

 ash_authentication

 v4.1.0

 [image: Logo]

 Table of contents

 	README

 	Change Log

 	Start Here

 	Get started with Ash Authentication

 	Tutorials

 	Password Authentication

 	Auth0 Tutorial

 	GitHub Tutorial

 	Google Tutorial

 	Magic Links Tutorial

 	Confirmation Tutorial

 	Topics

 	Defining Custom Authentication Strategies

 	Policies on Authenticated Resources

 	Testing

 	Tokens

 	Upgrading

 	Reference

 	DSL: AshAuthentication

 	DSL: AshAuthentication.AddOn.Confirmation

 	DSL: AshAuthentication.Strategy.Auth0

 	DSL: AshAuthentication.Strategy.Github

 	DSL: AshAuthentication.Strategy.Google

 	DSL: AshAuthentication.Strategy.MagicLink

 	DSL: AshAuthentication.Strategy.OAuth2

 	DSL: AshAuthentication.Strategy.Oidc

 	DSL: AshAuthentication.Strategy.Password

 	DSL: AshAuthentication.TokenResource

 	DSL: AshAuthentication.UserIdentity

 	

 	Modules

 	Extensions

 	AshAuthentication

 	AshAuthentication.TokenResource

 	AshAuthentication.UserIdentity

 	Strategies

 	AshAuthentication.AddOn.Confirmation

 	AshAuthentication.Strategy

 	AshAuthentication.Strategy.Auth0

 	AshAuthentication.Strategy.Custom

 	AshAuthentication.Strategy.Github

 	AshAuthentication.Strategy.Google

 	AshAuthentication.Strategy.MagicLink

 	AshAuthentication.Strategy.OAuth2

 	AshAuthentication.Strategy.Oidc

 	AshAuthentication.Strategy.Password

 	Cryptography

 	AshAuthentication.BcryptProvider

 	AshAuthentication.HashProvider

 	AshAuthentication.Jwt

 	Introspection

 	AshAuthentication.Info

 	AshAuthentication.TokenResource.Info

 	AshAuthentication.UserIdentity.Info

 	Utilities

 	AshAuthentication.Debug

 	AshAuthentication.Secret

 	AshAuthentication.Sender

 	AshAuthentication.Supervisor

 	Plugs

 	AshAuthentication.Plug

 	AshAuthentication.Plug.Helpers

 	Reusable Components

 	AshAuthentication.Checks.AshAuthenticationInteraction

 	AshAuthentication.GenerateTokenChange

 	AshAuthentication.Strategy.Password.HashPasswordChange

 	AshAuthentication.Strategy.Password.PasswordConfirmationValidation

 	AshAuthentication.Strategy.Password.PasswordValidation

 	AshAuthentication.Validations

 	AshAuthentication.Validations.Action

 	AshAuthentication.Validations.Attribute

 	Errors

 	AshAuthentication.Errors.AuthenticationFailed

 	AshAuthentication.Errors.InvalidToken

 	AshAuthentication.Errors.MissingSecret

 	Internals

 	AshAuthentication.AddOn.Confirmation.Actions

 	AshAuthentication.AddOn.Confirmation.ConfirmChange

 	AshAuthentication.AddOn.Confirmation.ConfirmationHookChange

 	AshAuthentication.AddOn.Confirmation.Dsl

 	AshAuthentication.AddOn.Confirmation.Plug

 	AshAuthentication.AddOn.Confirmation.Transformer

 	AshAuthentication.AddOn.Confirmation.Verifier

 	AshAuthentication.Igniter

 	AshAuthentication.Jwt.Config

 	AshAuthentication.Plug.Defaults

 	AshAuthentication.Plug.Dispatcher

 	AshAuthentication.Plug.Macros

 	AshAuthentication.Plug.Router

 	AshAuthentication.Preparations.FilterBySubject

 	AshAuthentication.SecretFunction

 	AshAuthentication.SenderFunction

 	AshAuthentication.Strategy.Apple

 	AshAuthentication.Strategy.Apple.Verifier

 	AshAuthentication.Strategy.Custom.Helpers

 	AshAuthentication.Strategy.Custom.Transformer

 	AshAuthentication.Strategy.Custom.Verifier

 	AshAuthentication.Strategy.MagicLink.Actions

 	AshAuthentication.Strategy.MagicLink.Plug

 	AshAuthentication.Strategy.MagicLink.RequestPreparation

 	AshAuthentication.Strategy.MagicLink.SignInPreparation

 	AshAuthentication.Strategy.MagicLink.Transformer

 	AshAuthentication.Strategy.MagicLink.Verifier

 	AshAuthentication.Strategy.OAuth2.Actions

 	AshAuthentication.Strategy.OAuth2.Dsl

 	AshAuthentication.Strategy.OAuth2.IdentityChange

 	AshAuthentication.Strategy.OAuth2.Plug

 	AshAuthentication.Strategy.OAuth2.SignInPreparation

 	AshAuthentication.Strategy.OAuth2.Transformer

 	AshAuthentication.Strategy.OAuth2.Verifier

 	AshAuthentication.Strategy.Oidc.NonceGenerator

 	AshAuthentication.Strategy.Oidc.Transformer

 	AshAuthentication.Strategy.Oidc.Verifier

 	AshAuthentication.Strategy.Password.Actions

 	AshAuthentication.Strategy.Password.Dsl

 	AshAuthentication.Strategy.Password.Plug

 	AshAuthentication.Strategy.Password.RequestPasswordResetPreparation

 	AshAuthentication.Strategy.Password.ResetTokenValidation

 	AshAuthentication.Strategy.Password.Resettable

 	AshAuthentication.Strategy.Password.SignInPreparation

 	AshAuthentication.Strategy.Password.SignInWithTokenPreparation

 	AshAuthentication.Strategy.Password.Transformer

 	AshAuthentication.Strategy.Password.Verifier

 	AshAuthentication.TokenResource.Actions

 	AshAuthentication.TokenResource.Expunger

 	AshAuthentication.TokenResource.GetConfirmationChangesPreparation

 	AshAuthentication.TokenResource.GetTokenPreparation

 	AshAuthentication.TokenResource.IsRevoked

 	AshAuthentication.TokenResource.IsRevokedPreparation

 	AshAuthentication.TokenResource.RevokeTokenChange

 	AshAuthentication.TokenResource.StoreConfirmationChangesChange

 	AshAuthentication.TokenResource.StoreTokenChange

 	AshAuthentication.TokenResource.Transformer

 	AshAuthentication.TokenResource.Verifier

 	AshAuthentication.Transformer

 	AshAuthentication.Transformer.SetSelectForSenders

 	AshAuthentication.UserIdentity.Actions

 	AshAuthentication.UserIdentity.Transformer

 	AshAuthentication.UserIdentity.UpsertIdentityChange

 	AshAuthentication.UserIdentity.Verifier

 	AshAuthentication.Verifier

README

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
Ash Authentication
Welcome! Here you will find everything you need to know to get started with and use Ash Authentication. This documentation is best viewed on hexdocs.

 About the Documentation

Tutorials walk you through a series of steps to accomplish a goal. These are learning-oriented, and are a great place for beginners to start.

Topics provide a high level overview of a specific concept or feature. These are understanding-oriented, and are perfect for discovering design patterns, features, and tools related to a given topic.

Reference documentation is produced automatically from our source code. It comes in the form of module documentation and DSL documentation. This documentation is information-oriented. Use the sidebar and the search bar to find relevant reference information.

 Tutorials

	Get Started

 Topics

	Custom Strategies
	Policies on Authenticated Resources
	Testing
	Tokens
	Upgrade guides

 Tutorials

	Authenticate with Auth0
	Authenticate with GitHub
	Authenticate with Google
	Authenticate with Magic Links
	Confirmation

 Reference

	AshAuthentication DSL
	AshAuthentication.AddOn.Confirmation DSL
	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github DSL
	AshAuthentication.Strategy.Google DSL
	AshAuthentication.Strategy.MagicLink DSL
	AshAuthentication.Strategy.OAuth2 DSL
	AshAuthentication.Strategy.Oidc DSL
	AshAuthentication.Strategy.Password DSL
	AshAuthentication.TokenResource DSL
	AshAuthentication.UserIdentity DSL
	For other reference documentation, see the sidebar & search bar

 Related packages

	Ash Framework
	Ash Authentication Phoenix | Integrates Ash Authentication into your Phoenix application

[image: Alembic]
Proudly written and maintained by the team at Alembic for the Ash community.

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v4.1.0 (2024-10-06)

 Features:

	Add AshAuthentication igniter installer (#782)

 Bug Fixes:

	handle options properly for subect to user (#786)

	setup options properly for ash 3.0 (#785)

 Improvements:

	igniter installer for user & user token resources

 v4.0.4 (2024-09-01)

 Bug Fixes:

	update types and formatter

	add secret values to config

	sort new fields

	sort new types

	properly set allow_nil for apple secrets

	credo and sobelow warnings

 Improvements:

	add apple strategy (#750)

	add apple strategy

 v4.0.3 (2024-08-22)

 Bug Fixes:

	allow overriding strategy defaults (#766)

	bug where nil is not allowed but is returned from secret functions.

	add back in accidentally removed debug errors code (#768)

	set options earlier in magic link/oauth2

 Improvements:

	avoid warning about comparison with nil

	set context in addition to tenant

	use no_depend_modules for better compile dependencies

	enable custom http_adapters (#760)

 v4.0.2 (2024-08-05)

 Bug Fixes:

	only pass the "token" parameter to reset with token action (#748)

	handle case where action.accept is nil

 Improvements:

	validate that tokens are enabled when password resets are enabled. (#758)

	compile-time check to make sure that the configured token_resource is an Ash.Resource (#749)

	Tokens: improved compile-time validation of the token_resource option of the tokens DSL by checking that the passed value is an Ash.Resource.

	Tokens: removed unnecessary stuff from the test file.

	Tokens: fixed credo warning and changed some things after PR feedback

 v4.0.1 (2024-06-11)

 Bug Fixes:

	no need to allow_nil_input for an unaccepted field

	correctly generate sign-in tokens when requested.

	ensure tenant is set when revoking tokens and on changeset for updating

	broken links in readme (#692)

	broken links

	bug in tokens required verifier.

 4.0.0 (2024-05-10)

 Breaking Changes:

	Sign in tokens are enabled by default for the password strategy.

	Tokens are now enabled by default.

 Bug Fixes:

	Jwt: Include authentication interaction context when storing tokens.

	Strategy.Password: Reset tokens are single use. (#625)

	Confirmation: Only allow the confirmation token to be used once. (#623)

 Improvements:

	Only require tokens to be enabled when using a strategy which needs them.

	OIDC: Adjust dsl of OIDC reflect assent requirements (#538)

	Use Ash functions instead of generated domain functions.

 v4.0.0-rc.7 (2024-05-10)

 Bug Fixes:

	Jwt: Include authentication interaction context when storing tokens.

 Improvements:

	Only require tokens to be enabled when using a strategy which needs them.

 v4.0.0-rc.6 (2024-04-11)

 Improvements:

	OIDC: Adjust dsl of OIDC reflect assent requirements (#538)

 v4.0.0-rc.5 (2024-04-10)

 Breaking Changes:

	Sign in tokens are enabled by default for the password strategy.

	Tokens are now enabled by default.

 Bug Fixes:

	Strategy.Password: Reset tokens are single use. (#625)

 v4.0.0-rc.4 (2024-04-09)

 Improvements:

	Use Ash functions instead of generated domain functions.

 v4.0.0-rc.3 (2024-04-08)

 Bug Fixes:

	Confirmation: Only allow the confirmation token to be used once. (#623)

 v4.0.0-rc.2 (2024-04-02)

 Breaking Changes:

	Update to support Ash 3.0. (#599)

 Bug Fixes:

	allow future versions of ash rc

	Jwt: Ignore pre-release versions verifying token versions.

