

 ash_ai

 v0.3.0

 [image: Logo]

 Table of contents

 	Home

 	Gemini

 	DSLs

 	AshAi

 	About AshGraphql

 	Change Log

 	
 Modules

 	AshAi

 	AshAi.Actions

 	AshAi.Actions.Prompt

 	AshAi.Actions.Prompt.Adapter

 	AshAi.Actions.Prompt.Adapter.CompletionTool

 	AshAi.Actions.Prompt.Adapter.Data

 	AshAi.Actions.Prompt.Adapter.Helpers

 	AshAi.Actions.Prompt.Adapter.Raw

 	AshAi.Actions.Prompt.Adapter.RequestJson

 	AshAi.Actions.Prompt.Adapter.StructuredOutput

 	AshAi.Changes.Vectorize

 	AshAi.Changes.VectorizeAfterAction

 	AshAi.Changes.VectorizeAfterActionObanTrigger

 	AshAi.Checks.ActorIsAshAi

 	AshAi.EmbeddingModel

 	AshAi.FullText

 	AshAi.Info

 	AshAi.Mcp

 	AshAi.Mcp.Dev

 	AshAi.Mcp.Router

 	AshAi.Mcp.Server

 	AshAi.Tool

 	AshAi.ToolEndEvent

 	AshAi.ToolStartEvent

 	AshAi.Validations.ActorIsAshAi

 	
 Mix Tasks

 	mix ash_ai.gen.chat

 	mix ash_ai.gen.mcp

 	mix ash_ai.install

 Ash AI

[image: Logo][image: DeepWiki]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
Installation
With Igniter
You can install AshAi using igniter. For example:
mix igniter.install ash_ai

Manually
Add AshAi to your list of dependencies:
def deps do
 [
 {:ash_ai, "~> 0.2"}
]
end
MCP (Model Context Protocol) Server
Both the dev & production MCP servers can be installed with
mix ash_ai.gen.mcp
Dev MCP Server
To install the dev MCP server, add the AshAi.Mcp.Dev plug to your
endpoint module, in the code_reloading? block. By default the
mcp server will be available under http://localhost:4000/ash_ai/mcp.
 if code_reloading? do
 socket "/phoenix/live_reload/socket", Phoenix.LiveReloader.Socket

 plug AshAi.Mcp.Dev,
 # see the note below on protocol versions below
 protocol_version_statement: "2024-11-05",
 otp_app: :your_app
We are still experimenting to see what tools (if any) are useful while developing with agents.
Production MCP Server
AshAi provides a pre-built MCP server that can be used to expose your tool definitions to an MCP client (typically some kind of IDE, or Claude Desktop for example).
The protocol version we implement is 2025-03-26. As of this writing, many tools have not yet been updated to support this version. You will generally need to use some kind of proxy until tools have been updated accordingly. We suggest this one, provided by tidewave. https://github.com/tidewave-ai/mcp_proxy_rust#installation
However, as of the writing of this guide, it requires setting a previous protocol version as noted above.
Roadmap
	Implement OAuth2 flow with AshAuthentication (long term)
	Implement support for more than just tools, i.e resources etc.
	Implement sessions, and provide a session id context to tools (this code is just commented out, and can be uncommented, just needs timeout logic for inactive sesions)

Installation
Authentication
We don't currently support the OAuth2 flow out of the box with AshAi, but the goal is to eventually support this with AshAuthentication. You can always implement that yourself, but the quickest way to value is to use the new api_key strategy.
If you haven't installed AshAuthentication yet, install it like so: mix igniter.install ash_authentication --auth-strategy api_key.
If its already been installed, and you haven't set up API keys, use mix ash_authentication.add_strategy api_key.
Then, create a separate pipeline for :mcp, and add the api key plug to it:
pipeline :mcp do
 plug AshAuthentication.Strategy.ApiKey.Plug,
 resource: YourApp.Accounts.User,
 # Use `required?: false` to allow unauthenticated
 # users to connect, for example if some tools
 # are publicly accessible.
 required?: false
end
Add the MCP server to your router
scope "/mcp" do
 pipe_through :mcp

 forward "/", AshAi.Mcp.Router,
 tools: [
 :list,
 :of,
 :tools
],
 # For many tools, you will need to set the `protocol_version_statement` to the older version.
 protocol_version_statement: "2024-11-05",
 otp_app: :my_app
end
mix ash_ai.gen.chat
This is a new and experimental tool to generate a chat feature for your Ash & Phoenix application. It is backed by ash_oban and ash_postgres, using pub_sub to stream messages to the client. This is primarily a tool to get started with chat features and is by no means intended to handle every case you can come up with.
To get started:
mix ash_ai.gen.chat --live
The --live flag indicates that you wish to generate liveviews in addition to the chat resources.
It requires a user resource to exist. If your user resource is not called <YourApp>.Accounts.User, provide a custom user resource with the --user
flag.
To try it out from scratch:
mix igniter.new my_app \
 --with phx.new \
 --install ash,ash_postgres,ash_phoenix \
 --install ash_authentication_phoenix,ash_oban \
 --install ash_ai@github:ash-project/ash_ai \
 --auth-strategy password

and then run:
mix ash_ai.gen.chat --live

Specify your LLM API key
By default, it uses Open AI as the LLM provider so you need to specify your OpenAI API key as an environment variable (eg OPEN_API_KEY=sk_...).
Ensure you have Tailwind and DaisyUI
The Chat UI liveview templates assume you have Tailwind and DaisyUI installed for styling purposes. DaisyUI is included in Phoenix 1.8 and later but if you generated your Phoenix app pre-1.8 then install DaisyUI.
Access the chat route
You can then start your server and visit http://localhost:4000/chat to see the chat feature in action. You will be prompted to register first and sign in the first time.
Register tools for the chatbot
You should then be able to type chat messages, but until you have some tools registered (see below) and set a default system prompt, the LLM won't know anything about your app.
Expose actions as tool calls
defmodule MyApp.Blog do
 use Ash.Domain, extensions: [AshAi]

 tools do
 tool :read_posts, MyApp.Blog.Post, :read
 tool :create_post, MyApp.Blog.Post, :create
 tool :publish_post, MyApp.Blog.Post, :publish
 tool :read_comments, MyApp.Blog.Comment, :read
 end
end
Expose these actions as tools. When you call AshAi.setup_ash_ai(chain, opts), or AshAi.iex_chat/2
it will add those as tool calls to the agent.
Tool Data Access
Important: Tools have different access levels for different operations:
	Filtering/Sorting/Aggregation: Only public attributes (public?: true) can be used
	Arguments: Only public action arguments are exposed
	Response data: Public attributes are returned by default
	Loading data: Use the load option to include relationships, calculations, or additional attributes (including private ones) in responses

