you are running, and any of its touches_resources is already in a transaction then the timeout is ignored, as the outer transaction is handling the timeout.
	If the resource is not in a transaction, and supports async execution (ash_postgres does), then everything is run in a task and awaited with the provided timeout.
	If the data layer of the resource does not support timeouts, or async execution then timeouts are ignored.
	As of the writing of this guide, none of the API extensions support specifying a timeout. If/when they do, they will run the action they are meant to run in a Task.


  
    
  
  Ways to Specify Timeouts


You have a few options.
You can specify a timeout when you call an action. This takes the highest precedence.
MyApi.read!(query, timeout: :timer.seconds(30))
You can specify one using Ash.Changeset.timeout/2 or Ash.Query.timeout/2. This can be useful if you want to conditionally set a timeout based on the details of the request. For example, you might do something like this:
# in your resource
defmodule MyApp.SetReportTimeout do
  use Ash.Resource.Preparation

  def prepare(query, _, _) do
    if Ash.Query.get_argument(query, :full_report) do
      Ash.Query.timeout(query, :timer.minutes(3))
    else
      Ash.Query.timeout(query, :timer.minutes(1))
    end
  end
end

actions do
  read :report_items do
    argument :full_report, :boolean, default: false

    prepare MyApp.SetReportTimeout
  end
end
And you can specify a default timeout on the Api module that you call your resources with. Overriding an api with a default timeout requires providing a timeout of :infinity in one of the other methods.
execution do
  timeout :timer.seconds(30) # this is the default
end
Keep in mind, you can't specify timeouts in a before_action or after_action hook, because at that point you are already "within" the code that should have a timeout applied.



  

    
Validations
    


  
    
  
  Builtin Validations


Checkout the documentation for Ash.Resource.Validation.Builtins to see the builtin validations.
Some examples of usage of builtin validations
validate match(:email, ~r/@/)

validate compare(:age, greater_than_or_equal_to: 18) do
  message "must be over 18 to sign up"
end

validate present(:last_name) do
  where [present(:first_name), present(:middle_name)]
  message "must also be supplied if setting first name and middle_name"
end

  
    
  
  Custom Validations


defmodule MyApp.Validations.IsPrime do
  # transform and validate opts
  def init(opts) do
    if is_atom(opts[:attribute]) do
      {:ok, opts}
    else
      {:error, "attribute must be an atom!"}
    end
  end

  def validate(changeset, opts) do
    value = Ash.Changeset.get_attribute(changeset, opts[:attribute])
    # this is a function I made up for example
    if is_nil(value) || Math.is_prime?(value) do
      :ok
    else
      # The returned error will be passed into `Ash.Error.to_ash_error/3`
      {:error, field: opts[:attribute], message: "must be prime"}
    end
  end
end
This could then be used in a resource via:
validate {MyApp.Validations.IsPrime, attribute: :foo}

  
    
  
  Where


The where can be used to perform changes/validations conditionally. This functions by running the validation, and if the validation returns an error, we discard the error and skip the operation. This means that even custom validations can be used in conditions.
For example:
validate present(:other_number) do
  where [{MyApp.Validations.IsPrime, attribute: :foo}]
end

  
    
  
  Action vs Global Validations


You can place a validation in any create, update, or destroy action. For example:
actions do
  create :create do
    validate compare(:age, greater_than_or_equal_to: 18)
  end
end
Or you can use the global validations block to validate on all actions of a given type. Where statements can be used in either. Use on to determine the types of actions the validation runs on. By default, it only runs on create an update actions
validations do
  validate present([:foo, :bar], at_least: 1) do
    on [:create, :update]
    where present(:baz)
  end
end

  
    
  
  Action-Specific Validation


You can also put a validation directly in an action, like so:
actions do
  create do
    ...
    validate present([:foo, :bar], at_least: 1)
  end
end



  

    
DSL: Ash.Api.Dsl
    

Apis are the entrypoints for working with your resources.
Apis may optionally include a list of resources, in which case they can be
used as an Ash.Registry in various places. This is for backwards compatibility,
but if at all possible you should define an Ash.Registry if you are using an extension
that requires a list of resources. For example, most extensions look for two application
environment variables called :ash_apis and :ash_registries to find any potential registries

  
    
  
  api


General Api configuration

  
    
  
  Examples


api do
  description """
  Resources related to the flux capacitor.
  """
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.DataLayer.Ets - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.DataLayer.Ets
    

An ETS (Erlang Term Storage) backed Ash Datalayer, for testing and lightweight usage.
Remember, this does not have support for transactions! This is not recommended for production
use, especially in multi-user applications. It can, however, be great for prototyping.

  
    
  
  ets


A section for configuring the ets data layer

  
    
  
  Examples


ets do
  # Used in testing
  private? true
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.DataLayer.Mnesia - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.DataLayer.Mnesia
    

An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.

  
    
  
  mnesia


A section for configuring the mnesia data layer

  
    
  
  Examples


mnesia do
  table :custom_table
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.Flow - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.Flow.Dsl
    

The built in flow DSL.

  
    
  
  Halting


Steps can be halted, which will stop the flow from continuing and return a halted flow. To attach a specific reason, use a halt_reason.
If you need more complex halting logic, then you'd want to use a custom step, and return {:error, Ash.Error.Flow.Halted.exception(...)}

  
    
  
  flow


Details about the flow itself, like description and the successful return type.

  
    
  
  Nested DSLs


	argument


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.Notifier.PubSub - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.Notifier.PubSub
    

A pubsub notifier extension.

  
    
  
  pub_sub


A section for configuring how resource actions are published over pubsub
See the PubSub and Notifiers guide for more.

  
    
  
  Nested DSLs


	publish
	publish_all


  
    
  
  Examples


pub_sub do
  module MyEndpoint
  prefix "post"

  publish :destroy, ["foo", :id]
  publish :update, ["bar", :name] event: "name_change"
  publish_all :create, "created"
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.Policy.Authorizer - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.Policy.Authorizer
    

An authorization extension for ash resources.
To add this extension to a resource, add it to the list of authorizers like so:
use Ash.Resource,
  ...,
  authorizers: [
    Ash.Policy.Authorizer
  ]
A resource can be given a set of policies, which are enforced on each call to a resource action.
For reads, policies can be configured to filter out data that the actor shouldn't see, as opposed to
resulting in a forbidden error.
See the policies guide for practical examples.
Policies are solved/managed via a boolean satisfiability solver. To read more about boolean satisfiability,
see this page: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. At the end of
the day, however, it is not necessary to understand exactly how Ash takes your
authorization requirements and determines if a request is allowed. The
important thing to understand is that Ash may or may not run any/all of your
authorization rules as they may be deemed unnecessary. As such, authorization
checks should have no side effects. Ideally, the checks built-in to ash should
cover the bulk of your needs.

  
    
  
  policies


A section for declaring authorization policies.
Each policy that applies must pass independently in order for the
request to be authorized.
See the policies guide for more.

  
    
  
  Nested DSLs


	policy	authorize_if
	forbid_if
	authorize_unless
	forbid_unless


	bypass	authorize_if
	forbid_if
	authorize_unless
	forbid_unless




  
    
  
  Examples


policies do
  # Anything you can use in a condition, you can use in a check, and vice-versa
  # This policy applies if the actor is a super_user
  # Additionally, this policy is declared as a `bypass`. That means that this check is allowed to fail without
  # failing the whole request, and that if this check *passes*, the entire request passes.
  bypass actor_attribute_equals(:super_user, true) do
    authorize_if always()
  end

  # This will likely be a common occurrence. Specifically, policies that apply to all read actions
  policy action_type(:read) do
    # unless the actor is an active user, forbid their request
    forbid_unless actor_attribute_equals(:active, true)
    # if the record is marked as public, authorize the request
    authorize_if attribute(:public, true)
    # if the actor is related to the data via that data's `owner` relationship, authorize the request
    authorize_if relates_to_actor_via(:owner)
  end
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.Registry - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.Registry.Dsl
    

A small DSL for declaring an Ash.Registry. Not generally necessary any longer.
Ash.Registry can be used generically, but the main way it is used in Ash is to provide a compile-time registry for an Ash Api.

  
    
  
  entries


List the entries present in this registry

  
    
  
  Nested DSLs


	entry


  
    
  
  Examples


entries do
  entry MyApp.User
  entry MyApp.Post
  entry MyApp.Comment
end


  
    
  
  Options


  
    
      	Name
      	Type
      	Default
      
  
    
    DSL: Ash.Resource - ash v2.17.7
    
    

    



  
  

    
DSL: Ash.Resource.Dsl
    


  
    
  
  attributes


A section for declaring attributes on the resource.

  
    
  
  Nested DSLs


	attribute
	create_timestamp
	update_timestamp
	integer_primary_key
	uuid_primary_key


  
    
  
  Examples


attributes do
  uuid_primary_key :id

  attribute :first_name, :string do
    allow_nil? false
  end

  attribute :last_name, :string do
    allow_nil? false
  end

  attribute :email, :string do
    allow_nil? false

    constraints [
      match: ~r/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$/
    ]
  end

  attribute :type, :atom do
    constraints [
      one_of: [:admin, :teacher, :student]
    ]
  end

  create_timestamp :inserted_at
  update_timestamp :updated_at
end


  
    
  
  attributes.attribute


attribute name, type
Declares an attribute on the resource.

  
    
  
  Examples


attribute :name, :string do
  allow_nil? false
end


  
    
  
  Arguments


  
    
      	Name
      	Type
      	Default
      
  
    
    Ash.Api - ash v2.17.7
    
    

    



  
  

    
Ash.Api behaviour
    



      
An Api allows you to interact with your resources, and holds non-resource-specific configuration.
For example, the json api extension adds an api extension that lets you toggle authorization on/off
for all resources in that Api. You include them in an Api like so:
defmodule MyApp.Registry do
  use Ash.Registry

  entries do
    entry OneResource
    entry SecondResource
  end
end

defmodule MyApp.Api do
  use Ash.Api

  resources do
    registry MyApp.Registry
  end
end
Then you can interact through that Api with the actions that those resources expose.
For example: MyApp.Api.create(changeset), or MyApp.Api.read(query). Corresponding
actions must be defined in your resources in order to call them through the Api.

  
    
  
  Interface


The functions documented here can be used to call any action on any resource in the Api.
For example, MyApi.read(Myresource, [...]).
Additionally, you can define a code_interface on each resource. See the code interface guide for more.

      


      
        Summary


  
    Types
  


    
      
        aggregate()

      


    


    
      
        load_statement()

      


    


    
      
        page_request()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        aggregate(t, arg2, opts)

      


    


    
      
        aggregate!(t, arg2, opts)

      


    


    
      
        avg(t, field, opts)

      


        Get the avg of a given field from the given query



    


    
      
        avg!(t, field, opts)

      


        Get the avg of a given field from the given query, raising any errors



    


    
      
        bulk_create(list, resource, action, opts)

      


        Creates many records.



    


    
      
        bulk_create!(list, resource, action, opts)

      


        Creates many records, raising on any errors. See bulk_create/2 for more.



    


    
      
        calculate(resource, calculation, opts)

      


    


    
      
        calculate!(resource, calculation, opts)

      


    


    
      
        can(action_or_query_or_changeset, actor)

      


    


    
      
        can(action_or_query_or_changeset, actor, opts)

      


        Returns whether or not the user can perform the action, or :maybe, returning any errors.



    


    
      
        can?(query_or_changeset_or_action, actor)

      


    


    
      
        can?(query_or_changeset_or_action, actor, opts)

      


        Returns whether or not the user can perform the action, or raises on errors.



    


    
      
        count(t, opts)

      


    


    
      
        count!(t, opts)

      


    


    
      
        create(t, opts)

      


        Create a record.



    


    
      
        create!(t, opts)

      


        Create a record. See create/2 for more information.



    


    
      
        destroy(arg1, opts)

      


        Destroy a record.



    


    
      
        destroy!(arg1, opts)

      


        Destroy a record. See destroy/2 for more information.



    


    
      
        exists(t, opts)

      


        Whether or not the given query would return any results



    


    
      
        exists?(t, opts)

      


        Whether or not the given query would return any results, raising any errors



    


    
      
        first(t, field, opts)

      


        Get the first of a given field from the given query



    


    
      
        first!(t, field, opts)

      


        Get the first of a given field from the given query, raising any errors



    


    
      
        get(resource, id_or_filter, params)

      


        Get a record by a primary key.



    


    
      
        get!(resource, id_or_filter, opts)

      


        Get a record by a primary key. See get/3 for more.



    


    
      
        list(t, field, opts)

      


        Get list of a given field from the given query



    


    
      
        list!(t, field, opts)

      


        Get the list of a given field from the given query, raising any errors



    


    
      
        load(record_or_records, query, opts)

      


        Load fields or relationships on already fetched records.



    


    
      
        load!(record_or_records, query, opts)

      


        Load fields or relationships on already fetched records. See load/3 for more information.



    


    
      
        max(t, field, opts)

      


        Get the max of a given field from the given query



    


    
      
        max!(t, field, opts)

      


        Get the max of a given field from the given query, raising any errors



    


    
      
        min(t, field, opts)

      


        Get the min of a given field from the given query



    


    
      
        min!(t, field, opts)

      


        Get the min of a given field from the given query, raising any errors



    


    
      
        page(page, page_request)

      


        Fetch a page relative to the provided page.



    


    
      
        page!(page, page_request)

      


        Fetch a page relative to the provided page.



    


    
      
        read(t, opts)

      


        Run a query on a resource.



    


    
      
        read!(arg1, opts)

      


        Run an ash query. See read/2 for more.



    


    
      
        read_one(arg1, opts)

      


        Run a query on a resource, but fail on more than one result.



    


    
      
        read_one!(arg1, opts)

      


        Run an ash query, raising on more than one result. See read_one/2 for more.



    


    
      
        reload(record)

      


        Refetches a record by primary key.



    


    
      
        reload!(record, params)

      


        Refetches a record by primary key. See reload/1 for more.



    


    
      
        run_action(input, opts)

      


        Runs a generic action



    


    
      
        run_action!(input, opts)

      


        Runs a generic action, raising on errors



    


    
      
        stream!(t, opts)

      


        Streams the results of a query.



    


    
      
        sum(t, field, opts)

      


        Get the sum of a given field from the given query



    


    
      
        sum!(t, field, opts)

      


        Get the sum of a given field from the given query, raising any errors



    


    
      
        update(t, opts)

      


        Update a record.



    


    
      
        update!(t, opts)

      


        Update a record. See update/2 for more information.



    





  
    Functions
  


    
      
        aggregate(api, query, aggregate_or_aggregates, opts \\ [])

      


        Runs an aggregate or aggregates over a resource query



    


    
      
        allow(api)

          deprecated

      


        See Ash.Api.Info.allow/1.



    


    
      
        allow_unregistered?(api)

          deprecated

      


        See Ash.Api.Info.allow_unregistered?/1.



    


    
      
        authorize(api)

          deprecated

      


        See Ash.Api.Info.authorize/1.



    


    
      
        calculate(resource_or_record, calculation, opts \\ [])

      


        Evaluates the calculation on the resource.



    


    
      
        can(api, action_or_query_or_changeset, actor, opts \\ [])

      


    


    
      
        can?(api, action_or_query_or_changeset, actor, opts \\ [])

      


    


    
      
        destroy_opts_schema()

      


    


    
      
        registry(api)

          deprecated

      


        See Ash.Api.Info.registry/1.



    


    
      
        require_actor?(api)

          deprecated

      


        See Ash.Api.Info.require_actor?/1.



    


    
      
        resource(api, resource)

          deprecated

      


        See Ash.Api.Info.resource/2.



    


    
      
        resources(api)

          deprecated

      


        See Ash.Api.Info.resources/1.



    


    
      
        run_action(api, input, opts \\ [])

      


        Runs a generic action.



    


    
      
        run_action!(api, input, opts \\ [])

      


    


    
      
        stream!(api, query, opts \\ [])

      


    


    
      
        timeout(api)

          deprecated

      


        See Ash.Api.Info.timeout/1.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    aggregate()


      
       
       View Source
     


  


  

      

          @type aggregate() ::
  Ash.Query.Aggregate.t()
  | {name :: atom(), kind :: atom()}
  | {name :: atom(), kind :: atom(), opts :: Keyword.t()}


      



  



  
    
      
      Link to this type
    
    load_statement()


      
       
       View Source
     


  


  

      

          @type load_statement() ::
  Ash.Query.t()
  | [atom()]
  | atom()
  | Keyword.t()
  | [atom() | {atom(), atom() | Keyword.t()}]


      



  



  
    
      
      Link to this type
    
    page_request()


      
       
       View Source
     


  


  

      

          @type page_request() :: :next | :prev | :first | :last | integer()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    aggregate(t, arg2, opts)


      
       
       View Source
     


  


  

      

          @callback aggregate(
  Ash.Query.t(),
  aggregate() | [aggregate()],
  opts :: Keyword.t()
) :: {:ok, any()} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    aggregate!(t, arg2, opts)


      
       
       View Source
     


  


  

      

          @callback aggregate!(
  Ash.Query.t(),
  aggregate() | [aggregate()],
  opts :: Keyword.t()
) :: any() | no_return()


      



  



  
    
      
      Link to this callback
    
    avg(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback avg(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Get the avg of a given field from the given query

  



  
    
      
      Link to this callback
    
    avg!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback avg!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  term() | no_return()


      


Get the avg of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    bulk_create(list, resource, action, opts)


      
       
       View Source
     


  


  

      

          @callback bulk_create(
  [map()],
  resource :: Ash.Resource.t(),
  action :: atom(),
  opts :: Keyword.t()
) ::
  Ash.BulkResult.t()
  | Enumerable.t(
      {:ok, Ash.Resource.record()}
      | {:error, Ash.Changeset.t() | Ash.Error.t()}
      | {:notification, Ash.Notifier.Notification.t()}
    )


      


Creates many records.

  
    
  
  Assumptions


We assume that the input is a list of changesets all for the same action, or a list of input maps for the
same action with the :resource and :action option provided to illustrate which action it is for.

  
    
  
  Performance/Feasibility


The performance of this operation depends on the data layer in question.
Data layers like AshPostgres will choose reasonable batch sizes in an attempt
to handle large bulk actions, but that does not mean that you can pass a list of
500k inputs and expect things to go off without a hitch (although it might).
If you need to do large data processing, you should look into projects like
GenStage and Broadway. With that said, if you want to do things like support CSV upload
and you place some reasonable limits on the size this is a great tool. You'll need to
test it yourself, YMMV.
Passing return_records?: true can significantly increase the time it takes to perform the operation,
and can also make the operation completely unreasonable due to the memory requirement. If you want to
do very large bulk creates and display all of the results, the suggestion is to annotate them with a
"bulk_create_id" in the data layer, and then read the records with that bulk_create_id so that they can
be retrieved later if necessary.

  
    
  
  Changes/Validations


Changes will be applied in the order they are given on the actions as normal. Any change that exposes
the bulk_change or bulk_validate callback will be applied on the entire list.

  
    
  
  After Action Hooks


The following requirements must be met for after_action hooks to function properly. If they are not met,
and an after_action hook being applied to a changeset in a change.
	return_records? must be set to true.
	The changeset must be setting the primary key as part of its changes, so that we know which result applies to which
changeset.

It is possible to use after_action hooks with bulk_change/3, but you need to return the hooks along with the changesets.
This allows for setting up after_action hooks that don't need access to the returned record,
or after_action hooks that can operate on the entire list at once.  See the documentation for that callback for more on
how to do accomplish that.
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:context (map/0) - Context to set on each changeset

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used. Unlike singular create, bulk_create with upsert? requires that upsert_fields be specified explicitly in one of these two locations.

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether or not to return all of the errors that occur. Defaults to false to account for large inserts. The default value is false.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an invidual error. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is false.

	:notify? (boolean/0) - Whether or not to send notifications out. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.



  



  
    
      
      Link to this callback
    
    bulk_create!(list, resource, action, opts)


      
       
       View Source
     


  


  

      

          @callback bulk_create!(
  [map()],
  resource :: Ash.Resource.t(),
  action :: atom(),
  opts :: Keyword.t()
) :: Ash.BulkResult.t() | no_return()


      


Creates many records, raising on any errors. See bulk_create/2 for more.
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:max_concurrency (non_neg_integer/0) - If set to a value greater than 0, up to that many tasks will be started to run batches asynchronously The default value is 0.

	:assume_casted? (boolean/0) - Whether or not to cast attributes and arguments as input. This is an optimization for cases where the input is already casted and/or not in need of casting The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:context (map/0) - Context to set on each changeset

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used. Unlike singular create, bulk_create with upsert? requires that upsert_fields be specified explicitly in one of these two locations.

	:sorted? (boolean/0) - Whether or not to sort results by their input position, in cases where return_records?: true was provided. The default value is false.

	:return_records? (boolean/0) - Whether or not to return all of the records that were inserted. Defaults to false to account for large inserts. The default value is false.

	:return_errors? (boolean/0) - Whether or not to return all of the errors that occur. Defaults to false to account for large inserts. The default value is false.

	:batch_size (pos_integer/0) - The number of records to include in each batch. Defaults to the default_limit
or max_page_size of the action, or 100.

	:return_stream? (boolean/0) - If set to true, instead of an Ash.BulkResult, a mixed stream is returned.
Potential elements:
{:notification, notification} - if return_notifications? is set to true
{:ok, record} - if return_records? is set to true
{:error, error} - an error that occurred. May be changeset or an invidual error. The default value is false.

	:stop_on_error? (boolean/0) - If true, the first encountered error will stop the action and be returned. Otherwise, errors
will be skipped. The default value is false.

	:notify? (boolean/0) - Whether or not to send notifications out. If this is set to true then the data layer must return
the results from each batch. This may be intensive for large bulk actions. The default value is false.

	:transaction - Whether or not to wrap the entire execution in a transaction, each batch, or not at all.
Keep in mind:
before_transaction and after_transaction hooks attached to changesets will have to be run
inside the transaction if you choose transaction: :all.
 Valid values are :all, :batch, false The default value is :batch.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.



  



  
    
      
      Link to this callback
    
    calculate(resource, calculation, opts)


      
       
       View Source
     


  


  

      

          @callback calculate(
  resource :: Ash.Resource.t(),
  calculation :: atom(),
  opts :: Keyword.t()
) ::
  {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    calculate!(resource, calculation, opts)


      
       
       View Source
     


  


  

      

          @callback calculate!(
  resource :: Ash.Resource.t(),
  calculation :: atom(),
  opts :: Keyword.t()
) ::
  term() | no_return()


      



  



  
    
      
      Link to this callback
    
    can(action_or_query_or_changeset, actor)


      
       
       View Source
     


  


  

      

          @callback can(
  action_or_query_or_changeset ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()},
  actor :: term()
) :: {:ok, boolean() | :maybe} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    can(action_or_query_or_changeset, actor, opts)


      
       
       View Source
     


  


  

      

          @callback can(
  action_or_query_or_changeset ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()},
  actor :: term(),
  opts :: Keyword.t()
) :: {:ok, boolean() | :maybe} | {:error, term()}


      


Returns whether or not the user can perform the action, or :maybe, returning any errors.
In cases with "runtime" checks (checks after the action), we may not be able to determine
an answer, and so the value :maybe will be returned from can/2. The can? function assumes that
:maybe means true. Keep in mind, this is just for doing things like "can they do this" in a UI,
so assuming :maybe is true is fine. The actual action invocation will be properly checked regardless.
If you have runtime checks, you may need to use can instead of can?, or configure what :maybe means.

  
    
  
  Options


	maybe_is - What to treat :maybe results as, defaults to true if using can?, or :maybe if using can.
	run_queries? - In order to determine authorization status for changesets that use filter checks, we may need to
run queries (almost always only one query). Set this to false to disable (returning :maybe instead).
The default value is true.
	data - A record or list of records. For authorizing reads with filter checks, this can be provided and a filter
check will only be true if all records match the filter. This is detected by running a query.


  



  
    
      
      Link to this callback
    
    can?(query_or_changeset_or_action, actor)


      
       
       View Source
     


  


  

      

          @callback can?(
  query_or_changeset_or_action ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()},
  actor :: term()
) :: boolean() | no_return()


      



  



  
    
      
      Link to this callback
    
    can?(query_or_changeset_or_action, actor, opts)


      
       
       View Source
     


  


  

      

          @callback can?(
  query_or_changeset_or_action ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()},
  actor :: term(),
  opts :: Keyword.t()
) :: boolean() | no_return()


      


Returns whether or not the user can perform the action, or raises on errors.
See can/3 for more info.

  



  
    
      
      Link to this callback
    
    count(t, opts)


      
       
       View Source
     


  


  

      

          @callback count(Ash.Query.t(), opts :: Keyword.t()) ::
  {:ok, integer()} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    count!(t, opts)


      
       
       View Source
     


  


  

      

          @callback count!(Ash.Query.t(), opts :: Keyword.t()) :: integer() | no_return()


      



  



  
    
      
      Link to this callback
    
    create(t, opts)


      
       
       View Source
     


  


  

      

          @callback create(Ash.Changeset.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | {:error, term()}


      


Create a record.
	:upsert? (boolean/0) - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:upsert_identity (atom/0) - The identity to use when detecting conflicts for upsert?, e.g. upsert_identity: :full_name. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:upsert_fields - The fields to upsert. If not set, the action's upsert_fields is used, and if that is not set, then any fields not being set to defaults are written.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:after_action (term/0) - A hook to be run just before the action returns, but before fields are selected (still inside the same transaction, if your data layer
supports transactions). This is mostly important if you want to load calculations after the action, which depend on having fields
selected, but you want to authorize with the minimal set of fields that are actually being selected. Runs only if the action is
successful, and is passed the changeset and result of the action. Should return {:ok, result} or {:error, error}.
For example, if you had a full_name calculation, but were only selecting, first_name and full_name, you might do
something like this:
MyApp.User
|> Ash.Changeset.for_create(:create, %{first_name: "first_name", last_name: "last_name"}
|> Ash.Changeset.select(:first_name))
|> Api.create(after_action: fn _changeset, user -> Api.load(user, :full_name) end)
If you tried to load that :full_name calculation after receiving the data, the last_name would not be selected and as such would not be
usable in the calculation, regardless of whether or not the calculation includes that field in its select list.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.



  



  
    
      
      Link to this callback
    
    create!(t, opts)


      
       
       View Source
     


  


  

      

          @callback create!(Ash.Changeset.t(), opts :: Keyword.t()) ::
  Ash.Resource.record()
  | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | no_return()


      


Create a record. See create/2 for more information.

  



  
    
      
      Link to this callback
    
    destroy(arg1, opts)


      
       
       View Source
     


  


  

      

          @callback destroy(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
  :ok
  | {:ok, Ash.Resource.record()}
  | {:ok, [Ash.Notifier.Notification.t()]}
  | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | {:error, term()}


      


Destroy a record.
	:return_destroyed? (boolean/0) - If true, the destroyed record is included in the return result, e.g {:ok, destroyed} or {:ok, destroyed, notifications} The default value is false.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.



  



  
    
      
      Link to this callback
    
    destroy!(arg1, opts)


      
       
       View Source
     


  


  

      

          @callback destroy!(Ash.Changeset.t() | Ash.Resource.record(), opts :: Keyword.t()) ::
  :ok
  | Ash.Resource.record()
  | [Ash.Notifier.Notification.t()]
  | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | no_return()


      


Destroy a record. See destroy/2 for more information.

  



  
    
      
      Link to this callback
    
    exists(t, opts)


      
       
       View Source
     


  


  

      

          @callback exists(Ash.Query.t(), opts :: Keyword.t()) ::
  {:ok, boolean()} | {:error, Ash.Error.t()}


      


Whether or not the given query would return any results

  



  
    
      
      Link to this callback
    
    exists?(t, opts)


      
       
       View Source
     


  


  

      

          @callback exists?(Ash.Query.t(), opts :: Keyword.t()) :: boolean() | no_return()


      


Whether or not the given query would return any results, raising any errors

  



  
    
      
      Link to this callback
    
    first(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback first(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Get the first of a given field from the given query

  



  
    
      
      Link to this callback
    
    first!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback first!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  term() | no_return()


      


Get the first of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    get(resource, id_or_filter, params)


      
       
       View Source
     


  


  

      

          @callback get(
  resource :: Ash.Resource.t(),
  id_or_filter :: term(),
  params :: Keyword.t()
) :: {:ok, Ash.Resource.record()} | {:ok, nil} | {:error, term()}


      


Get a record by a primary key.
For a resource with a composite primary key, pass a keyword list, e.g
MyApi.get(MyResource, first_key: 1, second_key: 2)
	:error? (boolean/0) - Whether or not an error should be returned or raised when the record is not found. If set to false, nil will be returned. The default value is true.

	:load (term/0) - Fields or relationships to load in the query. See Ash.Query.load/2

	:lock (term/0) - A lock statement to add onto the query

	:context (term/0) - Context to be set on the query being run

	:reselect_all? (boolean/0) - Whether or not to reselect all attributes depended on by loads.
By default, we only reselect fields that weren't already selected. The default value is false.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  



  
    
      
      Link to this callback
    
    get!(resource, id_or_filter, opts)


      
       
       View Source
     


  


  

      

          @callback get!(
  resource :: Ash.Resource.t(),
  id_or_filter :: term(),
  opts :: Keyword.t()
) :: Ash.Resource.record() | no_return()


      


Get a record by a primary key. See get/3 for more.

  



  
    
      
      Link to this callback
    
    list(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback list(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, [term()]} | {:error, Ash.Error.t()}


      


Get list of a given field from the given query

  



  
    
      
      Link to this callback
    
    list!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback list!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  [term()] | no_return()


      


Get the list of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    load(record_or_records, query, opts)


      
       
       View Source
     


  


  

      

          @callback load(
  record_or_records :: Ash.Resource.record() | [Ash.Resource.record()],
  query :: load_statement(),
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.record() | [Ash.Resource.record()]} | {:error, term()}


      


Load fields or relationships on already fetched records.
Accepts a list of non-loaded fields and loads them on the provided records or a query, in
which case the loaded fields of the query are used. Relationship loads can be nested, for
example: MyApi.load(record, [posts: [:comments]]).
	:lazy? (boolean/0) - If set to true, values will only be loaded if the related value isn't currently loaded. The default value is false.

	:reselect_all? (boolean/0) - Whether or not to reselect all attributes depended on by loads.
By default, we only reselect fields that weren't already selected. The default value is false.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  



  
    
      
      Link to this callback
    
    load!(record_or_records, query, opts)


      
       
       View Source
     


  


  

      

          @callback load!(
  record_or_records :: Ash.Resource.record() | [Ash.Resource.record()],
  query :: load_statement(),
  opts :: Keyword.t()
) :: Ash.Resource.record() | [Ash.Resource.record()] | no_return()


      


Load fields or relationships on already fetched records. See load/3 for more information.

  



  
    
      
      Link to this callback
    
    max(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback max(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Get the max of a given field from the given query

  



  
    
      
      Link to this callback
    
    max!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback max!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  term() | no_return()


      


Get the max of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    min(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback min(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Get the min of a given field from the given query

  



  
    
      
      Link to this callback
    
    min!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback min!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  term() | no_return()


      


Get the min of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    page(page, page_request)


      
       
       View Source
     


  


  

      

          @callback page(Ash.Page.page(), page_request()) ::
  {:ok, Ash.Page.page()} | {:error, term()}


      


Fetch a page relative to the provided page.
A page is the return value of a paginated action called via read/2.

  



  
    
      
      Link to this callback
    
    page!(page, page_request)


      
       
       View Source
     


  


  

      

          @callback page!(Ash.Page.page(), page_request()) :: Ash.Page.page() | no_return()


      


Fetch a page relative to the provided page.

  



  
    
      
      Link to this callback
    
    read(t, opts)


      
       
       View Source
     


  


  

      

          @callback read(Ash.Query.t(), opts :: Keyword.t()) ::
  {:ok, [Ash.Resource.record()]}
  | {:ok, [Ash.Resource.record()], Ash.Query.t()}
  | {:error, term()}


      


Run a query on a resource.
For more information on building a query, see Ash.Query.
	:page - Pagination options, see the pagination docs for more

	:load (term/0) - A load statement to add onto the query

	:lock (term/0) - A lock statement to add onto the query

	:return_query? (boolean/0) - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:reselect_all? (boolean/0) - Whether or not to reselect all attributes depended on by loads.
By default, we only reselect fields that weren't already selected. The default value is false.

	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  
    
  
  Pagination


Limit/offset pagination
	:offset (non_neg_integer/0) - The number of records to skip from the beginning of the query

	:limit (pos_integer/0) - The number of records to include in the page

	:filter (term/0) - A filter to apply for pagination purposes, that should not be considered in the full count.
This is used by the liveview paginator to only fetch the records that were already on the
page when refreshing data, to avoid pages jittering.

	:count (boolean/0) - Whether or not to return the page with a full count of all records


Keyset pagination
	:before (String.t/0) - Get records that appear before the provided keyset (mutually exclusive with after)

	:after (String.t/0) - Get records that appear after the provided keyset (mutually exclusive with before)

	:limit (pos_integer/0) - How many records to include in the page

	:filter (term/0) - See the filter option for offset pagination, this behaves the same.

	:count (boolean/0) - Whether or not to return the page with a full count of all records



  



  
    
      
      Link to this callback
    
    read!(arg1, opts)


      
       
       View Source
     


  


  

      

          @callback read!(Ash.Query.t() | Ash.Resource.t(), opts :: Keyword.t()) ::
  [Ash.Resource.record()]
  | {[Ash.Resource.record()], Ash.Query.t()}
  | no_return()


      


Run an ash query. See read/2 for more.

  



  
    
      
      Link to this callback
    
    read_one(arg1, opts)


      
       
       View Source
     


  


  

      

          @callback read_one(Ash.Query.t() | Ash.Resource.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(), Ash.Query.t()}
  | {:ok, nil}
  | {:error, term()}


      


Run a query on a resource, but fail on more than one result.
This is useful if you have a query that doesn't include a primary key
but you know that it will only ever return a single result.

  



  
    
      
      Link to this callback
    
    read_one!(arg1, opts)


      
       
       View Source
     


  


  

      

          @callback read_one!(Ash.Query.t() | Ash.Resource.t(), opts :: Keyword.t()) ::
  Ash.Resource.record()
  | {Ash.Resource.record(), Ash.Query.t()}
  | nil
  | no_return()


      


Run an ash query, raising on more than one result. See read_one/2 for more.

  



  
    
      
      Link to this callback
    
    reload(record)


      
       
       View Source
     


  


  

      

          @callback reload(record :: Ash.Resource.record()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      


Refetches a record by primary key.

  



  
    
      
      Link to this callback
    
    reload!(record, params)


      
       
       View Source
     


  


  

      

          @callback reload!(record :: Ash.Resource.record(), params :: Keyword.t()) ::
  Ash.Resource.record() | no_return()


      


Refetches a record by primary key. See reload/1 for more.

  



  
    
      
      Link to this callback
    
    run_action(input, opts)


      
       
       View Source
     


  


  

      

          @callback run_action(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, term()}


      


Runs a generic action

  



  
    
      
      Link to this callback
    
    run_action!(input, opts)


      
       
       View Source
     


  


  

      

          @callback run_action!(input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
  term() | no_return()


      


Runs a generic action, raising on errors

  



  
    
      
      Link to this callback
    
    stream!(t, opts)


      
       
       View Source
     


  


  

      

          @callback stream!(Ash.Query.t(), opts :: Keyword.t()) ::
  Enumerable.t(Ash.Resource.record())


      


Streams the results of a query.
This utilizes keyset pagination to accomplish this stream, and for that reason,
the action for the query must support keyset pagination.

  



  
    
      
      Link to this callback
    
    sum(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback sum(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Get the sum of a given field from the given query

  



  
    
      
      Link to this callback
    
    sum!(t, field, opts)


      
       
       View Source
     


  


  

      

          @callback sum!(Ash.Query.t(), field :: atom(), opts :: Keyword.t()) ::
  term() | no_return()


      


Get the sum of a given field from the given query, raising any errors

  



  
    
      
      Link to this callback
    
    update(t, opts)


      
       
       View Source
     


  


  

      

          @callback update(Ash.Changeset.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | {:error, term()}


      


Update a record.
	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:after_action (term/0) - A hook to be run just before the action returns, but before fields are selected (still inside the same transaction, if your data layer
supports transactions). This is mostly important if you want to load calculations after the action, which depend on having fields
selected, but you want to authorize with the minimal set of fields that are actually being selected. Runs only if the action is
successful, and is passed the changeset and result of the action. Should return {:ok, result} or {:error, error}.
For example, if you had a full_name calculation, but were only selecting, first_name and full_name, you might do
something like this:
MyApp.User
|> Ash.Changeset.for_create(:create, %{first_name: "first_name", last_name: "last_name"}
|> Ash.Changeset.select(:first_name))
|> Api.create(after_action: fn _changeset, user -> Api.load(user, :full_name) end)
If you tried to load that :full_name calculation after receiving the data, the last_name would not be selected and as such would not be
usable in the calculation, regardless of whether or not the calculation includes that field in its select list.

	:return_notifications? (boolean/0) - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.

	:rollback_on_error? (boolean/0) - Whether or not to rollback the transaction on error, if the resource is in a transaction.
If the action has transaction? false this option has no effect. If an error is returned from the
data layer and the resource is in a transaction, the transaction is always rolled back, regardless. The default value is true.

	:notification_metadata (term/0) - Metadata to be merged into the metadata field for all notifications sent from this operation. The default value is %{}.



  



  
    
      
      Link to this callback
    
    update!(t, opts)


      
       
       View Source
     


  


  

      

          @callback update!(Ash.Changeset.t(), opts :: Keyword.t()) ::
  Ash.Resource.record()
  | {Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | no_return()


      


Update a record. See update/2 for more information.

  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    aggregate(api, query, aggregate_or_aggregates, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec aggregate(
  api :: t(),
  Ash.Query.t() | Ash.Resource.t(),
  aggregates :: aggregate() | [aggregate()],
  opts :: Keyword.t()
) :: {:ok, term()} | {:error, Ash.Error.t()}


      


Runs an aggregate or aggregates over a resource query
	:timeout (timeout/0) - A positive integer, or :infinity. If none is provided, the timeout configured on the api is used (which defaults to 30_000).

	:tracer - A tracer that implements the Ash.Tracer behaviour. See that module for more.

	:verbose? (boolean/0) - Log engine operations (very verbose!) The default value is false.

	:action (term/0) - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user. Valid values are true, false, nil

	:stacktraces? (boolean/0) - For Ash errors, whether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant (term/0) - A tenant to set on the query or changeset

	:actor (term/0) - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  



  
    
      
      Link to this function
    
    allow(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.allow/1 instead.
    


  

See Ash.Api.Info.allow/1.

  



  
    
      
      Link to this function
    
    allow_unregistered?(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.allow_unregistered?/1 instead.
    


  

See Ash.Api.Info.allow_unregistered?/1.

  



  
    
      
      Link to this function
    
    authorize(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.authorize/1 instead.
    


  

See Ash.Api.Info.authorize/1.

  



    

  
    
      
      Link to this function
    
    calculate(resource_or_record, calculation, opts \\ [])


      
       
       View Source
     


  


  

Evaluates the calculation on the resource.
If a record is provided, its field values will be used to evaluate the calculation.
	:args (map/0) - Values for arguments referenced by the calculation. The default value is %{}.

	:refs (map/0) - Values for references used by the calculation. The default value is %{}.

	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:tenant (term/0) - The tenant, supplied to calculation context.

	:authorize? (boolean/0) - Whether or not the request is being authorized, provided to calculation context. The default value is true.

	:tracer - A tracer, provided to the calculation context.

	:record (term/0) - A record to use as the base of the calculation



  



    

  
    
      
      Link to this function
    
    can(api, action_or_query_or_changeset, actor, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec can(
  api :: t(),
  action_or_query_or_changeset ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | Ash.ActionInput.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()}
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action(), input :: map()},
  actor :: term(),
  opts :: Keyword.t()
) :: {:ok, boolean() | :maybe} | {:ok, false, Exception.t()} | {:error, term()}


      



  



    

  
    
      
      Link to this function
    
    can?(api, action_or_query_or_changeset, actor, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec can?(
  api :: t(),
  query_or_changeset_or_action ::
    Ash.Query.t()
    | Ash.Changeset.t()
    | Ash.ActionInput.t()
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action()}
    | {Ash.Resource.t(), atom() | Ash.Resource.Actions.action(), input :: map()},
  actor :: term(),
  opts :: Keyword.t()
) :: boolean() | no_return()


      



  



  
    
      
      Link to this function
    
    destroy_opts_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    registry(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.registry/1 instead.
    


  

See Ash.Api.Info.registry/1.

  



  
    
      
      Link to this function
    
    require_actor?(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.require_actor?/1 instead.
    


  

See Ash.Api.Info.require_actor?/1.

  



  
    
      
      Link to this function
    
    resource(api, resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.resource/2 instead.
    


  

See Ash.Api.Info.resource/2.

  



  
    
      
      Link to this function
    
    resources(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.resources/1 instead.
    


  

See Ash.Api.Info.resources/1.

  



    

  
    
      
      Link to this function
    
    run_action(api, input, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec run_action(api :: t(), input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, Ash.Error.t()}


      


Runs a generic action.
Options:
	:actor (term/0) - The actor for handling ^actor/1 templates, supplied to calculation context.

	:tenant (term/0) - The tenant, supplied to calculation context.

	:authorize? (boolean/0) - Whether or not the request should be authorized.

	:tracer - A tracer, provided to the calculation context.



  



    

  
    
      
      Link to this function
    
    run_action!(api, input, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec run_action!(api :: t(), input :: Ash.ActionInput.t(), opts :: Keyword.t()) ::
  term() | no_return()


      



  



    

  
    
      
      Link to this function
    
    stream!(api, query, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec stream!(api :: module(), query :: Ash.Query.t(), opts :: Keyword.t()) ::
  Enumerable.t(Ash.Resource.record())


      



  



  
    
      
      Link to this function
    
    timeout(api)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Api.Info.timeout/1 instead.
    


  

See Ash.Api.Info.timeout/1.

  


        

      



  

  
    
    Ash.DataLayer.Ets - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Ets 
    



      
An ETS (Erlang Term Storage) backed Ash Datalayer, for testing and lightweight usage.
Remember, this does not have support for transactions! This is not recommended for production
use, especially in multi-user applications. It can, however, be great for prototyping.

      


      
        Summary


  
    Functions
  


    
      
        do_add_calculations(records, resource, calculations, api)

      


    


    
      
        private?(resource)

          deprecated

      


        See Ash.DataLayer.Ets.Info.private?/1.



    


    
      
        stop(resource, tenant \\ nil)

      


        Stops the storage for a given resource/tenant (deleting all of the data)



    


    
      
        table(resource)

          deprecated

      


        See Ash.DataLayer.Ets.Info.table/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do_add_calculations(records, resource, calculations, api)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.DataLayer.Ets.Info.private?/1 instead.
    


  

See Ash.DataLayer.Ets.Info.private?/1.

  



    

  
    
      
      Link to this function
    
    stop(resource, tenant \\ nil)


      
       
       View Source
     


  


  

Stops the storage for a given resource/tenant (deleting all of the data)

  



  
    
      
      Link to this function
    
    table(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.DataLayer.Ets.Info.table/1 instead.
    


  

See Ash.DataLayer.Ets.Info.table/1.

  


        

      



  

  
    
    Ash.DataLayer.Mnesia - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Mnesia 
    



      
An Mnesia backed Ash Datalayer.
In your application initialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is unoptimized, fetching all records from a table and filtering them
in memory. For that reason, it is not recommended to use it with large amounts of data. It can be
great for prototyping or light usage, though.

      


      
        Summary


  
    Functions
  


    
      
        start(api, resources \\ [])

      


        Creates the table for each mnesia resource in an api



    


    
      
        table(resource)

          deprecated

      


        See Ash.DataLayer.Mnesia.Info.table/1.



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    start(api, resources \\ [])


      
       
       View Source
     


  


  

Creates the table for each mnesia resource in an api

  



  
    
      
      Link to this function
    
    table(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.DataLayer.Mnesia.Info.table/1 instead.
    


  

See Ash.DataLayer.Mnesia.Info.table/1.

  


        

      



  

  
    
    Ash.DataLayer.Simple - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Simple 
    



      
A data layer that returns structs.
This is the data layer that is used under the hood
by embedded resources, and resources without data layers.

      


      
        Summary


  
    Functions
  


    
      
        set_data(query, data)

      


        Sets the data for a query against a data-layer-less resource



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    set_data(query, data)


      
       
       View Source
     


  


  

Sets the data for a query against a data-layer-less resource

  


        

      



  

  
    
    Ash.Notifier.PubSub - ash v2.17.7
    
    

    



  
  

    
Ash.Notifier.PubSub 
    



      
A pubsub notifier extension.

      


      
        Summary


  
    Functions
  


    
      
        module(resource)

          deprecated

      


        See Ash.Notifier.PubSub.Info.module/1.



    


    
      
        name(resource)

          deprecated

      


        See Ash.Notifier.PubSub.Info.name/1.



    


    
      
        prefix(resource)

          deprecated

      


        See Ash.Notifier.PubSub.Info.prefix/1.



    


    
      
        publications(resource)

          deprecated

      


        See Ash.Notifier.PubSub.Info.publications/1.



    


    
      
        to_payload(topic, event, notification)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    module(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Notifier.PubSub.Info.module/1 instead.
    


  

See Ash.Notifier.PubSub.Info.module/1.

  



  
    
      
      Link to this function
    
    name(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Notifier.PubSub.Info.name/1 instead.
    


  

See Ash.Notifier.PubSub.Info.name/1.

  



  
    
      
      Link to this function
    
    prefix(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Notifier.PubSub.Info.prefix/1 instead.
    


  

See Ash.Notifier.PubSub.Info.prefix/1.

  



  
    
      
      Link to this function
    
    publications(resource)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Notifier.PubSub.Info.publications/1 instead.
    


  

See Ash.Notifier.PubSub.Info.publications/1.

  



  
    
      
      Link to this function
    
    to_payload(topic, event, notification)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.Authorizer - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Authorizer 
    



      
An authorization extension for ash resources.
To add this extension to a resource, add it to the list of authorizers like so:
use Ash.Resource,
  ...,
  authorizers: [
    Ash.Policy.Authorizer
  ]
A resource can be given a set of policies, which are enforced on each call to a resource action.
For reads, policies can be configured to filter out data that the actor shouldn't see, as opposed to
resulting in a forbidden error.
See the policies guide for practical examples.
Policies are solved/managed via a boolean satisfiability solver. To read more about boolean satisfiability,
see this page: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. At the end of
the day, however, it is not necessary to understand exactly how Ash takes your
authorization requirements and determines if a request is allowed. The
important thing to understand is that Ash may or may not run any/all of your
authorization rules as they may be deemed unnecessary. As such, authorization
checks should have no side effects. Ideally, the checks built-in to ash should
cover the bulk of your needs.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        print_tuple_boolean(v)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Policy.Authorizer{
  action: term(),
  action_input: term(),
  actor: term(),
  api: term(),
  changeset: term(),
  check_scenarios: term(),
  data: term(),
  data_facts: term(),
  facts: term(),
  policies: term(),
  query: term(),
  real_scenarios: term(),
  resource: term(),
  scenarios: term(),
  verbose?: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    print_tuple_boolean(v)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Registry - ash v2.17.7
    
    

    



  
  

    
Ash.Registry 
    



      
A registry allows you to separate your resources from your api module, to reduce improve compile times and reduce compile time dependencies.
For example:
defmodule MyApp.MyRegistry do
  use Ash.Registry

  entries do
    entry MyApp.Resource
    entry MyApp.OtherResource
  end
end

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        entries(registry)

          deprecated

      


        See Ash.Registry.Info.entries/1.



    


    
      
        warn_on_empty?(registry)

          deprecated

      


        See Ash.Registry.Info.warn_on_empty?/1.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    entries(registry)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Registry.Info.entries/1 instead.
    


  

See Ash.Registry.Info.entries/1.

  



  
    
      
      Link to this function
    
    warn_on_empty?(registry)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Registry.Info.warn_on_empty?/1 instead.
    


  

See Ash.Registry.Info.warn_on_empty?/1.

  


        

      



  

  
    
    Ash.Resource - ash v2.17.7
    
    

    



  
  

    
Ash.Resource 
    



      
A resource is a static definition of an entity in your system.
Resource DSL documentation

      


      
        Summary


  
    Types
  


    
      
        record()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        get_metadata(record, key_or_path)

      


    


    
      
        loaded?(data, path, opts \\ [])

      


        Returns true if the load or path to load has been loaded



    


    
      
        put_metadata(record, key, term)

      


    


    
      
        selected?(record, field)

      


    


    
      
        set_metadata(record, map)

      


    


    
      
        unload(page, path)

      


        Sets a loaded key or path to a key back to its original unloaded stated



    


    
      
        unload_many(data, paths)

      


        Sets a list of loaded key or paths to a key back to their original unloaded stated



    





      


      
        Types

        


  
    
      
      Link to this type
    
    record()


      
       
       View Source
     


  


  

      

          @type record() :: struct()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    get_metadata(record, key_or_path)


      
       
       View Source
     


  


  

      

          @spec get_metadata(record(), atom() | [atom()]) :: term()


      



  



    

  
    
      
      Link to this function
    
    loaded?(data, path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec loaded?(
  nil | [record()] | record() | Ash.Page.page(),
  atom() | Ash.Query.Calculation.t() | Ash.Query.Aggregate.t() | [atom()],
  opts :: Keyword.t()
) :: boolean()


      


Returns true if the load or path to load has been loaded

  
    
  
  Options


	lists: set to :any to have this return true if any record in a list that appears has the value loaded. Default is :all.
	unknown: set to true to have unknown paths (like nil values or non-resources) return true. Defaults to false


  



  
    
      
      Link to this function
    
    put_metadata(record, key, term)


      
       
       View Source
     


  


  

      

          @spec put_metadata(record(), atom(), term()) :: record()


      



  



  
    
      
      Link to this function
    
    selected?(record, field)


      
       
       View Source
     


  


  

      

          @spec selected?(record(), atom()) :: boolean()


      



  



  
    
      
      Link to this function
    
    set_metadata(record, map)


      
       
       View Source
     


  


  

      

          @spec set_metadata(record(), map()) :: record()


      



  



  
    
      
      Link to this function
    
    unload(page, path)


      
       
       View Source
     


  


  

      

          @spec unload(
  nil | [record()] | record() | Ash.Page.page(),
  atom() | [atom()]
) :: nil | [record()] | record() | Ash.Page.page()


      


Sets a loaded key or path to a key back to its original unloaded stated

  



  
    
      
      Link to this function
    
    unload_many(data, paths)


      
       
       View Source
     


  


  

      

          @spec unload_many(
  nil | [record()] | record() | Ash.Page.page(),
  [atom()] | [[atom()]]
) :: nil | [record()] | record() | Ash.Page.page()


      


Sets a list of loaded key or paths to a key back to their original unloaded stated

  


        

      



  

  
    
    Ash.Calculation - ash v2.17.7
    
    

    



  
  

    
Ash.Calculation behaviour
    



      
The behaviour for a calculation module
Use select/2 to apply a select statement when the calculation is loaded.
This does not apply in the case that you are loading on existing resources using
MyApi.load. It also doesn't apply when the calculation is used in a filter or sort,
because it is not necessary to select fields to power filters done in the data layer.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        opts()

      


    





  
    Callbacks
  


    
      
        calculate(list, opts, context)

      


    


    
      
        describe(opts)

      


    


    
      
        expression(opts, context)

      


    


    
      
        init(opts)

      


    


    
      
        load(t, opts, context)

      


    


    
      
        select(t, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  :actor => term() | nil,
  :tenant => String.t() | nil,
  :authorize? => boolean() | nil,
  :tracer => module() | nil,
  optional(atom()) => any()
}


      



  



  
    
      
      Link to this type
    
    opts()


      
       
       View Source
     


  


  

      

          @type opts() :: Keyword.t()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    calculate(list, opts, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback calculate([Ash.Resource.record()], opts(), context()) ::
  {:ok, [term()]} | [term()] | {:error, term()} | :unknown


      



  



  
    
      
      Link to this callback
    
    describe(opts)


      
       
       View Source
     


  


  

      

          @callback describe(opts()) :: String.t()


      



  



  
    
      
      Link to this callback
    
    expression(opts, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback expression(opts(), context()) :: any()


      



  



  
    
      
      Link to this callback
    
    init(opts)


      
       
       View Source
     


  


  

      

          @callback init(opts()) :: {:ok, opts()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    load(t, opts, context)


      
       
       View Source
     


  


  

      

          @callback load(Ash.Query.t(), opts(), context()) :: atom() | [atom()] | Keyword.t()


      



  



  
    
      
      Link to this callback
    
    select(t, opts, context)


      
       
       View Source
     


  


  

      

          @callback select(Ash.Query.t(), opts(), context()) :: [atom()]


      



  


        

      



  

  
    
    Ash.CodeInterface - ash v2.17.7
    
    

    



  
  

    
Ash.CodeInterface 
    



      
Used to define the functions of a code interface for a resource.

      


      
        Summary


  
    Functions
  


    
      
        define_interface(api, resource)

      


        Defines the code interface for a given resource + api combination in the current module. For example



    


    
      
        unwrap_calc_interface_args(keys, resource, arguments, function_head? \\ false)

      


    


    
      
        without_optional(keys)

      


    





      


      
        Functions

        


  
    
      
      Link to this macro
    
    define_interface(api, resource)


      
       
       View Source
     


      (macro)

  


  

Defines the code interface for a given resource + api combination in the current module. For example:
defmodule MyApp.Accounting do
  require Ash.CodeInterface

  Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Transaction)
  Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Account)
  Ash.CodeInterface.define_interface(MyApp.Accounting, MyApp.Accounting.Invoice)
end
Keep in mind that you can have this "automatically" defined in your resources by using the define_for
flag in a resource.
For example:
defmodule MyApp.Accounting.Transaction do
  use Ash.Resource

  ...

  code_interface do
    define_for MyApp.Accounting

    define :start do
      args [:invoice_id]
    end
  end
end

# Which can now be used like so:

MyApp.Accounting.Transaction.start!(invoice.id)

  



    

  
    
      
      Link to this function
    
    unwrap_calc_interface_args(keys, resource, arguments, function_head? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    without_optional(keys)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.DataLayer - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer behaviour
    



      
The interface for being an ash data layer.
This is a large behaviour, and this capability is not complete, but the idea
is to have a large amount of optional callbacks, and use the can?/2 callback
to ensure that the engine only ever tries to interact with the data layer in ways
that it supports.

