

 ash_archival

 v1.0.0

 Table of contents

 	Home

 	Change Log

 	Tutorials

 	Get Started with AshArchival

 	Topics

 	Un-archiving

 	How does Archival Work?

 	DSLs

 	DSL: AshArchival.Resource

 	

 	Modules

 	Extension

 	AshArchival

 	AshArchival.Resource

 	Introspection

 	AshArchival.Resource.Info

Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
AshArchival
AshArchival is an Ash extension that provides a push-button solution for soft deleting records, instead of destroying them.

 Tutorials

	Get Started with AshArchival

 Topics

	How does AshArchival work?
	Unarchiving

 Reference

	AshArchival DSL

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v1.0.0 (2024-05-10)

 Improvements:

	support base_filter? true option

 v1.0.0 (2024-05-10)

 Improvements:

	support base_filter? true option

 v1.0.0 (2024-05-10)

 Improvements:

	support base_filter? true option

 v1.0.0

The changelog is being restarted. See /documentation/0.x-CHANGELOG.md in GitHub for previous changelogs.

 Breaking Changes:

	[AshArchival] don't use base_filter anymore, allowing for more flexible design

 Improvements:

	[AshArchival] support filters on upsert actions

 Improvements:

	[AshArchival] rewritten to support atomics & bulk actions to take advantage of new bulk actions
	[AshArchival] add exclude_read_actions to exclude some actions from filtering archived items
	[AshArchival] add exclude_destroy_actions to exclude some actions from being intercepted

Get Started with AshArchival

 Installation

First, add the dependency to your mix.exs file
{:ash_archival, "~> 1.0.0-rc.1"}
and add :ash_archival to your .formatter.exs
import_deps: [..., :ash_archival]

 Adding to a resource

To add archival to a resource, add the extension to the resource:
use Ash.Resource,
 extensions: [..., AshArchival.Resource]
And thats it! Now, when you destroy a record, it will be archived instead, using an archived_at attribute.
See How Does Ash Archival Work? for what modifications are made to a resource, and read on for info on the tradeoffs of leveraging d:Ash.Resource.Dsl.resource.base_filter.

 Base Filter

Using a d:Ash.Resource.Dsl.resource.base_filter for your archived_at field has a lot of benefits if you are using ash_postgres, but comes with one major drawback, which is that it is not possible to exclude certain read actions from archival. If you wish to use a base filter, you will need to create a separate resource to read from the archived items. We may introduce a way to bypass the base filter at some point in the future.
To add a base_filter and base_filter_sql to your resource:
resource do
 base_filter expr(is_nil(archived_at))
end

postgres do
 ...
 base_filter_sql "(archived_at IS NULL)"
end
Add base_filter? true to the archive configuration of your resource to tell it that it doesn't need to add the filter itself.

 Benefits of base_filter

	unique indexes will exclude archived items
	custom indexes will exclude archived items
	check constraints will not be applied to archived items

If you want these benefits, add the appropriate base_filter.

 More

See the Unarchiving guide For more.

Un-archiving

If you want to unarchive a resource that uses a base filter, you will need to define a separate resource that uses the same storage and has no base filter. The rest of this guide applies for folks who aren't using a base_filter.
Un-archiving can be accomplished by creating a read action that is skipped, using exclude_read_actions. Then, you can create an update action that sets that attribute to nil. For example:
archive do
 ...
 exclude_read_actions :archived
end

actions do
 read :archived do
 filter expr(not is_nil(archived_at))
 end

 update :unarchive do
 update set_attribute(:archived_at, nil)
 end
end
You could then do something like this:
Resource
|> Ash.get!(id, action: :archived)
|> Ash.Changeset.for_update(:unarchive, %{)
|> Ash.update!()
More idiomatically, you would define a code interfaceon the domain, and call that:
to unarchive by `id`
Resource
|> Ash.Query.for_read(:archived, %{})
|> Ash.Query.filter(id == ^id)
|> Domain.unarchive!()

How does Archival Work?

We make modifications to the resource to enable soft deletes. Here's a breakdown of what the extension does:

 Resource Modifications

	Adds a private archived_at utc_datetime_usec attribute.
	Adds a preparation that filters each action for is_nil(archived_at) (except for excluded actions, or if you have base_filter? set to true).
	Marks all destroy actions as soft?, turning them into updates (except for excluded actions)
	Adds a change to all destroy actions that sets archived_at to the current timestamp
	Adds a change that will iteratively load and destroy anything configured in d:AshArchival.Resource.archive|archive_related

DSL: AshArchival.Resource

Configures a resource to be archived instead of destroyed for all destroy actions.
For more information, see the getting started guide

 archive

A section for configuring how archival is configured for a resource.