Example:
tools do
 # Returns only public attributes
 tool :read_posts, MyApp.Blog.Post, :read

 # Returns public attributes AND loaded relationships/calculations
 # Note: loaded fields can include private attributes
 tool :read_posts_with_details, MyApp.Blog.Post, :read,
 load: [:author, :comment_count, :internal_notes]
end
Key distinction:
	Private attributes cannot be used for filtering, sorting, or aggregation
	Private attributes CAN be included in responses when using the load option
	The load option is primarily for loading relationships and calculations, but also makes any loaded attributes (including private ones) visible

Tool Execution Callbacks
Monitor tool execution in real-time by providing callbacks to AshAi.setup_ash_ai/2:
chain
|> AshAi.setup_ash_ai(
 actor: current_user,
 on_tool_start: fn %AshAi.ToolStartEvent{} = event ->
 # event includes: tool_name, action, resource, arguments, actor, tenant
 IO.puts("Starting #{event.tool_name}...")
 end,
 on_tool_end: fn %AshAi.ToolEndEvent{} = event ->
 # event includes: tool_name, result ({:ok, ...} or {:error, ...})
 IO.puts("Completed #{event.tool_name}")
 end
)
This is useful for showing progress indicators, logging, metrics collection, or debugging tool execution.
Prompt-backed actions
This allows defining an action, including input and output types, and delegating the
implementation to an LLM. We use structured outputs to ensure that it always returns
the correct data type. We also derive a default prompt from the action description and
action inputs. See AshAi.Actions.Prompt for more information.
action :analyze_sentiment, :atom do
 constraints one_of: [:positive, :negative]

 description """
 Analyzes the sentiment of a given piece of text to determine if it is overall positive or negative.
 """

 argument :text, :string do
 allow_nil? false
 description "The text for analysis"
 end

 run prompt(
 LangChain.ChatModels.ChatOpenAI.new!(%{ model: "gpt-4o"}),
 # setting `tools: true` allows it to use all exposed tools in your app
 tools: true
 # alternatively you can restrict it to only a set of tools
 # tools: [:list, :of, :tool, :names]
 # provide an optional prompt, which is an EEx template
 # prompt: "Analyze the sentiment of the following text: <%= @input.arguments.description %>",
 # adapter: {Adapter, [some: :opt]}
)
end
Using Custom Types for Structured Outputs
The action's return type provides the JSON schema automatically. For complex structured outputs, you can use any Ash type:
Example using Ash.TypedStruct
defmodule JobListing do
 use Ash.TypedStruct

 typed_struct do
 field :title, :string, allow_nil?: false
 field :company, :string, allow_nil?: false
 field :location, :string
 field :requirements, {:array, :string}
 end
end

Use it as the return type for your action
action :parse_job, JobListing do
 argument :raw_content, :string, allow_nil?: false

 run prompt(
 LangChain.ChatModels.ChatOpenAI.new!(%{model: "gpt-4o-mini"}),
 prompt: "Parse this job listing: <%= @input.arguments.raw_content %>",
 tools: false
)
end
Adapters
Adapters are used to determine how a given LLM fulfills a prompt-backed action. The adapter is guessed automatically from the model where possible.
See AshAi.Actions.Prompt.Adapter for more information.
Setting up LangChain
For any langchain models you use, you will need to configure them. See https://hexdocs.pm/langchain/ for more information.
For AshAI Specific changes to use different models:
	Google Gemini 2.5

Vectorization
See AshPostgres vector setup for required steps: https://hexdocs.pm/ash_postgres/AshPostgres.Extensions.Vector.html
This extension creates a vector search action, and provides a few different strategies for how to
update the embeddings when needed.
You can have multiple full_texts in the case where you want to vectorize multiple groups of columns together, in the
case where you wish to do so, you should specify the name of the generated full_text column.
in a resource

vectorize do
 full_text do
 text(fn record ->
 """
 Name: #{record.name}
 Biography: #{record.biography}
 """
 end)

 # When used_attributes are defined, embeddings will only be rebuilt when
 # the listed attributes are changed in an update action.
 used_attributes [:name, :biography]
 end

 strategy :after_action
 attributes(name: :vectorized_name, biography: :vectorized_biography)

 # See the section below on defining an embedding model
 embedding_model MyApp.OpenAiEmbeddingModel
end
If you are using policies, add a bypass to allow us to update the vector embeddings:
bypass action(:ash_ai_update_embeddings) do
 authorize_if AshAi.Checks.ActorIsAshAi
end
Vectorization strategies
Currently there are three strategies to choose from:
	:after_action (default) - The embeddings will be updated synchronously on after every create & update action.
	:ash_oban - Embeddings will be updated asynchronously through an ash_oban-trigger when a record is created and updated.
	:manual - The embeddings will not be automatically updated in any way.

:after_action
Will add a global change on the resource, that will run a generated action named :ash_ai_update_embeddings
on every update that requires the embeddings to be rebuilt. The :ash_ai_update_embeddings-action will be run in the after_transaction-phase of any create action and update action that requires the embeddings to be rebuilt.
This will make your app incredibly slow, and is not recommended for any real production usage.
:ash_oban
Requires the ash_oban-dependency to be installed, and that the resource in question uses it as an extension, like this:
defmodule MyApp.Artist do
 use Ash.Resource, extensions: [AshAi, AshOban]
end
Just like the :after_action-strategy, this strategy creates an :ash_ai_update_embeddings update-action, and adds a global change that will run an ash_oban-trigger (also in the after_transaction-phase) whenever embeddings need to be rebuilt.
You will have to define this trigger yourself, and then reference it in the vectorize-section like this:
defmodule MyApp.Artist do
 use Ash.Resource, extensions: [AshAi, AshOban]

 vectorize do
 full_text do
 ...
 end

 strategy :ash_oban
 ash_oban_trigger_name :my_vectorize_trigger (default name is :ash_ai_update_embeddings)
 ...
 end