      


      
        Summary


  
    Types
  


    
      
        bulk_options()

      


    


    
      
        data_layer_query()

      


    


    
      
        feature()

      


    


    
      
        lateral_join_link()

      


    


    
      
        lock_type()

      


    


    
      
        t()

      


    


    
      
        transaction_reason()

      


    





  
    Callbacks
  


    
      
        add_aggregate(data_layer_query, t, t)

      


    


    
      
        add_aggregates(data_layer_query, list, t)

      


    


    
      
        add_calculation(data_layer_query, t, expression, t)

      


    


    
      
        add_calculations(data_layer_query, list, t)

      


    


    
      
        bulk_create(t, t, options)

      


    


    
      
        can?(arg1, feature)

      


    


    
      
        create(t, t)

      


    


    
      
        destroy(t, t)

      


    


    
      
        distinct(data_layer_query, list, resource)

      


    


    
      
        distinct_sort(data_layer_query, t, resource)

      


    


    
      
        filter(data_layer_query, t, resource)

      


    


    
      
        functions(t)

      


    


    
      
        in_transaction?(t)

      


    


    
      
        limit(data_layer_query, limit, resource)

      


    


    
      
        lock(data_layer_query, lock_type, resource)

      


    


    
      
        offset(data_layer_query, offset, resource)

      


    


    
      
        prefer_lateral_join_for_many_to_many?()

      


    


    
      
        resource_to_query(t, t)

      


    


    
      
        rollback(t, term)

      


    


    
      
        run_aggregate_query(data_layer_query, list, t)

      


    


    
      
        run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)

      


    


    
      
        run_query(data_layer_query, t)

      


    


    
      
        run_query_with_lateral_join(data_layer_query, list, source_resource, list)

      


    


    
      
        select(data_layer_query, select, resource)

      


    


    
      
        set_context(t, data_layer_query, map)

      


    


    
      
        set_tenant(t, data_layer_query, term)

      


    


    
      
        sort(data_layer_query, t, resource)

      


    


    
      
        source(t)

      


    


    
      
        transaction(t, function, arg3, reason)

      


    


    
      
        transform_query(t)

      


    


    
      
        update(t, t)

      


    


    
      
        upsert(t, t, list)

      


    





  
    Functions
  


    
      
        add_aggregates(query, aggregates, resource)

      


    


    
      
        add_calculations(query, calculations, resource)

      


    


    
      
        bulk_create(resource, changesets, options)

      


    


    
      
        can?(feature, resource)

      


    


    
      
        create(resource, changeset)

      


    


    
      
        data_layer(resource)

      


        The data layer of the resource, or nil if it does not have one



    


    
      
        data_layer_can?(resource, feature)

      


        Whether or not the data layer supports a specific feature



    


    
      
        data_layer_functions(resource)

      


        Custom functions supported by the data layer of the resource



    


    
      
        destroy(resource, changeset)

      


    


    
      
        distinct(query, distinct, resource)

      


    


    
      
        distinct_sort(query, sort, resource)

      


    


    
      
        filter(query, filter, resource)

      


    


    
      
        functions(resource)

      


    


    
      
        in_transaction?(resource)

      


    


    
      
        limit(query, limit, resource)

      


    


    
      
        lock(query, lock_type, resource)

      


    


    
      
        offset(query, offset, resource)

      


    


    
      
        prefer_lateral_join_for_many_to_many?(data_layer)

      


        Whether or not lateral joins should be used for many to many relationships by default



    


    
      
        resource_to_query(resource, api)

      


    


    
      
        rollback(resource, term)

      


        Rolls back the current transaction



    


    
      
        run_aggregate_query(query, aggregates, resource)

      


    


    
      
        run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)

      


    


    
      
        run_query(query, central_resource)

      


    


    
      
        run_query_with_lateral_join(query, root_data, destination_resource, path)

      


    


    
      
        select(query, select, resource)

      


    


    
      
        set_context(resource, query, map)

      


    


    
      
        set_tenant(resource, query, term)

      


    


    
      
        sort(query, sort, resource)

      


    


    
      
        source(resource)

      


    


    
      
        transaction(resource_or_resources, func, timeout \\ nil, reason \\ %{type: :custom, metadata: %{}})

      


        Wraps the execution of the function in a transaction with the resource's data_layer



    


    
      
        transform_query(query)

      


    


    
      
        update(resource, changeset)

      


    


    
      
        upsert(resource, changeset, keys)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    bulk_options()


      
       
       View Source
     


  


  

      

          @type bulk_options() :: %{
  batch_size: pos_integer(),
  return_records?: boolean(),
  upsert?: boolean(),
  upsert_keys: nil | [atom()],
  upsert_fields:
    nil
    | [atom()]
    | :replace_all
    | {:replace, [atom()]}
    | {:replace_all_except, [atom()]},
  tenant: String.t() | nil
}


      



  



  
    
      
      Link to this type
    
    data_layer_query()


      
       
       View Source
     


  


  

      

          @type data_layer_query() :: struct()


      



  



  
    
      
      Link to this type
    
    feature()


      
       
       View Source
     


  


  

      

          @type feature() ::
  :transact
  | :multitenancy
  | {:atomic, :update}
  | {:atomic, :upsert}
  | {:lateral_join, [Ash.Resource.t()]}
  | {:join, Ash.Resource.t()}
  | {:aggregate, Ash.Query.Aggregate.kind()}
  | {:aggregate_relationship, Ash.Resource.Relationships.relationship()}
  | {:query_aggregate, Ash.Query.Aggregate.kind()}
  | :select
  | :expression_calculation_sort
  | :aggregate_filter
  | :aggregate_sort
  | :boolean_filter
  | :async_engine
  | :create
  | :read
  | :update
  | :destroy
  | :limit
  | :offset
  | :transact
  | :filter
  | {:lock, lock_type()}
  | {:filter_expr, struct()}
  | {:filter_relationship, Ash.Resource.Relationships.relationship()}
  | :sort
  | {:sort, Ash.Type.t()}
  | :upsert
  | :composite_primary_key


      



  



  
    
      
      Link to this type
    
    lateral_join_link()


      
       
       View Source
     


  


  

      

          @type lateral_join_link() ::
  {Ash.Resource.t(), atom(), atom(), Ash.Resource.Relationships.relationship()}


      



  



  
    
      
      Link to this type
    
    lock_type()


      
       
       View Source
     


  


  

      

          @type lock_type() :: :for_update | term()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  



  
    
      
      Link to this type
    
    transaction_reason()


      
       
       View Source
     


  


  

      

          @type transaction_reason() ::
  %{
    :type => :create,
    :metadata => %{resource: Ash.Resource.t(), action: atom()},
    optional(:data_layer_context) => %{}
  }
  | %{
      :type => :update,
      :metadata => %{
        resource: Ash.Resource.t(),
        action: atom(),
        record: Ash.Resource.record(),
        actor: term()
      },
      optional(:data_layer_context) => %{}
    }
  | %{
      :type => :destroy,
      :metadata => %{
        resource: Ash.Resource.t(),
        action: atom(),
        record: Ash.Resource.record(),
        actor: term()
      },
      optional(:data_layer_context) => %{}
    }
  | %{
      :type => :read,
      :metadata => %{
        resource: Ash.Resource.t(),
        query: Ash.Query.t(),
        actor: term()
      },
      optional(:data_layer_context) => %{}
    }
  | %{
      :type => :flow_transaction,
      :metadata => %{
        resource: Ash.Resource.t(),
        input: Ash.ActionInput.t(),
        action: atom(),
        actor: term()
      },
      optional(:data_layer_context) => %{}
    }
  | %{
      :type => :generic,
      :metadata => %{
        step_name: atom() | [term()],
        flow: module(),
        actor: term()
      },
      optional(:data_layer_context) => %{}
    }
  | %{type: :custom, metadata: map()}
  | %{type: atom(), metadata: map()}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    add_aggregate(data_layer_query, t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback add_aggregate(
  data_layer_query(),
  Ash.Query.Aggregate.t(),
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    add_aggregates(data_layer_query, list, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback add_aggregates(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    add_calculation(data_layer_query, t, expression, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback add_calculation(
  data_layer_query(),
  Ash.Query.Calculation.t(),
  expression :: any(),
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    add_calculations(data_layer_query, list, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback add_calculations(
  data_layer_query(),
  [{Ash.Query.Calculation.t(), expression :: any()}],
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    bulk_create(t, t, options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback bulk_create(
  Ash.Resource.t(),
  Enumerable.t(Ash.Changeset.t()),
  options :: bulk_options()
) ::
  {:ok,
   Enumerable.t(:ok | {:ok, Ash.Resource.record()} | {:error, Ash.Error.t()})}
  | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    can?(arg1, feature)


      
       
       View Source
     


  


  

      

          @callback can?(Ash.Resource.t() | Spark.Dsl.t(), feature()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    create(t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback create(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    destroy(t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback destroy(Ash.Resource.t(), Ash.Changeset.t()) :: :ok | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    distinct(data_layer_query, list, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback distinct(data_layer_query(), [atom()], resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    distinct_sort(data_layer_query, t, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback distinct_sort(data_layer_query(), Ash.Sort.t(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    filter(data_layer_query, t, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback filter(data_layer_query(), Ash.Filter.t(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    functions(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback functions(Ash.Resource.t()) :: [module()]


      



  



  
    
      
      Link to this callback
    
    in_transaction?(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback in_transaction?(Ash.Resource.t()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    limit(data_layer_query, limit, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback limit(
  data_layer_query(),
  limit :: non_neg_integer(),
  resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    lock(data_layer_query, lock_type, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback lock(data_layer_query(), lock_type(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    offset(data_layer_query, offset, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback offset(
  data_layer_query(),
  offset :: non_neg_integer(),
  resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    prefer_lateral_join_for_many_to_many?()


      
       
       View Source
     


      (optional)

  


  

      

          @callback prefer_lateral_join_for_many_to_many?() :: boolean()


      



  



  
    
      
      Link to this callback
    
    resource_to_query(t, t)


      
       
       View Source
     


  


  

      

          @callback resource_to_query(Ash.Resource.t(), Ash.Api.t()) :: data_layer_query()


      



  



  
    
      
      Link to this callback
    
    rollback(t, term)


      
       
       View Source
     


      (optional)

  


  

      

          @callback rollback(Ash.Resource.t(), term()) :: no_return()


      



  



  
    
      
      Link to this callback
    
    run_aggregate_query(data_layer_query, list, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback run_aggregate_query(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)


      
       
       View Source
     


      (optional)

  


  

      

          @callback run_aggregate_query_with_lateral_join(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  [Ash.Resource.record()],
  destination_resource :: Ash.Resource.t(),
  [lateral_join_link()]
) :: {:ok, [Ash.Resource.t()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_query(data_layer_query, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback run_query(data_layer_query(), Ash.Resource.t()) ::
  {:ok, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_query_with_lateral_join(data_layer_query, list, source_resource, list)


      
       
       View Source
     


      (optional)

  


  

      

          @callback run_query_with_lateral_join(
  data_layer_query(),
  [Ash.Resource.record()],
  source_resource :: Ash.Resource.t(),
  [lateral_join_link()]
) :: {:ok, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    select(data_layer_query, select, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback select(
  data_layer_query(),
  select :: [atom()],
  resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    set_context(t, data_layer_query, map)


      
       
       View Source
     


      (optional)

  


  

      

          @callback set_context(Ash.Resource.t(), data_layer_query(), map()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    set_tenant(t, data_layer_query, term)


      
       
       View Source
     


      (optional)

  


  

      

          @callback set_tenant(Ash.Resource.t(), data_layer_query(), term()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    sort(data_layer_query, t, resource)


      
       
       View Source
     


      (optional)

  


  

      

          @callback sort(data_layer_query(), Ash.Sort.t(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    source(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback source(Ash.Resource.t()) :: String.t()


      



  



  
    
      
      Link to this callback
    
    transaction(t, function, arg3, reason)


      
       
       View Source
     


      (optional)

  


  

      

          @callback transaction(
  Ash.Resource.t(),
  (-> term()),
  nil | pos_integer(),
  reason :: transaction_reason()
) :: {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    transform_query(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback transform_query(Ash.Query.t()) :: Ash.Query.t()


      



  



  
    
      
      Link to this callback
    
    update(t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback update(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    upsert(t, t, list)


      
       
       View Source
     


      (optional)

  


  

      

          @callback upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    add_aggregates(query, aggregates, resource)


      
       
       View Source
     


  


  

      

          @spec add_aggregates(data_layer_query(), [Ash.Query.Aggregate.t()], Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    add_calculations(query, calculations, resource)


      
       
       View Source
     


  


  

      

          @spec add_calculations(
  data_layer_query(),
  [{Ash.Query.Calculation.t(), expression :: term()}],
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    bulk_create(resource, changesets, options)


      
       
       View Source
     


  


  

      

          @spec bulk_create(
  Ash.Resource.t(),
  Enumerable.t(Ash.Changeset.t()),
  options :: bulk_options()
) :: :ok | {:ok, Enumerable.t(Ash.Resource.record())} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this function
    
    can?(feature, resource)


      
       
       View Source
     


  


  

      

          @spec can?(feature(), Ash.Resource.t() | Spark.Dsl.t()) :: boolean()


      



  



  
    
      
      Link to this function
    
    create(resource, changeset)


      
       
       View Source
     


  


  

      

          @spec create(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    data_layer(resource)


      
       
       View Source
     


  


  

      

          @spec data_layer(Ash.Resource.t() | Spark.Dsl.t()) :: t() | nil


      


The data layer of the resource, or nil if it does not have one

  



  
    
      
      Link to this function
    
    data_layer_can?(resource, feature)


      
       
       View Source
     


  


  

      

          @spec data_layer_can?(Ash.Resource.t() | Spark.Dsl.t(), feature()) :: boolean()


      


Whether or not the data layer supports a specific feature

  



  
    
      
      Link to this function
    
    data_layer_functions(resource)


      
       
       View Source
     


  


  

      

          @spec data_layer_functions(Ash.Resource.t()) :: map()


      


Custom functions supported by the data layer of the resource

  



  
    
      
      Link to this function
    
    destroy(resource, changeset)


      
       
       View Source
     


  


  

      

          @spec destroy(Ash.Resource.t(), Ash.Changeset.t()) :: :ok | {:error, term()}


      



  



  
    
      
      Link to this function
    
    distinct(query, distinct, resource)


      
       
       View Source
     


  


  

      

          @spec distinct(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    distinct_sort(query, sort, resource)


      
       
       View Source
     


  


  

      

          @spec distinct_sort(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    filter(query, filter, resource)


      
       
       View Source
     


  


  

      

          @spec filter(data_layer_query(), Ash.Filter.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    functions(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    in_transaction?(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    limit(query, limit, resource)


      
       
       View Source
     


  


  

      

          @spec limit(data_layer_query(), limit :: non_neg_integer(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    lock(query, lock_type, resource)


      
       
       View Source
     


  


  

      

          @spec lock(
  data_layer_query(),
  lock_type :: lock_type() | nil,
  resource :: Ash.Resource.t()
) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    offset(query, offset, resource)


      
       
       View Source
     


  


  

      

          @spec offset(data_layer_query(), offset :: non_neg_integer(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    prefer_lateral_join_for_many_to_many?(data_layer)


      
       
       View Source
     


  


  

      

          @spec prefer_lateral_join_for_many_to_many?(t()) :: boolean()


      


Whether or not lateral joins should be used for many to many relationships by default

  



  
    
      
      Link to this function
    
    resource_to_query(resource, api)


      
       
       View Source
     


  


  

      

          @spec resource_to_query(Ash.Resource.t(), Ash.Api.t()) :: data_layer_query()


      



  



  
    
      
      Link to this function
    
    rollback(resource, term)


      
       
       View Source
     


  


  

      

          @spec rollback(Ash.Resource.t() | [Ash.Resource.t()], term()) :: no_return()


      


Rolls back the current transaction

  



  
    
      
      Link to this function
    
    run_aggregate_query(query, aggregates, resource)


      
       
       View Source
     


  


  

      

          @spec run_aggregate_query(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run_query(query, central_resource)


      
       
       View Source
     


  


  

      

          @spec run_query(data_layer_query(), central_resource :: Ash.Resource.t()) ::
  {:ok, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    run_query_with_lateral_join(query, root_data, destination_resource, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    select(query, select, resource)


      
       
       View Source
     


  


  

      

          @spec select(data_layer_query(), select :: [atom()], Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    set_context(resource, query, map)


      
       
       View Source
     


  


  

      

          @spec set_context(Ash.Resource.t(), data_layer_query(), map()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    set_tenant(resource, query, term)


      
       
       View Source
     


  


  

      

          @spec set_tenant(Ash.Resource.t(), data_layer_query(), term()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    sort(query, sort, resource)


      
       
       View Source
     


  


  

      

          @spec sort(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    source(resource)


      
       
       View Source
     


  


  

      

          @spec source(Ash.Resource.t()) :: String.t()


      



  



    

    

  
    
      
      Link to this function
    
    transaction(resource_or_resources, func, timeout \\ nil, reason \\ %{type: :custom, metadata: %{}})


      
       
       View Source
     


  


  

      

          @spec transaction(
  Ash.Resource.t() | [Ash.Resource.t()],
  (-> term()),
  nil | pos_integer(),
  reason :: transaction_reason()
) :: term()


      


Wraps the execution of the function in a transaction with the resource's data_layer

  



  
    
      
      Link to this function
    
    transform_query(query)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    update(resource, changeset)


      
       
       View Source
     


  


  

      

          @spec update(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    upsert(resource, changeset, keys)


      
       
       View Source
     


  


  

      

          @spec upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  


        

      



  

  
    
    Ash.Filter.TemplateHelpers - ash v2.17.7
    
    

    



  
  

    
Ash.Filter.TemplateHelpers 
    



      
Helpers for building filter templates

      


      
        Summary


  
    Functions
  


    
      
        actor(value)

      


        A helper for using actor values in filter templates



    


    
      
        arg(name)

      


        A helper for using action arguments in filter templates



    


    
      
        context(name)

      


        A helper for using query context in filter templates



    


    
      
        expr(expr)

      


        A helper for building an expression style filter



    


    
      
        expr?(value)

      


    


    
      
        is_expr(value)

          deprecated

      


    


    
      
        parent(expr)

      


        A helper for creating a parent reference



    


    
      
        ref(name)

      


        A helper for creating a reference



    


    
      
        ref(path, name)

      


        A helper for creating a reference to a related path



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    actor(value)


      
       
       View Source
     


  


  

A helper for using actor values in filter templates

  



  
    
      
      Link to this function
    
    arg(name)


      
       
       View Source
     


  


  

A helper for using action arguments in filter templates

  



  
    
      
      Link to this function
    
    context(name)


      
       
       View Source
     


  


  

A helper for using query context in filter templates
An atom will just get the key, and a list will be accessed via get_in.

  



  
    
      
      Link to this macro
    
    expr(expr)


      
       
       View Source
     


      (macro)

  


  

A helper for building an expression style filter

  



  
    
      
      Link to this function
    
    expr?(value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this macro
    
    is_expr(value)


      
       
       View Source
     


      (macro)

  


    
      This macro is deprecated. Use `expr?/1` instead, which is not a guard.
    


  


  



  
    
      
      Link to this function
    
    parent(expr)


      
       
       View Source
     


  


  

A helper for creating a parent reference

  



  
    
      
      Link to this function
    
    ref(name)


      
       
       View Source
     


  


  

A helper for creating a reference

  



  
    
      
      Link to this function
    
    ref(path, name)


      
       
       View Source
     


  


  

A helper for creating a reference to a related path

  


        

      



  

  
    
    Ash.Notifier - ash v2.17.7
    
    

    



  
  

    
Ash.Notifier behaviour
    



      
A notifier is an extension that receives various events

      


      
        Summary


  
    Callbacks
  


    
      
        notify(t)

      


    





  
    Functions
  


    
      
        notify(resource_notifications)

      


        Sends any notifications that can be sent, and returns the rest.



    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    notify(t)


      
       
       View Source
     


  


  

      

          @callback notify(Ash.Notifier.Notification.t()) :: :ok


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    notify(resource_notifications)


      
       
       View Source
     


  


  

      

          @spec notify([Ash.Notifier.Notification.t()] | Ash.Notifier.Notification.t()) :: [
  Ash.Notifier.Notification.t()
]


      


Sends any notifications that can be sent, and returns the rest.
A notification can only be sent if you are not currently in a transaction
for the resource in question.

  


        

      



  

  
    
    Ash.Notifier.Notification - ash v2.17.7
    
    

    



  
  

    
Ash.Notifier.Notification 
    



      
Represents a notification that will be handled by a resource's notifiers
Set the for key to a notifier or a list of notifiers to route the notification
to them. This allows you to produce notifications inside of a change module
and target specific notifiers with them.
metadata is freeform data to be set however you want. resource, action, data,
changeset and actor are all set by default based on the details of the action, so
they can be omitted.
When creating a notification, a resource is required to ensure that the notification isn't
sent until the current transaction for that resource is closed. If you don't need this
behavior you can explicitly supply nil for the resource. If you supply nil for the resource,
however, you must manually set the for option, e.g: for: Notifier or for: [Notifier1, Notifier2]

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(resource, opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Notifier.Notification{
  action: term(),
  actor: term(),
  api: term(),
  changeset: term(),
  data: term(),
  for: term(),
  from: term(),
  metadata: term(),
  resource: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(resource, opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Attribute.Helpers - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Attribute.Helpers 
    



      
Helpers for building attributes

      


      
        Summary


  
    Functions
  


    
      
        timestamps(opts \\ [])

      


    





      


      
        Functions

        


    

  
    
      
      Link to this macro
    
    timestamps(opts \\ [])


      
       
       View Source
     


      (macro)

  


  


  


        

      



  

  
    
    Ash.Resource.Calculation.Builtins - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Calculation.Builtins 
    



      
Built in calculations that are automatically imported in the calculations section

      


      
        Summary


  
    Functions
  


    
      
        concat(keys, separator \\ "")

      


        An example concatenation calculation, that accepts the delimiter as an argument



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    concat(keys, separator \\ "")


      
       
       View Source
     


  


  

      

          @spec concat(keys :: [atom()], separator :: String.t()) ::
  Ash.Resource.Calculation.ref()


      


An example concatenation calculation, that accepts the delimiter as an argument

  
    
  
  Examples


calculate :full_name, :string, concat([:first_name, :last_name], " ")

  


        

      



  

  
    
    Ash.Resource.ManualCreate - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.ManualCreate behaviour
    



      
A module to implement manual create actions.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        create(changeset, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:tracer) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    create(changeset, opts, context)


      
       
       View Source
     


  


  

      

          @callback create(
  changeset :: Ash.Changeset.t(),
  opts :: Keyword.t(),
  context :: context()
) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(),
     %{notifications: [Ash.Notifier.Notification.t()]}}
  | {:error, term()}


      



  


        

      



  

  
    
    Ash.Resource.ManualDestroy - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.ManualDestroy behaviour
    



      
A module to implement manual destroy actions.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        destroy(changeset, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    destroy(changeset, opts, context)


      
       
       View Source
     


  


  

      

          @callback destroy(
  changeset :: Ash.Changeset.t(),
  opts :: Keyword.t(),
  context :: context()
) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
  | {:error, term()}


      



  


        

      



  

  
    
    Ash.Resource.ManualRead - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.ManualRead behaviour
    



      
A module to implement manual read actions.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        read(query, data_layer_query, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    read(query, data_layer_query, opts, context)


      
       
       View Source
     


  


  

      

          @callback read(
  query :: Ash.Query.t(),
  data_layer_query :: term(),
  opts :: Keyword.t(),
  context :: context()
) :: {:ok, [Ash.Resource.record()]} | {:error, term()}


      



  


        

      



  

  
    
    Ash.Resource.ManualRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.ManualRelationship behaviour
    



      
A module to implement manual relationships.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        load(list, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:relationship) => Ash.Resource.Relationships.relationship(),
  optional(:query) => Ash.Query.t(),
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    load(list, opts, context)


      
       
       View Source
     


  


  

      

          @callback load(
  [Ash.Resource.record()],
  opts :: Keyword.t(),
  context :: context()
) :: {:ok, map()} | {:error, term()}


      



  


        

      



  

  
    
    Ash.Resource.ManualUpdate - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.ManualUpdate behaviour
    



      
A module to implement manual update actions.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        update(changeset, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    update(changeset, opts, context)


      
       
       View Source
     


  


  

      

          @callback update(
  changeset :: Ash.Changeset.t(),
  opts :: Keyword.t(),
  context :: context()
) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(),
     %{notifications: [Ash.Notifier.Notification.t()]}}
  | {:error, term()}


      



  


        

      



  

  
    
    Ash.Query - ash v2.17.7
    
    

    



  
  

    
Ash.Query 
    



      
Utilities around constructing/manipulating ash queries.
Ash queries are used for read actions and loads, and ultimately
map to queries to a resource's data layer.
Queries are run by calling read on an API that contains the resource in question
Examples:
MyApp.Post
|> Ash.Query.filter(likes > 10)
|> Ash.Query.sort([:title])
|> MyApp.Api.read!()

MyApp.Author
|> Ash.Query.aggregate(:published_post_count, :posts, query: [filter: [published: true]])
|> Ash.Query.sort(published_post_count: :desc)
|> Ash.Query.limit(10)
|> MyApp.Api.read!()

MyApp.Author
|> Ash.Query.load([:post_count, :comment_count])
|> Ash.Query.load(posts: [:comments])
|> MyApp.Api.read!()

      


      
        Summary


  
    Types
  


    
      
        around_action_fun()

      


    


    
      
        around_callback()

      


    


    
      
        around_result()

      


    


    
      
        around_transaction_fun()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        accessing(query, types \\ [:attributes, :relationships, :calculations, :aggregates])

      


        Returns a list of attributes, aggregates, relationships, and calculations that are being loaded



    


    
      
        add_error(query, keys \\ [], message)

      


    


    
      
        after_action(query, func)

      


    


    
      
        aggregate(query, name, kind, relationship)

      


        Adds an aggregation to the query.



    


    
      
        aggregate(query, name, kind, relationship, opts)

      


    


    
      
        aggregate(query, name, kind, relationship, agg_query, default \\ nil, filterable? \\ true, type \\ nil, constraints \\ [], implementation \\ nil, uniq? \\ false, read_action \\ nil, authorize? \\ true)

      


        Adds an aggregation to the query.



    


    
      
        around_transaction(query, func)

      


        Adds an around_transaction hook to the query.



    


    
      
        before_action(query, func)

      


    


    
      
        build(resource, api \\ nil, keyword)

      


        Builds a query from a keyword list.



    


    
      
        calculate(query, name, module_and_opts, type, context \\ %{}, constraints \\ [])

      


        Adds a calculation to the query.



    


    
      
        clear_result(changeset)

      


        Removes a result set previously with set_result/2



    


    
      
        data_layer_query(ash_query, opts \\ [])

      


        Return the underlying data layer query for an ash query



    


    
      
        delete_argument(query, argument_or_arguments)

      


        Remove an argument from the query



    


    
      
        deselect(query, fields)

      


        Ensure the the specified attributes are nil in the query results.



    


    
      
        distinct(query, distincts)

      


        Get results distinct on the provided fields.



    


    
      
        distinct_sort(query, sorts, opts \\ [])

      


        Set a sort to determine how distinct records are selected.



    


    
      
        ensure_selected(query, fields)

      


        Ensures that the given attributes are selected.



    


    
      
        equivalent_to(query, expr)

      


        Determines if the filter statement of a query is equivalent to the provided expression.



    


    
      
        equivalent_to?(query, expr)

      


        Same as equivalent_to/2 but always returns a boolean. :maybe returns false.



    


    
      
        expr(body)

      


        Creates an Ash expression for evaluation later.



    


    
      
        fetch_argument(query, argument)

      


        fetches the value of an argument provided to the query or :error



    


    
      
        filter(query, filter)

      


        Attach a filter statement to the query.



    


    
      
        filter_input(query, filter)

      


        Attach a filter statement to the query labelled as user input.



    


    
      
        for_read(query, action_name, args \\ %{}, opts \\ [])

      


        Creates a query for a given read action and prepares it.



    


    
      
        get_argument(query, argument)

      


        Gets the value of an argument provided to the query



    


    
      
        is_expr?(value)

          deprecated

      


        Returns true if the value is one of the expression structs.



    


    
      
        limit(query, limit)

      


        Limit the results returned from the query



    


    
      
        load(query, fields)

      


        Loads relationships, calculations, or aggregates on the resource.



    


    
      
        load_calculation_as(query, calc_name, as_name, opts_or_args \\ %{}, opts \\ [])

      


        Adds a resource calculation to the query as a custom calculation with the provided name.



    


    
      
        load_through(query, type, name, load)

      


        Adds a load statement to the result of an attribute or calculation.



    


    
      
        loading?(query, item)

      


        Returns true if the field/relationship or path to field/relationship is being loaded.



    


    
      
        lock(query, lock_type)

      


        Lock the query results.



    


    
      
        new(resource, api \\ nil, opts \\ [])

      


        Create a new query



    


    
      
        offset(query, offset)

      


        Skip the first n records



    


    
      
        put_context(query, key, value)

      


        Sets a specific context key to a specific value



    


    
      
        select(query, fields, opts \\ [])

      


        Ensure that only the specified attributes are present in the results.



    


    
      
        selecting?(query, field)

      


    


    
      
        set_api(query, api)

      


        Set the query's api, and any loaded query's api



    


    
      
        set_argument(query, argument, value)

      


        Add an argument to the query, which can be used in filter templates on actions



    


    
      
        set_arguments(query, map)

      


        Merge a map of arguments to the arguments list



    


    
      
        set_context(query, map)

      


        Merge a map of values into the query context



    


    
      
        set_result(changeset, result)

      


        Set the result of the action. This will prevent running the underlying datalayer behavior



    


    
      
        set_tenant(query, tenant)

      


    


    
      
        sort(query, sorts, opts \\ [])

      


        Sort the results based on attributes, aggregates or calculations.



    


    
      
        struct?(arg1)

      


    


    
      
        subset_of(query, expr)

      


        Determines if the provided expression would return data that is a suprset of the data returned by the filter on the query.



    


    
      
        subset_of?(query, expr)

      


        Same as subset_of/2 but always returns a boolean. :maybe returns false.



    


    
      
        superset_of(query, expr)

      


        Determines if the provided expression would return data that is a subset of the data returned by the filter on the query.



    


    
      
        superset_of?(query, expr)

      


        Same as superset_of/2 but always returns a boolean. :maybe returns false.



    


    
      
        timeout(query, timeout)

      


    


    
      
        to_query(query)

      


        Takes a resource or a query and returns a query.



    


    
      
        unload(query, fields)

      


        Removes a field from the list of fields to load



    


    
      
        unset(query, keys)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    around_action_fun()


      
       
       View Source
     


  


  

      

          @type around_action_fun() :: (t(), around_callback() -> around_result())


      



  



  
    
      
      Link to this type
    
    around_callback()


      
       
       View Source
     


  


  

      

          @type around_callback() :: (t() -> around_result())


      



  



  
    
      
      Link to this type
    
    around_result()


      
       
       View Source
     


  


  

      

          @type around_result() :: {:ok, [Ash.Resource.record()]} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this type
    
    around_transaction_fun()


      
       
       View Source
     


  


  

      

          @type around_transaction_fun() ::
  (t() -> {:ok, Ash.Resource.record()} | {:error, any()})


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Query{
  __validated_for_action__: atom() | nil,
  action: Ash.Resource.Actions.Read.t() | nil,
  action_failed?: boolean(),
  after_action: [
    (t(), [Ash.Resource.record()] ->
       {:ok, [Ash.Resource.record()]}
       | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
       | {:error, any()})
  ],
  aggregates: %{optional(atom()) => Ash.Filter.t()},
  api: module() | nil,
  arguments: %{optional(atom()) => any()},
  around_transaction: term(),
  before_action: [(t() -> t())],
  calculations: %{optional(atom()) => :wat},
  context: map(),
  distinct: [atom()],
  distinct_sort: term(),
  errors: [Ash.Error.t()],
  filter: Ash.Filter.t() | nil,
  invalid_keys: term(),
  limit: nil | non_neg_integer(),
  load: keyword(keyword()),
  load_through: term(),
  lock: term(),
  offset: non_neg_integer(),
  params: %{optional(atom() | binary()) => any()},
  phase: :preparing | :before_action | :after_action | :executing,
  resource: module(),
  select: nil | [atom()],
  sort: [atom() | {atom(), :asc | :desc}],
  tenant: any(),
  timeout: pos_integer() | nil,
  valid?: boolean()
}


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    accessing(query, types \\ [:attributes, :relationships, :calculations, :aggregates])


      
       
       View Source
     


  


  

Returns a list of attributes, aggregates, relationships, and calculations that are being loaded
Provide a list of field types to narrow down the returned results.

  



    

  
    
      
      Link to this function
    
    add_error(query, keys \\ [], message)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    after_action(query, func)


      
       
       View Source
     


  


  

      

          @spec after_action(
  t(),
  (t(), [Ash.Resource.record()] ->
     {:ok, [Ash.Resource.record()]}
     | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
     | {:error, term()})
) :: t()


      



  



  
    
      
      Link to this function
    
    aggregate(query, name, kind, relationship)


      
       
       View Source
     


  


  

Adds an aggregation to the query.
Aggregations are made available on the aggregates field of the records returned
The filter option accepts either a filter or a keyword list of options to supply to build a limiting query for that aggregate.
See the DSL docs for each aggregate type in the Resource DSL docs for more information.
Options:
	query: The query over the destination resource to use as a base for aggregation
	default: The default value to use if the aggregate returns nil
	filterable?: Whether or not this aggregate may be referenced in filters
	type: The type of the aggregate
	constraints: Type constraints for the aggregate's type
	implementation: An implementation used when the aggregate kind is custom
	read_action: The read action to use on the destination resource
	authorize?: Whether or not to authorize access to this aggregate


  



  
    
      
      Link to this function
    
    aggregate(query, name, kind, relationship, opts)


      
       
       View Source
     


  


  

      

          @spec aggregate(
  t() | Ash.Resource.t(),
  atom(),
  Ash.Query.Aggregate.kind(),
  atom() | [atom()],
  t() | Keyword.t() | nil
) :: t()


      



  



    

    

    

    

    

    

    

  
    
      
      Link to this function
    
    aggregate(query, name, kind, relationship, agg_query, default \\ nil, filterable? \\ true, type \\ nil, constraints \\ [], implementation \\ nil, uniq? \\ false, read_action \\ nil, authorize? \\ true)


      
       
       View Source
     


  


  

Adds an aggregation to the query.
Aggregations are made available on the aggregates field of the records returned
The filter option accepts either a filter or a keyword list of options to supply to build a limiting query for that aggregate.
See the DSL docs for each aggregate type in the Resource DSL docs for more information.

  



  
    
      
      Link to this function
    
    around_transaction(query, func)


      
       
       View Source
     


  


  

      

          @spec around_transaction(t(), around_transaction_fun()) :: t()


      


Adds an around_transaction hook to the query.
Your function will get the query, and a callback that must be called with a query (that may be modified).
The callback will return {:ok, results} or {:error, error}. You can modify these values, but the return value
must be one of those types.
The around_transaction calls happen first, and then (after they each resolve their callbacks) the before_action
hooks are called, followed by the after_action hooks being run. Then, the code that appeared after the callbacks were called is then run.
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action}.

  



  
    
      
      Link to this function
    
    before_action(query, func)


      
       
       View Source
     


  


  

      

          @spec before_action(
  t(),
  (t() -> t() | {t(), [Ash.Notifier.Notification.t()]})
) :: t()


      



  



    

  
    
      
      Link to this function
    
    build(resource, api \\ nil, keyword)


      
       
       View Source
     


  


  

      

          @spec build(Ash.Resource.t(), Ash.Api.t() | nil, Keyword.t()) :: t()


      


Builds a query from a keyword list.
This is used by certain query constructs like aggregates. It can also be used to manipulate a data structure
before passing it to an ash query. It allows for building an entire query struct using only a keyword list.
For example:
Ash.Query.build(MyResource, filter: [name: "fred"], sort: [name: :asc], load: [:foo, :bar], offset: 10)
If you want to use the expression style filters, you can use expr/1.
For example:
import Ash.Expr, only: [expr: 1]

Ash.Query.build(Myresource, filter: expr(name == "marge"))

  
    
  
  Options


	:filter (term/0) - A filter keyword, expression or %Ash.Filter{}

	:sort (term/0) - A sort list or keyword

	:distinct_sort (term/0) - A distinct_sort list or keyword

	:limit (integer/0) - A limit to apply

	:offset (integer/0) - An offset to apply

	:load (term/0) - A load statement to add to the query

	:select (term/0) - A select statement to add to the query

	:ensure_selected (term/0) - An ensure_selected statement to add to the query

	:aggregate (term/0) - A custom aggregate to add to the query. Can be {name, type, relationship} or {name, type, relationship, build_opts}

	:calculate (term/0) - A custom calculation to add to the query. Can be {name, module_and_opts} or {name, module_and_opts, context}

	:distinct (list of atom/0) - A distinct clause to add to the query

	:context (map/0) - A map to merge into the query context



  



    

    

  
    
      
      Link to this function
    
    calculate(query, name, module_and_opts, type, context \\ %{}, constraints \\ [])


      
       
       View Source
     


  


  

Adds a calculation to the query.
Calculations are made available on the calculations field of the records returned
The module_and_opts argument accepts either a module or a {module, opts}. For more information
on what that module should look like, see Ash.Calculation.

  



  
    
      
      Link to this function
    
    clear_result(changeset)


      
       
       View Source
     


  


  

      

          @spec clear_result(t()) :: t()


      


Removes a result set previously with set_result/2

  



    

  
    
      
      Link to this function
    
    data_layer_query(ash_query, opts \\ [])


      
       
       View Source
     


  


  

Return the underlying data layer query for an ash query

  



  
    
      
      Link to this function
    
    delete_argument(query, argument_or_arguments)


      
       
       View Source
     


  


  

Remove an argument from the query

  



  
    
      
      Link to this function
    
    deselect(query, fields)


      
       
       View Source
     


  


  

Ensure the the specified attributes are nil in the query results.

  



  
    
      
      Link to this function
    
    distinct(query, distincts)


      
       
       View Source
     


  


  

      

          @spec distinct(t() | Ash.Resource.t(), Ash.Sort.t()) :: t()


      


Get results distinct on the provided fields.
Takes a list of fields to distinct on. Each call is additive, so to remove the distinct use
unset/2.
Examples:
Ash.Query.distinct(query, [:first_name, :last_name])

Ash.Query.distinct(query, :email)

  



    

  
    
      
      Link to this function
    
    distinct_sort(query, sorts, opts \\ [])


      
       
       View Source
     


  


  

Set a sort to determine how distinct records are selected.
If none is set, any sort applied to the query will be used.
This is useful if you want to control how the distinct records
are selected without affecting (necessarily, it may affect it if
there is no sort applied) the overall sort of the query

  



  
    
      
      Link to this function
    
    ensure_selected(query, fields)


      
       
       View Source
     


  


  

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

  



  
    
      
      Link to this macro
    
    equivalent_to(query, expr)


      
       
       View Source
     


      (macro)

  


  

Determines if the filter statement of a query is equivalent to the provided expression.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use supserset_of? to always return
a boolean.

  



  
    
      
      Link to this macro
    
    equivalent_to?(query, expr)


      
       
       View Source
     


      (macro)

  


  

Same as equivalent_to/2 but always returns a boolean. :maybe returns false.

  



  
    
      
      Link to this macro
    
    expr(body)


      
       
       View Source
     


      (macro)

  


  

Creates an Ash expression for evaluation later.

  



  
    
      
      Link to this function
    
    fetch_argument(query, argument)


      
       
       View Source
     


  


  

      

          @spec fetch_argument(t(), atom()) :: {:ok, term()} | :error


      


fetches the value of an argument provided to the query or :error

  



  
    
      
      Link to this macro
    
    filter(query, filter)


      
       
       View Source
     


      (macro)

  


  

Attach a filter statement to the query.
The filter is applied as an "and" to any filters currently on the query.
For more information on writing filters, see: Ash.Filter.

  



  
    
      
      Link to this function
    
    filter_input(query, filter)


      
       
       View Source
     


  


  

Attach a filter statement to the query labelled as user input.
Filters added as user input (or filters constructed with Ash.Filter.parse_input)
will honor any field policies on resources by replacing any references to the field
with nil in cases where the actor should not be able to see the given field.
This function does not expect the expression style filter (because an external source
could never reasonably provide that). Instead, use the keyword/map style syntax. For
example:
expr(name == "fred")
could be any of
	map syntax: %{"name" => %{"eq" => "fred"}}
	keyword syntax: [name: [eq: "fred"]]

See Ash.Filter for more.

  



    

    

  
    
      
      Link to this function
    
    for_read(query, action_name, args \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Creates a query for a given read action and prepares it.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the api action.

  
    
  
  Arguments


Provide a map or keyword list of arguments for the read action

  
    
  
  Opts


	:actor (term/0) - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:authorize? (boolean/0) - set authorize?, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tracer - A tracer to use. Will be carried over to the action. For more information see Ash.Tracer.

	:tenant (term/0) - set the tenant on the query



  



  
    
      
      Link to this function
    
    get_argument(query, argument)


      
       
       View Source
     


  


  

      

          @spec get_argument(t(), atom()) :: term()


      


Gets the value of an argument provided to the query

  



  
    
      
      Link to this function
    
    is_expr?(value)


      
       
       View Source
     


  


    
      This function is deprecated. use Ash.Filter.TemplateHelpers.expr?/1.
    


  

Returns true if the value is one of the expression structs.

  



  
    
      
      Link to this function
    
    limit(query, limit)


      
       
       View Source
     


  


  

      

          @spec limit(t() | Ash.Resource.t(), nil | integer()) :: t()


      


Limit the results returned from the query

  



  
    
      
      Link to this function
    
    load(query, fields)


      
       
       View Source
     


  


  

      

          @spec load(
  t() | Ash.Resource.t(),
  atom()
  | Ash.Query.Calculation.t()
  | [atom() | Ash.Query.Calculation.t()]
  | [{atom() | Ash.Query.Calculation.t(), term()}]
) :: t()


      


Loads relationships, calculations, or aggregates on the resource.
Currently, loading attributes has no effects, as all attributes are returned.
Before long, we will have the default list to load as the attributes, but if you say
load(query, [:attribute1]), that will be the only field filled in. This will let
data layers make more intelligent "select" statements as well.
# Loading nested relationships
Ash.Query.load(query, [comments: [:author, :ratings]])

# Loading relationships with a query
Ash.Query.load(query, [comments: [author: author_query]])

  



    

    

  
    
      
      Link to this function
    
    load_calculation_as(query, calc_name, as_name, opts_or_args \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Adds a resource calculation to the query as a custom calculation with the provided name.
Example:
Ash.Query.load_calculation_as(query, :calculation, :some_name, args: %{}, load_through: [:foo])

  



  
    
      
      Link to this function
    
    load_through(query, type, name, load)


      
       
       View Source
     


  


  

Adds a load statement to the result of an attribute or calculation.
Uses Ash.Type.load/5 to request that the type load nested data.

  



  
    
      
      Link to this function
    
    loading?(query, item)


      
       
       View Source
     


  


  

Returns true if the field/relationship or path to field/relationship is being loaded.
It accepts an atom or a list of atoms, which is treated for as a "path", i.e:
Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?([:friends, :enemies, :score])
iex> true

Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?([:friends, :score])
iex> false

Resource |> Ash.Query.load(friends: [enemies: [:score]]) |> Ash.Query.loading?(:friends)
iex> true

  



  
    
      
      Link to this function
    
    lock(query, lock_type)


      
       
       View Source
     


  


  

      

          @spec lock(t() | Ash.Resource.t(), Ash.DataLayer.lock_type()) :: t()


      


Lock the query results.
This must be run while in a transaction, and is not supported by all data layers.

  



    

    

  
    
      
      Link to this function
    
    new(resource, api \\ nil, opts \\ [])


      
       
       View Source
     


  


  

Create a new query

  



  
    
      
      Link to this function
    
    offset(query, offset)


      
       
       View Source
     


  


  

      

          @spec offset(t() | Ash.Resource.t(), nil | integer()) :: t()


      


Skip the first n records

  



  
    
      
      Link to this function
    
    put_context(query, key, value)


      
       
       View Source
     


  


  

      

          @spec put_context(t() | Ash.Resource.t(), atom(), term()) :: t()


      


Sets a specific context key to a specific value
See set_context/2 for more information.

  



    

  
    
      
      Link to this function
    
    select(query, fields, opts \\ [])


      
       
       View Source
     


  


  

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes are always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Use ensure_selected/2 if you wish to make sure a field has been selected, without deselecting any other fields.

  



  
    
      
      Link to this function
    
    selecting?(query, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_api(query, api)


      
       
       View Source
     


  


  

Set the query's api, and any loaded query's api

  



  
    
      
      Link to this function
    
    set_argument(query, argument, value)


      
       
       View Source
     


  


  

Add an argument to the query, which can be used in filter templates on actions

  



  
    
      
      Link to this function
    
    set_arguments(query, map)


      
       
       View Source
     


  


  

Merge a map of arguments to the arguments list

  



  
    
      
      Link to this function
    
    set_context(query, map)


      
       
       View Source
     


  


  

      

          @spec set_context(t() | Ash.Resource.t(), map() | nil) :: t()


      


Merge a map of values into the query context

  



  
    
      
      Link to this function
    
    set_result(changeset, result)


      
       
       View Source
     


  


  

      

          @spec set_result(t(), term()) :: t()


      


Set the result of the action. This will prevent running the underlying datalayer behavior

  



  
    
      
      Link to this function
    
    set_tenant(query, tenant)


      
       
       View Source
     


  


  

      

          @spec set_tenant(t() | Ash.Resource.t(), String.t()) :: t()


      



  



    

  
    
      
      Link to this function
    
    sort(query, sorts, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec sort(t() | Ash.Resource.t(), Ash.Sort.t(), opts :: Keyword.t()) :: t()


      


Sort the results based on attributes, aggregates or calculations.
Calculations are supported if they are defined with expressions, which can be done one of two ways.
	with the shorthand calculate :calc, :type, expr(a + b)
	By defining expression/2 in a custom calculation module

See the guide on calculations for more.
Takes a list of fields to sort on, or a keyword list/mixed keyword list of fields and sort directions.
The default sort direction is :asc.
Examples:
Ash.Query.sort(query, [:foo, :bar])

Ash.Query.sort(query, [:foo, bar: :desc])

Ash.Query.sort(query, [foo: :desc, bar: :asc])

  
    
  
  Options


	prepend? - set to true to put your sort at the front of the list of a sort is already specified


  



  
    
      
      Link to this function
    
    struct?(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this macro
    
    subset_of(query, expr)


      
       
       View Source
     


      (macro)

  


  

Determines if the provided expression would return data that is a suprset of the data returned by the filter on the query.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use subset_of? to always return
a boolean.

  



  
    
      
      Link to this macro
    
    subset_of?(query, expr)


      
       
       View Source
     


      (macro)

  


  

Same as subset_of/2 but always returns a boolean. :maybe returns false.

  



  
    
      
      Link to this macro
    
    superset_of(query, expr)


      
       
       View Source
     


      (macro)

  


  

Determines if the provided expression would return data that is a subset of the data returned by the filter on the query.
This uses the satisfiability solver that is used when solving for policy authorizations. In complex scenarios, or when using
custom database expressions, (like fragments in ash_postgres), this function may return :maybe. Use supserset_of? to always return
a boolean.

  



  
    
      
      Link to this macro
    
    superset_of?(query, expr)


      
       
       View Source
     


      (macro)

  


  

Same as superset_of/2 but always returns a boolean. :maybe returns false.

  



  
    
      
      Link to this function
    
    timeout(query, timeout)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_query(query)


      
       
       View Source
     


  


  

      

          @spec to_query(t() | Ash.Resource.t()) :: t()


      


Takes a resource or a query and returns a query.

  



  
    
      
      Link to this function
    
    unload(query, fields)


      
       
       View Source
     


  


  

      

          @spec unload(t(), [atom()]) :: t()


      


Removes a field from the list of fields to load

  



  
    
      
      Link to this function
    
    unset(query, keys)


      
       
       View Source
     


  


  

      

          @spec unset(Ash.Resource.t() | t(), atom() | [atom()]) :: t()


      



  


        

      



  

  
    
    Ash.Query.Aggregate - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Aggregate 
    



      
Represents an aggregated association value

      


      
        Summary


  
    Types
  


    
      
        kind()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        default_value(atom)

      


    


    
      
        kind_to_type(kind, attribute_type)

          deprecated

      


    


    
      
        new(resource, name, kind, opts \\ [])

      


        Create a new aggregate, used with Query.aggregate or Api.aggregate



    


    
      
        new(resource, name, kind, relationship, query, field, default \\ nil, filterable? \\ true, type \\ nil, constraints \\ [], implementation \\ nil, uniq? \\ false, read_action \\ nil, authorize? \\ true)

          deprecated

      


    


    
      
        new!(resource, name, kind, opts \\ [])

      


    


    
      
        requests(initial_query, can_be_in_query?, authorizing?, calculations_in_query, request_path)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    kind()


      
       
       View Source
     


  


  

      

          @type kind() ::
  :custom | :exists | :avg | :min | :max | :list | :sum | :first | :count


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Query.Aggregate{
  agg_name: term(),
  authorize?: term(),
  constraints: term(),
  context: term(),
  default_value: term(),
  field: term(),
  filterable?: term(),
  implementation: term(),
  kind: term(),
  load: term(),
  name: term(),
  query: term(),
  read_action: term(),
  relationship_path: term(),
  resource: term(),
  type: term(),
  uniq?: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    default_value(atom)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    kind_to_type(kind, attribute_type)


      
       
       View Source
     


  


    
      This function is deprecated. use kind to type/3 instead.
    


  


  



    

  
    
      
      Link to this function
    
    new(resource, name, kind, opts \\ [])


      
       
       View Source
     


  


  

Create a new aggregate, used with Query.aggregate or Api.aggregate
Options:
	:path (list of atom/0) - The relationship path to aggregate over. Only used when adding aggregates to a query.

	:query (term/0) - A base query to use for the aggregate, or a keyword list to be passed to Ash.Query.build/2

	:field (atom/0) - The field to use for the aggregate. Not necessary for all aggregate types.

	:default (term/0) - A default value to use for the aggregate if it returns nil.

	:filterable? (boolean/0) - Whether or not this aggregate may be used in filters.

	:type (term/0) - A type to use for the aggregate.

	:constraints (term/0) - Type constraints to use for the aggregate.

	:implementation (term/0) - The implementation for any custom aggregates.

	:read_action (atom/0) - The read action to use for the aggregate, defaults to the primary read action.

	:uniq? (boolean/0) - Whether or not to only consider unique values. Only relevant for count and list aggregates. The default value is false.

	:authorize? (boolean/0) - Whether or not the aggregate query should authorize based on the target action.
See d:Ash.Resource.Dsl.aggregates|count for more information. The default value is true.



  



    

    

    

    

    

    

    

    

  
    
      
      Link to this function
    
    new(resource, name, kind, relationship, query, field, default \\ nil, filterable? \\ true, type \\ nil, constraints \\ [], implementation \\ nil, uniq? \\ false, read_action \\ nil, authorize? \\ true)


      
       
       View Source
     


  


    
      This function is deprecated. Use `new/4` instead..
    


  


  



    

  
    
      
      Link to this function
    
    new!(resource, name, kind, opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    requests(initial_query, can_be_in_query?, authorizing?, calculations_in_query, request_path)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Calculation - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Calculation 
    



      
Represents a calculated attribute requested on a query

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(name, module, opts, type, context \\ %{}, filterable? \\ true, required_loads \\ [])

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Query.Calculation{
  calc_name: term(),
  constraints: term(),
  context: term(),
  filterable?: term(),
  load: term(),
  module: term(),
  name: term(),
  opts: term(),
  required_loads: term(),
  select: term(),
  sequence: term(),
  type: term()
}


      



  


        

      

      
        Functions

        


    

    

    

  
    
      
      Link to this function
    
    new(name, module, opts, type, context \\ %{}, filterable? \\ true, required_loads \\ [])


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Preparation - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Preparation behaviour
    



      
The behaviour for an action-specific query preparation.
init/1 is defined automatically by use Ash.Resource.Preparation, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is prepare/3. It takes the query, any options that were provided
when this preparation was configured on a resource, and the context, which currently only has
the actor.
To access any query arguments from within a preparation, make sure you are using Ash.Query.get_argument/2
as the argument keys may be strings or atoms.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        ref()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        init(t)

      


    


    
      
        prepare(query, t, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => Ash.Resource.record(),
  optional(any()) => any()
}


      



  



  
    
      
      Link to this type
    
    ref()


      
       
       View Source
     


  


  

      

          @type ref() :: {module(), Keyword.t()} | module()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Preparation{preparation: term()}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    init(t)


      
       
       View Source
     


  


  

      

          @callback init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    prepare(query, t, context)


      
       
       View Source
     


  


  

      

          @callback prepare(query, Keyword.t(), context()) :: query when query: struct()


      



  


        

      



  

  
    
    Ash.Resource.Preparation.Builtins - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Preparation.Builtins 
    



      
Builtin query preparations

      


      
        Summary


  
    Functions
  


    
      
        after_action(callback)

      


        Directly attach an after_action function to the query.



    


    
      
        before_action(callback)

      


        Directly attach a before_action function to the query.



    


    
      
        build(options)

      


        Passes the given keyword list to Ash.Query.build/2 with the query being prepared.



    


    
      
        set_context(context)

      


        Merges the given query context.



    





      


      
        Functions

        


  
    
      
      Link to this macro
    
    after_action(callback)


      
       
       View Source
     


      (macro)

  


  

Directly attach an after_action function to the query.
See Ash.Query.after_action/2 for more information.

  
    
  
  Example


  prepare after_action(fn query, records ->
Logger.debug("Query for #{query.action.name} on resource #{inspect(query.resource)} returned #{length(records)} records")

{:ok, records}
  end)

  



  
    
      
      Link to this macro
    
    before_action(callback)


      
       
       View Source
     


      (macro)

  


  

Directly attach a before_action function to the query.
See Ash.Query.before_action/2 for more information.