 Improvements:

	re-integrate ash_graphql and ash_json_api RCs.

 v4.0.0-rc.1 (2024-04-01)

 Improvements:

	re-integrate ash_graphql and ash_json_api RCs.

 v4.0.0-rc.0 (2024-03-28)

 Breaking Changes:

	Update to support Ash 3.0. (#599)

 Bug Fixes:

	Jwt: Ignore pre-release versions verifying token versions.

 v3.12.4 (2024-03-11)

 Improvements:

	infer api from a resource

 v3.12.3 (2024-02-20)

 v3.12.2 (2024-01-30)

 Bug Fixes:

	deps: mark ash_postgres as optional

 Improvements:

	support atom keys for uid in addition to strings (#556)

 v3.12.1 (2024-01-25)

 Improvements:

	support atom keys for uid in addition to strings (#556)

 v3.12.0 (2023-11-21)

 Features:

	Add Google strategy (#474)

	Add Google strategy

 Bug Fixes:

	include Google strategy cheat sheet

	Add documentation grouping for Google strategy

 Improvements:

	Change redirect_uri secret to be more flexible (#473)

 v3.11.16 (2023-10-25)

 Bug Fixes:

	Change overwriting of refresh_token to not overwrite them with nil (#483)

 Improvements:

	Add id as an option for sourcing uid for UserIdentity (#481)

 v3.11.15 (2023-09-22)

 Bug Fixes:

	ensure we aren't calling Map.take on nil

 v3.11.14 (2023-09-22)

 Bug Fixes:

	TokenResource: don't silently drop notifications about token removal. (#432)

 v3.11.13 (2023-09-22)

 Improvements:

	Allow all token lifetimes to be specified with a time unit.

 v3.11.12 (2023-09-21)

 Bug Fixes:

	include finch in the dependencies.

	deprecated mint httpadapter (#425)

 v3.11.11 (2023-09-21)

 Bug Fixes:

	include finch in the dependencies.

	deprecated mint httpadapter (#425)

 v3.11.10 (2023-09-18)

 Bug Fixes:

	only use sign in token expiration for sign in tokens (#424)

 v3.11.9 (2023-09-17)

 Bug Fixes:

	support generating tokens for other strategies.

 Improvements:

	support generating sign in tokens on register (#421)

	support generating sign in tokens on register

 v3.11.8 (2023-08-16)

 Bug Fixes:

	correct spec for Jwt.token_for_user (#389)

 v3.11.7 (2023-07-14)

 Bug Fixes:

	ensure that the current_ atom exists at compile time. (#359)

 v3.11.6 (2023-06-23)

 Bug Fixes:

	fix Logger deprecations for elixir 1.15 (#343)

 v3.11.5 (2023-06-18)

 Bug Fixes:

	ConfirmationHookChange: use Info.find_strategy/2..3 rather than a hard coded strategy name. (#336)

 v3.11.4 (2023-06-15)

 Bug Fixes:

	primary keys are implicitly uniquely constrained. (#333)

 v3.11.3 (2023-05-31)

 Bug Fixes:

	duplicate mime type for "json".

 v3.11.2 (2023-05-28)

 Bug Fixes:

	Strategy.Password: Preparations should allow strategy to be passed in. (#314)

 v3.11.1 (2023-05-04)

 Bug Fixes:

	correct oauth2 and getting started typos (#267)

 v3.11.0 (2023-05-04)

 Features:

	OpenID Connect Strategy (#197)

	AshAuthentication.Strategy.Oidc: Add OpenID Connect strategy.

 v3.10.8 (2023-04-28)

 Bug Fixes:

	PasswordValidation should associate errors with the field being â�¦ (#279)

 v3.10.7 (2023-04-28)

 Improvements:

	run CI on pull requests

 v3.10.6 (2023-04-09)

 Improvements:

	require spark ~> 1.0 (#261)

 v3.10.5 (2023-04-06)

 Improvements:

	add sign in tokens to password strategy (#252)

	add sign in tokens to password strategy

	convert sign_in_with_token into an action.

 v3.10.4 (2023-04-03)

 Improvements:

	update spark (#254)

	update spark

 v3.10.3 (2023-04-03)

 Improvements:

	update spark (#254)

	update spark

 v3.10.2 (2023-03-06)

 Bug Fixes:

	respect identity_relationship_user_id_attribute on Strategy.OAuth2.IdentityChange (#213)

 v3.10.1 (2023-03-06)

 Bug Fixes:

	fix failing JWT tests because of bad version regex.

 v3.10.0 (2023-03-04)

 Breaking Changes:

	Configure accepted fields on register (#219)

 v3.9.6 (2023-03-01)

 Improvements:

	allow registration and sign in to be disabled on password strategies. (#218)

 v3.9.5 (2023-02-23)

 Improvements:

	support multiple otp apps w/resources (#209)

 v3.9.4 (2023-02-22)

 Improvements:

	PasswordConfirmationValidation: allow strategy_name to be passed as an option. (#208)

 v3.9.3 (2023-02-19)

 Bug Fixes:

	sign in preparation without identity resource (#198)

 v3.9.2 (2023-02-12)

 Bug Fixes:

	Password.Transformer: don't force users to define a hashed_password argument to the register action. (#192)

 v3.9.1 (2023-02-12)

 Bug Fixes:

	select hashed_password on sign in preparation

	don't allow special purpose tokens to be used for sign in. (#191)

 Improvements:

	add select_for_senders (#189)

	add select_for_senders

	include metadata declaration on register action

 v3.9.0 (2023-02-09)

 Features:

	Add new "magic link" authentication strategy. (#184)

 Bug Fixes:

	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.8.0 (2023-02-09)

 Features:

	Add new "magic link" authentication strategy. (#184)

 Bug Fixes:

	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.9 (2023-02-09)

 Bug Fixes:

	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.8 (2023-02-08)

 Bug Fixes:

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.7 (2023-02-06)

 Bug Fixes:

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.6 (2023-01-30)

 Bug Fixes:

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

 Improvements:

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.5 (2023-01-30)

 Improvements:

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

 v3.7.4 (2023-01-30)

 Improvements:

	validate signing secret is a string (#163)

 v3.7.3 (2023-01-18)

 Bug Fixes:

	Password: validate fields using both methods of allowing nil input. (#151)

 v3.7.2 (2023-01-18)

 Improvements:

	AuthenticationFailed: store a caused_by value in authentication failures. (#145)

 v3.7.1 (2023-01-18)

 Improvements:

	update ash & switch to new docs patterns (#146)

 v3.7.0 (2023-01-18)

 Features:

	PasswordValidation: Add a validation which can check a password. (#144)

 v3.6.1 (2023-01-15)

 Bug Fixes:

	don't call hash_provider.valid? on nil values (#135)

	use configured hashed_password_field

 Improvements:

	set confirmed field to nil, for reconfirmation (#136)

	set confirmed field to nil, for reconfirmation

	only change confirmed_at_field if its not changing, and only on updates

 v3.6.0 (2023-01-13)

 Breaking Changes:

	TokenResource: Store the token subject in the token resource. (#133)

	TokenResource: Store the token subject in the token resource.

 Bug Fixes:

	don't call hash_provider.valid? on nil values (#135)

	use configured hashed_password_field

 v3.5.3 (2023-01-13)

 Bug Fixes:

	Confirmation: send the original changeset to confirmation senders. (#132)

 v3.5.2 (2023-01-12)

 Improvements:

	add user context when creating tokens (#129)

 v3.5.1 (2023-01-12)

 Bug Fixes:

	missing icons in OAuth2 strategies. (#126)

 v3.5.0 (2023-01-12)

 Breaking Changes:

	GitHub: Add GitHub authentication strategy. (#125)

 v3.4.2 (2023-01-12)

 Bug Fixes:

	improve some error message/validation logic

 Improvements:

	add policy utilities and accompanying guide (#119)

	add policy utilities and accompanying guide

	fix build/warnings/dialyzer/format

 v3.4.1 (2023-01-12)

 Bug Fixes:

	Confirmation: correctly generate confirmation token subjects. (#124)

 v3.4.0 (2023-01-11)

 Features:

	Add token-required-for-authentication feature. (#116)

 v3.3.1 (2023-01-09)

 Improvements:

	Set Ash actor and tenant when executing internal plugs. (#115)

 v3.3.0 (2023-01-09)

 Features:

	Make strategy names optional where possible. (#113)

 v3.2.2 (2023-01-08)

 Improvements:

	Allow the strategy name to be passed for password validations and changes. (#102)

 v3.2.1 (2022-12-16)

 Improvements:

	add icon field to OAuth2 strategy. (#100)

 v3.2.0 (2022-12-16)

 Features:

	Auth0: Add a pre-configured Auth0 strategy. (#99)

 v3.1.0 (2022-12-14)

 Breaking Changes:

	Jwt: Use token signing secret into the DSL.

 Features:

	Add option to store all tokens when they're created. (#91)

 Improvements:

	remove the need for a strategy in changeset/query contexts. (#89)

	add transaction reason

	try a simpler way of ensuring module is compiled

 v3.0.4 (2022-12-08)

 Improvements:

	update to latest ash version

 v3.0.3 (2022-12-07)

 Bug Fixes:

	break potential compiler dependency loops. (#64)

 v3.0.2 (2022-12-05)

 Improvements:

	supervisor: require that the user adds the supervisor to their OTP app. (#62)

 v3.0.1 (2022-12-05)

 Improvements:

	actions: All actions now take optional arguments for the underlying API call. (#61)

 v3.0.0 (2022-12-04)

 Breaking Changes:

	TokenResource: Move TokenRevocation -> TokenResource.

 Improvements:

	Confirmation: Store confirmation changes in the token resource.

 v2.0.1 (2022-11-24)

 Improvements:

	Confirmation: Confirmation is not a strategy. (#46)

	Confirmation: Confirmation is not a strategy.

	Confirmation: Support more than one confirmation entity.

 v2.0.0 (2022-11-22)

 Breaking Changes:

	Major redesign of DSL and code structure. (#35)

 v1.0.0 (2022-11-15)

 Breaking Changes:

	OAuth2Authentication: Make the site option runtime configurable. (#31)

 v0.6.1 (2022-11-15)

 Bug Fixes:

	OAuth2Authentication: Return the failure reason even if it's not a changeset. (#29)

 v0.6.0 (2022-11-10)

 Features:

	OAuth2Authentication: Add support for generic OAuth2 endpoints. (#28)

 v0.5.0 (2022-11-04)

 Features:

	Confirmation: Add extension that allows a user to be confirmed when created or updated. (#27)

 v0.4.3 (2022-11-03)

 Improvements:

	docs: Improve endpoint docs for PasswordAuthentication and PasswordReset.

 v0.4.2 (2022-11-03)

 Bug Fixes:

	PasswordReset: Generate the reset token using the target action, not the source action. (#25)

	PasswordReset: Generate the reset token using the target action, not the source action.

 Improvements:

	PasswordReset: rework PasswordReset to be a provider in it's own right - this means it has it's own routes, etc.

 v0.4.1 (2022-11-03)

 Improvements:

	PasswordReset: A reset request is actually a query, not an update. (#23)

 v0.4.0 (2022-11-02)

 Features:

	PasswordReset: allow users to request and reset their password. (#22)

 v0.3.0 (2022-10-31)

 Features:

	Ash.PlugHelpers: Support standard actor configuration. (#16)

	Ash.PlugHelpers: Support standard actor configuration.

 Improvements:

	docs: change all references to actor to user.

 v0.2.1 (2022-10-26)

 Bug Fixes:

	deprecation warnings caused by use of Macro.expand_literal/2.

 Improvements:

	move subject_name uniqueness validation to compile time.

	remove generated: true from macros.

 v0.2.0 (2022-10-24)

 Features:

	PasswordAuthentication: Registration and authentication with local credentials (#4)

 v0.1.0 (2022-09-27)

Get started with Ash Authentication

If you haven't already, read the getting started guide for
Ash. This
assumes that you already have resources set up, and only gives you the steps to
add authentication to your resources and APIs.

 Using Igniter (recommended)

Install the extension
mix igniter.install ash_authentication

Using Phoenix?
Use the following. If you have not yet run the above command, this will prompt you to do so,
so you can run both or only this one.
mix igniter.install ash_authentication_phoenix

There is not a task(yet) for configuring the strategies and add-ons that you use.
So continue on below and select your strategies/add-ons and set them up manually.

 Manual

Add to your application's dependencies
Bring in the ash_authentication dependency:
mix.exs

defp deps()
 [
 # ...
 {:ash_authentication, "~> 4.0"}
]
end
And add ash_authentication to your .formatter.exs:
.formatter.exs
[
 import_deps: [..., :ash_authentication]
]
Create authentication domain and resources
Let's create an Accounts domain in our application which provides a User
resource and a Token resource. This tutorial is assuming that you are using AshPostgres.
First, let's define our domain:
lib/my_app/accounts.ex

defmodule MyApp.Accounts do
 use Ash.Domain

 resources do
 resource MyApp.Accounts.User
 resource MyApp.Accounts.Token
 end
end
Be sure to add it to the ash_domains config in your config.exs
in config/config.exs
config :my_app, ash_domains: [..., MyApp.Accounts]
Next, let's define our Token resource. This resource is needed
if token generation is enabled for any resources in your application. Most of
the contents are auto-generated, so we just need to provide the data layer
configuration and the API to use.
But before we do, we need to install a postgres extension.
lib/my_app/repo.ex

defmodule MyApp.Repo do
 use AshPostgres.Repo, otp_app: :my_app

 def installed_extensions do
 ["ash-functions", "citext"]
 end
end
Setup Token Resource
lib/my_app/accounts/token.ex
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 # If using policies, enable the policy authorizer:
 authorizers: [Ash.Policy.Authorizer],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end

 policies do
 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end
 end
end
Supervisor
AshAuthentication includes a supervisor which you should add to your
application's supervisor tree. This is used to run any periodic jobs related to
your authenticated resources (removing expired tokens, for example).

 Example

defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # ...
 # add this line -->
 {AshAuthentication.Supervisor, otp_app: :my_app}
 # <-- add this line
]
 # ...
 end
end
Lastly let's define our User resource. Note that we aren't defining any authentication strategies here.
This setup is used for all strategies. Once you have done this, you can follow one of the strategy specific
guides at the bottom of this page.
lib/my_app/accounts/user.ex

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication],
 authorizers: [Ash.Policy.Authorizer],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 end

 authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 signing_secret fn _, _ ->
 # This is a secret key used to sign tokens. See the note below on secrets management
 Application.fetch_env(:my_app, :token_signing_secret)
 end
 end
 end

 postgres do
 table "users"
 repo MyApp.Repo
 end

 # You can customize this if you wish, but this is a safe default that
 # only allows user data to be interacted with via AshAuthentication.
 policies do
 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end

 policy always() do
 forbid_if always()
 end
 end
end

 The signing secret must not be committed to source control

Proper management of secrets is outside the scope of this tutorial, but is
absolutely crucial to the security of your application.

Choose your strategies and add-ons
Strategies
	Password
	Github
	Google
	Magic Links
	Auth0
	Open ID: AshAuthentication.Strategy.Oidc
	OAuth2: AshAuthentication.Strategy.OAuth2

Add-Ons
	Confirmation: confirming changes to user accounts (i.e via email)
	UserIdentity: AshAuthentication.UserIdentity: supporting multiple social sign on identities & refreshing tokens

Set up your phoenix or plug application
If you're using Phoenix, skip this section and go to
Integrating Ash Authentication and Phoenix
In order for your users to be able to sign in, you will likely need to provide
an HTTP endpoint to submit credentials or OAuth requests to. Ash Authentication
provides AshAuthentication.Plug for this purposes. It provides a use macro
which handles routing of requests to the correct providers, and defines
callbacks for successful and unsuccessful outcomes.
Let's generate our plug:
lib/my_app/auth_plug.ex

defmodule MyApp.AuthPlug do
 use AshAuthentication.Plug, otp_app: :my_app

 def handle_success(conn, _activity, user, token) do
 if is_api_request?(conn) do
 conn
 |> send_resp(200, Jason.encode!(%{
 authentication: %{
 success: true,
 token: token
 }
 }))
 else
 conn
 |> store_in_session(user)
 |> send_resp(200, EEx.eval_string("""
 <h2>Welcome back <%= @user.email %></h2>
 """, user: user))
 end
 end

 def handle_failure(conn, _activity, _reason) do
 if is_api_request?(conn) do
 conn
 |> send_resp(401, Jason.encode!(%{
 authentication: %{
 success: false
 }
 }))
 else
 conn
 |> send_resp(401, "<h2>Incorrect email or password</h2>")
 end
 end

 defp is_api_request?(conn), do: "application/json" in get_req_header(conn, "accept")
end
Now that this is done, you can forward HTTP requests to it from your app's main
router using forward "/auth", to: MyApp.AuthPlug or similar.
Your generated auth plug module will also contain load_from_session and
load_from_bearer function plugs, which can be used to load users into assigns
based on the contents of the session store or Authorization header.

 Summary

In this guide we've learned how to install Ash Authentication, configure
resources and handle authentication HTTP requests.
You should now have an Ash application with working user authentication.
Up next, Using with Phoenix.

Password Authentication

 Add Bcrypt To your dependencies

This step is not strictly necessary, but in the next major version of AshAuthentication,
Bcrypt will be an optional dependency. This will make that upgrade slightly easier.
{:bcrypt_elixir, "~> 3.0"}

 Add Attributes

Add an email (or username) and hashed_password attribute to your user resource.
lib/my_app/accounts/user.ex
attributes do
 ...
 attribute :email, :ci_string, allow_nil?: false, public?: true
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
end
Ensure that the email (or username) is unique.
lib/my_app/accounts/user.ex
identities do
 identity :unique_email, [:email]
 # or
 identity :unique_username, [:username]
end

 Add the password strategy

Configure it to use the :email or :username as the identity field.
lib/my_app/accounts/user.ex
authentication do
 ...
 strategies do
 password :password do
 identity_field :email
 # or
 identity_field :username
 end
 end
end
Now we have enough in place to register and sign-in users using the
AshAuthentication.Strategy protocol.

Auth0 Tutorial

This is a quick tutorial on how to configure your application to use Auth0 for authentication.
First, you need to configure an application in the Auth0 dashboard using the following steps:
	Click "Create Application".

	Set your application name to something that identifies it. You will likely
need separate applications for development and production environments, so
keep that in mind.

	Select "Regular Web Application" and click "Create".

	Switch to the "Settings" tab.

	Copy the "Domain", "Client ID" and "Client Secret" somewhere safe - we'll need them soon.

	In the "Allowed Callback URLs" section, add your callback URL. The callback URL is generated from the following information:
	The base URL of the application - in development that would be
http://localhost:4000/ but in production will be your application's
URL.
	The mount point of the auth routes in your router - we'll assume
/auth.
	The "subject name" of the resource being authenticated - we'll assume user.
	The name of the strategy in your configuration. By default this is
auth0.

This means that the callback URL should look something like
http://localhost:4000/auth/user/auth0/callback.

	Set "Allowed Web Origins" to your application's base URL.

	Click "Save Changes".

Next we can configure our resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 auth0 do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 base_url MyApp.Secrets
 end
 end
 end
end
Because all the configuration values should be kept secret (ie the client_secret) or are likely to be different for each environment we use the AshAuthentication.Secret behaviour to provide them. In this case we're delegating to the OTP application environment, however you may want to use a system environment variable or some other secret store (eg Vault).
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :auth0, :client_id], MyApp.Accounts.User, _) do
 get_config(:client_id)
 end

 def secret_for([:authentication, :strategies, :auth0, :redirect_uri], MyApp.Accounts.User, _) do
 get_config(:redirect_uri)
 end

 def secret_for([:authentication, :strategies, :auth0, :client_secret], MyApp.Accounts.User, _) do
 get_config(:client_secret)
 end

 def secret_for([:authentication, :strategies, :auth0, :base_url], MyApp.Accounts.User, _) do
 get_config(:base_url)
 end

 defp get_config(key) do
 :my_app
 |> Application.fetch_env!(:auth0)
 |> Keyword.fetch!(key)
 |> then(&{:ok, &1})
 end
end
The values for this configuration should be:
	client_id - the client ID copied from the Auth0 settings page.
	redirect_uri - the URL to the generated auth routes in your application (eg http://localhost:4000/auth).
	client_secret the client secret copied from the Auth0 settings page.
	base_url - the "domain" value copied from the Auth0 settings page prefixed with https:// (eg https://dev-yu30yo5y4tg2hg0y.us.auth0.com).

Lastly, we need to add a register action to your user resource. This is defined as an upsert so that it can register new users, or update information for returning users. The default name of the action is register_with_ followed by the strategy name. In our case that is register_with_auth0.
The register action takes two arguments, user_info and the oauth_tokens.
	user_info contains the GET /userinfo response from Auth0 which you can use to populate your user attributes as needed.
	oauth_tokens contains the POST /oauth/token response from Auth0 - you may want to store these if you intend to call the Auth0 API on behalf of the user.

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...

 actions do
 create :register_with_auth0 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 # Required if you have token generation enabled.
 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end
 end
 end

 # ...

end

GitHub Tutorial

This is a quick tutorial on how to configure your application to use GitHub for authentication.
First you need to configure an application in your GitHub developer settings:
	Click the "New OAuth App" button.

	Set your application name to something that identifies it. You will likely
need separate applications for development and production environments, so
keep that in mind.

	Set "Homepage URL" appropriately for your application and environment.

	In the "Authorization callback URL" section, add your callback URL. The
callback URL is generated from the following information:
	The base URL of the application - in development that would be
http://localhost:4000/ but in production will be your application's
URL.
	The mount point of the auth routes in your router - we'll assume
/auth.
	The "subject name" of the resource being authenticated - we'll assume user.
	The name of the strategy in your configuration. By default this is
github.

This means that the callback URL should look something like
http://localhost:4000/auth/user/github/callback.

	Do not set "Enable Device Flow" unless you know why you want this.

	Click "Register application".

	Click "Generate a new client secret".

	Copy the "Client ID" and "Client secret" somewhere safe, we'll need them
soon.

	Click "Update application".

Next we can configure our resource (assuming you already have everything else
set up):
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 github do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 end
 end
 end
end
Because all the configuration values should be kept secret (ie the
client_secret) or are likely to be different for each environment we use the
AshAuthentication.Secret behaviour to provide them. In this case we're
delegating to the OTP application environment, however you may want to use a
system environment variable or some other secret store (eg Vault).
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :github, :client_id], MyApp.Accounts.User, _) do
 get_config(:client_id)
 end

 def secret_for([:authentication, :strategies, :github, :redirect_uri], MyApp.Accounts.User, _) do
 get_config(:redirect_uri)
 end

 def secret_for([:authentication, :strategies, :github, :client_secret], MyApp.Accounts.User, _) do
 get_config(:client_secret)
 end

 defp get_config(key) do
 :my_app
 |> Application.get_env(:github, [])
 |> Keyword.fetch(key)
 end
end
The values for this configuration should be:
	client_id - the client ID copied from the GitHub settings page.
	redirect_uri - the URL to the generated auth routes in your application
(eg http://localhost:4000/auth).
	client_secret the client secret copied from the GitHub settings page.

Lastly, we need to add a register action to your user resource. This is defined
as an upsert so that it can register new users, or update information for
returning users. The default name of the action is register_with_ followed by
the strategy name. In our case that is register_with_github.
The register action takes two arguments, user_info and the oauth_tokens.
	user_info contains the GET /user response from
GitHub
which you can use to populate your user attributes as needed.
	oauth_tokens contains the POST /login/oauth/access_token response from
GitHub	you may want to store these if you intend to call the GitHub API on behalf
of the user.

defmodule MyApp.Accounts.User do
 require Ash.Resource.Change.Builtins
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...

 actions do
 create :register_with_github do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 # Required if you have token generation enabled.
 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end

 # Required if you're using the password & confirmation strategies
 upsert_fields []
 change set_attribute(:confirmed_at, &DateTime.utc_now/0)
 change after_action(fn _changeset, user, _context ->
 case user.confirmed_at do
 nil -> {:error, "Unconfirmed user exists already"}
 _ -> {:ok, user}
 end
 end)
 end
 end

 # ...

end
Ensure you set the hashed_password to allow_nil? if you are also using the password strategy.
defmodule MyApp.Accounts.User do
 # ...
 attributes do
 # ...
 attribute :hashed_password, :string, allow_nil?: true, sensitive?: true
 end
 # ...
end
And generate and run migrations in that case.
mix ash.codegen make_hashed_password_nullable
mix ash.migrate

Google Tutorial

This is a quick tutorial on how to configure Google authentication.
First you'll need a registered application in Google Cloud, in order to get your OAuth 2.0 Client credentials.
	On the Cloud's console Quick access section select APIs & Services, then Credentials
	Click on + CREATE CREDENTIALS and from the dropdown select OAuth client ID
	From the google developers console, we will need: client_id & client_secret
	Enter your callback uri under Authorized redirect URIs. E.g. http://localhost:4000/auth/user/google/callback.

Next we configure our resource to use google credentials:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 ...
 end

 authentication do
 strategies do
 google do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 end
 end
 end
end
Please check the guide on how to properly configure your Secrets
Then we need to define an action that will handle the oauth2 flow, for the google case it is :register_with_google it will handle both cases for our resource, user registration & login.
defmodule MyApp.Accounts.User do
 require Ash.Resource.Change.Builtins
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...
 actions do
 create :register_with_google do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end

 # Required if you're using the password & confirmation strategies
 upsert_fields []
 change set_attribute(:confirmed_at, &DateTime.utc_now/0)
 change after_action(fn _changeset, user, _context ->
 case user.confirmed_at do
 nil -> {:error, "Unconfirmed user exists already"}
 _ -> {:ok, user}
 end
 end)
 end
 end

 # ...

end
Ensure you set the hashed_password to allow_nil? if you are also using the password strategy.
defmodule MyApp.Accounts.User do
 # ...
 attributes do
 # ...
 attribute :hashed_password, :string, allow_nil?: true, sensitive?: true
 end
 # ...
end
And generate and run migrations in that case.
mix ash.codegen make_hashed_password_nullable
mix ash.migrate

Magic Links Tutorial

This is a quick tutorial to get you up and running on Magic Links.
This assumes you've set up ash_authentication and password reset in your Phoenix project.

 Add the Magic Link Strategy to the User resource

...

strategies do
 password :password do
 identity_field(:email)

 resettable do
 sender(Example.Accounts.User.Senders.SendPasswordResetEmail)
 end
 end

 # add these lines -->
 magic_link do
 identity_field :email
 sender(Example.Accounts.User.Senders.SendMagicLink)
 end
 # <-- add these lines
end

...

 Create and email sender and email template

Inside /lib/example/accounts/user/senders/send_magic_link.ex
defmodule Example.Accounts.User.Senders.SendMagicLink do
 @moduledoc """
 Sends a magic link
 """
 use AshAuthentication.Sender
 use ExampleWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user, token, _) do
 Example.Accounts.Emails.deliver_magic_link(
 user,
 url(~p"/auth/user/magic_link/?token=#{token}")
)
 end
end
Inside /lib/example/accounts/emails.ex
...

def deliver_magic_link(user, url) do
 if !url do
 raise "Cannot deliver reset instructions without a url"
 end

 deliver(user.email, "Magic Link", """
 <html>
 <p>
 Hi #{user.email},
 </p>

 <p>
 Click here to login.
 </p>
 <html>
 """)
end

...

Confirmation Tutorial

This add-on allows you to confirm changes to a user record by generating and
sending them a confirmation token which they must submit before allowing the
change to take place.
In this tutorial we'll assume that you have a User resource which uses email as it's user identifier. We'll show you how to confirm a new user on sign-up and also require them to confirm if they wish to change their email address.
Here's the user resource we'll be starting with:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false, public?: true, sensitive?: true
 attribute :hashed_password, :string, allow_nil?: false, public?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end

 Confirming newly registered users

First we start by adding the confirmation add-on to your existing authentication DSL:
defmodule MyApp.Accounts.User do
 # ...

 authentication do
 # ...

 add_ons do
 confirmation :confirm_new_user do
 monitor_fields [:email]
 confirm_on_create? true
 confirm_on_update? false
 confirm_action_name :confirm_new_user
 sender MyApp.Accounts.User.Senders.SendNewUserConfirmationEmail
 end
 end
 end
end
Next we will have to generate and run migrations to add confirmed_at column to user resource
mix ash.codegen account_confirmation

To make this work we need to create a new module MyApp.Accounts.User.Senders.SendPasswordResetEmail:
defmodule MyApp.Accounts.User.Senders.SendNewUserConfirmationEmail do
 @moduledoc """
 Sends an email confirmation email
 """
 use AshAuthentication.Sender
 use MyAppWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user, token, _opts) do
 MyApp.Accounts.Emails.deliver_email_confirmation_instructions(
 user,
 url(~p"/auth/user/confirm_new_user?#{[confirm: token]}")
)
 end
end
We also need to create a new email template:
defmodule Example.Accounts.Emails do
 @moduledoc """
 Delivers emails.
 """

 import Swoosh.Email

 def deliver_email_confirmation_instructions(user, url) do
 if !url do
 raise "Cannot deliver confirmation instructions without a url"
 end

 deliver(user.email, "Confirm your email address", """
 <p>
 Hi #{user.email},
 </p>

 <p>
 Someone has tried to register a new account using this email address.
 If it was you, then please click the link below to confirm your identity. If you did not initiate this request then please ignore this email.
 </p>

 <p>
 Click here to confirm your account
 </p>
 """)
 end

 # For simplicity, this module simply logs messages to the terminal.
 # You should replace it by a proper email or notification tool, such as:
 #
 # * Swoosh - https://hexdocs.pm/swoosh
 # * Bamboo - https://hexdocs.pm/bamboo
 #
 defp deliver(to, subject, body) do
 IO.puts("Sending email to #{to} with subject #{subject} and body #{body}")

 new()
 |> from({"Zach", "zach@ash-hq.org"}) # TODO: Replace with your email
 |> to(to_string(to))
 |> subject(subject)
 |> put_provider_option(:track_links, "None")
 |> html_body(body)
 |> MyApp.Mailer.deliver!()
 end
end
Provided you have your authentication routes hooked up either via AshAuthentication.Plug or AshAuthentication.Phoenix.Router then the user will be confirmed when the token is submitted.

 Confirming changes to monitored fields

You may want to require a user to perform a confirmation when a certain field changes. For example if a user changes their email address we can send them a new confirmation request.
First, let's start by defining a new confirmation add-on in our resource:
defmodule MyApp.Accounts.User do
 # ...

 authentication do
 # ...

 add_ons do
 confirmation :confirm_change do
 monitor_fields [:email]
 confirm_on_create? false
 confirm_on_update? true
 confirm_action_name :confirm_change
 sender MyApp.Accounts.User.Senders.SendEmailChangeConfirmationEmail
 end
 end
 end
end
Why two confirmation configurations?
While you can perform both of these confirmations with a single confirmation add-on, in general the Ash philosophy is to be more explicit. Each confirmation will have it's own URL (based on the name) and tokens for one will not be able to be used for the other.

Next, let's define our new sender:
defmodule MyApp.Accounts.User.Senders.SendEmailChangeConfirmationEmail do
 @moduledoc """
 Sends an email change confirmation email
 """
 use AshAuthentication.Sender
 use MyAppWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user, token, _opts) do
 MyApp.Accounts.Emails.deliver_email_change_confirmation_instructions(
 user,
 url(~p"/auth/user/confirm_change?#{[confirm: token]}")
)
 end
end
And our new email template:
defmodule MyApp.Accounts.Emails do
 # ...

 def deliver_email_change_confirmation_instructions(user, url) do
 if !url do
 raise "Cannot deliver confirmation instructions without a url"
 end

 deliver(user.email, "Confirm your new email address", """
 <p>
 Hi #{user.email},
 </p>

 <p>
 You recently changed your email address. Please confirm it.
 </p>

 <p>
 Click here to confirm your new email address
 </p>
 """)
 end

 # ...
end
Inhibiting changes
Depending on whether you want the user's changes to be applied before or after confirmation, you can enable the inhibit_updates? DSL option.
When this option is enabled, then any potential changes to monitored fields are instead temporarily stored in the token resource and applied when the confirmation action is run.

 Customising the confirmation action

By default Ash Authentication will generate an update action for confirmation automatically (named :confirm unless you change it). You can manually implement this action in order to change it's behaviour and AshAuthentication will validate that the required changes are also present.
For example, here's an implementation of the :confirm_change action mentioned above, which adds a custom change that updates a remote CRM system with the user's new address.
defmodule MyApp.Accounts.User do
 # ...

 actions do
 # ...

 update :confirm_change do
 argument :confirm, :string, allow_nil?: false, public?: true
 accept [:email]
 require_atomic? false
 change AshAuthentication.AddOn.Confirmation.ConfirmChange
 change AshAuthentication.GenerateTokenChange
 change MyApp.UpdateCrmSystem, only_when_valid?: true
 end
 end
end

Defining Custom Authentication Strategies

AshAuthentication allows you to bring your own authentication strategy without
having to change the Ash Authentication codebase.
Add-on vs Strategy?
There is functionally no difference between "add ons" and "strategies" other
than where they appear in the DSL. We invented "add ons" because it felt
weird calling "confirmation" an authentication strategy.

There are several moving parts which must all work together so hold on to your hat!
	A Spark.Dsl.Entity struct. This is used to define the strategy DSL
inside the strategies (or add_ons) section of the authentication DSL.
	A strategy struct, which stores information about the strategy as
configured on a resource which must comply with a few rules.
	An optional transformer, which can be used to manipulate the DSL state of
the entity and the resource.
	An optional verifier, which can be used to verify the DSL state of the
entity and the resource after compilation.
	The AshAuthentication.Strategy protocol, which provides the glue needed
for everything to wire up and wrappers around the actions needed to run on
the resource.

We're going to define an extremely dumb strategy which lets anyone with a name
that starts with "Marty" sign in with just their name. Of course you would
never do this in real life, but this isn't real life - it's documentation!

 DSL setup

Let's start by defining a module for our strategy to live in. Let's call it
OnlyMartiesAtTheParty:
defmodule OnlyMartiesAtTheParty do
 use AshAuthentication.Strategy.Custom
end
Sadly, this isn't enough to make the magic happen. We need to define our DSL
entity by adding it to the use statement:
defmodule OnlyMartiesAtTheParty do
 @entity %Spark.Dsl.Entity{
 name: :only_marty,
 describe: "Strategy which only allows folks whose name starts with \"Marty\" to sign in.",
 examples: [
 """
 only_marty do
 case_sensitive? true
 name_field :name
 end
 """
],
 target: __MODULE__,
 args: [{:optional, :name, :marty}],
 schema: [
 name: [
 type: :atom,
 doc: """
 The strategy name.
 """,
 required: true
],
 case_sensitive?: [
 type: :boolean,
 doc: """
 Ignore letter case when comparing?
 """,
 required: false,
 default: false
],
 name_field: [
 type: :atom,
 doc: """
 The field to check for the users' name.
 """,
 required: true
]
]
 }

 use AshAuthentication.Strategy.Custom, entity: @entity
end
If you haven't you should take a look at the docs for Spark.Dsl.Entity, but
here's a brief overview of what each field we've set does:
	name is the name for which the helper function will be generated in
the DSL (ie only_marty do #... end).
	describe and examples are used when generating documentation.
	target is the name of the module which defines our entity struct. We've
set it to __MODULE__ which means that we'll have to define the struct on
this module.
	schema is a keyword list that defines an options schema. See Spark.Options.

By default the entity is added to the authentication / strategy DSL, however
if you want it in the authentication / add_ons DSL instead you can also pass
style: :add_on in the use statement.

Next up, we need to define our struct. The struct should have at least the
fields named in the entity schema. Additionally, Ash Authentication requires
that it have a resource field which will be set to the module of the resource
it's attached to during compilation.
defmodule OnlyMartiesAtTheParty do
 defstruct name: :marty, case_sensitive?: false, name_field: nil, resource: nil

 # ...

 use AshAuthentication.Strategy.Custom, entity: @entity

 # other code elided ...
end
Now it would be theoretically possible to add this custom strategies to your app
by adding it to the extensions section of your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication, OnlyMartiesAtTheParty],
 domain: MyApp.Accounts

 authentication do
 strategies do
 only_marty do
 name_field :name
 end
 end
 end

 attributes do
 uuid_primary_key
 attribute :name, :string, allow_nil?: false
 end
end

 Implementing the AshAuthentication.Strategy protocol

The Strategy protocol is used to introspect the strategy so that it can
seamlessly fit in with the rest of Ash Authentication. Here are the key
concepts:
	"phases" - in terms of HTTP, each strategy is likely to have many phases (eg OAuth 2.0's "request" and "callback" phases). Essentially you need one phase for each HTTP endpoint you wish to support with your strategy. In our case we just want one sign in endpoint.
	"actions" - actions are exactly as they sound - Resource actions which can be executed by the strategy, whether generated by the strategy (as in the password strategy) or typed in by the user (as in the OAuth 2.0 strategy). The reason that we wrap the strategy's actions this way is that all the built-in strategies (and we hope yours too) allow the user to customise the name of the actions that it uses. At the very least it should probably append the strategy name to the action. Using Strategy.action/4 allows us to refer these by a more generic name rather than via the user-specified one (eg :register vs :register_with_password).
	"routes" - AshAuthentication.Plug (or AshAuthentication.Phoenix.Router.html) will generate routes using Plug.Router (or Phoenix.Router) - the routes/1 callback is used to retrieve this information from the strategy.

Given this information, let's implement the strategy. It's quite long, so I'm
going to break it up into smaller chunks.
defimpl AshAuthentication.Strategy, for: OnlyMartiesAtTheParty do
The name/1 function is used to uniquely identify the strategy. It must be an
atom and should be the same as the path fragment used in the generated routes.
 def name(strategy), do: strategy.name
Since our strategy only supports sign-in we only need a single :sign_in phase
and action.
 def phases(_), do: [:sign_in]
 def actions(_), do: [:sign_in]
Next we generate the routes for the strategy. Routes should contain the
subject name of the resource being authenticated in case the implementer is
authenticating multiple different resources - eg User and Admin.
 def routes(strategy) do
 subject_name = AshAuthentication.Info.authentication_subject_name!(strategy.resource)

 [
 {"/#{subject_name}/#{strategy.name}", :sign_in}
]
 end
When generating routes or forms for this phase, what HTTP method should we use?
 def method_for_phase(_, :sign_in), do: :post
Next up, we write our plug. We take the "name field" from the input params in
the conn and pass them to our sign in action. As long as the action returns
{:ok, Ash.Resource.record} or {:error, any} then we can just pass it
straight into store_authentication_result/2 from
AshAuthentication.Plug.Helpers.
 import AshAuthentication.Plug.Helpers, only: [store_authentication_result: 2]

 def plug(strategy, :sign_in, conn) do
 params = Map.take(conn.params, [to_string(strategy.name_field)])
 result = action(strategy, :sign_in, params, [])
 store_authentication_result(conn, result)
 end
Next, we implement our sign in action. We use Ash.Query to find all
records whose name field matches the input, then constrain it to only records
whose name field starts with "Marty". Depending on whether the name field has a
unique identity on it we have to deal with it returning zero or more users, or
an error. When it returns a single user we return that user in an ok tuple,
otherwise we return an authentication failure.
In this example we're assuming that there is a default read action present on
the resource.
Warning
When it comes to authentication, you never want to reveal to the user what the
failure was - this helps prevent enumeration
attacks.
You can use AshAuthentication.Errors.AuthenticationFailed for this purpose
as it will cause ash_authentication, ash_authentication_phoenix,
ash_graphql and ash_json_api to return the correct HTTP 401 error.

 alias AshAuthentication.Errors.AuthenticationFailed
 require Ash.Query
 import Ash.Expr

 def action(strategy, :sign_in, params, options) do
 name_field = strategy.name_field
 name = Map.get(params, to_string(name_field))
 domain = AshAuthentication.Info.domain!(strategy.resource)

 strategy.resource
 |> Ash.Query.filter(expr(^ref(name_field) == ^name))
 |> then(fn query ->
 if strategy.case_sensitive? do
 Ash.Query.filter(query, like(^ref(name_field), "Marty%"))
 else
 Ash.Query.filter(query, ilike(^ref(name_field), "Marty%"))
 end
 end)
 |> domain.read(options)
 |> case do
 {:ok, [user]} ->
 {:ok, user}

 {:ok, []} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: :no_user})}

 {:ok, _users} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: :too_many_users})}

 {:error, reason} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: reason})}
 end
 end
end
Lastly, we have to implement the tokens_required?/1 function. This function
indicates Ash Authentication whether your strategy creates or consumes any
tokens. Since our strategy does not, we can simply return false:
def tokens_required?(_), do: false

 Bonus round - transformers and verifiers

In some cases it may be required for your strategy to modify it's own
configuration or that of the whole resource at compile time. For that you can
define the transform/2 callback on your strategy module.
At the very least it is good practice to call
AshAuthentication.Strategy.Custom.Helpers.register_strategy_actions/3 so that
Ash Authentication can keep track of which actions are related to which
strategies and AshAuthentication.Strategy.Custom.Helpers is automatically
imported by use AshAuthentication.Strategy.Custom for this purpose.

 Transformers

For simple cases where you're just transforming the strategy you can just return
the modified strategy and the DSL will be updated accordingly. For example if
you wanted to generate the name of an action if the user hasn't specified it:
def transform(strategy, _dsl_state) do
 {:ok, Map.put_new(strategy, :sign_in_action_name, :"sign_in_with_#{strategy.name}")}
end
In some cases you may want to modify the strategy and the resources DSL. In
this case you can return the newly mutated DSL state in an ok tuple or an error
tuple, preferably containing a Spark.Error.DslError. For example if we wanted
to build a sign in action for OnlyMartiesAtTheParty to use:
def transform(strategy, dsl_state) do
 strategy = Map.put_new(strategy, :sign_in_action_name, :"sign_in_with_#{strategy.name}")

 sign_in_action =
 Spark.Dsl.Transformer.build_entity(Ash.Resource.Dsl, [:actions], :read,
 name: strategy.sign_in_action_name,
 accept: [strategy.name_field],
 get?: true
)

 dsl_state =
 dsl_state
 |> Spark.Dsl.Transformer.add_entity([:actions], sign_in_action)
 |> put_strategy(strategy)
 |> then(fn dsl_state ->
 register_strategy_actions([strategy.sign_in_action_name], dsl_state, strategy)
 end)

 {:ok, dsl_state}
end
Transformers can also be used to validate user input or even directly add code
to the resource. See the docs for Spark.Dsl.Transformer for more information.

 Verifiers

We also support a variant of transformers which run in the new @after_verify
compile hook provided by Elixir 1.14. This is a great place to put checks
to make sure that the user's configuration makes sense without adding any
compile-time dependencies between modules which may cause compiler deadlocks.
For example, verifying that the "name" attribute contains "marty" (why you would
do this I don't know but I'm running out of sensible examples):
def verify(strategy, _dsl_state) do
 if String.contains?(to_string(strategy.name_field), "marty") do
 :ok
 else
 {:error,
 Spark.Error.DslError.exception(
 path: [:authentication, :strategies, :only_marties],
 message: "Option `name_field` must contain \"marty\""
)}
 end
end

 Summary

You should now have all the tools you need to build custom strategies - and in
fact the strategies provided by Ash Authentication are built using this system.
If there is functionality or documentation missing please raise an
issue and we'll
take a look at it.
Go forth and strategise!

Policies on Authenticated Resources

Typically, we want to lock down our User resource pretty heavily, which, in Ash, involves writing policies. However, AshAuthentication will be calling actions on your user/token resources. To make this more convenient, all actions run with AshAuthentication will set a special context. Additionally a check is provided that will check if that context has been set: AshAuthentication.Checks.AshAuthenticationInteraction. Using this you can write a simple bypass policy on your user/token resources like so:
policies do
 bypass always() do
 authorize_if AshAuthentication.Checks.AshAuthenticationInteraction
 end

 # or, pick your poison

 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end
end

Testing

Tips and tricks to help test your apps.

 When using the Password strategy

AshAuthentication uses bcrypt_elixir for hashing passwords for secure storage, which by design has a high computational cost. To reduce the cost (make hashing faster), you can reduce the number of computation rounds it performs in tests:
in config/test.exs

Do NOT set this value for production
config :bcrypt_elixir, log_rounds: 1

Tokens

 Token Lifetime

Since refresh tokens are not yet included in ash_authentication, you should set the token lifetime to a reasonably long time to ensure a good user experience. Alternatively, refresh tokens can be implemented on your own.

 Requiring Token Storage

Using d:AshAuthentication.Dsl.authentication.tokens.require_token_presence_for_authentication? inverts the token validation behaviour from requiring that tokens are not revoked to requiring any token presented by a client to be present in the token resource to be considered valid.
Requires store_all_tokens? to be true.
store_all_tokens? instructs AshAuthentication to keep track of all tokens issued to any user. This is optional behaviour with ash_authentication in order to preserve as much performance as possible.

 Sign in Tokens

Enabled with d:AshAuthentication.Strategy.Password.authentication.strategies.password.sign_in_tokens_enabled?
Sign in tokens can be generated on request by setting the :token_type context to :sign_in when calling the sign in action. You might do this when you need to generate a short lived token to be exchanged for a real token using the validate_sign_in_token route. This is used, for example, by ash_authentication_phoenix (since 1.7) to support signing in in a liveview, and then redirecting with a valid token to a controller action, allowing the liveview to show invalid username/password errors.

Upgrading

 Upgrading to version 4.0.0

Version 4.0.0 of AshAuthentication adds support for Ash 3.0 and in line with a number of changes in Ash there are some corresponding changes to Ash Authentication:
	Token generation is enabled by default, meaning that you will have to explicitly set authentication.tokens.enabled? to false if you don't need them.

	Sign in tokens are enabled by default in the password strategy. What this means is that instead of returning a regular user token on sign-in in the user's metadata, we generate a short-lived token which can be used to actually sign the user in. This is specifically to allow live-view based sign-in UIs to display an authentication error without requiring a page-load.

 Upgrading to version 3.6.0.

As of version 3.6.0 the TokenResource extension adds the subject attribute
which allows us to more easily match tokens to specific users. This unlocks
some new use-cases (eg sign out everywhere).
This means that you will need to generate new migrations and migrate your
database.

 Upgrade steps:

 Warning

If you already have tokens stored in your database then the migration will
likely throw a migration error due to the new NOT NULL constraint on
subject. If this happens then you can either delete all your tokens or
explicitly add the subject attribute to your resource with allow_nil? set
to true. eg:
attributes do
 attribute :subject, :string, allow_nil?: true
end

	Run mix ash_postgres.generate_migrations --name=add_subject_to_token_resource
	Run mix ash_postgres.migrate
	🎉

DSL: AshAuthentication

AshAuthentication provides a turn-key authentication solution for folks using
Ash.

 Usage

This package assumes that you have Ash installed and
configured. See the Ash documentation for details.
Once installed you can easily add support for authentication by configuring
the AshAuthentication extension on your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
If you plan on providing authentication via the web, then you will need to
define a plug using AshAuthentication.Plug which builds a Plug.Router that
routes incoming authentication requests to the correct provider and provides
callbacks for you to manipulate the conn after success or failure.
If you're using AshAuthentication with Phoenix, then check out
ash_authentication_phoenix
which provides route helpers, a controller abstraction and LiveView components
for easy set up.

 Authentication Strategies

Currently supported strategies:
	AshAuthentication.Strategy.Password	authenticate users against your local database using a unique identity
(such as username or email address) and a password.

	AshAuthentication.Strategy.OAuth2	authenticate using local or remote OAuth 2.0 compatible services.
	also includes:	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github
	AshAuthentication.Strategy.Google
	AshAuthentication.Strategy.Oidc

	AshAuthentication.Strategy.MagicLink	authenticate by sending a single-use link to the user.

 HTTP client settings

Most of the authentication strategies based on OAuth2 wrap the assent package.
If you needs to customize the behavior of the http client used by assent, define a custom http_adapter in the
application settings:
config :ash_authentication, :http_adapter, {Assent.HTTPAdapter.Finch, supervisor: MyApp.CustomFinch}
See assent's documentation for more details on the supported
http clients and their configuration.

 Add-ons

Add-ons are like strategies, except that they don't actually provide
authentication - they just provide features adjacent to authentication.
Current add-ons:
	AshAuthentication.AddOn.Confirmation	allows you to force the user to confirm changes using a confirmation
token (eg. sending a confirmation email when a new user registers).

 Supervisor

Some add-ons or strategies may require processes to be started which manage
their state over the lifetime of the application (eg periodically deleting
expired token revocations). Because of this you should add
{AshAuthentication.Supervisor, otp_app: :my_app} to your application's
supervision tree. See the Elixir
docs
for more information.

 authentication

Configure authentication for this resource

 Nested DSLs

	tokens
	strategies
	add_ons

 Options

	Name	Type	Default	Docs
	subject_name	atom		The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).
	domain	module		The name of the Ash domain to use to access this resource when doing anything authentication related.
	get_by_subject_action_name	atom	:get_by_subject	The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.
	select_for_senders	list(atom)		A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

 authentication.tokens

Configure JWT settings for this resource

 Options

	Name	Type	Default	Docs
	token_resource	module | false		The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.
	enabled?	boolean	false	Should JWTs be generated by this resource?
	store_all_tokens?	boolean	false	Store all tokens in the token_resource. See the tokens guide for more.
	require_token_presence_for_authentication?	boolean	false	Require a locally-stored token for authentication. See the tokens guide for more.
	signing_algorithm	String.t	"HS256"	The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{14, :days}	How long a token should be valid. See the tokens guide for more.
	signing_secret	(any, any -> any) | module | String.t		The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.

 authentication.strategies

Configure authentication strategies on this resource

 authentication.add_ons

Additional add-ons related to, but not providing authentication

DSL: AshAuthentication.AddOn.Confirmation

Confirmation support.
Sometimes when creating a new user, or changing a sensitive attribute (such as
their email address) you may want to wait for the user to confirm by way of
sending them a confirmation token to prove that it was really them that took
the action.
In order to add confirmation to your resource, it must been the following
minimum requirements:
	Have a primary key
	Have at least one attribute you wish to confirm
	Tokens must be enabled

 Example

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 add_ons do
 confirmation :confirm do
 monitor_fields [:email]
 sender MyApp.ConfirmationSender
 end
 end

 strategies do
 # ...
 end
 end

 identities do
 identity :email, [:email] do
 eager_check_with MyApp.Accounts
 end
 end
end

 Attributes

A confirmed_at attribute will be added to your resource if it's not already
present (see confirmed_at_field in the DSL documentation).

 Actions

By default confirmation will add an action which updates the confirmed_at
attribute as well as retrieving previously stored changes and applying them to
the resource.
If you wish to perform the confirm action directly from your code you can do
so via the AshAuthentication.Strategy protocol.

 Example

iex> strategy = Info.strategy!(Example.User, :confirm)
...> {:ok, user} = Strategy.action(strategy, :confirm, %{"confirm" => confirmation_token()})
...> user.confirmed_at >= one_second_ago()
true

 Plugs

Confirmation provides a single endpoint for the :confirm phase. If you wish
to interact with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.

 Example

iex> strategy = Info.strategy!(Example.User, :confirm)
...> conn = conn(:get, "/user/confirm", %{"confirm" => confirmation_token()})
...> conn = Strategy.plug(strategy, :confirm, conn)
...> {_conn, {:ok, user}} = Plug.Helpers.get_authentication_result(conn)
...> user.confirmed_at >= one_second_ago()
true

 authentication.add_ons.confirmation

confirmation name \\ :confirm
User confirmation flow

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the add-on.

 Options

	Name	Type	Default	Docs
	monitor_fields	list(atom)		A list of fields to monitor for changes. Confirmation will be sent when one of these fields are changed.
	sender	(any, any, any -> any) | module		How to send the confirmation instructions to the user.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{3, :days}	How long should the confirmation token be valid. If no unit is provided, then hours is assumed.
	confirmed_at_field	atom	:confirmed_at	The name of the field to store the time that the last confirmation took place. Created if it does not exist.
	confirm_on_create?	boolean	true	Generate and send a confirmation token when a new resource is created. Triggers when a create action is executed and one of the monitored fields is being set.
	confirm_on_update?	boolean	true	Generate and send a confirmation token when a resource is changed. Triggers when an update action is executed and one of the monitored fields is being set.
	inhibit_updates?	boolean	true	Whether or not to wait until confirmation is received before actually changing a monitored field. See the confirmation guide for more.
	confirm_action_name	atom	:confirm	The name of the action to use when performing confirmation. Will be created if it does not already exist.

 Introspection

Target: AshAuthentication.AddOn.Confirmation

DSL: AshAuthentication.Strategy.Auth0

Strategy for authenticating using Auth0.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Auth0 you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

 More documentation:

	The Auth0 Tutorial.
	The OAuth2 documentation

 authentication.strategies.auth0

auth0 name \\ :auth0
Provides a pre-configured authentication strategy for Auth0.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The Auth0 Tutorial.
	The OAuth2 documentation

Strategy defaults:
The following defaults are applied:
	:authorize_url is set to "/authorize".
	:token_url is set to "/oauth/token".
	:user_url is set to "/userinfo".
	:authorization_params is set to [scope: "openid profile email"].
	:auth_method is set to :client_secret_post.

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

 Options

	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t	"/authorize"	The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t	"/oauth/token"	The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t	"/userinfo"	The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorization_params	keyword	[scope: "openid profile email"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.

 Introspection

Target: AshAuthentication.Strategy.OAuth2

DSL: AshAuthentication.Strategy.Github

Strategy for authenticating using GitHub
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use GitHub you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

 More documentation:

	The GitHub Tutorial.
	The OAuth2 documentation

 authentication.strategies.github

github name \\ :github
Provides a pre-configured authentication strategy for GitHub.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The GitHub Tutorial.
	The OAuth2 documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://api.github.com".
	:authorize_url is set to "https://github.com/login/oauth/authorize".
	:token_url is set to "https://github.com/login/oauth/access_token".
	:user_url is set to "/user".
	:user_emails_url is set to "/user/emails".
	:authorization_params is set to [scope: "read:user,user:email"].
	:auth_method is set to :client_secret_post.

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

 Options

	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t	"https://api.github.com"	The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t	"https://github.com/login/oauth/authorize"	The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t	"https://github.com/login/oauth/access_token"	The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t	"/user"	The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorization_params	keyword	[scope: "read:user,user:email"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.

 Introspection

Target: AshAuthentication.Strategy.OAuth2

DSL: AshAuthentication.Strategy.Google

Strategy for authenticating using Google
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Google you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

 More documentation:

	The Google OAuth 2.0 Overview.
	The Google Tutorial
	The OAuth2 documentation

 authentication.strategies.google

google name \\ :google
Provides a pre-configured authentication strategy for Google.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The Google OAuth 2.0 Overview.
	The Google Tutorial
	The OAuth2 documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://www.googleapis.com".
	:authorize_url is set to "https://accounts.google.com/o/oauth2/v2/auth".
	:token_url is set to "/oauth2/v4/token".
	:user_url is set to "/oauth2/v3/userinfo".
	:authorization_params is set to [scope: "https://www.googleapis.com/auth/userinfo.email https://www.googleapis.com/auth/userinfo.profile"].
	:auth_method is set to :client_secret_post.

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

 Options

	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t	"https://www.googleapis.com"	The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t	"https://accounts.google.com/o/oauth2/v2/auth"	The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t	"/oauth2/v4/token"	The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t	"/oauth2/v3/userinfo"	The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorization_params	keyword	[scope: "https://www.googleapis.com/auth/userinfo.email https://www.googleapis.com/auth/userinfo.profile"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.

 Introspection

Target: AshAuthentication.Strategy.OAuth2

DSL: AshAuthentication.Strategy.MagicLink

Strategy for authentication using a magic link.
In order to use magic link authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email)
	Have tokens enabled.

There are other options documented in the DSL.

 Example

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 magic_link do
 identity_field :email
 sender fn user, token, _opts ->
 MyApp.Emails.deliver_magic_link(user, token)
 end
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end

 Actions

By default the magic link strategy will automatically generate the request and
sign-in actions for you, however you're free to define them yourself. If you
do, then the action will be validated to ensure that all the needed
configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.

 Examples

Requesting that a magic link token is sent for a user:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> Strategy.action(strategy, :request, %{"username" => user.username})
:ok
Signing in using a magic link token:
...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> {:ok, signed_in_user} = Strategy.action(strategy, :sign_in, %{"token" => token})
...> signed_in_user.id == user
true

 Plugs

The magic link strategy provides plug endpoints for both request and sign-in
actions.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.

 Examples:

Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> conn = conn(:post, "/user/magic_link/request", %{"user" => %{"username" => user.username}})
...> conn = Strategy.plug(strategy, :request, conn)
...> {_conn, {:ok, nil}} = Plug.Helpers.get_authentication_result(conn)

...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> conn = conn(:get, "/user/magic_link", %{"token" => token})
...> conn = Strategy.plug(strategy, :sign_in, conn)
...> {_conn, {:ok, signed_in_user}} = Plug.Helpers.get_authentication_result(conn)
...> signed_in_user.id == user.id
true
See the Magic Link Tutorial for more information.

 authentication.strategies.magic_link

magic_link name \\ :magic_link
Strategy for authenticating using local users with a magic link

 Options

	Name	Type	Default	Docs
	sender	(any, any, any -> any) | module		How to send the magic link to the user.
	identity_field	atom	:username	The name of the attribute which uniquely identifies the user, usually something like username or email_address.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{10, :minutes}	How long the sign in token is valid. If no unit is provided, then minutes is assumed.
	request_action_name	atom		The name to use for the request action. Defaults to request_<strategy_name>
	single_use_token?	boolean	true	Automatically revoke the token once it's been used for sign in.
	sign_in_action_name	atom		The name to use for the sign in action. Defaults to sign_in_with_<strategy_name>
	token_param_name	atom	:token	The name of the token parameter in the incoming sign-in request.

 Introspection

Target: AshAuthentication.Strategy.MagicLink

DSL: AshAuthentication.Strategy.OAuth2

Strategy for authenticating using any OAuth 2.0 server as the source of truth.
This authentication strategy provides registration and sign-in for users using a
remote OAuth 2.0 server as the source of truth. You
will be required to provide either a "register" or a "sign-in" action depending
on your configuration, which the strategy will attempt to validate for common
misconfigurations.
This strategy wraps the excellent assent
package, which provides OAuth 2.0 capabilities.
In order to use OAuth 2.0 authentication on your resource, it needs to meet
the following minimum criteria:
	Have a primary key.
	Provide a strategy-specific action, either register or sign-in.
	Provide configuration for OAuth2 destinations, secrets, etc.

 Example:

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 oauth2 :example do
 client_id "OAuth Client ID"
 redirect_uri "https://my.app/"
 client_secret "My Super Secret Secret"
 site "https://auth.example.com/"
 end
 end
 end
end

 Secrets and runtime configuration

In order to use OAuth 2.0 you need to provide a varying number of secrets and
other configuration which may change based on runtime environment. The
AshAuthentication.Secret behaviour is provided to accommodate this. This
allows you to provide configuration either directly on the resource (ie as a
string), as an anonymous function, or as a module.

 Warning

We strongly urge you not to share actual secrets in your code or
repository.

 Examples:

Providing configuration as an anonymous function:
oauth2 do
 client_secret fn _path, resource ->
 Application.fetch_env(:my_app, resource, :oauth2_client_secret)
 end
end
Providing configuration as a module:
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :example, :client_secret], MyApp.User, _opts), do: Application.fetch_env(:my_app, :oauth2_client_secret)
end

and in your strategies:

oauth2 :example do
 client_secret MyApp.Secrets
end

 User identities

Because your users can be signed in via multiple providers at once, you can
specify an identity_resource in the DSL configuration which points to a
seperate Ash resource which has the AshAuthentication.UserIdentity extension
present. This resource will be used to store details of the providers in use
by each user and a relationship will be added to the user resource.
Setting the identity_resource will cause extra validations to be applied to
your resource so that changes are tracked correctly on sign-in or
registration.

 Actions

When using an OAuth 2.0 provider you need to declare either a "register" or
"sign-in" action. The reason for this is that it's not possible for us to
know ahead of time how you want to manage the link between your user resources
and the "user info" provided by the OAuth server.
Both actions receive the following two arguments:
	user_info - a map with string keys containing the OpenID Successful
UserInfo
response.
Usually this will be used to populate your email, nickname or other
identifying field.
	oauth_tokens a map with string keys containing the OpenID Successful
Token
response
(or similar).

The actions themselves can be interacted with directly via the
AshAuthentication.Strategy protocol, but you are more likely to interact
with them via the web/plugs.

 Sign-in

The sign-in action is called when a successful OAuth2 callback is received.
You should use it to constrain the query to the correct user based on the
arguments provided.
This action is only needed when the registration_enabled? DSL settings is
set to false.

 Registration

The register action is a little more complicated than the sign-in action,
because we cannot tell the difference between a new user and a returning user
(they all use the same OAuth flow). In order to handle this your register
action must be defined as an upsert with a configured upsert_identity (see
example below).

 Examples:

Providing sign-in to users who already exist in the database (and by extension
rejecting new users):
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 read :sign_in_with_example do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 prepare AshAuthentication.Strategy.OAuth2.SignInPreparation

 filter expr(email == get_path(^arg(:user_info), [:email]))
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 registration_enabled? false
 end
 end
 end
end
Providing registration or sign-in to all comers:
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 create :register_with_oauth2 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :email

 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 changeset
 |> Ash.Changeset.change_attribute(:email, user_info["email"])
 end
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 end
 end
 end
end

 Plugs

OAuth 2.0 is (usually) a browser-based flow. This means that you're most
likely to interact with this strategy via it's plugs. There are two phases to
authentication with OAuth 2.0:
	The request phase, where the user's browser is redirected to the remote
authentication provider for authentication.
	The callback phase, where the provider redirects the user back to your app
to create a local database record, session, etc.

 authentication.strategies.oauth2

oauth2 name \\ :oauth2
OAuth2 authentication

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

 Options

	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t		The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t		The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t		The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorization_params	keyword	[]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	icon	atom	:oauth2	The name of an icon to use in any potential UI. This is a hint for UI generators to use, and not in any way canonical.

 Introspection

Target: AshAuthentication.Strategy.OAuth2

DSL: AshAuthentication.Strategy.Oidc

Strategy for authentication using an OpenID
Connect compatible server as the source of
truth.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use OIDC you need to provide the following minimum configuration:
	client_id - The client id, required
	site - The OIDC issuer, required
	openid_configuration_uri - The URI for OpenID Provider, optional, defaults
to /.well-known/openid-configuration
	client_authentication_method - The Client Authentication method to use,
optional, defaults to client_secret_basic
	client_secret - The client secret, required if
:client_authentication_method is :client_secret_basic,
:client_secret_post, or :client_secret_jwt
	openid_configuration - The OpenID configuration, optional, the
configuration will be fetched from :openid_configuration_uri if this is
not defined
	id_token_signed_response_alg - The id_token_signed_response_alg
parameter sent by the Client during Registration, defaults to RS256
	id_token_ttl_seconds - The number of seconds from iat that an ID Token
will be considered valid, optional, defaults to nil
	nonce - The nonce to use for authorization request, optional, MUST be
session based and unguessable.

 Nonce

nonce can be set in the provider config. The nonce will be returned in the
session_params along with state. You can use this to store the value in
the current session e.g. a httpOnly session cookie.
A random value generator can look like this:
16
|> :crypto.strong_rand_bytes()
|> Base.encode64(padding: false)
AshAuthentication will dynamically generate one for the session if nonce is
set to true.

 More documentation:

	The OAuth2 documentation

 authentication.strategies.oidc

oidc name \\ :oidc
Provides an OpenID Connect authentication strategy.
This strategy is built using the :oauth2 strategy, and thus provides
all the same configuration options should you need them.
More documentation:
	The OAuth2 documentation

 Arguments

	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

 Options

	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorization_params	keyword	[]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	openid_configuration_uri	String.t	"/.well-known/openid-configuration"	The URI for the OpenID provider
	client_authentication_method	:client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_basic	The client authentication method to use.
	openid_configuration	map	%{}	The OpenID configuration. If not set, the configuration will be retrieved from openid_configuration_uri.
	id_token_signed_response_alg	"HS256" | "HS384" | "HS512" | "RS256" | "RS384" | "RS512" | "ES256" | "ES384" | "ES512" | "PS256" | "PS384" | "PS512" | "Ed25519" | "Ed25519ph" | "Ed448" | "Ed448ph" | "EdDSA"	"RS256"	The id_token_signed_response_alg parameter sent by the Client during Registration.
	id_token_ttl_seconds	nil | pos_integer		The number of seconds from iat that an ID Token will be considered valid.
	nonce	boolean | (any, any -> any) | module | String.t	true	A function for generating the session nonce, true to automatically generate it with AshAuthetnication.Strategy.Oidc.NonceGenerator, or false to disable.

 Introspection

Target: AshAuthentication.Strategy.OAuth2

DSL: AshAuthentication.Strategy.Password

Strategy for authenticating using local resources as the source of truth.
In order to use password authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email).
	A sensitive string field within which to store the hashed password.

There are other options documented in the DSL.

 Example:

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end

 Actions

By default the password strategy will automatically generate the register,
sign-in, reset-request and reset actions for you, however you're free to
define them yourself. If you do, then the action will be validated to ensure
that all the needed configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.

 Examples:

Interacting with the actions directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> {:ok, marty} = Strategy.action(strategy, :register, %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"})
...> marty.username |> to_string()
"marty"

...> {:ok, user} = Strategy.action(strategy, :sign_in, %{"username" => "marty", "password" => "outatime1985"})
...> user.username |> to_string()
"marty"

 Plugs

The password strategy provides plug endpoints for all four actions, although
only sign-in and register will be reported by Strategy.routes/1 if the
strategy is not configured as resettable.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.

 Examples:

Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> conn = conn(:post, "/user/password/register", %{"user" => %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"}})
...> conn = Strategy.plug(strategy, :register, conn)
...> {_conn, {:ok, marty}} = Plug.Helpers.get_authentication_result(conn)
...> marty.username |> to_string()
"marty"

...> conn = conn(:post, "/user/password/reset_request", %{"user" => %{"username" => "marty"}})
...> conn = Strategy.plug(strategy, :reset_request, conn)
...> {_conn, :ok} = Plug.Helpers.get_authentication_result(conn)

 Testing

See the Testing guide for tips on testing resources using this strategy.

 authentication.strategies.password

password name \\ :password
Strategy for authenticating using local resources as the source of truth.

 Nested DSLs

	resettable

 Examples

password :password do
 identity_field :email
 hashed_password_field :hashed_password
 hash_provider AshAuthentication.BcryptProvider
 confirmation_required? true
end

 Options

	Name	Type	Default	Docs
	identity_field	atom	:username	The name of the attribute which uniquely identifies the user, usually something like username or email_address.
	hashed_password_field	atom	:hashed_password	The name of the attribute within which to store the user's password once it has been hashed.
	hash_provider	module	AshAuthentication.BcryptProvider	A module which implements the AshAuthentication.HashProvider behaviour, to provide cryptographic hashing of passwords.
	confirmation_required?	boolean	true	Whether a password confirmation field is required when registering or changing passwords.
	register_action_accept	list(atom)	[]	A list of additional fields to be accepted in the register action.
	password_field	atom	:password	The name of the argument used to collect the user's password in plaintext when registering, checking or changing passwords.
	password_confirmation_field	atom	:password_confirmation	The name of the argument used to confirm the user's password in plaintext when registering or changing passwords.
	register_action_name	atom		The name to use for the register action. Defaults to register_with_<strategy_name>
	registration_enabled?	boolean	true	If you do not want new users to be able to register using this strategy, set this to false.
	sign_in_action_name	atom		The name to use for the sign in action. Defaults to sign_in_with_<strategy_name>
	sign_in_enabled?	boolean	true	If you do not want new users to be able to sign in using this strategy, set this to false.
	sign_in_tokens_enabled?	boolean	true	Whether or not to support generating short lived sign in tokens. Requires the resource to have tokens enabled.
	sign_in_token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{60, :seconds}	A lifetime for which a generated sign in token will be valid, if sign_in_tokens_enabled?. Unit defaults to :seconds.

 authentication.strategies.password.resettable

Configure password reset options for the resource

 Options

	Name	Type	Default	Docs
	sender	(any, any, any -> any) | module		The sender to use when sending password reset instructions.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{3, :days}	How long should the reset token be valid. If no unit is provided :hours is assumed.
	request_password_reset_action_name	atom		The name to use for the action which generates a password reset token. Defaults to request_password_reset_with_<strategy_name>.
	password_reset_action_name	atom		The name to use for the action which actually resets the user's password. Defaults to password_reset_with_<strategy_name>.

 Introspection

Target: AshAuthentication.Strategy.Password.Resettable

 Introspection

Target: AshAuthentication.Strategy.Password

DSL: AshAuthentication.TokenResource

This is an Ash resource extension which generates the default token resource.
The token resource is used to store information about tokens that should not
be shared with the end user. It does not actually contain any tokens.
For example:
	When an authentication token has been revoked
	When a confirmation token has changes to apply

 Storage

The information stored in this resource is essentially ephemeral - all tokens
have an expiry date, so it doesn't make sense to keep them after that time has
passed. However, if you have any tokens with very long expiry times then we
suggest you store this resource in a resilient data-layer such as Postgres.

 Usage

There is no need to define any attributes or actions (although you can if you
want). The extension will wire up everything that's needed for the token
system to function.
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end
end
Whilst it is possible to have multiple token resources, there is no need to do
so.

 Removing expired records

Once a token has expired there's no point in keeping the information it refers
to, so expired tokens can be automatically removed by adding the
AshAuthentication.Supervisor to your application supervision tree. This
will start the AshAuthentication.TokenResource.Expunger GenServer which
periodically scans and removes any expired records.

 token

Configuration options for this token resource

 Nested DSLs

	revocation
	confirmation

 Options

	Name	Type	Default	Docs
	domain	module		The Ash domain to use to access this resource.
	expunge_expired_action_name	atom	:expunge_expired	The name of the action used to remove expired tokens.
	read_expired_action_name	atom	:read_expired	The name of the action use to find all expired tokens.
	expunge_interval	pos_integer	12	How often to scan this resource for records which have expired, and thus can be removed.
	store_token_action_name	atom	:store_token	The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.
	get_token_action_name	atom	:get_token	The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.

 token.revocation

Configuration options for token revocation

 Options

	Name	Type	Default	Docs
	revoke_token_action_name	atom	:revoke_token	The name of the action used to revoke tokens.
	is_revoked_action_name	atom	:revoked?	The name of the action used to check if a token is revoked.

 token.confirmation

Configuration options for confirmation tokens

 Options

	Name	Type	Default	Docs
	store_changes_action_name	atom	:store_confirmation_changes	The name of the action used to store confirmation changes.
	get_changes_action_name	atom	:get_confirmation_changes	The name of the action used to get confirmation changes.

DSL: AshAuthentication.UserIdentity

An Ash extension which generates the default user identities resource.
If you plan to support multiple different strategies at once (eg giving your
users the choice of more than one authentication provider, or signing them into
multiple services simultaneously) then you will want to create a resource with
this extension enabled. It is used to keep track of the links between your
local user records and their many remote identities.
The user identities resource is used to store information returned by remote
authentication strategies (such as those provided by OAuth2) and maps them to
your user resource(s). This provides the following benefits:
	A user can be signed in to multiple authentication strategies at once.
	For those providers that support it, AshAuthentication can handle
automatic refreshing of tokens.

 Storage

User identities are expected to be relatively long-lived (although they're
deleted on log out), so should probably be stored using a permanent data layer
sush as ash_postgres.

 Usage

There is no need to define any attributes, etc. The extension will generate
them all for you. As there is no other use-case for this resource it's
unlikely that you will need to customise it.
defmodule MyApp.Accounts.UserIdentity do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.UserIdentity],
 domain: MyApp.Accounts

 user_identity do
 user_resource MyApp.Accounts.User
 end

 postgres do
 table "user_identities"
 repo MyApp.Repo
 end
end
If you intend to operate with multiple user resources, you will need to define
multiple user identity resources.

 user_identity

Configure identity options for this resource

 Options

	Name	Type	Default	Docs
	user_resource	module		The user resource to which these identities belong.
	domain	module		The Ash domain to use to access this resource.
	uid_attribute_name	atom	:uid	The name of the uid attribute on this resource.
	strategy_attribute_name	atom	:strategy	The name of the strategy attribute on this resource.
	user_id_attribute_name	atom	:user_id	The name of the user_id attribute on this resource.
	access_token_attribute_name	atom	:access_token	The name of the access_token attribute on this resource.
	access_token_expires_at_attribute_name	atom	:access_token_expires_at	The name of the access_token_expires_at attribute on this resource.
	refresh_token_attribute_name	atom	:refresh_token	The name of the refresh_token attribute on this resource.
	upsert_action_name	atom	:upsert	The name of the action used to create and update records.
	destroy_action_name	atom	:destroy	The name of the action used to destroy records.
	read_action_name	atom	:read	The name of the action used to query identities.
	user_relationship_name	atom	:user	The name of the belongs-to relationship between identities and users.

AshAuthentication

AshAuthentication provides a turn-key authentication solution for folks using
Ash.

 Usage

This package assumes that you have Ash installed and
configured. See the Ash documentation for details.
Once installed you can easily add support for authentication by configuring
the AshAuthentication extension on your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
If you plan on providing authentication via the web, then you will need to
define a plug using AshAuthentication.Plug which builds a Plug.Router that
routes incoming authentication requests to the correct provider and provides
callbacks for you to manipulate the conn after success or failure.
If you're using AshAuthentication with Phoenix, then check out
ash_authentication_phoenix
which provides route helpers, a controller abstraction and LiveView components
for easy set up.

 Authentication Strategies

Currently supported strategies:
	AshAuthentication.Strategy.Password	authenticate users against your local database using a unique identity
(such as username or email address) and a password.

	AshAuthentication.Strategy.OAuth2	authenticate using local or remote OAuth 2.0 compatible services.
	also includes:	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github
	AshAuthentication.Strategy.Google
	AshAuthentication.Strategy.Oidc

	AshAuthentication.Strategy.MagicLink	authenticate by sending a single-use link to the user.

 HTTP client settings

Most of the authentication strategies based on OAuth2 wrap the assent package.
If you needs to customize the behavior of the http client used by assent, define a custom http_adapter in the
application settings:
config :ash_authentication, :http_adapter, {Assent.HTTPAdapter.Finch, supervisor: MyApp.CustomFinch}
See assent's documentation for more details on the supported
http clients and their configuration.

 Add-ons

Add-ons are like strategies, except that they don't actually provide
authentication - they just provide features adjacent to authentication.
Current add-ons:
	AshAuthentication.AddOn.Confirmation	allows you to force the user to confirm changes using a confirmation
token (eg. sending a confirmation email when a new user registers).

 Supervisor

Some add-ons or strategies may require processes to be started which manage
their state over the lifetime of the application (eg periodically deleting
expired token revocations). Because of this you should add
{AshAuthentication.Supervisor, otp_app: :my_app} to your application's
supervision tree. See the Elixir
docs
for more information.

 Summary

 Types

 AshAuthentication.TokenResource - ash_authentication v4.1.0

AshAuthentication.TokenResource

This is an Ash resource extension which generates the default token resource.
The token resource is used to store information about tokens that should not
be shared with the end user. It does not actually contain any tokens.
For example:
	When an authentication token has been revoked
	When a confirmation token has changes to apply

 Storage

The information stored in this resource is essentially ephemeral - all tokens
have an expiry date, so it doesn't make sense to keep them after that time has
passed. However, if you have any tokens with very long expiry times then we
suggest you store this resource in a resilient data-layer such as Postgres.

 Usage

There is no need to define any attributes or actions (although you can if you
want). The extension will wire up everything that's needed for the token
system to function.
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end
end
Whilst it is possible to have multiple token resources, there is no need to do
so.

 Removing expired records

Once a token has expired there's no point in keeping the information it refers
to, so expired tokens can be automatically removed by adding the
AshAuthentication.Supervisor to your application supervision tree. This
will start the AshAuthentication.TokenResource.Expunger GenServer which
periodically scans and removes any expired records.

 Summary

 Functions

 AshAuthentication.UserIdentity - ash_authentication v4.1.0

AshAuthentication.UserIdentity

An Ash extension which generates the default user identities resource.
If you plan to support multiple different strategies at once (eg giving your
users the choice of more than one authentication provider, or signing them into
multiple services simultaneously) then you will want to create a resource with
this extension enabled. It is used to keep track of the links between your
local user records and their many remote identities.
The user identities resource is used to store information returned by remote
authentication strategies (such as those provided by OAuth2) and maps them to
your user resource(s). This provides the following benefits:
	A user can be signed in to multiple authentication strategies at once.
	For those providers that support it, AshAuthentication can handle
automatic refreshing of tokens.

 Storage

User identities are expected to be relatively long-lived (although they're
deleted on log out), so should probably be stored using a permanent data layer
sush as ash_postgres.

 Usage

There is no need to define any attributes, etc. The extension will generate
them all for you. As there is no other use-case for this resource it's
unlikely that you will need to customise it.
defmodule MyApp.Accounts.UserIdentity do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.UserIdentity],
 domain: MyApp.Accounts

 user_identity do
 user_resource MyApp.Accounts.User
 end

 postgres do
 table "user_identities"
 repo MyApp.Repo
 end
end
If you intend to operate with multiple user resources, you will need to define
multiple user identity resources.

 Summary

 Functions

 AshAuthentication.AddOn.Confirmation - ash_authentication v4.1.0

AshAuthentication.AddOn.Confirmation

Confirmation support.
Sometimes when creating a new user, or changing a sensitive attribute (such as
their email address) you may want to wait for the user to confirm by way of
sending them a confirmation token to prove that it was really them that took
the action.
In order to add confirmation to your resource, it must been the following
minimum requirements:
	Have a primary key
	Have at least one attribute you wish to confirm
	Tokens must be enabled

 Example

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 add_ons do
 confirmation :confirm do
 monitor_fields [:email]
 sender MyApp.ConfirmationSender
 end
 end

 strategies do
 # ...
 end
 end

 identities do
 identity :email, [:email] do
 eager_check_with MyApp.Accounts
 end
 end
end

 Attributes

A confirmed_at attribute will be added to your resource if it's not already
present (see confirmed_at_field in the DSL documentation).

 Actions

By default confirmation will add an action which updates the confirmed_at
attribute as well as retrieving previously stored changes and applying them to
the resource.
If you wish to perform the confirm action directly from your code you can do
so via the AshAuthentication.Strategy protocol.

 Example

iex> strategy = Info.strategy!(Example.User, :confirm)
...> {:ok, user} = Strategy.action(strategy, :confirm, %{"confirm" => confirmation_token()})
...> user.confirmed_at >= one_second_ago()
true

 Plugs

Confirmation provides a single endpoint for the :confirm phase. If you wish
to interact with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.

 Example

iex> strategy = Info.strategy!(Example.User, :confirm)
...> conn = conn(:get, "/user/confirm", %{"confirm" => confirmation_token()})
...> conn = Strategy.plug(strategy, :confirm, conn)
...> {_conn, {:ok, user}} = Plug.Helpers.get_authentication_result(conn)
...> user.confirmed_at >= one_second_ago()
true

 Summary

 Types

 AshAuthentication.Strategy - ash_authentication v4.1.0

AshAuthentication.Strategy protocol

The protocol used for interacting with authentication strategies.
Any new Authentication strategy must implement this protocol.

 Summary

 Types

 AshAuthentication.Strategy.Auth0 - ash_authentication v4.1.0

AshAuthentication.Strategy.Auth0

Strategy for authenticating using Auth0.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Auth0 you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

 More documentation:

	The Auth0 Tutorial.
	The OAuth2 documentation

 Summary

 Functions

 AshAuthentication.Strategy.Custom - ash_authentication v4.1.0

AshAuthentication.Strategy.Custom behaviour

Define your own custom authentication strategy.
See the Custom Strategies guide
for more information.

 Summary

 Types

 AshAuthentication.Strategy.Github - ash_authentication v4.1.0

AshAuthentication.Strategy.Github

Strategy for authenticating using GitHub
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use GitHub you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

 More documentation:

	The GitHub Tutorial.
	The OAuth2 documentation

 Summary

 Functions

 AshAuthentication.Strategy.Google - ash_authentication v4.1.0

AshAuthentication.Strategy.Google

Strategy for authenticating using Google
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Google you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

 More documentation:

	The Google OAuth 2.0 Overview.
	The Google Tutorial
	The OAuth2 documentation

 Summary

 Functions

 AshAuthentication.Strategy.MagicLink - ash_authentication v4.1.0

AshAuthentication.Strategy.MagicLink

Strategy for authentication using a magic link.
In order to use magic link authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email)
	Have tokens enabled.

There are other options documented in the DSL.

 Example

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 magic_link do
 identity_field :email
 sender fn user, token, _opts ->
 MyApp.Emails.deliver_magic_link(user, token)
 end
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end

 Actions

By default the magic link strategy will automatically generate the request and
sign-in actions for you, however you're free to define them yourself. If you
do, then the action will be validated to ensure that all the needed
configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.

 Examples

Requesting that a magic link token is sent for a user:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> Strategy.action(strategy, :request, %{"username" => user.username})
:ok
Signing in using a magic link token:
...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> {:ok, signed_in_user} = Strategy.action(strategy, :sign_in, %{"token" => token})
...> signed_in_user.id == user
true

 Plugs

The magic link strategy provides plug endpoints for both request and sign-in
actions.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.

 Examples:

Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> conn = conn(:post, "/user/magic_link/request", %{"user" => %{"username" => user.username}})
...> conn = Strategy.plug(strategy, :request, conn)
...> {_conn, {:ok, nil}} = Plug.Helpers.get_authentication_result(conn)

...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> conn = conn(:get, "/user/magic_link", %{"token" => token})
...> conn = Strategy.plug(strategy, :sign_in, conn)
...> {_conn, {:ok, signed_in_user}} = Plug.Helpers.get_authentication_result(conn)
...> signed_in_user.id == user.id
true
See the Magic Link Tutorial for more information.

 Summary

 Types

 AshAuthentication.Strategy.OAuth2 - ash_authentication v4.1.0

AshAuthentication.Strategy.OAuth2

Strategy for authenticating using any OAuth 2.0 server as the source of truth.
This authentication strategy provides registration and sign-in for users using a
remote OAuth 2.0 server as the source of truth. You
will be required to provide either a "register" or a "sign-in" action depending
on your configuration, which the strategy will attempt to validate for common
misconfigurations.
This strategy wraps the excellent assent
package, which provides OAuth 2.0 capabilities.
In order to use OAuth 2.0 authentication on your resource, it needs to meet
the following minimum criteria:
	Have a primary key.
	Provide a strategy-specific action, either register or sign-in.
	Provide configuration for OAuth2 destinations, secrets, etc.

 Example:

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 oauth2 :example do
 client_id "OAuth Client ID"
 redirect_uri "https://my.app/"
 client_secret "My Super Secret Secret"
 site "https://auth.example.com/"
 end
 end
 end
end

 Secrets and runtime configuration

In order to use OAuth 2.0 you need to provide a varying number of secrets and
other configuration which may change based on runtime environment. The
AshAuthentication.Secret behaviour is provided to accommodate this. This
allows you to provide configuration either directly on the resource (ie as a
string), as an anonymous function, or as a module.

 Warning

We strongly urge you not to share actual secrets in your code or
repository.

 Examples:

Providing configuration as an anonymous function:
oauth2 do
 client_secret fn _path, resource ->
 Application.fetch_env(:my_app, resource, :oauth2_client_secret)
 end
end
Providing configuration as a module:
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :example, :client_secret], MyApp.User, _opts), do: Application.fetch_env(:my_app, :oauth2_client_secret)
end

and in your strategies:

oauth2 :example do
 client_secret MyApp.Secrets
end

 User identities

Because your users can be signed in via multiple providers at once, you can
specify an identity_resource in the DSL configuration which points to a
seperate Ash resource which has the AshAuthentication.UserIdentity extension
present. This resource will be used to store details of the providers in use
by each user and a relationship will be added to the user resource.
Setting the identity_resource will cause extra validations to be applied to
your resource so that changes are tracked correctly on sign-in or
registration.

 Actions

When using an OAuth 2.0 provider you need to declare either a "register" or
"sign-in" action. The reason for this is that it's not possible for us to
know ahead of time how you want to manage the link between your user resources
and the "user info" provided by the OAuth server.
Both actions receive the following two arguments:
	user_info - a map with string keys containing the OpenID Successful
UserInfo
response.
Usually this will be used to populate your email, nickname or other
identifying field.
	oauth_tokens a map with string keys containing the OpenID Successful
Token
response
(or similar).

The actions themselves can be interacted with directly via the
AshAuthentication.Strategy protocol, but you are more likely to interact
with them via the web/plugs.

 Sign-in

The sign-in action is called when a successful OAuth2 callback is received.
You should use it to constrain the query to the correct user based on the
arguments provided.
This action is only needed when the registration_enabled? DSL settings is
set to false.

 Registration

The register action is a little more complicated than the sign-in action,
because we cannot tell the difference between a new user and a returning user
(they all use the same OAuth flow). In order to handle this your register
action must be defined as an upsert with a configured upsert_identity (see
example below).

 Examples:

Providing sign-in to users who already exist in the database (and by extension
rejecting new users):
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 read :sign_in_with_example do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 prepare AshAuthentication.Strategy.OAuth2.SignInPreparation

 filter expr(email == get_path(^arg(:user_info), [:email]))
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 registration_enabled? false
 end
 end
 end
end
Providing registration or sign-in to all comers:
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 create :register_with_oauth2 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :email

 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 changeset
 |> Ash.Changeset.change_attribute(:email, user_info["email"])
 end
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 end
 end
 end
end

 Plugs

OAuth 2.0 is (usually) a browser-based flow. This means that you're most
likely to interact with this strategy via it's plugs. There are two phases to
authentication with OAuth 2.0:
	The request phase, where the user's browser is redirected to the remote
authentication provider for authentication.
	The callback phase, where the provider redirects the user back to your app
to create a local database record, session, etc.

 Summary

 Types

 AshAuthentication.Strategy.Oidc - ash_authentication v4.1.0

AshAuthentication.Strategy.Oidc

Strategy for authentication using an OpenID
Connect compatible server as the source of
truth.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use OIDC you need to provide the following minimum configuration:
	client_id - The client id, required
	site - The OIDC issuer, required
	openid_configuration_uri - The URI for OpenID Provider, optional, defaults
to /.well-known/openid-configuration
	client_authentication_method - The Client Authentication method to use,
optional, defaults to client_secret_basic
	client_secret - The client secret, required if
:client_authentication_method is :client_secret_basic,
:client_secret_post, or :client_secret_jwt
	openid_configuration - The OpenID configuration, optional, the
configuration will be fetched from :openid_configuration_uri if this is
not defined
	id_token_signed_response_alg - The id_token_signed_response_alg
parameter sent by the Client during Registration, defaults to RS256
	id_token_ttl_seconds - The number of seconds from iat that an ID Token
will be considered valid, optional, defaults to nil
	nonce - The nonce to use for authorization request, optional, MUST be
session based and unguessable.

 Nonce

nonce can be set in the provider config. The nonce will be returned in the
session_params along with state. You can