 oban do
 triggers do
 trigger :my_vectorize_trigger do
 action :ash_ai_update_embeddings
 queue :artist_vectorizer
 worker_read_action :read
 worker_module_name __MODULE__.AshOban.Worker.UpdateEmbeddings
 scheduler_module_name __MODULE__.AshOban.Scheduler.UpdateEmbeddings
 scheduler_cron false # change this to a cron expression if you want to rerun the embedding at specified intervals
 list_tenants MyApp.ListTenants
 end
 end
 end
end
You'll also need to create the queue in the Oban config by changing your config.exs file.
config :my_app, Oban,
 engine: Oban.Engines.Basic,
 notifier: Oban.Notifiers.Postgres,
 queues: [
 default: 10,
 chat_responses: [limit: 10],
 conversations: [limit: 10],
 artist_vectorizer: [limit: 20], #set the limit of concurrent workers
],
 repo: MyApp.Repo,
 plugins: [{Oban.Plugins.Cron, []}]
The queue defaults to the resources short name plus the name of the trigger. (if you didn't set it through the queue option on the trigger).
:manual
Will not automatically update the embeddings in any way, but will by default generated an update action
named :ash_ai_update_embeddings that can be run on demand. If needed, you can also disable the
generation of this action like this:
vectorize do
 full_text do
 ...
 end

 strategy :manual
 define_update_action_for_manual_strategy? false
 ...
end
Embedding Models
Embedding models are modules that are in charge of defining what the dimensions
are of a given vector and how to generate one. This example uses Req to
generate embeddings using OpenAi. To use it, you'd need to install req
(mix igniter.install req).
defmodule Tunez.OpenAIEmbeddingModel do
 use AshAi.EmbeddingModel

 @impl true
 def dimensions(_opts), do: 3072

 @impl true
 def generate(texts, _opts) do
 api_key = System.fetch_env!("OPEN_AI_API_KEY")

 headers = [
 {"Authorization", "Bearer #{api_key}"},
 {"Content-Type", "application/json"}
]

 body = %{
 "input" => texts,
 "model" => "text-embedding-3-large"
 }

 response =
 Req.post!("https://api.openai.com/v1/embeddings",
 json: body,
 headers: headers
)

 case response.status do
 200 ->
 response.body["data"]
 |> Enum.map(fn %{"embedding" => embedding} -> embedding end)
 |> then(&{:ok, &1})

 _status ->
 {:error, response.body}
 end
 end
end
Opts can be used to make embedding models that are dynamic depending on the resource, i.e
embedding_model {MyApp.OpenAiEmbeddingModel, model: "a-specific-model"}
Those opts are available in the _opts argument to functions on your embedding model
Using the vectors
You can use expressions in filters and sorts like vector_cosine_distance(full_text_vector, ^search_vector). For example:
read :search do
 argument :query, :string, allow_nil?: false

 prepare before_action(fn query, context ->
 case YourEmbeddingModel.generate([query.arguments.query], []) do
 {:ok, [search_vector]} ->
 Ash.Query.filter(
 query,
 vector_cosine_distance(full_text_vector, ^search_vector) < 0.5
)
 |> Ash.Query.sort(
 {calc(vector_cosine_distance(full_text_vector, ^search_vector),
 type: :float
), :asc}
)
 |> Ash.Query.limit(10)

 {:error, error} ->
 {:error, error}
 end
 end)
end
Building a Vector Index
If your database stores more than ~10,000 vectors, you may see search performance degrade. You can ameliorate this by building an index on the vector column. Vector indices come at the expense of write speeds and higher resource usage.
The below example uses an hnsw index, which trades higher memory usage and vector build times for faster query speeds. An ivfflat index will have different settings, faster build times, lower memory usage, but slower query speeds. Do research and consider the tradeoffs for your use case.
 postgres do
 table "embeddings"
 repo MyApp.Repo

 custom_statements do
 statement :vector_idx do
 up "CREATE INDEX vector_idx ON embeddings USING hnsw (vectorized_body vector_cosine_ops) WITH (m = 16, ef_construction = 64)"
 down "DROP INDEX vector_idx;"
 end
 end
 end
Roadmap
	more action types, like:	bulk updates
	bulk destroys
	bulk creates.

How to play with it
	Setup LangChain
	Modify a LangChain using AshAi.setup_ash_ai/2 or use AshAi.iex_chat (see below)
	Run iex -S mix and then run AshAi.iex_chat to start chatting with your app.
	Build your own chat interface. See the implementation of AshAi.iex_chat to see how its done.

Contributing
	make sure to run mix test.create && mix test.migrate to set up locally
	ensure that mix check passes

Using AshAi.iex_chat
defmodule MyApp.ChatBot do
 alias LangChain.Chains.LLMChain
 alias LangChain.ChatModels.ChatOpenAI

 def iex_chat(actor \\ nil) do
 %{
 llm: ChatOpenAI.new!(%{model: "gpt-4o", stream: true}),
 verbose: true
 }
 |> LLMChain.new!()
 |> AshAi.iex_chat(actor: actor, otp_app: :my_app)
 end
end

 Google Gemini Configuration

Steps to configure The generated Chat Server to work with Gemini
Configuration
In config/runtime.ex replace:
config :langchain, openai_key: fn -> System.fetch_env!("OPENAI_API_KEY") end
With:
config :langchain,
 google_ai_key: fn -> System.get_env("GEMINI_API_KEY") end
Chat Component
In
	lib/your_app/chat/message/changes/respond.ex
	lib/your_app/chat/conversation/changes/generate_name.ex

Replace:
 alias LangChain.ChatModels.ChatOpenAI

 llm: ChatOpenAI.new!(%{model: "gpt-4o", stream: true}),

With:
 alias LangChain.ChatModels.ChatGoogleAI

 ...

 llm: ChatGoogleAI.new!(%{model: "gemini-2.5-pro", stream: true}),

Embeddings
create lib/your_app/google_ai_embedding_model.ex
defmodule YourApp.GoogleAiEmbeddingModel do
 use AshAi.EmbeddingModel

 @impl true
 def dimensions(_opts), do: 3072

 @impl true
 def generate(texts, _opts) do
 parts = Enum.map(texts, fn t -> %{text: t} end)
 api_key = System.fetch_env!("GEMINI_API_KEY")

 headers = [
 {"x-goog-api-key", "#{api_key}"},
 {"Content-Type", "application/json"}
]

 body = %{
 "content" => %{parts: parts},
 "model" => "models/gemini-embedding-001"
 }

 response =
 Req.post!(
 "https://generativelanguage.googleapis.com/v1beta/models/gemini-embedding-001:embedContent",
 json: body,
 headers: headers
)

 case response.status do
 200 ->
 {:ok, [response.body["embedding"]["values"]]}

 _status ->
 {:error, response.body}
 end
 end
end
and in your vectorize block change:
embedding_model YourApp.OpenAiEmbeddingModel
with:
embedding_model YourApp.GoogleAiEmbeddingModel

 AshAi

Documentation for AshAi.
tools
Nested DSLs
	tool

tools.tool
tool name, resource, action
Expose an Ash action as a tool that can be called by LLMs.
Tools allow LLMs to interact with your application by calling specific actions on resources.
Only public attributes can be used for filtering, sorting, and aggregation, but the load
option allows including private attributes in the response data.
Arguments
	Name	Type	Default	Docs
	name	atom		
	resource	module		
	action	atom		

Options
	Name	Type	Default	Docs
	action_parameters	list(atom)		A list of action specific parameters to allow for the underlying action. Only relevant for reads, and defaults to allowing [:sort, :offset, :limit, :result_type, :filter]
	load	any	[]	A list of relationships and calculations to load on the returned records. Note that loaded fields can include private attributes, which will then be included in the tool's response. However, private attributes cannot be used for filtering, sorting, or aggregation.
	async	boolean	true	
	description	String.t		A description for the tool. Defaults to the action's description.
	identity	atom		The identity to use for update/destroy actions. Defaults to the primary key. Set to false to disable entirely.