  
    
  
  Example


  prepare before_action(fn query ->
Logger.debug("About to execute query for #{query.action.name} on #{inspect(query.resource)})

query
  end)

  



  
    
      
      Link to this function
    
    build(options)


      
       
       View Source
     


  


  

      

          @spec build(Keyword.t()) :: Ash.Resource.Preparation.ref()


      


Passes the given keyword list to Ash.Query.build/2 with the query being prepared.
This allows declaring simple query modifications in-line.
To see the available options, see Ash.Query.build/2

  
    
  
  Examples


prepare build(sort: [song_rank: :desc], limit: 10)
prepare build(load: [:friends])

  



  
    
      
      Link to this function
    
    set_context(context)


      
       
       View Source
     


  


  

      

          @spec set_context(context :: map() | mfa()) :: Ash.Resource.Preparation.ref()


      


Merges the given query context.
If an MFA is provided, it will be called with the changeset.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

  
    
  
  Examples


change set_context(%{something_used_internally: true})
change set_context({MyApp.Context, :set_context, []})

  


        

      



  

  
    
    Ash.Changeset - ash v2.17.7
    
    

    



  
  

    
Ash.Changeset 
    



      
Changesets are used to create and update data in Ash.
Create a changeset with new/1 or new/2, and alter the attributes
and relationships using the functions provided in this module.  Nothing in this module
actually incurs changes in a data layer. To commit a changeset, see Ash.Api.create/2
and Ash.Api.update/2.
See the action DSL documentation for more.

      


      
        Summary


  
    Types
  


    
      
        after_action_fun()

      


    


    
      
        after_transaction_fun()

      


    


    
      
        around_action_fun()

      


    


    
      
        around_callback()

      


    


    
      
        around_result()

      


    


    
      
        around_transaction_fun()

      


    


    
      
        before_action_fun()

      


    


    
      
        before_transaction_fun()

      


    


    
      
        error_info()

      


    


    
      
        manage_relationship_type()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        accessing(changeset, types \\ [:attributes, :relationships, :calculations, :attributes])

      


        Returns a list of attributes, aggregates, relationships, and calculations that are being loaded



    


    
      
        add_error(changeset, errors, path \\ [])

      


        Adds an error to the changesets errors list, and marks the change as valid?: false.



    


    
      
        after_action(changeset, func, opts \\ [])

      


        Adds an after_action hook to the changeset.



    


    
      
        after_transaction(changeset, func, opts \\ [])

      


        Adds an after_transaction hook to the changeset.



    


    
      
        append_to_relationship(changeset, relationship, record_or_records, opts \\ [])

          deprecated

      


        Appends a record or a list of records to a relationship.



    


    
      
        apply_attributes(changeset, opts \\ [])

      


        Returns the original data with attribute changes merged, if the changeset is valid.



    


    
      
        around_action(changeset, func)

      


        Adds an around_action hook to the changeset.



    


    
      
        around_transaction(changeset, func)

      


        Adds an around_transaction hook to the changeset.



    


    
      
        atomic_update(changeset, atomics)

      


        Adds atomic changes to the changeset



    


    
      
        atomic_update(changeset, key, value)

      


        Adds an atomic change to the changeset



    


    
      
        before_action(changeset, func, opts \\ [])

      


        Adds a before_action hook to the changeset.



    


    
      
        before_transaction(changeset, func, opts \\ [])

      


        Adds a before_transaction hook to the changeset.



    


    
      
        change_attribute(changeset, attribute, value)

      


        Adds a change to the changeset, unless the value matches the existing value.



    


    
      
        change_attributes(changeset, changes)

      


        Calls change_attribute/3 for each key/value pair provided.



    


    
      
        change_default_attribute(changeset, attribute, value)

      


        The same as change_attribute, but annotates that the attribute is currently holding a default value.



    


    
      
        change_new_attribute(changeset, attribute, value)

      


        Change an attribute only if is not currently being changed



    


    
      
        change_new_attribute_lazy(changeset, attribute, func)

      


        Change an attribute if is not currently being changed, by calling the provided function.



    


    
      
        changing_attribute?(changeset, attribute)

      


        Returns true if an attribute exists in the changes



    


    
      
        changing_attributes?(changeset)

      


        Returns true if any attributes on the resource are being changed.



    


    
      
        changing_relationship?(changeset, relationship)

      


        Returns true if a relationship exists in the changes



    


    
      
        clear_change(changeset, field)

      


        Clears an attribute or relationship change off of the changeset.



    


    
      
        delete_argument(changeset, argument_or_arguments)

      


        Remove an argument from the changeset



    


    
      
        deselect(changeset, fields)

      


        Ensure the the specified attributes are nil in the changeset results.



    


    
      
        ensure_selected(changeset, fields)

      


        Ensures that the given attributes are selected.



    


    
      
        expand_upsert_fields(fields, resource)

      


        Turns the special case {:replace, fields}, :replace_all and {:replace_all_except, fields} upsert_fields
options into a list of fields



    


    
      
        fetch_argument(changeset, argument)

      


        Fetches the value of an argument provided to the changeset or :error.



    


    
      
        fetch_argument_or_change(changeset, attribute)

      


        Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided.



    


    
      
        fetch_change(changeset, attribute)

      


        Gets the new value for an attribute, or :error if it is not being changed.



    


    
      
        filter(changeset, fields)

      


        Adds a filter for a record being updated or destroyed.



    


    
      
        for_action(initial, action, params \\ %{}, opts \\ [])

      


        Constructs a changeset for a given action, and validates it.



    


    
      
        for_create(initial, action, params \\ %{}, opts \\ [])

      


        Constructs a changeset for a given create action, and validates it.



    


    
      
        for_destroy(initial, action_or_name, params \\ %{}, opts \\ [])

      


        Constructs a changeset for a given destroy action, and validates it.



    


    
      
        for_update(initial, action, params \\ %{}, opts \\ [])

      


        Constructs a changeset for a given update action, and validates it.



    


    
      
        force_change_attribute(changeset, attribute, value)

      


        Changes an attribute even if it isn't writable



    


    
      
        force_change_attributes(changeset, changes)

      


        Calls force_change_attribute/3 for each key/value pair provided.



    


    
      
        force_change_new_attribute(changeset, attribute, value)

      


        Force change an attribute if it is not currently being changed.



    


    
      
        force_change_new_attribute_lazy(changeset, attribute, func)

      


        Force change an attribute if it is not currently being changed, by calling the provided function.



    


    
      
        force_set_argument(changeset, argument, value)

      


        Add an argument to the changeset, which will be provided to the action.



    


    
      
        force_set_arguments(changeset, map)

      


        Merge a map of arguments to the arguments list.



    


    
      
        get_argument(changeset, argument)

      


        Gets the value of an argument provided to the changeset.



    


    
      
        get_argument_or_attribute(changeset, attribute)

      


        Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided.



    


    
      
        get_attribute(changeset, attribute)

      


        Gets the changing value or the original value of an attribute.



    


    
      
        get_data(changeset, attribute)

      


        Gets the original value for an attribute



    


    
      
        handle_errors(changeset, func)

      


        Sets a custom error handler on the changeset.



    


    
      
        handle_params(changeset, action, params, handle_params_opts \\ [])

      


    


    
      
        load(changeset, load)

      


        Calls the provided load statement on the result of the action at the very end of the action.



    


    
      
        loading?(changeset, path)

      


        Returns true if the field/relationship or path to field/relationship is being loaded.



    


    
      
        manage_relationship(changeset, relationship, input, opts \\ [])

      


        Manages the related records by creating, updating, or destroying them as necessary.



    


    
      
        manage_relationship_opts(atom)

      


    


    
      
        new(resource, params \\ %{})

      


        Returns a new changeset over a resource.



    


    
      
        prepare_changeset_for_action(changeset, action, opts)

      


    


    
      
        put_context(changeset, key, value)

      


        Puts a key/value in the changeset context that can be used later.



    


    
      
        remove_from_relationship(changeset, relationship, record_or_records, opts \\ [])

          deprecated

      


        Removes a record or a list of records to a relationship.



    


    
      
        replace_relationship(changeset, relationship, record_or_records, opts \\ [])

          deprecated

      


        Alias for



    


    
      
        run_before_transaction_hooks(changeset)

      


    


    
      
        select(changeset, fields, opts \\ [])

      


        Ensure that only the specified attributes are present in the results.



    


    
      
        selecting?(changeset, field)

      


    


    
      
        set_argument(changeset, argument, value)

      


        Add an argument to the changeset, which will be provided to the action.



    


    
      
        set_arguments(changeset, map)

      


        Merge a map of arguments to the arguments list.



    


    
      
        set_context(changeset, map)

      


        Deep merges the provided map into the changeset context that can be used later.



    


    
      
        set_on_upsert(changeset, upsert_keys)

      


    


    
      
        set_result(changeset, result)

      


        Set the result of the action. This will prevent running the underlying datalayer behavior



    


    
      
        set_tenant(changeset, tenant)

      


    


    
      
        timeout(changeset, timeout, default \\ nil)

      


    


    
      
        unsafe_change_attribute(changeset, attribute, value)

      


        Changes an attribute even if it isn't writable, doing no type casting or validation



    


    
      
        unsafe_change_attributes(changeset, changes)

      


        Calls unsafe_change_attribute/3 for each key/value pair provided.



    


    
      
        with_hooks(changeset, func, opts \\ [])

      


        Wraps a function in the before/after action hooks of a changeset.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    after_action_fun()


      
       
       View Source
     


  


  

      

          @type after_action_fun() ::
  (t(), Ash.Resource.record() ->
     {:ok, Ash.Resource.record()}
     | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
     | {:error, any()})


      



  



  
    
      
      Link to this type
    
    after_transaction_fun()


      
       
       View Source
     


  


  

      

          @type after_transaction_fun() ::
  (t(), {:ok, Ash.Resource.record()} | {:error, any()} ->
     {:ok, Ash.Resource.record()} | {:error, any()})


      



  



  
    
      
      Link to this type
    
    around_action_fun()


      
       
       View Source
     


  


  

      

          @type around_action_fun() :: (t(), around_callback() -> around_result())


      



  



  
    
      
      Link to this type
    
    around_callback()


      
       
       View Source
     


  


  

      

          @type around_callback() :: (t() -> around_result())


      



  



  
    
      
      Link to this type
    
    around_result()


      
       
       View Source
     


  


  

      

          @type around_result() ::
  {:ok, Ash.Resource.record(), t(),
   %{notifications: [Ash.Notifier.Notification.t()]}}
  | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this type
    
    around_transaction_fun()


      
       
       View Source
     


  


  

      

          @type around_transaction_fun() ::
  (t() -> {:ok, Ash.Resource.record()} | {:error, any()})


      



  



  
    
      
      Link to this type
    
    before_action_fun()


      
       
       View Source
     


  


  

      

          @type before_action_fun() ::
  (t() -> t() | {t(), %{notifications: [Ash.Notifier.Notification.t()]}})


      



  



  
    
      
      Link to this type
    
    before_transaction_fun()


      
       
       View Source
     


  


  

      

          @type before_transaction_fun() :: (t() -> t())


      



  



  
    
      
      Link to this type
    
    error_info()


      
       
       View Source
     


  


  

      

          @type error_info() ::
  String.t()
  | [field: atom(), fields: [atom()], message: String.t(), value: any()]
  | %{:__struct__ => atom(), required(atom()) => any()}


      



  



  
    
      
      Link to this type
    
    manage_relationship_type()


      
       
       View Source
     


  


  

      

          @type manage_relationship_type() ::
  :append_and_remove | :append | :remove | :direct_control | :create


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Changeset{
  __validated_for_action__: atom() | nil,
  action: Ash.Resource.Actions.action() | nil,
  action_failed?: boolean(),
  action_type: Ash.Resource.Actions.action_type() | nil,
  after_action: [after_action_fun() | {after_action_fun(), map()}],
  after_transaction: [
    after_transaction_fun() | {after_transaction_fun(), map()}
  ],
  api: module() | nil,
  arguments: %{optional(atom()) => any()},
  around_action: [around_action_fun() | {around_action_fun(), map()}],
  around_transaction: [
    around_transaction_fun() | {around_transaction_fun(), map()}
  ],
  atomics: term(),
  attributes: %{optional(atom()) => any()},
  before_action: [before_action_fun() | {around_action_fun(), map()}],
  before_transaction: [
    before_transaction_fun() | {before_transaction_fun(), map()}
  ],
  context: map(),
  data: Ash.Resource.record() | nil,
  defaults: [atom()],
  errors: [Ash.Error.t()],
  filters: term(),
  handle_errors:
    nil
    | (t(), error :: any() ->
         :ignore | t() | (error :: any()) | {error :: any(), t()}),
  invalid_keys: MapSet.t(),
  load: keyword(keyword()),
  params: %{optional(atom() | binary()) => any()},
  phase:
    :validate
    | :before_transaction
    | :before_action
    | :after_action
    | :after_transaction
    | :around_action
    | :around_transaction,
  relationships: %{
    optional(atom()) =>
      %{optional(atom() | binary()) => any()}
      | [%{optional(atom() | binary()) => any()}]
  },
  resource: module(),
  select: [atom()] | nil,
  tenant: any(),
  timeout: pos_integer() | nil,
  valid?: boolean()
}


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    accessing(changeset, types \\ [:attributes, :relationships, :calculations, :attributes])


      
       
       View Source
     


  


  

Returns a list of attributes, aggregates, relationships, and calculations that are being loaded
Provide a list of field types to narrow down the returned results.

  



    

  
    
      
      Link to this function
    
    add_error(changeset, errors, path \\ [])


      
       
       View Source
     


  


  

      

          @spec add_error(t(), error_info() | [error_info()], Keyword.t()) :: t()


      


Adds an error to the changesets errors list, and marks the change as valid?: false.

  
    
  
  Error Data


The given errors argument can be a string, a keyword list, a struct, or a list of any of the three.
If errors is a keyword list, or a list of keyword lists, the following keys are supported in the keyword list:
	field (atom) - the field that the error is for. This is required, unless fields is given.
	fields (list of atoms) - the fields that the error is for. This is required, unless field is given.
	message (string) - the error message
	value (any) - (optional) the field value that caused the error


  



    

  
    
      
      Link to this function
    
    after_action(changeset, func, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec after_action(
  t(),
  after_action_fun(),
  Keyword.t()
) :: t()


      


Adds an after_action hook to the changeset.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

  



    

  
    
      
      Link to this function
    
    after_transaction(changeset, func, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec after_transaction(
  t(),
  after_transaction_fun(),
  Keyword.t()
) :: t()


      


Adds an after_transaction hook to the changeset.
after_transaction hooks differ from after_action hooks in that they are run
on success and failure of the action or some previous hook.
Provide the option prepend?: true to place the hook before all
other hooks instead of after.

  



    

  
    
      
      Link to this function
    
    append_to_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use manage_relationship/4 instead.
    


  

      

          @spec append_to_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()],
  Keyword.t()
) :: t()


      


Appends a record or a list of records to a relationship.
Alias for:
manage_relationship(changeset, relationship, input,
  on_lookup: :relate, # If a record is not in the relationship, and can be found, relate it
  on_no_match: :error, # If a record is not found in the relationship or the database, we error
  on_match: :ignore, # If a record is found in the relationship we don't change it
  on_missing: :ignore, # If a record is not found in the input, we ignore it
)
Provide opts to customize/override the behavior.

  



    

  
    
      
      Link to this function
    
    apply_attributes(changeset, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec apply_attributes(t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.record()} | {:error, t()}


      


Returns the original data with attribute changes merged, if the changeset is valid.
Options:
	force? - applies current attributes even if the changeset is not valid


  



  
    
      
      Link to this function
    
    around_action(changeset, func)


      
       
       View Source
     


  


  

      

          @spec around_action(t(), around_action_fun()) :: t()


      


Adds an around_action hook to the changeset.
Your function will get the changeset, and a callback that must be called with a changeset (that may be modified).
The callback will return {:ok, result, instructions} or {:error, error}. You can modify these values, but the
return value must be one of those types. Instructions contains the notifications in its notifications key, i.e
%{notifications: [%Ash.Resource.Notification{}, ...]}.
The around_action calls happen first, and then (after they each resolve their callbacks) the before_action
hooks are called, followed by the action itself occurring at the data layer and then the after_action hooks being run.
Then, the code that appeared after the callbacks were called is then run.
For example:
changeset
|> Ash.Changeset.around_action(fn changeset, callback ->
  IO.puts("first around: before")
  result = callback.(changeset)
  IO.puts("first around: after")

  result
end)
|> Ash.Changeset.around_action(fn changeset, callback ->
  IO.puts("second around: before")
  result = callback.(changeset)
  IO.puts("second around: after")

  result
end)
|> Ash.Changeset.before_action(fn changeset ->
  IO.puts("first before")
  changeset
end, append?: true)
|> Ash.Changeset.before_action(fn changeset ->
  IO.puts("second before")
  changeset
end, append?: true)
|> Ash.Changeset.after_action(fn changeset, result ->
  IO.puts("first after")
  {:ok, result}
end)
|> Ash.Changeset.after_action(fn changeset, result ->
  IO.puts("second after")
  {:ok, result}
end)
This would print:
first around: before
second around: before
first before
second before
             <-- action happens here
first after
second after
second around: after <-- Notice that because of the callbacks, the after of the around hooks is reversed from the before
first around: after
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action, instructions}.
You can almost always get the same effect by using before_action, setting some context on the changeset
and reading it out in an after_action hook.

  



  
    
      
      Link to this function
    
    around_transaction(changeset, func)


      
       
       View Source
     


  


  

      

          @spec around_transaction(t(), around_transaction_fun()) :: t()


      


Adds an around_transaction hook to the changeset.
Your function will get the changeset, and a callback that must be called with a changeset (that may be modified).
The callback will return {:ok, result} or {:error, error}. You can modify these values, but the return value
must be one of those types.
The around_transaction calls happen first, and then (after they each resolve their callbacks) the before_transaction
hooks are called, followed by the action hooks and then the after_transaction hooks being run.
Then, the code that appeared after the callbacks were called is then run.
For example:
changeset
|> Ash.Changeset.around_transaction(fn changeset, callback ->
  IO.puts("first around: before")
  result = callback.(changeset)
  IO.puts("first around: after")

  result
end)
|> Ash.Changeset.around_transaction(fn changeset, callback ->
  IO.puts("second around: before")
  result = callback.(changeset)
  IO.puts("second around: after")

  result
end)
|> Ash.Changeset.before_transaction(fn changeset ->
  IO.puts("first before")
  changeset
end, append?: true)
|> Ash.Changeset.before_transaction(fn changeset ->
  IO.puts("second before")
  changeset
end, append?: true)
|> Ash.Changeset.after_transaction(fn changeset, result ->
  IO.puts("first after")
  result
end)
|> Ash.Changeset.after_transaction(fn changeset, result ->
  IO.puts("second after")
  result
end)
This would print:
first around: before
second around: before
first before
second before
             <-- action hooks happens here
first after
second after
second around: after <-- Notice that because of the callbacks, the after of the around hooks is reversed from the before
first around: after
Warning: using this without understanding how it works can cause big problems.
You must call the callback function that is provided to your hook, and the return value must
contain the same structure that was given to you, i.e {:ok, result_of_action}.
You can almost always get the same effect by using before_transaction, setting some context on the changeset
and reading it out in an after_transaction hook.

  



  
    
      
      Link to this function
    
    atomic_update(changeset, atomics)


      
       
       View Source
     


  


  

Adds atomic changes to the changeset
i.e Ash.Changeset.atomic_update(changeset, score: [Ash.Expr.expr(score + 1)])

  



  
    
      
      Link to this function
    
    atomic_update(changeset, key, value)


      
       
       View Source
     


  


  

Adds an atomic change to the changeset
i.e Ash.Changeset.atomic_update(changeset, :score, [Ash.Expr.expr(score + 1)])

  



    

  
    
      
      Link to this function
    
    before_action(changeset, func, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec before_action(
  t(),
  before_action_fun(),
  Keyword.t()
) :: t()


      


Adds a before_action hook to the changeset.
Provide the option append?: true to place the hook after all
other hooks instead of before.

  



    

  
    
      
      Link to this function
    
    before_transaction(changeset, func, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec before_transaction(
  t(),
  before_transaction_fun(),
  Keyword.t()
) :: t()


      


Adds a before_transaction hook to the changeset.
Provide the option append?: true to place the hook after all
other hooks instead of before.

  



  
    
      
      Link to this function
    
    change_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec change_attribute(t(), atom(), any()) :: t()


      


Adds a change to the changeset, unless the value matches the existing value.

  



  
    
      
      Link to this function
    
    change_attributes(changeset, changes)


      
       
       View Source
     


  


  

      

          @spec change_attributes(t(), map() | Keyword.t()) :: t()


      


Calls change_attribute/3 for each key/value pair provided.

  



  
    
      
      Link to this function
    
    change_default_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec change_default_attribute(t(), atom(), any()) :: t()


      


The same as change_attribute, but annotates that the attribute is currently holding a default value.
This information can be used in changes to see if a value was explicitly set or if it was set by being the default.
Additionally, this is used in upsert actions to not overwrite existing values with the default.

  



  
    
      
      Link to this function
    
    change_new_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec change_new_attribute(t(), atom(), term()) :: t()


      


Change an attribute only if is not currently being changed

  



  
    
      
      Link to this function
    
    change_new_attribute_lazy(changeset, attribute, func)


      
       
       View Source
     


  


  

      

          @spec change_new_attribute_lazy(t(), atom(), (-> any())) :: t()


      


Change an attribute if is not currently being changed, by calling the provided function.
Use this if you want to only perform some expensive calculation for an attribute value
only if there isn't already a change for that attribute.

  



  
    
      
      Link to this function
    
    changing_attribute?(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec changing_attribute?(t(), atom()) :: boolean()


      


Returns true if an attribute exists in the changes

  



  
    
      
      Link to this function
    
    changing_attributes?(changeset)


      
       
       View Source
     


  


  

      

          @spec changing_attributes?(t()) :: boolean()


      


Returns true if any attributes on the resource are being changed.

  



  
    
      
      Link to this function
    
    changing_relationship?(changeset, relationship)


      
       
       View Source
     


  


  

      

          @spec changing_relationship?(t(), atom()) :: boolean()


      


Returns true if a relationship exists in the changes

  



  
    
      
      Link to this function
    
    clear_change(changeset, field)


      
       
       View Source
     


  


  

Clears an attribute or relationship change off of the changeset.

  



  
    
      
      Link to this function
    
    delete_argument(changeset, argument_or_arguments)


      
       
       View Source
     


  


  

Remove an argument from the changeset

  



  
    
      
      Link to this function
    
    deselect(changeset, fields)


      
       
       View Source
     


  


  

Ensure the the specified attributes are nil in the changeset results.

  



  
    
      
      Link to this function
    
    ensure_selected(changeset, fields)


      
       
       View Source
     


  


  

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

  



  
    
      
      Link to this function
    
    expand_upsert_fields(fields, resource)


      
       
       View Source
     


  


  

Turns the special case {:replace, fields}, :replace_all and {:replace_all_except, fields} upsert_fields
options into a list of fields

  



  
    
      
      Link to this function
    
    fetch_argument(changeset, argument)


      
       
       View Source
     


  


  

      

          @spec fetch_argument(t(), atom()) :: {:ok, term()} | :error


      


Fetches the value of an argument provided to the changeset or :error.

  



  
    
      
      Link to this function
    
    fetch_argument_or_change(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec fetch_argument_or_change(t(), atom()) :: {:ok, any()} | :error


      


Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided.

  



  
    
      
      Link to this function
    
    fetch_change(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec fetch_change(t(), atom()) :: {:ok, any()} | :error


      


Gets the new value for an attribute, or :error if it is not being changed.

  



  
    
      
      Link to this function
    
    filter(changeset, fields)


      
       
       View Source
     


  


  

      

          @spec filter(t(), %{optional(atom()) => term()}) :: t()


      


Adds a filter for a record being updated or destroyed.
Used by optimistic locking. See Ash.Resource.Change.Builtins.optimistic_lock/1 for more.

  



    

    

  
    
      
      Link to this function
    
    for_action(initial, action, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given action, and validates it.
Calls for_create/4, for_update/4 or for_destroy/4 based on the type of action passed in.
See those functions for more explanation.

  



    

    

  
    
      
      Link to this function
    
    for_create(initial, action, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given create action, and validates it.
Anything that is modified prior to for_create/4 is validated against the rules of the action, while anything after it is not.
This runs any changes contained on your action. To have your logic execute only during the action, you can use after_action/2
or before_action/2.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the api action.

  
    
  
  Params


params may be attributes, relationships, or arguments. You can safely pass user/form input directly into this function.
Only public attributes and relationships are supported. If you want to change private attributes as well, see the
Customization section below. params are stored directly as given in the params field of the changeset, which is used

  
    
  
  Opts


	:require? (boolean/0) - If set to false, values are only required when the action is run (instead of immediately). The default value is false.

	:actor (term/0) - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:authorize? (term/0) - set authorize?, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tracer - A tracer to use. Will be carried over to the action. For more information see Ash.Tracer.

	:tenant (term/0) - set the tenant on the changeset



  
    
  
  Customization


A changeset can be provided as the first argument, instead of a resource, to allow
setting specific attributes ahead of time.
For example:
MyResource
|> Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:foo, 1)
|> Ash.Changeset.for_create(:create, ...opts)
Once a changeset has been validated by for_create/4 (or for_update/4), it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

  



    

    

  
    
      
      Link to this function
    
    for_destroy(initial, action_or_name, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given destroy action, and validates it.

  
    
  
  Opts


	:actor - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)
	:tenant - set the tenant on the changeset

Anything that is modified prior to for_destroy/4 is validated against the rules of the action, while anything after it is not.
Once a changeset has been validated by for_destroy/4, it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

  



    

    

  
    
      
      Link to this function
    
    for_update(initial, action, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given update action, and validates it.
Anything that is modified prior to for_update/4 is validated against the rules of the action, while anything after it is not.
See for_create/4 for more information

  



  
    
      
      Link to this function
    
    force_change_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec force_change_attribute(t(), atom(), any()) :: t()


      


Changes an attribute even if it isn't writable

  



  
    
      
      Link to this function
    
    force_change_attributes(changeset, changes)


      
       
       View Source
     


  


  

      

          @spec force_change_attributes(t(), map() | Keyword.t()) :: t()


      


Calls force_change_attribute/3 for each key/value pair provided.

  



  
    
      
      Link to this function
    
    force_change_new_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec force_change_new_attribute(t(), atom(), term()) :: t()


      


Force change an attribute if it is not currently being changed.
See change_new_attribute/3 for more.

  



  
    
      
      Link to this function
    
    force_change_new_attribute_lazy(changeset, attribute, func)


      
       
       View Source
     


  


  

      

          @spec force_change_new_attribute_lazy(t(), atom(), (-> any())) :: t()


      


Force change an attribute if it is not currently being changed, by calling the provided function.
See change_new_attribute_lazy/3 for more.

  



  
    
      
      Link to this function
    
    force_set_argument(changeset, argument, value)


      
       
       View Source
     


  


  

Add an argument to the changeset, which will be provided to the action.
Does not show a warning when used in before/after action hooks.

  



  
    
      
      Link to this function
    
    force_set_arguments(changeset, map)


      
       
       View Source
     


  


  

Merge a map of arguments to the arguments list.
Does not show a warning when used in before/after action hooks.

  



  
    
      
      Link to this function
    
    get_argument(changeset, argument)


      
       
       View Source
     


  


  

      

          @spec get_argument(t(), atom()) :: term()


      


Gets the value of an argument provided to the changeset.

  



  
    
      
      Link to this function
    
    get_argument_or_attribute(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec get_argument_or_attribute(t(), atom()) :: term()


      


Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided.

  



  
    
      
      Link to this function
    
    get_attribute(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec get_attribute(t(), atom()) :: term()


      


Gets the changing value or the original value of an attribute.

  



  
    
      
      Link to this function
    
    get_data(changeset, attribute)


      
       
       View Source
     


  


  

      

          @spec get_data(t(), atom()) :: term()


      


Gets the original value for an attribute

  



  
    
      
      Link to this function
    
    handle_errors(changeset, func)


      
       
       View Source
     


  


  

      

          @spec handle_errors(
  t(),
  (t(), error :: term() ->
     :ignore | t() | (error :: term()) | {error :: term(), t()})
  | {module(), atom(), [term()]}
) :: t()


      


Sets a custom error handler on the changeset.
The error handler should be a two argument function or an mfa, in which case the first two arguments will be set
to the changeset and the error, w/ the supplied arguments following those.
Any errors generated are passed to handle_errors, which can return any of the following:
	:ignore - the error is discarded, and the changeset is not marked as invalid
	changeset - a new (or the same) changeset. The error is not added (you'll want to add an error yourself), but the changeset is marked as invalid.
	{changeset, error} - a new (or the same) error and changeset. The error is added to the changeset, and the changeset is marked as invalid.
	anything_else - is treated as a new, transformed version of the error. The result is added as an error to the changeset, and the changeset is marked as invalid.


  



    

  
    
      
      Link to this function
    
    handle_params(changeset, action, params, handle_params_opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    load(changeset, load)


      
       
       View Source
     


  


  

Calls the provided load statement on the result of the action at the very end of the action.

  



  
    
      
      Link to this function
    
    loading?(changeset, path)


      
       
       View Source
     


  


  

Returns true if the field/relationship or path to field/relationship is being loaded.
It accepts an atom or a list of atoms, which is treated for as a "path", i.e:
Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?([:friends, :enemies, :score])
iex> true

Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?([:friends, :score])
iex> false

Resource |> Ash.Changeset.load(friends: [enemies: [:score]]) |> Ash.Changeset.loading?(:friends)
iex> true

  



    

  
    
      
      Link to this function
    
    manage_relationship(changeset, relationship, input, opts \\ [])


      
       
       View Source
     


  


  

Manages the related records by creating, updating, or destroying them as necessary.
Keep in mind that the default values for all on_* are :ignore, meaning nothing will happen
unless you provide instructions.
The input provided to manage_relationship should be a map, in the case of to_one relationships, or a list of maps
in the case of to_many relationships. The following steps are followed for each input provided:
	The input is checked against the currently related records to find any matches. The primary key and unique identities are used to find matches.
	For any input that had a match in the current relationship, the :on_match behavior is triggered
	For any input that does not have a match:	if there is on_lookup behavior:	we try to find the record in the data layer.
	if the record is found, the on_lookup behavior is triggered
	if the record is not found, the on_no_match behavior is triggered


	if there is no on_lookup behavior:	the on_no_match behavior is triggered




	finally, for any records present in the current relationship that had no match in the input, the on_missing behavior is triggered


  
    
  
  Options


	:type - If the type is specified, the default values of each option is modified to match that type of operation.
This allows for specifying certain operations much more succinctly. The defaults that are modified are listed below:  
	:append_and_remove  [
  on_lookup: :relate,
  on_no_match: :error,
  on_match: :ignore,
  on_missing: :unrelate
]  

	:append  [
  on_lookup: :relate,
  on_no_match: :error,
  on_match: :ignore,
  on_missing: :ignore
]  

	:remove  [
  on_no_match: :error,
  on_match: :unrelate,
  on_missing: :ignore
]  

	:direct_control  [
  on_lookup: :ignore,
  on_no_match: :create,
  on_match: :update,
  on_missing: :destroy
]  

	:create  [
  on_no_match: :create,
  on_match: :ignore
]
Valid values are :append_and_remove, :append, :remove, :direct_control, :create


	:authorize? (boolean/0) - Authorize reads and changes to the destination records, if the primary change is being authorized as well. The default value is true.

	:eager_validate_with (atom/0) - Validates that any referenced entities exist before the action is being performed, using the provided API for the read. The default value is false.

	:on_no_match (term/0) - Instructions for handling records where no matching record existed in the relationship.  
	:ignore (default) - those inputs are ignored
	:match - For has_one and belongs_to only, any input is treated as a match for an existing value. For has_many and many_to_many, this is the same as :ignore.
	:create - the records are created using the destination's primary create action
	{:create, :action_name} - the records are created using the specified action on the destination resource
	{:create, :action_name, :join_table_action_name, [:list, :of, :join_table, :params]} - Same as {:create, :action_name} but takes
  the list of params specified out and applies them when creating the join record, with the provided join_table_action_name.
	:error  - an error is returned indicating that a record would have been created	 If on_lookup is set, and the data contained a primary key or identity, then the error is a NotFound error
	Otherwise, an InvalidRelationship error is returned The default value is :ignore.




	:value_is_key (atom/0) - Configures what key to use when a single value is provided.
This is useful when you use things like a list of strings i.e friend_emails to manage the relationship, instead of a list of maps.
By default, we assume it is the primary key of the destination resource, unless it is a composite primary key.

	:identity_priority (list of atom/0) - The list, in priority order, of identities to use when looking up records for on_lookup, and matching records with on_match.
Use :_primary_key to prioritize checking a match with the primary key.
All identities, along with :_primary_key are checked regardless, this only allows ensuring that some are checked first.
Defaults to the list provided by use_identities, so you typically won't need this option.

	:use_identities (list of atom/0) - A list of identities that may be used to look up and compare records. Use :_primary_key to include the primary key. By default, only [:_primary_key] is used.

	:on_lookup (term/0) - Before creating a record (because no match was found in the relationship), the record can be looked up and related.  
	:ignore (default) - Does not look for existing entries (matches in the current relationship are still considered updates)
	:relate - Same as calling {:relate, primary_action_name}
	{:relate, :action_name} - the records are looked up by primary key/the first identity that is found (using the primary read action), and related. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource


	{:relate, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	:relate_and_update - Same as :relate, but the remaining parameters from the lookup are passed into the action that is used to change the relationship key
	{:relate_and_update, :action_name} - Same as the above, but customizes the action used. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource


	{:relate_and_update, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	{:relate_and_update, :action_name, :read_action_name, [:list, :of, :join_table, :params]} - Same as the above, but uses the provided list of parameters when creating
  the join row (only relevant for many to many relationships). Use :all to only update the join record, and pass all parameters to its action The default value is :ignore.


	:on_match (term/0) - Instructions for handling records where a matching record existed in the relationship already.  
	:ignore (default) - those inputs are ignored
	:update - the record is updated using the destination's primary update action
	{:update, :action_name} - the record is updated using the specified action on the destination resource
	{:update, :action_name, :join_table_action_name, [:list, :of, :params]} - Same as {:update, :action_name} but takes
  the list of params specified out and applies them as an update to the join record (only valid for many to many).
	{:destroy, :action_name} - the record is destroyed using the specified action on the destination resource. The action should be:	many_to_many - a destroy action on the join record
	has_many - a destroy action on the destination resource
	has_one - a destroy action on the destination resource
	belongs_to - a destroy action on the destination resource


	:error  - an error is returned indicating that a record would have been updated
	:no_match - ignores the primary key match and follows the on_no_match instructions with these records instead.
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_attribute (on the related record) is set to nil
	has_one - the destination_attribute (on the related record) is set to nil
	belongs_to - the source_attribute (on this record) is set to nil


	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.




	:on_missing (term/0) - Instructions for handling records that existed in the current relationship but not in the input.  
	:ignore (default) - those inputs are ignored
	:destroy - the record is destroyed using the destination's primary destroy action
	{:destroy, :action_name} - the record is destroyed using the specified action on the destination resource
	{:destroy, :action_name, :join_resource_action_name, [:join, :keys]} - the record is destroyed using the specified action on the destination resource,
but first the join resource is destroyed with its specified action
	:error  - an error is returned indicating that a record would have been updated
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_attribute (on the related record) is set to nil
	has_one - the destination_attribute (on the related record) is set to nil
	belongs_to - the source_attribute (on this record) is set to nil


	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.




	:error_path (term/0) - By default, errors added to the changeset will use the path [:relationship_name], or [:relationship_name, <index>].
If you want to modify this path, you can specify error_path, e.g if had a change on an action that takes an argument
and uses that argument data to call manage_relationship, you may want any generated errors to appear under the name of that
argument, so you could specify error_path: :argument_name when calling manage_relationship.

	:meta (term/0) - Freeform data that will be retained along with the options, which can be used to track/manage the changes that are added to the relationships key.

	:ignore? (term/0) - This tells Ash to ignore the provided inputs when actually running the action. This can be useful for
building up a set of instructions that you intend to handle manually. The default value is false.


Each call to this function adds new records that will be handled according to their options. For example,
if you tracked "tags to add" and "tags to remove" in separate fields, you could input them like so:
changeset
|> Ash.Changeset.manage_relationship(
  :tags,
  [%{name: "backend"}],
  on_lookup: :relate, #relate that tag if it exists in the database
  on_no_match: :error # error if a tag with that name doesn't exist
)
|> Ash.Changeset.manage_relationship(
  :tags,
  [%{name: "frontend"}],
  on_no_match: :error, # error if a tag with that name doesn't exist in the relationship
  on_match: :unrelate # if a tag with that name is related, unrelate it
)
When calling this multiple times with the on_missing option set, the list of records that are considered missing are checked
after each set of inputs is processed. For example, if you manage the relationship once with on_missing: :unrelate, the records
missing from your input will be removed, and then your next call to manage_relationship will be resolved (with those records unrelated).
For this reason, it is suggested that you don't call this function multiple times with an on_missing instruction, as you may be
surprised by the result.
If you want the input to update existing entities, you need to ensure that the primary key (or unique identity) is provided as
part of the input. See the example below:
changeset
|> Ash.Changeset.manage_relationship(
  :comments,
  [%{rating: 10, contents: "foo"}],
  on_no_match: {:create, :create_action},
  on_missing: :ignore
)
|> Ash.Changeset.manage_relationship(
  :comments,
  [%{id: 10, rating: 10, contents: "foo"}],
  on_match: {:update, :update_action},
  on_no_match: {:create, :create_action})
This is a simple way to manage a relationship. If you need custom behavior, you can customize the action that is
called, which allows you to add arguments/changes. However, at some point you may want to forego this function
and make the changes yourself. For example:
input = [%{id: 10, rating: 10, contents: "foo"}]

changeset
|> Ash.Changeset.after_action(fn _changeset, result ->
  # An example of updating comments based on a result of other changes
  for comment <- input do
    comment = MyApi.get(Comment, comment.id)

    comment
    |> Map.update(:rating, 0, &(&1 * result.rating_weight))
    |> MyApi.update!()
  end

  {:ok, result}
end)

  
    
  
  Using records as input


Records can be supplied as the input values. If you do:
	if it would be looked up due to on_lookup, the record is used as-is
	if it would be created due to on_no_match, the record is used as-is
	Instead of specifying join_keys, those keys must go in __metadata__.join_keys. If join_keys is specified in the options, it is ignored.

For example:
post1 =
  changeset
  |> Api.create!()
  |> Ash.Resource.put_metadata(:join_keys, %{type: "a"})

post1 =
  changeset2
  |> Api.create!()
  |> Ash.Resource.put_metadata(:join_keys, %{type: "b"})

author = Api.create!(author_changeset)

Ash.Changeset.manage_relationship(
  author,
  :posts,
  [post1, post2],
  on_lookup: :relate
)

  



  
    
      
      Link to this function
    
    manage_relationship_opts(atom)


      
       
       View Source
     


  


  

      

          @spec manage_relationship_opts(manage_relationship_type()) :: Keyword.t()


      



  



    

  
    
      
      Link to this function
    
    new(resource, params \\ %{})


      
       
       View Source
     


  


  

      

          @spec new(Ash.Resource.t() | Ash.Resource.record(), params :: map()) :: t()


      


Returns a new changeset over a resource.
Warning: You almost always want to use for_action or for_create, etc. over this function if possible.
You can use this to start a changeset and make a few changes prior to calling for_action. For example:
Resource
|> Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:name, "foobar")
|> Ash.Changeset.for_action(...)

  



  
    
      
      Link to this function
    
    prepare_changeset_for_action(changeset, action, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_context(changeset, key, value)


      
       
       View Source
     


  


  

      

          @spec put_context(t(), atom(), term()) :: t()


      


Puts a key/value in the changeset context that can be used later.
Do not use the private key in your custom context, as that is reserved for internal use.

  



    

  
    
      
      Link to this function
    
    remove_from_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use manage_relationship/4 instead.
    


  

      

          @spec remove_from_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()],
  Keyword.t()
) :: t()


      


Removes a record or a list of records to a relationship.
Alias for:
manage_relationship(changeset, relationship, record_or_records,
  on_no_match: :error, # If a record is not found in the relationship, we error
  on_match: :unrelate, # If a record is found in the relationship we unrelate it
  on_missing: :ignore, # If a record is not found in the relationship
  authorize?: false
)

  



    

  
    
      
      Link to this function
    
    replace_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use manage_relationship/4 instead.
    


  

      

          @spec replace_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()]
  | nil,
  Keyword.t()
) :: t()


      


Alias for:
manage_relationship(
  changeset,
  relationship,
  record_or_records,
  on_lookup: :relate, # If a record is not found in the relationship, but is found in the database, relate it and apply the input as an update
  on_no_match: :error, # If a record is not found in the relationship or the database, we error
  on_match: :ignore, # If a record is found in the relationship we make no changes to it
  on_missing: :unrelate, # If a record is not found in the relationship, we unrelate it
  authorize?: false
)

  



  
    
      
      Link to this function
    
    run_before_transaction_hooks(changeset)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    select(changeset, fields, opts \\ [])


      
       
       View Source
     


  


  

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Datalayers currently are not notified of the select for a changeset(unlike queries), and creates/updates select all fields when they are performed.
A select provided on a changeset sets the unselected fields to nil before returning the result.
Use ensure_selected/2 if you wish to make sure a field has been selected, without deselecting any other fields.

  



  
    
      
      Link to this function
    
    selecting?(changeset, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_argument(changeset, argument, value)


      
       
       View Source
     


  


  

Add an argument to the changeset, which will be provided to the action.

  



  
    
      
      Link to this function
    
    set_arguments(changeset, map)


      
       
       View Source
     


  


  

Merge a map of arguments to the arguments list.

  



  
    
      
      Link to this function
    
    set_context(changeset, map)


      
       
       View Source
     


  


  

      

          @spec set_context(t(), map() | nil) :: t()


      


Deep merges the provided map into the changeset context that can be used later.
Do not use the private key in your custom context, as that is reserved for internal use.

  



  
    
      
      Link to this function
    
    set_on_upsert(changeset, upsert_keys)


      
       
       View Source
     


  


  

      

          @spec set_on_upsert(t(), [atom()]) :: Keyword.t()


      



  



  
    
      
      Link to this function
    
    set_result(changeset, result)


      
       
       View Source
     


  


  

      

          @spec set_result(t(), term()) :: t()


      


Set the result of the action. This will prevent running the underlying datalayer behavior

  



  
    
      
      Link to this function
    
    set_tenant(changeset, tenant)


      
       
       View Source
     


  


  

      

          @spec set_tenant(t(), String.t()) :: t()


      



  



    

  
    
      
      Link to this function
    
    timeout(changeset, timeout, default \\ nil)


      
       
       View Source
     


  


  

      

          @spec timeout(t(), nil | pos_integer(), nil | pos_integer()) :: t()


      



  



  
    
      
      Link to this function
    
    unsafe_change_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      

          @spec unsafe_change_attribute(t(), atom(), any()) :: t()


      


Changes an attribute even if it isn't writable, doing no type casting or validation

  



  
    
      
      Link to this function
    
    unsafe_change_attributes(changeset, changes)


      
       
       View Source
     


  


  

      

          @spec unsafe_change_attributes(t(), map() | Keyword.t()) :: t()


      


Calls unsafe_change_attribute/3 for each key/value pair provided.

  



    

  
    
      
      Link to this function
    
    with_hooks(changeset, func, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec with_hooks(
  t(),
  (t() ->
     {:ok, term(), %{notifications: [Ash.Notifier.Notification.t()]}}
     | {:error, term()}),
  Keyword.t()
) ::
  {:ok, term(), t(), %{notifications: [Ash.Notifier.Notification.t()]}}
  | {:error, term()}


      


Wraps a function in the before/after action hooks of a changeset.
The function takes a changeset and if it returns
{:ok, result}, the result will be passed through the after
action hooks.

  


        

      



  

  
    
    Ash.Resource.Change - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change behaviour
    



      
The behaviour for an action-specific resource change.
init/1 is defined automatically by use Ash.Resource.Change, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is change/3. It takes the changeset, any options that were provided
when this change was configured on a resource, and the context, which currently only has
the actor.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        ref()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        after_batch(list, t, context)

      


        Runs on each batch result after it is dispatched to the data layer.



    


    
      
        batch_change(list, t, context)

      


        Replaces change/3 for batch actions, allowing to optimize changes for bulk actions.



    


    
      
        before_batch(list, t, context)

      


        Runs on each batch before it is dispatched to the data layer.



    


    
      
        change(t, t, context)

      


    


    
      
        init(t)

      


    





  
    Functions
  


    
      
        atomic_schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => Ash.Resource.record(),
  optional(any()) => any()
}


      



  



  
    
      
      Link to this type
    
    ref()


      
       
       View Source
     


  


  

      

          @type ref() :: {module(), Keyword.t()} | module()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Change{
  change: term(),
  description: term(),
  on: term(),
  only_when_valid?: term(),
  where: term()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    after_batch(list, t, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback after_batch(
  [{Ash.Changeset.t(), Ash.Resource.record()}],
  Keyword.t(),
  context()
) ::
  Enumerable.t(
    {:ok, Ash.Resource.record()}
    | {:error, Ash.Error.t()}
    | Ash.Notifier.Notification.t()
  )


      


Runs on each batch result after it is dispatched to the data layer.

  



  
    
      
      Link to this callback
    
    batch_change(list, t, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback batch_change([Ash.Changeset.t()], Keyword.t(), context()) ::
  Enumerable.t(Ash.Changeset.t() | Ash.Notifier.Notification.t())


      


Replaces change/3 for batch actions, allowing to optimize changes for bulk actions.

  



  
    
      
      Link to this callback
    
    before_batch(list, t, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback before_batch([Ash.Changeset.t()], Keyword.t(), context()) ::
  Enumerable.t(Ash.Changeset.t() | Ash.Notifier.Notification.t())


      


Runs on each batch before it is dispatched to the data layer.

  



  
    
      
      Link to this callback
    
    change(t, t, context)


      
       
       View Source
     


  


  

      

          @callback change(Ash.Changeset.t(), Keyword.t(), context()) :: Ash.Changeset.t()


      



  



  
    
      
      Link to this callback
    
    init(t)


      
       
       View Source
     


  


  

      

          @callback init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    atomic_schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Change.Builtins - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change.Builtins 
    



      
Built in changes that are available to all resources
The functions in this module are imported by default in the actions section.

      


      
        Summary


  
    Functions
  


    
      
        after_action(callback, opts \\ [])

      


        Directly attach an after_action function to the current change.



    


    
      
        after_transaction(callback, opts \\ [])

      


        Directly attach an after_transaction function to the current change.



    


    
      
        atomic_update(attribute, expr)

      


        Updates an attribute using an expression. See Ash.Changeset.atomic_update/3 for more.



    


    
      
        before_action(callback, opts \\ [])

      


        Directly attach a before_action function to the current change.



    


    
      
        before_transaction(callback, opts \\ [])

      


        Directly attach a before_transaction function to the current change.



    


    
      
        ensure_selected(value)

      


        Passes the provided value into Ash.Changeset.ensure_selected/2



    


    
      
        get_and_lock(lock)

      


        Re-fetches the record being updated and locks it with the given type.



    


    
      
        get_and_lock_for_update()

      


        Re-fetches the record being updated and locks it for update.



    


    
      
        increment(attribute, opts \\ [])

      


        Increments an attribute's value by the amount specified, which defaults to 1.



    


    
      
        load(value)

      


        Passes the provided value into changeset.api.load(), after the action has completed.



    


    
      
        manage_relationship(argument, relationship_name \\ nil, opts)

      


        Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument.



    


    
      
        optimistic_lock(attribute)

      


        Apply an "optimistic lock" on a record being updated or destroyed.



    


    
      
        prevent_change(attribute)

      


        Clears a change off of the changeset before the action runs.



    


    
      
        relate_actor(relationship, opts \\ [])

      


    


    
      
        relate_actor_opts()

      


        Relates the actor to the data being changed, as the provided relationship.



    


    
      
        select(value)

      


        Passes the provided value into Ash.Changeset.select/3



    


    
      
        set_attribute(attribute, value, opts \\ [])

      


        Sets the attribute to the value provided.



    


    
      
        set_context(context)

      


        Merges the given query context.



    


    
      
        set_new_attribute(attribute, value)

      


        Sets the attribute to the value provided if the attribute is not already being changed.



    





      


      
        Functions

        


    

  
    
      
      Link to this macro
    
    after_action(callback, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

Directly attach an after_action function to the current change.
See Ash.Changeset.after_action/3 for more information.
Provide the option prepend?: true to place the hook before all other hooks instead of after.

  
    
  
  Example


change after_action(fn changeset, record ->
  Logger.debug("Successfully executed action #{changeset.action.name} on #{inspect(changeset.resource)}")
  {:ok, record}
end)

  



    

  
    
      
      Link to this macro
    
    after_transaction(callback, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

Directly attach an after_transaction function to the current change.
See Ash.Changeset.after_transaction/3 for more information.
Provide the option prepend?: true to place the hook before all other hooks instead of after.

  
    
  
  Example


change after_transaction(fn
  changeset, {:ok, record} ->
    Logger.debug("Successfully executed transaction for action #{changeset.action.name} on #{inspect(changeset.resource)}")
    {:ok, record}
  changeset, {:error, reason} ->
    Logger.debug("Failed to execute transaction for action #{changeset.action.name} on #{inspect(changeset.resource)}, reason: #{inspect(reason)}")
    {:error, reason}
end)

  



  
    
      
      Link to this function
    
    atomic_update(attribute, expr)


      
       
       View Source
     


  


  

      

          @spec atomic_update(attribute :: atom(), expr :: Ash.Expr.t()) ::
  Ash.Resource.Change.ref()


      


Updates an attribute using an expression. See Ash.Changeset.atomic_update/3 for more.

  



    

  
    
      
      Link to this macro
    
    before_action(callback, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

Directly attach a before_action function to the current change.
See Ash.Changeset.before_action/3 for more information.
Provide the option append?: true to place the hook after all other hooks instead of before.

  
    
  
  Example


change before_action(fn changeset ->
  Logger.debug("About to execute #{changeset.action.name} on #{inspect(changeset.resource)})

  changeset
end)

  



    

  
    
      
      Link to this macro
    
    before_transaction(callback, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

Directly attach a before_transaction function to the current change.
See Ash.Changeset.before_transaction/3 for more information.
Provide the option append?: true to place the hook after all other hooks instead of before.

  
    
  
  Example


change before_transaction(fn changeset ->
  Logger.debug("About to execute transaction for #{changeset.action.name} on #{inspect(changeset.resource)})

  changeset
end)

  



  
    
      
      Link to this function
    
    ensure_selected(value)


      
       
       View Source
     


  


  

      

          @spec ensure_selected(select :: atom() | [atom()]) :: Ash.Resource.Change.ref()


      


Passes the provided value into Ash.Changeset.ensure_selected/2
If the value is not already selected, this makes sure it is. Does not deselect anything else.

  
    
  
  Example


  change ensure_selected([:necessary_field])

  



  
    
      
      Link to this function
    
    get_and_lock(lock)


      
       
       View Source
     


  


  

      

          @spec get_and_lock(lock :: Ash.DataLayer.lock_type()) :: Ash.Resource.Change.ref()


      


Re-fetches the record being updated and locks it with the given type.
This happens in a before_action hook (so that it is done as part of the transaction).
If your resource has global validations (in the top level validations block), you may
want to add delay_global_validations? true to your action to ensure they happen on the
locked record.

  



  
    
      
      Link to this function
    
    get_and_lock_for_update()


      
       
       View Source
     


  


  

      

          @spec get_and_lock_for_update() :: Ash.Resource.Change.ref()


      


Re-fetches the record being updated and locks it for update.
Only usable with data layers that support locking :for_update.
This happens in a before_action hook (so that it is done as part of the transaction).
If your resource has global validations (in the top level validations block), you may
want to add delay_global_validations? true to your action to ensure they happen on the
locked record.

  



    

  
    
      
      Link to this function
    
    increment(attribute, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec increment(attribute :: atom(), opts :: Keyword.t()) :: Ash.Resource.Change.ref()


      


Increments an attribute's value by the amount specified, which defaults to 1.
Options:
	:amount - Defaults to 1
	:overflow_limit - Defaults to nil. If the value is over the overflow limit it will roll-over to the amount being incremented by (for common database limit support)


  



  
    
      
      Link to this function
    
    load(value)


      
       
       View Source
     


  


  

      

          @spec load(load :: term()) :: Ash.Resource.Change.ref()


      


Passes the provided value into changeset.api.load(), after the action has completed.

  
    
  
  Example


change load(:comments)
change load([:friend_count, :friends])

  



    

  
    
      
      Link to this function
    
    manage_relationship(argument, relationship_name \\ nil, opts)


      
       
       View Source
     


  


  

      

          @spec manage_relationship(
  argument :: atom(),
  relationship_name :: atom() | nil,
  opts :: Keyword.t()
) :: Ash.Resource.Change.ref()


      


Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument.
If relationship_name is not specified, it is assumed to be the same as the argument.
For information on the available options, see Ash.Changeset.manage_relationship/4.

  
    
  
  Examples


change manage_relationship(:comments, type: :append)
change manage_relationship(:remove_comments, :comments, type: :remove)

  



  
    
      
      Link to this function
    
    optimistic_lock(attribute)


      
       
       View Source
     


  


  

Apply an "optimistic lock" on a record being updated or destroyed.
This is modeled after ecto's implementation of optimistic locking, so to
read more, see their documentation: https://hexdocs.pm/ecto/Ecto.Changeset.html#optimistic_lock/3
The primary difference is that we leave it to you to increment the field being used for optimistic locking
yourself. So in ecto you might do Changeset.optimistic_lock(changeset, :foo) and that would add 1 to the :foo attribute
automatically. In Ash, you would combine this with the increment/1 change.
change optimistic_lock(:foo)
change increment(:foo)

  



  
    
      
      Link to this function
    
    prevent_change(attribute)


      
       
       View Source
     


  


  

      

          @spec prevent_change(attribute :: atom()) :: Ash.Resource.Change.ref()


      


Clears a change off of the changeset before the action runs.
Does not fail if it is being changed, but ensures it is cleared just before the action.
Can be useful if a change is only used in validations but shouldn't ultimately be written to the data layer.

  
    
  
  Examples


change prevent_change(:email)

  



    

  
    
      
      Link to this function
    
    relate_actor(relationship, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec relate_actor(relationship :: atom(), opts :: Keyword.t()) ::
  Ash.Resource.Change.ref()


      



  



  
    
      
      Link to this function
    
    relate_actor_opts()


      
       
       View Source
     


  


  

Relates the actor to the data being changed, as the provided relationship.

  
    
  
  Options


	:relationship (atom/0) - Required. The relationship to set the actor to.

	:allow_nil? (boolean/0) - Whether or not to allow the actor to be nil, in which case nothing will happen. The default value is false.