 Options

	Name	Type	Default	Docs
	attribute	atom	:archived_at	The attribute in which to store the archival flag (the current datetime).
	base_filter?	atom	false	Whether or not a base filter exists that applies the is_nil(archived_at) rule.
	exclude_read_actions	atom | list(atom)	[]	A read action or actions that should show archived items. They will not get the automatic is_nil(archived_at) filter.
	exclude_destroy_actions	atom | list(atom)	[]	A destroy action or actions that should not archive, but instead be left alone. This allows for having a destroy or archive pattern.
	archive_related	list(atom)	[]	A list of relationships that should have all related items archived when this is archived. Notifications are not sent for this operation.

AshArchival

An Archival extension for Ash.Resource

AshArchival.Resource

Configures a resource to be archived instead of destroyed for all destroy actions.
For more information, see the getting started guide

AshArchival.Resource.Info

Introspection helpers for AshArchival.Resource

 Summary

 Functions

 archive_archive_related(dsl_or_extended)

 A list of relationships that should have all related items archived when this is archived. Notifications are not sent for this operation.

 archive_archive_related!(dsl_or_extended)

 A list of relationships that should have all related items archived when this is archived. Notifications are not sent for this operation.

 archive_attribute(dsl_or_extended)

 The attribute in which to store the archival flag (the current datetime).

 archive_attribute!(dsl_or_extended)

 The attribute in which to store the archival flag (the current datetime).

 archive_base_filter?(dsl_or_extended)

 Whether or not a base filter exists that applies the is_nil(archived_at) rule.

 archive_exclude_destroy_actions(dsl_or_extended)

 A destroy action or actions that should not archive, but instead be left alone. This allows for having a destroy or archive pattern.

 archive_exclude_destroy_actions!(dsl_or_extended)

 A destroy action or actions that should not archive, but instead be left alone. This allows for having a destroy or archive pattern.

 archive_exclude_read_actions(dsl_or_extended)

 A read action or actions that should show archived items. They will not get the automatic is_nil(archived_at) filter.

 archive_exclude_read_actions!(dsl_or_extended)

 A read action or actions that should show archived items. They will not get the automatic is_nil(archived_at) filter.

 archive_options(dsl_or_extended)

 archive DSL options

 Functions

 Link to this function

 archive_archive_related(dsl_or_extended)

 View Source

 @spec archive_archive_related(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A list of relationships that should have all related items archived when this is archived. Notifications are not sent for this operation.

 Link to this function

 archive_archive_related!(dsl_or_extended)

 View Source

 @spec archive_archive_related!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A list of relationships that should have all related items archived when this is archived. Notifications are not sent for this operation.

 Link to this function

 archive_attribute(dsl_or_extended)

 View Source

 @spec archive_attribute(dsl_or_extended :: module() | map()) :: {:ok, atom()} | :error

The attribute in which to store the archival flag (the current datetime).

 Link to this function

 archive_attribute!(dsl_or_extended)

 View Source

 @spec archive_attribute!(dsl_or_extended :: module() | map()) :: atom() | no_return()

The attribute in which to store the archival flag (the current datetime).

 Link to this function

 archive_base_filter?(dsl_or_extended)

 View Source

 @spec archive_base_filter?(dsl_or_extended :: module() | map()) :: atom()

Whether or not a base filter exists that applies the is_nil(archived_at) rule.

 Link to this function

 archive_exclude_destroy_actions(dsl_or_extended)

 View Source

 @spec archive_exclude_destroy_actions(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A destroy action or actions that should not archive, but instead be left alone. This allows for having a destroy or archive pattern.

 Link to this function

 archive_exclude_destroy_actions!(dsl_or_extended)

 View Source

 @spec archive_exclude_destroy_actions!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A destroy action or actions that should not archive, but instead be left alone. This allows for having a destroy or archive pattern.

 Link to this function

 archive_exclude_read_actions(dsl_or_extended)

 View Source

 @spec archive_exclude_read_actions(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A read action or actions that should show archived items. They will not get the automatic is_nil(archived_at) filter.

 Link to this function

 archive_exclude_read_actions!(dsl_or_extended)

 View Source

 @spec archive_exclude_read_actions!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A read action or actions that should show archived items. They will not get the automatic is_nil(archived_at) filter.

 Link to this function

 archive_options(dsl_or_extended)

 View Source

 @spec archive_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

archive DSL options
Returns a map containing the and any configured or default values.

 OEBPS/dist/epub-CZUZZXHK.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