Introspection
Target: AshAi.Tool
vectorize
Nested DSLs
	full_text

Options
	Name	Type	Default	Docs
	embedding_model	module		
	attributes	keyword	[]	A keyword list of attributes to vectorize, and the name of the attribute to store the vector in
	strategy	:after_action | :manual | :ash_oban | :ash_oban_manual	:after_action	How to compute the vector. Currently supported strategies are :after_action, :manual, and :ash_oban.
	define_update_action_for_manual_strategy?	boolean	true	If true, an ash_ai_update_embeddings update action will be defined, which will automatically update the embeddings when run.
	ash_oban_trigger_name	atom	:ash_ai_update_embeddings	The name of the AshOban-trigger that will be run in order to update the record's embeddings. Defaults to :ash_ai_update_embeddings.

vectorize.full_text
Options
	Name	Type	Default	Docs
	text	(any -> any)		A function or expr that takes a list of records and computes a full text string that will be vectorized. If given an expr, use atomic_ref to refer to new values, as this is set as an atomic update.
	name	atom	:full_text_vector	The name of the attribute to store the text vector in
	used_attributes	list(atom)		If set, a vector is only regenerated when these attributes are changed

Introspection
Target: AshAi.FullText

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.3.0 (2025-10-28)
Features:
	langchain 0.4 (#132) by @barnabasJ (#132)

Bug Fixes:
	turn content into string for chat title by @barnabasJ (#132)

Improvements:
	update ash_oban to 0.5 by @zachdaniel

v0.2.14 (2025-10-16)
Improvements:
	allow multiple full text definitions in vectorize section (#125) by Abdessabour Moutik (#125)

v0.2.13 (2025-09-27)
Bug Fixes:
	minor QOL improvement to the redirection to other pages (#120) by Abdessabour Moutik (#120)

	ash_ai.gen.chat to validate text presence in messages (#119) by Daniel Hoelzgen (#119)

	BadMapError when LangChain/MCP calls tools without arguments (#118) by @matthewsinclair (#118)

Improvements:
	don't install usage rules as part of installing ash ai by @zachdaniel

	Support LangChain 0.4 (#124) by Arjan Scherpenisse (#124)

v0.2.12 (2025-08-31)
Bug Fixes:
	pass context option through setup_ash_ai to nested actions (#111) by @bradleygolden

Improvements:
	don't show input if no inputs to action by @zachdaniel

	add action_parameters option by @zachdaniel

v0.2.11 (2025-08-21)
Bug Fixes:
	Respect resource pagination limits (#108) by kik4444

	eliminate chat_live compile warning (#107) by @andyl

	log the action name (#102) by @barnabasJ

Improvements:
	move permissions check of tools until after appropriate filtering (#104) by @jgwmaxwell

	Add default adapter for ChatGoogleAI (#99) by @mylanconnolly

v0.2.10 (2025-08-07)
Bug Fixes:
	log the action name (#102) by @barnabasJ

Improvements:
	move permissions check of tools until after appropriate filtering (#104) by @jgwmaxwell

	Add default adapter for ChatGoogleAI (#99) by @mylanconnolly

v0.2.9 (2025-07-22)
Improvements:
	mark all fields as required by @zachdaniel

	handle number constraints by @zachdaniel

	Add on_tool_start and on_tool_end callbacks (#96) by @bradleygolden

v0.2.8 (2025-07-17)
Improvements:
	add typed struct example to usage rules & docs by @zachdaniel

v0.2.7 (2025-07-17)
Bug Fixes:
	separate custom_context from llm initialization in ash_ai.gen.chat (#88) by @germanbottosur

v0.2.6 (2025-07-05)
Bug Fixes:
	handle missing user module more gracefully by @zachdaniel

	properly install usage rules by @zachdaniel

v0.2.5 (2025-07-03)
Improvements:
	support sub rules in usage rules tools by @zachdaniel

v0.2.4 (2025-07-02)
Bug Fixes:
	allow for a custom json_processor (#80) by @TwistingTwists

	changed chat-live message history order before adding it to langchain (#78) by srmico

	crash with embedded resource (#77) by @nallwhy

Improvements:
	add documentation for tool private attribute behavior (#81) by marot

	add documentation for tool private attribute behavior by marot

	install usage rules better by @zachdaniel

v0.2.3 (2025-06-25)
Bug Fixes:
	unsafe usage in mdex (#73) by @TwistingTwists

Improvements:
	update usage rules w/ more prompt actions by @zachdaniel

	multi-provider support prerequisite - eliminate open api spex reliance (#64) by KasparKipp

	Support various additional prompt formats (#72) by @TwistingTwists

v0.2.2 (2025-06-11)
Bug Fixes:
	properly close connection after sending the endpoint by @zachdaniel

Improvements:
	use relative paths in usage rules MCP by @zachdaniel

v0.2.1 (2025-06-11)
Bug Fixes:
	fix installer waiting for input by @zachdaniel

Improvements:
	make usage rules display all and show file paths instead of by @zachdaniel

v0.2.0 (2025-06-10)
Features:
	Json Processor for providers that do not support json_schema or tool calling (#49) by @TwistingTwists

	improvement: Usage rules mcp integration (#60) by Barnabas Jovanovics

Bug Fixes:
	tasks: fix prompt typo (#62) by ChristianAlexander

	endpoint matching for url 'starting from' api.openai.com (#57) by @TwistingTwists

	fix oban option passing by @zachdaniel

	require an explicit endpoint set by @zachdaniel

	pass tenant to AshOban.run_trigger by @zachdaniel

Improvements:
	sync usage rules on project creation by @zachdaniel

	more context in error messages (#56) by @TwistingTwists

	When using Adapter.CompletionTool (for anthropic) add the cache_control (#51) by Rodolfo Torres

	more realistic handling of example generation (#50) by @TwistingTwists

v0.1.11 (2025-06-04)
Improvements:
	adapters for prompt-backed actions

	add completion tool adapter, infer it from anthropic

v0.1.10 (2025-05-30)
Bug Fixes:
	use after_action instead of after_transaction to afford atomic_updates (#43)

v0.1.9 (2025-05-27)
Bug Fixes:
	remove unnecessary source type from generated chat code

v0.1.8 (2025-05-27)
Improvements:
	overhaul ash_ai.gen.chat to store tool calls

	make the dev mcp path configurable (#38)

v0.1.7 (2025-05-21)
Improvements:
	Add usage rules for Ash AI

v0.1.6 (2025-05-21)
Improvements:
	Rename package_ruels to usage_rules

v0.1.5 (2025-05-21)
Bug Fixes:
	properly display generators, add new usage-rules.md dev tool

Improvements:
	add ash_ai.gen.package_rules task to create a rules file

v0.1.4 (2025-05-20)
Bug Fixes:
	Replace doc with description (#36)

v0.1.3 (2025-05-20)
Bug Fixes:
	use description not doc

v0.1.2 (2025-05-20)
Bug Fixes:
	improve chat ui heex template

	don't reply to the initialized notification (#35)

Improvements:
	update chat heex template. (#33)

v0.1.1 (2025-05-14)
Bug Fixes:
	more fixes for gen.chat message order

	properly generate chat message log

Improvements:
	fix update pre_flight permission request for tools

v0.1.0 (2025-05-14)
Bug Fixes:
	always configure chat queues

	Set additionalProperties to false in parameter_schema (#16)

	Fix load opt not working (#12)

	don't pass nil input in function/4 (#8)

	Fix schema type of actions of Options (#5)

	use :asc to put lowest distance records at the top

	use correct ops in vector before action

	use message instead of reason

Improvements:
	add mix ash_ai.gen.mcp

	dev tools MCP

	remove vector search action

	Add an MCP server support

	support tool-level descriptions

	better name trigger

	use bulk actions for update/destroy

	first draft of mix ash_ai.gen.chat (#19)

	allow read actions to be aggregated in addition to run

	set up CI, various fixes and refactors

	Add aggregates to filter properties (#15)

	Add async opt to Tool

	Add load opt to tool (#9)

	Add tenant to opts of setup_ash_ai/2 (#4)

	add installer

	add tenants to action calls in functions

	add :manual strategy

	allow specifying tools by name of tool

	strict modes & other various improvements

	make embedding model parameterizable

	remove unnecessary deps, use langchain

	make embedding models for arbitrary vectorization

	use configured name for tools

	make the DSL more tool centric

	add vectorize section

AshAi

Documentation for AshAi.

 Summary

 Functions

 class_to_status(arg1)

 Turns an error class into an HTTP status code

 functions(opts)

 has_vectorize_change?(changeset)

 iex_chat(lang_chain, opts \\ [])

 setup_ash_ai(lang_chain, opts \\ [])

 Adds the requisite context and tool calls to allow an agent to interact with your app.

 to_json_api_errors(domain, resource, errors, type)

 tools(body)

 vectorize(body)

 with_source_pointer(built_error, arg2)

 Functions

 class_to_status(arg1)

Turns an error class into an HTTP status code

 functions(opts)

 has_vectorize_change?(changeset)

 iex_chat(lang_chain, opts \\ [])

 setup_ash_ai(lang_chain, opts \\ [])

Adds the requisite context and tool calls to allow an agent to interact with your app.

 to_json_api_errors(domain, resource, errors, type)

 tools(body)

 (macro)

 vectorize(body)

 (macro)

 with_source_pointer(built_error, arg2)

AshAi.Actions

Builtin generic action implementations

 Summary

 Functions

 prompt(llm, opts \\ [])

 Functions

 prompt(llm, opts \\ [])

 (macro)

AshAi.Actions.Prompt

A generic action impl that returns structured outputs from an LLM matching the action return.
Typically used via prompt/2, for example:
action :analyze_sentiment, :atom do
 constraints one_of: [:positive, :negative]

 description """
 Analyzes the sentiment of a given piece of text to determine if it is overall positive or negative.

 Does not consider swear words as inherently negative.
 """

 argument :text, :string do
 allow_nil? false
 description "The text for analysis."
 end

 run prompt(
 LangChain.ChatModels.ChatOpenAI.new!(%{ model: "gpt-4o"}),
 # setting `tools: true` allows it to use all exposed tools in your app
 tools: true
 # alternatively you can restrict it to only a set of tools
 # tools: [:list, :of, :tool, :names]
 # provide an optional prompt, which is an EEx template
 # prompt: "Analyze the sentiment of the following text: <%= @input.arguments.description %>"
)
end
The first argument to prompt/2 is the LangChain model. It can also be a 2-arity function which will be invoked
with the input and the context, useful for dynamically selecting the model.
Dynamic Configuration (using 2-arity function)
For runtime configuration (like using environment variables), pass a function
as the first argument to prompt/2:
run prompt(
 fn _input, _context ->
 LangChain.ChatModels.ChatOpenAI.new!(%{
 model: "gpt-4o",
 # this can also be configured in application config, see langchain docs for more.
 api_key: System.get_env("OPENAI_API_KEY"),
 endpoint: System.get_env("OPENAI_ENDPOINT")
 })
 end,
 tools: false
)
This function will be executed just before the prompt is sent to the LLM.
Options
	:tools: A list of tool names to expose to the agent call.
	:verbose?: Set to true for more output to be logged.
	:prompt: A custom prompt. Supports multiple formats - see the prompt section below.

Prompt
The prompt by default is generated using the action and input descriptions. You can provide your own prompt
via the prompt option which supports multiple formats based on the type of data provided:
Supported Formats
	String (EEx template): "Analyze this: <%= @input.arguments.text %>"
	{System, User} tuple: {"You are an expert", "Analyze the sentiment"}
	Function: fn input, context -> {"Dynamic system", "Dynamic user"} end
	List of LangChain Messages: [Message.new_system!("..."), Message.new_user!("...")]
	Function returning Messages: fn input, context -> [Message.new_system!("...")] end

Examples
Basic String Template
run prompt(
 ChatOpenAI.new!(%{model: "gpt-4o"}),
 prompt: "Analyze the sentiment of: <%= @input.arguments.text %>"
)
System/User Tuple
run prompt(
 ChatOpenAI.new!(%{model: "gpt-4o"}),
 prompt: {"You are a sentiment analyzer", "Analyze: <%= @input.arguments.text %>"}
)
LangChain Messages for Multi-turn Conversations
run prompt(
 ChatOpenAI.new!(%{model: "gpt-4o"}),
 prompt: [
 Message.new_system!("You are an expert assistant"),
 Message.new_user!("Hello, how can you help me?"),
 Message.new_assistant!("I can help with various tasks"),
 Message.new_user!("Great! Please analyze this data")
]
)
Image Analysis with Templates
run prompt(
 ChatOpenAI.new!(%{model: "gpt-4o"}),
 prompt: [
 Message.new_system!("You are an expert at image analysis"),
 Message.new_user!([
 PromptTemplate.from_template!("Extra context: <%= @input.arguments.context %>"),
 ContentPart.image!("<%= @input.arguments.image_data %>", media: :jpg, detail: "low")
])
]
)
Dynamic Messages via Function
run prompt(
 ChatOpenAI.new!(%{model: "gpt-4o"}),
 prompt: fn input, context ->
 base = [Message.new_system!("You are helpful")]

 history = input.arguments.conversation_history
 |> Enum.map(fn %{"role" => role, "content" => content} ->
 case role do
 "user" -> Message.new_user!(content)
 "assistant" -> Message.new_assistant!(content)
 end
 end)

 base ++ history
 end
)
Template Processing
	String prompts: Processed as EEx templates with @input and @context
	Messages with PromptTemplate: Processed using LangChain's apply_prompt_templates
	Functions: Can return any supported format for dynamic generation

The default prompt template is:
{"You are responsible for performing the `<%= @input.action.name %>` action.\n\n<%= if @input.action.description do %>\n# Description\n<%= @input.action.description %>\n<% end %>\n\n## Inputs\n<%= for argument <- @input.action.arguments do %>\n- <%= argument.name %><%= if argument.description do %>: <%= argument.description %>\n<% end %>\n<% end %>\n",
 "# Action Inputs\n\n<%= for argument <- @input.action.arguments,\n {:ok, value} = Ash.ActionInput.fetch_argument(@input, argument.name),\n {:ok, value} = Ash.Type.dump_to_embedded(argument.type, value, argument.constraints) do %>\n - <%= argument.name %>: <%= Jason.encode!(value) %>\n<% end %>\n"}

 Summary

 Functions

 run(input, opts, context)

 Callback implementation for Ash.Resource.Actions.Implementation.run/3.

 Functions

 run(input, opts, context)

Callback implementation for Ash.Resource.Actions.Implementation.run/3.

AshAi.Actions.Prompt.Adapter behaviour

Behavior for prompt-backed-action adapters.
These adapters allow for different methodologies of handling prompt-based actions.
For example, OpenAI supports "structured outputs", which will guarantee a response
matching a requested JSON Schema. Other services however can still be used with prompt-based
actions by providing them a tool that should be called when the action is complete.
Built in Adapters
	AshAi.Actions.Prompt.Adapter.StructuredOutput - Use an LLM that is guaranteed to return the requested JSON Schema.
	AshAi.Actions.Prompt.Adapter.CompletionTool - Use an LLM and run it until it calls a "completion" tool, up to max_runs times.
	AshAi.Actions.Prompt.Adapter.RequestJson - Use an LLM and request that it responds with a specific JSON format, and attempt to parse it.

See the adapter's documentation for more.
Custom Adapters & Adapter Options
If you want to provide a custom adapter, or customize the options for an adapter,
you can specify the adapter option in your prompt/2 call.

run prompt(%{...}, adapter: {AshAi.Actions.Prompt.Adapter.CompletionTool, max_runs: 5})

 Summary

 Callbacks

 run(data, opts)

 Execute a prompt request with the given data and adapter options.

 Callbacks

 run(data, opts)

 @callback run(data :: AshAi.Actions.Prompt.Adapter.Data.t(), opts :: Keyword.t()) ::
 {:ok, term()} | {:error, term()}

Execute a prompt request with the given data and adapter options.
Parameters
	data - An AshAi.Actions.Prompt.Data struct containing all the prompt information
	opts - Adapter-specific options

Returns
	{:ok, result} - On successful completion
	{:error, reason} - On failure

AshAi.Actions.Prompt.Adapter.CompletionTool

An adapter that provides a "complete_request" tool that the LLM must call within max_runs messages to complete the request.
Adapter Options
	:max_runs - The maximum number of times to allow the LLM to repeatedly generate responses/call tools
before the action is considered failed.

 Summary

 Functions

 run(data, opts)

 Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

 Functions

 run(data, opts)

Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

AshAi.Actions.Prompt.Adapter.Data

Data structure containing all the information needed for a prompt request.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AshAi.Actions.Prompt.Adapter.Data{
 context: Ash.Resource.Actions.Implementation.Context.t(),
 input: Ash.ActionInput.t(),
 json_schema: map(),
 llm: term(),
 messages: list(),
 tools: list(),
 verbose?: boolean()
}

AshAi.Actions.Prompt.Adapter.Helpers

Helpers for processing LangChain.PromptTemplates in messages.
This module resolves templates with runtime data from the action's input
and context before the prompt is sent to an LLM.
Example
Given a prompt with a template:
messages = [
 Message.new_user!([
 PromptTemplate.from_template!("Context: <%= @input.arguments.extra_info %>"),
 ContentPart.text!("Analyze the following text.")
])
]
Adapters use add_messages_with_templates/3 to resolve such templates,
injecting variables from the action input and context.

 Summary

 Functions

 add_messages_with_templates(chain, messages, data)

 Adds messages to a chain, applying prompt templates if any are present.

 build_template_variables(data)

 Builds template variables from adapter data, including input, context, and action arguments.

 has_prompt_templates?(messages)

 Checks if any messages contain PromptTemplate structs in their content.

 Functions

 add_messages_with_templates(chain, messages, data)

Adds messages to a chain, applying prompt templates if any are present.
This function checks if any messages contain PromptTemplate structs and if so,
uses LLMChain.apply_prompt_templates to resolve them with the provided template variables.
Otherwise, it adds messages directly to the chain.

 build_template_variables(data)

Builds template variables from adapter data, including input, context, and action arguments.

 has_prompt_templates?(messages)

Checks if any messages contain PromptTemplate structs in their content.

AshAi.Actions.Prompt.Adapter.Raw

An adapter for prompt-backed actions that returns the raw llm response
Useful for example for llama-guard3 which returns either:
	"safe"
	"unsafe
category"
as a response.

 Summary

 Functions

 run(data, opts)

 Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

 Functions

 run(data, opts)

Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

AshAi.Actions.Prompt.Adapter.RequestJson

This adapter is designed for LLMs that don't support native tool calling or structured outputs.
It embeds the JSON schema in the system prompt and uses LangChain's JsonProcessor to extract
the JSON response from markdown code blocks.
Adapter Options
	:max_retries - Maximum number of retry attempts for invalid JSON (default: 3)
	:json_format - Format to request JSON in (:markdown, :xml) (default: :markdown)
	:json_processor - Custom JSON processor function. See LangChain.Chains.LLMChain.message_processor/0
	:include_examples - Examples to include in prompt. Options:	true - Generate examples using Ash.Type.generator (default)
	false - No examples
	%{"result" => example_data} - Use provided example data
	[%{"result" => example1}, %{"result" => example2}] - Multiple examples

 Summary

 Types

 adapter_opts()

 include_examples()

 json_format()

 Functions

 run(data, opts)

 Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

 Types

 adapter_opts()

 @type adapter_opts() :: [
 max_retries: non_neg_integer(),
 json_format: json_format(),
 json_processor: LangChain.Chains.LLMChain.message_processor(),
 include_examples: include_examples()
]

 include_examples()

 @type include_examples() :: boolean() | map() | [map()]

 json_format()

 @type json_format() :: :markdown | :xml

 Functions

 run(data, opts)

 @spec run(AshAi.Actions.Prompt.Adapter.Data.t(), adapter_opts()) ::
 {:ok, any()} | {:error, String.t()}

Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

AshAi.Actions.Prompt.Adapter.StructuredOutput

An adapter for prompt-backed actions that leverages structured output from LLMs.
The only currently known service that supports this is OpenAI.

 Summary

 Functions

 run(data, opts)

 Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

 Functions

 run(data, opts)

Callback implementation for AshAi.Actions.Prompt.Adapter.run/2.

AshAi.Changes.Vectorize

A change that vectorizes the current values of attributes for a given record.
Used by the manual vectorization strategy, so you can decide
later when to run the vectorization action.

 Summary

 Functions

 atomic(changeset, opts, context)

 Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, opts, context)

 Callback implementation for Ash.Resource.Change.change/3.

 Functions

 atomic(changeset, opts, context)

Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, opts, context)

Callback implementation for Ash.Resource.Change.change/3.

AshAi.Changes.VectorizeAfterAction

Vectorizes attributes inline immediately after they are changed

 Summary

 Functions

 atomic(changeset, opts, context)

 Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, opts, context)

 Callback implementation for Ash.Resource.Change.change/3.

 Functions

 atomic(changeset, opts, context)

Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, opts, context)

Callback implementation for Ash.Resource.Change.change/3.

AshAi.Changes.VectorizeAfterActionObanTrigger

Run an ash_oban trigger when embeddings need to be regenerated.

 Summary

 Functions

 atomic(changeset, opts, context)

 Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, module_opts, context)

 Callback implementation for Ash.Resource.Change.change/3.

 Functions

 atomic(changeset, opts, context)

Callback implementation for Ash.Resource.Change.atomic/3.

 change(changeset, module_opts, context)

Callback implementation for Ash.Resource.Change.change/3.

AshAi.Checks.ActorIsAshAi

A check that is true when the actor is %AshAi{}

 Summary

 Functions

 describe(_)

 Callback implementation for Ash.Policy.Check.describe/1.

 eager_evaluate?()

 Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 match?(arg1, _, _)

 Callback implementation for Ash.Policy.SimpleCheck.match?/3.

 prefer_expanded_description?()

 Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 describe(_)

Callback implementation for Ash.Policy.Check.describe/1.

 eager_evaluate?()

Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 match?(arg1, _, _)

Callback implementation for Ash.Policy.SimpleCheck.match?/3.

 prefer_expanded_description?()

Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

Callback implementation for Ash.Policy.Check.type/0.

AshAi.EmbeddingModel behaviour

A behaviour that defines the dimensions of the vector, and how to generate the embedding

 Summary

 Types

 opts()

 Callbacks

 dimensions(opts)

 The dimensions of generated embeddings

 generate(list, opts)

 Generate embeddings for the given list of strings

 Types

 opts()

 @type opts() :: Keyword.t()

 Callbacks

 dimensions(opts)

 @callback dimensions(opts()) :: pos_integer()

The dimensions of generated embeddings

 generate(list, opts)

 @callback generate([String.t()], opts()) :: {:ok, [binary()]} | {:error, term()}

Generate embeddings for the given list of strings

AshAi.FullText

A section that defines how complex vectorized columns are defined

AshAi.Info

Introspection functions for the AshAi extension.

 Summary

 Functions

 tools(dsl_or_extended)

 tools DSL entities

 vectorize(dsl_or_extended)

 vectorize DSL entities

 vectorize_ash_oban_trigger_name(dsl_or_extended)

 The name of the AshOban-trigger that will be run in order to update the record's embeddings. Defaults to :ash_ai_update_embeddings.

 vectorize_ash_oban_trigger_name!(dsl_or_extended)

 The name of the AshOban-trigger that will be run in order to update the record's embeddings. Defaults to :ash_ai_update_embeddings.

 vectorize_attributes(dsl_or_extended)

 A keyword list of attributes to vectorize, and the name of the attribute to store the vector in

 vectorize_attributes!(dsl_or_extended)

 A keyword list of attributes to vectorize, and the name of the attribute to store the vector in

 vectorize_define_update_action_for_manual_strategy?(dsl_or_extended)

 If true, an ash_ai_update_embeddings update action will be defined, which will automatically update the embeddings when run.

 vectorize_options(dsl_or_extended)

 vectorize DSL options

 vectorize_strategy(dsl_or_extended)

 How to compute the vector. Currently supported strategies are :after_action, :manual, and :ash_oban.

 vectorize_strategy!(dsl_or_extended)

 How to compute the vector. Currently supported strategies are :after_action, :manual, and :ash_oban.

 Functions

 tools(dsl_or_extended)

 @spec tools(dsl_or_extended :: module() | map()) :: [struct()]

tools DSL entities

 vectorize(dsl_or_extended)

 @spec vectorize(dsl_or_extended :: module() | map()) :: [struct()]

vectorize DSL entities

 vectorize_ash_oban_trigger_name(dsl_or_extended)

 @spec vectorize_ash_oban_trigger_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the AshOban-trigger that will be run in order to update the record's embeddings. Defaults to :ash_ai_update_embeddings.

 vectorize_ash_oban_trigger_name!(dsl_or_extended)

 @spec vectorize_ash_oban_trigger_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the AshOban-trigger that will be run in order to update the record's embeddings. Defaults to :ash_ai_update_embeddings.

 vectorize_attributes(dsl_or_extended)

 @spec vectorize_attributes(dsl_or_extended :: module() | map()) ::
 {:ok, keyword()} | :error

A keyword list of attributes to vectorize, and the name of the attribute to store the vector in

 vectorize_attributes!(dsl_or_extended)

 @spec vectorize_attributes!(dsl_or_extended :: module() | map()) ::
 keyword() | no_return()

A keyword list of attributes to vectorize, and the name of the attribute to store the vector in

 vectorize_define_update_action_for_manual_strategy?(dsl_or_extended)

 @spec vectorize_define_update_action_for_manual_strategy?(
 dsl_or_extended :: module() | map()
) ::
 boolean()

If true, an ash_ai_update_embeddings update action will be defined, which will automatically update the embeddings when run.

 vectorize_options(dsl_or_extended)

 @spec vectorize_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

vectorize DSL options
Returns a map containing the and any configured or default values.

 vectorize_strategy(dsl_or_extended)

 @spec vectorize_strategy(dsl_or_extended :: module() | map()) ::
 {:ok, :ash_oban_manual | :ash_oban | :manual | :after_action} | :error

How to compute the vector. Currently supported strategies are :after_action, :manual, and :ash_oban.

 vectorize_strategy!(dsl_or_extended)

 @spec vectorize_strategy!(dsl_or_extended :: module() | map()) ::
 (:ash_oban_manual | :ash_oban | :manual | :after_action) | no_return()

How to compute the vector. Currently supported strategies are :after_action, :manual, and :ash_oban.

AshAi.Mcp

Model Context Protocol (MCP) implementation for Ash Framework.
This module implements a Model Context Protocol (MCP) server
that integrates with Ash Framework, following the MCP Streamable HTTP Transport specification.
Overview
This MCP implementation provides:
	A fully compliant MCP server with JSON-RPC message processing
	Session management with unique session IDs
	Support for both JSON and Server-Sent Events (SSE) responses
	Batch request handling
	A foundation for integrating Ash resources with MCP clients
	Integration with AshAi tools for AI-assisted operations

Current Features
	initialize and shutdown method handlers
	Session management via GenServer processes
	Support for streaming responses
	Plug-compatible router for easy integration
	Tool support for AshAi functions

Future Enhancements
	OAuth integration with AshAuthentication
	Resource-specific method handlers
	Advanced streaming capabilities

Integration
With Phoenix
In your Phoenix router
forward "/mcp", AshAi.Mcp.Router

With tools enabled
forward "/mcp", AshAi.Mcp.Router, tools: [:tool1, :tool2]
With Any Plug-Based Application
The MCP router is a standard Plug, so it can be integrated into any Plug-based application.
You are responsible for hosting the Plug however you prefer.

AshAi.Mcp.Dev

Place in your endpoint's code_reloading section to expose Ash dev MCP"
Default path is /ash_ai/mcp

AshAi.Mcp.Router

MCP Router implementing the RPC functionality over HTTP.
This router handles HTTP requests according to the Model Context Protocol specification.
Usage
forward "/mcp", AshAi.Mcp.Router, tools: [:tool1, :tool2], otp_app: :my_app

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

AshAi.Mcp.Server

Implementation of the Model Context Protocol (MCP) RPC functionality.
This module handles HTTP requests and responses according to the MCP specification,
supporting both synchronous and streaming communication patterns.
It also handles the core JSON-RPC message processing for the protocol.

 Summary

 Functions

 get_server_name(opts)

 Get the MCP server name

 get_server_version(opts)

 Get the MCP server version

 handle_delete(conn, session_id)

 Handle HTTP DELETE request for session termination

 handle_get(conn, session_id)

 Process an HTTP GET request to open an SSE stream

 handle_post(conn, body, session_id, opts \\ [])

 Process an HTTP POST request containing JSON-RPC messages

 json_rpc_error_response(id, code, message, data \\ nil)

 Create a standard JSON-RPC error response

 parse_json_rpc(request)

 Parse the JSON-RPC request

 process_message(message, session_id, opts)

 Process a single JSON-RPC message

 send_sse_event(conn, event, data, id \\ nil)

 Send an SSE event over the chunked connection

 Functions

 get_server_name(opts)

Get the MCP server name

 get_server_version(opts)

Get the MCP server version

 handle_delete(conn, session_id)

Handle HTTP DELETE request for session termination

 handle_get(conn, session_id)

Process an HTTP GET request to open an SSE stream

 handle_post(conn, body, session_id, opts \\ [])

Process an HTTP POST request containing JSON-RPC messages

 json_rpc_error_response(id, code, message, data \\ nil)

Create a standard JSON-RPC error response

 parse_json_rpc(request)

Parse the JSON-RPC request

 process_message(message, session_id, opts)

Process a single JSON-RPC message

 send_sse_event(conn, event, data, id \\ nil)

Send an SSE event over the chunked connection

AshAi.Tool

An action exposed to LLM agents

AshAi.ToolEndEvent

Event data passed to the on_tool_end callback passed to AshAi.setup_ash_ai/2.
Contains the tool name and execution result.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AshAi.ToolEndEvent{
 result: {:ok, String.t(), any()} | {:error, String.t()},
 tool_name: String.t()
}

AshAi.ToolStartEvent

Event data passed to the on_tool_start callback passed to AshAi.setup_ash_ai/2.
Contains information about the tool execution that is about to begin.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AshAi.ToolStartEvent{
 action: atom(),
 actor: any() | nil,
 arguments: map(),
 resource: module(),
 tenant: any() | nil,
 tool_name: String.t()
}

AshAi.Validations.ActorIsAshAi

A validation that passes if the actor is %AshAi{}

mix ash_ai.gen.chat

Generates the resources and views for a conversational UI backed by ash_postgres and ash_oban
Creates a YourApp.Chat.Conversation and a YourApp.Chat.Message resource, backed by postgres and ash_oban.
Example
mix ash_ai.gen.chat --user Your.User.Resource --live

Options
	--user - The user resource.
	--domain - The domain to place the resources in.
	--extend - Extensions to apply to the generated resources, passed through to mix ash.gen.resource.

mix ash_ai.gen.mcp

Sets up an MCP server for your application
Adds an MCP server to your router.
Sets up Api Key authentication if
	--no-api-key is not provided
	AshAuthentication is available.
	The user module is defined

Example
mix ash_ai.gen.mcp --api-key

Options
Flags
	--no-api-key - Skip setting up api key authentication and adding it to the MCP server.
	--user - The user to add api key auth to, if setting it up.

mix ash_ai.install

Installs AshAi. Call with mix igniter.install ash_ai. Requires igniter to run.
Example
mix ash_ai.install

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