	:field (atom/0) - The field of the actor to set the relationship to



  
    
  
  Examples


change relate_actor(:owner, allow_nil?: true)

  



  
    
      
      Link to this function
    
    select(value)


      
       
       View Source
     


  


  

      

          @spec select(select :: atom() | [atom()]) :: Ash.Resource.Change.ref()


      


Passes the provided value into Ash.Changeset.select/3
Keep in mind, this will limit the fields that are selected. You may want ensure_selected/1 if you
want to make sure that something is selected, without deselecting anything else.
Selecting in changesets does not actually do a select in the data layer. It nils out any
fields that were not selected after completing the action. This can be useful if you are writing
policies that have to do with specific fields being selected.

  
    
  
  Example


change select([:name])

  



    

  
    
      
      Link to this function
    
    set_attribute(attribute, value, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec set_attribute(
  relationship :: atom(),
  (-> term()) | {:_arg, :status} | term(),
  opts :: Keyword.t()
) :: Ash.Resource.Change.ref()


      


Sets the attribute to the value provided.
If a zero argument function is provided, it is called to determine the value.
Use arg(:argument_name) to use the value of the given argument. If the argument is not supplied then nothing happens.

  
    
  
  Options


	:set_when_nil? (boolean/0) - When false, decline setting the attribute if it is nil. The default value is true.

	:new? (boolean/0) - When true, sets the attribute to the value provided if the attribute is not already being changed. The default value is false.



  
    
  
  Examples


change set_attribute(:active, false)
change set_attribute(:opened_at, &DateTime.utc_now/0)
change set_attribute(:status, arg(:status))
change set_attribute(:encrypted_data, arg(:data), set_when_nil?: false)

  



  
    
      
      Link to this function
    
    set_context(context)


      
       
       View Source
     


  


  

      

          @spec set_context(context :: map() | mfa()) :: Ash.Resource.Change.ref()


      


Merges the given query context.
If an MFA is provided, it will be called with the changeset.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

  
    
  
  Examples


change set_context(%{something_used_internally: true})
change set_context({MyApp.Context, :set_context, []})

  



  
    
      
      Link to this function
    
    set_new_attribute(attribute, value)


      
       
       View Source
     


  


  

      

          @spec set_new_attribute(
  relationship :: atom(),
  (-> term()) | {:_arg, :status} | term()
) ::
  Ash.Resource.Change.ref()


      


Sets the attribute to the value provided if the attribute is not already being changed.
If a zero argument function is provided, it is called to determine the value.
Use arg(:argument_name) to use the value of the given argument. If the argument is not supplied then nothing happens.

  
    
  
  Examples


change set_new_attribute(:active, false)
change set_new_attribute(:opened_at, &DateTime.utc_now/0)
change set_new_attribute(:status, arg(:status))

  


        

      



  

  
    
    Ash.Resource.Validation - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Validation behaviour
    



      
Represents a validation in Ash.
See Ash.Resource.Validation.Builtins for a list of builtin validations.
To write your own validation, define a module that implements the init/1 callback
to validate options at compile time, and validate/2 callback to do the validation.
Then, in a resource, you can say:
validations do
  validate {MyValidation, [foo: :bar]}
end

      


      
        Summary


  
    Types
  


    
      
        path()

      


    


    
      
        ref()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        atomic?(t)

      


    


    
      
        describe(t)

      


    


    
      
        init(t)

      


    


    
      
        validate(t, t)

      


    





  
    Functions
  


    
      
        action_schema()

      


    


    
      
        opt_schema()

      


    


    
      
        validation_type()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    path()


      
       
       View Source
     


  


  

      

          @type path() :: [atom() | integer()]


      



  



  
    
      
      Link to this type
    
    ref()


      
       
       View Source
     


  


  

      

          @type ref() :: {module(), Keyword.t()} | module()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Validation{
  before_action?: term(),
  description: String.t() | nil,
  message: term(),
  module: atom(),
  on: [atom()],
  only_when_valid?: boolean(),
  opts: [atom()],
  validation: {atom(), [atom()]},
  where: [{atom(), [atom()]}]
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    atomic?(t)


      
       
       View Source
     


  


  

      

          @callback atomic?(Keyword.t()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    describe(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback describe(Keyword.t()) :: String.t() | [message: String.t(), vars: Keyword.t()]


      



  



  
    
      
      Link to this callback
    
    init(t)


      
       
       View Source
     


  


  

      

          @callback init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, String.t()}


      



  



  
    
      
      Link to this callback
    
    validate(t, t)


      
       
       View Source
     


  


  

      

          @callback validate(Ash.Changeset.t(), Keyword.t()) :: :ok | {:error, term()}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    action_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    opt_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validation_type()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Validation.Builtins - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Validation.Builtins 
    



      
Built in validations that are available to all resources
The functions in this module are imported by default in the validations section.

      


      
        Summary


  
    Functions
  


    
      
        absent(attributes, opts \\ [])

      


        Validates the absence of a list of attributes or arguments.



    


    
      
        action_is(action)

      


        Validates that the action is a specific action. Primarily meant for use in where.



    


    
      
        argument_does_not_equal(argument, value)

      


        Validates that an argument is not being changed to a specific value, or does not equal the given value if it is not being changed.



    


    
      
        argument_equals(argument, value)

      


        Validates that an argument is being changed to a specific value, or equals the given value if it is not being changed.



    


    
      
        argument_in(argument, list)

      


        Validates that an argument is being changed to one of a set of specific values, or is in the the given list if it is not being changed.



    


    
      
        attribute_does_not_equal(attribute, value)

      


        Validates that an attribute is not being changed to a specific value, or does not equal the given value if it is not being changed.



    


    
      
        attribute_equals(attribute, value)

      


        Validates that an attribute is being changed to a specific value, or equals the given value if it is not being changed.



    


    
      
        attribute_in(attribute, list)

      


        Validates that an attribute is being changed to one of a set of specific values, or is in the the given list if it is not being changed.



    


    
      
        changing(field)

      


        Validates that an attribute or relationship is being changed



    


    
      
        compare(attribute, opts \\ [])

      


        Validates that an attribute or argument meets the given comparison criteria.



    


    
      
        confirm(field, confirmation)

      


        Validates that a field or argument matches another field or argument



    


    
      
        match(attribute, match)

      


        Validates that an attribute's value matches a given regex.



    


    
      
        negate(validation)

      


        Validates that other validation does not pass



    


    
      
        numericality(attribute, opts \\ [])

      


        Validates that an attribute or argument meets the given comparison criteria.



    


    
      
        one_of(attribute, values)

      


        Validates that an attribute's value is in a given list



    


    
      
        present(attributes, opts \\ [])

      


        Validates the presence of a list of attributes or arguments.



    


    
      
        string_length(attribute, opts \\ [])

      


        Validates that an attribute on the original record meets the given length criteria



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    absent(attributes, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec absent(attributes_or_arguments :: atom() | [atom()], opts :: Keyword.t()) ::
  Ash.Resource.Validation.ref()


      


Validates the absence of a list of attributes or arguments.
If no options are provided, validates that they are all absent.
This works by changing your options and providing them to the present validation.

  
    
  
  Options


	:at_least (non_neg_integer/0) - At least this many must be absent. Defaults to the number of attributes provided

	:at_most (non_neg_integer/0) - At most this many must be absent. Defaults to the number of attributes provided

	:exactly (non_neg_integer/0) - Exactly this many must be absent



  



  
    
      
      Link to this function
    
    action_is(action)


      
       
       View Source
     


  


  

      

          @spec action_is(action :: atom()) :: Ash.Resource.Validation.ref()


      


Validates that the action is a specific action. Primarily meant for use in where.

  
    
  
  Examples


validate present(:foo), where: [action_is(:bar)]

  



  
    
      
      Link to this function
    
    argument_does_not_equal(argument, value)


      
       
       View Source
     


  


  

      

          @spec argument_does_not_equal(argument :: atom(), value :: term()) ::
  Ash.Resource.Validation.ref()


      


Validates that an argument is not being changed to a specific value, or does not equal the given value if it is not being changed.

  
    
  
  Examples


validate argument_does_not_equal(:admin, true)

# Or to only check for changing to a given value
validate argument_does_not_equal(:admin, true), where: [changing(:admin)]

  



  
    
      
      Link to this function
    
    argument_equals(argument, value)


      
       
       View Source
     


  


  

      

          @spec argument_equals(argument :: atom(), value :: term()) ::
  Ash.Resource.Validation.ref()


      


Validates that an argument is being changed to a specific value, or equals the given value if it is not being changed.

  
    
  
  Examples


validate argument_equals(:admin, true)

# Or to only check for changing to a given value
validate argument_equals(:admin, true), where: [changing(:admin)]

  



  
    
      
      Link to this function
    
    argument_in(argument, list)


      
       
       View Source
     


  


  

      

          @spec argument_in(argument :: atom(), list :: [term()]) ::
  Ash.Resource.Validation.ref()


      


Validates that an argument is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

  
    
  
  Examples


validate argument_in(:state, [1, 2, 3])

# Or to only check for changing to a something in a given list
validate argument_in(:state, [1, 2, 3]), where: [changing(:state)]

  



  
    
      
      Link to this function
    
    attribute_does_not_equal(attribute, value)


      
       
       View Source
     


  


  

      

          @spec attribute_does_not_equal(attribute :: atom(), value :: term()) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute is not being changed to a specific value, or does not equal the given value if it is not being changed.

  
    
  
  Examples


validate attribute_does_not_equal(:admin, true)

# Or to only check for changing to a given value
validate attribute_does_not_equal(:admin, true), where: [changing(:admin)]

  



  
    
      
      Link to this function
    
    attribute_equals(attribute, value)


      
       
       View Source
     


  


  

      

          @spec attribute_equals(attribute :: atom(), value :: term()) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute is being changed to a specific value, or equals the given value if it is not being changed.

  
    
  
  Examples


validate attribute_equals(:admin, true)

# Or to only check for changing to a given value
validate attribute_equals(:admin, true), where: [changing(:admin)]

  



  
    
      
      Link to this function
    
    attribute_in(attribute, list)


      
       
       View Source
     


  


  

      

          @spec attribute_in(attribute :: atom(), list :: [term()]) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute is being changed to one of a set of specific values, or is in the the given list if it is not being changed.

  
    
  
  Examples


validate attribute_in(:state, [1, 2, 3])

# Or to only check for changing to a something in a given list
validate attribute_in(:state, [1, 2, 3]), where: [changing(:state)]

  



  
    
      
      Link to this function
    
    changing(field)


      
       
       View Source
     


  


  

      

          @spec changing(attribute :: atom()) :: Ash.Resource.Validation.ref()


      


Validates that an attribute or relationship is being changed

  
    
  
  Examples


validate changing(:first_name)
validate changing(:comments)

  



    

  
    
      
      Link to this function
    
    compare(attribute, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec compare(attribute :: atom(), opts :: Keyword.t()) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute or argument meets the given comparison criteria.
The values provided for each option may be a literal value, attribute, argument, or a zero argument function.

  
    
  
  Options


	:greater_than - The value that the attribute should be greater than.

	:greater_than_or_equal_to - The value that the attribute should be greater than or equal to

	:less_than - The value that the attribute should be less than

	:less_than_or_equal_to - The value that the attribute should be less than or equal to



  
    
  
  Examples


validate compare(:age, greater_than_or_equal_to: 18),
  where: [attribute_equals(:show_adult_content, true)],
  message: "must be over %{greater_than_or_equal_to} to enable adult content."

validate compare(:points, greater_than: 0, less_than_or_equal_to: 100)

  



  
    
      
      Link to this function
    
    confirm(field, confirmation)


      
       
       View Source
     


  


  

      

          @spec confirm(
  attribute_or_argument :: atom(),
  confirmation_attribute_or_argument :: atom()
) ::
  Ash.Resource.Validation.ref()


      


Validates that a field or argument matches another field or argument

  
    
  
  Examples


validate confirm(:password, :password_confirmation)
validate confirm(:email, :email_confirmation)

  



  
    
      
      Link to this function
    
    match(attribute, match)


      
       
       View Source
     


  


  

      

          @spec match(attribute :: atom(), match :: Regex.t()) :: Ash.Resource.Validation.ref()


      


Validates that an attribute's value matches a given regex.
String.match?/2 is used to determine if the value matches.

  
    
  
  Examples


  validate match(:slug, ~r/^[0-9a-z-_]+$/)

  



  
    
      
      Link to this function
    
    negate(validation)


      
       
       View Source
     


  


  

      

          @spec negate(validation :: Ash.Resource.Validation.ref()) ::
  Ash.Resource.Validation.ref()


      


Validates that other validation does not pass

  
    
  
  Examples


  validate negate(one_of(:status, [:closed, :finished]))

  



    

  
    
      
      Link to this function
    
    numericality(attribute, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec numericality(attribute :: atom(), opts :: Keyword.t()) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute or argument meets the given comparison criteria.
The values provided for each option may be a literal value, attribute, argument, or a zero argument function.

  
    
  
  Options


	:greater_than - The value that the attribute should be greater than.

	:greater_than_or_equal_to - The value that the attribute should be greater than or equal to

	:less_than - The value that the attribute should be less than

	:less_than_or_equal_to - The value that the attribute should be less than or equal to



  
    
  
  Examples


validate numericality(:age, greater_than_or_equal_to: 18),
  where: [attribute_equals(:show_adult_content, true)],
  message: "must be over %{greater_than_or_equal_to} to enable adult content."

validate numericality(:points, greater_than: 0, less_than_or_equal_to: 100)

  



  
    
      
      Link to this function
    
    one_of(attribute, values)


      
       
       View Source
     


  


  

      

          @spec one_of(attribute :: atom(), [any()]) :: Ash.Resource.Validation.ref()


      


Validates that an attribute's value is in a given list

  
    
  
  Examples


validate one_of(:status, [:closed_won, :closed_lost])

  



    

  
    
      
      Link to this function
    
    present(attributes, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec present(attributes_or_arguments :: atom() | [atom()], opts :: Keyword.t()) ::
  Ash.Resource.Validation.ref()


      


Validates the presence of a list of attributes or arguments.
If no options are provided, validates that they are all present.

  
    
  
  Options


	:at_least (non_neg_integer/0) - At least this many must be present. Defaults to the number of attributes provided

	:at_most (non_neg_integer/0) - At most this many must be present. Defaults to the number of attributes provided

	:exactly (non_neg_integer/0) - Exactly this many must be present



  



    

  
    
      
      Link to this function
    
    string_length(attribute, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec string_length(attribute :: atom(), opts :: Keyword.t()) ::
  Ash.Resource.Validation.ref()


      


Validates that an attribute on the original record meets the given length criteria

  
    
  
  Options


	:min (non_neg_integer/0) - String must be this length at least

	:max (non_neg_integer/0) - String must be this length at most

	:exact (non_neg_integer/0) - String must be this length exactly



  
    
  
  Examples


validate string_length(:slug, exactly: 8)
validate string_length(:password, min: 6)
validate string_length(:secret, min: 4, max: 12)

  


        

      



  

  
    
    Ash.Authorizer - ash v2.17.7
    
    

    



  
  

    
Ash.Authorizer behaviour
    



      
The interface for an ash authorizer
These will typically be implemented by an extension, but a custom
one can be implemented by defining an extension that also adopts this behaviour.
Then you can extend a resource with authorizers: [YourAuthorizer]

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        state()

      


    





  
    Callbacks
  


    
      
        add_calculations(arg1, state, context)

      


    


    
      
        alter_filter(filter, state, context)

      


    


    
      
        alter_results(state, list, context)

      


    


    
      
        check(state, context)

      


    


    
      
        check_context(state)

      


    


    
      
        exception(atom, state)

      


    


    
      
        initial_state(t, record, action, boolean)

      


    


    
      
        strict_check(state, context)

      


    


    
      
        strict_check_context(state)

      


    





  
    Functions
  


    
      
        add_calculations(module, query_or_changeset, state, context)

      


    


    
      
        alter_filter(module, state, filter, context)

      


    


    
      
        alter_results(module, state, records, context)

      


    


    
      
        check(module, state, context)

      


    


    
      
        check_context(module, state)

      


    


    
      
        exception(module, reason, state)

      


    


    
      
        initial_state(module, actor, resource, action, verbose?)

      


    


    
      
        strict_check(module, state, context)

      


    


    
      
        strict_check_context(module, state)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: map()


      



  



  
    
      
      Link to this type
    
    state()


      
       
       View Source
     


  


  

      

          @type state() :: map()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    add_calculations(arg1, state, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback add_calculations(Ash.Query.t() | Ash.Changeset.t(), state(), context()) ::
  {:ok, Ash.Query.t() | Ash.Changeset.t(), state()} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    alter_filter(filter, state, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback alter_filter(filter :: Ash.Filter.t(), state(), context()) ::
  {:ok, Ash.Filter.t()} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    alter_results(state, list, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback alter_results(state(), [Ash.Resource.record()], context()) ::
  {:ok, [Ash.Resource.record()]} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    check(state, context)


      
       
       View Source
     


  


  

      

          @callback check(state(), context()) ::
  :authorized | {:data, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    check_context(state)


      
       
       View Source
     


  


  

      

          @callback check_context(state()) :: [atom()]


      



  



  
    
      
      Link to this callback
    
    exception(atom, state)


      
       
       View Source
     


      (optional)

  


  

      

          @callback exception(atom(), state()) :: no_return()


      



  



  
    
      
      Link to this callback
    
    initial_state(t, record, action, boolean)


      
       
       View Source
     


  


  

      

          @callback initial_state(
  Ash.Resource.t(),
  Ash.Resource.record(),
  Ash.Resource.Actions.action(),
  boolean()
) :: state()


      



  



  
    
      
      Link to this callback
    
    strict_check(state, context)


      
       
       View Source
     


  


  

      

          @callback strict_check(state(), context()) ::
  {:authorized, state()}
  | {:continue, state()}
  | {:filter, Keyword.t()}
  | {:filter, Keyword.t(), state()}
  | {:filter_and_continue, Keyword.t(), state()}
  | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    strict_check_context(state)


      
       
       View Source
     


  


  

      

          @callback strict_check_context(state()) :: [atom()]


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    add_calculations(module, query_or_changeset, state, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    alter_filter(module, state, filter, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    alter_results(module, state, records, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    check(module, state, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    check_context(module, state)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    exception(module, reason, state)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    initial_state(module, actor, resource, action, verbose?)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_check(module, state, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_check_context(module, state)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.Check - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Check behaviour
    



      
A behaviour for declaring checks, which can be used to easily construct
authorization rules.
If a check can be expressed simply, i.e as a function of the actor, or the context of the request,
see Ash.Policy.SimpleCheck for an easy way to write that check.
If a check can be expressed with a filter statement, see Ash.Policy.FilterCheck
for an easy way to write that check.

      


      
        Summary


  
    Types
  


    
      
        authorizer()

      


    


    
      
        check_type()

      


    


    
      
        options()

      


    


    
      
        ref()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        auto_filter(struct, authorizer, options)

      


        An optional callback, that allows the check to work with policies set to access_type :filter



    


    
      
        check(struct, list, map, options)

      


        An optional callback, hat allows the check to work with policies set to access_type :runtime



    


    
      
        describe(options)

      


        Describe the check in human readable format, given the options



    


    
      
        strict_check(struct, authorizer, options)

      


        Strict checks should be cheap, and should never result in external calls (like database or api)



    


    
      
        type()

      


        The type of the check



    





  
    Functions
  


    
      
        defines_auto_filter?(module)

      


    


    
      
        defines_check?(module)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    authorizer()


      
       
       View Source
     


  


  

      

          @type authorizer() :: Ash.Policy.Authorizer.t()


      



  



  
    
      
      Link to this type
    
    check_type()


      
       
       View Source
     


  


  

      

          @type check_type() :: :simple | :filter | :manual


      



  



  
    
      
      Link to this type
    
    options()


      
       
       View Source
     


  


  

      

          @type options() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    ref()


      
       
       View Source
     


  


  

      

          @type ref() :: {module(), Keyword.t()} | module()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Policy.Check{
  check: term(),
  check_module: term(),
  check_opts: term(),
  type: term()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    auto_filter(struct, authorizer, options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback auto_filter(struct(), authorizer(), options()) :: Keyword.t() | Ash.Expr.t()


      


An optional callback, that allows the check to work with policies set to access_type :filter
Return a keyword list filter that will be applied to the query being made, and will scope the results to match the rule

  



  
    
      
      Link to this callback
    
    check(struct, list, map, options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback check(struct(), [Ash.Resource.record()], map(), options()) :: [
  Ash.Resource.record()
]


      


An optional callback, hat allows the check to work with policies set to access_type :runtime
Takes a list of records, and returns the subset of authorized records.

  



  
    
      
      Link to this callback
    
    describe(options)


      
       
       View Source
     


  


  

      

          @callback describe(options()) :: String.t()


      


Describe the check in human readable format, given the options

  



  
    
      
      Link to this callback
    
    strict_check(struct, authorizer, options)


      
       
       View Source
     


  


  

      

          @callback strict_check(struct(), authorizer(), options()) :: {:ok, boolean() | :unknown}


      


Strict checks should be cheap, and should never result in external calls (like database or api)
It should return {:ok, true} if it can tell that the request is authorized, and {:ok, false} if
it can tell that it is not. If unsure, it should return {:ok, :unknown}

  



  
    
      
      Link to this callback
    
    type()


      
       
       View Source
     


  


  

      

          @callback type() :: check_type()


      


The type of the check
:manual checks must be written by hand as standard check modules
:filter checks can use Ash.Policy.FilterCheck for simplicity
:simple checks can use Ash.Policy.SimpleCheck for simplicity

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    defines_auto_filter?(module)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    defines_check?(module)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.Check.Builtins - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Check.Builtins 
    



      
The global authorization checks built into ash

      


      
        Summary


  
    Functions
  


    
      
        accessing_from(resource, relationship)

      


        This check is true when the current action is being run "through" a relationship.



    


    
      
        action(action)

      


        This check is true when the action name matches the provided action name.



    


    
      
        action_type(action_type)

      


        This check is true when the action type matches the provided type



    


    
      
        actor_attribute_equals(attribute, value)

      


        This check is true when the value of the specified attribute of the actor equals the specified value.



    


    
      
        actor_present()

      


        This check is true when there is an actor specified, and false when the actor is nil.



    


    
      
        always()

      


        This check always passes.



    


    
      
        attribute(attribute, filter)

          deprecated

      


        This check is true when a field on the record matches a specific filter.



    


    
      
        changing_attributes(opts)

      


        This check is true when attribute changes correspond to the provided options.



    


    
      
        changing_relationship(relationship)

      


        This check is true when the specified relationship is changing



    


    
      
        changing_relationships(relationships)

      


        This check is true when the specified relationships are changing



    


    
      
        context_equals(key, value)

      


        This check is true when the value of the specified key or path in the changeset or query context equals the specified value.



    


    
      
        filtering_on(path \\ [], field)

      


        This check is true when the field provided is being referenced anywhere in a filter statement.



    


    
      
        loading(field)

      


        This check is true when the field or relationship, or path to field, is being loaded and false when it is not.



    


    
      
        never()

      


        This check never passes.



    


    
      
        relates_to_actor_via(relationship_path, opts \\ [])

      


        This check passes if the data relates to the actor via the specified relationship or path of relationships.



    


    
      
        relating_to_actor(relationship)

      


        This check is true when the specified relationship is being changed to the current actor.



    


    
      
        selecting(attribute)

      


        This check is true when the field is being selected and false when it is not.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    accessing_from(resource, relationship)


      
       
       View Source
     


  


  

      

          @spec accessing_from(Ash.Resource.t(), atom()) :: Ash.Policy.Check.ref()


      


This check is true when the current action is being run "through" a relationship.
Cases where this happens:
	Loading related data
	Managing relationships
	Aggregating data
	Filtering on relationships


  



  
    
      
      Link to this function
    
    action(action)


      
       
       View Source
     


  


  

      

          @spec action(atom()) :: Ash.Policy.Check.ref()


      


This check is true when the action name matches the provided action name.
This is a very common pattern, allowing action-specific policies.

  



  
    
      
      Link to this function
    
    action_type(action_type)


      
       
       View Source
     


  


  

      

          @spec action_type(Ash.Resource.Actions.action_type()) :: Ash.Policy.Check.ref()


      


This check is true when the action type matches the provided type
This is useful for writing policies that apply to all actions of a given type.
For example:
policy action_type(:read) do
  authorize_if relates_to_actor_via(:owner)
end

  



  
    
      
      Link to this function
    
    actor_attribute_equals(attribute, value)


      
       
       View Source
     


  


  

      

          @spec actor_attribute_equals(atom(), any()) :: Ash.Policy.Check.ref()


      


This check is true when the value of the specified attribute of the actor equals the specified value.
This check will never pass if the actor does not have the specified key. For example,
actor_attribute_equals(:missing_key, nil)

  



  
    
      
      Link to this function
    
    actor_present()


      
       
       View Source
     


  


  

      

          @spec actor_present() :: Ash.Policy.Check.ref()


      


This check is true when there is an actor specified, and false when the actor is nil.

  



  
    
      
      Link to this function
    
    always()


      
       
       View Source
     


  


  

      

          @spec always() :: Ash.Policy.Check.ref()


      


This check always passes.
Can be useful for "deny-list" style authorization. For example:
policy action_type(:read) do
  forbid_if actor_attribute_equals(:disabled, true)
  forbid_if actor_attribute_equals(:active, false)
  authorize_if always()
end
Without that last clause, the policy would never pass.

  



  
    
      
      Link to this function
    
    attribute(attribute, filter)


      
       
       View Source
     


  


    
      This function is deprecated. Use an `expr/1` check instead, i.e `expr(attribute == value)`.
    


  

      

          @spec attribute(atom(), any()) :: Ash.Policy.Check.ref()


      


This check is true when a field on the record matches a specific filter.

  



  
    
      
      Link to this function
    
    changing_attributes(opts)


      
       
       View Source
     


  


  

This check is true when attribute changes correspond to the provided options.
Provide a keyword list of options or just an atom representing the attribute.
For example:
# if you are changing both first name and last name
changing_attributes([:first_name, :last_name])

# if you are changing first name to fred
changing_attributes(first_name: [to: "fred"])

# if you are changing last name from bob
changing_attributes(last_name: [from: "bob"])

# if you are changing :first_name at all, last_name from "bob" and middle name from "tom" to "george"
changing_attributes([:first_name, last_name: [from: "bob"], middle_name: [from: "tom", to: "george]])

  



  
    
      
      Link to this function
    
    changing_relationship(relationship)


      
       
       View Source
     


  


  

This check is true when the specified relationship is changing

  



  
    
      
      Link to this function
    
    changing_relationships(relationships)


      
       
       View Source
     


  


  

This check is true when the specified relationships are changing

  



  
    
      
      Link to this function
    
    context_equals(key, value)


      
       
       View Source
     


  


  

This check is true when the value of the specified key or path in the changeset or query context equals the specified value.

  



    

  
    
      
      Link to this function
    
    filtering_on(path \\ [], field)


      
       
       View Source
     


  


  

      

          @spec filtering_on(atom() | [atom()], atom()) :: Ash.Policy.Check.ref()


      


This check is true when the field provided is being referenced anywhere in a filter statement.
This applies to related filters as well. For example:
policy actor_attribute_equals(:is_admin, false) do
  forbid_if filtering_on(:email)
  # a path can be provided as well
  forbid_if filtering_on([:owner], :email)
end
The first will return true in situations like:
Ash.Query.filter(User, email == "blah")
Ash.Query.filter(Tweet, author.email == "blah")
The second will return true on queries like:
Ash.Query.filter(Post, owner.email == "blah")
Ash.Query.filter(Comment, post.owner.email == "blah")

  



  
    
      
      Link to this function
    
    loading(field)


      
       
       View Source
     


  


  

      

          @spec loading(atom()) :: Ash.Policy.Check.ref()


      


This check is true when the field or relationship, or path to field, is being loaded and false when it is not.
This is always false for create/update/destroy actions, because you cannot load fields on those action types.

  



  
    
      
      Link to this function
    
    never()


      
       
       View Source
     


  


  

      

          @spec never() :: Ash.Policy.Check.ref()


      


This check never passes.
There is, generally speaking, no reason to use this, but it exists for
completeness sake.

  



    

  
    
      
      Link to this function
    
    relates_to_actor_via(relationship_path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec relates_to_actor_via(
  atom(),
  keyword()
) :: Ash.Policy.Check.ref()


      


This check passes if the data relates to the actor via the specified relationship or path of relationships.
For update & destroy actions, this check will apply to the original data before the changes are applied.
For create actions this check is very unlikely to pass. This is because relationships are modified after authorization
happens, not before.
For example:
policy action_type(:read) do
  authorize_if relates_to_actor_via(:owner)

  # Path of relationships:
  authorize_if relates_to_actor_via([:account, :user])

  # When the resource relates to a field of the actor:
  authorize_if relates_to_actor_via(:roles, field: :role)
end

  



  
    
      
      Link to this function
    
    relating_to_actor(relationship)


      
       
       View Source
     


  


  

This check is true when the specified relationship is being changed to the current actor.
This only supports belongs_to relationships at the moment, and will detect two cases:
	the source_attribute is being changed directly
	the relationship is being changed with on_lookup?: :relate, and a single input is being provided.


  



  
    
      
      Link to this function
    
    selecting(attribute)


      
       
       View Source
     


  


  

      

          @spec selecting(atom()) :: Ash.Policy.Check.ref()


      


This check is true when the field is being selected and false when it is not.
This won't affect filters placed on this resource, so you may also want to either:
	Mark the given field as filterable? false
	Add another check for filtering_on(:field)

For example:
policy action_type(:read) do
  # The actor can read and filter on their own email
  authorize_if expr(id == ^actor(:id))

  # No one else can select or filter on their email
  forbid_if selecting(:email)
  forbid_if filtering_on(:email)

  # Otherwise, the policy passes
  authorize_if always()
end

  


        

      



  

  
    
    Ash.Policy.FilterCheck - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.FilterCheck behaviour
    



      
A type of check that is represented by a filter statement
That filter statement can be templated, currently only supporting {:_actor, field}
which will replace that portion of the filter with the appropriate field value from the actor and
{:_actor, :_primary_key} which will replace the value with a keyword list of the primary key
fields of an actor to their values, like [id: 1]. If the actor is not present {:_actor, field}
becomes nil, and {:_actor, :_primary_key} becomes false.
You can customize what the "negative" filter looks like by defining reject/1. This is important for
filters over related data. For example, given an owner relationship and a data layer like ash_postgres
where column != NULL does not evaluate to true (see postgres docs on NULL for more):
# The opposite of
`owner.id == 1`
# in most cases is not
`not(owner.id == 1)`
# because in postgres that would be `NOT (owner.id = NULL)` in cases where there was no owner
# A better opposite would be
`owner.id != 1 or is_nil(owner.id)`
# alternatively
`not(owner.id == 1) or is_nil(owner.id)`
By being able to customize the reject filter, you can use related filters in your policies. Without it,
they will likely have undesired effects.

      


      
        Summary


  
    Types
  


    
      
        options()

      


    





  
    Callbacks
  


    
      
        filter(options)

      


    


    
      
        reject(options)

      


    





  
    Functions
  


    
      
        is_filter_check?(module)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    options()


      
       
       View Source
     


  


  

      

          @type options() :: Keyword.t()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    filter(options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback filter(options()) :: Keyword.t() | Ash.Expr.t()


      



  



  
    
      
      Link to this callback
    
    reject(options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback reject(options()) :: Keyword.t() | Ash.Expr.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    is_filter_check?(module)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.FilterCheckWithContext - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.FilterCheckWithContext behaviour
    



      
A type of check that is represented by a filter statement, and has access to the context.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        options()

      


    





  
    Callbacks
  


    
      
        filter(actor, context, options)

      


    


    
      
        reject(actor, context, options)

      


    





  
    Functions
  


    
      
        is_filter_check?(module)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  :action => Ash.Resource.Actions.action(),
  :resource => Ash.Resource.t(),
  :api => Ash.Api.t(),
  optional(:query) => Ash.Query.t(),
  optional(:changeset) => Ash.Query.t(),
  optional(any()) => any()
}


      



  



  
    
      
      Link to this type
    
    options()


      
       
       View Source
     


  


  

      

          @type options() :: Keyword.t()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    filter(actor, context, options)


      
       
       View Source
     


  


  

      

          @callback filter(actor :: term(), context(), options()) :: Keyword.t() | Ash.Expr.t()


      



  



  
    
      
      Link to this callback
    
    reject(actor, context, options)


      
       
       View Source
     


      (optional)

  


  

      

          @callback reject(actor :: term(), context(), options()) :: Keyword.t() | Ash.Expr.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    is_filter_check?(module)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.SimpleCheck - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.SimpleCheck behaviour
    



      
A type of check that operates only on request context, never on the data
Define match?/3, which gets the actor, request context, and opts, and returns true or false

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        options()

      


    





  
    Callbacks
  


    
      
        match?(actor, context, options)

      


        Whether or not the request matches the check



    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  :action => Ash.Resource.Actions.action(),
  :resource => Ash.Resource.t(),
  :api => Ash.Api.t(),
  optional(:query) => Ash.Query.t(),
  optional(:changeset) => Ash.Changeset.t(),
  optional(any()) => any()
}


      



  



  
    
      
      Link to this type
    
    options()


      
       
       View Source
     


  


  

      

          @type options() :: Keyword.t()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    match?(actor, context, options)


      
       
       View Source
     


  


  

      

          @callback match?(actor :: struct(), context(), options()) :: boolean()


      


Whether or not the request matches the check

  


        

      



  

  
    
    Ash.Api.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Info 
    



      
Introspection tools for Ash.Api

      


      
        Summary


  
    Functions
  


    
      
        allow(api)

      


        The allow MFA for an api



    


    
      
        allow_unregistered?(api)

      


        Whether or not the api allows unregistered resources to be used with it



    


    
      
        authorize(api)

      


        When authorization should happen for a given api



    


    
      
        depend_on_resources(api)

      


        Gets the resources of an Api module. Can be used at compile time.



    


    
      
        description(api)

      


        The description of the api



    


    
      
        find_manage_relationships_with_identity_not_configured(otp_app)

      


    


    
      
        registry(api)

      


        The resource registry for an api



    


    
      
        require_actor?(api)

      


        Whether or not the actor is always required for an api



    


    
      
        resource(api, resource)

      


        Returns {:ok, resource} if the resource can be used by the api, or {:error, error}.



    


    
      
        resources(api)

      


        Gets the resources of an Api module. DO NOT USE AT COMPILE TIME.



    


    
      
        short_name(api)

      


        The short name for an api



    


    
      
        span_name(api, resource, action)

      


        The span_name for an api and resource combination



    


    
      
        telemetry_event_name(api, name)

      


        Names a telemetry event for a given api/resource combo



    


    
      
        timeout(api)

      


        The execution timeout for an api



    


    
      
        trace_name(api)

      


        The trace name for an api



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    allow(api)


      
       
       View Source
     


  


  

      

          @spec allow(Ash.Api.t() | Spark.Dsl.t()) :: mfa() | nil


      


The allow MFA for an api

  



  
    
      
      Link to this function
    
    allow_unregistered?(api)


      
       
       View Source
     


  


  

      

          @spec allow_unregistered?(Ash.Api.t() | Spark.Dsl.t()) :: atom() | nil


      


Whether or not the api allows unregistered resources to be used with it

  



  
    
      
      Link to this function
    
    authorize(api)


      
       
       View Source
     


  


  

      

          @spec authorize(Ash.Api.t()) :: :when_requested | :always | :by_default


      


When authorization should happen for a given api

  



  
    
      
      Link to this macro
    
    depend_on_resources(api)


      
       
       View Source
     


      (macro)

  


  

      

          @spec depend_on_resources(Macro.t()) :: Macro.t()


      


Gets the resources of an Api module. Can be used at compile time.
Liberal use of this can greatly increase compile times, or even cause compiler deadlocks.
Use with care.

  



  
    
      
      Link to this function
    
    description(api)


      
       
       View Source
     


  


  

      

          @spec description(Spark.Dsl.t() | Ash.Api.t()) :: String.t() | nil


      


The description of the api

  



  
    
      
      Link to this function
    
    find_manage_relationships_with_identity_not_configured(otp_app)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    registry(api)


      
       
       View Source
     


  


  

      

          @spec registry(Ash.Api.t()) :: atom() | nil


      


The resource registry for an api

  



  
    
      
      Link to this function
    
    require_actor?(api)


      
       
       View Source
     


  


  

      

          @spec require_actor?(Ash.Api.t()) :: boolean()


      


Whether or not the actor is always required for an api

  



  
    
      
      Link to this function
    
    resource(api, resource)


      
       
       View Source
     


  


  

      

          @spec resource(Ash.Api.t() | Spark.Dsl.t(), Ash.Resource.t()) ::
  {:ok, Ash.Resource.t()} | {:error, Ash.Error.t()}


      


Returns {:ok, resource} if the resource can be used by the api, or {:error, error}.

  



  
    
      
      Link to this function
    
    resources(api)


      
       
       View Source
     


  


  

      

          @spec resources(Ash.Api.t()) :: [Ash.Resource.t()]


      


Gets the resources of an Api module. DO NOT USE AT COMPILE TIME.
If you need the resource list at compile time, use depend_on_resources/1

  



  
    
      
      Link to this function
    
    short_name(api)


      
       
       View Source
     


  


  

      

          @spec short_name(Ash.Api.t()) :: atom()


      


The short name for an api

  



  
    
      
      Link to this function
    
    span_name(api, resource, action)


      
       
       View Source
     


  


  

      

          @spec span_name(Ash.Api.t(), Ash.Resource.t(), action :: atom() | binary()) ::
  String.t()


      


The span_name for an api and resource combination

  



  
    
      
      Link to this function
    
    telemetry_event_name(api, name)


      
       
       View Source
     


  


  

      

          @spec telemetry_event_name(Ash.Api.t(), atom() | [atom()]) :: [atom()]


      


Names a telemetry event for a given api/resource combo

  



  
    
      
      Link to this function
    
    timeout(api)


      
       
       View Source
     


  


  

      

          @spec timeout(Ash.Api.t()) :: nil | :infinity | integer()


      


The execution timeout for an api

  



  
    
      
      Link to this function
    
    trace_name(api)


      
       
       View Source
     


  


  

      

          @spec trace_name(Ash.Api.t()) :: String.t()


      


The trace name for an api

  


        

      



  

  
    
    Ash.DataLayer.Ets.Info - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Ets.Info 
    



      
Introspection helpers for the Ets data layer

      


      
        Summary


  
    Functions
  


    
      
        private?(resource)

      


        Whether or not the ets table for the resource should be private



    


    
      
        table(resource)

      


        The ets table name for a resource



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    private?(resource)


      
       
       View Source
     


  


  

      

          @spec private?(Ash.Resource.t() | Spark.Dsl.t()) :: boolean()


      


Whether or not the ets table for the resource should be private

  



  
    
      
      Link to this function
    
    table(resource)


      
       
       View Source
     


  


  

      

          @spec table(Ash.Resource.t() | Spark.Dsl.t()) :: boolean()


      


The ets table name for a resource

  


        

      



  

  
    
    Ash.DataLayer.Mnesia.Info - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Mnesia.Info 
    



      
Introspection helpers for Ash.DataLayer.Mnesia

      


      
        Summary


  
    Functions
  


    
      
        table(resource)

      


        The mnesia table for a resource



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    table(resource)


      
       
       View Source
     


  


  

The mnesia table for a resource

  


        

      



  

  
    
    Ash.Flow.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Info 
    



      
Flow introspection functions.

      


      
        Summary


  
    Functions
  


    
      
        api(flow)

      


    


    
      
        arguments(flow)

      


    


    
      
        description(flow)

      


    


    
      
        returns(flow)

      


    


    
      
        short_name(flow)

      


    


    
      
        steps(flow)

      


    


    
      
        trace_name(flow)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    api(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    arguments(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    description(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    returns(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    short_name(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    steps(flow)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    trace_name(flow)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Notifier.PubSub.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Notifier.PubSub.Info 
    



      
Introspection helpers for Ash.Notifier.PubSub

      


      
        Summary


  
    Functions
  


    
      
        broadcast_type(resource)

      


        The broadcast type for aresource



    


    
      
        module(resource)

      


        The pubsub module for a resource



    


    
      
        name(resource)

      


        The pubsub name for a resource



    


    
      
        prefix(resource)

      


        The topic prefix for a resource



    


    
      
        publications(resource)

      


        The list of publications for a resource



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    broadcast_type(resource)


      
       
       View Source
     


  


  

The broadcast type for aresource

  



  
    
      
      Link to this function
    
    module(resource)


      
       
       View Source
     


  


  

The pubsub module for a resource

  



  
    
      
      Link to this function
    
    name(resource)


      
       
       View Source
     


  


  

The pubsub name for a resource

  



  
    
      
      Link to this function
    
    prefix(resource)


      
       
       View Source
     


  


  

The topic prefix for a resource

  



  
    
      
      Link to this function
    
    publications(resource)


      
       
       View Source
     


  


  

The list of publications for a resource

  


        

      



  

  
    
    Ash.Policy.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Info 
    



      
An authorization extension for ash resources.
For more information, see Ash.Policy.Authorizer

      


      
        Summary


  
    Types
  


    
      
        request()

      


    





  
    Functions
  


    
      
        default_access_type(resource)

      


    


    
      
        describe_resource(resource)

      


    


    
      
        field_policies(resource)

      


    


    
      
        field_policies_for_field(resource, field)

      


        Gets the field policies relevant to a given field



    


    
      
        log_policy_breakdowns()

      


        Whether or not Ash policy authorizer is configured to log policy breakdowns



    


    
      
        log_successful_policy_breakdowns()

      


        Whether or not Ash policy authorizer is configured to log successful policy breakdowns



    


    
      
        policies(resource)

      


    


    
      
        show_policy_breakdowns?()

      


        Whether or not Ash policy authorizer is configured to show policy breakdowns in error messages



    


    
      
        strict_check(actor, query, api)

      


        A utility to determine if a given query/changeset would pass authorization.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    request()


      
       
       View Source
     


  


  

      

          @type request() :: Ash.Engine.Request.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    default_access_type(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    describe_resource(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    field_policies(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    field_policies_for_field(resource, field)


      
       
       View Source
     


  


  

Gets the field policies relevant to a given field

  



  
    
      
      Link to this function
    
    log_policy_breakdowns()


      
       
       View Source
     


  


  

Whether or not Ash policy authorizer is configured to log policy breakdowns

  



  
    
      
      Link to this function
    
    log_successful_policy_breakdowns()


      
       
       View Source
     


  


  

Whether or not Ash policy authorizer is configured to log successful policy breakdowns

  



  
    
      
      Link to this function
    
    policies(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    show_policy_breakdowns?()


      
       
       View Source
     


  


  

Whether or not Ash policy authorizer is configured to show policy breakdowns in error messages

  



  
    
      
      Link to this function
    
    strict_check(actor, query, api)


      
       
       View Source
     


  


  

A utility to determine if a given query/changeset would pass authorization.
This is still experimental.

  


        

      



  

  
    
    Ash.Registry.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.Info 
    



      
Introspection helpers for Ash.Registry

      


      
        Summary


  
    Functions
  


    
      
        entries(registry)

      


        The list of entries in the registry



    


    
      
        warn_on_empty?(registry)

      


        Whether or not the registry will warn if it has no entries



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    entries(registry)


      
       
       View Source
     


  


  

      

          @spec entries(Ash.Registry.t() | Spark.Dsl.t()) :: [module()]


      


The list of entries in the registry

  



  
    
      
      Link to this function
    
    warn_on_empty?(registry)


      
       
       View Source
     


  


  

      

          @spec warn_on_empty?(Ash.Registry.t() | Spark.Dsl.t()) :: boolean()


      


Whether or not the registry will warn if it has no entries

  


        

      



  

  
    
    Ash.Resource.Info - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Info 
    



      
Introspection for resources

      


      
        Summary


  
    Functions
  


    
      
        action(resource, name, type \\ nil)

      


        Returns the action with the matching name and type on the resource



    


    
      
        actions(resource)

      


        Returns all actions of a resource



    


    
      
        aggregate(resource, name)

      


        Get an aggregate by name



    


    
      
        aggregate_type(resource, aggregate)

      


        Gets the type of an aggregate for a given resource.



    


    
      
        aggregates(resource)

      


        Returns all aggregates of a resource



    


    
      
        api(resource)

      


    


    
      
        attribute(resource, name)

      


        Get an attribute name from the resource



    


    
      
        attributes(resource)

      


        Returns all attributes of a resource



    


    
      
        authorizers(resource)

      


        A list of authorizers to be used when accessing



    


    
      
        base_filter(resource)

      


        The base filter of the resource



    


    
      
        calculation(resource, name)

      


        Get a calculation by name



    


    
      
        calculation_interfaces(resource)

      


        The list of code interface calculation definitions.



    


    
      
        calculations(resource)

      


        Returns all calculations of a resource



    


    
      
        changes(resource)

      


        A list of all changes for the resource



    


    
      
        changes(resource, type)

      


        A list of all changes for the resource for a given action type



    


    
      
        data_layer(resource)

      


        The data layer of the resource, or nil if it does not have one



    


    
      
        default_actions(resource)

      


        Returns the configured default actions



    


    
      
        default_context(resource)

      


        The default context of the resource



    


    
      
        define_interface_for(resource)

      


        The Api to define the interface for, when defining it in the resource



    


    
      
        description(resource)

      


        The description of the resource



    


    
      
        embedded?(resource)

      


        Whether or not the resource is an embedded resource



    


    
      
        field(resource, name)

      


        Get a field from a resource by name



    


    
      
        fields(resource, types \\ [:attributes, :aggregates, :calculations, :relationships])

      


        Returns all attributes, aggregates, calculations and relationships of a resource



    


    
      
        get_metadata(record, key_or_path)

          deprecated

      


        See Ash.Resource.get_metadata/2.



    


    
      
        identities(resource)

      


        A list of identities for the resource



    


    
      
        identity(resource, name)

      


        Get an identity by name from the resource



    


    
      
        interfaces(resource)

      


        The list of code interface definitions.



    


    
      
        lazy_matching_default_attributes(resource, atom)

      


        Returns all attributes of a resource with lazy matching defaults



    


    
      
        lazy_non_matching_default_attributes(resource, atom)

      


        Returns all attributes of a resource with lazy non-matching-defaults



    


    
      
        multitenancy_attribute(resource)

      


        The multitenancy attribute for a resource



    


    
      
        multitenancy_global?(resource)

      


        The MFA to parse the tenant from the attribute



    


    
      
        multitenancy_parse_attribute(resource)

      


        The function to parse the tenant from the attribute



    


    
      
        multitenancy_strategy(resource)

      


        The multitenancy strategy for a resource



    


    
      
        multitenancy_template(resource)

      


        The template for creating the tenant name



    


    
      
        notifiers(resource)

      


        A list of notifiers to be used when accessing



    


    
      
        plural_name(resource)

      


        The plural_name of the resource



    


    
      
        preparations(resource)

      


    


    
      
        primary_action(resource, type)

      


        Returns the primary action of a given type



    


    
      
        primary_action!(resource, type)

      


        Returns the primary action of the given type



    


    
      
        primary_key(resource)

      


        A list of field names corresponding to the primary key



    


    
      
        primary_key_simple_equality?(resource)

      


        Whether or not all primary key attributes can be compared with simple_equality



    


    
      
        public_aggregate(resource, name)

      


        Get an aggregate by name



    


    
      
        public_aggregates(resource)

      


        Returns all public aggregates of a resource



    


    
      
        public_attribute(resource, name)

      


        Get a public attribute name from the resource



    


    
      
        public_attributes(resource)

      


        Returns all public attributes of a resource



    


    
      
        public_calculation(resource, name)

      


        Get a public calculation by name



    


    
      
        public_calculations(resource)

      


        Returns all public calculations of a resource



    


    
      
        public_field(resource, name)

      


        Get a public field from a resource by name



    


    
      
        public_fields(resource)

      


        Returns all public attributes, aggregates, calculations and relationships of a resource



    


    
      
        public_relationship(resource, relationship_name)

      


        Get a public relationship by name or path



    


    
      
        public_relationships(resource)

      


        Returns all public relationships of a resource



    


    
      
        put_metadata(record, key, term)

          deprecated

      


        See Ash.Resource.put_metadata/3.



    


    
      
        related(resource, relationship)

      


    


    
      
        relationship(resource, relationship_name)

      


        Get a relationship by name or path



    


    
      
        relationships(resource)

      


        Returns all relationships of a resource



    


    
      
        required_belongs_to_relationships(resource)

      


        The required belongs_to relationships



    


    
      
        resource?(module)

      


        Whether or not a given module is a resource module



    


    
      
        reverse_relationship(resource, path, acc \\ [])

      


        Retrieves a relationship path from the resource related by path, to the provided resource.



    


    
      
        selected?(record, field)

          deprecated

      


        See Ash.Resource.selected?/2.



    


    
      
        set_metadata(record, map)

          deprecated

      


        See Ash.Resource.set_metadata/2.



    


    
      
        short_name(resource)

      


        The short_name of the resource



    


    
      
        simple_notifiers(resource)

      


        A list of simple notifiers (require no DSL, used to avoid compile time dependencies)



    


    
      
        sortable?(resource, name, opts \\ [])

      


        Determine if a field is sortable by name



    


    
      
        static_default_attributes(resource, atom)

      


        Returns all attributes of a resource with static defaults



    


    
      
        trace_name(resource)

      


        The trace_name of the resource



    


    
      
        unload(record, key_or_path)

          deprecated

      


        See Ash.Resource.unload/2.



    


    
      
        unload_many(record, loads)

          deprecated

      


        See Ash.Resource.unload_many/2.



    


    
      
        validations(resource)

      


        A list of all validations for the resource



    


    
      
        validations(resource, type)

      


        A list of all validations for the resource for a given action type



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    action(resource, name, type \\ nil)


      
       
       View Source
     


  


  

      

          @spec action(
  Spark.Dsl.t() | Ash.Resource.t(),
  atom(),
  Ash.Resource.Actions.action_type() | nil
) ::
  Ash.Resource.Actions.action() | nil


      


Returns the action with the matching name and type on the resource

  



  
    
      
      Link to this function
    
    actions(resource)


      
       
       View Source
     


  


  

      

          @spec actions(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Actions.action()]


      


Returns all actions of a resource

  



  
    
      
      Link to this function
    
    aggregate(resource, name)


      
       
       View Source
     


  


  

      

          @spec aggregate(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Aggregate.t() | nil


      


Get an aggregate by name

  



  
    
      
      Link to this function
    
    aggregate_type(resource, aggregate)


      
       
       View Source
     


  


  

      

          @spec aggregate_type(
  Spark.Dsl.t() | Ash.Resource.t(),
  Ash.Resource.Aggregate.t() | atom()
) ::
  {:ok, Ash.Type.t()} | {:error, String.t()}


      


Gets the type of an aggregate for a given resource.

  



  
    
      
      Link to this function
    
    aggregates(resource)


      
       
       View Source
     


  


  

      

          @spec aggregates(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Aggregate.t()]


      


Returns all aggregates of a resource

  



  
    
      
      Link to this function
    
    api(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    attribute(resource, name)


      
       
       View Source
     


  


  

      

          @spec attribute(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t() | nil


      


Get an attribute name from the resource

  



  
    
      
      Link to this function
    
    attributes(resource)


      
       
       View Source
     


  


  

      

          @spec attributes(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Attribute.t()]


      


Returns all attributes of a resource

  



  
    
      
      Link to this function
    
    authorizers(resource)


      
       
       View Source
     


  


  

      

          @spec authorizers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]


      


A list of authorizers to be used when accessing

  



  
    
      
      Link to this function
    
    base_filter(resource)


      
       
       View Source
     


  


  

      

          @spec base_filter(Spark.Dsl.t() | Ash.Resource.t()) :: term()


      


The base filter of the resource

  



  
    
      
      Link to this function
    
    calculation(resource, name)


      
       
       View Source
     


  


  

      

          @spec calculation(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Calculation.t() | nil


      


Get a calculation by name

  



  
    
      
      Link to this function
    
    calculation_interfaces(resource)


      
       
       View Source
     


  


  

      

          @spec calculation_interfaces(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Interface.t()
]


      


The list of code interface calculation definitions.

  



  
    
      
      Link to this function
    
    calculations(resource)


      
       
       View Source
     


  


  

      

          @spec calculations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Calculation.t()]


      


Returns all calculations of a resource

  



  
    
      
      Link to this function
    
    changes(resource)


      
       
       View Source
     


  


  

      

          @spec changes(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Validation.t() | Ash.Resource.Change.t()
]


      


A list of all changes for the resource

  



  
    
      
      Link to this function
    
    changes(resource, type)


      
       
       View Source
     


  


  

      

          @spec changes(Spark.Dsl.t() | Ash.Resource.t(), :create | :update | :destroy) :: [
  Ash.Resource.Validation.t() | Ash.Resource.Change.t()
]


      


A list of all changes for the resource for a given action type

  



  
    
      
      Link to this function
    
    data_layer(resource)


      
       
       View Source
     


  


  

      

          @spec data_layer(Ash.Resource.t()) :: Ash.DataLayer.t() | nil


      


The data layer of the resource, or nil if it does not have one

  



  
    
      
      Link to this function
    
    default_actions(resource)


      
       
       View Source
     


  


  

      

          @spec default_actions(Spark.Dsl.t() | Ash.Resource.t()) :: [
  :create | :read | :update | :destroy
]


      


Returns the configured default actions

  



  
    
      
      Link to this function
    
    default_context(resource)


      
       
       View Source
     


  


  

      

          @spec default_context(Spark.Dsl.t() | Ash.Resource.t()) :: term()


      


The default context of the resource

  



  
    
      
      Link to this function
    
    define_interface_for(resource)


      
       
       View Source
     


  


  

      

          @spec define_interface_for(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil


      


The Api to define the interface for, when defining it in the resource

  



  
    
      
      Link to this function
    
    description(resource)


      
       
       View Source
     


  


  

      

          @spec description(Spark.Dsl.t() | Ash.Resource.t()) :: String.t() | nil


      


The description of the resource

  



  
    
      
      Link to this function
    
    embedded?(resource)


      
       
       View Source
     


  


  

      

          @spec embedded?(Spark.Dsl.t() | Ash.Resource.t()) :: boolean()


      


Whether or not the resource is an embedded resource

  



  
    
      
      Link to this function
    
    field(resource, name)


      
       
       View Source
     


  


  

      

          @spec field(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
  | nil


      


Get a field from a resource by name

  



    

  
    
      
      Link to this function
    
    fields(resource, types \\ [:attributes, :aggregates, :calculations, :relationships])


      
       
       View Source
     


  


  

      

          @spec fields(
  Spark.Dsl.t() | Ash.Resource.t(),
  types :: [:attributes | :aggregates | :calculations | :relationships]
) :: [
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
]


      


Returns all attributes, aggregates, calculations and relationships of a resource

  



  
    
      
      Link to this function
    
    get_metadata(record, key_or_path)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.get_metadata/2` instead.
    


  

See Ash.Resource.get_metadata/2.

  



  
    
      
      Link to this function
    
    identities(resource)


      
       
       View Source
     


  


  

      

          @spec identities(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Identity.t()]


      


A list of identities for the resource

  



  
    
      
      Link to this function
    
    identity(resource, name)


      
       
       View Source
     


  


  

      

          @spec identity(Spark.Dsl.t() | Ash.Resource.t(), atom()) ::
  Ash.Resource.Identity.t() | nil


      


Get an identity by name from the resource

  



  
    
      
      Link to this function
    
    interfaces(resource)


      
       
       View Source
     


  


  

      

          @spec interfaces(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Interface.t()]


      


The list of code interface definitions.

  



  
    
      
      Link to this function
    
    lazy_matching_default_attributes(resource, atom)


      
       
       View Source
     


  


  

      

          @spec lazy_matching_default_attributes(
  Spark.Dsl.t() | Ash.Resource.t(),
  type :: :create | :update
) :: [Ash.Resource.Attribute.t()]


      


Returns all attributes of a resource with lazy matching defaults

  



  
    
      
      Link to this function
    
    lazy_non_matching_default_attributes(resource, atom)


      
       
       View Source
     


  


  

      

          @spec lazy_non_matching_default_attributes(
  Spark.Dsl.t() | Ash.Resource.t(),
  type :: :create | :update
) :: [Ash.Resource.Attribute.t()]


      


Returns all attributes of a resource with lazy non-matching-defaults

  



  
    
      
      Link to this function
    
    multitenancy_attribute(resource)


      
       
       View Source
     


  


  

      

          @spec multitenancy_attribute(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil


      


The multitenancy attribute for a resource

  



  
    
      
      Link to this function
    
    multitenancy_global?(resource)


      
       
       View Source
     


  


  

      

          @spec multitenancy_global?(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil


      


The MFA to parse the tenant from the attribute

  



  
    
      
      Link to this function
    
    multitenancy_parse_attribute(resource)


      
       
       View Source
     


  


  

      

          @spec multitenancy_parse_attribute(Spark.Dsl.t() | Ash.Resource.t()) ::
  {atom(), atom(), [any()]}


      


The function to parse the tenant from the attribute

  



  
    
      
      Link to this function
    
    multitenancy_strategy(resource)


      
       
       View Source
     


  


  

      

          @spec multitenancy_strategy(Spark.Dsl.t() | Ash.Resource.t()) ::
  :context | :attribute | nil


      


The multitenancy strategy for a resource

  



  
    
      
      Link to this function
    
    multitenancy_template(resource)


      
       
       View Source
     


  


  

      

          @spec multitenancy_template(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil


      


The template for creating the tenant name

  



  
    
      
      Link to this function
    
    notifiers(resource)


      
       
       View Source
     


  


  

      

          @spec notifiers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]


      


A list of notifiers to be used when accessing

  



  
    
      
      Link to this function
    
    plural_name(resource)


      
       
       View Source
     


  


  

The plural_name of the resource

  



  
    
      
      Link to this function
    
    preparations(resource)


      
       
       View Source
     


  


  

      

          @spec preparations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Preparation.t()]


      



  



  
    
      
      Link to this function
    
    primary_action(resource, type)


      
       
       View Source
     


  


  

      

          @spec primary_action(
  Spark.Dsl.t() | Ash.Resource.t(),
  Ash.Resource.Actions.action_type()
) ::
  Ash.Resource.Actions.action() | nil


      


Returns the primary action of a given type

  



  
    
      
      Link to this function
    
    primary_action!(resource, type)


      
       
       View Source
     


  


  

      

          @spec primary_action!(
  Spark.Dsl.t() | Ash.Resource.t(),
  Ash.Resource.Actions.action_type()
) ::
  Ash.Resource.Actions.action() | no_return()


      


Returns the primary action of the given type

  



  
    
      
      Link to this function
    
    primary_key(resource)


      
       
       View Source
     


  


  

      

          @spec primary_key(Spark.Dsl.t() | Ash.Resource.t()) :: [atom()]


      


A list of field names corresponding to the primary key

  



  
    
      
      Link to this function
    
    primary_key_simple_equality?(resource)


      
       
       View Source
     


  


  

      

          @spec primary_key_simple_equality?(Spark.Dsl.t() | Ash.Resource.t()) :: boolean()


      


Whether or not all primary key attributes can be compared with simple_equality

  



  
    
      
      Link to this function
    
    public_aggregate(resource, name)


      
       
       View Source
     


  


  

      

          @spec public_aggregate(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Aggregate.t() | nil


      


Get an aggregate by name

  



  
    
      
      Link to this function
    
    public_aggregates(resource)


      
       
       View Source
     


  


  

      

          @spec public_aggregates(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Aggregate.t()
]


      


Returns all public aggregates of a resource

  



  
    
      
      Link to this function
    
    public_attribute(resource, name)


      
       
       View Source
     


  


  

      

          @spec public_attribute(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t() | nil


      


Get a public attribute name from the resource

  



  
    
      
      Link to this function
    
    public_attributes(resource)


      
       
       View Source
     


  


  

      

          @spec public_attributes(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Attribute.t()
]


      


Returns all public attributes of a resource

  



  
    
      
      Link to this function
    
    public_calculation(resource, name)


      
       
       View Source
     


  


  

      

          @spec public_calculation(Spark.Dsl.t() | Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Calculation.t() | nil


      


Get a public calculation by name

  



  
    
      
      Link to this function
    
    public_calculations(resource)


      
       
       View Source
     


  


  

      

          @spec public_calculations(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Calculation.t()
]


      


Returns all public calculations of a resource

  



  
    
      
      Link to this function
    
    public_field(resource, name)


      
       
       View Source
     


  


  

      

          @spec public_field(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
  | nil


      


Get a public field from a resource by name

  



  
    
      
      Link to this function
    
    public_fields(resource)


      
       
       View Source
     


  


  

      

          @spec public_fields(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
]


      


Returns all public attributes, aggregates, calculations and relationships of a resource

  



  
    
      
      Link to this function
    
    public_relationship(resource, relationship_name)


      
       
       View Source
     


  


  

Get a public relationship by name or path

  



  
    
      
      Link to this function
    
    public_relationships(resource)


      
       
       View Source
     


  


  

      

          @spec public_relationships(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Relationships.relationship()
]


      


Returns all public relationships of a resource

  



  
    
      
      Link to this function
    
    put_metadata(record, key, term)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.put_metadata/3` instead.
    


  

See Ash.Resource.put_metadata/3.

  



  
    
      
      Link to this function
    
    related(resource, relationship)


      
       
       View Source
     


  


  

      

          @spec related(
  Spark.Dsl.t() | Ash.Resource.t(),
  atom() | String.t() | [atom() | String.t()]
) ::
  Ash.Resource.t() | nil


      



  



  
    
      
      Link to this function
    
    relationship(resource, relationship_name)


      
       
       View Source
     


  


  

      

          @spec relationship(
  Spark.Dsl.t() | Ash.Resource.t(),
  atom() | String.t() | [atom() | String.t()]
) ::
  Ash.Resource.Relationships.relationship() | nil


      


Get a relationship by name or path

  



  
    
      
      Link to this function
    
    relationships(resource)


      
       
       View Source
     


  


  

      

          @spec relationships(Spark.Dsl.t() | Ash.Resource.t()) :: [
  Ash.Resource.Relationships.relationship()
]


      


Returns all relationships of a resource

  



  
    
      
      Link to this function
    
    required_belongs_to_relationships(resource)


      
       
       View Source
     


  


  

The required belongs_to relationships

  



  
    
      
      Link to this function
    
    resource?(module)


      
       
       View Source
     


  


  

      

          @spec resource?(module()) :: boolean()


      


Whether or not a given module is a resource module

  



    

  
    
      
      Link to this function
    
    reverse_relationship(resource, path, acc \\ [])


      
       
       View Source
     


  


  

Retrieves a relationship path from the resource related by path, to the provided resource.

  



  
    
      
      Link to this function
    
    selected?(record, field)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.selected?/2` instead.
    


  

See Ash.Resource.selected?/2.

  



  
    
      
      Link to this function
    
    set_metadata(record, map)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.set_metadata/2` instead.
    


  

See Ash.Resource.set_metadata/2.

  



  
    
      
      Link to this function
    
    short_name(resource)


      
       
       View Source
     


  


  

      

          @spec short_name(Spark.Dsl.t() | Ash.Resource.t()) :: atom() | nil


      


The short_name of the resource

  



  
    
      
      Link to this function
    
    simple_notifiers(resource)


      
       
       View Source
     


  


  

      

          @spec simple_notifiers(Spark.Dsl.t() | Ash.Resource.t()) :: [module()]


      


A list of simple notifiers (require no DSL, used to avoid compile time dependencies)

  



    

  
    
      
      Link to this function
    
    sortable?(resource, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec sortable?(Spark.Dsl.t() | Ash.Resource.t(), String.t() | atom(),
  pagination_type: Ash.Page.type(),
  include_private?: boolean()
) :: boolean()


      


Determine if a field is sortable by name

  



  
    
      
      Link to this function
    
    static_default_attributes(resource, atom)


      
       
       View Source
     


  


  

      

          @spec static_default_attributes(
  Spark.Dsl.t() | Ash.Resource.t(),
  type :: :create | :update
) :: [Ash.Resource.Attribute.t()]


      


Returns all attributes of a resource with static defaults

  



  
    
      
      Link to this function
    
    trace_name(resource)


      
       
       View Source
     


  


  

      

          @spec trace_name(Spark.Dsl.t() | Ash.Resource.t()) :: String.t() | nil


      


The trace_name of the resource

  



  
    
      
      Link to this function
    
    unload(record, key_or_path)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.unload/2` instead.
    


  

See Ash.Resource.unload/2.

  



  
    
      
      Link to this function
    
    unload_many(record, loads)


      
       
       View Source
     


  


    
      This function is deprecated. Use `Ash.Resource.unload_many/2` instead.
    


  

See Ash.Resource.unload_many/2.

  



  
    
      
      Link to this function
    
    validations(resource)


      
       
       View Source
     


  


  

      

          @spec validations(Spark.Dsl.t() | Ash.Resource.t()) :: [Ash.Resource.Validation.t()]


      


A list of all validations for the resource

  



  
    
      
      Link to this function
    
    validations(resource, type)


      
       
       View Source
     


  


  

      

          @spec validations(Spark.Dsl.t() | Ash.Resource.t(), :create | :update | :destroy) :: [
  Ash.Resource.Validation.t()
]


      


A list of all validations for the resource for a given action type

  


        

      



  

  
    
    Ash - ash v2.17.7
    
    

    



  
  

    
Ash 
    



      
General purpose tools for working with Ash and Ash resources.

      


      
        Summary


  
    Functions
  


    
      
        aggregate(arg1, arg2)

      


        See Ash.Api.GlobalInterface.aggregate/2.



    


    
      
        aggregate(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.aggregate/3.



    


    
      
        aggregate!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.aggregate!/2.



    


    
      
        aggregate!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.aggregate!/3.



    


    
      
        avg(arg1, arg2)

      


        See Ash.Api.GlobalInterface.avg/2.



    


    
      
        avg(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.avg/3.



    


    
      
        avg!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.avg!/2.



    


    
      
        avg!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.avg!/3.



    


    
      
        bulk_create(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.bulk_create/3.



    


    
      
        bulk_create(arg1, arg2, arg3, arg4)

      


        See Ash.Api.GlobalInterface.bulk_create/4.



    


    
      
        bulk_create!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.bulk_create!/3.



    


    
      
        bulk_create!(arg1, arg2, arg3, arg4)

      


        See Ash.Api.GlobalInterface.bulk_create!/4.



    


    
      
        calculate(arg1, arg2)

      


        See Ash.Api.GlobalInterface.calculate/2.



    


    
      
        calculate(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.calculate/3.



    


    
      
        calculate!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.calculate!/2.



    


    
      
        calculate!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.calculate!/3.



    


    
      
        can(arg1, arg2)

      


        See Ash.Api.GlobalInterface.can/2.



    


    
      
        can(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.can/3.



    


    
      
        can?(arg1, arg2)

      


        See Ash.Api.GlobalInterface.can?/2.



    


    
      
        can?(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.can?/3.



    


    
      
        context_to_opts(map, add_to \\ [])

      


        Converts a context map to opts to be passed into an action.



    


    
      
        count(arg1)

      


        See Ash.Api.GlobalInterface.count/1.



    


    
      
        count(arg1, arg2)

      


        See Ash.Api.GlobalInterface.count/2.



    


    
      
        count!(arg1)

      


        See Ash.Api.GlobalInterface.count!/1.



    


    
      
        count!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.count!/2.



    


    
      
        create(arg1)

      


        See Ash.Api.GlobalInterface.create/1.



    


    
      
        create(arg1, arg2)

      


        See Ash.Api.GlobalInterface.create/2.



    


    
      
        create!(arg1)

      


        See Ash.Api.GlobalInterface.create!/1.



    


    
      
        create!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.create!/2.



    


    
      
        destroy(arg1)

      


        See Ash.Api.GlobalInterface.destroy/1.



    


    
      
        destroy(arg1, arg2)

      


        See Ash.Api.GlobalInterface.destroy/2.



    


    
      
        destroy!(arg1)

      


        See Ash.Api.GlobalInterface.destroy!/1.



    


    
      
        destroy!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.destroy!/2.



    


    
      
        exists(arg1)

      


        See Ash.Api.GlobalInterface.exists/1.



    


    
      
        exists(arg1, arg2)

      


        See Ash.Api.GlobalInterface.exists/2.



    


    
      
        exists?(arg1)

      


        See Ash.Api.GlobalInterface.exists?/1.



    


    
      
        exists?(arg1, arg2)

      


        See Ash.Api.GlobalInterface.exists?/2.



    


    
      
        first(arg1, arg2)

      


        See Ash.Api.GlobalInterface.first/2.



    


    
      
        first(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.first/3.



    


    
      
        first!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.first!/2.



    


    
      
        first!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.first!/3.



    


    
      
        get(arg1, arg2)

      


        See Ash.Api.GlobalInterface.get/2.



    


    
      
        get(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.get/3.



    


    
      
        get!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.get!/2.



    


    
      
        get!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.get!/3.



    


    
      
        get_actor()

      


        Gets the current actor from the process dictionary



    


    
      
        get_authorize?()

      


        Gets the current authorize? from the process dictionary



    


    
      
        get_context()

      


        Gets the current context from the process dictionary



    


    
      
        get_context_for_transfer(opts \\ [])

      


        Gets all of the ash context so it can be set into a new process.



    


    
      
        get_tenant()

      


        Gets the current tenant from the process dictionary



    


    
      
        get_tracer()

      


        Gets the current tracer



    


    
      
        list(arg1, arg2)

      


        See Ash.Api.GlobalInterface.list/2.



    


    
      
        list(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.list/3.



    


    
      
        list!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.list!/2.



    


    
      
        list!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.list!/3.



    


    
      
        load(arg1, arg2)

      


        See Ash.Api.GlobalInterface.load/2.



    


    
      
        load(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.load/3.



    


    
      
        load!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.load!/2.



    


    
      
        load!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.load!/3.



    


    
      
        max(arg1, arg2)

      


        See Ash.Api.GlobalInterface.max/2.



    


    
      
        max(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.max/3.



    


    
      
        max!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.max!/2.



    


    
      
        max!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.max!/3.



    


    
      
        merge_context(map)

      


        Deep merges context into the process dictionary that is used for all changesets and queries.



    


    
      
        min(arg1, arg2)

      


        See Ash.Api.GlobalInterface.min/2.



    


    
      
        min(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.min/3.



    


    
      
        min!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.min!/2.



    


    
      
        min!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.min!/3.



    


    
      
        page(arg1, arg2)

      


        See Ash.Api.GlobalInterface.page/2.



    


    
      
        read(arg1)

      


        See Ash.Api.GlobalInterface.read/1.



    


    
      
        read(arg1, arg2)

      


        See Ash.Api.GlobalInterface.read/2.



    


    
      
        read!(arg1)

      


        See Ash.Api.GlobalInterface.read!/1.



    


    
      
        read!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.read!/2.



    


    
      
        read_one(arg1)

      


        See Ash.Api.GlobalInterface.read_one/1.



    


    
      
        read_one(arg1, arg2)

      


        See Ash.Api.GlobalInterface.read_one/2.



    


    
      
        read_one!(arg1)

      


        See Ash.Api.GlobalInterface.read_one!/1.



    


    
      
        read_one!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.read_one!/2.



    


    
      
        reload(arg1)

      


        See Ash.Api.GlobalInterface.reload/1.



    


    
      
        remove_tracer(module)

      


        Removes a tracer from the process dictionary.



    


    
      
        run_action(arg1)

      


        See Ash.Api.GlobalInterface.run_action/1.



    


    
      
        run_action(arg1, arg2)

      


        See Ash.Api.GlobalInterface.run_action/2.



    


    
      
        run_action!(arg1)

      


        See Ash.Api.GlobalInterface.run_action!/1.



    


    
      
        run_action!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.run_action!/2.



    


    
      
        set_actor(map)

      


        Sets actor into the process dictionary that is used for all changesets and queries.



    


    
      
        set_authorize?(map)

      


        Sets authorize? into the process dictionary that is used for all changesets and queries.



    


    
      
        set_context(map)

      


        Sets context into the process dictionary that is used for all changesets and queries.



    


    
      
        set_tenant(tenant)

      


        Sets tenant into the process dictionary that is used for all changesets and queries.



    


    
      
        set_tracer(module)

      


        Sets the tracer into the process dictionary that will be used to trace requests



    


    
      
        stream!(arg1)

      


        See Ash.Api.GlobalInterface.stream!/1.



    


    
      
        stream!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.stream!/2.



    


    
      
        sum(arg1, arg2)

      


        See Ash.Api.GlobalInterface.sum/2.



    


    
      
        sum(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.sum/3.



    


    
      
        sum!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.sum!/2.



    


    
      
        sum!(arg1, arg2, arg3)

      


        See Ash.Api.GlobalInterface.sum!/3.



    


    
      
        transfer_context(map, opts \\ [])

      


    


    
      
        update(arg1)

      


        See Ash.Api.GlobalInterface.update/1.



    


    
      
        update(arg1, arg2)

      


        See Ash.Api.GlobalInterface.update/2.



    


    
      
        update!(arg1)

      


        See Ash.Api.GlobalInterface.update!/1.



    


    
      
        update!(arg1, arg2)

      


        See Ash.Api.GlobalInterface.update!/2.



    


    
      
        update_context(fun)

      


        Updates the context into the process dictionary that is used for all changesets and queries.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    aggregate(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.aggregate/2.

  



  
    
      
      Link to this function
    
    aggregate(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.aggregate/3.

  



  
    
      
      Link to this function
    
    aggregate!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.aggregate!/2.

  



  
    
      
      Link to this function
    
    aggregate!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.aggregate!/3.

  



  
    
      
      Link to this function
    
    avg(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.avg/2.

  



  
    
      
      Link to this function
    
    avg(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.avg/3.

  



  
    
      
      Link to this function
    
    avg!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.avg!/2.

  



  
    
      
      Link to this function
    
    avg!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.avg!/3.

  



  
    
      
      Link to this function
    
    bulk_create(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.bulk_create/3.

  



  
    
      
      Link to this function
    
    bulk_create(arg1, arg2, arg3, arg4)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.bulk_create/4.

  



  
    
      
      Link to this function
    
    bulk_create!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.bulk_create!/3.

  



  
    
      
      Link to this function
    
    bulk_create!(arg1, arg2, arg3, arg4)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.bulk_create!/4.

  



  
    
      
      Link to this function
    
    calculate(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.calculate/2.

  



  
    
      
      Link to this function
    
    calculate(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.calculate/3.

  



  
    
      
      Link to this function
    
    calculate!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.calculate!/2.

  



  
    
      
      Link to this function
    
    calculate!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.calculate!/3.

  



  
    
      
      Link to this function
    
    can(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.can/2.

  



  
    
      
      Link to this function
    
    can(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.can/3.

  



  
    
      
      Link to this function
    
    can?(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.can?/2.

  



  
    
      
      Link to this function
    
    can?(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.can?/3.

  



    

  
    
      
      Link to this function
    
    context_to_opts(map, add_to \\ [])


      
       
       View Source
     


  


  

Converts a context map to opts to be passed into an action.

  



  
    
      
      Link to this function
    
    count(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.count/1.

  



  
    
      
      Link to this function
    
    count(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.count/2.

  



  
    
      
      Link to this function
    
    count!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.count!/1.

  



  
    
      
      Link to this function
    
    count!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.count!/2.

  



  
    
      
      Link to this function
    
    create(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.create/1.

  



  
    
      
      Link to this function
    
    create(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.create/2.

  



  
    
      
      Link to this function
    
    create!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.create!/1.

  



  
    
      
      Link to this function
    
    create!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.create!/2.

  



  
    
      
      Link to this function
    
    destroy(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.destroy/1.

  



  
    
      
      Link to this function
    
    destroy(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.destroy/2.

  



  
    
      
      Link to this function
    
    destroy!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.destroy!/1.

  



  
    
      
      Link to this function
    
    destroy!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.destroy!/2.

  



  
    
      
      Link to this function
    
    exists(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.exists/1.

  



  
    
      
      Link to this function
    
    exists(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.exists/2.

  



  
    
      
      Link to this function
    
    exists?(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.exists?/1.

  



  
    
      
      Link to this function
    
    exists?(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.exists?/2.

  



  
    
      
      Link to this function
    
    first(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.first/2.

  



  
    
      
      Link to this function
    
    first(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.first/3.

  



  
    
      
      Link to this function
    
    first!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.first!/2.

  



  
    
      
      Link to this function
    
    first!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.first!/3.

  



  
    
      
      Link to this function
    
    get(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.get/2.

  



  
    
      
      Link to this function
    
    get(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.get/3.

  



  
    
      
      Link to this function
    
    get!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.get!/2.

  



  
    
      
      Link to this function
    
    get!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.get!/3.

  



  
    
      
      Link to this function
    
    get_actor()


      
       
       View Source
     


  


  

      

          @spec get_actor() :: term()


      


Gets the current actor from the process dictionary

  



  
    
      
      Link to this function
    
    get_authorize?()


      
       
       View Source
     


  


  

      

          @spec get_authorize?() :: term()


      


Gets the current authorize? from the process dictionary

  



  
    
      
      Link to this function
    
    get_context()


      
       
       View Source
     


  


  

      

          @spec get_context() :: term()


      


Gets the current context from the process dictionary

  



    

  
    
      
      Link to this function
    
    get_context_for_transfer(opts \\ [])


      
       
       View Source
     


  


  

      

          @spec get_context_for_transfer(opts :: Keyword.t()) :: term()


      


Gets all of the ash context so it can be set into a new process.
Use transfer_context/1 in the new process to set the context.

  



  
    
      
      Link to this function
    
    get_tenant()


      
       
       View Source
     


  


  

      

          @spec get_tenant() :: term()


      


Gets the current tenant from the process dictionary

  



  
    
      
      Link to this function
    
    get_tracer()


      
       
       View Source
     


  


  

      

          @spec get_tracer() :: term()


      


Gets the current tracer

  



  
    
      
      Link to this function
    
    list(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.list/2.

  



  
    
      
      Link to this function
    
    list(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.list/3.

  



  
    
      
      Link to this function
    
    list!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.list!/2.

  



  
    
      
      Link to this function
    
    list!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.list!/3.

  



  
    
      
      Link to this function
    
    load(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.load/2.

  



  
    
      
      Link to this function
    
    load(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.load/3.

  



  
    
      
      Link to this function
    
    load!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.load!/2.

  



  
    
      
      Link to this function
    
    load!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.load!/3.

  



  
    
      
      Link to this function
    
    max(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.max/2.

  



  
    
      
      Link to this function
    
    max(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.max/3.

  



  
    
      
      Link to this function
    
    max!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.max!/2.

  



  
    
      
      Link to this function
    
    max!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.max!/3.

  



  
    
      
      Link to this function
    
    merge_context(map)


      
       
       View Source
     


  


  

      

          @spec merge_context(map()) :: :ok


      


Deep merges context into the process dictionary that is used for all changesets and queries.

  



  
    
      
      Link to this function
    
    min(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.min/2.

  



  
    
      
      Link to this function
    
    min(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.min/3.

  



  
    
      
      Link to this function
    
    min!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.min!/2.

  



  
    
      
      Link to this function
    
    min!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.min!/3.

  



  
    
      
      Link to this function
    
    page(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.page/2.

  



  
    
      
      Link to this function
    
    read(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read/1.

  



  
    
      
      Link to this function
    
    read(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read/2.

  



  
    
      
      Link to this function
    
    read!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read!/1.

  



  
    
      
      Link to this function
    
    read!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read!/2.

  



  
    
      
      Link to this function
    
    read_one(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read_one/1.

  



  
    
      
      Link to this function
    
    read_one(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read_one/2.

  



  
    
      
      Link to this function
    
    read_one!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read_one!/1.

  



  
    
      
      Link to this function
    
    read_one!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.read_one!/2.

  



  
    
      
      Link to this function
    
    reload(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.reload/1.

  



  
    
      
      Link to this function
    
    remove_tracer(module)


      
       
       View Source
     


  


  

      

          @spec remove_tracer(module() | [module()]) :: :ok


      


Removes a tracer from the process dictionary.

  



  
    
      
      Link to this function
    
    run_action(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.run_action/1.

  



  
    
      
      Link to this function
    
    run_action(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.run_action/2.

  



  
    
      
      Link to this function
    
    run_action!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.run_action!/1.

  



  
    
      
      Link to this function
    
    run_action!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.run_action!/2.

  



  
    
      
      Link to this function
    
    set_actor(map)


      
       
       View Source
     


  


  

      

          @spec set_actor(map()) :: :ok


      


Sets actor into the process dictionary that is used for all changesets and queries.

  



  
    
      
      Link to this function
    
    set_authorize?(map)


      
       
       View Source
     


  


  

      

          @spec set_authorize?(map()) :: :ok


      


Sets authorize? into the process dictionary that is used for all changesets and queries.

  



  
    
      
      Link to this function
    
    set_context(map)


      
       
       View Source
     


  


  

      

          @spec set_context(map()) :: :ok


      


Sets context into the process dictionary that is used for all changesets and queries.
In Ash 3.0, this will be updated to deep merge

  



  
    
      
      Link to this function
    
    set_tenant(tenant)


      
       
       View Source
     


  


  

      

          @spec set_tenant(String.t()) :: :ok


      


Sets tenant into the process dictionary that is used for all changesets and queries.

  



  
    
      
      Link to this function
    
    set_tracer(module)


      
       
       View Source
     


  


  

      

          @spec set_tracer(module() | [module()]) :: :ok


      


Sets the tracer into the process dictionary that will be used to trace requests

  



  
    
      
      Link to this function
    
    stream!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.stream!/1.

  



  
    
      
      Link to this function
    
    stream!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.stream!/2.

  



  
    
      
      Link to this function
    
    sum(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.sum/2.

  



  
    
      
      Link to this function
    
    sum(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.sum/3.

  



  
    
      
      Link to this function
    
    sum!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.sum!/2.

  



  
    
      
      Link to this function
    
    sum!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.sum!/3.

  



    

  
    
      
      Link to this function
    
    transfer_context(map, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec transfer_context(term(), opts :: Keyword.t()) :: :ok


      



  



  
    
      
      Link to this function
    
    update(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.update/1.

  



  
    
      
      Link to this function
    
    update(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.update/2.

  



  
    
      
      Link to this function
    
    update!(arg1)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.update!/1.

  



  
    
      
      Link to this function
    
    update!(arg1, arg2)


      
       
       View Source
     


  


  

See Ash.Api.GlobalInterface.update!/2.

  



  
    
      
      Link to this function
    
    update_context(fun)


      
       
       View Source
     


  


  

      

          @spec update_context((map() -> map())) :: :ok


      


Updates the context into the process dictionary that is used for all changesets and queries.

  


        

      



  

  
    
    Ash.Changeset.ManagedRelationshipHelpers - ash v2.17.7
    
    

    



  
  

    
Ash.Changeset.ManagedRelationshipHelpers 
    



      
Tools for introspecting managed relationships.
Extensions can use this to look at an argument that will be passed
to a manage_relationship change and determine what their behavior
should be. For example, AshAdmin uses these to find out what kind of
nested form it should offer for each argument that manages a relationship.

      


      
        Summary


  
    Functions
  


    
      
        could_create?(opts)

      


    


    
      
        could_handle_missing?(opts)

      


    


    
      
        could_lookup?(opts)

      


    


    
      
        could_update?(opts)

      


    


    
      
        must_load?(opts, must_load_opts \\ [])

      


    


    
      
        on_lookup_read_action(opts, relationship)

      


    


    
      
        on_lookup_update_action(opts, relationship)

      


    


    
      
        on_match_destination_actions(opts, relationship)

      


    


    
      
        on_missing_destination_actions(opts, relationship)

      


    


    
      
        on_no_match_destination_actions(opts, relationship)

      


    


    
      
        sanitize_opts(relationship, opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    could_create?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_handle_missing?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_lookup?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_update?(opts)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    must_load?(opts, must_load_opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_lookup_read_action(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_lookup_update_action(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_match_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_missing_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_no_match_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sanitize_opts(relationship, opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.CiString - ash v2.17.7
    
    

    



  
  

    
Ash.CiString 
    



      
Represents a case insensitive string
While some data layers are aware of case insensitive string types, in order for values
of this type to be used in other parts of Ash Framework, it has to be embedded in a module
this allows us to implement the Comparable protocol for it.
For the type implementation, see Ash.Type.CiString

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        compare(left, right)

      


    


    
      
        new(value, casing \\ nil)

      


    


    
      
        sigil_i(value, mods)

      


        Creates a case insensitive string



    


    
      
        to_comparable_string(value)

      


        Returns the downcased value, only downcasing if it hasn't already been done



    


    
      
        value(ci_string)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.CiString{
  case: nil | :lower | :upper,
  casted?: boolean(),
  string: String.t()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    compare(left, right)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    new(value, casing \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sigil_i(value, mods)


      
       
       View Source
     


  


  

Creates a case insensitive string

  



  
    
      
      Link to this function
    
    to_comparable_string(value)


      
       
       View Source
     


  


  

Returns the downcased value, only downcasing if it hasn't already been done

  



  
    
      
      Link to this function
    
    value(ci_string)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Expr - ash v2.17.7
    
    

    



  
  

    
Ash.Expr 
    



      
Tools to build Ash expressions

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        eval(expression, opts \\ [])

      


        Evaluate an expression. This function only works if you have no references, or if you provide the record option.



    


    
      
        eval!(expression, opts \\ [])

      


        Evaluate an expression. See eval/2 for more.



    


    
      
        expr(body)

      


    


    
      
        or_where(left, right)

      


    


    
      
        where(left, right)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: any()


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    eval(expression, opts \\ [])


      
       
       View Source
     


  


  

Evaluate an expression. This function only works if you have no references, or if you provide the record option.

  



    

  
    
      
      Link to this function
    
    eval!(expression, opts \\ [])


      
       
       View Source
     


  


  

Evaluate an expression. See eval/2 for more.

  



  
    
      
      Link to this macro
    
    expr(body)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this macro
    
    or_where(left, right)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this macro
    
    where(left, right)


      
       
       View Source
     


      (macro)

  


  


  


        

      



  

  
    
    Ash.Filter - ash v2.17.7
    
    

    



  
  

    
Ash.Filter 
    



      
The representation of a filter in Ash.

  
    
  
  Security Concerns


If you are using a map with string keys, it is likely that you are parsing
input. It is important to note that, instead of passing a filter supplied from
an external source directly to Ash.Query.filter/2, you should call
Ash.Filter.parse_input/2.  This ensures that the filter only uses public
attributes, relationships, aggregates and calculations, honors field policies
and any policies on related resources.

  
    
  
  Filter Templates


To see the available templates, see Ash.Filter.TemplateHelpers.  You can
pass a filter template to build_filter_from_template/2 with an actor, and it
will return the new result
Additionally, you can ask if the filter template contains an actor reference
via template_references_actor?/1

  
    
  
  Writing a filter



  
    
  
  Built In Predicates


	is_nil
	==
	!=
	in
	<
	>
	<=
	>=
	&&
	||
	<>
	/
	-
	*
	+
	equals (alias
for ==)
	not_equals (alias
for !=)
	gt (alias
for >)
	lt (alias
for <)
	gte (alias
for >=)
	lte (alias
for <=)
	eq (alias
for ==)
	not_eq (alias
for !=)
	less_than (alias
for <)
	greater_than (alias
for >)
	less_than_or_equal (alias
for <=)
	greater_than_or_equal (alias
for >=)
	and (alias
for &&)
	or (alias
for ||)
	concat (alias
for <>)
	div (alias
for /)
	minus (alias
for -)
	times (alias
for *)
	plus (alias
for +)


  
    
  
  BooleanExpression syntax


The expression syntax ultimately just builds the keyword list style filter,
but with lots of conveniences that would be very annoying to do manually.
Examples
Ash.Query.filter(resource, name == "Zardoz")
Ash.Query.filter(resource, first_name == "Zar" and last_name == "Doz")
Ash.Query.filter(resource, first_name == "Zar" and last_name in ["Doz", "Daz"] and high_score > 10)
Ash.Query.filter(resource, first_name == "Zar" or last_name == "Doz" or (high_score > 10 and high_score < -10))

  
    
  
  Keyword list syntax


A filter is a nested keyword list (with some exceptions, like true for
everything and false for nothing).
The key is the "predicate" (or "condition") and the value is the parameter.
You can use and and or to create nested filters. Data layers can expose
custom predicates. Eventually, you will be able to define your own custom
predicates, which will be a mechanism for you to attach complex filters
supported by the data layer to your queries.
 Important  In a given keyword list, all predicates are considered to be
"ands". So [or: [first_name: "Tom", last_name: "Bombadil"]] doesn't mean
'First name == "tom" or last_name == "bombadil"'. To say that, you want to
provide a list of filters, like so: [or: [[first_name: "Tom"], [last_name: "Bombadil"]]]
Some example filters:
Ash.Query.filter(resource, [name: "Zardoz"])
Ash.Query.filter(resource, [first_name: "Zar", last_name: "Doz"])
Ash.Query.filter(resource, [first_name: "Zar", last_name: [in: ["Doz", "Daz"]], high_score: [greater_than: 10]])
Ash.Query.filter(resource, [or: [
  [first_name: "Zar"],
  [last_name: "Doz"],
  [or: [
    [high_score: [greater_than: 10]]],
    [high_score: [less_than: -10]]
  ]
]])

  
    
  
  Other formats


Maps are also accepted, as are maps with string keys. Technically, a list of
[{"string_key", value}] would also work.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


    


    
      
        add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


    


    
      
        build_filter_from_template(template, actor \\ nil, args \\ %{}, context \\ %{})

      


        Replace any actor value references in a template with the values from a given actor



    


    
      
        builtin_functions()

      


    


    
      
        builtin_operators()

      


    


    
      
        builtin_predicate_operators()

      


    


    
      
        builtins()

      


    


    
      
        do_hydrate_refs(ref, context)

      


    


    
      
        find(expr, pred, ors? \\ true, ands? \\ true)

      


        Find an expression inside of a filter that matches the provided predicate



    


    
      
        find_simple_equality_predicate(expression, attribute)

      


        Can be used to find a simple equality predicate on an attribute



    


    
      
        find_value(expr, pred)

      


    


    
      
        flat_map(expression, func)

      


    


    
      
        get_filter(resource, id)

      


        Returns a filter statement that would find a single record based on the input.



    


    
      
        get_function(key, resource, public?)

      


    


    
      
        get_operator(key)

      


    


    
      
        hydrate_refs(value, context)

      


    


    
      
        list_predicates(expression)

      


    


    
      
        list_refs(expression, no_longer_simple? \\ false, in_an_eq? \\ false)

      


    


    
      
        map(filter, func)

      


    


    
      
        move_exprs_to_relationship_path(refs, path)

      


    


    
      
        move_to_relationship_path(expression, relationship_path)

      


    


    
      
        parse(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


        Parses a filter statement



    


    
      
        parse!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


        Parses a filter statement



    


    
      
        parse_input(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


        Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies.



    


    
      
        parse_input!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

      


        Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies, raising on errors.



    


    
      
        prefix_refs(expr, path)

      


    


    
      
        put_at_path(value, list)

      


    


    
      
        read_requests(api, filter, request_path, actor, tenant)

      


    


    
      
        relationship_paths(filter_or_expression, include_exists? \\ false, with_reference? \\ false)

      


    


    
      
        run_other_data_layer_filters(api, resource, filter, data)

      


    


    
      
        strict_subset_of(filter, candidate)

      


        Returns true if the second argument is a strict subset (always returns the same or less data) of the first



    


    
      
        strict_subset_of?(filter, candidate)

      


    


    
      
        template_references?(list, pred)

      


        Whether or not a given template contains an actor reference



    


    
      
        template_references_actor?(template)

      


    


    
      
        template_references_argument?(template)

      


    


    
      
        template_references_context?(template)

      


    


    
      
        to_simple_filter(map, opts \\ [])

      


        Transform an expression based filter to a simple filter, which is just a list of predicates



    


    
      
        update_aggregates(filter, mapper)

      


    


    
      
        used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)

      


    


    
      
        used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{})

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Filter{expression: term(), resource: term()}


      



  


        

      

      
        Functions

        


    

    

    

    

  
    
      
      Link to this function
    
    add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  


  



    

    

    

    

  
    
      
      Link to this function
    
    add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    build_filter_from_template(template, actor \\ nil, args \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Replace any actor value references in a template with the values from a given actor

  



  
    
      
      Link to this function
    
    builtin_functions()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin_operators()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin_predicate_operators()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtins()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    do_hydrate_refs(ref, context)


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    find(expr, pred, ors? \\ true, ands? \\ true)


      
       
       View Source
     


  


  

Find an expression inside of a filter that matches the provided predicate

  



  
    
      
      Link to this function
    
    find_simple_equality_predicate(expression, attribute)


      
       
       View Source
     


  


  

Can be used to find a simple equality predicate on an attribute
Use this when your attribute is configured with filterable? :simple_equality, and you want to
to find the value that it is being filtered on with (if any).

  



  
    
      
      Link to this function
    
    find_value(expr, pred)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    flat_map(expression, func)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_filter(resource, id)


      
       
       View Source
     


  


  

Returns a filter statement that would find a single record based on the input.
For example:
iex> get_filter(MyApp.Post, 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, id: 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, author_id: 1, publication_id: 2, first_name: "fred")
{:ok, %{author_id: 1, publication_id: 1}} # using a unique identity
iex> get_filter(MyApp.Post, first_name: "fred")
:error # not enough information

  



  
    
      
      Link to this function
    
    get_function(key, resource, public?)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_operator(key)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    hydrate_refs(value, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    list_predicates(expression)


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    list_refs(expression, no_longer_simple? \\ false, in_an_eq? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    map(filter, func)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    move_exprs_to_relationship_path(refs, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    move_to_relationship_path(expression, relationship_path)


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    parse(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement
See the module documentation for more information on the supported formats for filter
statements.

  
    
  
  Important


If you are trying to validate a filter supplied from an external/untrusted source,
be sure to use parse_input/2 instead! The only difference is that it only accepts
filters over public attributes/relationships.

  



    

    

    

  
    
      
      Link to this function
    
    parse!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement
See parse/2 for more

  



    

    

    

  
    
      
      Link to this function
    
    parse_input(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies.
See parse/2 for more

  



    

    

    

  
    
      
      Link to this function
    
    parse_input!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement, accepting only public attributes/relationships,
honoring field policies & related resource policies, raising on errors.
See parse_input/2 for more

  



  
    
      
      Link to this function
    
    prefix_refs(expr, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_at_path(value, list)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    read_requests(api, filter, request_path, actor, tenant)


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    relationship_paths(filter_or_expression, include_exists? \\ false, with_reference? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run_other_data_layer_filters(api, resource, filter, data)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_subset_of(filter, candidate)


      
       
       View Source
     


  


  

Returns true if the second argument is a strict subset (always returns the same or less data) of the first

  



  
    
      
      Link to this function
    
    strict_subset_of?(filter, candidate)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    template_references?(list, pred)


      
       
       View Source
     


  


  

Whether or not a given template contains an actor reference

  



  
    
      
      Link to this function
    
    template_references_actor?(template)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    template_references_argument?(template)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    template_references_context?(template)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    to_simple_filter(map, opts \\ [])


      
       
       View Source
     


  


  

Transform an expression based filter to a simple filter, which is just a list of predicates
Options:
	skip_invalid?:


  



  
    
      
      Link to this function
    
    update_aggregates(filter, mapper)


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{})


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Filter.Runtime - ash v2.17.7
    
    

    



  
  

    
Ash.Filter.Runtime 
    



      
Checks a record to see if it matches a filter statement.
We can't always tell if a record matches a filter statement, and as such this
function may return :unknown. Additionally, some expressions wouldn't ever
make sense outside of the context of the data layer, and will always be an
error. For example, if you used the trigram search features in
ash_postgres. That logic would need to be handwritten in Elixir and would
need to be a perfect copy of the postgres implementation. That isn't a
realistic goal. This generally should not affect anyone using the standard
framework features, but if you were to attempt to use this module with a data
layer like ash_postgres, certain expressions will behave unpredictably.

      


      
        Summary


  
    Functions
  


    
      
        filter_matches(api, records, filter, opts \\ [])

      


        Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambiguous terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.



    


    
      
        load_parent_requirements(api, expression, parent)

      


    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    filter_matches(api, records, filter, opts \\ [])


      
       
       View Source
     


  


  

Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambiguous terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.

  



  
    
      
      Link to this function
    
    load_parent_requirements(api, expression, parent)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Filter.Simple - ash v2.17.7
    
    

    



  
  

    
Ash.Filter.Simple 
    



      
Represents a simplified filter, with a simple list of predicates

      





  

  
    
    Ash.Filter.Simple.Not - ash v2.17.7
    
    

    



  
  

    
Ash.Filter.Simple.Not 
    



      
A negated predicate

      





  

  
    
    Ash.NotLoaded - ash v2.17.7
    
    

    



  
  

    
Ash.NotLoaded 
    



      
Used when an aggregate or relationship hasn't been loaded.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.NotLoaded{
  field: atom(),
  type: :relationship | :calculation | :aggregate
}


      



  


        

      



  

  
    
    Ash.OptionsHelpers - ash v2.17.7
    
    

    



  
  

    
Ash.OptionsHelpers 
    



      
Helpers for working with nimble options

      


      
        Summary


  
    Functions
  


    
      
        ash_resource()

      


    


    
      
        ash_type()

      


    


    
      
        hide_all_except(options, keys)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    ash_resource()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    ash_type()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    hide_all_except(options, keys)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Page - ash v2.17.7
    
    

    



  
  

    
Ash.Page 
    



      
Types for Ash pages

      


      
        Summary


  
    Types
  


    
      
        page()

      


    


    
      
        type()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    page()


      
       
       View Source
     


  


  

      

          @type page() :: Ash.Page.Keyset.t() | Ash.Page.Offset.t()


      



  



  
    
      
      Link to this type
    
    type()


      
       
       View Source
     


  


  

      

          @type type() :: :offset | :keyset


      



  


        

      



  

  
    
    Ash.Page.Keyset - ash v2.17.7
    
    

    



  
  

    
Ash.Page.Keyset 
    



      
A page of results from keyset based pagination.
The results are generated with a keyset metadata,
which can be used to fetch the next/previous pages.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        data_with_keyset(results, resource, sort)

      


    


    
      
        filter(resource, values, sort, after_or_before)

      


    


    
      
        new(results, count, sort, original_query, more?, opts)

      


    


    
      
        non_executable_binary_to_term(binary, opts)

      


        A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Page.Keyset{
  after: term(),
  before: term(),
  count: term(),
  limit: term(),
  more?: term(),
  rerun: term(),
  results: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    data_with_keyset(results, resource, sort)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    filter(resource, values, sort, after_or_before)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(results, count, sort, original_query, more?, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    non_executable_binary_to_term(binary, opts)


      
       
       View Source
     


  


  

A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex

  


        

      



  

  
    
    Ash.Page.Offset - ash v2.17.7
    
    

    



  
  

    
Ash.Page.Offset 
    



      
A page of results from offset based pagination.
If a resource supports keyset pagination as well,
it will also have the keyset metadata.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(results, count, original_query, more?, opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Page.Offset{
  count: term(),
  limit: term(),
  more?: term(),
  offset: term(),
  rerun: term(),
  results: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(results, count, original_query, more?, opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Builder - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Builder 
    



      
Tools for transforming resources in DSL Transformers.

      


      
        Summary


  
    Functions
  


    
      
        add_action(dsl_state, type, name, opts \\ [])

      


        Builds and adds an action



    


    
      
        add_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

      


        Builds and adds an aggregate to a resource



    


    
      
        add_attribute(dsl_state, name, type, opts \\ [])

      


        Builds and adds an attribute to a resource



    


    
      
        add_calculation(dsl_state, name, type, calculation, opts \\ [])

      


        Builds and adds a calculation to a resource



    


    
      
        add_change(dsl_state, ref, opts \\ [])

      


        Builds and adds a change



    


    
      
        add_create_timestamp(dsl_state, name, opts \\ [])

      


        Builds and adds a create_timestamp to a resource



    


    
      
        add_identity(dsl_state, name, fields, opts \\ [])

      


        Builds and adds an identity



    


    
      
        add_new_action(dsl_state, type, name, opts \\ [])

      


        Builds and adds a new action unless an action with that name already exists



    


    
      
        add_new_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])

      


        Builds and adds an aggregate unless an aggregate with that name already exists



    


    
      
        add_new_attribute(dsl_state, name, type, opts \\ [])

      


        Builds and adds an attribute unless an attribute with that name already exists



    


    
      
        add_new_calculation(dsl_state, name, type, calculation, opts \\ [])

      


        Builds and adds a calculation unless a calculation with that name already exists



    


    
      
        add_new_create_timestamp(dsl_state, name, opts \\ [])

      


        Builds and adds a create_timestamp unless a create_timestamp with that name already exists



    


    
      
        add_new_identity(dsl_state, name, fields, opts \\ [])

      


        Builds and adds a new identity unless an identity with that name already exists



    


    
      
        add_new_relationship(dsl_state, type, name, destination, opts \\ [])

      


        Builds and adds a new relationship unless a relationship with that name already exists



    


    
      
        add_new_update_timestamp(dsl_state, name, opts \\ [])

      


        Builds and adds an update_timestamp unless an update_timestamp with that name already exists



    


    
      
        add_preparation(dsl_state, ref, opts \\ [])

      


        Builds and adds a preparation



    


    
      
        add_relationship(dsl_state, type, name, destination, opts \\ [])

      


        Builds and adds an action



    


    
      
        add_update_timestamp(dsl_state, name, opts \\ [])

      


        Builds and adds an update_timestamp



    


    
      
        build_action(type, name, opts \\ [])

      


        Builds an action



    


    
      
        build_action_argument(name, type, opts \\ [])

      


        Builds an action argument



    


    
      
        build_action_change(change, opts \\ [])

      


        Builds an action change



    


    
      
        build_action_metadata(name, type, opts \\ [])

      


        Builds an action metadata



    


    
      
        build_aggregate(name, kind, relationship_path, opts \\ [])

      


        Builds a calculation with the given name, type, and options



    


    
      
        build_attribute(name, type, opts \\ [])

      


        Builds an attribute with the given name, type, and options



    


    
      
        build_calculation(name, type, calculation, opts \\ [])

      


        Builds a calculation with the given name, type, and options



    


    
      
        build_calculation_argument(name, type, opts \\ [])

      


        Builds a calculation argument



    


    
      
        build_change(ref, opts \\ [])

      


        Builds a change



    


    
      
        build_create_timestamp(name, opts \\ [])

      


        Builds an create_timestamp with the given name, type, and options



    


    
      
        build_identity(name, fields, opts \\ [])

      


        Builds an action



    


    
      
        build_pagination(opts \\ [])

      


        Builds a pagination object



    


    
      
        build_preparation(ref, opts \\ [])

      


        Builds a preparation



    


    
      
        build_relationship(type, name, destination, opts \\ [])

      


        Builds a relationship



    


    
      
        build_update_timestamp(name, opts \\ [])

      


        Builds an update_timestamp with the given name, type, and options



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    add_action(dsl_state, type, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_action(
  Spark.Dsl.Builder.input(),
  type :: Ash.Resource.Actions.action_type(),
  name :: atom(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an action

  



    

  
    
      
      Link to this function
    
    add_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_aggregate(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  kind :: Ash.Query.Aggregate.kind(),
  relationship_path :: atom() | [atom()],
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an aggregate to a resource

  



    

  
    
      
      Link to this function
    
    add_attribute(dsl_state, name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_attribute(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  type :: Ash.Type.t(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an attribute to a resource

  



    

  
    
      
      Link to this function
    
    add_calculation(dsl_state, name, type, calculation, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_calculation(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  type :: Ash.Type.t(),
  calculation :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a calculation to a resource

  



    

  
    
      
      Link to this function
    
    add_change(dsl_state, ref, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_change(
  Spark.Dsl.Builder.input(),
  ref :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a change

  



    

  
    
      
      Link to this function
    
    add_create_timestamp(dsl_state, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_create_timestamp(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a create_timestamp to a resource

  



    

  
    
      
      Link to this function
    
    add_identity(dsl_state, name, fields, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_identity(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  fields :: atom() | [atom()],
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an identity

  



    

  
    
      
      Link to this function
    
    add_new_action(dsl_state, type, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_action(
  Spark.Dsl.Builder.input(),
  type :: Ash.Resource.Actions.action_type(),
  name :: atom(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a new action unless an action with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_aggregate(dsl_state, name, kind, relationship_path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_aggregate(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  kind :: Ash.Query.Aggregate.kind(),
  relationship_path :: atom() | [atom()],
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an aggregate unless an aggregate with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_attribute(dsl_state, name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_attribute(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  type :: Ash.Type.t(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an attribute unless an attribute with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_calculation(dsl_state, name, type, calculation, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_calculation(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  type :: Ash.Type.t(),
  calculation :: module() | {module(), Keyword.t()} | Ash.Expr.t(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a calculation unless a calculation with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_create_timestamp(dsl_state, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_create_timestamp(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  opts :: Keyword.t()
) ::
  Spark.Dsl.Builder.result()


      


Builds and adds a create_timestamp unless a create_timestamp with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_identity(dsl_state, name, fields, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_identity(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  fields :: atom() | [atom()],
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a new identity unless an identity with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_relationship(dsl_state, type, name, destination, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_relationship(
  Spark.Dsl.Builder.input(),
  type :: Ash.Resource.Relationships.type(),
  name :: atom(),
  destination :: module(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a new relationship unless a relationship with that name already exists

  



    

  
    
      
      Link to this function
    
    add_new_update_timestamp(dsl_state, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_new_update_timestamp(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  opts :: Keyword.t()
) ::
  Spark.Dsl.Builder.result()


      


Builds and adds an update_timestamp unless an update_timestamp with that name already exists

  



    

  
    
      
      Link to this function
    
    add_preparation(dsl_state, ref, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_preparation(
  Spark.Dsl.Builder.input(),
  ref :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds a preparation

  



    

  
    
      
      Link to this function
    
    add_relationship(dsl_state, type, name, destination, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_relationship(
  Spark.Dsl.Builder.input(),
  type :: Ash.Resource.Relationships.type(),
  name :: atom(),
  destination :: module(),
  opts :: Keyword.t()
) :: Spark.Dsl.Builder.result()


      


Builds and adds an action

  



    

  
    
      
      Link to this function
    
    add_update_timestamp(dsl_state, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec add_update_timestamp(
  Spark.Dsl.Builder.input(),
  name :: atom(),
  opts :: Keyword.t()
) ::
  Spark.Dsl.Builder.result()


      


Builds and adds an update_timestamp

  



    

  
    
      
      Link to this function
    
    build_action(type, name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_action(
  type :: Ash.Resource.Actions.action_type(),
  name :: atom(),
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Actions.action()} | {:error, term()}


      


Builds an action

  



    

  
    
      
      Link to this function
    
    build_action_argument(name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_action_argument(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Actions.Argument.t()} | {:error, term()}


      


Builds an action argument

  



    

  
    
      
      Link to this function
    
    build_action_change(change, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_action_change(change :: Ash.Resource.Change.ref(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Change.t()} | {:error, term()}


      


Builds an action change

  



    

  
    
      
      Link to this function
    
    build_action_metadata(name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_action_metadata(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Actions.Metadata.t()} | {:error, term()}


      


Builds an action metadata

  



    

  
    
      
      Link to this function
    
    build_aggregate(name, kind, relationship_path, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_aggregate(
  name :: atom(),
  kind :: Ash.Query.Aggregate.kind(),
  relationship_path :: atom() | [atom()],
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Aggregate.t()} | {:error, term()}


      


Builds a calculation with the given name, type, and options

  



    

  
    
      
      Link to this function
    
    build_attribute(name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_attribute(name :: atom(), type :: Ash.Type.t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Attribute.t()} | {:error, term()}


      


Builds an attribute with the given name, type, and options

  



    

  
    
      
      Link to this function
    
    build_calculation(name, type, calculation, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_calculation(
  name :: atom(),
  type :: Ash.Type.t(),
  calculation :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Calculation.t()} | {:error, term()}


      


Builds a calculation with the given name, type, and options

  



    

  
    
      
      Link to this function
    
    build_calculation_argument(name, type, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_calculation_argument(
  name :: atom(),
  type :: Ash.Type.t(),
  opts :: Keyword.t()
) ::
  {:ok, Ash.Resource.Actions.Argument.t()} | {:error, term()}


      


Builds a calculation argument

  



    

  
    
      
      Link to this function
    
    build_change(ref, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_change(
  ref :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Change.t()} | {:error, term()}


      


Builds a change

  



    

  
    
      
      Link to this function
    
    build_create_timestamp(name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_create_timestamp(name :: atom(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Attribute.t()} | {:error, term()}


      


Builds an create_timestamp with the given name, type, and options

  



    

  
    
      
      Link to this function
    
    build_identity(name, fields, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_identity(
  name :: atom(),
  fields :: atom() | [atom()],
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Relationships.relationship()} | {:error, term()}


      


Builds an action

  



    

  
    
      
      Link to this function
    
    build_pagination(opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_pagination(pts :: Keyword.t()) ::
  {:ok, Ash.Resource.Actions.Read.Pagination.t()} | {:error, term()}


      


Builds a pagination object

  



    

  
    
      
      Link to this function
    
    build_preparation(ref, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_preparation(
  ref :: module() | {module(), Keyword.t()},
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Preparation.t()} | {:error, term()}


      


Builds a preparation

  



    

  
    
      
      Link to this function
    
    build_relationship(type, name, destination, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_relationship(
  type :: Ash.Resource.Relationships.type(),
  name :: atom(),
  destination :: module(),
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.Relationships.relationship()} | {:error, term()}


      


Builds a relationship

  



    

  
    
      
      Link to this function
    
    build_update_timestamp(name, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec build_update_timestamp(name :: atom(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.Attribute.t()} | {:error, term()}


      


Builds an update_timestamp with the given name, type, and options

  


        

      



  

  
    
    Ash.Sort - ash v2.17.7
    
    

    



  
  

    
Ash.Sort 
    



      
Utilities and types for sorting.

  
    
  
  Important


Keyset pagination cannot currently be used in conjunction with aggregate and calculation sorting.
Combining them will result in an error on the query.

      


      
        Summary


  
    Types
  


    
      
        sort_item()

      


    


    
      
        sort_order()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        expr_sort(expression, type \\ nil)

      


    


    
      
        parse_input(resource, sort, handler \\ nil)

      


        A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.



    


    
      
        parse_input!(resource, sort, handler \\ nil)

      


        Same as parse_input/2 except raises any errors



    


    
      
        parse_sort(resource, sort, handler \\ nil)

      


    


    
      
        reverse(sort)

      


        Reverses an Ash sort statement.



    


    
      
        runtime_sort(results, sort, api \\ nil)

      


        A utility for sorting a list of records at runtime.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    sort_item()


      
       
       View Source
     


  


  

      

          @type sort_item() ::
  atom()
  | {atom(), sort_order()}
  | %Ash.Query.Calculation{
      calc_name: term(),
      constraints: term(),
      context: term(),
      filterable?: term(),
      load: term(),
      module: term(),
      name: term(),
      opts: term(),
      required_loads: term(),
      select: term(),
      sequence: term(),
      type: term()
    }
  | {%Ash.Query.Calculation{
       calc_name: term(),
       constraints: term(),
       context: term(),
       filterable?: term(),
       load: term(),
       module: term(),
       name: term(),
       opts: term(),
       required_loads: term(),
       select: term(),
       sequence: term(),
       type: term()
     }, sort_order()}
  | {atom(), {sort_order(), Keyword.t() | map()}}


      



  



  
    
      
      Link to this type
    
    sort_order()


      
       
       View Source
     


  


  

      

          @type sort_order() ::
  :asc
  | :desc
  | :asc_nils_first
  | :asc_nils_last
  | :desc_nils_first
  | :desc_nils_last


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: [sort_item()] | sort_item()


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this macro
    
    expr_sort(expression, type \\ nil)


      
       
       View Source
     


      (macro)

  


  


  



    

  
    
      
      Link to this function
    
    parse_input(resource, sort, handler \\ nil)


      
       
       View Source
     


  


  

      

          @spec parse_input(
  Ash.Resource.t(),
  String.t()
  | [atom() | String.t() | {atom(), sort_order()} | [String.t()]]
  | nil,
  nil | (String.t() -> nil | atom() | {atom(), map()})
) :: {:ok, t()} | {:error, term()}


      


A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.
The supported formats are:

  
    
  
  Sort Strings


A comma separated list of fields to sort on, each with an optional prefix.
The prefixes are:
	"+" - Same as no prefix. Sorts :asc.
	"++" - Sorts :asc_nils_first
	"-" - Sorts :desc
	"--" - Sorts :desc_nils_last

For example
"foo,-bar,++baz,--buz"

  
    
  
  A list of sort strings


Same prefix rules as above, but provided as a list.
For example:
["foo", "-bar", "++baz", "--buz"]

  
    
  
  Handling specific values


A handler function may be provided that takes a string, and returns the relevant sort
It won't be given any prefixes, only the field. This allows for things like parsing the calculation values
out of the sort, or setting calculation values if they are not included in the sort string.
To return calculation parameters, return {:field, %{param: :value}}. This will end up as something
like {:field, {:desc, %{param: :value}}}, with the corresponding sort order.
This handler function will only be called if you pass in a string or list of strings for the sort.
Atoms will be assumed to have already been handled. The handler should return nil if it is not handling
the given field.

  



    

  
    
      
      Link to this function
    
    parse_input!(resource, sort, handler \\ nil)


      
       
       View Source
     


  


  

Same as parse_input/2 except raises any errors
See parse_input/2 for more.

  



    

  
    
      
      Link to this function
    
    parse_sort(resource, sort, handler \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    reverse(sort)


      
       
       View Source
     


  


  

Reverses an Ash sort statement.

  



    

  
    
      
      Link to this function
    
    runtime_sort(results, sort, api \\ nil)


      
       
       View Source
     


  


  

A utility for sorting a list of records at runtime.
For example:
Ash.Sort.runtime_sort([record1, record2, record3], name: :asc, type: :desc_nils_last)
Keep in mind that it is unrealistic to expect this runtime sort to always
be exactly the same as a sort that may have been applied by your data layer.
This is especially true for strings. For example, Postgres strings have a
collation that affects their sorting, making it unpredictable from the perspective
of a tool using the database: https://www.postgresql.org/docs/current/collation.html

  


        

      



  

  
    
    Ash.Tracer - ash v2.17.7
    
    

    



  
  

    
Ash.Tracer behaviour
    



      
A behaviour for implementing tracing for an Ash application.

      


      
        Summary


  
    Types
  


    
      
        metadata()

      


    


    
      
        span_type()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        get_span_context()

      


    


    
      
        set_error(t)

      


    


    
      
        set_error(t, t)

      


    


    
      
        set_handled_error(t, t)

      


    


    
      
        set_metadata(span_type, metadata)

      


        Set metadata for the current span.



    


    
      
        set_span_context(term)

      


    


    
      
        start_span(span_type, name)

      


    


    
      
        stop_span()

      


    


    
      
        trace_type?(atom)

      


    





  
    Functions
  


    
      
        get_span_context(tracer)

      


    


    
      
        set_error(tracers, error)

      


    


    
      
        set_error(tracers, error, opts)

      


    


    
      
        set_handled_error(tracers, error, opts)

      


    


    
      
        set_metadata(tracers, type, metadata)

      


    


    
      
        set_span_context(tracer, context)

      


    


    
      
        span(type, name, tracer, block_opts \\ [])

      


    


    
      
        start_span(tracers, type, name)

      


    


    
      
        stop_span(tracers)

      


    


    
      
        telemetry_span(name, metadata, opts)

      


    


    
      
        trace_type?(tracer, type)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    metadata()


      
       
       View Source
     


  


  

      

          @type metadata() :: %{
  api: nil | module(),
  resource: nil | module(),
  actor: term(),
  tenant: nil | String.t(),
  action: atom(),
  authorize?: boolean()
}


      



  



  
    
      
      Link to this type
    
    span_type()


      
       
       View Source
     


  


  

      

          @type span_type() ::
  :action
  | :changeset
  | :query
  | :flow
  | :request_step
  | :change
  | :validation
  | :preparation
  | :custom_flow_step
  | :custom
  | :before_transaction
  | :before_action
  | :after_transaction
  | :after_action
  | {:custom, atom()}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    get_span_context()


      
       
       View Source
     


  


  

      

          @callback get_span_context() :: term()


      



  



  
    
      
      Link to this callback
    
    set_error(t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback set_error(Exception.t()) :: :ok


      



  



  
    
      
      Link to this callback
    
    set_error(t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback set_error(Exception.t(), Keyword.t()) :: :ok


      



  



  
    
      
      Link to this callback
    
    set_handled_error(t, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback set_handled_error(Exception.t(), Keyword.t()) :: :ok


      



  



  
    
      
      Link to this callback
    
    set_metadata(span_type, metadata)


      
       
       View Source
     


  


  

      

          @callback set_metadata(span_type(), metadata()) :: :ok


      


Set metadata for the current span.
This may be called multiple times per span, and should ideally merge with previous metadata.

  



  
    
      
      Link to this callback
    
    set_span_context(term)


      
       
       View Source
     


  


  

      

          @callback set_span_context(term()) :: :ok


      



  



  
    
      
      Link to this callback
    
    start_span(span_type, name)


      
       
       View Source
     


  


  

      

          @callback start_span(span_type(), name :: String.t()) :: :ok


      



  



  
    
      
      Link to this callback
    
    stop_span()


      
       
       View Source
     


  


  

      

          @callback stop_span() :: :ok


      



  



  
    
      
      Link to this callback
    
    trace_type?(atom)


      
       
       View Source
     


      (optional)

  


  

      

          @callback trace_type?(atom()) :: boolean()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    get_span_context(tracer)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_error(tracers, error)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_error(tracers, error, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_handled_error(tracers, error, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_metadata(tracers, type, metadata)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_span_context(tracer, context)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this macro
    
    span(type, name, tracer, block_opts \\ [])


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    start_span(tracers, type, name)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    stop_span(tracers)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this macro
    
    telemetry_span(name, metadata, opts)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    trace_type?(tracer, type)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.UUID - ash v2.17.7
    
    

    



  
  

    
Ash.UUID 
    



      
Helpers for working with UUIDs

      


      
        Summary


  
    Functions
  


    
      
        generate()

      


        Generates a new uuid



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    generate()


      
       
       View Source
     


  


  

Generates a new uuid

  


        

      



  

  
    
    Ash.Union - ash v2.17.7
    
    

    



  
  

    
Ash.Union 
    



      
A wrapper for values that are sourced from Ash.Type.Union.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Union{type: term(), value: term()}


      



  


        

      



  

  
    
    Ash.Generator - ash v2.17.7
    
    

    



  
  

    
Ash.Generator 
    



      
Tools for generating input to Ash resource actions, as well as for seeds.
These tools are young, and various factors are not taken into account. For example,
validations and identities are not automatically considered.
If you want to use this with stream data testing, you will likely want to get familiar with StreamData.
Many functions in this module support overrides, which allow passing down either constant values
or your own generators.
For example:
# All generated posts will have text as `"text"`. Equivalent to providing `StreamData.constant("text")`.
Ash.Generator.seed_input(Post, %{text: "text"})

      


      
        Summary


  
    Functions
  


    
      
        action_input(resource_or_record, action, generators \\ %{})

      


        Generate input meant to be passed into a resource action.



    


    
      
        changeset(resource_or_record, action, generators \\ %{}, changeset_options \\ [])

      


        Creates the input for the provided action with action_input/3, and creates a changeset for that action with that input.



    


    
      
        initialize_sequence(identifier)

      


        Starts and links an agent for a sequence, or returns the existing agent pid if it already exists.



    


    
      
        many_changesets(resource_or_record, action, n, generators \\ %{}, changeset_options \\ [])

      


        Generate n changesets and return them as a list.



    


    
      
        many_queries(resource, action, n, generators \\ %{}, changeset_options \\ [])

      


        Generate n queries and return them as a list.



    


    
      
        mixed_map(map, keys)

      


        Creates a generator map where the keys are required except the list provided



    


    
      
        query(resource, action, generators \\ %{}, changeset_options \\ [])

      


        Creates the input for the provided action with action_input/3, and creates a query for that action with that input.



    


    
      
        seed!(resource, generators \\ %{})

      


        Gets input using seed_input/2 and passes it to Ash.Seed.seed!/2, returning the result



    


    
      
        seed_input(resource, generators \\ %{})

      


        Generate input meant to be passed into Ash.Seed.seed!/2.



    


    
      
        seed_many!(resource, n, generators \\ %{})

      


        Generates an input n times, and passes them all to seed, returning the list of seeded items.



    


    
      
        sequence(identifier, generator, sequencer \\ fn i -> (i || -1) + 1 end)

      


        Generate globally unique values.



    


    
      
        stop_sequence(identifier)

      


        Stops the agent for a sequence.



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    action_input(resource_or_record, action, generators \\ %{})


      
       
       View Source
     


  


  

Generate input meant to be passed into a resource action.
Currently input for arguments that are passed to a manage_relationship are excluded, and you will
have to generate them yourself by passing your own generators/values down See the module documentation for more.
This is meant to be used in property testing. If you want to generate a finite list of

  



    

    

  
    
      
      Link to this function
    
    changeset(resource_or_record, action, generators \\ %{}, changeset_options \\ [])


      
       
       View Source
     


  


  

Creates the input for the provided action with action_input/3, and creates a changeset for that action with that input.
See action_input/3 and the module documentation for more.

  



  
    
      
      Link to this function
    
    initialize_sequence(identifier)


      
       
       View Source
     


  


  

      

          @spec initialize_sequence(atom()) :: pid()


      


Starts and links an agent for a sequence, or returns the existing agent pid if it already exists.
See sequence/3 for more.

  



    

    

  
    
      
      Link to this function
    
    many_changesets(resource_or_record, action, n, generators \\ %{}, changeset_options \\ [])


      
       
       View Source
     


  


  

Generate n changesets and return them as a list.

  



    

    

  
    
      
      Link to this function
    
    many_queries(resource, action, n, generators \\ %{}, changeset_options \\ [])


      
       
       View Source
     


  


  

Generate n queries and return them as a list.

  



  
    
      
      Link to this function
    
    mixed_map(map, keys)


      
       
       View Source
     


  


  

Creates a generator map where the keys are required except the list provided

  



    

    

  
    
      
      Link to this function
    
    query(resource, action, generators \\ %{}, changeset_options \\ [])


      
       
       View Source
     


  


  

Creates the input for the provided action with action_input/3, and creates a query for that action with that input.
See action_input/3 and the module documentation for more.

  



    

  
    
      
      Link to this function
    
    seed!(resource, generators \\ %{})


      
       
       View Source
     


  


  

Gets input using seed_input/2 and passes it to Ash.Seed.seed!/2, returning the result

  



    

  
    
      
      Link to this function
    
    seed_input(resource, generators \\ %{})


      
       
       View Source
     


  


  

Generate input meant to be passed into Ash.Seed.seed!/2.
A map of custom StreamData generators can be provided to add to or overwrite the generated input,
for example: Ash.Generator.for_seed(Post, %{text: StreamData.constant("Post")})

  



    

  
    
      
      Link to this function
    
    seed_many!(resource, n, generators \\ %{})


      
       
       View Source
     


  


  

Generates an input n times, and passes them all to seed, returning the list of seeded items.

  



    

  
    
      
      Link to this function
    
    sequence(identifier, generator, sequencer \\ fn i -> (i || -1) + 1 end)


      
       
       View Source
     


  


  

      

          @spec sequence(
  pid() | atom(),
  (iterator | nil -> value),
  (iterator | nil -> iterator)
) ::
  StreamData.t(value)
when iterator: term(), value: term()


      


Generate globally unique values.
This is useful for generating values that are unique across all resources, such as email addresses,
or for generating values that are unique across a single resource, such as identifiers. The values will be unique
for anything using the same sequence name.
The name of the identifier will be used as the name of the agent process, so use a unique name not in use anywhere else.
The lifecycle of this generator is tied to the process that initially starts it. In general,
that will be the test. In the rare case where you are running async processes that need to share a sequence
that is not created in the test process, you can initialize a sequence in the test using initialize_sequence/1.
Example:
Ash.Generator.sequence(:unique_email, fn i -> "user#{i}@example.com" end) |> Enum.take(3)
iex> ["user0@example.com", "user1@example.com", "user2@example.com"]

  
    
  
  Using a different sequencer


By default we use an incrementing integer starting at 0. However, if you want to use something else, you can provide
your own sequencer. The initial value will be nil, which you can use to detect that you are the start of the sequence.
Example:
Ash.Generator.sequence(:unique_email, fn i -> "user#{i}@example.com" end, fn num -> (num || 1) - 1 end) |> Enum.take(3)
iex> ["user0@example.com", "user-1@example.com", "user-2@example.com"]

  



  
    
      
      Link to this function
    
    stop_sequence(identifier)


      
       
       View Source
     


  


  

Stops the agent for a sequence.
See sequence/3 for more.

  


        

      



  

  
    
    Ash.Seed - ash v2.17.7
    
    

    



  
  

    
Ash.Seed 
    



      
Helpers for seeding data, useful for quickly creating lots of data either for database seeding or testing.
Important: this bypasses resource actions, and goes straight to the data layer. No action changes or validations are run.
The only thing that it does at the moment is ensure that default values for attributes are set, it does not validate
that required attributes are set (although the data layer may do that for you, e.g with ash_postgres).

      


      
        Summary


  
    Functions
  


    
      
        keep_nil()

      


        Returns :__keep_nil__, allowing to ensure a default value is not used when you want the value to be nil.



    


    
      
        seed!(input)

      


        Seed using a record (instance of a resource) as input.



    


    
      
        seed!(resource, input)

      


        Performs a direct call to the data layer of a resource with the provided input.



    


    
      
        update!(record, input)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    keep_nil()


      
       
       View Source
     


  


  

Returns :__keep_nil__, allowing to ensure a default value is not used when you want the value to be nil.

  



  
    
      
      Link to this function
    
    seed!(input)


      
       
       View Source
     


  


  

Seed using a record (instance of a resource) as input.
If the passed in struct was retrieved from the data layer already (i.e already seeded),
then it is returned and nothing is done. Otherwise, the attributes and relationships are
used as input to seed/2, after having any %Ash.NotLoaded{} values stripped out.
Any nil values will be overwritten with their default values. To avoid this, either use seed/2
in which providing the key will have it not set the default values.
If you want to force nil to be accepted and prevent the default value from being set, use the
keep_nil/0 function provided here, which returns :__keep_nil__. Alternatively, use
seed!(Post, %{text: nil}).
See seed!/2 for more information.

  



  
    
      
      Link to this function
    
    seed!(resource, input)


      
       
       View Source
     


  


  

Performs a direct call to the data layer of a resource with the provided input.
If a list is provided as input, then you will get back that many results.

  



  
    
      
      Link to this function
    
    update!(record, input)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Test - ash v2.17.7
    
    

    



  
  

    
Ash.Test 
    



      
Testing helpers for Ash.

      


      
        Summary


  
    Functions
  


    
      
        assert_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

      


        Assert that the given changeset, query, or action input has a matching error.



    


    
      
        refute_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])

      


        Refute that the given changeset, query, or action input has a matching error.



    


    
      
        strip_metadata(structs)

      


        Clears the __metadata__ field and the underlying ecto __meta__ field



    





      


      
        Functions

        


    

    

  
    
      
      Link to this function
    
    assert_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])


      
       
       View Source
     


  


  

Assert that the given changeset, query, or action input has a matching error.
Use the optional second argument to assert that the errors (all together) are of a specific class.

  



    

    

  
    
      
      Link to this function
    
    refute_has_error(changeset_query_or_input, error_class \\ nil, callback, opts \\ [])


      
       
       View Source
     


  


  

Refute that the given changeset, query, or action input has a matching error.
Use the optional second argument to assert that the errors (all together) are of a specific class.

  



  
    
      
      Link to this function
    
    strip_metadata(structs)


      
       
       View Source
     


  


  

Clears the __metadata__ field and the underlying ecto __meta__ field
This allows for easier comparison of changeset/query results

  


        

      



  

  
    
    Ash.Flow - ash v2.17.7
    
    

    



  
  

    
Ash.Flow 
    



      
A flow is a static definition of a set of steps to be run.
See the guide for more.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        do_fetch_in(value, arg2)

      


    


    
      
        element_refs(input)

      


        See Ash.Flow.Template.element_refs/1.



    


    
      
        handle_modifiers(action_input)

      


    


    
      
        run(flow, input, opts \\ [])

      


    


    
      
        run!(flow, input, opts \\ [])

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    do_fetch_in(value, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    element_refs(input)


      
       
       View Source
     


  


  

See Ash.Flow.Template.element_refs/1.

  



  
    
      
      Link to this function
    
    handle_modifiers(action_input)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    run(flow, input, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec run(any(), any(), Keyword.t()) :: Ash.Flow.Result.t()


      



  



    

  
    
      
      Link to this function
    
    run!(flow, input, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec run!(any(), any(), Keyword.t()) :: Ash.Flow.Result.t() | no_return()


      



  


        

      



  

  
    
    Ash.Flow.Chart.Mermaid - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Chart.Mermaid 
    



      
Tools to render an Ash.Flow as a mermaid chart.

      


      
        Summary


  
    Functions
  


    
      
        add_links(message, steps, all_steps, opts)

      


    


    
      
        chart(flow, opts \\ [])

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    add_links(message, steps, all_steps, opts)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    chart(flow, opts \\ [])


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Executor - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Executor behaviour
    



      
A flow executor runs a given flow module

      


      
        Summary


  
    Types
  


    
      
        built_flow()

      


    





  
    Callbacks
  


    
      
        build(t, input, opts)

      


    


    
      
        execute(built_flow, input, opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    built_flow()


      
       
       View Source
     


  


  

      

          @type built_flow() :: any()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    build(t, input, opts)


      
       
       View Source
     


  


  

      

          @callback build(Ash.Flow.t(), input :: map(), opts :: Keyword.t()) ::
  {:ok, built_flow()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    execute(built_flow, input, opts)


      
       
       View Source
     


  


  

      

          @callback execute(built_flow(), input :: map(), opts :: Keyword.t()) ::
  {:ok, term()} | {:error, term()}


      



  


        

      



  

  
    
    Ash.Flow.Step - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step behaviour
    



      
A behaviour for implementing a custom step in a flow.

      


      
        Summary


  
    Callbacks
  


    
      
        describe(opts)

      


    


    
      
        run(input, opts, context)

      


    


    
      
        short_name(opts)

      


    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    describe(opts)


      
       
       View Source
     


      (optional)

  


  

      

          @callback describe(opts :: Keyword.t()) :: String.t()


      



  



  
    
      
      Link to this callback
    
    run(input, opts, context)


      
       
       View Source
     


  


  

      

          @callback run(input :: map() | nil, opts :: Keyword.t(), context :: map()) ::
  {:ok, term()}
  | {:ok, term(),
     %{optional(:notifications) => [Ash.Notifier.Notification.t()]}}
  | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    short_name(opts)


      
       
       View Source
     


      (optional)

  


  

      

          @callback short_name(opts :: Keyword.t()) :: String.t()


      



  


        

      



  

  
    
    Ash.Flow.StepHelpers - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.StepHelpers 
    



      
Template functions available while declaring steps.

      


      
        Summary


  
    Functions
  


    
      
        arg(name)

      


        Accesses a flow argument



    


    
      
        element(element)

      


        Accesses the value being iterated over for a given map step. The name is required so that map steps can be nested.



    


    
      
        expr(expr)

      


        Constructs an expression that can access



    


    
      
        merge(results)

      


        Accesses a flow argument



    


    
      
        path(template, path)

      


        Accesses a path in a value lazily. Supports the value being a template, e.g path(result(:foo), [:bar, 0, :baz])



    


    
      
        range(start, finish)

      


        Creates a range lazily. Supports the start or finish being a template, e.g range(result(:foo), result(:bar))



    


    
      
        result(step)

      


        Accesses the result of a step



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    arg(name)


      
       
       View Source
     


  


  

Accesses a flow argument

  



  
    
      
      Link to this function
    
    element(element)


      
       
       View Source
     


  


  

Accesses the value being iterated over for a given map step. The name is required so that map steps can be nested.

  



  
    
      
      Link to this macro
    
    expr(expr)


      
       
       View Source
     


      (macro)

  


  

Constructs an expression that can access

  



  
    
      
      Link to this function
    
    merge(results)


      
       
       View Source
     


  


  

Accesses a flow argument

  



  
    
      
      Link to this function
    
    path(template, path)


      
       
       View Source
     


  


  

Accesses a path in a value lazily. Supports the value being a template, e.g path(result(:foo), [:bar, 0, :baz])

  



  
    
      
      Link to this function
    
    range(start, finish)


      
       
       View Source
     


  


  

Creates a range lazily. Supports the start or finish being a template, e.g range(result(:foo), result(:bar))

  



  
    
      
      Link to this function
    
    result(step)


      
       
       View Source
     


  


  

Accesses the result of a step

  


        

      



  

  
    
    Ash.Type - ash v2.17.7
    
    

    



  
  

    
Ash.Type behaviour
    



      
Describes how to convert data to Ecto.Type and eventually into the database.
This behaviour is a superset of the Ecto.Type behaviour, that also contains
API level information, like what kinds of filters are allowed.

  
    
  
  Built in types


	:map - Ash.Type.Map
	:keyword - Ash.Type.Keyword
	:term - Ash.Type.Term
	:atom - Ash.Type.Atom
	:string - Ash.Type.String
	:integer - Ash.Type.Integer
	:float - Ash.Type.Float
	:duration_name - Ash.Type.DurationName
	:function - Ash.Type.Function
	:boolean - Ash.Type.Boolean
	:struct - Ash.Type.Struct
	:uuid - Ash.Type.UUID
	:binary - Ash.Type.Binary
	:date - Ash.Type.Date
	:time - Ash.Type.Time
	:decimal - Ash.Type.Decimal
	:ci_string - Ash.Type.CiString
	:naive_datetime - Ash.Type.NaiveDatetime
	:utc_datetime - Ash.Type.UtcDatetime
	:utc_datetime_usec - Ash.Type.UtcDatetimeUsec
	:datetime - Ash.Type.DateTime
	:url_encoded_binary - Ash.Type.UrlEncodedBinary
	:union - Ash.Type.Union
	:module - Ash.Type.Module
	:vector - Ash.Type.Vector


  
    
  
  Lists/Arrays


To specify a list of values, use {:array, Type}. Arrays are special, and have special constraints:
	:items (term/0) - Constraints for the elements of the list. See the contained type's docs for more.

	:min_length (non_neg_integer/0) - A minimum length for the items

	:max_length (non_neg_integer/0) - A maximum length for the items

	:nil_items? (boolean/0) - Whether or not the list can contain nil items The default value is false.

	:empty_values (list of term/0) - A set of values that, if encountered, will be considered an empty list. The default value is [""].



  
    
  
  Defining Custom Types


Generally you add use Ash.Type to your module (it is possible to add @behaviour Ash.Type and define everything yourself, but this is more work and error-prone).
Overriding the {:array, type} behaviour. By defining the *_array versions
of cast_input, cast_stored, dump_to_native and apply_constraints, you can
override how your type behaves as a collection. This is how the features of embedded
resources are implemented. No need to implement them unless you wish to override the
default behaviour. Your type is responsible for handling nil values in each callback as well.
Simple example of a float custom type
defmodule GenTracker.AshFloat do
  use Ash.Type

  @impl Ash.Type
  def storage_type(_), do: :float

  @impl Ash.Type
  def cast_input(nil, _), do: {:ok, nil}
  def cast_input(value, _) do
    Ecto.Type.cast(:float, value)
  end

  @impl Ash.Type
  def cast_stored(nil, _), do: {:ok, nil}
  def cast_stored(value, _) do
    Ecto.Type.load(:float, value)
  end

  @impl Ash.Type
  def dump_to_native(nil, _), do: {:ok, nil}
  def dump_to_native(value, _) do
    Ecto.Type.dump(:float, value)
  end
end
All the Ash built-in types are implemented with use Ash.Type so they are good
examples to look at to create your own Ash.Type.

  
    
  
  Short names


You can define short :atom_names for your custom types by adding them to your Ash configuration:
config :ash, :custom_types, [ash_float: GenTracker.AshFloat]
Doing this will require a recompilation of the :ash dependency which can be triggered by calling:
$ mix deps.compile ash --force


  
    
  
  Composite Types


Composite types are composite in the data layer. Many data layers do not support this, but some (like AshPostgres),
do. To define a composite type, the following things should be true:
	A casted value should be a map or struct, for example for a point: %{x: 1, y: 2}
	The data layer must support composite types, and the data layer representation will be a tuple, i.e {1, 2}
	Define def composite?(_), do: true in your composite type
	Define the type & constraints of each item in the tuple, and its name in the map
representation: def composite_types(_), do: [{:x, :integer, []}, {:y, :integer, []}].
You can also define a storage key for each item in the tuple, if the underlying type implementation
has a different reference for an item, i.e def composite_types(_), do: [{:x, :x_coord, :integer, []}, {:y, :y_coord, :integer, []}]

With the above implemented, your composite type can be used in expressions, for example:
Ash.Query.filter(expr(coordinates[:x] == 1))k
And you can also construct composite types in expressions, for example:
calculate :coordinates, :composite_point, expr(composite_type(%{x: some_value, y: some_other_value}, Point))

      


      
        Summary


  
    Types
  


    
      
        constraint_error()

      


    


    
      
        constraints()

      


    


    
      
        error()

      


    


    
      
        load_context()

      


    


    
      
        t()

      


    





  
    Callbacks
  


    
      
        apply_constraints(term, constraints)

      


    


    
      
        apply_constraints_array(list, constraints)

      


    


    
      
        array_constraints()

      


    


    
      
        can_load?(constraints)

      


    


    
      
        cast_in_query?(constraints)

      


    


    
      
        cast_input(term, constraints)

      


    


    
      
        cast_input_array(list, constraints)

      


    


    
      
        cast_stored(term, constraints)

      


    


    
      
        cast_stored_array(list, constraints)

      


    


    
      
        composite?(constraints)

      


    


    
      
        composite_types(constraints)

      


    


    
      
        constraints()

      


    


    
      
        custom_apply_constraints_array?()

      


    


    
      
        describe(constraints)

      


    


    
      
        dump_to_embedded(term, constraints)

      


    


    
      
        dump_to_embedded_array(list, constraints)

      


    


    
      
        dump_to_native(term, constraints)

      


    


    
      
        dump_to_native_array(list, constraints)

      


    


    
      
        ecto_type()

      


    


    
      
        embedded?()

      


    


    
      
        equal?(term, term)

      


    


    
      
        generator(constraints)

      


    


    
      
        handle_change(old_term, new_term, constraints)

      


    


    
      
        handle_change_array(old_term, new_term, constraints)

      


    


    
      
        include_source(constraints, t)

      


    


    
      
        init(constraints)

      


        Useful for typed data layers (like ash_postgres) to instruct them not to attempt to cast input values.



    


    
      
        load(values, load, constraints, context)

      


    


    
      
        prepare_change(old_term, new_uncasted_term, constraints)

      


    


    
      
        prepare_change_array(old_term, new_uncasted_term, constraints)

      


    


    
      
        simple_equality?()

      


    


    
      
        storage_type()

      


    


    
      
        storage_type(constraints)

      


    





  
    Functions
  


    
      
        apply_constraints(type, term, constraints)

      


        Confirms if a casted value matches the provided constraints.



    


    
      
        array_constraints(type)

      


    


    
      
        ash_type?(module)

      


        Returns true if the value is a builtin type or adopts the Ash.Type behaviour



    


    
      
        ash_type_option(type)

      


    


    
      
        builtin?(type)

      


    


    
      
        can_load?(type, constraints \\ [])

      


    


    
      
        cast_in_query?(type, constraints \\ [])

      


    


    
      
        cast_input(type, term, constraints \\ nil)

      


        Casts input (e.g. unknown) data to an instance of the type, or errors



    


    
      
        cast_stored(type, term, constraints \\ [])

      


        Casts a value from the data store to an instance of the type, or errors



    


    
      
        composite?(type, constraints)

      


    


    
      
        composite_types(type, constraints)

      


    


    
      
        constraints(type)

      


    


    
      
        describe(type, constraints)

      


    


    
      
        dump_to_embedded(type, term, constraints \\ [])

      


        Casts a value from the Elixir type to a value that can be embedded in another data structure.



    


    
      
        dump_to_native(type, term, constraints \\ [])

      


        Casts a value from the Elixir type to a value that the data store can persist



    


    
      
        ecto_type(type)

      


        Returns the ecto compatible type for an Ash.Type.



    


    
      
        embedded_type?(type)

      


    


    
      
        equal?(type, left, right)

      


        Determines if two values of a given type are equal.



    


    
      
        generator(type, constraints)

      


    


    
      
        get_type(value)

      


    


    
      
        handle_change(type, old_value, new_value, constraints)

      


        Process the old casted values alongside the new casted values.



    


    
      
        include_source(type, changeset_or_query, constraints)

      


    


    
      
        init(type, constraints)

      


        Initializes the constraints according to the underlying type



    


    
      
        load(type, value, loads, constraints, context)

      


    


    
      
        prepare_change(type, old_value, new_value, constraints)

      


        Process the old casted values alongside the new uncasted values.



    


    
      
        short_names()

      


    


    
      
        simple_equality?(type)

      


        Determines if a type can be compared using ==



    


    
      
        storage_type(type, constraints \\ [])

      


        Returns the underlying storage type (the underlying type of the ecto type of the ash type)



    





      


      
        Types

        


  
    
      
      Link to this type
    
    constraint_error()


      
       
       View Source
     


  


  

      

          @type constraint_error() :: String.t() | {String.t(), Keyword.t()}


      



  



  
    
      
      Link to this type
    
    constraints()


      
       
       View Source
     


  


  

      

          @type constraints() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    error()


      
       
       View Source
     


  


  

      

          @type error() :: :error | {:error, String.t() | Keyword.t()}


      



  



  
    
      
      Link to this type
    
    load_context()


      
       
       View Source
     


  


  

      

          @type load_context() :: %{
  api: Ash.Api.t(),
  actor: term() | nil,
  tenant: String.t() | nil,
  tracer: [Ash.Tracer.t()] | Ash.Tracer.t() | nil,
  authorize?: boolean() | nil
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: atom() | {:array, atom()}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    apply_constraints(term, constraints)


      
       
       View Source
     


  


  

      

          @callback apply_constraints(term(), constraints()) ::
  {:ok, new_value :: term()}
  | :ok
  | {:error, constraint_error() | [constraint_error()]}


      



  



  
    
      
      Link to this callback
    
    apply_constraints_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback apply_constraints_array([term()], constraints()) ::
  {:ok, new_values :: [term()]}
  | :ok
  | {:error, constraint_error() | [constraint_error()]}


      



  



  
    
      
      Link to this callback
    
    array_constraints()


      
       
       View Source
     


      (optional)

  


  

      

          @callback array_constraints() :: constraints()


      



  



  
    
      
      Link to this callback
    
    can_load?(constraints)


      
       
       View Source
     


  


  

      

          @callback can_load?(constraints()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    cast_in_query?(constraints)


      
       
       View Source
     


  


  

      

          @callback cast_in_query?(constraints()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    cast_input(term, constraints)


      
       
       View Source
     


  


  

      

          @callback cast_input(term(), constraints()) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    cast_input_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback cast_input_array([term()], constraints()) :: {:ok, [term()]} | error()


      



  



  
    
      
      Link to this callback
    
    cast_stored(term, constraints)


      
       
       View Source
     


  


  

      

          @callback cast_stored(term(), constraints()) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    cast_stored_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback cast_stored_array([term()], constraints()) :: {:ok, [term()]} | error()


      



  



  
    
      
      Link to this callback
    
    composite?(constraints)


      
       
       View Source
     


  


  

      

          @callback composite?(constraints()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    composite_types(constraints)


      
       
       View Source
     


  


  

      

          @callback composite_types(constraints()) :: [
  {name, type, constraints()} | {name, storage_key, type, constraints()}
]
when name: atom(), type: t(), storage_key: atom()


      



  



  
    
      
      Link to this callback
    
    constraints()


      
       
       View Source
     


  


  

      

          @callback constraints() :: constraints()


      



  



  
    
      
      Link to this callback
    
    custom_apply_constraints_array?()


      
       
       View Source
     


  


  

      

          @callback custom_apply_constraints_array?() :: boolean()


      



  



  
    
      
      Link to this callback
    
    describe(constraints)


      
       
       View Source
     


  


  

      

          @callback describe(constraints()) :: String.t() | nil


      



  



  
    
      
      Link to this callback
    
    dump_to_embedded(term, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback dump_to_embedded(term(), constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    dump_to_embedded_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback dump_to_embedded_array([term()], constraints()) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    dump_to_native(term, constraints)


      
       
       View Source
     


  


  

      

          @callback dump_to_native(term(), constraints()) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    dump_to_native_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback dump_to_native_array([term()], constraints()) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    ecto_type()


      
       
       View Source
     


  


  

      

          @callback ecto_type() :: Ecto.Type.t()


      



  



  
    
      
      Link to this callback
    
    embedded?()


      
       
       View Source
     


  


  

      

          @callback embedded?() :: boolean()


      



  



  
    
      
      Link to this callback
    
    equal?(term, term)


      
       
       View Source
     


  


  

      

          @callback equal?(term(), term()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    generator(constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback generator(constraints()) :: Enumerable.t()


      



  



  
    
      
      Link to this callback
    
    handle_change(old_term, new_term, constraints)


      
       
       View Source
     


  


  

      

          @callback handle_change(old_term :: term(), new_term :: term(), constraints()) ::
  {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    handle_change_array(old_term, new_term, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback handle_change_array(old_term :: [term()], new_term :: [term()], constraints()) ::
  {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    include_source(constraints, t)


      
       
       View Source
     


      (optional)

  


  

      

          @callback include_source(constraints(), Ash.Changeset.t()) :: constraints()


      



  



  
    
      
      Link to this callback
    
    init(constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback init(constraints()) :: {:ok, constraints()} | {:error, Ash.Error.t()}


      


Useful for typed data layers (like ash_postgres) to instruct them not to attempt to cast input values.
You generally won't need this, but it can be an escape hatch for certain cases.

  



  
    
      
      Link to this callback
    
    load(values, load, constraints, context)


      
       
       View Source
     


      (optional)

  


  

      

          @callback load(
  values :: [term()],
  load :: Keyword.t(),
  constraints :: Keyword.t(),
  context :: load_context()
) :: {:ok, [term()]} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this callback
    
    prepare_change(old_term, new_uncasted_term, constraints)


      
       
       View Source
     


  


  

      

          @callback prepare_change(old_term :: term(), new_uncasted_term :: term(), constraints()) ::
  {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    prepare_change_array(old_term, new_uncasted_term, constraints)


      
       
       View Source
     


      (optional)

  


  

      

          @callback prepare_change_array(
  old_term :: [term()],
  new_uncasted_term :: [term()],
  constraints()
) :: {:ok, term()} | error()


      



  



  
    
      
      Link to this callback
    
    simple_equality?()


      
       
       View Source
     


  


  

      

          @callback simple_equality?() :: boolean()


      



  



  
    
      
      Link to this callback
    
    storage_type()


      
       
       View Source
     


      (optional)

  


  

      

          @callback storage_type() :: Ecto.Type.t()


      



  



  
    
      
      Link to this callback
    
    storage_type(constraints)


      
       
       View Source
     


  


  

      

          @callback storage_type(constraints()) :: Ecto.Type.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    apply_constraints(type, term, constraints)


      
       
       View Source
     


  


  

      

          @spec apply_constraints(t(), term(), constraints()) ::
  {:ok, term()} | {:error, String.t()}


      


Confirms if a casted value matches the provided constraints.

  



  
    
      
      Link to this function
    
    array_constraints(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    ash_type?(module)


      
       
       View Source
     


  


  

      

          @spec ash_type?(term()) :: boolean()


      


Returns true if the value is a builtin type or adopts the Ash.Type behaviour

  



  
    
      
      Link to this function
    
    ash_type_option(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin?(type)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    can_load?(type, constraints \\ [])


      
       
       View Source
     


  


  

      

          @spec can_load?(t(), Keyword.t()) :: boolean()


      



  



    

  
    
      
      Link to this function
    
    cast_in_query?(type, constraints \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    cast_input(type, term, constraints \\ nil)


      
       
       View Source
     


  


  

      

          @spec cast_input(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, Keyword.t()} | :error


      


Casts input (e.g. unknown) data to an instance of the type, or errors
Maps to Ecto.Type.cast/2

  



    

  
    
      
      Link to this function
    
    cast_stored(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      

          @spec cast_stored(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the data store to an instance of the type, or errors
Maps to Ecto.Type.load/2

  



  
    
      
      Link to this function
    
    composite?(type, constraints)


      
       
       View Source
     


  


  

      

          @spec composite?(
  t(),
  constraints()
) :: Enumerable.t()


      



  



  
    
      
      Link to this function
    
    composite_types(type, constraints)


      
       
       View Source
     


  


  

      

          @spec composite_types(
  t(),
  constraints()
) :: Enumerable.t()


      



  



  
    
      
      Link to this function
    
    constraints(type)


      
       
       View Source
     


  


  

      

          @spec constraints(t()) :: constraints()


      



  



  
    
      
      Link to this function
    
    describe(type, constraints)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    dump_to_embedded(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      

          @spec dump_to_embedded(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the Elixir type to a value that can be embedded in another data structure.
Embedded resources expect to be stored in JSON, so this allows things like UUIDs to be stored
as strings in embedded resources instead of binary.

  



    

  
    
      
      Link to this function
    
    dump_to_native(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      

          @spec dump_to_native(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the Elixir type to a value that the data store can persist
Maps to Ecto.Type.dump/2

  



  
    
      
      Link to this function
    
    ecto_type(type)


      
       
       View Source
     


  


  

      

          @spec ecto_type(t()) :: Ecto.Type.t()


      


Returns the ecto compatible type for an Ash.Type.
If you use Ash.Type, this is created for you. For builtin types
this may return a corresponding ecto builtin type (atom)

  



  
    
      
      Link to this function
    
    embedded_type?(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    equal?(type, left, right)


      
       
       View Source
     


  


  

      

          @spec equal?(t(), term(), term()) :: boolean()


      


Determines if two values of a given type are equal.
Maps to Ecto.Type.equal?/3

  



  
    
      
      Link to this function
    
    generator(type, constraints)


      
       
       View Source
     


  


  

      

          @spec generator(
  module() | {:array, module()},
  constraints()
) :: Enumerable.t()


      



  



  
    
      
      Link to this function
    
    get_type(value)


      
       
       View Source
     


  


  

      

          @spec get_type(atom() | module() | {:array, atom() | module()}) ::
  atom() | module() | {:array, atom() | module()}


      



  



  
    
      
      Link to this function
    
    handle_change(type, old_value, new_value, constraints)


      
       
       View Source
     


  


  

Process the old casted values alongside the new casted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

  



  
    
      
      Link to this function
    
    include_source(type, changeset_or_query, constraints)


      
       
       View Source
     


  


  

      

          @spec include_source(t(), Ash.Changeset.t() | Ash.Query.t(), constraints()) ::
  constraints()


      



  



  
    
      
      Link to this function
    
    init(type, constraints)


      
       
       View Source
     


  


  

      

          @spec init(t(), constraints()) :: {:ok, constraints()} | {:error, Ash.Error.t()}


      


Initializes the constraints according to the underlying type

  



  
    
      
      Link to this function
    
    load(type, value, loads, constraints, context)


      
       
       View Source
     


  


  

      

          @spec load(
  type :: t(),
  values :: [term()],
  load :: Keyword.t(),
  constraints :: Keyword.t(),
  context :: load_context()
) :: {:ok, [term()]} | {:error, Ash.Error.t()}


      



  



  
    
      
      Link to this function
    
    prepare_change(type, old_value, new_value, constraints)


      
       
       View Source
     


  


  

Process the old casted values alongside the new uncasted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

  



  
    
      
      Link to this function
    
    short_names()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simple_equality?(type)


      
       
       View Source
     


  


  

      

          @spec simple_equality?(t()) :: boolean()


      


Determines if a type can be compared using ==

  



    

  
    
      
      Link to this function
    
    storage_type(type, constraints \\ [])


      
       
       View Source
     


  


  

Returns the underlying storage type (the underlying type of the ecto type of the ash type)

  


        

      



  

  
    
    Ash.Type.Atom - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Atom 
    



      
Stores an atom as a string in the database
A builtin type that can be referenced via :atom

  
    
  
  Constraints


	:one_of (term/0) - Allows constraining the value of an atom to a pre-defined list


      





  

  
    
    Ash.Type.Binary - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Binary 
    



      
Represents a binary.
A builtin type that can be referenced via :binary

      





  

  
    
    Ash.Type.Boolean - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Boolean 
    



      
Represents a boolean.
A builtin type that can be referenced via :boolean

      





  

  
    
    Ash.Type.CiString - ash v2.17.7
    
    

    



  
  

    
Ash.Type.CiString 
    



      
Stores a case insensitive string in the database
See Ash.CiString for more information.
A builtin type that can be referenced via :ci_string

  
    
  
  Constraints


	:max_length (non_neg_integer/0) - Enforces a maximum length on the value

	:min_length (non_neg_integer/0) - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? (boolean/0) - Trims the value. The default value is true.

	:allow_empty? (boolean/0) - Sets the value to nil if it's empty. The default value is false.

	:casing - Lowercases or uppercases the value, fully discarding case information.
For example, if you don't set this, a value of FrEd could be saved to the data layer.
FrEd and fReD would still compare as equal, but the original casing information  is retained.
In many cases, this is what you want. In some cases, however, you want to remove all case information.
For example, in an email, you may want to support a user inputting an upper case letter, but discard it
when saved.
 Valid values are :upper, :lower, nil The default value is nil.



      


      
        Summary


  
    Functions
  


    
      
        match(regex)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    match(regex)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Type.Comparable - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Comparable 
    



      
Helpers for working with Comparable

      


      
        Summary


  
    Functions
  


    
      
        defcomparable(arg1, arg2, list)

      


    





      


      
        Functions

        


  
    
      
      Link to this macro
    
    defcomparable(arg1, arg2, list)


      
       
       View Source
     


      (macro)

  


  


  


        

      



  

  
    
    Ash.Type.Date - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Date 
    



      
Represents a date in the database
A builtin type that can be referenced via :date

      





  

  
    
    Ash.Type.DateTime - ash v2.17.7
    
    

    



  
  

    
Ash.Type.DateTime 
    



      
Represents a datetime, with configurable precision and timezone.

      





  

  
    
    Ash.Type.Decimal - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Decimal 
    



      
Represents a decimal.
A builtin type that can be referenced via :decimal

  
    
  
  Constraints


	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value



      





  

  
    
    Ash.Type.DurationName - ash v2.17.7
    
    

    



  
  

    
Ash.Type.DurationName 
    



      
An interval of time, primarily meant to be used in expression functions
Valid intervals are (as strings or atoms): [:year, :month, :week, :day, :hour, :minute, :second, :millisecond, :microsecond]

      





  

  
    
    Ash.Type.Enum - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Enum behaviour
    



      
A type for abstracting enums into a single type.
For example, your existing app might look like:
attribute :status, :atom, constraints: [one_of: [:open, :closed]]
But as that starts to spread around your system you may find that you want
to centralize that logic. To do that, use this module to define an Ash type
easily:
defmodule MyApp.TicketStatus do
  use Ash.Type.Enum, values: [:open, :closed]
end
Valid values are:
	The atom itself, e.g :open
	A string that matches the atom, e.g "open"
	A string that matches the atom after being downcased, e.g "OPEN" or "oPeN"
	A string that matches the stringified, downcased atom, after itself being downcased.
This allows for enum values like :Open, :SomeState and :Some_State


      


      
        Summary


  
    Callbacks
  


    
      
        match(term)

      


        finds the valid value that matches a given input term



    


    
      
        match?(term)

      


        true if a given term matches a value



    


    
      
        values()

      


        The list of valid values (not all input types that match them)



    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    match(term)


      
       
       View Source
     


  


  

      

          @callback match(term()) :: {:ok, atom()} | :error


      


finds the valid value that matches a given input term

  



  
    
      
      Link to this callback
    
    match?(term)


      
       
       View Source
     


  


  

      

          @callback match?(term()) :: boolean()


      


true if a given term matches a value

  



  
    
      
      Link to this callback
    
    values()


      
       
       View Source
     


  


  

      

          @callback values() :: [atom()]


      


The list of valid values (not all input types that match them)

  


        

      



  

  
    
    Ash.Type.Float - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Float 
    



      
Represents a float (floating point number)
A builtin type that be referenced via :float

  
    
  
  Constraints


	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value



      


      
        Summary


  
    Functions
  


    
      
        constraints(_)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    constraints(_)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Type.Function - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Function 
    



      
Represents a function.
If the type would be dumped to a native format, :erlang.term_to_binary(term, [:safe]) is used.
Please keep in mind, this is NOT SAFE to use with external input.
More information available here: https://erlang.org/doc/man/erlang.html#binary_to_term-2

      





  

  
    
    Ash.Type.Integer - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Integer 
    



      
Represents a simple integer
A builtin type that can be referenced via :integer

  
    
  
  Constraints


	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value



      





  

  
    
    Ash.Type.Keyword - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Keyword 
    



      
Represents a keyword list, stored as a :map in the database.
A builtin type that can be referenced via :keyword_list
	:fields (keyword/0) - Required. The types of the fields in the map, and their constraints.
If constraints are specified, only those fields will be in the casted map.
For example:  fields:  [
  amount: [
    type: :integer,
    constraints: [
      max: 10
    ]
  ],
  currency: [
    type: :string,
    allow_nil?: false,
    constraints: [
      max_length: 3
    ]
  ]
]  
allow_nil? is true by default	:type (term/0) - Required.

	:allow_nil? (boolean/0) - The default value is true.

	:constraints (keyword/0) - The default value is [].





      


      
        Summary


  
    Functions
  


    
      
        field_types(value)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    field_types(value)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Type.Map - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Map 
    



      
Represents a map stored in the database.
In postgres, for example, this represents binary encoded json
A builtin type that can be referenced via :map
	:fields (keyword/0) - The types of the fields in the map, and their constraints.
If constraints are specified, only those fields will be in the casted map.
For example:  fields:  [
  amount: [
    type: :integer,
    constraints: [
      max: 10
    ]
  ],
  currency: [
    type: :string,
    allow_nil?: false,
    constraints: [
      max_length: 3
    ]
  ]
]  
allow_nil? is true by default	:type (term/0) - Required.

	:allow_nil? (boolean/0) - The default value is true.

	:constraints (keyword/0) - The default value is [].





      


      
        Summary


  
    Functions
  


    
      
        field_types(value)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    field_types(value)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Type.Module - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Module 
    



      
Stores a module as a string in the database.
A builtin type that can be referenced via :module.

  
    
  
  Constraints


	:behaviour (atom/0) - Allows constraining the module a one which implements a behaviour

	:protocol (atom/0) - Allows constraining the module a one which implements a protocol



      





  

  
    
    Ash.Type.NaiveDatetime - ash v2.17.7
    
    

    



  
  

    
Ash.Type.NaiveDatetime 
    



      
Represents a Naive datetime
A builtin type that can be referenced via :naive_datetime

      





  

  
    
    Ash.Type.NewType - ash v2.17.7
    
    

    



  
  

    
Ash.Type.NewType behaviour
    



      
Allows defining a new type that is the combination of an existing type and custom constraints
A subtle difference between this type and its supertype (one that will almost certainly not matter
in any case) is that we use the apply_constraints logic of the underlying type in the same step
as cast_input. We do this because new types like these are, generally speaking, considering the constraint
application as part of the core type. Other types, if you simply do Ash.Type.cast_input/3 you will not be
also applying their constraints.
For Example:
defmodule MyApp.Types.SSN do
  use Ash.Type.NewType, subtype_of: :string, constraints: [match: ~r/regex for ssn/]
end

defmodule MyApp.Types.Metadata do
  use Ash.Type.NewType, subtype_of: :union, constraints: [types: [
    foo: [...],
    bar: [...]
  ]]
end

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        subtype_constraints()

      


    


    
      
        subtype_of()

      


    


    
      
        type_constraints(constraints, subtype_constraints)

      


    





  
    Functions
  


    
      
        constraints(type, constraints)

      


    


    
      
        new_type?(type)

      


    


    
      
        subtype_of(type)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module() | atom() | {:array, module() | atom()}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    subtype_constraints()


      
       
       View Source
     


  


  

      

          @callback subtype_constraints() :: Keyword.t()


      



  



  
    
      
      Link to this callback
    
    subtype_of()


      
       
       View Source
     


  


  

      

          @callback subtype_of() :: module() | atom()


      



  



  
    
      
      Link to this callback
    
    type_constraints(constraints, subtype_constraints)


      
       
       View Source
     


  


  

      

          @callback type_constraints(constraints :: Keyword.t(), subtype_constraints :: Keyword.t()) ::
  Keyword.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    constraints(type, constraints)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new_type?(type)


      
       
       View Source
     


  


  

      

          @spec new_type?(Ash.Type.t()) :: boolean()


      



  



  
    
      
      Link to this function
    
    subtype_of(type)


      
       
       View Source
     


  


  

      

          @spec subtype_of(t()) :: Ash.Type.t()


      



  


        

      



  

  
    
    Ash.Type.String - ash v2.17.7
    
    

    



  
  

    
Ash.Type.String 
    



      
Stores a string in the database.
A built-in type that can be referenced via :string.
By default, values are trimmed and empty values are set to nil.
You can use the allow_empty? and trim? constraints to change these behaviors.

  
    
  
  Constraints


	:max_length (non_neg_integer/0) - Enforces a maximum length on the value

	:min_length (non_neg_integer/0) - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? (boolean/0) - Trims the value. The default value is true.

	:allow_empty? (boolean/0) - If false, the value is set to nil if it's empty. The default value is false.



      


      
        Summary


  
    Functions
  


    
      
        match(regex)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    match(regex)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Type.Struct - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Struct 
    



      
Represents a struct.
This cannot be loaded from a database, it can only be used to cast input.
Use the instance_of constraint to specify that it must be an instance of a specific struct.

      





  

  
    
    Ash.Type.Term - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Term 
    



      
Represents a raw elixir term in the database
A builtin type that can be referenced via :binary

      





  

  
    
    Ash.Type.Time - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Time 
    



      
Represents a time in the database
A builtin type that can be referenced via :time

      





  

  
    
    Ash.Type.UUID - ash v2.17.7
    
    

    



  
  

    
Ash.Type.UUID 
    



      
Represents a UUID.
A builtin type that can be referenced via :uuid

      





  

  
    
    Ash.Type.Union - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Union 
    



      
A union between multiple types, distinguished with a tag or by attempting to validate.

  
    
  
  Constraints


	:storage - How the value will be stored when persisted.
:type_and_value will store the type and value in a map like so {type: :type_name, value: the_value}
:map_with_tag will store the value directly. This only works if all types have a tag and tag_value configured.
 Valid values are :type_and_value, :map_with_tag The default value is :type_and_value.

	:types - The types to be unioned, a map of an identifier for the enum value to its configuration.
When using tag and tag_value we are referring to a map key that must equal a certain value
in order for the value to be considered an instance of that type.
For example:  
types:  [
  int: [
    type: :integer,
    constraints: [
      max: 10
    ]
  ],
  object: [
    type: MyObjectType,
    tag: :type,
    tag_value: "my_object"
  ],
  other_object: [
    type: MyOtherObjectType,
    tag: :type,
    tag_value: "my_other_object"
  ],
  other_object_without_type: [
    type: MyOtherObjectTypeWithoutType,
    tag: :type,
    tag_value: nil
  ]
]  
IMPORTANT:
This is stored as a map under the hood. Filters over the data will need to take this into account.
Additionally, if you are not using a tag, a value will be considered to be of the given type if it successfully casts.
This means that, for example, if you try to cast "10" as a union of a string and an integer, it will end up as "10" because
it is a string. If you put the integer type ahead of the string type, it will cast first and 10 will be the value.



      





  

  
    
    Ash.Type.UrlEncodedBinary - ash v2.17.7
    
    

    



  
  

    
Ash.Type.UrlEncodedBinary 
    



      
Represents a binary that attempts to decode input strings as a url encoded base64 string.
A builtin type that can be referenced via :url_encoded_binary

      





  

  
    
    Ash.Type.UtcDatetime - ash v2.17.7
    
    

    



  
  

    
Ash.Type.UtcDatetime 
    



      
Represents a utc datetime. A wrapper around :datetime for backwards compatibility.

      





  

  
    
    Ash.Type.UtcDatetimeUsec - ash v2.17.7
    
    

    



  
  

    
Ash.Type.UtcDatetimeUsec 
    



      
Represents a utc datetime with nanosecond precision. A wrapper around :datetime for backwards compatibility.

      





  

  
    
    Ash.Type.Vector - ash v2.17.7
    
    

    



  
  

    
Ash.Type.Vector 
    



      
Represents a vector.
A builtin type that can be referenced via :vector

      





  

  
    
    Ash.Error - ash v2.17.7
    
    

    



  
  

    
Ash.Error 
    



      
Tools and utilities used by Ash to manage and conform errors

      


      
        Summary


  
    Types
  


    
      
        class_error()

      


    


    
      
        class_module()

      


    


    
      
        error_class()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        ash_error?(value)

      


    


    
      
        choose_error(errors, changeset_or_query_or_input \\ nil)

      


    


    
      
        clear_stacktraces(error)

      


    


    
      
        error_descriptions(errors)

      


    


    
      
        error_messages(errors, custom_message, stacktraces?)

      


    


    
      
        flatten_preserving_keywords(list)

      


        A utility to flatten a list, but preserve keyword list elements



    


    
      
        to_ash_error(list, stacktrace \\ nil, opts \\ [])

      


        Converts a term into an Ash Error.



    


    
      
        to_error_class(values, opts \\ [])

      


        Conforms a term into one of the built-in Ash Error classes.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    class_error()


      
       
       View Source
     


  


  

      

          @type class_error() :: %{
  :__struct__ => class_module(),
  :__exception__ => true,
  :class => error_class(),
  :path => [atom() | integer()],
  :changeset => Ash.Changeset.t() | nil,
  :query => Ash.Query.t() | nil,
  :error_context => [String.t()],
  :vars => Keyword.t(),
  :stacktrace => Ash.Error.Stacktrace.t() | nil,
  optional(atom()) => any()
}


      



  



  
    
      
      Link to this type
    
    class_module()


      
       
       View Source
     


  


  

      

          @type class_module() ::
  Ash.Error.Forbidden
  | Ash.Error.Framework
  | Ash.Error.Invalid
  | Ash.Error.Unknown


      



  



  
    
      
      Link to this type
    
    error_class()


      
       
       View Source
     


  


  

      

          @type error_class() :: :forbidden | :invalid | :framework | :unknown


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %{
  :__struct__ => module(),
  :__exception__ => true,
  :class => error_class(),
  :path => [atom() | integer()],
  :changeset => Ash.Changeset.t() | nil,
  :query => Ash.Query.t() | nil,
  :error_context => [String.t()],
  :vars => Keyword.t(),
  :stacktrace => Ash.Error.Stacktrace.t() | nil,
  optional(atom()) => any()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    ash_error?(value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    choose_error(errors, changeset_or_query_or_input \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    clear_stacktraces(error)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    error_descriptions(errors)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    error_messages(errors, custom_message, stacktraces?)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    flatten_preserving_keywords(list)


      
       
       View Source
     


  


  

A utility to flatten a list, but preserve keyword list elements

  



    

    

  
    
      
      Link to this function
    
    to_ash_error(list, stacktrace \\ nil, opts \\ [])


      
       
       View Source
     


  


  

Converts a term into an Ash Error.
The term could be a simple string, the second element in an {:error, error} tuple, an Ash Error, or a list of any of these.
In most cases the returned error is an Ash.Error.Unknown.UnknownError.
A stacktrace is added to the error, and any existing stacktrace (i.e. when the term is an Ash Error) is preserved.
to_ash_error converts string(s) into UnknownError(s):
  iex(1)> Ash.Error.to_ash_error("whoops!", nil, error_context: "some context")
  %Ash.Error.Unknown.UnknownError{
    changeset: nil,
    class: :unknown,
    error: "whoops!",
    error_context: ["some context"],
    field: nil,
    path: [],
    query: nil,
    stacktrace: #Stacktrace<>,
    vars: []
  }

  iex(2)> Ash.Error.to_ash_error(["whoops!", "whoops, again!!"], nil, error_context: "some context")
  [
    %Ash.Error.Unknown.UnknownError{
      changeset: nil,
      class: :unknown,
      error: "whoops!",
      error_context: ["some context"],
      field: nil,
      path: [],
      query: nil,
      stacktrace: #Stacktrace<>,
      vars: []
    },
    %Ash.Error.Unknown.UnknownError{
      changeset: nil,
      class: :unknown,
      error: "whoops, again!!",
      error_context: ["some context"],
      field: nil,
      path: [],
      query: nil,
      stacktrace: #Stacktrace<>,
      vars: []
    }
  ]
to_ash_error can preserve error-like data from a keyword-list and accumulate context if called against an Ash Error:
  iex(1)> err = Ash.Error.to_ash_error([vars: [:some_var], message: "whoops!"], nil, error_context: " some context")
  %Ash.Error.Unknown.UnknownError{
    changeset: nil,
    class: :unknown,
    error: "whoops!",
    error_context: ["some context"],
    field: nil,
    path: [],
    query: nil,
    stacktrace: #Stacktrace<>,
    vars: [:some_var]
  }
  iex(2)> Ash.Error.to_ash_error(err, nil, error_context: "some higher context")
  %Ash.Error.Unknown.UnknownError{
    changeset: nil,
    class: :unknown,
    error: "whoops!",
    error_context: ["some higher context", "some context"],
    field: nil,
    path: [],
    query: nil,
    stacktrace: #Stacktrace<>,
    vars: [:some_var]
  }
Options:
	error_context: a sting message providing extra context around the error


  



    

  
    
      
      Link to this function
    
    to_error_class(values, opts \\ [])


      
       
       View Source
     


  


  

Conforms a term into one of the built-in Ash Error classes.
The provided term would usually be an Ash Error or a list of Ash Errors.
If the term is:
	a map/struct/Ash Error with a key :class having a value :special,
	a list with a single map/struct/Ash Error element as above, or
	an Ash.Error.Invalid containing such a list in its :errors field

then the term is returned unchanged.
Example:

iex(1)> Ash.Error.to_error_class("oops", changeset: Ash.Changeset.new(%Post{}), error_context: "some context")
  %Ash.Error.Unknown{
    changeset: #Ash.Changeset<
      errors: [
        %Ash.Error.Unknown.UnknownError{
          changeset: nil,
          class: :unknown,
          error: "oops",
          error_context: ["some context"],
          field: nil,
          path: [],
          query: nil,
          stacktrace: #Stacktrace<>,
          vars: []
        }
      ],
      ...
    >,
    class: :unknown,
    error_context: ["some context"],
    errors: [
      %Ash.Error.Unknown.UnknownError{
        changeset: nil,
        class: :unknown,
        error: "oops",
        error_context: ["some context"],
        field: nil,
        path: [],
        query: nil,
        stacktrace: #Stacktrace<>,
        vars: []
      }
    ],
    stacktrace: #Stacktrace<>,
    stacktraces?: true,
    vars: []
  }

Example of nested errors:
  iex(1)> error1 = Ash.Error.to_ash_error("whoops!", nil, error_context: "some context")
  iex(2)> error2 = Ash.Error.to_ash_error("whoops, again!!", nil, error_context: "some other context")
  iex(3)> Ash.Error.to_error_class([error1, error2], error_context: "some higher context")
  %Ash.Error.Unknown{
    changeset: nil,
    class: :unknown,
    error_context: ["some higher context"],
    errors: [
      %Ash.Error.Unknown.UnknownError{
        changeset: nil,
        class: :unknown,
        error: "whoops!",
        error_context: ["some higher context", "some context"],
        field: nil,
        path: [],
        query: nil,
        stacktrace: #Stacktrace<>,
        vars: []
      },
      %Ash.Error.Unknown.UnknownError{
        changeset: nil,
        class: :unknown,
        error: "whoops, again!!",
        error_context: ["some higher context", "some other context"],
        field: nil,
        path: [],
        query: nil,
        stacktrace: #Stacktrace<>,
        vars: []
      }
    ],
    path: [],
    query: nil,
    stacktrace: #Stacktrace<>,
    stacktraces?: true,
    vars: []
  }

Options:
	changeset: a changeset related to the error
	query: a query related to the error
	error_context: a sting message providing extra context around the error


  


        

      



  

  
    
    Ash.Error.Action.InvalidArgument - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Action.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Action.InvalidOptions - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Action.InvalidOptions exception
    



      
Used when options validation fails for an internal function call

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.InvalidArgument - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.InvalidAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.InvalidAttribute exception
    



      
Used when an invalid value is provided for an attribute change

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.InvalidChanges - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.InvalidChanges exception
    



      
Used when a change is provided that covers multiple attributes/relationships

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.InvalidRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.InvalidRelationship exception
    



      
Used when an invalid value is provided for a relationship change

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.NoSuchAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.NoSuchAttribute exception
    



      
Used when a change is provided for an attribute that does not exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.NoSuchRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.NoSuchRelationship exception
    



      
Used when a change is provided for an relationship that does not exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.Required - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.Required exception
    



      
Used when an attribute or relationship is required

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Changes.StaleRecord - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Changes.StaleRecord exception
    



      
Used when a stale record is attempted to be updated or deleted

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.EngineError - ash v2.17.7
    
    

    



  
  

    
Ash.Error.EngineError exception
    



      
Used when the Ash engine has an internal error

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Exception - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Exception 
    



      
Tooling for creating an Ash exception

      


      
        Summary


  
    Functions
  


    
      
        def_ash_error(fields, opts \\ [])

      


    





      


      
        Functions

        


    

  
    
      
      Link to this macro
    
    def_ash_error(fields, opts \\ [])


      
       
       View Source
     


      (macro)

  


  


  


        

      



  

  
    
    Ash.Error.Flow.Halted - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Flow.Halted exception
    



      
Used when a flow has been halted for some reason

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden exception
    



      
Used when authorization for an action fails

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Error.Forbidden{
  __exception__: true,
  changeset: term(),
  class: term(),
  error_context: term(),
  errors: term(),
  path: term(),
  query: term(),
  stacktrace: term(),
  stacktraces?: term(),
  vars: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden.ApiRequiresActor - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden.ApiRequiresActor exception
    



      
Used when an api that has require_actor? true is provided no actor

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden.CannotFilterCreates - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden.CannotFilterCreates exception
    



      
Used when a create action would be filtered

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden.ForbiddenField - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden.ForbiddenField exception
    



      
Raised in cases where access to a specific field was prevented

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden.MustPassStrictCheck - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden.MustPassStrictCheck exception
    



      
Used when unreachable code/conditions are reached in the framework

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Forbidden.Policy - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Forbidden.Policy exception
    



      
Raised when policy authorization for an action fails

      


      
        Summary


  
    Functions
  


    
      
        get_breakdown(facts, filter, policies, opts \\ [])

      


        Print a report of an authorization failure from authorization information.



    


    
      
        new(opts)

      


    


    
      
        report(error, opts \\ [])

      


        Print a report of an authorization failure from a forbidden error



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    get_breakdown(facts, filter, policies, opts \\ [])


      
       
       View Source
     


  


  

Print a report of an authorization failure from authorization information.
Options:
	:help_text?: Defaults to true. Displays help text at the top of the policy breakdown.
	:success?: Defaults to false. Changes the messaging/graphics around to indicate successful policy authorization.
	:must_pass_strict_check?: Defaults to false. Adds a message about this authorization requiring passing strict check.


  



  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    report(error, opts \\ [])


      
       
       View Source
     


  


  

Print a report of an authorization failure from a forbidden error
Options:
	:help_text?: Defaults to true. Displays help text at the top of the policy breakdown.


  


        

      



  

  
    
    Ash.Error.Framework - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Framework exception
    



      
Used when an unknown/generic framework error occurs

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Error.Framework{
  __exception__: true,
  changeset: term(),
  class: term(),
  error_context: term(),
  errors: term(),
  path: term(),
  query: term(),
  stacktrace: term(),
  stacktraces?: term(),
  vars: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Framework.AssumptionFailed - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Framework.AssumptionFailed exception
    



      
Used when unreachable code/conditions are reached in the framework

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Framework.FlagAssertionFailed - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Framework.FlagAssertionFailed exception
    



      
Used when unreachable code/conditions are reached in the framework

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Framework.InvalidReturnType - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Framework.InvalidReturnType exception
    



      
Used when a callback returns an invalid type

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Framework.SynchronousEngineStuck - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Framework.SynchronousEngineStuck exception
    



      
Used when the sycnrhonous engine cannot proceed

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid exception
    



      
The top level invalid error

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Error.Invalid{
  __exception__: true,
  changeset: term(),
  class: term(),
  error_context: term(),
  errors: term(),
  path: term(),
  query: term(),
  stacktrace: term(),
  stacktraces?: term(),
  vars: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.AtomicsNotSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.AtomicsNotSupported exception
    



      
Used when atomics for the given action type are not not supported by the data layer, but one is used.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.DuplicatedPath - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.DuplicatedPath exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.ImpossiblePath - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.ImpossiblePath exception
    



      
Used when a request expresses a dependency on another request that doesn't exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.InvalidPrimaryKey - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.InvalidPrimaryKey exception
    



      
Used when an invalid primary key is given to an Api's get

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.LimitRequired - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.LimitRequired exception
    



      
Used when no limit is provided, pagination is required, and no default page size is configured

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.MultipleResults - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.MultipleResults exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.NoIdentityFound - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.NoIdentityFound exception
    



      
Used when an identity name is used that does not reference identity on the resource

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.NoPrimaryAction - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.NoPrimaryAction exception
    



      
Used when an action name is provided that doesn't exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.NoSuchAction - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.NoSuchAction exception
    



      
Used when an action name is provided that doesn't exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.NoSuchResource - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.NoSuchResource exception
    



      
Used when a resource or alias is provided that doesn't exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.NonStreamableAction - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.NonStreamableAction exception
    



      
Used when Api.stream is used with an action that does not support keyset pagination

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.PageRequiresPagination - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.PageRequiresPagination exception
    



      
Used when page option is passed but pagination is not enabled.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.PaginationRequired - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.PaginationRequired exception
    



      
Used when page: false is provided but pagination is required

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.ResourceNotAllowed - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.ResourceNotAllowed exception
    



      
Used when a resource or alias is provided that cannot be used with the given api

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.TenantRequired - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.TenantRequired exception
    



      
Used when a tenant is not specified

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.Timeout - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.Timeout exception
    



      
Used when a request to the api times out.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.TimeoutNotSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.TimeoutNotSupported exception
    



      
Used when timeouts are not supported by the data layer, but one is set

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Invalid.Unavailable - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Invalid.Unavailable exception
    



      
Used when a given resource is unavailable.
This might happen due to locking at the data layer, or something
you implement yourself.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Load.InvalidQuery - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Load.InvalidQuery exception
    



      
Used when an invalid query is provided in a load

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Load.NoSuchRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Load.NoSuchRelationship exception
    



      
Used when attempting to load a relationship that does not exist

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Page.InvalidKeyset - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Page.InvalidKeyset exception
    



      
Used when a value is provided for a keyset that cannot be Base64 decoded.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.AggregatesNotSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.AggregatesNotSupported exception
    



      
Used when the data_layer does not support aggregates, or filtering/sorting them

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.CalculationsNotSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.CalculationsNotSupported exception
    



      
Used when the data_layer does not support calculations, or filtering/sorting them

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidArgument - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidCalculationArgument - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidCalculationArgument exception
    



      
Used when an invalid value is provided for a calculation argument

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidExpression - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidExpression exception
    



      
Used when an invalid expression is used in a filter

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidFilterReference - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidFilterReference exception
    



      
Used when an invalid reference is used in a filter

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidFilterValue - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidFilterValue exception
    



      
Used when an invalid value is provided for a filter

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidLimit - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidLimit exception
    



      
Used when an invalid limit is provided

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidLoad - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidLoad exception
    



      
Used when an invalid load is provided

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidOffset - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidOffset exception
    



      
Used when an invalid offset is provided

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidQuery - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidQuery exception
    



      
A generic error that can be used to add an error to a query for a specific field

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.InvalidSortOrder - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.InvalidSortOrder exception
    



      
Used when an invalid sort order is provided

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.LockNotSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.LockNotSupported exception
    



      
Used when the data_layer does not support a given lock type

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoComplexSortsWithKeysetPagination - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoComplexSortsWithKeysetPagination exception
    



      
Due to the filter-based implementation of keyset pagination, it cannot be used with sorts on calculations.
We could solve this problem by making the keyset only be the primary key of the record,
and then fetching that value loading the calculations/aggregates that we need. If we do this
we should either: 1.) make it a new pagination mode or 2.) add an option like mode: :strict | :fetch
to pagination options.
Let me know if you're reading this and want to help implement it.

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoReadAction - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoReadAction exception
    



      
Used when a resource would be read but has no read action

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchAttribute exception
    



      
Used when an attribute that doesn't exist is used in a query

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchAttributeOrRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchAttributeOrRelationship exception
    



      
Used when a key in a filter contains something that is neither an attribute or a relationship

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchFilterPredicate - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchFilterPredicate exception
    



      
Used when a filter predicate that does not exist is referenced

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchFunction - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchFunction exception
    



      
Used when an function that doesn't exist is used in a query

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchOperator - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchOperator exception
    



      
Used when an operator that doesn't exist is used in a query

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NoSuchRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NoSuchRelationship exception
    



      
Used when an relationship that doesn't exist is used in a query

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.NotFound - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.NotFound exception
    



      
Used when an entity that not exist is referenced

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.ReadActionRequired - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.ReadActionRequired exception
    



      
Used when a relationship is filtered and the destination does not have a default read action

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.ReadActionRequiresActor - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.ReadActionRequiresActor exception
    



      
Used when an actor is referenced in a filter template, but no actor exists

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.Required - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.Required exception
    



      
Used when a filter or argument is required in a query

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.UnsortableAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.UnsortableAttribute exception
    



      
Used when attempting to sort on a field that cannot be used for sorting

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Query.UnsupportedPredicate - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Query.UnsupportedPredicate exception
    



      
Used when the data_layer does not support a provided predicate

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.SimpleDataLayer.NoDataProvided - ash v2.17.7
    
    

    



  
  

    
Ash.Error.SimpleDataLayer.NoDataProvided exception
    



      
Used when no data was provided to the simple data layer

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Stacktrace - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Stacktrace 
    



      
A placeholder for a stacktrace so that we can avoid printing it everywhere

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Error.Stacktrace{stacktrace: list()}


      



  


        

      



  

  
    
    Ash.Error.Unknown - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Unknown exception
    



      
The top level unknown error container

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Error.Unknown{
  __exception__: true,
  changeset: term(),
  class: term(),
  error_context: term(),
  errors: term(),
  path: term(),
  query: term(),
  stacktrace: term(),
  stacktraces?: term(),
  vars: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Error.Unknown.UnknownError - ash v2.17.7
    
    

    



  
  

    
Ash.Error.Unknown.UnknownError exception
    



      
Used when an unknown error occurs

      


      
        Summary


  
    Functions
  


    
      
        new(opts)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Transformers.SetApi - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Transformers.SetApi 
    



      
Sets the api on the steps of a flow to the default api, unless an api is set explicitly.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        set_api(step, default)

      


    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    set_api(step, default)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Authorizer.Transformers.AddMissingFieldPolicies 
    



      
Adds field policies for any missing fields

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Policy.Authorizer.Transformers.CacheFieldPolicies - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Authorizer.Transformers.CacheFieldPolicies 
    



      
Cache field policies for each field

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Registry.ResourceValidations - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.ResourceValidations 
    



      
Adds some top level validations of resources present in a registry

      





  

  
    
    Ash.Registry.Transformers.WarnOnEmpty - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.Transformers.WarnOnEmpty 
    



      
Warns if a registry has no entries in it

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.AttributesByName - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.AttributesByName 
    



      
Persists attribute_names and attributes_by_name.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.BelongsToAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.BelongsToAttribute 
    



      
Creates the attribute for belongs_to relationships that have define_attribute?: true

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.CachePrimaryKey - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.CachePrimaryKey 
    



      
Validates and caches the primary key of a resource

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.CacheRelationships - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.CacheRelationships 
    



      
Persists commonly used relationship information.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.CreateJoinRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.CreateJoinRelationship 
    



      
Creates an automatically named has_many relationship for each many_to_many.
This will likely not be around for long, as our logic around many to many relationships
will update soon.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.DefaultAccept - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.DefaultAccept 
    



      
Sets the default accept for each action

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.DefaultPrimaryKey - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.DefaultPrimaryKey 
    



      
Creates the default primary key if one applies.
Currently, the only resources that get a default primary key are embedded resources.
The reason for this is that resources must have a primary key, and embedded resources
actually make sense without one. But this is simulated with a private uuid primary key.

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.GetByReadActions - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.GetByReadActions 
    



      
Transform any read actions which contain a get_by option.

      


      
        Summary


  
    Functions
  


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  


        

      



  

  
    
    Ash.Resource.Transformers.HasDestinationField - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.HasDestinationField 
    



      
Guesses the destination_attribute for has many and has one relationships unless provided

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.ManyToManyDestinationAttributeOnJoinResource 
    



      
Guesses the destination_attribute_on_join_resource for many to many relationships unless provided.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.ManyToManySourceAttributeOnJoinResource 
    



      
Guesses the source_attribute_on_join_resource for many to many relationships unless provided.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.RequireUniqueActionNames - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.RequireUniqueActionNames 
    



      
Ensures that all actions have unique names.

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.RequireUniqueFieldNames - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.RequireUniqueFieldNames 
    



      
Confirms that a resource does not have multiple fields(attributes, calculations, aggregates, and relationships) with the same name.

      


      
        Summary


  
    Functions
  


    
      
        after?(arg1)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.SetRelationshipSource - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.SetRelationshipSource 
    



      
Sets the source key on relationships to be the resource they were defined on

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.ValidatePrimaryActions - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.ValidatePrimaryActions 
    



      
Validates the primary action configuration
If multiple primary actions exist this results in an error.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.Resource.Transformers.ValidationsAndChangesForType - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Transformers.ValidationsAndChangesForType 
    



      
Persists global changes/validations and what type they go on.

      


      
        Summary


  
    Functions
  


    
      
        after?(_)

      


        Callback implementation for Spark.Dsl.Transformer.after?/1.



    


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    


    
      
        before?(_)

      


        Callback implementation for Spark.Dsl.Transformer.before?/1.



    


    
      
        transform(dsl_state)

      


        Callback implementation for Spark.Dsl.Transformer.transform/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.transform/1.

  


        

      



  

  
    
    Ash.ActionInput - ash v2.17.7
    
    

    



  
  

    
Ash.ActionInput 
    



      
Input for a custom action

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        add_error(input, errors, path \\ [])

      


        Adds an error to the input errors list, and marks the input as valid?: false



    


    
      
        fetch_argument(input, argument)

      


        Fetches the value of an argument provided to the input or :error.



    


    
      
        for_action(resource_or_input, action, params, opts \\ [])

      


        Creates a new input for a generic action



    


    
      
        get_argument(input, argument)

      


        Gets the value of an argument provided to the input.



    


    
      
        new(resource, api \\ nil)

      


    


    
      
        set_argument(input, argument, value)

      


        Set an argument value



    


    
      
        set_context(input, map)

      


        Deep merges the provided map into the input context that can be used later



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.ActionInput{
  action: Ash.Resource.Actions.Action.t() | nil,
  api: Ash.Api.t(),
  arguments: map(),
  context: map(),
  errors: term(),
  invalid_keys: MapSet.t(),
  params: map(),
  resource: Ash.Resource.t(),
  valid?: boolean()
}


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    add_error(input, errors, path \\ [])


      
       
       View Source
     


  


  

Adds an error to the input errors list, and marks the input as valid?: false

  



  
    
      
      Link to this function
    
    fetch_argument(input, argument)


      
       
       View Source
     


  


  

      

          @spec fetch_argument(t(), atom() | String.t()) :: {:ok, term()} | :error


      


Fetches the value of an argument provided to the input or :error.

  



    

  
    
      
      Link to this function
    
    for_action(resource_or_input, action, params, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec for_action(
  resource_or_input :: Ash.Resource.t() | t(),
  action :: atom(),
  params :: map(),
  opts :: Keyword.t()
) :: t()


      


Creates a new input for a generic action

  



  
    
      
      Link to this function
    
    get_argument(input, argument)


      
       
       View Source
     


  


  

      

          @spec get_argument(t(), atom() | String.t()) :: term()


      


Gets the value of an argument provided to the input.

  



    

  
    
      
      Link to this function
    
    new(resource, api \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_argument(input, argument, value)


      
       
       View Source
     


  


  

      

          @spec set_argument(input :: t(), name :: atom(), value :: term()) :: t()


      


Set an argument value

  



  
    
      
      Link to this function
    
    set_context(input, map)


      
       
       View Source
     


  


  

      

          @spec set_context(t(), map() | nil) :: t()


      


Deep merges the provided map into the input context that can be used later
Do not use the private key in your custom context, as that is reserved for internal use.

  


        

      



  

  
    
    Ash.Actions.Flows.Read - ash v2.17.7
    
    

    



  
  

    
Ash.Actions.Flows.Read 
    



      
Execute a read action.

      


      
        Summary


  
    Functions
  


    
      
        default_short_name()

      


    


    
      
        entities(arg1)

      


    


    
      
        fetch_opt(arg1, arg2)

      


    


    
      
        persisted()

      


    


    
      
        persisted(arg1)

      


    


    
      
        persisted(arg1, default)

      


    


    
      
        run(query, action, opts)

      


    


    
      
        run(query, action, input \\ %{}, opts \\ [])

      


    


    
      
        run!(query, action, input \\ %{}, opts \\ [])

      


        


    


    
      
        spark_dsl_config()

      


    


    
      
        spark_is()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    default_short_name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    entities(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    fetch_opt(arg1, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    persisted()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    persisted(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    persisted(arg1, default)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run(query, action, opts)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    run(query, action, input \\ %{}, opts \\ [])


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    run!(query, action, input \\ %{}, opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    spark_dsl_config()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    spark_is()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Actions.Flows.Read.FakeResult - ash v2.17.7
    
    

    



  
  

    
Ash.Actions.Flows.Read.FakeResult 
    



      
Generates a fake result, as the flow has to actually return something.

      


      
        Summary


  
    Functions
  


    
      
        run(input, opts, context)

      


        Callback implementation for Ash.Flow.Step.run/3.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    run(input, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Flow.Step.run/3.

  


        

      



  

  
    
    Ash.Api.Dsl - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Dsl 
    



      
Apis are the entrypoints for working with your resources.
Apis may optionally include a list of resources, in which case they can be
used as an Ash.Registry in various places. This is for backwards compatibility,
but if at all possible you should define an Ash.Registry if you are using an extension
that requires a list of resources. For example, most extensions look for two application
environment variables called :ash_apis and :ash_registries to find any potential registries

      





  

  
    
    Ash.Api.Dsl.ResourceReference - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Dsl.ResourceReference 
    



      
A resource reference in an api

      





  

  
    
    Ash.Api.GlobalInterface - ash v2.17.7
    
    

    



  
  

    
Ash.Api.GlobalInterface 
    



      
The interface for calling any Ash api. Use Ash to call these functions.

      


      
        Summary


  
    Functions
  


    
      
        aggregate(arg1, arg2)

      


        Calls Ash.Api.aggregate/3 on the resource's configured api. See those callback docs for more.



    


    
      
        aggregate(arg1, arg2, arg3)

      


        Calls Ash.Api.aggregate/3 on the resource's configured api. See those callback docs for more.



    


    
      
        aggregate!(arg1, arg2)

      


        Calls Ash.Api.aggregate!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        aggregate!(arg1, arg2, arg3)

      


        Calls Ash.Api.aggregate!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        avg(arg1, arg2)

      


        Calls Ash.Api.avg/3 on the resource's configured api. See those callback docs for more.



    


    
      
        avg(arg1, arg2, arg3)

      


        Calls Ash.Api.avg/3 on the resource's configured api. See those callback docs for more.



    


    
      
        avg!(arg1, arg2)

      


        Calls Ash.Api.avg!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        avg!(arg1, arg2, arg3)

      


        Calls Ash.Api.avg!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        bulk_create(arg1, arg2, arg3)

      


        Calls Ash.Api.bulk_create/4 on the resource's configured api. See those callback docs for more.



    


    
      
        bulk_create(arg1, arg2, arg3, arg4)

      


        Calls Ash.Api.bulk_create/4 on the resource's configured api. See those callback docs for more.



    


    
      
        bulk_create!(arg1, arg2, arg3)

      


        Calls Ash.Api.bulk_create!/4 on the resource's configured api. See those callback docs for more.



    


    
      
        bulk_create!(arg1, arg2, arg3, arg4)

      


        Calls Ash.Api.bulk_create!/4 on the resource's configured api. See those callback docs for more.



    


    
      
        calculate(arg1, arg2)

      


        Calls Ash.Api.calculate/3 on the resource's configured api. See those callback docs for more.



    


    
      
        calculate(arg1, arg2, arg3)

      


        Calls Ash.Api.calculate/3 on the resource's configured api. See those callback docs for more.



    


    
      
        calculate!(arg1, arg2)

      


        Calls Ash.Api.calculate!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        calculate!(arg1, arg2, arg3)

      


        Calls Ash.Api.calculate!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        can(arg1, arg2)

      


        Calls Ash.Api.can/3 on the resource's configured api. See those callback docs for more.



    


    
      
        can(arg1, arg2, arg3)

      


        Calls Ash.Api.can/3 on the resource's configured api. See those callback docs for more.



    


    
      
        can?(arg1, arg2)

      


        Calls Ash.Api.can?/3 on the resource's configured api. See those callback docs for more.



    


    
      
        can?(arg1, arg2, arg3)

      


        Calls Ash.Api.can?/3 on the resource's configured api. See those callback docs for more.



    


    
      
        count(arg1)

      


        Calls Ash.Api.count/2 on the resource's configured api. See those callback docs for more.



    


    
      
        count(arg1, arg2)

      


        Calls Ash.Api.count/2 on the resource's configured api. See those callback docs for more.



    


    
      
        count!(arg1)

      


        Calls Ash.Api.count!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        count!(arg1, arg2)

      


        Calls Ash.Api.count!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        create(arg1)

      


        Calls Ash.Api.create/2 on the resource's configured api. See those callback docs for more.



    


    
      
        create(arg1, arg2)

      


        Calls Ash.Api.create/2 on the resource's configured api. See those callback docs for more.



    


    
      
        create!(arg1)

      


        Calls Ash.Api.create!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        create!(arg1, arg2)

      


        Calls Ash.Api.create!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        destroy(arg1)

      


        Calls Ash.Api.destroy/2 on the resource's configured api. See those callback docs for more.



    


    
      
        destroy(arg1, arg2)

      


        Calls Ash.Api.destroy/2 on the resource's configured api. See those callback docs for more.



    


    
      
        destroy!(arg1)

      


        Calls Ash.Api.destroy!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        destroy!(arg1, arg2)

      


        Calls Ash.Api.destroy!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        exists(arg1)

      


        Calls Ash.Api.exists/2 on the resource's configured api. See those callback docs for more.



    


    
      
        exists(arg1, arg2)

      


        Calls Ash.Api.exists/2 on the resource's configured api. See those callback docs for more.



    


    
      
        exists?(arg1)

      


        Calls Ash.Api.exists?/2 on the resource's configured api. See those callback docs for more.



    


    
      
        exists?(arg1, arg2)

      


        Calls Ash.Api.exists?/2 on the resource's configured api. See those callback docs for more.



    


    
      
        first(arg1, arg2)

      


        Calls Ash.Api.first/3 on the resource's configured api. See those callback docs for more.



    


    
      
        first(arg1, arg2, arg3)

      


        Calls Ash.Api.first/3 on the resource's configured api. See those callback docs for more.



    


    
      
        first!(arg1, arg2)

      


        Calls Ash.Api.first!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        first!(arg1, arg2, arg3)

      


        Calls Ash.Api.first!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        get(arg1, arg2)

      


        Calls Ash.Api.get/3 on the resource's configured api. See those callback docs for more.



    


    
      
        get(arg1, arg2, arg3)

      


        Calls Ash.Api.get/3 on the resource's configured api. See those callback docs for more.



    


    
      
        get!(arg1, arg2)

      


        Calls Ash.Api.get!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        get!(arg1, arg2, arg3)

      


        Calls Ash.Api.get!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        list(arg1, arg2)

      


        Calls Ash.Api.list/3 on the resource's configured api. See those callback docs for more.



    


    
      
        list(arg1, arg2, arg3)

      


        Calls Ash.Api.list/3 on the resource's configured api. See those callback docs for more.



    


    
      
        list!(arg1, arg2)

      


        Calls Ash.Api.list!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        list!(arg1, arg2, arg3)

      


        Calls Ash.Api.list!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        load(page, load)

      


        Calls Ash.Api.load/3 on the resource's configured api. See those callback docs for more.



    


    
      
        load(page, load, opts)

      


        Calls Ash.Api.load/3 on the resource's configured api. See those callback docs for more.



    


    
      
        load!(page, load)

      


        Calls Ash.Api.load!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        load!(page, load, opts)

      


        Calls Ash.Api.load!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        max(arg1, arg2)

      


        Calls Ash.Api.max/3 on the resource's configured api. See those callback docs for more.



    


    
      
        max(arg1, arg2, arg3)

      


        Calls Ash.Api.max/3 on the resource's configured api. See those callback docs for more.



    


    
      
        max!(arg1, arg2)

      


        Calls Ash.Api.max!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        max!(arg1, arg2, arg3)

      


        Calls Ash.Api.max!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        min(arg1, arg2)

      


        Calls Ash.Api.min/3 on the resource's configured api. See those callback docs for more.



    


    
      
        min(arg1, arg2, arg3)

      


        Calls Ash.Api.min/3 on the resource's configured api. See those callback docs for more.



    


    
      
        min!(arg1, arg2)

      


        Calls Ash.Api.min!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        min!(arg1, arg2, arg3)

      


        Calls Ash.Api.min!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        page(arg1, arg2)

      


        Calls Ash.Api.page/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read(arg1)

      


        Calls Ash.Api.read/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read(arg1, arg2)

      


        Calls Ash.Api.read/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read!(arg1)

      


        Calls Ash.Api.read!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read!(arg1, arg2)

      


        Calls Ash.Api.read!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read_one(arg1)

      


        Calls Ash.Api.read_one/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read_one(arg1, arg2)

      


        Calls Ash.Api.read_one/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read_one!(arg1)

      


        Calls Ash.Api.read_one!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        read_one!(arg1, arg2)

      


        Calls Ash.Api.read_one!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        reload(arg1)

      


        Calls Ash.Api.reload/1 on the resource's configured api. See those callback docs for more.



    


    
      
        run_action(arg1)

      


        Calls Ash.Api.run_action/2 on the resource's configured api. See those callback docs for more.



    


    
      
        run_action(arg1, arg2)

      


        Calls Ash.Api.run_action/2 on the resource's configured api. See those callback docs for more.



    


    
      
        run_action!(arg1)

      


        Calls Ash.Api.run_action!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        run_action!(arg1, arg2)

      


        Calls Ash.Api.run_action!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        stream!(arg1)

      


        Calls Ash.Api.stream!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        stream!(arg1, arg2)

      


        Calls Ash.Api.stream!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        sum(arg1, arg2)

      


        Calls Ash.Api.sum/3 on the resource's configured api. See those callback docs for more.



    


    
      
        sum(arg1, arg2, arg3)

      


        Calls Ash.Api.sum/3 on the resource's configured api. See those callback docs for more.



    


    
      
        sum!(arg1, arg2)

      


        Calls Ash.Api.sum!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        sum!(arg1, arg2, arg3)

      


        Calls Ash.Api.sum!/3 on the resource's configured api. See those callback docs for more.



    


    
      
        update(arg1)

      


        Calls Ash.Api.update/2 on the resource's configured api. See those callback docs for more.



    


    
      
        update(arg1, arg2)

      


        Calls Ash.Api.update/2 on the resource's configured api. See those callback docs for more.



    


    
      
        update!(arg1)

      


        Calls Ash.Api.update!/2 on the resource's configured api. See those callback docs for more.



    


    
      
        update!(arg1, arg2)

      


        Calls Ash.Api.update!/2 on the resource's configured api. See those callback docs for more.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    aggregate(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.aggregate/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    aggregate(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.aggregate/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    aggregate!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.aggregate!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    aggregate!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.aggregate!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    avg(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.avg/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    avg(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.avg/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    avg!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.avg!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    avg!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.avg!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    bulk_create(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.bulk_create/4 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    bulk_create(arg1, arg2, arg3, arg4)


      
       
       View Source
     


  


  

Calls Ash.Api.bulk_create/4 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    bulk_create!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.bulk_create!/4 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    bulk_create!(arg1, arg2, arg3, arg4)


      
       
       View Source
     


  


  

Calls Ash.Api.bulk_create!/4 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    calculate(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.calculate/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    calculate(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.calculate/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    calculate!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.calculate!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    calculate!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.calculate!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    can(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.can/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    can(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.can/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    can?(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.can?/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    can?(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.can?/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    count(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.count/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    count(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.count/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    count!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.count!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    count!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.count!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    create(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.create/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    create(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.create/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    create!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.create!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    create!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.create!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    destroy(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.destroy/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    destroy(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.destroy/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    destroy!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.destroy!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    destroy!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.destroy!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    exists(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.exists/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    exists(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.exists/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    exists?(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.exists?/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    exists?(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.exists?/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    first(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.first/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    first(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.first/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    first!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.first!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    first!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.first!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    get(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.get/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    get(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.get/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    get!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.get!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    get!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.get!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    list(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.list/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    list(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.list/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    list!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.list!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    list!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.list!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    load(page, load)


      
       
       View Source
     


  


  

Calls Ash.Api.load/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    load(page, load, opts)


      
       
       View Source
     


  


  

Calls Ash.Api.load/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    load!(page, load)


      
       
       View Source
     


  


  

Calls Ash.Api.load!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    load!(page, load, opts)


      
       
       View Source
     


  


  

Calls Ash.Api.load!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    max(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.max/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    max(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.max/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    max!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.max!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    max!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.max!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    min(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.min/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    min(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.min/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    min!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.min!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    min!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.min!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    page(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.page/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.read/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.read/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.read!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.read!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read_one(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.read_one/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read_one(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.read_one/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read_one!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.read_one!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    read_one!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.read_one!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    reload(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.reload/1 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    run_action(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.run_action/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    run_action(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.run_action/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    run_action!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.run_action!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    run_action!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.run_action!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    stream!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.stream!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    stream!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.stream!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    sum(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.sum/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    sum(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.sum/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    sum!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.sum!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    sum!(arg1, arg2, arg3)


      
       
       View Source
     


  


  

Calls Ash.Api.sum!/3 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    update(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.update/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    update(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.update/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    update!(arg1)


      
       
       View Source
     


  


  

Calls Ash.Api.update!/2 on the resource's configured api. See those callback docs for more.

  



  
    
      
      Link to this function
    
    update!(arg1, arg2)


      
       
       View Source
     


  


  

Calls Ash.Api.update!/2 on the resource's configured api. See those callback docs for more.

  


        

      



  

  
    
    Ash.Api.Info.Diagram - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Info.Diagram 
    



      
Generate Mermaid diagrams from a specified API.

  
    
  
  Limitations


We can't easily model Ash relationships with Mermaid diagrams
because they are unidirectional and could be asymmetric.
Mermaid assumes symmetrical, bidirectional relationships.
If we try to model all unidirectional relationships as separate
lines in the diagram it gets very hard to read very quickly.

      


      
        Summary


  
    Functions
  


    
      
        mermaid_class_diagram(api, opts \\ [indent: "    ", show_private?: false])

      


        Generates a Mermaid Class Diagram for a given API.



    


    
      
        mermaid_er_diagram(api, opts \\ [indent: "    ", show_private?: false])

      


        Generates a Mermaid Entity Relationship Diagram for a given API.



    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    mermaid_class_diagram(api, opts \\ [indent: "    ", show_private?: false])


      
       
       View Source
     


  


  

Generates a Mermaid Class Diagram for a given API.
Shows only public attributes, calculations, aggregates and actions.
Shows a connecting line for relationships with the type of relationship
indicated in the attribute list.

  



    

  
    
      
      Link to this function
    
    mermaid_er_diagram(api, opts \\ [indent: "    ", show_private?: false])


      
       
       View Source
     


  


  

Generates a Mermaid Entity Relationship Diagram for a given API.
Shows only public attributes, calculations, aggregates and actions.
Shows a one-to-one line for relationships as enumerating all unidirectional
relationships is far too noisy.

  


        

      



  

  
    
    Ash.Api.Info.Livebook - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Info.Livebook 
    



      
Generate a Livebook from a specified API.

      


      
        Summary


  
    Functions
  


    
      
        action_header()

      


    


    
      
        action_input_section(resource, action)

      


    


    
      
        action_section(resource, action)

      


    


    
      
        api_section(api)

      


    


    
      
        attr_header()

      


    


    
      
        attr_section(attr)

      


    


    
      
        overview(apis)

      


    


    
      
        resource_section(resource)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    action_header()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    action_input_section(resource, action)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    action_section(resource, action)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    api_section(api)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    attr_header()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    attr_section(attr)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    overview(apis)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    resource_section(resource)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Api.Verifiers.EnsureNoEmbeds - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Verifiers.EnsureNoEmbeds 
    



      
Ensures that all resources for a given registry are not embeds.

      





  

  
    
    Ash.Api.Verifiers.EnsureResourcesCompiled - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Verifiers.EnsureResourcesCompiled 
    



      
Ensures that all resources for a given api are compiled.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

      

          @spec verify(map()) :: :ok


      


Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Api.Verifiers.ValidateRelatedResourceInclusion - ash v2.17.7
    
    

    



  
  

    
Ash.Api.Verifiers.ValidateRelatedResourceInclusion 
    



      
Ensures that all related resources are included in an API.

      





  

  
    
    Ash.BulkResult - ash v2.17.7
    
    

    



  
  

    
Ash.BulkResult 
    



      
The return value for bulk actions.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.BulkResult{
  error_count: non_neg_integer(),
  errors: [Ash.Error.t() | Ash.Changeset.t()] | nil,
  notifications: [Ash.Notifier.Notification.t()] | nil,
  records: [Ash.Resource.record()] | nil,
  status: :success | :partial_success | :error
}


      



  


        

      



  

  
    
    Ash.DataLayer.Verifiers.RequirePreCheckWith - ash v2.17.7
    
    

    



  
  

    
Ash.DataLayer.Verifiers.RequirePreCheckWith 
    



      
Ensures that all identities have a pre_check_with configured, or raises.

      





  

  
    
    Ash.Engine - ash v2.17.7
    
    

    



  
  

    
Ash.Engine 
    



      
The Ash engine handles the parallelization/running of requests to Ash.
Much of the complexity of this doesn't come into play for simple requests.
The way it works is that it accepts a list of Ash.Engine.Request structs.
Some of values on those structs will be instances of Ash.Engine.Request.UnresolvedField.
These unresolved fields can express a dependence on the field values from other requests.
This allows the engine to wait on executing some code until it has its required inputs,
or if all of its dependencies are met, it can execute it immediately. The engine's job is
to resolve its unresolved fields in the proper order, potentially in parallel.
It also has knowledge baked in about certain special fields, like data which is the
field we are ultimately trying to resolve, and query which is the field that drives authorization
for read requests. Authorization is done on a per engine request basis.
As the complexity of a system grows, it becomes very difficult to write code that
is both imperative and performant. This is especially true of a framework that is
designed to be configurable. What exactly is done, as well as the order it is done in,
and whether or not is can be parallelized, varies wildly based on factors like how
the resources are configured and what capabilities the data layer has. By implementing
a generic "parallel engine", we can let the engine solve that problem. We only
have to express the various operations that must happen, and what other pieces of data
they need in order to happen, and the engine handles the rest.
There are various tradeoffs in the current design. The original version of the engine started a process
for each request. While this had the least constrained performance characteristics of all the designs,
it was problematic for various reasons. The primary reason being that it could deadlock without any
reasonable way to debug said deadlock because the various states were distributed. The second version
of the engine introduced a central Engine process that helped with some of these issues, but ultimately
had the same problem. The third (and current) version of the engine is reworked instead to be drastically
simpler, potentially at the expense of performance for some requests. Instead of starting a process per
request, it opts to only parallelize the data field resolution of fields that are marked as async?: true,
(unlike the previous versions which started a process for the whole request.) Although it does its best
to prioritize starting any async tasks, it is possible that if some mix of async/sync requests are passed in
a potentially long running sync task could prevent it from starting an async task, giving this potentially worse
performance characteristics. In practice, this doesn't really matter because the robust data layers support running
asynchronously, unless they are in a transaction in which case everything runs serially anyway.
The current version of the engine can be seen as an event loop that will async some events and yield them. It also
has support for a concurrency limit (per engine invocation, not globally, although that could now be added much more
easily). This limit defaults to 2 * schedulers_online.
Check out the docs for Ash.Engine.Request for some more information. This is a private
interface at the moment, though, so this documentation is just here to explain how it works
it is not intended to give you enough information to use the engine directly.

      


      
        Summary


  
    Functions
  


    
      
        add_requests(state, requests)

      


    


    
      
        do_run(requests, opts \\ [])

      


    


    
      
        long_breakdown(state)

      


    


    
      
        put_nested_key(state, key, value)

      


    


    
      
        run(requests, opts \\ [])

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    add_requests(state, requests)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    do_run(requests, opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    long_breakdown(state)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_nested_key(state, key, value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    run(requests, opts \\ [])


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Engine.Request - ash v2.17.7
    
    

    



  
  

    
Ash.Engine.Request 
    



      
Represents an individual request to be processed by the engine.
See new/1 for more information

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        add_initial_authorizer_state(request)

      


    


    
      
        do_next(request)

      


    


    
      
        new(opts)

      


        Creates a new request.



    


    
      
        next(request)

      


    


    
      
        put_dependency_data(request, dep, value)

      


    


    
      
        receive_field(request, path, field, value)

      


    


    
      
        resolve(dependencies \\ [], func)

      


        Create an unresolved field.



    


    
      
        resource_notification(request)

      


    


    
      
        send_field(request, receiver_path, field)

      


    


    
      
        sort_and_clean_notifications(notifications)

      


    


    
      
        store_dependency(error, receiver_path, field, internal? \\ false)

      


    


    
      
        summarize(map)

      


    


    
      
        validate_requests!(requests)

      


    


    
      
        wont_receive(request, path, field)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Engine.Request{
  action: term(),
  action_type: term(),
  actor: term(),
  additional_context: term(),
  api: term(),
  async?: term(),
  async_fetch_state: term(),
  authorization_filter: term(),
  authorize?: term(),
  authorized?: term(),
  authorizer_state: term(),
  changeset: term(),
  completion: term(),
  data: term(),
  data_layer_query: term(),
  dependencies_to_send: term(),
  dependency_data: term(),
  engine_pid: term(),
  error_path: term(),
  intermediate_data: term(),
  name: term(),
  notification_data: term(),
  notify?: term(),
  path: term(),
  query: term(),
  resource: term(),
  state: term(),
  strict_check_only?: term(),
  touches_resources: term(),
  trace_prefix: term(),
  tracer: term(),
  verbose?: term(),
  write_to_data?: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    add_initial_authorizer_state(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    do_next(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  

Creates a new request.
The field values may be explicit values, or they may be
instances of UnresolvedField.
When other requests depend on a value from this request, they will
not be sent unless this request has completed its authorization (or this
request has been configured not to do authorization). This allows requests
to depend on each other without those requests happening just before a request
fails with a forbidden error. These fields are data, query, changeset
and authorized?.
A field may not be resolved  if the data of a request has been resolved and
no other requests depend on that field.
Options:
	query - The query to be used to fetch data. Used to authorize reads.
	data - The ultimate goal of a request is to compute the data
	resource - The primary resource of the request. Used for opening transactions on creates/updates/destroys
	changeset - Any changes to be made to the resource. Used to authorize writes.
	path - The path of the request. This serves as a unique id, and is the way that other requests can refer to this one
	action_type - The action_type of the request
	action - The action being performed on the data
	async? - Whether or not the request can be asynchronous, defaults to true.
	api - The api module being called
	name - A human readable name for the request, used when logging/in errors
	strict_check_only? - If true, authorization will not be allowed to proceed to a runtime check (so it cannot run db queries unless authorization is assured)
	actor - The actor performing the action, used for authorization
	authorize? - Whether or not to perform authorization (defaults to true)
	verbose? - print informational logs (warning, this will be a whole lot of logs)
	write_to_data? - If set to false, this value is not returned from the initial call to the engine


  



  
    
      
      Link to this function
    
    next(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_dependency_data(request, dep, value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    receive_field(request, path, field, value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    resolve(dependencies \\ [], func)


      
       
       View Source
     


  


  

Create an unresolved field.
Can have dependencies, which is a list of atoms. All elements
before the last comprise the path of a request that is also
being processed, like [:data], and the last element is the
key of that request that is required. Make sure to pass a
list of lists of atoms. The second argument is a map, which
contains all of the values you requested, at the same path
that they were requested.
For example:
resolve([[:data, :query], [:data, :data]], fn %{data: %{query: query, data: data}} ->
  data # This is the data field of the [:data] request
  query # This is the query field of the [:data] request

  {:ok, result}
  # or
  {:error, error}
  # or
  result
end)

  



  
    
      
      Link to this function
    
    resource_notification(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    send_field(request, receiver_path, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sort_and_clean_notifications(notifications)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    store_dependency(error, receiver_path, field, internal? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    summarize(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validate_requests!(requests)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    wont_receive(request, path, field)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Engine.Request.UnresolvedField - ash v2.17.7
    
    

    



  
  

    
Ash.Engine.Request.UnresolvedField 
    



      
Represents an unresolved field to be resolved by the engine.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(dependencies, func)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Engine.Request.UnresolvedField{
  data?: term(),
  deps: term(),
  resolver: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(dependencies, func)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Filter.Predicate - ash v2.17.7
    
    

    



  
  

    
Ash.Filter.Predicate behaviour
    



      
Represents a predicate which can be simplified and/or compared with other predicates
Simplification and comparison will need more documentation, but ultimately it
is the logic that allows us to have a flexible and powerful authorization
system.

      


      
        Summary


  
    Types
  


    
      
        comparison()

      


    


    
      
        predicate()

      


    





  
    Callbacks
  


    
      
        bulk_compare(list)

      


        As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).



    


    
      
        compare(predicate, predicate)

      


        Compare two predicates. If possible, use bulk_compare/1 instead



    


    
      
        simplify(predicate)

      


        Simplify to a more primitive statement.



    





  
    Functions
  


    
      
        compare(same, same)

      


        Checks with each predicate module to see if it has a comparison
with



    





      


      
        Types

        


  
    
      
      Link to this type
    
    comparison()


      
       
       View Source
     


  


  

      

          @type comparison() ::
  :unknown
  | :right_includes_left
  | :left_includes_right
  | :mutually_inclusive
  | :mutually_exclusive


      



  



  
    
      
      Link to this type
    
    predicate()


      
       
       View Source
     


  


  

      

          @type predicate() :: struct()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    bulk_compare(list)


      
       
       View Source
     


      (optional)

  


  

      

          @callback bulk_compare([predicate()]) :: term()


      


As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).
The best way to do it is to find lists of predicates that are mutually
exclusive or mutually inclusive, and pass those lists into
Ash.SatSolver.mutually_exclusive/1 and Ash.SatSolver.mutually_inclusive/1

  



  
    
      
      Link to this callback
    
    compare(predicate, predicate)


      
       
       View Source
     


      (optional)

  


  

      

          @callback compare(predicate(), predicate()) :: comparison()


      


Compare two predicates. If possible, use bulk_compare/1 instead

  



  
    
      
      Link to this callback
    
    simplify(predicate)


      
       
       View Source
     


      (optional)

  


  

      

          @callback simplify(predicate()) :: term()


      


Simplify to a more primitive statement.
For example, x in [1, 2] simplifies to x == 1 or x == 2.
Simplifying to filter expressions that already have comparisons
lets you avoid writing that logic for a given predicate.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    compare(same, same)


      
       
       View Source
     


  


  

Checks with each predicate module to see if it has a comparison
with

  


        

      



  

  
    
    Ash.Flags - ash v2.17.7
    
    

    



  
  

    
Ash.Flags 
    



      
Feature flagging support for Ash internals.
These are macros so that they can be used at compile time to switch code
paths.

      


      
        Summary


  
    Functions
  


    
      
        ash_three?()

      


        Should we activate Ash 3.0 features?



    


    
      
        assert!(flag, expected)

      


        Ensure that the feature flag is set to the expected value, otherwise an
exception will be thrown at run time.



    


    
      
        read_uses_flow?()

      


        Should read actions use the new flow-based executor?



    


    
      
        refute!(flag, expected)

      


        Ensure that the feature flag is set to the expected value, otherwise an
exception will be thrown at run time.



    





      


      
        Functions

        


  
    
      
      Link to this macro
    
    ash_three?()


      
       
       View Source
     


      (macro)

  


  

      

          @spec ash_three?() :: Macro.t()


      


Should we activate Ash 3.0 features?

  



  
    
      
      Link to this macro
    
    assert!(flag, expected)


      
       
       View Source
     


      (macro)

  


  

      

          @spec assert!(atom(), any()) :: Macro.t()


      


Ensure that the feature flag is set to the expected value, otherwise an
exception will be thrown at run time.

  



  
    
      
      Link to this macro
    
    read_uses_flow?()


      
       
       View Source
     


      (macro)

  


  

      

          @spec read_uses_flow?() :: Macro.t()


      


Should read actions use the new flow-based executor?

  



  
    
      
      Link to this macro
    
    refute!(flag, expected)


      
       
       View Source
     


      (macro)

  


  

      

          @spec refute!(atom(), any()) :: Macro.t()


      


Ensure that the feature flag is set to the expected value, otherwise an
exception will be thrown at run time.

  


        

      



  

  
    
    Ash.Flow.Argument - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Argument 
    



      
An argument to a flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Dsl - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Dsl 
    



      
The built in flow DSL.

  
    
  
  Halting


Steps can be halted, which will stop the flow from continuing and return a halted flow. To attach a specific reason, use a halt_reason.
If you need more complex halting logic, then you'd want to use a custom step, and return {:error, Ash.Error.Flow.Halted.exception(...)}

      





  

  
    
    Ash.Flow.Executor.AshEngine - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Executor.AshEngine 
    



      
Executes the requests using the Ash engine, which can parallelize individual steps when possible.

      


      
        Summary


  
    Functions
  


    
      
        build(flow, input, opts)

      


        Callback implementation for Ash.Flow.Executor.build/3.



    


    
      
        deps_keys()

      


    


    
      
        execute(flow, input, opts)

      


        Callback implementation for Ash.Flow.Executor.execute/3.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    build(flow, input, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Flow.Executor.build/3.

  



  
    
      
      Link to this function
    
    deps_keys()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    execute(flow, input, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Flow.Executor.execute/3.

  


        

      



  

  
    
    Ash.Flow.Result - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Result 
    



      
The result of running a flow.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Flow.Result{
  complete?: boolean(),
  errors: [Ash.Error.t()],
  flow: Ash.Flow.t(),
  input: map(),
  notifications: [Ash.Notifier.Notification.t()],
  params: map(),
  result: any() | nil,
  runner_metadata: term(),
  valid?: boolean()
}


      



  


        

      



  

  
    
    Ash.Flow.Step.Branch - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Branch 
    



      
Represents a branching set of steps in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Create - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Create 
    



      
Represents a create action step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Custom - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Custom 
    



      
Represents a custom step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Debug - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Debug 
    



      
Represents a debug step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Destroy - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Destroy 
    



      
Represents a destroy action step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Map - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Map 
    



      
Represents a map grouping of steps in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Read - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Read 
    



      
Represents a read action step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.RunFlow - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.RunFlow 
    



      
Represents a nested flow step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Transaction - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Transaction 
    



      
Represents steps grouped into a transaction in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Step.Update - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Step.Update 
    



      
Represents an update action step in an Ash.Flow

      


      
        Summary


  
    Functions
  


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Template - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Template 
    



      
Helpers for working with Ash.Flow templates.
At first glance it would seem that all of this could be replaced by some calls to
Macro.prewalk but that is unfortunately not the case. We don't traverse through structs,
and in some cases we do things like return ranges/merge maps that require having the entire
nested part of the template, i.e {:_merge, [list, of, maps]} has to get the fully handled
list of maps, and so has to call itself.

      


      
        Summary


  
    Functions
  


    
      
        arg_refs(input)

      


    


    
      
        element_refs(input)

      


    


    
      
        handle_input_template(action_input, input)

      


    


    
      
        is_template?(value)

      


    


    
      
        remap_result_references(action_input, prefix)

      


    


    
      
        result_refs(input)

      


    


    
      
        set_dependent_values(action_input, input)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    arg_refs(input)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    element_refs(input)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    handle_input_template(action_input, input)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    is_template?(value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    remap_result_references(action_input, prefix)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    result_refs(input)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_dependent_values(action_input, input)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Flow.Verifiers.ValidateNoEmptySteps - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Verifiers.ValidateNoEmptySteps 
    



      
Validates that no nested steps contain no steps

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl_state)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Flow.Verifiers.ValidateUniqueNames - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Verifiers.ValidateUniqueNames 
    



      
Validates that steps have unique names.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl_state)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Flow.Verifiers.VerifyReturn - ash v2.17.7
    
    

    



  
  

    
Ash.Flow.Verifiers.VerifyReturn 
    



      
Ensures that all steps in a return statement are returnable

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl_state)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.ForbiddenField - ash v2.17.7
    
    

    



  
  

    
Ash.ForbiddenField 
    



      
Represents a field that was hidden due to authorization rules.

      





  

  
    
    Ash.Mix.Tasks.Helpers - ash v2.17.7
    
    

    



  
  

    
Ash.Mix.Tasks.Helpers 
    



      
Helpers for Ash Mix tasks.

      


      
        Summary


  
    Functions
  


    
      
        apis!(argv)

      


        Get all apis for the current project and ensure they are compiled.



    


    
      
        extensions!(argv, opts \\ [])

      


        Gets all extensions in use by the current project's apis and resources



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    apis!(argv)


      
       
       View Source
     


  


  

Get all apis for the current project and ensure they are compiled.

  



    

  
    
      
      Link to this function
    
    extensions!(argv, opts \\ [])


      
       
       View Source
     


  


  

Gets all extensions in use by the current project's apis and resources

  


        

      



  

  
    
    Ash.Notifier.PubSub.Publication - ash v2.17.7
    
    

    



  
  

    
Ash.Notifier.PubSub.Publication 
    



      
Represents a configured publication from the pubsub notifier on an Ash.Resource

      


      
        Summary


  
    Functions
  


    
      
        publish_all_schema()

      


    


    
      
        schema()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    publish_all_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.PlugHelpers - ash v2.17.7
    
    

    



  
  

    
Ash.PlugHelpers 
    



      
Helpers for working with the Plug connection.

      


      
        Summary


  
    Functions
  


    
      
        get_actor(arg1)

      


        Retrieves the actor from the Plug connection.



    


    
      
        get_context(arg1)

      


        Retrieves the context from the Plug connection.



    


    
      
        get_tenant(arg1)

      


        Retrieves the tenant from the Plug connection.



    


    
      
        set_actor(conn, actor)

      


        Sets the actor inside the Plug connection.



    


    
      
        set_context(conn, context)

      


        Sets the context inside the Plug connection.



    


    
      
        set_tenant(conn, tenant)

      


        Sets the tenant inside the Plug connection.



    


    
      
        update_actor(conn, callback)

      


        Updates the actor inside the Plug connection.



    


    
      
        update_context(conn, callback)

      


        Updates the context inside the Plug connection.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    get_actor(arg1)


      
       
       View Source
     


  


  

      

          @spec get_actor(Plug.Conn.t()) :: nil | Ash.Resource.record()


      


Retrieves the actor from the Plug connection.
The actor is stored inside the connection's private
fields.

  
    
  
  Deprecation warning


This function checks to see if the actor is already set in the @actor
assign, and if so will emit a deprecation warning.
This is to allow apps using the previous method a chance to update.
Rather than setting the actor in the assigns, please use the set_actor/2
method.

  
    
  
  Example


iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> put_private(:ash, %{actor: actor})
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor

iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> assign(:actor, actor)
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor

  



  
    
      
      Link to this function
    
    get_context(arg1)


      
       
       View Source
     


  


  

      

          @spec get_context(Plug.Conn.t()) :: nil | Ash.Resource.record()


      


Retrieves the context from the Plug connection.
The context is stored inside the connection's private
fields.

  
    
  
  Example


iex> context = %{fraud_score: 0.427}
...> conn = build_conn() |> put_private(:ash, %{context: context})
...> context = get_context(conn)
%{fraud_score: 0.427}

  



  
    
      
      Link to this function
    
    get_tenant(arg1)


      
       
       View Source
     


  


  

      

          @spec get_tenant(Plug.Conn.t()) :: nil | Ash.Resource.record()


      


Retrieves the tenant from the Plug connection.
The tenant is stored inside the connection's private
fields.

  
    
  
  Deprecation warning


This function checks to see if the tenant is already set in the @tenant
assign, and if so will emit a deprecation warning.
This is to allow apps using the previous method a chance to update.
Rather than setting the tenant in the assigns, please use the set_tenant/2
method.

  
    
  
  Example


iex> conn = build_conn() |> put_private(:ash, %{tenant: "my-tenant"})
...> tenant = get_tenant(conn)
"my_tenant" = tenant

iex> conn = build_conn() |> assign(:tenant, "my-tenant")
...> tenant = get_tenant(conn)
"my_tenant" = tenant

  



  
    
      
      Link to this function
    
    set_actor(conn, actor)


      
       
       View Source
     


  


  

      

          @spec set_actor(Plug.Conn.t(), Ash.Resource.record()) :: Plug.Conn.t()


      


Sets the actor inside the Plug connection.
The actor is stored inside the connection's private
fields.

  
    
  
  Example


iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> set_actor(actor)
%Plug.Conn{private: %{ash: %{actor: %{email: "marty@1985.retro"}}}} = conn

  



  
    
      
      Link to this function
    
    set_context(conn, context)


      
       
       View Source
     


  


  

      

          @spec set_context(Plug.Conn.t(), Ash.Resource.record()) :: Plug.Conn.t()


      


Sets the context inside the Plug connection.
Context can be used to store abitrary data about the user, connection, or
anything else you like that doesn't belong as part of the actor or tenant.
The context is stored inside the connection's private
fields.

  
    
  
  Example


iex> context = %{fraud_score: 0.427}
...> conn = build_conn() |> set_context(context)
%Plug.Conn{private: %{ash: %{context: %{fraud_score: 0.427}}}}

  



  
    
      
      Link to this function
    
    set_tenant(conn, tenant)


      
       
       View Source
     


  


  

      

          @spec set_tenant(Plug.Conn.t(), String.t()) :: Plug.Conn.t()


      


Sets the tenant inside the Plug connection.
The tenant is stored inside the connection's private
fields.

  
    
  
  Example


iex> conn = build_conn() |> set_tenant("my-tenant")
%Plug.Conn{private: %{ash: %{tenant: "my-tenant}}} = conn

  



  
    
      
      Link to this function
    
    update_actor(conn, callback)


      
       
       View Source
     


  


  

      

          @spec update_actor(
  Plug.Conn.t(),
  (nil | Ash.Resource.record() -> nil | Ash.Resource.record())
) ::
  Plug.Conn.t()


      


Updates the actor inside the Plug connection.
The actor is stored inside the connection's private
fields.

  
    
  
  Example


iex> actor = build_actor(%{email: "marty@1985.retro"})
...> conn = build_conn() |> put_private(:ash, %{actor: actor})
...> actor = get_actor(conn)
%{email: "marty@1985.retro"} = actor
...> conn = update_actor(conn, fn actor -> Map.put(actor, :name, "Marty Retro") end)
...> actor = get_actor(conn)
%{email: "marty@1985.retro", name: "Marty Retro"} = actor
...> conn = update_actor(conn, fn actor -> Map.delete(actor, :email) end)
...> actor = get_actor(conn)
%{name: "Marty Retro"} = actor

  



  
    
      
      Link to this function
    
    update_context(conn, callback)


      
       
       View Source
     


  


  

      

          @spec update_context(
  Plug.Conn.t(),
  (nil | Ash.Resource.record() -> nil | Ash.Resource.record())
) ::
  Plug.Conn.t()


      


Updates the context inside the Plug connection.
The context is stored inside the connection's private
fields.

  
    
  
  Example


iex> context = %{species: "Fythetropozoat"}
...> conn = build_conn() |> put_private(:ash, %{context: context})
...> context = get_context(conn)
%{fraud_score: 0.427}
...> conn = update_context(conn, fn context -> Map.put(context, :location, "Barnard's Loop") end)
...> context = get_context(conn)
%{species: "Fythetropozoat", location: "Barnard's Loop"}
...> conn = update_context(conn, fn context -> Map.delete(context, :fraud_score) end)
...> context = get_context(conn)
%{location: "Barnard's Loop"}

  


        

      



  

  
    
    Ash.Policy.Chart.Mermaid - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Chart.Mermaid 
    



      
Generates policy mermaid charts

      


      
        Summary


  
    Functions
  


    
      
        chart(resource)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    chart(resource)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Policy.Check.Expression - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Check.Expression 
    



      
The check module used for exprs in policies

      


      
        Summary


  
    Functions
  


    
      
        auto_filter(actor, authorizer, opts)

      


        Callback implementation for Ash.Policy.Check.auto_filter/3.



    


    
      
        auto_filter_not(actor, authorizer, opts)

      


    


    
      
        check(actor, data, authorizer, opts)

      


        Callback implementation for Ash.Policy.Check.check/4.



    


    
      
        reject(opts)

      


        Callback implementation for Ash.Policy.FilterCheck.reject/1.



    


    
      
        strict_check(actor, authorizer, opts)

      


        Callback implementation for Ash.Policy.Check.strict_check/3.



    


    
      
        strict_check_context(opts)

      


    


    
      
        type()

      


        Callback implementation for Ash.Policy.Check.type/0.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    auto_filter(actor, authorizer, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.auto_filter/3.

  



  
    
      
      Link to this function
    
    auto_filter_not(actor, authorizer, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    check(actor, data, authorizer, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.check/4.

  



  
    
      
      Link to this function
    
    reject(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.FilterCheck.reject/1.

  



  
    
      
      Link to this function
    
    strict_check(actor, authorizer, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.strict_check/3.

  



  
    
      
      Link to this function
    
    strict_check_context(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    type()


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.type/0.

  


        

      



  

  
    
    Ash.Policy.FieldPolicy - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.FieldPolicy 
    



      
Represents a field policy in an Ash.Resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Policy.FieldPolicy{
  __identifier__: term(),
  bypass?: term(),
  condition: term(),
  description: term(),
  fields: term(),
  policies: term()
}


      



  


        

      



  

  
    
    Ash.Policy.Policy - ash v2.17.7
    
    

    



  
  

    
Ash.Policy.Policy 
    



      
Represents a policy on an Ash.Resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        at_least_one_policy_expression(policies, authorizer)

      


    


    
      
        fetch_fact(facts, arg2)

      


    


    
      
        fetch_or_strict_check_fact(authorizer, arg2)

      


    


    
      
        solve(authorizer)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Policy.Policy{
  access_type: term(),
  bypass?: term(),
  checks: term(),
  condition: term(),
  description: term(),
  policies: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    at_least_one_policy_expression(policies, authorizer)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    fetch_fact(facts, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    fetch_or_strict_check_fact(authorizer, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    solve(authorizer)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.BooleanExpression - ash v2.17.7
    
    

    



  
  

    
Ash.Query.BooleanExpression 
    



      
Represents a boolean expression

      


      
        Summary


  
    Functions
  


    
      
        new(op, left, right)

      


    


    
      
        optimized_new(op, left, right)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(op, left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    optimized_new(op, left, right)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Call - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Call 
    



      
Represents a function call/AST node in an Ash query expression

      





  

  
    
    Ash.Query.Exists - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Exists 
    



      
Determines if a given related entity exists.

      


      
        Summary


  
    Functions
  


    
      
        new(path, expr, at_path \\ [])

      


    





      


      
        Functions

        


    

  
    
      
      Link to this function
    
    new(path, expr, at_path \\ [])


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function behaviour
    



      
A function is a predicate with an arguments list.
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. A function must meet both behaviours.

      


      
        Summary


  
    Types
  


    
      
        arg()

      


    





  
    Callbacks
  


    
      
        args()

      


        The number and types of arguments supported.



    


    
      
        evaluate(func)

      


    


    
      
        new(list)

      


    


    
      
        partial_evaluate(func)

      


    


    
      
        private?()

      


    





  
    Functions
  


    
      
        new(mod, args)

      


    


    
      
        ordinal(num)

      


        Attaches the appropriate suffix to refer to an ordinal number, e.g 1 -> "1st"



    


    
      
        try_cast_arguments(configured_args, args)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    arg()


      
       
       View Source
     


  


  

      

          @type arg() :: any()


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    args()


      
       
       View Source
     


  


  

      

          @callback args() :: [arg()]


      


The number and types of arguments supported.

  



  
    
      
      Link to this callback
    
    evaluate(func)


      
       
       View Source
     


  


  

      

          @callback evaluate(func :: map()) :: :unknown | {:known, term()}


      



  



  
    
      
      Link to this callback
    
    new(list)


      
       
       View Source
     


  


  

      

          @callback new([term()]) :: {:ok, term()} | {:error, String.t() | Exception.t()}


      



  



  
    
      
      Link to this callback
    
    partial_evaluate(func)


      
       
       View Source
     


      (optional)

  


  

      

          @callback partial_evaluate(func) :: func when func: map()


      



  



  
    
      
      Link to this callback
    
    private?()


      
       
       View Source
     


  


  

      

          @callback private?() :: boolean()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(mod, args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    ordinal(num)


      
       
       View Source
     


  


  

Attaches the appropriate suffix to refer to an ordinal number, e.g 1 -> "1st"

  



  
    
      
      Link to this function
    
    try_cast_arguments(configured_args, args)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Ago - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Ago 
    



      
Subtracts the given interval from the current time in UTC.
For example:
   deleted_at > ago(7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.At - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.At 
    



      
Gets an element in the list by index

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.CompositeType - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.CompositeType 
    



      
Constructs a composite type in a way that is natively understood by the data layer
To do this, provide a tuple matching the format expected by the type in question.
Check that type's documentation for this information.

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(expr)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(expr)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Contains - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Contains 
    



      
Returns true if the first string contains the second.
Case insensitive strings are accounted for on either side.
   contains("foo", "fo")
   true
   contains(%Ash.CiString{:string "foo"}, "FoO")
   true
   contains("foo", %Ash.CiString{:string "FOO"})
   true

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.DateAdd - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.DateAdd 
    



      
Adds the given interval to the current time in UTC
For example:
   activates_at < date_add(today(), 7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.DateTimeAdd - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.DateTimeAdd 
    



      
Adds the given interval to the current time in UTC
For example:
   activates_at < datetime_add(now(), 7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.FromNow - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.FromNow 
    



      
Adds the given interval from the current time in UTC.
For example:
   expires_at < from_now(7, :day)
Documentation + available intervals inspired by the corresponding ecto interval implementation

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.GetPath - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.GetPath 
    



      
Gets the value at the provided path in the value, which must be a map or embed.
If you are using a datalayer that provides a type function (like AshPostgres), it is a good idea to
wrap your call in that function, e.g type(author[:bio][:title], :string), since data layers that depend
on knowing types may not be able to infer the type from the path. Ash may eventually be able to figure out
the type, in the case that the path consists of only embedded attributes.
If an atom key is provided, access is indiscriminate of atoms vs strings. The atom key is checked first.
If a string key is provided, that is the only thing that is checked. If the value will or may be a struct, be sure to use atoms.
The data layer may handle this differently, for example, AshPostgres only checks
strings at the data layer (because thats all it can be in the database anyway).
Available in query expressions using bracket syntax, e.g foo[:bar][:baz].

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.If - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.If 
    



      
If predicate is truthy, then the second argument is returned, otherwise the third.

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        partial_evaluate(fun)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    partial_evaluate(fun)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.IsNil - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.IsNil 
    



      
true if the provided field is nil

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Length - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Length 
    



      
Returns the length of a list attribute defined by the composite type {:array, Type}.
length(roles)
If the attribute allows nils:
length(roles || [])

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Minus - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Minus 
    



      
Multiplies the value by negative one

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Now - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Now 
    



      
Returns the current datetime

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(_)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(_)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Round - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Round 
    



      
Rounds a float, decimal or integer to the given number of points

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(round)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(round)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.StringJoin - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.StringJoin 
    



      
Joins a list of values.
Ignores nil values and concatenates the remaining non-nil values. An optional
joiner can be provided.
string_join([first_name, last_name], " ")

string_join([item_a, item_b])

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.StringSplit - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.StringSplit 
    



      
Split a string into a list of strings
Splits a string on the given delimiter. The delimiter defaults to a single space. Also supports options.
Keep in mind, this function does not support regexes the way that String.split/3 does, only raw strings.
string_split(employee_code)
string_split(full_name, "foo")
string_split(full_name, "foo", trim?: true)

  
    
  
  Options


	:trim? (boolean/0) - Whether or not to trim empty strings from the beginning or end of the result. Equivalent to the trim option to String.split/3 The default value is false.


      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Today - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Today 
    



      
Returns the current datetime

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(_)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(_)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Function.Type - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Function.Type 
    



      
Casts the value to a given type. Can also be used to provide type hints to data layers, where appropriate.

      


      
        Summary


  
    Functions
  


    
      
        args()

      


    


    
      
        eager_evaluate?()

      


    


    
      
        evaluate(arg1)

      


    


    
      
        name()

      


    


    
      
        new(args)

      


    


    
      
        predicate?()

      


    


    
      
        private?()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    eager_evaluate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    private?()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Not - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Not 
    



      
Represents the negation of the contained expression

      


      
        Summary


  
    Functions
  


    
      
        new(expression)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(expression)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator behaviour
    



      
An operator is a predicate with a left and a right
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. An operator must meet both behaviours.

      


      
        Summary


  
    Callbacks
  


    
      
        new(term, term)

      


        Create a new predicate. There are various return types possible



    


    
      
        to_string(struct, t)

      


        The implementation of the inspect protocol.



    





  
    Functions
  


    
      
        new(mod, left, right)

      


        Create a new operator. Pass the module and the left and right values



    


    
      
        operator_symbols()

      


    


    
      
        operators()

      


    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    new(term, term)


      
       
       View Source
     


  


  

      

          @callback new(term(), term()) ::
  {:ok, term(), term()} | {:ok, term()} | {:known, boolean()} | {:error, term()}


      


Create a new predicate. There are various return types possible:
	{:ok, left, right} - Return the left/right values of the operator
	{:ok, operator} - Return the operator itself, this or the one above are acceptable
	{:known, boolean} - If the value is already known, e.g 1 == 1
	{:error, error} - If there was an error creating the operator


  



  
    
      
      Link to this callback
    
    to_string(struct, t)


      
       
       View Source
     


  


  

      

          @callback to_string(
  struct(),
  Inspect.Opts.t()
) :: term()


      


The implementation of the inspect protocol.
If not defined, it will be inferred

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(mod, left, right)


      
       
       View Source
     


  


  

Create a new operator. Pass the module and the left and right values

  



  
    
      
      Link to this function
    
    operator_symbols()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operators()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.Basic - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.Basic 
    




      
        Summary


  
    Functions
  


    
      
        operator_modules()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    operator_modules()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.Eq - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.Eq 
    



      
left == right
The simplest operator, matches if the left and right are equal.
For comparison, this compares as mutually exclusive with other equality
and is_nil checks that have the same reference on the left side

      


      
        Summary


  
    Functions
  


    
      
        bulk_compare(predicates)

      


        Callback implementation for Ash.Filter.Predicate.bulk_compare/1.



    


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    bulk_compare(predicates)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.bulk_compare/1.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.GreaterThan - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.GreaterThan 
    



      
left > right
In comparison, simplifies to not(left < right + 1), so it will never need to be compared against.

      


      
        Summary


  
    Functions
  


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        simplify(arg1)

      


        Callback implementation for Ash.Filter.Predicate.simplify/1.



    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.GreaterThanOrEqual - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.GreaterThanOrEqual 
    



      
left >= right
In comparison, simplifies to not(left < right), so it will never need to be compared against.

      


      
        Summary


  
    Functions
  


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        simplify(arg1)

      


        Callback implementation for Ash.Filter.Predicate.simplify/1.



    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.In - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.In 
    



      
left in [1, 2, 3]
this predicate matches if the left is in the list on the right
For comparison, this simplifies to a set of "or equals", e.g
{:or, {:or, {:or, left == 1}, left == 2}, left == 3}

      


      
        Summary


  
    Functions
  


    
      
        compare(arg1, arg2)

      


        Callback implementation for Ash.Filter.Predicate.compare/2.



    


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        to_string(op, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    compare(arg1, arg2)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.compare/2.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(op, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.IsNil - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.IsNil 
    



      
left is_nil true/false
This predicate matches if the left is nil when the right is true or if the
left is not nil when the right is false

      


      
        Summary


  
    Functions
  


    
      
        compare(arg1, arg2)

      


        Callback implementation for Ash.Filter.Predicate.compare/2.



    


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    compare(arg1, arg2)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.compare/2.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.LessThan - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.LessThan 
    



      
left < right
Does not simplify, but is used as the simplification value for
Ash.Query.Operator.LessThanOrEqual, Ash.Query.Operator.GreaterThan and
Ash.Query.Operator.GreaterThanOrEqual.
When comparing predicates, it is mutually exclusive with Ash.Query.Operator.IsNil.
Additionally, it compares as mutually inclusive with any Ash.Query.Operator.Eq and
any Ash.Query.Operator.LessThan who's right sides are less than it, and mutually
exclusive with any Ash.Query.Operator.Eq or Ash.Query.Operator.GreaterThan who's
right side's are greater than or equal to it.

      


      
        Summary


  
    Functions
  


    
      
        bulk_compare(all_predicates)

      


        Callback implementation for Ash.Filter.Predicate.bulk_compare/1.



    


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    bulk_compare(all_predicates)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.bulk_compare/1.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.LessThanOrEqual - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.LessThanOrEqual 
    



      
left <= right
In comparison, simplifies to left < right + 1, so it will never need to be compared against.

      


      
        Summary


  
    Functions
  


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        simplify(arg1)

      


        Callback implementation for Ash.Filter.Predicate.simplify/1.



    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Operator.NotEq - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Operator.NotEq 
    



      
left != right
In comparison, simplifies to not(left == right)

      


      
        Summary


  
    Functions
  


    
      
        evaluate(map)

      


    


    
      
        name()

      


    


    
      
        new(left, right)

      


    


    
      
        operator()

      


    


    
      
        predicate?()

      


    


    
      
        simplify(not_eq)

      


        Callback implementation for Ash.Filter.Predicate.simplify/1.



    


    
      
        to_string(map, opts)

      


    


    
      
        types()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(not_eq)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Parent - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Parent 
    



      
true if the provided field is nil
Used to access values from the "source" of a given expression.
This is used in cases where expressions are given for some relationship path, for example:any()
 has_many :foo, Foo do
   filter expr(priority == :foo and type == parent(foo_type))
 end
This is supported on a case by case basis by a given data layer and in specific usages.

      


      
        Summary


  
    Functions
  


    
      
        new(expr)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    new(expr)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Query.Ref - ash v2.17.7
    
    

    



  
  

    
Ash.Query.Ref 
    



      
Represents a relation/attribute reference

      


      
        Summary


  
    Functions
  


    
      
        name(ref)

      


        Returns the referenced field



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    name(ref)


      
       
       View Source
     


  


  

Returns the referenced field

  


        

      



  

  
    
    Ash.Registry.Dsl - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.Dsl 
    



      
A small DSL for declaring an Ash.Registry. Not generally necessary any longer.
Ash.Registry can be used generically, but the main way it is used in Ash is to provide a compile-time registry for an Ash Api.

      





  

  
    
    Ash.Registry.Entry - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.Entry 
    



      
Represents an entry in an Ash.Registry

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Registry.Entry{entry: term()}


      



  


        

      



  

  
    
    Ash.Registry.ResourceValidations.Verifiers.EnsureNoEmbeds - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.ResourceValidations.Verifiers.EnsureNoEmbeds 
    



      
Ensures that all resources for a given registry are not embeds.

      





  

  
    
    Ash.Registry.ResourceValidations.Verifiers.EnsureResourcesCompiled - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.ResourceValidations.Verifiers.EnsureResourcesCompiled 
    



      
Ensures that all resources for a given registry are compiled.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Registry.ResourceValidations.Verifiers.ValidateRelatedResourceInclusion - ash v2.17.7
    
    

    



  
  

    
Ash.Registry.ResourceValidations.Verifiers.ValidateRelatedResourceInclusion 
    



      
Ensures that all related resources are included in an API.

      





  

  
    
    Ash.Resource.Actions - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions 
    



      
Types for Ash actions

      


      
        Summary


  
    Types
  


    
      
        action()

      


    


    
      
        action_type()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    action()


      
       
       View Source
     


  


  

      

          @type action() ::
  Ash.Resource.Actions.Action.t()
  | Ash.Resource.Actions.Create.t()
  | Ash.Resource.Actions.Read.t()
  | Ash.Resource.Actions.Update.t()
  | Ash.Resource.Actions.Destroy.t()


      



  



  
    
      
      Link to this type
    
    action_type()


      
       
       View Source
     


  


  

      

          @type action_type() :: :action | :read | :create | :update | :destroy


      



  


        

      



  

  
    
    Ash.Resource.Actions.Action - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Action 
    



      
Represents a custom action on a resource.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        transform(thing)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Action{
  allow_nil?: boolean(),
  arguments: [Ash.Resource.Actions.Argument.t()],
  constraints: Keyword.t(),
  description: String.t() | nil,
  name: atom(),
  primary?: boolean(),
  returns: Ash.Type.t(),
  run: {module(), Keyword.t()},
  touches_resources: [Ash.Resource.t()],
  transaction?: boolean(),
  type: :action
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    transform(thing)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Actions.Argument - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Argument 
    



      
Represents an argument to an action

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Argument{
  allow_nil?: term(),
  constraints: term(),
  default: term(),
  description: term(),
  name: term(),
  private?: term(),
  sensitive?: term(),
  type: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Actions.Create - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Create 
    



      
Represents a create action on a resource.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Create{
  accept: [atom()],
  allow_nil_input: [atom()],
  arguments: [Ash.Resource.Actions.Argument.t()],
  changes: term(),
  delay_global_validations?: boolean(),
  description: String.t() | nil,
  error_handler: term(),
  manual: module() | nil,
  metadata: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  skip_global_validations?: boolean(),
  touches_resources: [atom()],
  transaction?: term(),
  type: :create,
  upsert?: boolean(),
  upsert_fields:
    nil
    | [atom()]
    | :replace_all
    | {:replace, [atom()]}
    | {:replace_all_except, [atom()]},
  upsert_identity: atom() | nil
}


      



  


        

      



  

  
    
    Ash.Resource.Actions.Destroy - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Destroy 
    



      
Represents a destroy action on a resource.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Destroy{
  accept: term(),
  arguments: [Ash.Resource.Actions.Argument.t()],
  changes: term(),
  delay_global_validations?: boolean(),
  description: String.t() | nil,
  error_handler: term(),
  manual: module() | nil,
  metadata: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  skip_global_validations?: boolean(),
  soft?: term(),
  touches_resources: [atom()],
  transaction?: term(),
  type: :destroy
}


      



  


        

      



  

  
    
    Ash.Resource.Actions.Implementation - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Implementation behaviour
    



      
An implementation of a generic action.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    





  
    Callbacks
  


    
      
        run(t, opts, context)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      

          @type context() :: %{
  optional(:actor) => term(),
  optional(:tenant) => term(),
  optional(:authorize?) => boolean(),
  optional(:api) => module(),
  optional(any()) => any()
}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    run(t, opts, context)


      
       
       View Source
     


  


  

      

          @callback run(Ash.ActionInput.t(), opts :: Keyword.t(), context()) ::
  {:ok, term()} | {:ok, [Ash.Notifier.Notification.t()]} | {:error, term()}


      



  


        

      



  

  
    
    Ash.Resource.Actions.Metadata - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Metadata 
    



      
Represents metadata from an action

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Metadata{
  allow_nil?: term(),
  constraints: term(),
  default: term(),
  description: term(),
  name: term(),
  type: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Actions.Read - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Read 
    



      
Represents a read action on a resource.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        pagination_schema()

      


    


    
      
        transform(read)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Read{
  arguments: [Ash.Resource.Actions.Argument.t()],
  description: String.t() | nil,
  filter: any(),
  get?: nil | boolean(),
  get_by: nil | atom() | [atom()],
  manual: atom() | {atom(), Keyword.t()} | nil,
  metadata: [Ash.Resource.Actions.Metadata.t()],
  modify_query: nil | mfa(),
  name: atom(),
  pagination: any(),
  preparations: term(),
  primary?: boolean(),
  touches_resources: [atom()],
  transaction?: boolean(),
  type: :read
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    pagination_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(read)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Actions.Read.Pagination - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Read.Pagination 
    



      
Represents the pagination configuration of a read action

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        transform(pagination)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Read.Pagination{
  countable: term(),
  default_limit: term(),
  keyset?: term(),
  max_page_size: term(),
  offset?: term(),
  required?: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    transform(pagination)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Actions.Update - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Actions.Update 
    



      
Represents a update action on a resource.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Actions.Update{
  accept: [atom()],
  arguments: [Ash.Resource.Actions.Argument.t()],
  atomics: term(),
  changes: term(),
  delay_global_validations?: boolean(),
  description: String.t() | nil,
  error_handler: term(),
  manual: module() | nil,
  manual?: term(),
  metadata: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  skip_global_validations?: boolean(),
  touches_resources: [atom()],
  transaction?: term(),
  type: :update
}


      



  


        

      



  

  
    
    Ash.Resource.Aggregate - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Aggregate 
    



      
Represents a named aggregate on the resource that can be loaded

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Aggregate{
  authorize?: boolean(),
  constraints: term(),
  default: term(),
  description: String.t() | nil,
  field: atom(),
  filter: Keyword.t(),
  filterable?: term(),
  implementation: term(),
  kind: Ash.Query.Aggregate.kind(),
  name: atom(),
  private?: boolean(),
  read_action: atom() | nil,
  relationship_path: [atom()],
  sort: term(),
  type: term(),
  uniq?: term()
}


      



  


        

      



  

  
    
    Ash.Resource.Aggregate.CustomAggregate - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Aggregate.CustomAggregate behaviour
    



      
The root behavior for a custom aggregate.
See data layers for their implementation of custom aggregates.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Callbacks
  


    
      
        describe(t)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: {module(), Keyword.t()}


      



  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    describe(t)


      
       
       View Source
     


  


  

      

          @callback describe(t()) :: String.t()


      



  


        

      



  

  
    
    Ash.Resource.Attribute - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Attribute 
    



      
Represents an attribute on a resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        create_timestamp_schema()

      


    


    
      
        integer_primary_key_schema()

      


    


    
      
        transform(attribute)

      


    


    
      
        update_timestamp_schema()

      


    


    
      
        uuid_primary_key_schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Attribute{
  allow_nil?: term(),
  always_select?: term(),
  constraints: Keyword.t(),
  default: nil | term() | (-> term()),
  description: term(),
  filterable?: term(),
  generated?: term(),
  match_other_defaults?: term(),
  name: atom(),
  primary_key?: boolean(),
  private?: boolean(),
  sensitive?: boolean(),
  source: term(),
  type: Ash.Type.t(),
  update_default:
    nil | term() | (-> term()) | (Ash.Resource.record() -> term()),
  writable?: boolean()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    create_timestamp_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    integer_primary_key_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(attribute)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    update_timestamp_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    uuid_primary_key_schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Calculation - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Calculation 
    



      
Represents a named calculation on a resource

      


      
        Summary


  
    Types
  


    
      
        ref()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        expr_calc(expr)

      


    


    
      
        schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    ref()


      
       
       View Source
     


  


  

      

          @type ref() :: {module(), Keyword.t()} | module()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Calculation{
  allow_nil?: boolean(),
  arguments: [Ash.Resource.Calculation.Argument.t()],
  calculation: module() | {module(), keyword()},
  constraints: keyword(),
  description: nil | String.t(),
  filterable?: boolean(),
  load: keyword(),
  name: atom(),
  private?: boolean(),
  select: keyword(),
  type: nil | Ash.Type.t()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    expr_calc(expr)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Calculation.Argument - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Calculation.Argument 
    



      
An argument to a calculation

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Calculation.Argument{
  allow_expr?: boolean(),
  allow_nil?: boolean(),
  constraints: keyword(),
  default: any(),
  name: atom(),
  type: Ash.Type.t()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Calculation.LoadAttribute - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Calculation.LoadAttribute 
    



      
Loads an attribute as a calculation.
Can be used to load the same attribute with different load statements applied.

      


      
        Summary


  
    Functions
  


    
      
        calculate(list, opts, context)

      


        Callback implementation for Ash.Calculation.calculate/3.



    


    
      
        describe(opts)

      


        Callback implementation for Ash.Calculation.describe/1.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Calculation.init/1.



    


    
      
        load(query, opts, arg3)

      


        Callback implementation for Ash.Calculation.load/3.



    


    
      
        select(query, opts, context)

      


        Callback implementation for Ash.Calculation.select/3.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    calculate(list, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.calculate/3.

  



  
    
      
      Link to this function
    
    describe(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.describe/1.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.init/1.

  



  
    
      
      Link to this function
    
    load(query, opts, arg3)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.load/3.

  



  
    
      
      Link to this function
    
    select(query, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.select/3.

  


        

      



  

  
    
    Ash.Resource.Calculation.LoadRelationship - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Calculation.LoadRelationship 
    



      
Loads a relationship as a calculation.
Can be used to load the same relationship with a different query.

      


      
        Summary


  
    Functions
  


    
      
        calculate(results, opts, context)

      


        Callback implementation for Ash.Calculation.calculate/3.



    


    
      
        describe(opts)

      


        Callback implementation for Ash.Calculation.describe/1.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Calculation.init/1.



    


    
      
        load(query, opts, arg3)

      


        Callback implementation for Ash.Calculation.load/3.



    


    
      
        select(query, opts, context)

      


        Callback implementation for Ash.Calculation.select/3.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    calculate(results, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.calculate/3.

  



  
    
      
      Link to this function
    
    describe(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.describe/1.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.init/1.

  



  
    
      
      Link to this function
    
    load(query, opts, arg3)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.load/3.

  



  
    
      
      Link to this function
    
    select(query, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Calculation.select/3.

  


        

      



  

  
    
    Ash.Resource.CalculationInterface - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.CalculationInterface 
    



      
Represents a function that evaluates a calculation in a resource's code interface

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        schema()

      


    


    
      
        transform(interface)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.CalculationInterface{
  args: term(),
  calculation: term(),
  name: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(interface)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Change.GetAndLock - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change.GetAndLock 
    



      
Refetches the record being updated or destroyed, and locks it with the given type.

      


      
        Summary


  
    Functions
  


    
      
        atomic(opts, context)

      


    


    
      
        change(changeset, opts, context)

      


        Callback implementation for Ash.Resource.Change.change/3.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Resource.Change.init/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    atomic(opts, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    change(changeset, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.change/3.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.init/1.

  


        

      



  

  
    
    Ash.Resource.Change.GetAndLockForUpdate - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change.GetAndLockForUpdate 
    



      
Refetches the record being updated or destroyed, and locks it for update.

      


      
        Summary


  
    Functions
  


    
      
        atomic(opts, context)

      


    


    
      
        change(changeset, _, context)

      


        Callback implementation for Ash.Resource.Change.change/3.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Resource.Change.init/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    atomic(opts, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    change(changeset, _, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.change/3.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.init/1.

  


        

      



  

  
    
    Ash.Resource.Change.Increment - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change.Increment 
    



      
Increments an attribute's value by the amount specified, which defaults to 1.

      


      
        Summary


  
    Functions
  


    
      
        atomic(opts, context)

      


    


    
      
        change(changeset, opts, context)

      


        Callback implementation for Ash.Resource.Change.change/3.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Resource.Change.init/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    atomic(opts, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    change(changeset, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.change/3.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.init/1.

  


        

      



  

  
    
    Ash.Resource.Change.OptimisticLock - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Change.OptimisticLock 
    



      
Performs an optimistic lock on the changeset.
See Ash.Resource.Change.Builtins.optimistic_lock/1 for more.

      


      
        Summary


  
    Functions
  


    
      
        atomic(opts, context)

      


    


    
      
        change(changeset, opts, context)

      


        Callback implementation for Ash.Resource.Change.change/3.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Resource.Change.init/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    atomic(opts, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    change(changeset, opts, context)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.change/3.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Change.init/1.

  


        

      



  

  
    
    Ash.Resource.Identity - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Identity 
    



      
Represents a unique constraint on a resource
Data layers should (and all built in ones do), discount nil or null (in the case of postgres) values
when determining if a unique constraint matches. This often means that you should
prefer to use identities with non-nullable columns.
Eventually, features could be added to support including nil or null values, but they would
need to include a corresponding feature for data layers.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        schema()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Identity{
  description: String.t() | nil,
  eager_check_with: term(),
  keys: [atom()],
  message: term(),
  name: atom(),
  pre_check_with: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Interface - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Interface 
    



      
Represents a function in a resource's code interface

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        interface_options(action_type)

      


    


    
      
        schema()

      


    


    
      
        transform(definition)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Interface{
  action: term(),
  args: term(),
  get?: term(),
  get_by: term(),
  get_by_identity: term(),
  name: term(),
  not_found_error?: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    interface_options(action_type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(definition)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Relationships - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Relationships 
    



      
Types Ash relationships

      


      
        Summary


  
    Types
  


    
      
        cardinality()

      


    


    
      
        relationship()

      


    


    
      
        type()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    cardinality()


      
       
       View Source
     


  


  

      

          @type cardinality() :: :many | :one


      



  



  
    
      
      Link to this type
    
    relationship()


      
       
       View Source
     


  


  

      

          @type relationship() ::
  Ash.Resource.Relationships.HasOne.t()
  | Ash.Resource.Relationships.BelongsTo.t()
  | Ash.Resource.Relationships.HasMany.t()
  | Ash.Resource.Relationships.ManyToMany.t()


      



  



  
    
      
      Link to this type
    
    type()


      
       
       View Source
     


  


  

      

          @type type() :: :has_many | :has_one | :belongs_to | :many_to_many


      



  


        

      



  

  
    
    Ash.Resource.Relationships.BelongsTo - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Relationships.BelongsTo 
    



      
Represents a belongs_to relationship on a resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Relationships.BelongsTo{
  allow_nil?: boolean(),
  api: term(),
  attribute_type: term(),
  attribute_writable?: boolean(),
  cardinality: :one,
  context: term(),
  define_attribute?: boolean(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_attribute: atom(),
  filter: Ash.Filter.t() | nil,
  filterable?: boolean(),
  name: atom(),
  not_found_message: term(),
  primary_key?: boolean(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_attribute: atom() | nil,
  type: :belongs_to,
  validate_destination_attribute?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      



  

  
    
    Ash.Resource.Relationships.HasMany - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Relationships.HasMany 
    



      
Represents a has_many relationship on a resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        manual(module)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Relationships.HasMany{
  api: term(),
  autogenerated_join_relationship_of: atom() | nil,
  cardinality: :many,
  context: term(),
  could_be_related_at_creation?: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_attribute: atom(),
  filter: Ash.Filter.t() | nil,
  filterable?: boolean(),
  manual: atom() | {atom(), Keyword.t()} | nil,
  name: atom(),
  no_attributes?: boolean(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_attribute: atom(),
  type: :has_many,
  validate_destination_attribute?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    manual(module)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Resource.Relationships.HasOne - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Relationships.HasOne 
    



      
Represents a has_one relationship on a resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Relationships.HasOne{
  allow_nil?: term(),
  allow_orphans?: boolean(),
  api: term(),
  cardinality: :one,
  context: term(),
  could_be_related_at_creation?: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_attribute: atom(),
  filter: Ash.Filter.t() | nil,
  filterable?: boolean(),
  from_many?: boolean(),
  manual: atom() | {atom(), Keyword.t()} | nil,
  name: atom(),
  no_attributes?: boolean(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_attribute: atom(),
  type: :has_one,
  validate_destination_attribute?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      



  

  
    
    Ash.Resource.Relationships.ManyToMany - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Relationships.ManyToMany 
    



      
Represents a many_to_many relationship on a resource

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Ash.Resource.Relationships.ManyToMany{
  api: term(),
  cardinality: :many,
  context: term(),
  could_be_related_at_creation?: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_attribute: atom(),
  destination_attribute_on_join_resource: atom(),
  filter: Ash.Filter.t() | nil,
  filterable?: boolean(),
  has_many: boolean(),
  join_relationship: atom(),
  name: atom(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_attribute: atom(),
  source_attribute_on_join_resource: atom(),
  through: Ash.Resource.t(),
  type: :many_to_many,
  validate_destination_attribute?: term(),
  violation_message: term()
}


      



  


        

      



  

  
    
    Ash.Resource.Validation.ActionIs - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Validation.ActionIs 
    



      
Validates that the action is the specified action.

      


      
        Summary


  
    Functions
  


    
      
        atomic?(_)

      


        Callback implementation for Ash.Resource.Validation.atomic?/1.



    


    
      
        init(opts)

      


        Callback implementation for Ash.Resource.Validation.init/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    atomic?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Validation.atomic?/1.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Resource.Validation.init/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.CountableActions - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.CountableActions 
    



      
Ensures that countable paginated actions do not exist for resources that are not countable

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl_state)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.EnsureAggregateFieldIsAttributeOrCalculation 
    



      
Ensures that the field at the end of the path is an attribute or calculation.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.NoReservedFieldNames - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.NoReservedFieldNames 
    



      
Confirms that a resource does not use reserved names for field names.
Reserved field names are: [:struct, :meta, :metadata, :order, :lateral_join_source, :*, :calculations, :aggregates, :relationships, :as].

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl_state)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.ValidateAccept - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateAccept 
    



      
Validates that accept and reject lists only contain valid attributes

      





  

  
    
    Ash.Resource.Verifiers.ValidateActionTypesSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateActionTypesSupported 
    



      
Confirms that all action types declared on a resource are supported by its data layer

      





  

  
    
    Ash.Resource.Verifiers.ValidateAggregatesSupported - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateAggregatesSupported 
    



      
Confirms that all aggregates are supported by the data layer

      





  

  
    
    Ash.Resource.Verifiers.ValidateEagerIdentities - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateEagerIdentities 
    



      
Confirms that eager identities are not declared on a resource with no primary read.

      





  

  
    
    Ash.Resource.Verifiers.ValidateManagedRelationshipOpts - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateManagedRelationshipOpts 
    



      
Confirms that all action types declared on a resource are supported by its data layer

      





  

  
    
    Ash.Resource.Verifiers.ValidateMultitenancy - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateMultitenancy 
    



      
Ensures that the multitenancy configuration is valid for the given resource

      





  

  
    
    Ash.Resource.Verifiers.ValidatePrimaryKey - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidatePrimaryKey 
    



      
Validates and caches the primary key of a resource

      





  

  
    
    Ash.Resource.Verifiers.ValidateRelationshipAttributes - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateRelationshipAttributes 
    



      
Validates that all relationships point to valid fields

      





  

  
    
    Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.ValidateRelationshipAttributesMatch 
    



      
Shows a warning on potentially incompatible relationship attributes.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.VerifyIdentityFields - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.VerifyIdentityFields 
    



      
Raises an error on potentially incompatible identity attributes.

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.Resource.Verifiers.VerifyReservedCalculationArguments - ash v2.17.7
    
    

    



  
  

    
Ash.Resource.Verifiers.VerifyReservedCalculationArguments 
    



      
Verifies that standard context keys are not used as calculation arguments

      


      
        Summary


  
    Functions
  


    
      
        verify(dsl)

      


        Callback implementation for Spark.Dsl.Verifier.verify/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    verify(dsl)


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Verifier.verify/1.

  


        

      



  

  
    
    Ash.SatSolver - ash v2.17.7
    
    

    



  
  

    
Ash.SatSolver 
    



      
Tools for working with the satsolver that drives filter subset checking (for authorization)

      


      
        Summary


  
    Functions
  


    
      
        b(statement)

      


    


    
      
        balance(other)

      


    


    
      
        can_be_used_as_group?(group, scenarios, bindings)

      


    


    
      
        contains?(l1, l2)

      


    


    
      
        expand_groups(expression)

      


    


    
      
        find_non_equal_overlap(expression)

      


    


    
      
        fully_simplify(expression)

      


    


    
      
        left_excludes_right(left, right)

      


    


    
      
        left_implies_right(left, right)

      


    


    
      
        lift_equals_out_of_in(expression)

      


    


    
      
        mutually_exclusive(predicates, acc \\ [])

      


    


    
      
        mutually_exclusive_and_collectively_exhaustive(predicates)

      


    


    
      
        mutually_inclusive(predicates, acc \\ [])

      


    


    
      
        overlap?(arg1, arg2)

      


    


    
      
        right_excludes_left(left, right)

      


    


    
      
        right_implies_left(left, right)

      


    


    
      
        solutions_to_predicate_values(solution, bindings)

      


    


    
      
        solve_expression(cnf)

      


    


    
      
        split_in_expressions(sub_expr, non_equal_overlap)

      


    


    
      
        strict_filter_subset(filter, candidate)

      


    


    
      
        synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)

      


    


    
      
        to_cnf(expression)

      


    


    
      
        transform(resource, expression)

      


    


    
      
        transform_and_solve(resource, expression)

      


    


    
      
        unbind(expression, map)

      


    





      


      
        Functions

        


  
    
      
      Link to this macro
    
    b(statement)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    balance(other)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    can_be_used_as_group?(group, scenarios, bindings)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    contains?(l1, l2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    expand_groups(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    find_non_equal_overlap(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    fully_simplify(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    left_excludes_right(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    left_implies_right(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    lift_equals_out_of_in(expression)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    mutually_exclusive(predicates, acc \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    mutually_exclusive_and_collectively_exhaustive(predicates)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    mutually_inclusive(predicates, acc \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    overlap?(arg1, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    right_excludes_left(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    right_implies_left(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    solutions_to_predicate_values(solution, bindings)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    solve_expression(cnf)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    split_in_expressions(sub_expr, non_equal_overlap)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_filter_subset(filter, candidate)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_cnf(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(resource, expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform_and_solve(resource, expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    unbind(expression, map)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Tracer.Simple - ash v2.17.7
    
    

    



  
  

    
Ash.Tracer.Simple 
    



      
A simple tracer that can send traces to the current process or call a module with the trace.

      


      
        Summary


  
    Functions
  


    
      
        gather_spans()

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    gather_spans()


      
       
       View Source
     


  


  


  


        

      



  

  
    
    Ash.Tracer.Simple.Span - ash v2.17.7
    
    

    



  
  

    
Ash.Tracer.Simple.Span 
    



      
A span produced by Ash.Tracer.Simple

      





  

  
    
    Ash.Vector - ash v2.17.7
    
    

    



  
  

    
Ash.Vector 
    



      
A vector struct for Ash.
Implementation based off of https://github.com/pgvector/pgvector-elixir/blob/v0.2.0/lib/pgvector.ex

      


      
        Summary


  
    Functions
  


    
      
        from_binary(binary)

      


        Creates a new vector from its binary representation



    


    
      
        new(binary)

      


        Creates a new vector from a list or tensor



    


    
      
        to_binary(vector)

      


        Converts the vector to its binary representation



    


    
      
        to_list(vector)

      


        Converts the vector to a list



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    from_binary(binary)


      
       
       View Source
     


  


  

Creates a new vector from its binary representation

  



  
    
      
      Link to this function
    
    new(binary)


      
       
       View Source
     


  


  

Creates a new vector from a list or tensor

  



  
    
      
      Link to this function
    
    to_binary(vector)


      
       
       View Source
     


  


  

Converts the vector to its binary representation

  



  
    
      
      Link to this function
    
    to_list(vector)


      
       
       View Source
     


  


  

Converts the vector to a list

  


        

      



  

  
    
    Comparable.Type.Ash.CiString.To.Ash.CiString - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Ash.CiString.To.Ash.CiString 
    







  

  
    
    Comparable.Type.Ash.CiString.To.BitString - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Ash.CiString.To.BitString 
    







  

  
    
    Comparable.Type.BitString.To.Ash.CiString - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.BitString.To.Ash.CiString 
    







  

  
    
    Comparable.Type.BitString.To.Decimal - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.BitString.To.Decimal 
    







  

  
    
    Comparable.Type.Decimal.To.BitString - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Decimal.To.BitString 
    







  

  
    
    Comparable.Type.Decimal.To.Decimal - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Decimal.To.Decimal 
    







  

  
    
    Comparable.Type.Decimal.To.Float - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Decimal.To.Float 
    







  

  
    
    Comparable.Type.Decimal.To.Integer - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Decimal.To.Integer 
    







  

  
    
    Comparable.Type.Float.To.Decimal - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Float.To.Decimal 
    







  

  
    
    Comparable.Type.Integer.To.Decimal - ash v2.17.7
    
    

    



  
  

    
Comparable.Type.Integer.To.Decimal 
    







  

  
    
    Mix.Mermaid - ash v2.17.7
    
    

    



  
  

    
Mix.Mermaid 
    



      
Mermaid Diagram helper functions.

      


      
        Summary


  
    Functions
  


    
      
        config()

      


        Generate the option string for a mermaid config file if it exists.



    


    
      
        create_diagram(file, markdown)

      


        Generate a Mermaid diagram using the CLI.



    


    
      
        file(source, suffix, extension)

      


        Generate a diagram filename next to the source file.



    


    
      
        generate_diagram(source, suffix, format, markdown, message)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    config()


      
       
       View Source
     


  


  

Generate the option string for a mermaid config file if it exists.

  



  
    
      
      Link to this function
    
    create_diagram(file, markdown)


      
       
       View Source
     


  


  

Generate a Mermaid diagram using the CLI.
For more info see https://github.com/mermaid-js/mermaid-cli

  



  
    
      
      Link to this function
    
    file(source, suffix, extension)


      
       
       View Source
     


  


  

Generate a diagram filename next to the source file.

  



  
    
      
      Link to this function
    
    generate_diagram(source, suffix, format, markdown, message)


      
       
       View Source
     


  


  


  


        

      



  

  
    
    mix ash.codegen - ash v2.17.7
    
    

    



  
  

    
mix ash.codegen 
    



      
Runs all codegen tasks for any extension on any resource/api in your application.

      


      
        Summary


  
    Functions
  


    
      
        run(argv)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    run(argv)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  

  
    
    mix ash.generate_flow_charts - ash v2.17.7
    
    

    



  
  

    
mix ash.generate_flow_charts 
    



      
Generates a Mermaid Flow Chart for each Ash.Flow alongside the flow.
If there is a run_flow step in the flow, this will also create
an "expanded" Mermaid Flow Chart which includes all child steps.

  
    
  
  Prerequisites


This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

  
    
  
  Command line options


	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG




      


      
        Summary


  
    Functions
  


    
      
        run(argv)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    run(argv)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  

  
    
    mix ash.generate_livebook - ash v2.17.7
    
    

    



  
  

    
mix ash.generate_livebook 
    



      
Generates a Livebook for each Ash API.

  
    
  
  Command line options


	--filename - Specify the name of the generated Livebook file. Default: livebook.livemd


      


      
        Summary


  
    Functions
  


    
      
        apis()

      


    


    
      
        run(argv)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    apis()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run(argv)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  

  
    
    mix ash.generate_policy_charts - ash v2.17.7
    
    

    



  
  

    
mix ash.generate_policy_charts 
    



      
Generates a Mermaid Flow Chart for a given resource's policies.

  
    
  
  Prerequisites


This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

  
    
  
  Command line options


	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG




      


      
        Summary


  
    Functions
  


    
      
        run(argv)

      


        Callback implementation for Mix.Task.run/1.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    run(argv)


      
       
       View Source
     


  


  

Callback implementation for Mix.Task.run/1.

  


        

      



  

  
    
    mix ash.generate_resource_diagrams - ash v2.17.7
    
    

    



  
  

    
mix ash.generate_resource_diagrams 
    



      
Generates a Mermaid Resource Diagram for each Ash API.

  
    
  
  Prerequisites


This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

  
    
  
  Command line options


	--type - er or class (defaults to class)
	--only - only generates the given API file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates