

 ash_authentication

 v5.0.0-rc.0

 [image: Logo]

 Table of contents

 	README

 	Change Log

 	Start Here

 	Get started with Ash Authentication

 	Tutorials

 	API Keys

 	Audit Log Tutorial

 	Auth0 Tutorial

 	Confirmation Tutorial

 	GitHub Tutorial

 	Google Tutorial

 	Magic Links Tutorial

 	Password Authentication

 	Slack Tutorial

 	TOTP (Time-based One-Time Password) Tutorial

 	Topics

 	Auto Sign-out

 	Defining Custom Authentication Strategies

 	Policies on Authenticated Resources

 	Testing

 	Tokens

 	Upgrading

 	Reference

 	AshAuthentication

 	AshAuthentication.AddOn.Confirmation

 	AshAuthentication.AddOn.LogOutEverywhere

 	AshAuthentication.Strategy.ApiKey

 	AshAuthentication.Strategy.Apple

 	AshAuthentication.Strategy.Auth0

 	AshAuthentication.Strategy.Github

 	AshAuthentication.Strategy.Google

 	AshAuthentication.Strategy.MagicLink

 	AshAuthentication.Strategy.OAuth2

 	AshAuthentication.Strategy.Oidc

 	AshAuthentication.Strategy.Password

 	AshAuthentication.Strategy.Slack

 	AshAuthentication.TokenResource

 	AshAuthentication.UserIdentity

 	
 Modules

 	Extensions

 	AshAuthentication

 	AshAuthentication.TokenResource

 	AshAuthentication.UserIdentity

 	Strategies

 	AshAuthentication.AddOn.Confirmation

 	AshAuthentication.AddOn.LogOutEverywhere

 	AshAuthentication.Strategy

 	AshAuthentication.Strategy.Apple

 	AshAuthentication.Strategy.Auth0

 	AshAuthentication.Strategy.Custom

 	AshAuthentication.Strategy.Github

 	AshAuthentication.Strategy.Google

 	AshAuthentication.Strategy.MagicLink

 	AshAuthentication.Strategy.OAuth2

 	AshAuthentication.Strategy.Oidc

 	AshAuthentication.Strategy.Password

 	AshAuthentication.Strategy.Slack

 	Cryptography

 	AshAuthentication.BcryptProvider

 	AshAuthentication.HashProvider

 	AshAuthentication.Jwt

 	Introspection

 	AshAuthentication.Info

 	AshAuthentication.TokenResource.Info

 	AshAuthentication.UserIdentity.Info

 	Utilities

 	AshAuthentication.Debug

 	AshAuthentication.Secret

 	AshAuthentication.Sender

 	AshAuthentication.Supervisor

 	Plugs

 	AshAuthentication.Plug

 	AshAuthentication.Plug.Helpers

 	Reusable Components

 	AshAuthentication.Checks.AshAuthenticationInteraction

 	AshAuthentication.GenerateTokenChange

 	AshAuthentication.Strategy.Password.HashPasswordChange

 	AshAuthentication.Strategy.Password.PasswordConfirmationValidation

 	AshAuthentication.Strategy.Password.PasswordValidation

 	AshAuthentication.Validations

 	AshAuthentication.Validations.Action

 	AshAuthentication.Validations.Attribute

 	Errors

 	AshAuthentication.Errors.AuthenticationFailed

 	AshAuthentication.Errors.CannotConfirmUnconfirmedUser

 	AshAuthentication.Errors.InvalidSecret

 	AshAuthentication.Errors.InvalidToken

 	AshAuthentication.Errors.MissingSecret

 	AshAuthentication.Errors.SenderFailed

 	AshAuthentication.Errors.UnconfirmedUser

 	Internals

 	AshAuthentication.AddOn.AuditLog

 	AshAuthentication.AddOn.AuditLog.Auditor

 	AshAuthentication.AddOn.AuditLog.Auditor.Change

 	AshAuthentication.AddOn.AuditLog.Auditor.Preparation

 	AshAuthentication.AddOn.AuditLog.Dsl

 	AshAuthentication.AddOn.AuditLog.IpPrivacy

 	AshAuthentication.AddOn.AuditLog.Verifier

 	AshAuthentication.AddOn.Confirmation.Actions

 	AshAuthentication.AddOn.Confirmation.ConfirmChange

 	AshAuthentication.AddOn.Confirmation.ConfirmationHookChange

 	AshAuthentication.AddOn.Confirmation.Dsl

 	AshAuthentication.AddOn.Confirmation.Plug

 	AshAuthentication.AddOn.Confirmation.Transformer

 	AshAuthentication.AddOn.Confirmation.Verifier

 	AshAuthentication.AddOn.LogOutEverywhere.Action

 	AshAuthentication.AddOn.LogOutEverywhere.Dsl

 	AshAuthentication.AddOn.LogOutEverywhere.OnPasswordChange

 	AshAuthentication.AddOn.LogOutEverywhere.Transformer

 	AshAuthentication.AddOn.LogOutEverywhere.Verifier

 	AshAuthentication.Argon2Provider

 	AshAuthentication.AuditLogResource

 	AshAuthentication.AuditLogResource.Batcher

 	AshAuthentication.AuditLogResource.Expunger

 	AshAuthentication.AuditLogResource.Info

 	AshAuthentication.Checks.UsingApiKey

 	AshAuthentication.Igniter

 	AshAuthentication.Jwt.Config

 	AshAuthentication.Plug.Defaults

 	AshAuthentication.Plug.Dispatcher

 	AshAuthentication.Plug.Macros

 	AshAuthentication.Plug.Router

 	AshAuthentication.Preparations.FilterBySubject

 	AshAuthentication.SecretFunction

 	AshAuthentication.SenderFunction

 	AshAuthentication.Strategy.ApiKey

 	AshAuthentication.Strategy.ApiKey.Actions

 	AshAuthentication.Strategy.ApiKey.GenerateApiKey

 	AshAuthentication.Strategy.ApiKey.Plug

 	AshAuthentication.Strategy.ApiKey.SignInPreparation

 	AshAuthentication.Strategy.ApiKey.Transformer

 	AshAuthentication.Strategy.ApiKey.Verifier

 	AshAuthentication.Strategy.Apple.Verifier

 	AshAuthentication.Strategy.Custom.Helpers

 	AshAuthentication.Strategy.Custom.Transformer

 	AshAuthentication.Strategy.Custom.Verifier

 	AshAuthentication.Strategy.MagicLink.Actions

 	AshAuthentication.Strategy.MagicLink.Plug

 	AshAuthentication.Strategy.MagicLink.Request

 	AshAuthentication.Strategy.MagicLink.RequestPreparation

 	AshAuthentication.Strategy.MagicLink.SignInChange

 	AshAuthentication.Strategy.MagicLink.SignInPreparation

 	AshAuthentication.Strategy.MagicLink.Transformer

 	AshAuthentication.Strategy.MagicLink.Verifier

 	AshAuthentication.Strategy.OAuth2.Actions

 	AshAuthentication.Strategy.OAuth2.Dsl

 	AshAuthentication.Strategy.OAuth2.IdentityChange

 	AshAuthentication.Strategy.OAuth2.Plug

 	AshAuthentication.Strategy.OAuth2.SignInPreparation

 	AshAuthentication.Strategy.OAuth2.Transformer

 	AshAuthentication.Strategy.OAuth2.Verifier

 	AshAuthentication.Strategy.Oidc.NonceGenerator

 	AshAuthentication.Strategy.Oidc.Transformer

 	AshAuthentication.Strategy.Oidc.Verifier

 	AshAuthentication.Strategy.Password.Actions

 	AshAuthentication.Strategy.Password.Dsl

 	AshAuthentication.Strategy.Password.Plug

 	AshAuthentication.Strategy.Password.RequestPasswordReset

 	AshAuthentication.Strategy.Password.RequestPasswordResetPreparation

 	AshAuthentication.Strategy.Password.ResetTokenValidation

 	AshAuthentication.Strategy.Password.Resettable

 	AshAuthentication.Strategy.Password.SignInPreparation

 	AshAuthentication.Strategy.Password.SignInWithTokenPreparation

 	AshAuthentication.Strategy.Password.Transformer

 	AshAuthentication.Strategy.Password.Verifier

 	AshAuthentication.Strategy.RememberMe

 	AshAuthentication.Strategy.RememberMe.Dsl

 	AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenChange

 	AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenPreparation

 	AshAuthentication.Strategy.RememberMe.Plug.Helpers

 	AshAuthentication.Strategy.RememberMe.SignInPreparation

 	AshAuthentication.Strategy.RememberMe.Token.Helpers

 	AshAuthentication.Strategy.RememberMe.Transformer

 	AshAuthentication.Strategy.RememberMe.Verifier

 	AshAuthentication.Strategy.Slack.Verifier

 	AshAuthentication.Strategy.Totp

 	AshAuthentication.Strategy.Totp.Actions

 	AshAuthentication.Strategy.Totp.AuditLogChange

 	AshAuthentication.Strategy.Totp.AuditLogHelpers

 	AshAuthentication.Strategy.Totp.AuditLogPreparation

 	AshAuthentication.Strategy.Totp.ConfirmSetupChange

 	AshAuthentication.Strategy.Totp.Dsl

 	AshAuthentication.Strategy.Totp.GeneratePendingSetupChange

 	AshAuthentication.Strategy.Totp.GenerateSecretChange

 	AshAuthentication.Strategy.Totp.Plug

 	AshAuthentication.Strategy.Totp.SignInPreparation

 	AshAuthentication.Strategy.Totp.TotpUrlCalculation

 	AshAuthentication.Strategy.Totp.Transformer

 	AshAuthentication.Strategy.Totp.Verifier

 	AshAuthentication.Strategy.Totp.VerifyAction

 	AshAuthentication.TokenResource.Actions

 	AshAuthentication.TokenResource.Expunger

 	AshAuthentication.TokenResource.GetConfirmationChangesPreparation

 	AshAuthentication.TokenResource.GetTokenPreparation

 	AshAuthentication.TokenResource.IsRevoked

 	AshAuthentication.TokenResource.RevokeAllStoredForSubjectChange

 	AshAuthentication.TokenResource.RevokeJtiChange

 	AshAuthentication.TokenResource.RevokeTokenChange

 	AshAuthentication.TokenResource.StoreConfirmationChangesChange

 	AshAuthentication.TokenResource.StoreTokenChange

 	AshAuthentication.TokenResource.Transformer

 	AshAuthentication.TokenResource.Verifier

 	AshAuthentication.Transformer

 	AshAuthentication.Transformer.SetSelectForSenders

 	AshAuthentication.UserIdentity.Actions

 	AshAuthentication.UserIdentity.Transformer

 	AshAuthentication.UserIdentity.UpsertIdentityChange

 	AshAuthentication.UserIdentity.Verifier

 	AshAuthentication.Verifier

 	
 Mix Tasks

 	mix ash_authentication.add_add_on

 	mix ash_authentication.add_strategy

 	mix ash_authentication.install

 README

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
Ash Authentication
Welcome! Here you will find everything you need to know to get started with and use Ash Authentication. This documentation is best viewed on hexdocs.
About the Documentation
Tutorials walk you through a series of steps to accomplish a goal. These are learning-oriented, and are a great place for beginners to start.

Topics provide a high level overview of a specific concept or feature. These are understanding-oriented, and are perfect for discovering design patterns, features, and tools related to a given topic.

Reference documentation is produced automatically from our source code. It comes in the form of module documentation and DSL documentation. This documentation is information-oriented. Use the sidebar and the search bar to find relevant reference information.
Tutorials
	Get Started

Topics
	Custom Strategies
	Policies on Authenticated Resources
	Testing
	Tokens
	Upgrade guides

Tutorials
	Authenticate with API keys
	Authenticate with Auth0
	Authenticate with GitHub
	Authenticate with Google
	Authenticate with Magic Links
	Authenticate with Slack
	Authenticate with Passwords
	Audit Logging
	Confirmation

Reference
	AshAuthentication DSL
	AshAuthentication.AddOn.Confirmation DSL
	AshAuthentication.AddOn.LogOutEverywhere DSL
	AshAuthentication.Strategy.ApiKey
	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github DSL
	AshAuthentication.Strategy.Google DSL
	AshAuthentication.Strategy.MagicLink DSL
	AshAuthentication.Strategy.OAuth2 DSL
	AshAuthentication.Strategy.Oidc DSL
	AshAuthentication.Strategy.Password DSL
	AshAuthentication.TokenResource DSL
	AshAuthentication.UserIdentity DSL
	For other reference documentation, see the sidebar & search bar

Related packages
	Ash Framework
	Ash Authentication Phoenix | Integrates Ash Authentication into your Phoenix application

[image: Alembic]
Proudly written and maintained by the team at Alembic for the Ash community.

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v5.0.0-rc.0 (2026-01-27)
Breaking Changes:
	propagate sender failures as action errors (#1126) by James Harton

	propagate sender failures as action errors by James Harton

	convert request actions from read to generic action (#1125) by James Harton

	change token revoked action from read to generic action (#1124) by James Harton

Features:
	Add TOTP authentication strategy. (#1086) by James Harton

	add TOTP authentication components and routes by James Harton

	totp: add read_secret_from option for AshCloak support by James Harton

	add support for extra JWT claims (#1122) by James Harton

	make auto signout possible in AshAuthentication.Phoenix (#1070) by Abdessabour Moutik

	added options to allow for the specification of the endpoints + a template function for the live socket id by Abdessabour Moutik

Bug Fixes:
	add backwards compatibility for confirmation sender return values by James Harton

	address PR review feedback by James Harton

	address PR review feedback by James Harton

	address additional PR review feedback by James Harton

	add nimble_totp as required dependency by James Harton

	restore code accidentally removed during rebase by James Harton

	return {:error, AuthenticationFailed.t} from Jwt.token_for_user/2 (#1123) by James Harton

	validate ApiKey.Plug header prefix regex starts with a ^ (start of line check) by skanderm

	use inspect/1 for regex in error message by skanderm

	preserve existing context when adding request context (#1121) by James Harton

	add token to Phoenix filter_parameters during installation (#1120) by James Harton

Improvements:
	consolidate audit log code and remove redundant nil checks by James Harton

v4.13.7 (2026-01-13)
Bug Fixes:
	skip remember_me token generation when AAP handles it via redirect (#1119) by James Harton

	error caused by after_action ordering (#1112) by capoccias

v4.13.6 (2026-01-04)
Improvements:
	properly configure remember_me strategy in installer by Zach Daniel

v4.13.5 (2026-01-04)
Bug Fixes:
	check for expr compatibility in hash password changej (#1114) by Zach Daniel

	Add remember_me argument to generated magic link sign in action (#1108) by sevenseacat

	Add remember_me argument to generated magic link sign in action by sevenseacat

	add upgrader to add remember_me to magic link sign-in actions by sevenseacat

	correct assert_has_patch assertion in upgrade test by sevenseacat

	audit_log: invalid magic links log as failure by Robert Graff

	correctly lock out assent 0.3 by James Harton

	lock assent at 0.2 until the next major release by James Harton

	add --accounts flag to add_strategy task (#1096) by James Harton

	fix failing test by Josh Price

	support :null atom from JOSE 1.11.11+ in JWT tenant validation (#1092) by Shahryar Tavakkoli

	support :null atom from JOSE 1.11.12 in JWT tenant validation by Shahryar Tavakkoli

Improvements:
	add return_error_on_invalid_magic_link_token? config by Robert Graff

	Add MaybeGenerateTokenChange for remember me support in create actions (#1093) by weljoda

	Openid configuration uri type change (#1095) by andreas-ementio

v4.13.4 (2025-12-12)
Bug Fixes:
	Add remember_me argument to generated magic link sign in action (#1108) by sevenseacat

	Add remember_me argument to generated magic link sign in action by sevenseacat

	add upgrader to add remember_me to magic link sign-in actions by sevenseacat

	correct assert_has_patch assertion in upgrade test by sevenseacat

	audit_log: invalid magic links log as failure by Robert Graff

Improvements:
	add return_error_on_invalid_magic_link_token? config by Robert Graff

v4.13.3 (2025-12-01)
Bug Fixes:
	correctly lock out assent 0.3 by James Harton

v4.13.2 (2025-11-30)
Bug Fixes:
	lock assent at 0.2 until the next major release by James Harton

Improvements:
	Add MaybeGenerateTokenChange for remember me support in create actions (#1093) by weljoda

	Openid configuration uri type change (#1095) by andreas-ementio

v4.13.1 (2025-11-28)
Bug Fixes:
	add --accounts flag to add_strategy task (#1096) by James Harton

	fix failing test by Josh Price

	support :null atom from JOSE 1.11.11+ in JWT tenant validation (#1092) by Shahryar Tavakkoli

	support :null atom from JOSE 1.11.12 in JWT tenant validation by Shahryar Tavakkoli

v4.13.0 (2025-11-17)
Features:
	Audit Logging add-on. (#1074) by James Harton

	Audit logging add-on. by James Harton

	enhance error messages in hash_password_change.ex (#1058) by pupdogg

	remember me strategy (#1016) by Robert Graff

Bug Fixes:
	AuditLog Extract subject from read actions returning lists to prevent NULL subject in DB (#1080) by grempe

	don't use authorize?: false in the batcher by James Harton

	Jwt.token_for_resource typespec. by James Harton

	Add only existing sections into Ash.Resource of config.exs by aifrak

	Enforce unique actions per confirmation. (#1054) by James Harton

	Enforce unique actions per confirmation. by James Harton

	Don't atomize keys for Apple strategy (#1065) by Aake Gregertsen

	MagicLink: Propagate context opts in request preparation (#1061) by Arjan Scherpenisse

	no need to apply atomic constraints on hashed password by Zach Daniel

	remove confusing and unnecessary policies from installer by Zach Daniel

Improvements:
	allow setting extra context on magic links (#1081) by Zach Daniel

	more conventional action result status by James Harton

	add allowlist for actions and strategies by James Harton

	Add warning message when logging sensitive fields by James Harton

	audit_log: add IP address privacy options with configurable truncation masks by James Harton

	default confirm action name to add-on name by James Harton

	add support for AshEvents.Events.ReplayChangeWrapper in validate_action_has_change (#1066) by Torkild Gundersen Kjevik

	pass magic link request source context to mail sender (#1048) by marcnnn

v4.12.0 (2025-10-20)
Features:
	Audit Logging add-on. (#1074) by James Harton

v4.11.0 (2025-10-08)
Features:
	enhance error messages in hash_password_change.ex (#1058) by pupdogg

Bug Fixes:
	Jwt.token_for_resource typespec. by James Harton

	Add only existing sections into Ash.Resource of config.exs by aifrak

v4.10.0 (2025-09-11)
Features:
	remember me strategy (#1016) by Robert Graff

Bug Fixes:
	Enforce unique actions per confirmation. (#1054) by James Harton

	Enforce unique actions per confirmation. by James Harton

	Don't atomize keys for Apple strategy (#1065) by Aake Gregertsen

	MagicLink: Propagate context opts in request preparation (#1061) by Arjan Scherpenisse

	no need to apply atomic constraints on hashed password by Zach Daniel

	remove confusing and unnecessary policies from installer by Zach Daniel

Improvements:
	default confirm action name to add-on name by James Harton

	add support for AshEvents.Events.ReplayChangeWrapper in validate_action_has_change (#1066) by Torkild Gundersen Kjevik

	pass magic link request source context to mail sender (#1048) by marcnnn

v4.9.9 (2025-07-29)
Bug Fixes:
	ensure tenant is set when verifying magic link tokens by Zach Daniel

	resolve accounts option not affecting user/token resource defaults and add a exemple #1041 (#1045) by horberlan

Improvements:
	comp-time error message on mismatching magic link action type by Zach Daniel

	better error message on invalid magic link token by Zach Daniel

v4.9.8 (2025-07-22)
Improvements:
	API key auth for multi-tenancy resources by Steffen Beyer

v4.9.7 (2025-07-17)
Bug Fixes:
	add -i flag alias for add_strategy task by Zach Daniel

v4.9.6 (2025-07-11)
Bug Fixes:
	support --identity-field option in the installer by Zach Daniel

Improvements:
	Pass all args to sign_in_with_token action of password strategies (#1009) by Jinkyou Son

v4.9.5 (2025-07-02)
Bug Fixes:
	set private ash authentication context on query loads by Zach Daniel

	don't require session identifier if tokens not enabled by Zach Daniel

	don't require token resource for API keys by Zach Daniel

	Send opts to validate token (#1031) by Josep Jaume Rey

v4.9.4 (2025-06-19)
Bug Fixes:
	ensure require_confirmed_with is honored when sign in tokens disabled by Zach Daniel

v4.9.3 (2025-06-18)
Bug Fixes:
	ensure installer is idempotent by Zach Daniel

v4.9.2 (2025-06-17)
Improvements:
	better verifier warning by Zach Daniel

v4.9.1 (2025-06-16)
Improvements:
	add utility to revoke all session tokens (#1026) by Zach Daniel

	store jti in session when not requiring token storage by Zach Daniel

v4.9.0 (2025-05-30)
Features:
	Password: Support password hashing with Argon2. (#998)

Bug Fixes:
	set correct default on_error (#1008)

	Info.strategy_for_action/2 -> Info.find_strategy/3 (#1007)

	remove strict type validation on api key id type

	set required?: true when adding api key strategy

Improvements:
	improve secret validation and security (#1010)

	use after_verify hook for secret module checks

	extract params from subject name (#1006)

v4.8.7 (2025-05-20)
Bug Fixes:
	incorrect warning in password verifier.

	remove underscores from app name for prefix

Improvements:
	Strategy.Custom: The strategy_module field is no longer required.

v4.8.6 (2025-05-16)
Bug Fixes:
	remove underscores from app name for prefix

v4.8.5 (2025-05-15)
Improvements:
	provide explicit name to api key strategy when installed

v4.8.4 (2025-05-15)
Improvements:
	Confirmation: Provide a default accept phase form. (#986)

	pass along the action_input.context to the send_opts as :context. (#989)

v4.8.3 (2025-05-09)
Bug Fixes:
	properly use path params for magic link token

v4.8.2 (2025-05-07)
Bug Fixes:
	Typo (another) in ash_authentication.add_strategy task.

v4.8.1 (2025-05-07)
Bug Fixes:
	Typo in ash_authentication.add_strategy task.

v4.8.0 (2025-05-07)
Features:
	Add API key authentication strategy (#984)

Bug Fixes:
	MagicLink: Add require_interaction? option to magic link strategy. (#976)

	SignInPreparation: Filter out users with nil hashed password field. (#982)

Improvements:
	pass along the tenant claim(if exists) to the long-lived token (#981)

v4.7.7 (2025-04-29)
Bug Fixes:
	Use correct bypass config key for confirmation CVE

Improvements:
	support installing AshAuthentication on top of existing resources

v4.7.6 (2025-04-16)
Bug Fixes:
	switch method back again to :get like its supposed to be ð�¤¦â��â��ï¸�

v4.7.5 (2025-04-15)
Bug Fixes:
	actually use :post as method for callback

v4.7.4 (2025-04-15)
Bug Fixes:
	use get as method for callback phase in oauth2

v4.7.3 (2025-04-15)
Improvements:
	better error message for require_interaction? option

v4.7.2 (2025-04-14)
Bug Fixes:
	fix more email templates

v4.7.1 (2025-04-14)
Bug Fixes:
	update generated email templates to use the correct link

v4.7.0 (2025-04-14)
Improvements:
	mitigate medium-sev security issue for confirmation emails (#968)

For more information see the security advisory: https://github.com/team-alembic/ash_authentication/security/advisories/GHSA-3988-q8q7-p787
	generate created_at timestamp on add_strategy

v4.6.4 (2025-04-09)
Bug Fixes:
	Potential timing attack introduced by #961. (#962)

	add guard clause when input is nil (#961)

	failing installer test.

	replace secret_for/3 with secret_for/4 in the igniter.ex (#953)

v4.6.3 (2025-03-27)
Improvements:
	add AshAuthentication.Plug.Helpers.assign_new_resources/4 (#951)

	Add a patchable empty authentication.providers section. (#952)

	delete_session on unsuccessful auth (#950)

v4.6.2 (2025-03-25)
Bug Fixes:
	use after_compile hook for secrets verification, not after_verify

v4.6.1 (2025-03-25)
Bug Fixes:
	make request_for_token_identity backwards compatible (#949)

	Multitenant magic link redirect (#945)

	properly match on :ok resp from generic reset action

v4.6.0 (2025-03-20)
Features:
	add context to secret functions

	add context to secret functions

Bug Fixes:
	add missing opts for multitenancy in various places

	set context when building changeset instead of calling action

v4.5.6 (2025-03-18)
Bug Fixes:
	set min length constraint on password update in generators

Improvements:
	use touching? option so log out everywhere is atomic

	Allow custom attribute name for created_at (#871)

	set bcrypt_elixir rounds to 1 in test.exs in installer

v4.5.5 (2025-03-12)
Bug Fixes:
	Do not enforce confirm_at attribute type (#935)

v4.5.4 (2025-03-12)
Bug Fixes:
	use create/update timestamp in installers

v4.5.3 (2025-03-07)
Bug Fixes:
	fix the installer to only pass flags to nested tasks

	use proper postgres version in error message

	Added tenant to password reset sender opts (#930)

v4.5.2 (2025-02-25)
Bug Fixes:
	ensure token expunger sets context that allows it to run (#921)

	pass opts to Confirmation.Actions.store_changes/4

	use the stringified tenant in the token

	JWT: Generate tenant claims and validate them. (#914)

	ensure that tenant is set and ferried through all operations

	pass tenant through token revoked check

	assume tokens are revoked on error

Improvements:
	authorize with error to make expunge errors clearer

	Add tenant to new user confirmation sender (#920)

	Add multi tenant tests (#915)

	adding example repo for multi tenant enabled user

v4.5.1 (2025-02-14)
Improvements:
	note on token error about upgrading ash_postgres

v4.5.0 (2025-02-13)
Features:
	Add a log_out_everywhere add-on (#907)

	Add a log_out_everywhere add-on

Bug Fixes:
	ensure that the token resource has only :jti as a primary key (#908)

	Sign in tokens only last 60 seconds, but they should still be revoked after use. (#906)

v4.4.9 (2025-02-11)
Bug Fixes:
	Ensure that installer generated token revocation checking action is correct. (#905)

v4.4.8 (2025-02-04)
Bug Fixes:
	fix marking hashed_password as allow_nil? in magic link installer

Improvements:
	Allow authorization params to be defined using secret module (#900)

v4.4.7 (2025-02-02)
Bug Fixes:
	downgrade assent

	OIDC: Not retrieving remote OIDC configuration.

v4.4.6 (2025-02-01)
Bug Fixes:
	OIDC: Not retrieving remote OIDC configuration.

v4.4.5 (2025-01-27)
Improvements:
	Add support for OAuth2 Code Verifier (#896)

v4.4.4 (2025-01-23)
Improvements:
	make hashed_password optional if magic_link is also used

v4.4.3 (2025-01-23)
Bug Fixes:
	downgrade assent and upgrade markdown files

v4.4.2 (2025-01-22)
Bug Fixes:
	Format code and update cheat sheets (both part of currently failing build)

Improvements:
	support sqlite in the installer

	Make the links in generated emails, clickable links (#890)

v4.4.1 (2025-01-16)
Bug Fixes:
	without phoenix, don't use verified routes

v4.4.0 (2025-01-16)
Features:
	add email sender igniters for swoosh (#835)

Bug Fixes:
	properly parse multiple authentication strategies

v4.3.12 (2025-01-14)
Bug Fixes:
	Fixed a link in the docs and pinned Assent to 0.2 (#884)

v4.3.11 (2025-01-13)
Bug Fixes:
	fix google strategy dependency was requiring options it should not

	fixed :sign_in_with_token that was logging in user automatically even if confirmation is required and account is not confirmed (#875)

	don't pass argv through to resource generator

	convert UID to string when setting (#870)

	Fix converting tenant to string (#868)

	wrong Enum.concat in validate_attribute_unique_constraint (#869)

Improvements:
	Removed use of Assent.Config (#877)

v4.3.10 (2025-01-02)
Bug Fixes:
	generate change_password action with require_atomic? false

Improvements:
	make unconfirmed user error like other errors

v4.3.9 (2024-12-31)
Bug Fixes:
	move change_password action to password strategy setup

v4.3.8 (2024-12-31)
Improvements:
	add require_confirmed_with option to password strategy (#861)

v4.3.7 (2024-12-26)
Bug Fixes:
	return an AuthenticationFailed error properly

	go back to generating the repo if its unavailable

	don't generate repo if its not present

Improvements:
	use ets if postgres isn't available

	add change_password action to generated code

	use better action name for password reset

v4.3.6 (2024-12-20)
Improvements:
	make igniter optional

	store all tokens by default in generators

v4.3.5 (2024-12-12)
Bug Fixes:
	ensure that auto_confirm_actions does not override

	include tenant when checking identity conflicts

	handle tokens without a primary key encoded in sub, using identity

Improvements:
	allow setting identity field to allow nil with password

v4.3.4 (2024-12-02)
Bug Fixes:
	ensure tenant is passed through on password reset request

	invalidate magic link sign in on invalid token

	pass opts to confirm action invocations

Improvements:
	add primary read action to users resource for atomic upgrade

	auto confirm on sign in with magic link in generators

	Add opts to retrieve funs of AshAuthentication.Plug.Helpers (#847)

v4.3.3 (2024-11-14)
Bug Fixes:
	Use correct typespec for AshAuthentication.Sender.send/3 callback (#836)

v4.3.2 (2024-11-13)
Bug Fixes:
	The documentation says that we ignore sender returns, so we need to ignore them. (#838)

v4.3.1 (2024-11-12)
Bug Fixes:
	RequestPasswordReset: fails when action called directly. (#833)

	ash_authentication.add_strategy: Generated password reset action names did not match the defaults. (#834)

	confirmation warning 'changeset has already been validated for action'

v4.3.0 (2024-11-05)
Features:
	Strategy.Slack: Add direct support for Slack strategy. (#825)

	Strategy.Slack: Add direct support for Slack strategy.

Bug Fixes:
	handle igniter/rewrite upgrades

	set sign_in_with_token action name properly

v4.2.7 (2024-11-01)
Bug Fixes:
	changeattribute -> force* to eliminate waring

v4.2.6 (2024-10-31)
Improvements:
	run codegen after adding an auth strategy

v4.2.5 (2024-10-23)
Bug Fixes:
	proper error instead of match error on not found user

v4.2.4 (2024-10-23)
Bug Fixes:
	generate link using confirm instead of token in the generators

v4.2.3 (2024-10-19)
Bug Fixes:
	respond to --auth-strategy option in installer

	issues with OIDC strategy (#800)

v4.2.2 (2024-10-15)
Improvements:
	support registration via magic link (#796)

	support registration via magic link

	prevent account takeover hijacking by protecting against upserts against unconfirmed records

	add confirmation add on when identity_field is email

	implement our own identity checking instead of relying on eager_check

v4.2.1 (2024-10-14)
Improvements:
	update igniter

v4.2.0 (2024-10-07)
Features:
	add_strategy task (#794)

Improvements:
	add ash_authentication.add_strategy task

	add atomic implementations for various changes/validations

	support --auth-strategy option when installing

v4.1.0 (2024-10-06)
Features:
	Add AshAuthentication igniter installer (#782)

Bug Fixes:
	handle options properly for subect to user (#786)

	setup options properly for ash 3.0 (#785)

Improvements:
	igniter installer for user & user token resources

v4.0.4 (2024-09-01)
Bug Fixes:
	update types and formatter

	add secret values to config

	sort new fields

	sort new types

	properly set allow_nil for apple secrets

	credo and sobelow warnings

Improvements:
	add apple strategy (#750)

	add apple strategy

v4.0.3 (2024-08-22)
Bug Fixes:
	allow overriding strategy defaults (#766)

	bug where nil is not allowed but is returned from secret functions.

	add back in accidentally removed debug errors code (#768)

	set options earlier in magic link/oauth2

Improvements:
	avoid warning about comparison with nil

	set context in addition to tenant

	use no_depend_modules for better compile dependencies

	enable custom http_adapters (#760)

v4.0.2 (2024-08-05)
Bug Fixes:
	only pass the "token" parameter to reset with token action (#748)

	handle case where action.accept is nil

Improvements:
	validate that tokens are enabled when password resets are enabled. (#758)

	compile-time check to make sure that the configured token_resource is an Ash.Resource (#749)

	Tokens: improved compile-time validation of the token_resource option of the tokens DSL by checking that the passed value is an Ash.Resource.

	Tokens: removed unnecessary stuff from the test file.

	Tokens: fixed credo warning and changed some things after PR feedback

v4.0.1 (2024-06-11)
Bug Fixes:
	no need to allow_nil_input for an unaccepted field

	correctly generate sign-in tokens when requested.

	ensure tenant is set when revoking tokens and on changeset for updating

	broken links in readme (#692)

	broken links

	bug in tokens required verifier.

4.0.0 (2024-05-10)
Breaking Changes:
	Sign in tokens are enabled by default for the password strategy.

	Tokens are now enabled by default.

Bug Fixes:
	Jwt: Include authentication interaction context when storing tokens.

	Strategy.Password: Reset tokens are single use. (#625)

	Confirmation: Only allow the confirmation token to be used once. (#623)

Improvements:
	Only require tokens to be enabled when using a strategy which needs them.

	OIDC: Adjust dsl of OIDC reflect assent requirements (#538)

	Use Ash functions instead of generated domain functions.

v4.0.0-rc.7 (2024-05-10)
Bug Fixes:
	Jwt: Include authentication interaction context when storing tokens.

Improvements:
	Only require tokens to be enabled when using a strategy which needs them.

v4.0.0-rc.6 (2024-04-11)
Improvements:
	OIDC: Adjust dsl of OIDC reflect assent requirements (#538)

v4.0.0-rc.5 (2024-04-10)
Breaking Changes:
	Sign in tokens are enabled by default for the password strategy.

	Tokens are now enabled by default.

Bug Fixes:
	Strategy.Password: Reset tokens are single use. (#625)

v4.0.0-rc.4 (2024-04-09)
Improvements:
	Use Ash functions instead of generated domain functions.

v4.0.0-rc.3 (2024-04-08)
Bug Fixes:
	Confirmation: Only allow the confirmation token to be used once. (#623)

v4.0.0-rc.2 (2024-04-02)
Breaking Changes:
	Update to support Ash 3.0. (#599)

Bug Fixes:
	allow future versions of ash rc

	Jwt: Ignore pre-release versions verifying token versions.

Improvements:
	re-integrate ash_graphql and ash_json_api RCs.

v4.0.0-rc.1 (2024-04-01)
Improvements:
	re-integrate ash_graphql and ash_json_api RCs.

v4.0.0-rc.0 (2024-03-28)
Breaking Changes:
	Update to support Ash 3.0. (#599)

Bug Fixes:
	Jwt: Ignore pre-release versions verifying token versions.

v3.12.4 (2024-03-11)
Improvements:
	infer api from a resource

v3.12.3 (2024-02-20)
v3.12.2 (2024-01-30)
Bug Fixes:
	deps: mark ash_postgres as optional

Improvements:
	support atom keys for uid in addition to strings (#556)

v3.12.1 (2024-01-25)
Improvements:
	support atom keys for uid in addition to strings (#556)

v3.12.0 (2023-11-21)
Features:
	Add Google strategy (#474)

	Add Google strategy

Bug Fixes:
	include Google strategy cheat sheet

	Add documentation grouping for Google strategy

Improvements:
	Change redirect_uri secret to be more flexible (#473)

v3.11.16 (2023-10-25)
Bug Fixes:
	Change overwriting of refresh_token to not overwrite them with nil (#483)

Improvements:
	Add id as an option for sourcing uid for UserIdentity (#481)

v3.11.15 (2023-09-22)
Bug Fixes:
	ensure we aren't calling Map.take on nil

v3.11.14 (2023-09-22)
Bug Fixes:
	TokenResource: don't silently drop notifications about token removal. (#432)

v3.11.13 (2023-09-22)
Improvements:
	Allow all token lifetimes to be specified with a time unit.

v3.11.12 (2023-09-21)
Bug Fixes:
	include finch in the dependencies.

	deprecated mint httpadapter (#425)

v3.11.11 (2023-09-21)
Bug Fixes:
	include finch in the dependencies.

	deprecated mint httpadapter (#425)

v3.11.10 (2023-09-18)
Bug Fixes:
	only use sign in token expiration for sign in tokens (#424)

v3.11.9 (2023-09-17)
Bug Fixes:
	support generating tokens for other strategies.

Improvements:
	support generating sign in tokens on register (#421)

	support generating sign in tokens on register

v3.11.8 (2023-08-16)
Bug Fixes:
	correct spec for Jwt.token_for_user (#389)

v3.11.7 (2023-07-14)
Bug Fixes:
	ensure that the current_ atom exists at compile time. (#359)

v3.11.6 (2023-06-23)
Bug Fixes:
	fix Logger deprecations for elixir 1.15 (#343)

v3.11.5 (2023-06-18)
Bug Fixes:
	ConfirmationHookChange: use Info.find_strategy/2..3 rather than a hard coded strategy name. (#336)

v3.11.4 (2023-06-15)
Bug Fixes:
	primary keys are implicitly uniquely constrained. (#333)

v3.11.3 (2023-05-31)
Bug Fixes:
	duplicate mime type for "json".

v3.11.2 (2023-05-28)
Bug Fixes:
	Strategy.Password: Preparations should allow strategy to be passed in. (#314)

v3.11.1 (2023-05-04)
Bug Fixes:
	correct oauth2 and getting started typos (#267)

v3.11.0 (2023-05-04)
Features:
	OpenID Connect Strategy (#197)

	AshAuthentication.Strategy.Oidc: Add OpenID Connect strategy.

v3.10.8 (2023-04-28)
Bug Fixes:
	PasswordValidation should associate errors with the field being â�¦ (#279)

v3.10.7 (2023-04-28)
Improvements:
	run CI on pull requests

v3.10.6 (2023-04-09)
Improvements:
	require spark ~> 1.0 (#261)

v3.10.5 (2023-04-06)
Improvements:
	add sign in tokens to password strategy (#252)

	add sign in tokens to password strategy

	convert sign_in_with_token into an action.

v3.10.4 (2023-04-03)
Improvements:
	update spark (#254)

	update spark

v3.10.3 (2023-04-03)
Improvements:
	update spark (#254)

	update spark

v3.10.2 (2023-03-06)
Bug Fixes:
	respect identity_relationship_user_id_attribute on Strategy.OAuth2.IdentityChange (#213)

v3.10.1 (2023-03-06)
Bug Fixes:
	fix failing JWT tests because of bad version regex.

v3.10.0 (2023-03-04)
Breaking Changes:
	Configure accepted fields on register (#219)

v3.9.6 (2023-03-01)
Improvements:
	allow registration and sign in to be disabled on password strategies. (#218)

v3.9.5 (2023-02-23)
Improvements:
	support multiple otp apps w/resources (#209)

v3.9.4 (2023-02-22)
Improvements:
	PasswordConfirmationValidation: allow strategy_name to be passed as an option. (#208)

v3.9.3 (2023-02-19)
Bug Fixes:
	sign in preparation without identity resource (#198)

v3.9.2 (2023-02-12)
Bug Fixes:
	Password.Transformer: don't force users to define a hashed_password argument to the register action. (#192)

v3.9.1 (2023-02-12)
Bug Fixes:
	select hashed_password on sign in preparation

	don't allow special purpose tokens to be used for sign in. (#191)

Improvements:
	add select_for_senders (#189)

	add select_for_senders

	include metadata declaration on register action

v3.9.0 (2023-02-09)
Features:
	Add new "magic link" authentication strategy. (#184)

Bug Fixes:
	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.8.0 (2023-02-09)
Features:
	Add new "magic link" authentication strategy. (#184)

Bug Fixes:
	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.9 (2023-02-09)
Bug Fixes:
	validate uniqueness of strategy names. (#185)

	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.8 (2023-02-08)
Bug Fixes:
	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	Strategy.Custom: handle custom strategies as extensions. (#183)

	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.7 (2023-02-06)
Bug Fixes:
	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	improve error message for badly formed token secrets (#181)

	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.6 (2023-01-30)
Bug Fixes:
	resources can appear in multiple apis, so we need to uniq them here (#169)

	put_add_on/2 was putting into strategies

Improvements:
	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.5 (2023-01-30)
Improvements:
	add metadata declarations to actions that have a token (#164)

	validate signing secret is a string (#163)

v3.7.4 (2023-01-30)
Improvements:
	validate signing secret is a string (#163)

v3.7.3 (2023-01-18)
Bug Fixes:
	Password: validate fields using both methods of allowing nil input. (#151)

v3.7.2 (2023-01-18)
Improvements:
	AuthenticationFailed: store a caused_by value in authentication failures. (#145)

v3.7.1 (2023-01-18)
Improvements:
	update ash & switch to new docs patterns (#146)

v3.7.0 (2023-01-18)
Features:
	PasswordValidation: Add a validation which can check a password. (#144)

v3.6.1 (2023-01-15)
Bug Fixes:
	don't call hash_provider.valid? on nil values (#135)

	use configured hashed_password_field

Improvements:
	set confirmed field to nil, for reconfirmation (#136)

	set confirmed field to nil, for reconfirmation

	only change confirmed_at_field if its not changing, and only on updates

v3.6.0 (2023-01-13)
Breaking Changes:
	TokenResource: Store the token subject in the token resource. (#133)

	TokenResource: Store the token subject in the token resource.

Bug Fixes:
	don't call hash_provider.valid? on nil values (#135)

	use configured hashed_password_field

v3.5.3 (2023-01-13)
Bug Fixes:
	Confirmation: send the original changeset to confirmation senders. (#132)

v3.5.2 (2023-01-12)
Improvements:
	add user context when creating tokens (#129)

v3.5.1 (2023-01-12)
Bug Fixes:
	missing icons in OAuth2 strategies. (#126)

v3.5.0 (2023-01-12)
Breaking Changes:
	GitHub: Add GitHub authentication strategy. (#125)

v3.4.2 (2023-01-12)
Bug Fixes:
	improve some error message/validation logic

Improvements:
	add policy utilities and accompanying guide (#119)

	add policy utilities and accompanying guide

	fix build/warnings/dialyzer/format

v3.4.1 (2023-01-12)
Bug Fixes:
	Confirmation: correctly generate confirmation token subjects. (#124)

v3.4.0 (2023-01-11)
Features:
	Add token-required-for-authentication feature. (#116)

v3.3.1 (2023-01-09)
Improvements:
	Set Ash actor and tenant when executing internal plugs. (#115)

v3.3.0 (2023-01-09)
Features:
	Make strategy names optional where possible. (#113)

v3.2.2 (2023-01-08)
Improvements:
	Allow the strategy name to be passed for password validations and changes. (#102)

v3.2.1 (2022-12-16)
Improvements:
	add icon field to OAuth2 strategy. (#100)

v3.2.0 (2022-12-16)
Features:
	Auth0: Add a pre-configured Auth0 strategy. (#99)

v3.1.0 (2022-12-14)
Breaking Changes:
	Jwt: Use token signing secret into the DSL.

Features:
	Add option to store all tokens when they're created. (#91)

Improvements:
	remove the need for a strategy in changeset/query contexts. (#89)

	add transaction reason

	try a simpler way of ensuring module is compiled

v3.0.4 (2022-12-08)
Improvements:
	update to latest ash version

v3.0.3 (2022-12-07)
Bug Fixes:
	break potential compiler dependency loops. (#64)

v3.0.2 (2022-12-05)
Improvements:
	supervisor: require that the user adds the supervisor to their OTP app. (#62)

v3.0.1 (2022-12-05)
Improvements:
	actions: All actions now take optional arguments for the underlying API call. (#61)

v3.0.0 (2022-12-04)
Breaking Changes:
	TokenResource: Move TokenRevocation -> TokenResource.

Improvements:
	Confirmation: Store confirmation changes in the token resource.

v2.0.1 (2022-11-24)
Improvements:
	Confirmation: Confirmation is not a strategy. (#46)

	Confirmation: Confirmation is not a strategy.

	Confirmation: Support more than one confirmation entity.

v2.0.0 (2022-11-22)
Breaking Changes:
	Major redesign of DSL and code structure. (#35)

v1.0.0 (2022-11-15)
Breaking Changes:
	OAuth2Authentication: Make the site option runtime configurable. (#31)

v0.6.1 (2022-11-15)
Bug Fixes:
	OAuth2Authentication: Return the failure reason even if it's not a changeset. (#29)

v0.6.0 (2022-11-10)
Features:
	OAuth2Authentication: Add support for generic OAuth2 endpoints. (#28)

v0.5.0 (2022-11-04)
Features:
	Confirmation: Add extension that allows a user to be confirmed when created or updated. (#27)

v0.4.3 (2022-11-03)
Improvements:
	docs: Improve endpoint docs for PasswordAuthentication and PasswordReset.

v0.4.2 (2022-11-03)
Bug Fixes:
	PasswordReset: Generate the reset token using the target action, not the source action. (#25)

	PasswordReset: Generate the reset token using the target action, not the source action.

Improvements:
	PasswordReset: rework PasswordReset to be a provider in it's own right - this means it has it's own routes, etc.

v0.4.1 (2022-11-03)
Improvements:
	PasswordReset: A reset request is actually a query, not an update. (#23)

v0.4.0 (2022-11-02)
Features:
	PasswordReset: allow users to request and reset their password. (#22)

v0.3.0 (2022-10-31)
Features:
	Ash.PlugHelpers: Support standard actor configuration. (#16)

	Ash.PlugHelpers: Support standard actor configuration.

Improvements:
	docs: change all references to actor to user.

v0.2.1 (2022-10-26)
Bug Fixes:
	deprecation warnings caused by use of Macro.expand_literal/2.

Improvements:
	move subject_name uniqueness validation to compile time.

	remove generated: true from macros.

v0.2.0 (2022-10-24)
Features:
	PasswordAuthentication: Registration and authentication with local credentials (#4)

v0.1.0 (2022-09-27)

 Get started with Ash Authentication

If you haven't already, read the getting started guide for
Ash. This
assumes that you already have resources set up, and only gives you the steps to
add authentication to your resources and APIs.
Using Igniter (recommended)
Install the extension
mix igniter.install ash_authentication --auth-strategy magic_link,password

Using Phoenix?
Use the following. If you have not yet run the above command, this will prompt you to do so,
so you can run both or only this one.
mix igniter.install ash_authentication_phoenix --auth-strategy magic_link,password

Manual
Add to your application's dependencies
Bring in the ash_authentication dependency:
mix.exs

defp deps()
 [
 # ...
 {:ash_authentication, "~> 4.0"}
]
end
And add ash_authentication to your .formatter.exs:
.formatter.exs
[
 import_deps: [..., :ash_authentication]
]
Create authentication domain and resources
Let's create an Accounts domain in our application which provides a User
resource and a Token resource. This tutorial is assuming that you are using AshPostgres.
First, let's define our domain:
lib/my_app/accounts.ex

defmodule MyApp.Accounts do
 use Ash.Domain

 resources do
 resource MyApp.Accounts.User
 resource MyApp.Accounts.Token
 end
end
Be sure to add it to the ash_domains config in your config.exs
in config/config.exs
config :my_app, ash_domains: [..., MyApp.Accounts]
Next, let's define our Token resource. This resource is needed
if token generation is enabled for any resources in your application. Most of
the contents are auto-generated, so we just need to provide the data layer
configuration and the API to use.
But before we do, we need to install a postgres extension.
lib/my_app/repo.ex

defmodule MyApp.Repo do
 use AshPostgres.Repo, otp_app: :my_app

 def installed_extensions do
 ["ash-functions", "citext"]
 end
end
Setup Token Resource
lib/my_app/accounts/token.ex
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 # If using policies, enable the policy authorizer:
 authorizers: [Ash.Policy.Authorizer],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end

 policies do
 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end
 end
end
Supervisor
AshAuthentication includes a supervisor which you should add to your
application's supervisor tree. This is used to run any periodic jobs related to
your authenticated resources (removing expired tokens, for example).
Example
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # ...
 # add this line -->
 {AshAuthentication.Supervisor, otp_app: :my_app}
 # <-- add this line
]
 # ...
 end
end
Lastly let's define our User resource. Note that we aren't defining any authentication strategies here.
This setup is used for all strategies. Once you have done this, you can follow one of the strategy specific
guides at the bottom of this page.
lib/my_app/accounts/user.ex

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication],
 authorizers: [Ash.Policy.Authorizer],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 end

 actions do
 defaults [:read]

 read :get_by_subject do
 description "Get a user by the subject claim in a JWT"
 argument :subject, :string, allow_nil?: false
 get? true
 prepare AshAuthentication.Preparations.FilterBySubject
 end
 end

 authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 store_all_tokens? true
 signing_secret fn _, _ ->
 # This is a secret key used to sign tokens. See the note below on secrets management
 Application.fetch_env(:my_app, :token_signing_secret)
 end
 end

 add_ons do
 log_out_everywhere do
 apply_on_password_change? true
 end
 end
 end

 postgres do
 table "users"
 repo MyApp.Repo
 end

 # You can customize this if you wish, but this is a safe default that
 # only allows user data to be interacted with via AshAuthentication.
 policies do
 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end

 policy always() do
 forbid_if always()
 end
 end
end
The signing secret must not be committed to source control
Proper management of secrets is outside the scope of this tutorial, but is
absolutely crucial to the security of your application.
Choose your strategies and add-ons
mix ash_authentication.add_strategy
A mix task is provided to add strategies and add-ons to your application.
For now, this only supports the password strategy, but more will be added in the future.
mix ash_authentication.add_strategy password

Strategies
	Password
	Github
	Google
	Magic Links
	Auth0
	Open ID: AshAuthentication.Strategy.Oidc
	OAuth2: AshAuthentication.Strategy.OAuth2

Add-Ons
	Confirmation: confirming changes to user accounts (i.e via email)
	UserIdentity: AshAuthentication.UserIdentity: supporting multiple social sign on identities & refreshing tokens

Set up your Phoenix or Plug application
If you're using Phoenix, skip this section and go to
Integrating Ash Authentication and Phoenix
In order for your users to be able to sign in, you will likely need to provide
an HTTP endpoint to submit credentials or OAuth requests to. Ash Authentication
provides AshAuthentication.Plug for this purposes. It provides a use macro
which handles routing of requests to the correct providers, and defines
callbacks for successful and unsuccessful outcomes.
Let's generate our plug:
lib/my_app/auth_plug.ex

defmodule MyApp.AuthPlug do
 use AshAuthentication.Plug, otp_app: :my_app

 def handle_success(conn, _activity, user, token) do
 if is_api_request?(conn) do
 conn
 |> send_resp(200, Jason.encode!(%{
 authentication: %{
 success: true,
 token: token
 }
 }))
 else
 conn
 |> store_in_session(user)
 |> send_resp(200, EEx.eval_string("""
 <h2>Welcome back <%= @user.email %></h2>
 """, user: user))
 end
 end

 def handle_failure(conn, _activity, _reason) do
 if is_api_request?(conn) do
 conn
 |> send_resp(401, Jason.encode!(%{
 authentication: %{
 success: false
 }
 }))
 else
 conn
 |> send_resp(401, "<h2>Incorrect email or password</h2>")
 end
 end

 defp is_api_request?(conn), do: "application/json" in get_req_header(conn, "accept")
end
Now that this is done, you can forward HTTP requests to it from your app's main
router using forward "/auth", to: MyApp.AuthPlug or similar.
Your generated auth plug module will also contain load_from_session and
load_from_bearer function plugs, which can be used to load users into assigns
based on the contents of the session store or Authorization header.
Customizing Authentication Actions
Authentication strategies automatically generate actions like register, sign_in, etc. When customizing these actions, keep in mind:
Required Authentication Changes
Always include the strategy's required changes when overriding actions:
Password registration
create :register_with_password do
 # Your custom arguments and logic...

 # Required for password strategy:
 change AshAuthentication.GenerateTokenChange
 change AshAuthentication.Strategy.Password.HashPasswordChange
end

OAuth2 registration
create :register_with_github do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false, sensitive?: true

 # Required for OAuth2:
 change AshAuthentication.GenerateTokenChange
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 # Extract user data from OAuth response:
 change fn changeset, _ctx ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)
 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email", "name"]))
 end
end
Security for Authentication
Mark sensitive authentication data appropriately:
attributes do
 # Identity fields - public for authentication UI
 attribute :email, :ci_string, allow_nil?: false, public?: true

 # Credentials - always sensitive, never public
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true, public?: false
end

actions do
 create :register do
 # Credential arguments - always sensitive
 argument :password, :string, allow_nil?: false, sensitive?: true
 argument :password_confirmation, :string, allow_nil?: false, sensitive?: true
 end
end
Note on public?: true
The public?: true option controls API visibility, not authentication requirements.
Identity fields like :email typically need public?: true for authentication UIs to work properly.
Summary
In this guide we've learned how to install Ash Authentication, configure
resources and handle authentication HTTP requests.
You should now have an Ash application with working user authentication.
Up next, Using with Phoenix

 API Keys

A note on API Keys
API keys are generated using AshAuthentication.Strategy.ApiKey.GenerateApiKey. See the module docs for more information.
The API key is generated using a random byte string and a prefix. The prefix is used to generate a key that is compliant with secret scanning. You can use this to set up an endpoint that will automatically revoke leaked tokens, which is an extremely powerful and useful security feature. We only store a hash of the api key. The plaintext api key is only available in api_key.__metadata__.plaintext_api_key immediately after creation.
See the guide on Github for more information.
Api key expiration/validity is otherwise up to you. The configured api_key_relationship should include those rules in the filter.
For example:
has_many :valid_api_keys, MyApp.Accounts.ApiKey do
 filter expr(valid)
end
Installation
With Igniter (recommended)
Use mix ash_authentication.add_strategy api_key to install this strategy, and modify the generated resource
to suit your needs.
Manually
Create an API key resource
defmodule MyApp.Accounts.ApiKey do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 authorizers: [Ash.Policy.Authorizer]

 actions do
 defaults [:read, :destroy]

 create :create do
 primary? true
 accept [:user_id, :expires_at]
 change {AshAuthentication.Strategy.ApiKey.GenerateApiKey, prefix: :myapp, hash: :api_key_hash}
 end
 end

 attributes do
 uuid_primary_key :id
 attribute :api_key_hash, :binary do
 allow_nil? false
 sensitive? true
 end

 # In this example, all api keys have an expiration
 # Feel free to rework this however you please
 attribute :expires_at, :utc_datetime_usec do
 allow_nil? false
 end
 end

 relationships do
 belongs_to :user, MyApp.Accounts.User do
 allow_nil? false
 end
 end

 calculations do
 calculate :valid, :boolean, expr(expires_at > now())
 end

 identities do
 identity :unique_api_key, [:api_key_hash]
 end

 policies do
 # Allow AshAuthentication to work with api keys as necessary
 bypass always() do
 authorize_if AshAuthentication.Checks.AshAuthenticationInteraction
 end
 end
end
Add the strategy to your user
authentication do
 ...
 strategies do
 api_key do
 api_key_relationship :valid_api_keys
 end
 end
end
Relate users to valid api keys
relationships do
 has_many :valid_api_keys, MyApp.Accounts.ApiKey do
 filter expr(valid)
 end
end
Add the sign_in_with_api_key action
Add the action to your user resource
read :sign_in_with_api_key do
 argument :api_key, :string, allow_nil?: false
 prepare AshAuthentication.Strategy.ApiKey.SignInPreparation
end
Use the plug in your router/plug pipeline
See AshAuthentication.Strategy.ApiKey.Plug for all available options.
In Phoenix, for example, you might add this plug to your
:api pipeline.
pipeline :api do
 ...
 plug AshAuthentication.Strategy.ApiKey.Plug,
 resource: MyApp.Accounts.User
end

 Audit Log Tutorial

The audit log add-on provides automatic logging of authentication events (sign in, registration, failures, etc.) to help you track security-relevant activities in your application.
Installation
With Igniter (recommended)
Use mix ash_authentication.add_add_on audit_log to automatically set up audit logging:
mix ash_authentication.add_add_on audit_log

This will:
	Create the audit log resource
	Add the add-on to your user resource
	Ensure the AshAuthentication.Supervisor is in your application supervision tree
	Generate and run migrations

You can customise the installation with options:
Custom audit log resource name
mix ash_authentication.add_add_on audit_log --audit-log MyApp.Accounts.AuthAuditLog

Include sensitive fields
mix ash_authentication.add_add_on audit_log --include-fields email,username

Exclude specific strategies
mix ash_authentication.add_add_on audit_log --exclude-strategies magic_link,oauth

Exclude specific actions
mix ash_authentication.add_add_on audit_log --exclude-actions sign_in_with_token

Manually
If you prefer to set up audit logging manually, continue with the steps below:
Create the audit log resource
First, create a resource to store the audit logs. This resource uses the AshAuthentication.AuditLogResource extension which handles all the necessary setup:
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 postgres do
 table "account_audit_logs"
 repo MyApp.Repo
 end
end
The extension automatically creates all required attributes and actions. You don't need to define any manually unless you want to customise them.
Add the audit log add-on to your user resource
Next, add the audit log add-on to your user resource's authentication configuration:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false, public?: true, sensitive?: true
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 end

 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 end
 end

 strategies do
 password :password do
 identity_field :email
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Generate and run migrations
Generate migrations for the audit log table:
mix ash.codegen create_accounts_audit_logs
mix ash.migrate

Start the audit log batcher
The audit log uses batched writes to reduce database load. Add the AshAuthentication.Supervisor to your application's supervision tree:
lib/my_app/application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 MyApp.Repo,
 # Add this line
 {AshAuthentication.Supervisor, otp_app: :my_app}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
That's it! Authentication events will now be logged automatically.
What gets logged?
The audit log automatically tracks:
	Successful and failed authentication attempts
	User registration events
	The authentication strategy used (password, OAuth2, magic link, etc.)
	The action name that triggered the event
	User subject (when available)
	Timestamp of the event
	Non-sensitive parameters from the request
	Sensitive parameters that are explicitly configured

Viewing audit logs
You can read audit logs like any other Ash resource:
Get all audit logs
MyApp.Accounts.AuditLog
|> Ash.read!()

Filter by user
MyApp.Accounts.AuditLog
|> Ash.Query.filter(subject == ^user_subject)
|> Ash.read!()

Filter by action
MyApp.Accounts.AuditLog
|> Ash.Query.filter(action_name == :sign_in_with_password)
|> Ash.read!()

Filter by status
MyApp.Accounts.AuditLog
|> Ash.Query.filter(status == :failure)
|> Ash.read!()
Configuration options
Include sensitive fields
By default, sensitive arguments and attributes (marked with sensitive?: true) are filtered out of the audit logs. You can explicitly include specific fields:
authentication do
 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 include_fields [:email, :username]
 end
 end
end
Exclude specific strategies
If you want to exclude certain authentication strategies from being logged:
authentication do
 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 exclude_strategies [:magic_link]
 end
 end
end
Exclude specific actions
To exclude specific actions from being logged:
authentication do
 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 exclude_actions [:sign_in_with_token]
 end
 end
end
Customise log retention
By default, audit logs are retained for 90 days. You can change this or disable automatic cleanup:
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 audit_log do
 # Keep logs for 30 days
 log_lifetime 30

 # Or disable automatic cleanup
 # log_lifetime :infinity
 end

 postgres do
 table "account_audit_log"
 repo MyApp.Repo
 end
end
Configure write batching
The audit log batches writes to reduce database load. You can customise this behaviour:
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 audit_log do
 write_batching do
 enabled? true
 # Write batch every 5 seconds
 timeout :timer.seconds(5)
 # Or when batch reaches 50 records
 max_size 50
 end
 end

 postgres do
 table "account_audit_log"
 repo MyApp.Repo
 end
end
To disable batching entirely (writes happen immediately):
audit_log do
 write_batching do
 enabled? false
 end
end
Configure IP address privacy
To comply with privacy regulations like GDPR, you can control how IP addresses are stored in audit logs:
authentication do
 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog

 # IP privacy options: :none | :hash | :truncate | :exclude
 ip_privacy_mode :truncate

 # Network masks for truncation (optional, these are the defaults)
 ipv4_truncation_mask 24 # Keep first 3 octets
 ipv6_truncation_mask 48 # Keep first 3 segments
 end
 end
end
Available IP privacy modes:
	:none (default) - Store IP addresses as-is without modification
	:hash - Hash IP addresses using SHA256 with application secret as salt
	:truncate - Truncate IP addresses to a network prefix (e.g., 192.168.1.100 → 192.168.1.0/24)
	:exclude - Don't store IP addresses at all

When using :truncate mode, the default masks are:
	IPv4: /24 - Keeps first 3 octets (e.g., 192.168.1.0/24)
	IPv6: /48 - Keeps first 3 segments (e.g., 2001:db8:85a3::/48)

Example configurations:
Hash all IP addresses for privacy
audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 ip_privacy_mode :hash
end

Truncate with more aggressive masking
audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 ip_privacy_mode :truncate
 ipv4_truncation_mask 16 # Keep first 2 octets (more privacy)
 ipv6_truncation_mask 32 # Keep first 2 segments (more privacy)
end

Exclude IP addresses entirely
audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 ip_privacy_mode :exclude
end
The IP privacy transformation applies to all IP-related fields in the request metadata:
	remote_ip - The direct client IP
	x_forwarded_for - Proxy chain IPs
	forwarded - Standard forwarded header with IP information

Audit log attributes
Each audit log entry contains:
	id - Unique identifier for the log entry
	subject - The authenticated user's subject string (if available)
	strategy - The authentication strategy used (:password, :github, etc.)
	audit_log - The name of the audit log add-on instance
	logged_at - When the event occurred
	action_name - The action that triggered the event
	status - :success, :failure, or :unknown
	extra_data - Additional information including:	actor - The actor performing the action (if any)
	tenant - The tenant context (if using multi-tenancy)
	request - Request metadata
	params - Non-sensitive parameters from the action

	resource - The resource module that was authenticated

Security considerations
	Sensitive fields (passwords, tokens, API keys) are automatically filtered from audit logs unless explicitly included via include_fields
	IP addresses can be hashed, truncated, or excluded for privacy compliance using the ip_privacy_mode option
	Audit logs should be stored in a resilient data layer like PostgreSQL
	Consider setting up alerts for suspicious patterns (multiple failed logins, etc.)
	Ensure proper access controls on the audit log resource using Ash policies
	The audit log resource doesn't have default policies - you should add them based on your security requirements

Example: Adding policies to audit logs
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts,
 authorizers: [Ash.Policy.Authorizer]

 policies do
 # Only admins can read audit logs
 policy action_type(:read) do
 authorize_if relates_to_actor_via([:user, :admin])
 end

 # Allow AshAuthentication to write logs
 policy action_type(:create) do
 authorize_if AshAuthentication.Checks.AshAuthenticationInteraction
 end
 end

 postgres do
 table "account_audit_log"
 repo MyApp.Repo
 end
end

 Auth0 Tutorial

This is a quick tutorial on how to configure your application to use Auth0 for authentication.
First, you need to configure an application in the Auth0 dashboard using the following steps:
	Click "Create Application".

	Set your application name to something that identifies it. You will likely
need separate applications for development and production environments, so
keep that in mind.

	Select "Regular Web Application" and click "Create".

	Switch to the "Settings" tab.

	Copy the "Domain", "Client ID" and "Client Secret" somewhere safe - we'll need them soon.

	In the "Allowed Callback URLs" section, add your callback URL. The callback URL is generated from the following information:
	The base URL of the application - in development that would be
http://localhost:4000/ but in production will be your application's
URL.
	The mount point of the auth routes in your router - we'll assume
/auth.
	The "subject name" of the resource being authenticated - we'll assume user.
	The name of the strategy in your configuration. By default this is
auth0.

This means that the callback URL should look something like
http://localhost:4000/auth/user/auth0/callback.

	Set "Allowed Web Origins" to your application's base URL.

	Click "Save Changes".

Next we can configure our resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 auth0 do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 base_url MyApp.Secrets
 end
 end
 end
end
Because all the configuration values should be kept secret (ie the client_secret) or are likely to be different for each environment we use the AshAuthentication.Secret behaviour to provide them. In this case we're delegating to the OTP application environment, however you may want to use a system environment variable or some other secret store (eg Vault).
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :auth0, :client_id], MyApp.Accounts.User, _opts, _meth) do
 get_config(:client_id)
 end

 def secret_for([:authentication, :strategies, :auth0, :redirect_uri], MyApp.Accounts.User, _opts, _meth) do
 get_config(:redirect_uri)
 end

 def secret_for([:authentication, :strategies, :auth0, :client_secret], MyApp.Accounts.User, _opts, _meth) do
 get_config(:client_secret)
 end

 def secret_for([:authentication, :strategies, :auth0, :base_url], MyApp.Accounts.User, _opts, _meth) do
 get_config(:base_url)
 end

 defp get_config(key) do
 :my_app
 |> Application.fetch_env!(:auth0)
 |> Keyword.fetch!(key)
 |> then(&{:ok, &1})
 end
end
The values for this configuration should be:
	client_id - the client ID copied from the Auth0 settings page.
	redirect_uri - the URL to the generated auth routes in your application (eg http://localhost:4000/auth).
	client_secret the client secret copied from the Auth0 settings page.
	base_url - the "domain" value copied from the Auth0 settings page prefixed with https:// (eg https://dev-yu30yo5y4tg2hg0y.us.auth0.com).

Lastly, we need to add a register action to your user resource. This is defined as an upsert so that it can register new users, or update information for returning users. The default name of the action is register_with_ followed by the strategy name. In our case that is register_with_auth0.
The register action takes two arguments, user_info and the oauth_tokens.
	user_info contains the GET /userinfo response from Auth0 which you can use to populate your user attributes as needed.
	oauth_tokens contains the POST /oauth/token response from Auth0 - you may want to store these if you intend to call the Auth0 API on behalf of the user.

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...

 actions do
 create :register_with_auth0 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 # Required if you have token generation enabled.
 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end
 end
 end

 # ...

end
If you are only setting up this strategy it's possible that you don't have the email field in your User resource, so you will need to add it:
defmodule MyApp.Accounts.User do

 # ...

 attributes do
 uuid_primary_key :id

 attribute :email, :ci_string do
 allow_nil? false
 end
 end

 identities do
 identity :unique_email, [:email]
 end

 # ...

end
And the generate & run the migrations with:
mix ash_postgres.generate_migrations
mix ecto.migrate
In your auth controller, make sure to add a redirect to https://[auth0_endpoint]/v2/logout when logging out. This notifies Auth0 that the user has logged out. Be sure to replace [auth0_endpoint] and [auth0_client_id] with your actual Auth0 values:
 def sign_out(conn, _params) do

 conn
 |> clear_session(:my_app)
 |> redirect(external: "https://[auth0_endpoint]/v2/logout?client_id=[auth0_client_id]&returnTo=#{AppWeb.Endpoint.url()}")
 end
All good! Go to http://localhost:4000/sign-in to see it working.

 Confirmation Tutorial

This add-on allows you to confirm changes to a user record by generating and
sending them a confirmation token which they must submit before allowing the
change to take place.
In this tutorial we'll assume that you have a User resource which uses email as it's user identifier.
We'll show you how to confirm a new user on sign-up and also require them to confirm if they wish to change their email address.
Important security notes
If you are using multiple strategies that use emails, where one of the strategy has an upsert registration (like social sign-up, magic link registration),
then you must use the confirmation add-on to prevent account hijacking, as described below.
Example scenario:
	Attacker signs up with email of their target and a password, but does not confirm their email.
	Their target signs up with google or magic link, etc, which upserts the user, and sets confirmed_at to true.
	Now, the user has created an account but the attacker has access via the password they originally set.

How to handle this?
Automatic Handling
The confirmation add-on prevents this by default by not allowing an upsert action to set confirmed_at, if there is
a matching record that has confirmed_at that is currently nil. This allows you to show a message to the user like
"You signed up with a different method. Please sign in with the method you used to sign up."
auto_confirming and clearing the password on upsert
An alternative is to clear the user's password on upsert. To do this, you would want to ensure the following things are true:
	The upsert registration action(s) are in the auto_confirm_actions (which you want anyway)
	The upsert registration action(s) set hashed_password to nil, removing any access an attacker may have had
	The prevent_hijacking? option is set to false on the confirmation add on and the auth strategies you are using.
	A user cannot access your application or take any action without a confirmed account. For example, redirecting to a "please confirm your account" page.

Why do you have to ensure that no actions can be taken without a confirmed account?
This does technically remove any access that the attacker may have had from the account, but we don't suggest taking this approach
unless you are absolutely sure that you know what you are doing. For example, lets say you have an app that shows where the user is
in the world, or where their friends are in the world. Lets say you also allow configuring a phone number to receive text notifications
when they are near one of their friends. An attacker could sign up with a password, and configure their phone number. Then, their target
signs up with Oauth or magic link, adds some friends, but doesn't notice that a phone number is configured.
Now the attacker is getting text messages about where the user and/or their friends are.
Opt-out
You can set prevent_hijacking? false on either the confirmation add-on, or your strategy to disable the automatic handling
described above, and not follow the steps recommended in the section section above. This is not recommended.
Tutorial
Here's the user resource we'll be starting with:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false, public?: true, sensitive?: true
 attribute :hashed_password, :string, allow_nil?: false, public?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Confirming newly registered users
First we start by adding the confirmation add-on to your existing authentication DSL:
defmodule MyApp.Accounts.User do
 # ...

 authentication do
 # ...

 add_ons do
 confirmation :confirm_new_user do
 monitor_fields [:email]
 confirm_on_create? true
 confirm_on_update? false
 require_interaction? true
 sender MyApp.Accounts.User.Senders.SendNewUserConfirmationEmail
 end
 end
 end
end
Next we will have to generate and run migrations to add confirmed_at column to user resource
mix ash.codegen account_confirmation

To make this work we need to create a new module MyApp.Accounts.User.Senders.SendNewUserConfirmationEmail:
defmodule MyApp.Accounts.User.Senders.SendNewUserConfirmationEmail do
 @moduledoc """
 Sends an email confirmation email
 """
 use AshAuthentication.Sender
 use MyAppWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user, token, _opts) do
 MyApp.Accounts.Emails.deliver_email_confirmation_instructions(
 user,
 url(~p"/confirm_new_user/#{token}")
)
 end
end
We also need to create a new email template:
defmodule Example.Accounts.Emails do
 @moduledoc """
 Delivers emails.
 """

 import Swoosh.Email

 def deliver_email_confirmation_instructions(user, url) do
 if !url do
 raise "Cannot deliver confirmation instructions without a url"
 end

 deliver(user.email, "Confirm your email address", """
 <p>
 Hi #{user.email},
 </p>

 <p>
 Someone has tried to register a new account using this email address.
 If it was you, then please click the link below to confirm your identity. If you did not initiate this request then please ignore this email.
 </p>

 <p>
 Click here to confirm your account
 </p>
 """)
 end

 # For simplicity, this module simply logs messages to the terminal.
 # You should replace it by a proper email or notification tool, such as:
 #
 # * Swoosh - https://hexdocs.pm/swoosh
 # * Bamboo - https://hexdocs.pm/bamboo
 #
 defp deliver(to, subject, body) do
 IO.puts("Sending email to #{to} with subject #{subject} and body #{body}")

 new()
 |> from({"Zach", "zach@ash-hq.org"}) # TODO: Replace with your email
 |> to(to_string(to))
 |> subject(subject)
 |> put_provider_option(:track_links, "None")
 |> html_body(body)
 |> MyApp.Mailer.deliver!()
 end
end
Provided you have your authentication routes hooked up either via AshAuthentication.Plug or AshAuthentication.Phoenix.Router then the user will be confirmed when the token is submitted.
Blocking unconfirmed users from logging in
The previous section explained how to confirm a user account. AshAuthentication now includes a directive in the DSL that allows you to require account confirmation before a user can log in.
This can be a nice layer of protection to lock down your application, but consider
instead allowing unconfirmed users to use your application in a partial state.
This is often a better UX. This would involve adding a plug to your router,
for example, that redirects users to a home page that requests that they confirm
their account. Alternatively, you can just leverage their confirmation status
to allow or disallow certain actions.
Must add error handling
Your AuthController will begin getting a new error in the failure callback:
AshAuthentication.Errors.UnconfirmedUser when this setting is enabled.. You'll need to handle this to show a new flash message.
For example:
authentication do
 ...
 add_ons do
 confirmation :confirm_new_user do
 ...
 confirmed_at_field :confirmed_at
 end
 end

 strategies do
 strategy :password do
 ...
 # Require confirmation using the specified field
 require_confirmed_with :confirmed_at
 end
 end
end
With this configuration, users whose confirmed_at field is nil will not be able to log in.
Note: It is currently the developer’s responsibility to handle this scenario - for example, by redirecting the user to a page that explains the situation and possibly offers an option to request a new confirmation email if the original one was lost.
If require_confirmed_with is not set or set to nil, no confirmation check is enforced - unconfirmed users will be allowed to log in.
Confirming changes to monitored fields
You may want to require a user to perform a confirmation when a certain field changes. For example if a user changes their email address we can send them a new confirmation request.
First, let's start by defining a new confirmation add-on in our resource.
defmodule MyApp.Accounts.User do
 # ...

 authentication do
 # ...

 add_ons do
 confirmation :confirm_email_change do
 monitor_fields [:email]
 confirm_on_create? false
 confirm_on_update? true
 inhibit_updates? true
 confirmed_at_field :email_change_confirmed_at
 confirm_action_name :confirm_email_change
 require_interaction? true
 sender MyApp.Accounts.User.Senders.SendEmailChangeConfirmationEmail
 end
 end
 end
end
We set confirm_on_create? false and confirm_on_update? true so that this only applies when an existing user changes their email address, and not for new users.
We specify confirmed_at_field so that the state of this confirmation is kept separate to the new user confirmation. If we leave this out, the same default confirmed_at_field would be used, and then a user who has changed but not yet confirmed their email address would be in the same unconfirmed state as when they have created their account and not completed the initial confirmation.
inhibit_updates? true causes any changes to be stored temporarily in the token resource, and are applied to the user resource only upon confirmation. Without this option, a change to the email attribute is applied immediately
Next, let's define our new sender:
defmodule MyApp.Accounts.User.Senders.SendEmailChangeConfirmationEmail do
 @moduledoc """
 Sends an email change confirmation email
 """
 use AshAuthentication.Sender
 use MyAppWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user, token, opts) do
 {changeset, _opts} = Keyword.pop!(opts, :changeset)
 new_email_address = changeset.attributes.email

 MyApp.Accounts.Emails.deliver_email_change_confirmation_instructions(
 user,
 new_email_address,
 url(~p"/auth/user/confirm_change?#{[confirm: token]}")
)
 end
end
And our new email template:
defmodule MyApp.Accounts.Emails do
 # ...

 def deliver_email_change_confirmation_instructions(user, new_email_address, url) do
 if !url do
 raise "Cannot deliver confirmation instructions without a url"
 end

 deliver(user.new_email_address, "Confirm your new email address", """
 <p>
 Hi #{user.email},
 </p>

 <p>
 You recently changed your email address. Please confirm it.
 </p>

 <p>
 Click here to confirm your new email address
 </p>
 """)
 end

 # ...
end
Note that we send this to the user's new email address in the changeset from the update action that triggered this confirmation. You may also want to send a notification to the user's current email address, as a security measure, which you can do from the same sender.
Customising the confirmation action
By default Ash Authentication will generate an update action for confirmation automatically (named :confirm unless you change it). You can manually implement this action in order to change it's behaviour and AshAuthentication will validate that the required changes are also present.
For example, here's an implementation of the :confirm_change action mentioned above, which adds a custom change that updates a remote CRM system with the user's new address.
defmodule MyApp.Accounts.User do
 # ...

 actions do
 # ...

 update :confirm_change do
 argument :confirm, :string, allow_nil?: false, public?: true
 accept [:email]
 require_atomic? false
 change AshAuthentication.AddOn.Confirmation.ConfirmChange
 change AshAuthentication.GenerateTokenChange
 change MyApp.UpdateCrmSystem, only_when_valid?: true
 end
 end
end

 GitHub Tutorial

This is a quick tutorial on how to configure your application to use GitHub for authentication.
First you need to configure an application in your GitHub developer settings:
	Click the "New OAuth App" button.

	Set your application name to something that identifies it. You will likely
need separate applications for development and production environments, so
keep that in mind.

	Set "Homepage URL" appropriately for your application and environment.

	In the "Authorization callback URL" section, add your callback URL. The
callback URL is generated from the following information:
	The base URL of the application - in development that would be
http://localhost:4000/ but in production will be your application's
URL.
	The mount point of the auth routes in your router - we'll assume
/auth.
	The "subject name" of the resource being authenticated - we'll assume user.
	The name of the strategy in your configuration. By default this is
github.

This means that the callback URL should look something like
http://localhost:4000/auth/user/github/callback.

	Do not set "Enable Device Flow" unless you know why you want this.

	Click "Register application".

	Click "Generate a new client secret".

	Copy the "Client ID" and "Client secret" somewhere safe, we'll need them
soon.

	Click "Update application".

Next we can configure our resource (assuming you already have everything else
set up):
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 github do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 end
 end
 end
end
Because all the configuration values should be kept secret (ie the
client_secret) or are likely to be different for each environment we use the
AshAuthentication.Secret behaviour to provide them. In this case we're
delegating to the OTP application environment, however you may want to use a
system environment variable or some other secret store (eg Vault).
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :github, :client_id], MyApp.Accounts.User, _) do
 get_config(:client_id)
 end

 def secret_for([:authentication, :strategies, :github, :redirect_uri], MyApp.Accounts.User, _) do
 get_config(:redirect_uri)
 end

 def secret_for([:authentication, :strategies, :github, :client_secret], MyApp.Accounts.User, _) do
 get_config(:client_secret)
 end

 defp get_config(key) do
 :my_app
 |> Application.get_env(:github, [])
 |> Keyword.fetch(key)
 end
end
The values for this configuration should be:
	client_id - the client ID copied from the GitHub settings page.
	redirect_uri - the URL to the generated auth routes in your application
(eg http://localhost:4000/auth).
	client_secret the client secret copied from the GitHub settings page.

Lastly, we need to add a register action to your user resource. This is defined
as an upsert so that it can register new users, or update information for
returning users. The default name of the action is register_with_ followed by
the strategy name. In our case that is register_with_github.
The register action takes two arguments, user_info and the oauth_tokens.
	user_info contains the GET /user response from
GitHub
which you can use to populate your user attributes as needed.
	oauth_tokens contains the POST /login/oauth/access_token response from
GitHub	you may want to store these if you intend to call the GitHub API on behalf
of the user.

defmodule MyApp.Accounts.User do
 require Ash.Resource.Change.Builtins
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...

 actions do
 create :register_with_github do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 # Required if you have token generation enabled.
 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end

 # Required if you're using the password & confirmation strategies
 upsert_fields []
 change set_attribute(:confirmed_at, &DateTime.utc_now/0)
 change after_action(fn _changeset, user, _context ->
 case user.confirmed_at do
 nil -> {:error, "Unconfirmed user exists already"}
 _ -> {:ok, user}
 end
 end)
 end
 end

 # ...

end
Ensure you set the hashed_password to allow_nil? if you are also using the password strategy.
defmodule MyApp.Accounts.User do
 # ...
 attributes do
 # ...
 attribute :hashed_password, :string, allow_nil?: true, sensitive?: true
 end
 # ...
end
And generate and run migrations in that case.
mix ash.codegen make_hashed_password_nullable
mix ash.migrate

 Google Tutorial

This is a quick tutorial on how to configure Google authentication.
First you'll need a registered application in Google Cloud, in order to get your OAuth 2.0 Client credentials.
	On the Cloud's console Quick access section select APIs & Services, then Credentials
	Click on + CREATE CREDENTIALS and from the dropdown select OAuth client ID
	From the google developers console, we will need: client_id & client_secret
	Enter your callback uri under Authorized redirect URIs. E.g. http://localhost:4000/auth/user/google/callback.

Next we configure our resource to use google credentials:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 ...
 end

 authentication do
 strategies do
 google do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 end
 end
 end
end
Please check the guide on how to properly configure your Secrets.
Then we need to define an action that will handle the oauth2 flow, for the google case it is :register_with_google it will handle both cases for our resource, user registration & login.
defmodule MyApp.Accounts.User do
 require Ash.Resource.Change.Builtins
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...
 actions do
 create :register_with_google do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end

 # Required if you're using the password & confirmation strategies
 upsert_fields []
 change set_attribute(:confirmed_at, &DateTime.utc_now/0)
 end
 end

 # ...

end
Ensure you set the hashed_password to allow_nil? if you are also using the password strategy.
defmodule MyApp.Accounts.User do
 # ...
 attributes do
 # ...
 attribute :hashed_password, :string, allow_nil?: true, sensitive?: true
 end
 # ...
end
And generate and run migrations in that case.
mix ash.codegen make_hashed_password_nullable
mix ash.migrate

 Magic Links Tutorial

With a mix task
You can use mix ash_authentication.add_strategy magic_link to install this strategy.
The rest of the guide is in the case that you wish to proceed manually.
Add the Magic Link Strategy to the User resource
...

strategies do
 # add these lines -->
 magic_link do
 identity_field :email
 registration_enabled? true
 require_interaction? true

 sender(Example.Accounts.User.Senders.SendMagicLink)
 end
 # <-- add these lines
end

...
Registration Enabled
When registration is enabled, signing in with magic is a create action that upserts the user by email.
This allows a user who does not exist to request a magic link and sign up with one action.
Registration Disabled (default)
When registration is disabled, signing in with magic link is a read action.
Require Interaction
Some email clients, virus scanners, etc will retrieve a link automatically without user interaction, causing the magic link token to be consumed and thus fail when the user clicks the link. The mitigate this we now default to requiring that the user click a "sign in" button to ensure that retrieving the confirmation page does not actually consume the token. By default if a GET request is sent to the magic link endpoint a very simple form is served which submits to the same URL with the same token parameter as a POST. You probably don't want to serve this page to users in production. You can work around this by placing your own page at the same path before it in the router, or changing the email link to a different URL.
See also AshAuthentication.Phoenix.Router.magic_sign_in_route/3.
Configuration
By default, when an invalid magic link token is provided, the sign-in action returns an empty result (for backwards compatibility). However, this makes it difficult to distinguish between a successful sign-in and a failed sign-in due to an invalid token.
To return an error when an invalid token is provided (recommended), add the following to your configuration:
config :ash_authentication, return_error_on_invalid_magic_link_token?: true
This is especially important if you're using the AuditLog add-on, as it ensures failed sign-in attempts are logged correctly. This configuration is automatically added when you use mix ash_authentication.add_strategy magic_link. In the next major version, returning an error will be the default behavior.
Create an email sender and email template
Inside /lib/example/accounts/user/senders/send_magic_link.ex
defmodule Example.Accounts.User.Senders.SendMagicLink do
 @moduledoc """
 Sends a magic link
 """
 use AshAuthentication.Sender
 use ExampleWeb, :verified_routes

 @impl AshAuthentication.Sender
 def send(user_or_email, token, _) do
 # will be a user if the token relates to an existing user
 # will be an email if there is no matching user (such as during sign up)
 Example.Accounts.Emails.deliver_magic_link(
 user_or_email,
 url(~p"/auth/user/magic_link/?token=#{token}")
)
 end
end
Inside /lib/example/accounts/emails.ex
...

def deliver_magic_link(user, url) do
 if !url do
 raise "Cannot deliver reset instructions without a url"
 end

 email = case user do
 %{email: email} -> email
 email -> email
 end

 deliver(email, "Magic Link", """
 <html>
 <p>
 Hi #{email},
 </p>

 <p>
 Click here to login.
 </p>
 <html>
 """)
end

...

 Password Authentication

With a mix task
You can use mix ash_authentication.add_strategy password to install this strategy.
The rest of the guide is in the case that you wish to proceed manually.
Add Bcrypt To your dependencies
This step is not strictly necessary, but in the next major version of AshAuthentication,
Bcrypt will be an optional dependency. This will make that upgrade slightly easier.
{:bcrypt_elixir, "~> 3.0"}
Add Attributes
Add an email (or username) and hashed_password attribute to your user resource.
lib/my_app/accounts/user.ex
attributes do
 ...
 attribute :email, :ci_string, allow_nil?: false, public?: true
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
end
Ensure that the email (or username) is unique.
lib/my_app/accounts/user.ex
identities do
 identity :unique_email, [:email]
 # or
 identity :unique_username, [:username]
end
Add the password strategy
Configure it to use the :email or :username as the identity field.
lib/my_app/accounts/user.ex
authentication do
 ...
 strategies do
 password :password do
 identity_field :email
 # or
 identity_field :username
 end
 end
end
Now we have enough in place to register and sign-in users using the
AshAuthentication.Strategy protocol.

 Slack Tutorial

This is a quick tutorial on how to configure your application to use Slack for authentication.
First you need to configure an application in your Slack app settings:
	Click the "Create New App" button.

	Select "From scratch"

	Set your application name to something that identifies it. You will likely
need separate applications for development and production environments, so
keep that in mind.

	Select a "development workspace", which can be used for testing.

	Browse to the "OAuth & Permissions" page.

	In the "Redirect URLs" section add your callback URL. The
callback URL is generated from the following information:
	The base URL of the application - in development that would be
http://localhost:4000/ but in production will be your application's
URL.
	The mount point of the auth routes in your router - we'll assume
/auth.
	The "subject name" of the resource being authenticated - we'll assume user.
	The name of the strategy in your configuration. By default this is
slack.

This means that the callback URL should look something like
http://localhost:4000/auth/user/slack/callback.
HTTPS Required
Slack won't allow you to register an HTTP URL as the redirect URL, so you
will likely have to add a URL for a service like
ngrok

	In the "Scopes" section, add your user token scopes. You must request openid, and may request email and
profile as well.

	In the "OAuth Tokens" section click "Install to :workspace:" where
:workspace: is the one you selected as the development workspace.

	Browse back to the "Basic Information".

	Copy the "Client ID" and "Client secret" somewhere safe, we'll need them
soon.

Next we can configure our resource (assuming you already have everything else
set up):
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 slack do
 client_id MyApp.Secrets
 redirect_uri MyApp.Secrets
 client_secret MyApp.Secrets
 end
 end
 end
end
Because all the configuration values should be kept secret (ie the
client_secret) or are likely to be different for each environment we use the
AshAuthentication.Secret behaviour to provide them. In this case we're
delegating to the OTP application environment, however you may want to use a
system environment variable or some other secret store (eg Vault).
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :slack, :client_id], MyApp.Accounts.User, _) do
 get_config(:client_id)
 end

 def secret_for([:authentication, :strategies, :slack, :redirect_uri], MyApp.Accounts.User, _) do
 get_config(:redirect_uri)
 end

 def secret_for([:authentication, :strategies, :slack, :client_secret], MyApp.Accounts.User, _) do
 get_config(:client_secret)
 end

 defp get_config(key) do
 :my_app
 |> Application.get_env(:slack, [])
 |> Keyword.fetch(key)
 end
end
The values for this configuration should be:
	client_id - the client ID copied from the Slack settings page.
	redirect_uri - the URL to the generated auth routes in your application
(eg http://localhost:4000/auth).
	client_secret the client secret copied from the Slack settings page.

Lastly, we need to add a register action to your user resource. This is defined
as an upsert so that it can register new users, or update information for
returning users. The default name of the action is register_with_ followed by
the strategy name. In our case that is register_with_slack.
The register action takes two arguments, user_info and the oauth_tokens.
	user_info contains the GET /user response from
Slack
which you can use to populate your user attributes as needed.
	oauth_tokens contains the POST /login/oauth/access_token response from
Slack	you may want to store these if you intend to call the Slack API on behalf
of the user.

defmodule MyApp.Accounts.User do
 require Ash.Resource.Change.Builtins
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 # ...

 actions do
 create :register_with_slack do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :unique_email

 # Required if you have token generation enabled.
 change AshAuthentication.GenerateTokenChange

 # Required if you have the `identity_resource` configuration enabled.
 change AshAuthentication.Strategy.OAuth2.IdentityChange

 change fn changeset, _ ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 Ash.Changeset.change_attributes(changeset, Map.take(user_info, ["email"]))
 end

 # Required if you're using the password & confirmation strategies
 upsert_fields []
 change set_attribute(:confirmed_at, &DateTime.utc_now/0)
 change after_action(fn _changeset, user, _context ->
 case user.confirmed_at do
 nil -> {:error, "Unconfirmed user exists already"}
 _ -> {:ok, user}
 end
 end)
 end
 end

 # ...

end
Ensure you set the hashed_password to allow_nil? if you are also using the password strategy.
defmodule MyApp.Accounts.User do
 # ...
 attributes do
 # ...
 attribute :hashed_password, :string, allow_nil?: true, sensitive?: true
 end
 # ...
end
And generate and run migrations in that case.
mix ash.codegen make_hashed_password_nullable
mix ash.migrate

 TOTP (Time-based One-Time Password) Tutorial

TOTP allows users to authenticate using time-based one-time passwords generated
by authenticator apps like Google Authenticator, Authy, or 1Password.
Use Cases
TOTP can be used in two ways:
	Two-Factor Authentication (2FA) - As a second factor after password authentication
	Standalone Authentication - As the primary authentication method (passwordless)

This tutorial covers both approaches.
Prerequisites
	AshAuthentication configured with a User resource
	A token resource if using confirm_setup_enabled? (recommended)

Add Required Attributes
Add the following attributes to your User resource:
lib/my_app/accounts/user.ex
attributes do
 # ... existing attributes ...

 attribute :totp_secret, :binary do
 allow_nil? true
 sensitive? true
 public? false
 end

 attribute :last_totp_at, :utc_datetime do
 allow_nil? true
 public? false
 end
end
The totp_secret stores the shared secret, and last_totp_at prevents replay
attacks by tracking the last successful authentication time.
Basic TOTP Setup (2FA Mode)
For 2FA, users set up TOTP after registering with another method (like password):
lib/my_app/accounts/user.ex
authentication do
 strategies do
 password :password do
 identity_field :email
 end

 totp do
 identity_field :email
 # Required: choose a brute force protection strategy
 brute_force_strategy {:preparation, MyApp.TotpBruteForcePreparation}
 end
 end
end
This generates:
	setup_with_totp action - generates a secret and stores it on the user
	verify_with_totp action - verifies a code without signing in
	totp_url_for_totp calculation - generates the otpauth:// URL for QR codes

Brute Force Protection
TOTP requires a brute force protection strategy. Options:
1. Custom Preparation (simplest)
brute_force_strategy {:preparation, MyApp.TotpBruteForcePreparation}
Create a preparation that implements your protection logic:
lib/my_app/accounts/totp_brute_force_preparation.ex
defmodule MyApp.TotpBruteForcePreparation do
 use Ash.Resource.Preparation

 def prepare(query, _opts, _context) do
 # Implement rate limiting, account lockout, etc.
 # Return the query unchanged if allowed to proceed
 query
 end
end
2. Rate Limiting (with AshRateLimiter)
brute_force_strategy :rate_limit
Requires the AshRateLimiter extension and rate limit configuration for TOTP actions.
3. Audit Log
brute_force_strategy {:audit_log, :my_audit_log}
Requires an audit log add-on that logs TOTP actions.
Two-Step Setup with Confirmation (Recommended)
For better security, use two-step setup. This ensures users have correctly saved
their secret before it's activated:
authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 end

 strategies do
 totp do
 identity_field :email
 confirm_setup_enabled? true
 setup_token_lifetime {10, :minutes}
 brute_force_strategy {:preparation, MyApp.TotpBruteForcePreparation}
 end
 end
end
This changes the flow:
	Setup - setup_with_totp returns a setup_token and totp_url in metadata
(secret is NOT stored on user yet)
	Display QR Code - Show the QR code to the user
	Confirm - User enters a code, call confirm_setup_with_totp with the token and code
	Activation - If code is valid, secret is stored on user

Example Setup Flow
Step 1: Initiate setup
{:ok, user} = Ash.update(user, action: :setup_with_totp)
setup_token = user.__metadata__.setup_token
totp_url = user.__metadata__.totp_url

Step 2: Display QR code (use totp_url with a QR code library)
The URL format is: otpauth://totp/Issuer:user@example.com?secret=BASE32SECRET&issuer=Issuer

Step 3: User scans QR code and enters the code from their app
{:ok, user} = Ash.update(user,
 action: :confirm_setup_with_totp,
 params: %{setup_token: setup_token, code: "123456"}
)

User now has TOTP enabled
Standalone TOTP Sign-In
To use TOTP as a primary authentication method:
authentication do
 strategies do
 totp do
 identity_field :email
 sign_in_enabled? true
 brute_force_strategy {:preparation, MyApp.TotpBruteForcePreparation}
 end
 end
end
This generates a sign_in_with_totp action that takes an identity and code,
returning an authenticated user with a token.
Verifying TOTP Codes
The verify_with_totp action checks if a code is valid without signing in.
This is useful for 2FA flows where you want to verify the code as a second step:
After password authentication, verify TOTP
strategy = AshAuthentication.Info.strategy!(MyApp.Accounts.User, :totp)
{:ok, true} = AshAuthentication.Strategy.action(strategy, :verify, %{
 user: user,
 code: "123456"
})
Generating QR Codes
The totp_url_for_totp calculation generates the standard otpauth:// URL:
user = Ash.load!(user, :totp_url_for_totp)
qr_url = user.totp_url_for_totp
=> "otpauth://totp/MyApp:user@example.com?secret=JBSWY3DPEHPK3PXP&issuer=MyApp"
Use a QR code library to render this URL:
With eqrcode
qr_code = EQRCode.encode(qr_url)
svg = EQRCode.svg(qr_code)
Configuration Options
	Option	Default	Description
	identity_field	:username	Field that identifies users (e.g., :email)
	secret_field	:totp_secret	Attribute storing the TOTP secret
	last_totp_at_field	:last_totp_at	Attribute tracking last successful auth
	issuer	Strategy name	Displayed in authenticator apps
	period	30	Code validity period in seconds (recommended: 15-300)
	secret_length	20	Secret length in bytes (recommended: 16+, per RFC 4226)
	setup_enabled?	true	Generate setup action
	sign_in_enabled?	false	Generate sign-in action
	verify_enabled?	true	Generate verify action
	confirm_setup_enabled?	false	Use two-step setup flow (requires setup_enabled?)
	setup_token_lifetime	{10, :minutes}	How long setup tokens are valid

Security Considerations
	Always use brute force protection - TOTP codes are only 6 digits
	Use confirm_setup_enabled? - Ensures users correctly saved their secret
	Store secrets securely - Mark the secret field as sensitive?: true
	Track last_totp_at - Prevents replay attacks within the same time window
	Provide backup codes - Consider implementing backup codes for account recovery

 Auto Sign-out

Auto sign-out automatically disconnects LiveView sessions when a user's tokens are revoked. This ensures that when a user signs out (or triggers "sign out everywhere"), any active LiveView sessions are immediately disconnected rather than remaining active until the next page refresh.
When Auto Sign-out Triggers
Auto sign-out is triggered whenever tokens are revoked, which happens:
	When a user explicitly signs out
	When the log_out_everywhere add-on revokes all tokens for a user (e.g., after a password change)
	When tokens are manually revoked via AshAuthentication.TokenResource.revoke/3

Prerequisites
	Tokens must be enabled in your authentication configuration
	A TokenResource must be configured
	AshAuthentication.Phoenix must be installed (for the notifier and helpers)
	The log_out_everywhere add-on is recommended for password change scenarios

Configuration
Step 1: Configure TokenResource (AshAuthentication)
Add the endpoints and live_socket_id_template options to your token resource:
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end

 token do
 endpoints [MyAppWeb.Endpoint]
 live_socket_id_template fn %{jti: jti} -> "users_sessions:#{jti}" end
 end
end
	endpoints - List of Phoenix endpoints to notify when tokens are revoked
	live_socket_id_template - Function that generates the live socket ID from a map containing %{jti: jti}. Additional keys may be added in future versions.

Step 2: Add the Notifier (AshAuthentication.Phoenix)
Add AshAuthentication.Phoenix.TokenRevocationNotifier to your token resource's notifiers:
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts,
 notifiers: [AshAuthentication.Phoenix.TokenRevocationNotifier]

 # ... rest of configuration
end
The notifier broadcasts disconnect messages through your configured endpoints when tokens are revoked.
Step 3: Set Live Socket ID on Sign-in (AshAuthentication.Phoenix)
In your authentication controller, call set_live_socket_id/2 after successful sign-in to store the socket ID in the session:
defmodule MyAppWeb.AuthController do
 use MyAppWeb, :controller
 use AshAuthentication.Phoenix.Controller

 def success(conn, _activity, user, _token) do
 conn
 |> set_live_socket_id(user)
 |> store_in_session(user)
 |> assign(:current_user, user)
 |> redirect(to: ~p"/")
 end

 def failure(conn, _activity, _reason) do
 conn
 |> put_flash(:error, "Authentication failed")
 |> redirect(to: ~p"/sign-in")
 end

 def sign_out(conn, _params) do
 conn
 |> clear_session()
 |> redirect(to: ~p"/")
 end
end
How It Works
	When a user signs in, set_live_socket_id/2 stores the live socket ID (generated from the token's JTI) in the session
	LiveView uses this socket ID to identify the connection
	When a token is revoked, the TokenRevocationNotifier uses the live_socket_id_template function to generate the same socket ID from the revoked token's JTI
	The notifier broadcasts a disconnect message through the configured endpoints
	LiveView receives the disconnect and terminates the session

Complete Example
Token Resource
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts,
 notifiers: [AshAuthentication.Phoenix.TokenRevocationNotifier]

 postgres do
 table "tokens"
 repo MyApp.Repo
 end

 token do
 endpoints [MyAppWeb.Endpoint]
 live_socket_id_template fn %{jti: jti} -> "users_sessions:#{jti}" end
 end
end
User Resource with Log Out Everywhere
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 store_all_tokens? true
 end

 strategies do
 password :password do
 identity_field :email
 end
 end

 add_ons do
 log_out_everywhere do
 apply_on_password_change? true
 end
 end
 end

 # ... attributes, identities, etc.
end
Auth Controller
defmodule MyAppWeb.AuthController do
 use MyAppWeb, :controller
 use AshAuthentication.Phoenix.Controller

 def success(conn, _activity, user, _token) do
 conn
 |> set_live_socket_id(user)
 |> store_in_session(user)
 |> assign(:current_user, user)
 |> redirect(to: ~p"/")
 end

 def failure(conn, _activity, _reason) do
 conn
 |> put_flash(:error, "Authentication failed")
 |> redirect(to: ~p"/sign-in")
 end

 def sign_out(conn, _params) do
 conn
 |> clear_session()
 |> redirect(to: ~p"/")
 end
end

 Defining Custom Authentication Strategies

AshAuthentication allows you to bring your own authentication strategy without
having to change the Ash Authentication codebase.
Add-on vs Strategy?
There is functionally no difference between "add ons" and "strategies" other
than where they appear in the DSL. We invented "add ons" because it felt
weird calling "confirmation" an authentication strategy.
There are several moving parts which must all work together so hold on to your hat!
	A Spark.Dsl.Entity struct. This is used to define the strategy DSL
inside the strategies (or add_ons) section of the authentication DSL.
	A strategy struct, which stores information about the strategy as
configured on a resource which must comply with a few rules.
	An optional transformer, which can be used to manipulate the DSL state of
the entity and the resource.
	An optional verifier, which can be used to verify the DSL state of the
entity and the resource after compilation.
	The AshAuthentication.Strategy protocol, which provides the glue needed
for everything to wire up and wrappers around the actions needed to run on
the resource.

We're going to define an extremely dumb strategy which lets anyone with a name
that starts with "Marty" sign in with just their name. Of course you would
never do this in real life, but this isn't real life - it's documentation!
DSL setup
Let's start by defining a module for our strategy to live in. Let's call it
OnlyMartiesAtTheParty:
defmodule OnlyMartiesAtTheParty do
 use AshAuthentication.Strategy.Custom
end
Sadly, this isn't enough to make the magic happen. We need to define our DSL
entity by adding it to the use statement:
defmodule OnlyMartiesAtTheParty do
 @entity %Spark.Dsl.Entity{
 name: :only_marty,
 describe: "Strategy which only allows folks whose name starts with \"Marty\" to sign in.",
 examples: [
 """
 only_marty do
 case_sensitive? true
 name_field :name
 end
 """
],
 target: __MODULE__,
 args: [{:optional, :name, :marty}],
 schema: [
 name: [
 type: :atom,
 doc: """
 The strategy name.
 """,
 required: true
],
 case_sensitive?: [
 type: :boolean,
 doc: """
 Ignore letter case when comparing?
 """,
 required: false,
 default: false
],
 name_field: [
 type: :atom,
 doc: """
 The field to check for the users' name.
 """,
 required: true
]
]
 }

 use AshAuthentication.Strategy.Custom, entity: @entity
end
If you haven't you should take a look at the docs for Spark.Dsl.Entity, but
here's a brief overview of what each field we've set does:
	name is the name for which the helper function will be generated in
the DSL (ie only_marty do #... end).
	describe and examples are used when generating documentation.
	target is the name of the module which defines our entity struct. We've
set it to __MODULE__ which means that we'll have to define the struct on
this module.
	schema is a keyword list that defines an options schema. See Spark.Options.

By default the entity is added to the authentication / strategy DSL, however
if you want it in the authentication / add_ons DSL instead you can also pass
style: :add_on in the use statement.

Next up, we need to define our struct. The struct should have at least the
fields named in the entity schema. Additionally, Ash Authentication requires
that it have a resource field which will be set to the module of the resource
it's attached to during compilation.
defmodule OnlyMartiesAtTheParty do
 defstruct name: :marty,
 case_sensitive?: false,
 name_field: nil,
 resource: nil,
 __spark_metadata__: nil

 # ...

 use AshAuthentication.Strategy.Custom, entity: @entity

 # other code elided ...
end
Now it would be theoretically possible to add this custom strategies to your app
by adding it to the extensions section of your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication, OnlyMartiesAtTheParty],
 domain: MyApp.Accounts

 authentication do
 strategies do
 only_marty do
 name_field :name
 end
 end
 end

 attributes do
 uuid_primary_key
 attribute :name, :string, allow_nil?: false
 end
end
Implementing the AshAuthentication.Strategy protocol
The Strategy protocol is used to introspect the strategy so that it can
seamlessly fit in with the rest of Ash Authentication. Here are the key
concepts:
	"phases" - in terms of HTTP, each strategy is likely to have many phases (eg OAuth 2.0's "request" and "callback" phases). Essentially you need one phase for each HTTP endpoint you wish to support with your strategy. In our case we just want one sign in endpoint.
	"actions" - actions are exactly as they sound - Resource actions which can be executed by the strategy, whether generated by the strategy (as in the password strategy) or typed in by the user (as in the OAuth 2.0 strategy). The reason that we wrap the strategy's actions this way is that all the built-in strategies (and we hope yours too) allow the user to customise the name of the actions that it uses. At the very least it should probably append the strategy name to the action. Using Strategy.action/4 allows us to refer these by a more generic name rather than via the user-specified one (eg :register vs :register_with_password).
	"routes" - AshAuthentication.Plug (or AshAuthentication.Phoenix.Router.html) will generate routes using Plug.Router (or Phoenix.Router) - the routes/1 callback is used to retrieve this information from the strategy.

Given this information, let's implement the strategy. It's quite long, so I'm
going to break it up into smaller chunks.
defimpl AshAuthentication.Strategy, for: OnlyMartiesAtTheParty do
The name/1 function is used to uniquely identify the strategy. It must be an
atom and should be the same as the path fragment used in the generated routes.
 def name(strategy), do: strategy.name
Since our strategy only supports sign-in we only need a single :sign_in phase
and action.
 def phases(_), do: [:sign_in]
 def actions(_), do: [:sign_in]
Next we generate the routes for the strategy. Routes should contain the
subject name of the resource being authenticated in case the implementer is
authenticating multiple different resources - eg User and Admin.
 def routes(strategy) do
 subject_name = AshAuthentication.Info.authentication_subject_name!(strategy.resource)

 [
 {"/#{subject_name}/#{strategy.name}", :sign_in}
]
 end
When generating routes or forms for this phase, what HTTP method should we use?
 def method_for_phase(_, :sign_in), do: :post
Next up, we write our plug. We take the "name field" from the input params in
the conn and pass them to our sign in action. As long as the action returns
{:ok, Ash.Resource.record} or {:error, any} then we can just pass it
straight into store_authentication_result/2 from
AshAuthentication.Plug.Helpers.
 import AshAuthentication.Plug.Helpers, only: [store_authentication_result: 2]

 def plug(strategy, :sign_in, conn) do
 params = Map.take(conn.params, [to_string(strategy.name_field)])
 result = action(strategy, :sign_in, params, [])
 store_authentication_result(conn, result)
 end
Next, we implement our sign in action. We use Ash.Query to find all
records whose name field matches the input, then constrain it to only records
whose name field starts with "Marty". Depending on whether the name field has a
unique identity on it we have to deal with it returning zero or more users, or
an error. When it returns a single user we return that user in an ok tuple,
otherwise we return an authentication failure.
In this example we're assuming that there is a default read action present on
the resource.
Warning
When it comes to authentication, you never want to reveal to the user what the
failure was - this helps prevent enumeration
attacks.
You can use AshAuthentication.Errors.AuthenticationFailed for this purpose
as it will cause ash_authentication, ash_authentication_phoenix,
ash_graphql and ash_json_api to return the correct HTTP 401 error.
 alias AshAuthentication.Errors.AuthenticationFailed
 require Ash.Query
 import Ash.Expr

 def action(strategy, :sign_in, params, options) do
 name_field = strategy.name_field
 name = Map.get(params, to_string(name_field))
 domain = AshAuthentication.Info.domain!(strategy.resource)

 strategy.resource
 |> Ash.Query.filter(expr(^ref(name_field) == ^name))
 |> then(fn query ->
 if strategy.case_sensitive? do
 Ash.Query.filter(query, like(^ref(name_field), "Marty%"))
 else
 Ash.Query.filter(query, ilike(^ref(name_field), "Marty%"))
 end
 end)
 |> Ash.read(options)
 |> case do
 {:ok, [user]} ->
 {:ok, user}

 {:ok, []} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: :no_user})}

 {:ok, _users} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: :too_many_users})}

 {:error, reason} ->
 {:error, AuthenticationFailed.exception(caused_by: %{reason: reason})}
 end
 end
end
Lastly, we have to implement the tokens_required?/1 function. This function
indicates Ash Authentication whether your strategy creates or consumes any
tokens. Since our strategy does not, we can simply return false:
def tokens_required?(_), do: false
Bonus round - transformers and verifiers
In some cases it may be required for your strategy to modify it's own
configuration or that of the whole resource at compile time. For that you can
define the transform/2 callback on your strategy module.
At the very least it is good practice to call
AshAuthentication.Strategy.Custom.Helpers.register_strategy_actions/3 so that
Ash Authentication can keep track of which actions are related to which
strategies and AshAuthentication.Strategy.Custom.Helpers is automatically
imported by use AshAuthentication.Strategy.Custom for this purpose.
Transformers
For simple cases where you're just transforming the strategy you can just return
the modified strategy and the DSL will be updated accordingly. For example if
you wanted to generate the name of an action if the user hasn't specified it:
def transform(strategy, _dsl_state) do
 {:ok, Map.put_new(strategy, :sign_in_action_name, :"sign_in_with_#{strategy.name}")}
end
In some cases you may want to modify the strategy and the resources DSL. In
this case you can return the newly mutated DSL state in an ok tuple or an error
tuple, preferably containing a Spark.Error.DslError. For example if we wanted
to build a sign in action for OnlyMartiesAtTheParty to use:
def transform(strategy, dsl_state) do
 strategy = Map.put_new(strategy, :sign_in_action_name, :"sign_in_with_#{strategy.name}")

 sign_in_action =
 Spark.Dsl.Transformer.build_entity(Ash.Resource.Dsl, [:actions], :read,
 name: strategy.sign_in_action_name,
 accept: [strategy.name_field],
 get?: true
)

 dsl_state =
 dsl_state
 |> Spark.Dsl.Transformer.add_entity([:actions], sign_in_action)
 |> put_strategy(strategy)
 |> then(fn dsl_state ->
 register_strategy_actions([strategy.sign_in_action_name], dsl_state, strategy)
 end)

 {:ok, dsl_state}
end
Transformers can also be used to validate user input or even directly add code
to the resource. See the docs for Spark.Dsl.Transformer for more information.
Verifiers
We also support a variant of transformers which run in the new @after_verify
compile hook provided by Elixir 1.14. This is a great place to put checks
to make sure that the user's configuration makes sense without adding any
compile-time dependencies between modules which may cause compiler deadlocks.
For example, verifying that the "name" attribute contains "marty" (why you would
do this I don't know but I'm running out of sensible examples):
def verify(strategy, _dsl_state) do
 if String.contains?(to_string(strategy.name_field), "marty") do
 :ok
 else
 {:error,
 Spark.Error.DslError.exception(
 path: [:authentication, :strategies, :only_marties],
 message: "Option `name_field` must contain \"marty\""
)}
 end
end
Summary
You should now have all the tools you need to build custom strategies - and in
fact the strategies provided by Ash Authentication are built using this system.
If there is functionality or documentation missing please raise an
issue and we'll
take a look at it.
Go forth and strategise!

 Policies on Authenticated Resources

Typically, we want to lock down our User resource pretty heavily, which, in Ash, involves writing policies. However, AshAuthentication will be calling actions on your user/token resources. To make this more convenient, all actions run with AshAuthentication will set a special context. Additionally a check is provided that will check if that context has been set: AshAuthentication.Checks.AshAuthenticationInteraction. Using this you can write a simple bypass policy on your user/token resources like so:
policies do
 bypass always() do
 authorize_if AshAuthentication.Checks.AshAuthenticationInteraction
 end

 # or, pick your poison

 bypass AshAuthentication.Checks.AshAuthenticationInteraction do
 authorize_if always()
 end
end

 Testing

Tips and tricks to help test your apps.
When using the Password strategy
AshAuthentication uses bcrypt_elixir for hashing passwords for secure storage, which by design has a high computational cost. To reduce the cost (make hashing faster), you can reduce the number of computation rounds it performs in tests:
in config/test.exs

Do NOT set this value for production
config :bcrypt_elixir, log_rounds: 1
Testing authenticated LiveViews
In order to test authenticated LiveViews, you will need to seed a test user and
log in it. While you may certainly use a helper that logs in through the UI
each time, it's a little more efficient to call the sign-in code directly.
This can be done by adding a helper function in MyAppWeb.ConnCase found in
test/support/conn_case.ex. In this example it's called
register_and_log_in_user.
defmodule MyAppWeb.ConnCase do
 use ExUnit.CaseTemplate

 using do
 # ...
 end

 def register_and_log_in_user(%{conn: conn} = context) do
 email = "user@example.com"
 password = "password"
 {:ok, hashed_password} = AshAuthentication.BcryptProvider.hash(password)

 Ash.Seed.seed!(MyApp.Accounts.User, %{
 email: email,
 hashed_password: hashed_password
 })

 # Replace `:password` with the appropriate strategy for your application.
 strategy = AshAuthentication.Info.strategy!(MyApp.Accounts.User, :password)

 {:ok, user} =
 AshAuthentication.Strategy.action(strategy, :sign_in, %{
 email: email,
 password: password
 })

 new_conn =
 conn
 |> Phoenix.ConnTest.init_test_session(%{})
 |> AshAuthentication.Plug.Helpers.store_in_session(user)

 %{context | conn: new_conn}
 end
end
Now in your LiveView tests you can pass this function to setup:
defmodule MyAppWeb.MyLiveTest do
 use MyAppWeb.ConnCase

 setup :register_and_log_in_user

 test "some test", %{conn: conn} do
 {:ok, lv, _html} = live(conn, ~p"/authenticated-route")

 # ...
 end
end
If required, it can also be called directly inside a test block:
test "some test", context do
 %{conn: conn} = register_and_log_in_user(context)

 {:ok, lv, _html} = live(conn, ~p"/authenticated-route")

 # ...
end

 Tokens

Token Lifetime
Since refresh tokens are not yet included in ash_authentication, you should set the token lifetime to a reasonably long time to ensure a good user experience. Alternatively, refresh tokens can be implemented on your own.
Requiring Token Storage
Using d:AshAuthentication.Dsl.authentication.tokens.require_token_presence_for_authentication? inverts the token validation behaviour from requiring that tokens are not revoked to requiring any token presented by a client to be present in the token resource to be considered valid.
Requires store_all_tokens? to be true.
store_all_tokens? instructs AshAuthentication to keep track of all tokens issued to any user. This is optional behaviour with ash_authentication in order to preserve as much performance as possible.
Sign in Tokens
Enabled with d:AshAuthentication.Strategy.Password.authentication.strategies.password.sign_in_tokens_enabled?
Sign in tokens can be generated on request by setting the :token_type context to :sign_in when calling the sign in action. You might do this when you need to generate a short lived token to be exchanged for a real token using the validate_sign_in_token route. This is used, for example, by ash_authentication_phoenix (since 1.7) to support signing in a liveview, and then redirecting with a valid token to a controller action, allowing the liveview to show invalid username/password errors.
Extra Claims
You can add custom claims to generated tokens using the extra_claims option. This is useful for including user-specific data like roles, permissions, or tenant information in your JWTs.
DSL Configuration
Configure default extra claims that are included in all tokens for a resource:
authentication do
 tokens do
 enabled? true
 token_resource MyApp.Token

 # Using a function (receives user and options)
 extra_claims fn user, _opts ->
 %{"role" => user.role, "tenant_id" => user.tenant_id}
 end

 # Or using a static map
 extra_claims %{"app_version" => "1.0"}
 end
end
The function receives the user record and options (containing tenant, etc.) and should return a map of claims to include in the token.
Action-Level Claims
You can also add claims on a per-action basis using AshAuthentication.add_token_claims/2. This function works with changesets, queries, and action inputs.
For create actions (like registration):
create :register_with_password do
 # ... other configuration
 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 AshAuthentication.add_token_claims(changeset, %{"session_type" => "registration"})
 end
end
For read actions (like sign-in):
MyApp.User
|> Ash.Query.for_read(:sign_in_with_password, %{email: email, password: password})
|> AshAuthentication.add_token_claims(%{"session_type" => "api"})
|> Ash.read_one!()
Action-level claims are merged with DSL-configured claims, with action-level claims taking precedence in case of conflicts.
Accessing Extra Claims
When store_all_tokens? is enabled, extra claims are stored in the token resource's extra_data attribute. When a user authenticates via bearer token or session (with require_token_presence_for_authentication? enabled), the extra claims are restored and available in the user's metadata:
In a controller or plug
user = conn.assigns.current_user
claims = user.__metadata__.token_claims
=> %{"role" => "admin", "tenant_id" => "abc123"}
This allows you to access custom token data without needing to decode the JWT on every request.

 Upgrading

Upgrading to version 5.0.0
Version 5.0.0 includes several breaking changes related to action types and the Google OAuth strategy. Most changes can be handled automatically using the upgrade task.
Dependencies
This version requires Assent ~> 0.3.0 (updated from ~> 0.2.9) and adds nimble_totp as a dependency for the new TOTP strategy. Run mix deps.get after updating your ash_authentication version.
Automated Upgrade
If you have Igniter installed, run:
mix ash_authentication.upgrade 4.x.x 5.0.0

Replace 4.x.x with your current version. This will automatically:
	Convert token resource revoked? actions from :read to :action type
	Convert password reset and magic link request actions from :read to :action type
	Create get_by_<identity_field> read actions where needed
	Update "google_hd" references to "hd" in your codebase

Breaking Changes
1. Sender failures now propagate as errors
Previously, sender failures were silently ignored. Now, senders that return {:error, reason} will cause the authentication action to fail with an AshAuthentication.Errors.SenderFailed error.
What this affects:
	Password reset requests
	Magic link requests
	Confirmation emails

Action required: Review your sender implementations. If they can return {:error, reason}, ensure your application handles these failures appropriately. Senders returning :ok or {:ok, result} (common with mailer libraries) will continue to work unchanged.
Recommended approach: Consider using a durable background job library like Oban for sending authentication emails. This provides automatic retries, failure tracking, and prevents transient email delivery issues from blocking user authentication flows. Your sender can enqueue a job and return :ok immediately, while the actual email delivery happens asynchronously with built-in resilience.
defmodule MyApp.AuthEmailSender do
 use AshAuthentication.Sender

 def send(user_or_email, token, opts) do
 %{user_or_email: user_or_email, token: token, opts: opts}
 |> MyApp.Workers.AuthEmail.new()
 |> Oban.insert()

 :ok
 end
end
2. Request actions converted to generic actions
Password reset request (request_password_reset_with_password) and magic link request (request_magic_link) actions are now generated as :action type instead of :read.
Action required: If you have customised these actions as :read actions, the upgrader will convert them automatically. If you've made extensive customisations, review the converted code to ensure it still meets your requirements.
The new actions work with auto-generated get_by_<identity_field> read actions for user lookup.
3. Token revoked action converted to generic action
The revoked? action on token resources is now a generic action returning a boolean, rather than a read action returning a record.
Action required: If you have a custom revoked? read action on your token resource, the upgrader will convert it automatically.
4. Google strategy now uses OIDC
The Google OAuth strategy now uses OIDC (via Assent 0.3.0) instead of the legacy API. This changes two fields in the user_info map:
	Old	New
	user_info["google_hd"]	user_info["hd"]
	user_info["email_verified"] (string "true")	user_info["email_verified"] (boolean true)

Action required:
	The upgrader will automatically rename "google_hd" to "hd" in your code
	You must manually update any checks for email_verified:

Before
user_info["email_verified"] == "true"

After
user_info["email_verified"] == true
New Features
TOTP Two-Factor Authentication
Version 5.0.0 adds a complete TOTP (Time-based One-Time Password) strategy for two-factor authentication. See the TOTP tutorial for setup instructions.
Extra JWT Claims
You can now add custom claims to JWT tokens using the extra_claims option in the tokens DSL section, or dynamically via AshAuthentication.add_token_claims/2. See the tokens guide for details.
Other Improvements
	Auto signout in AshAuthentication.Phoenix - Automatic sign-out is now supported in the Phoenix integration
	API key header prefix regex support - The ApiKey.Plug now accepts regex patterns for header prefix matching
	Better error handling - Jwt.token_for_user/2 now returns {:error, AuthenticationFailed.t} on failure instead of raising

Upgrading to version 4.0.0
Version 4.0.0 of AshAuthentication adds support for Ash 3.0 and in line with a number of changes in Ash there are some corresponding changes to Ash Authentication:
	Token generation is enabled by default, meaning that you will have to explicitly set authentication.tokens.enabled? to false if you don't need them.

	Sign in tokens are enabled by default in the password strategy. What this means is that instead of returning a regular user token on sign-in in the user's metadata, we generate a short-lived token which can be used to actually sign the user in. This is specifically to allow live-view based sign-in UIs to display an authentication error without requiring a page-load.

Upgrading to version 3.6.0.
As of version 3.6.0 the TokenResource extension adds the subject attribute
which allows us to more easily match tokens to specific users. This unlocks
some new use-cases (eg sign out everywhere).
This means that you will need to generate new migrations and migrate your
database.
Upgrade steps:
Warning
If you already have tokens stored in your database then the migration will
likely throw a migration error due to the new NOT NULL constraint on
subject. If this happens then you can either delete all your tokens or
explicitly add the subject attribute to your resource with allow_nil? set
to true. eg:
attributes do
 attribute :subject, :string, allow_nil?: true
end
	Run mix ash_postgres.generate_migrations --name=add_subject_to_token_resource
	Run mix ash_postgres.migrate
	🎉

 AshAuthentication

AshAuthentication provides a turn-key authentication solution for folks using
Ash.
Usage
This package assumes that you have Ash installed and
configured. See the Ash documentation for details.
Once installed you can easily add support for authentication by configuring
the AshAuthentication extension on your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
If you plan on providing authentication via the web, then you will need to
define a plug using AshAuthentication.Plug which builds a Plug.Router that
routes incoming authentication requests to the correct provider and provides
callbacks for you to manipulate the conn after success or failure.
If you're using AshAuthentication with Phoenix, then check out
ash_authentication_phoenix
which provides route helpers, a controller abstraction and LiveView components
for easy set up.
Authentication Strategies
Currently supported strategies:
	AshAuthentication.Strategy.Password	authenticate users against your local database using a unique identity
(such as username or email address) and a password.

	AshAuthentication.Strategy.OAuth2	authenticate using local or remote OAuth 2.0 compatible services.
	also includes:	AshAuthentication.Strategy.Apple
	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github
	AshAuthentication.Strategy.Google
	AshAuthentication.Strategy.Oidc
	AshAuthentication.Strategy.Slack

	AshAuthentication.Strategy.MagicLink	authenticate by sending a single-use link to the user.

HTTP client settings
Most of the authentication strategies based on OAuth2 wrap the assent package.
If you needs to customize the behavior of the http client used by assent, define a custom http_adapter in the
application settings:
config :ash_authentication, :http_adapter, {Assent.HTTPAdapter.Finch, supervisor: MyApp.CustomFinch}
See assent's documentation for more details on the supported
http clients and their configuration.
Magic Link configuration
When using the MagicLink strategy, you can configure whether invalid
magic link tokens should return an error or an empty result. The current
default for backward compatibility is to return an empty result when a
token is invalid. However, this makes it difficult to distinguish between
a successful sign-in and a failed sign-in due to an invalid token.
To return an error when an invalid token is provided (recommended), set:
config :ash_authentication, return_error_on_invalid_magic_link_token?: true
This is especially important if you're using the AuditLog add-on, as it
ensures failed sign-in attempts are logged correctly. In the next major
version, returning an error will be the default behavior.
Add-ons
Add-ons are like strategies, except that they don't actually provide
authentication - they just provide features adjacent to authentication.
Current add-ons:
	AshAuthentication.AddOn.Confirmation	allows you to force the user to confirm changes using a confirmation
token (eg. sending a confirmation email when a new user registers).

	AshAuthentication.AddOn.LogOutEverywhere	allows you to revoke all of a user's tokens on sign out.

	AshAuthentication.AddOn.AuditLog	provides audit logging for other add-ons and strategies.

Supervisor
Some add-ons or strategies may require processes to be started which manage
their state over the lifetime of the application (eg periodically deleting
expired token revocations). Because of this you should add
{AshAuthentication.Supervisor, otp_app: :my_app} to your application's
supervision tree. See the Elixir
docs
for more information.
authentication
Configure authentication for this resource
Nested DSLs
	tokens
	strategies
	add_ons
	providers

Options
	Name	Type	Default	Docs
	subject_name	atom		The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).
	session_identifier	:error | :jti | :unsafe	:error	How to uniquely identify a session. Only necessary if require_token_presence_for_authentication? is not set to true. Should always be :jti, if set.
	domain	module		The name of the Ash domain to use to access this resource when doing anything authentication related.
	get_by_subject_action_name	atom	:get_by_subject	The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.
	select_for_senders	list(atom)		A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

authentication.tokens
Configure JWT settings for this resource
Options
	Name	Type	Default	Docs
	token_resource	module | false		The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.
	enabled?	boolean	false	Should JWTs be generated by this resource?
	store_all_tokens?	boolean	false	Store all tokens in the token_resource. See the tokens guide for more.
	require_token_presence_for_authentication?	boolean	false	Require a locally-stored token for authentication. See the tokens guide for more.
	signing_algorithm	String.t	"HS256"	The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{14, :days}	How long a token should be valid. See the tokens guide for more.
	signing_secret	(any, any -> any) | module | String.t		The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	extra_claims	(any, any -> any) | map		A 2-arity function (user, opts) -> claims_map or a static map of extra claims to include in tokens. See the tokens guide for more.

authentication.strategies
Configure authentication strategies on this resource
authentication.add_ons
Additional add-ons related to, but not providing authentication
authentication.providers
A DSL section for extensions to add authentication providers

 AshAuthentication.AddOn.Confirmation

Confirmation support.
Sometimes when creating a new user, or changing a sensitive attribute (such as
their email address) you may want to wait for the user to confirm by way of
sending them a confirmation token to prove that it was really them that took
the action.
In order to add confirmation to your resource, it must been the following
minimum requirements:
	Have a primary key
	Have at least one attribute you wish to confirm
	Tokens must be enabled

Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 add_ons do
 confirmation :confirm do
 monitor_fields [:email]
 sender MyApp.ConfirmationSender
 end
 end

 strategies do
 # ...
 end
 end

 identities do
 identity :email, [:email]
 end
end
Attributes
A confirmed_at attribute will be added to your resource if it's not already
present (see confirmed_at_field in the DSL documentation).
Actions
By default confirmation will add an action which updates the confirmed_at
attribute as well as retrieving previously stored changes and applying them to
the resource.
If you wish to perform the confirm action directly from your code you can do
so via the AshAuthentication.Strategy protocol.
Example
iex> strategy = Info.strategy!(Example.User, :confirm)
...> {:ok, user} = Strategy.action(strategy, :confirm, %{"confirm" => confirmation_token()})
...> user.confirmed_at >= one_second_ago()
true
Usage with AshAuthenticationPhoenix
If you are using AshAuthenticationPhoenix, and have require_interaction? set to true,
which you very much should, then you will need to add a confirm_route to your router. This
is placed in the same location as auth_routes, and should be provided the user and the
strategy name. For example:
Remove this if you do not want to use the confirmation strategy
confirm_route(
 MyApp.Accounts.User,
 :confirm_new_user,
 auth_routes_prefix: "/auth",
 overrides: [MyApp.AuthOverrides, AshAuthentication.Phoenix.Overrides.Default]
)
Plugs
Confirmation provides a single endpoint for the :confirm phase. If you wish
to interact with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Example
iex> strategy = Info.strategy!(Example.User, :confirm)
...> conn = conn(:get, "/user/confirm", %{"confirm" => confirmation_token()})
...> conn = Strategy.plug(strategy, :confirm, conn)
...> {_conn, {:ok, user}} = Plug.Helpers.get_authentication_result(conn)
...> user.confirmed_at >= one_second_ago()
true
authentication.add_ons.confirmation
confirmation name \\ :confirm
User confirmation flow
Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the add-on.

Options
	Name	Type	Default	Docs
	monitor_fields	list(atom)		A list of fields to monitor for changes. Confirmation will be sent when one of these fields are changed.
	sender	(any, any, any -> any) | module		How to send the confirmation instructions to the user.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{3, :days}	How long should the confirmation token be valid. If no unit is provided, then hours is assumed.
	prevent_hijacking?	boolean	true	Whether or not to prevent upserts over unconfirmed uers. See the confirmation guide for more.
	require_interaction?	boolean	false	Whether or not to require user interaction to confirm. If true, the confirmation URLs are changed to a POST request, and AshAuthenticationPhoenix will show a button to confirm when the page is visited
	confirmed_at_field	atom	:confirmed_at	The name of the field to store the time that the last confirmation took place. Created if it does not exist.
	confirm_on_create?	boolean	true	Generate and send a confirmation token when a new resource is created. Triggers when a create action is executed and one of the monitored fields is being set.
	confirm_on_update?	boolean	true	Generate and send a confirmation token when a resource is changed. Triggers when an update action is executed and one of the monitored fields is being set.
	inhibit_updates?	boolean	true	Whether or not to wait until confirmation is received before actually changing a monitored field. See the confirmation guide for more.
	auto_confirm_actions	list(atom)		A list of actions that should set confirmed_at to true automatically. For example, you would likely want to place :sign_in_with_magic_link in this list if using magic link.
	confirm_action_name	atom		The name of the action to use when performing confirmation. Will be created if it does not already exist. Defaults to the add-on name.

Introspection
Target: AshAuthentication.AddOn.Confirmation

 AshAuthentication.AddOn.LogOutEverywhere

Log out everywhere support.
Sometimes it's necessary to be able to invalidate all of a user's sessions
with a single action. This add-on provides this functionality.
In order to use this feature the following features must be enabled:
	Tokens must be enabled.
	The authentication.tokens.store_all_tokens? option is enabled.
	The authentication.tokens.require_token_presence_for_authentication?
option is enabled.
	For the apply_on_password_change? option, at least one password strategy
must be enabled.

Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 tokens do
 enabled? true
 store_all_tokens? true
 require_token_presence_for_authentication? true
 end

 add_ons do
 log_out_everywhere do
 apply_on_password_change? true
 end
 end
Actions
By default the add-on will add a log_out_everywhere action which reverts all
the existing non-expired tokens for the user in question.
Example
iex> strategy = Info.strategy!(Example.User, :log_out_everywhere)
...> {:ok, user} = Strategy.action(strategy, :log_out_everywhere, %{"user_id" => user_id()})
...> user.id == user_id()
true
authentication.add_ons.log_out_everywhere
log_out_everywhere name \\ :log_out_everywhere
Log out everywhere add-on
Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the add-on

Options
	Name	Type	Default	Docs
	action_name	atom	:log_out_everywhere	The name of the action to generate.
	argument_name	atom	:user	The name of the user argument to the :log_out_everywhere action.
	include_purposes	list(String.t)		Limit the list of token purposes for which tokens will be revoked to those in this list, except those in exclude_token_purposes.
	exclude_purposes	list(String.t)	["revocation"]	Don't revoke tokens with these purposes when logging a user out everywhere.
	apply_on_password_change?	boolean	false	Automatically log out all active sessions whenever a password is changed.

Introspection
Target: AshAuthentication.AddOn.LogOutEverywhere

 AshAuthentication.Strategy.ApiKey

Strategy for authenticating using an API key.
Security Considerations
Responsibility for generating, securing, expiring and revoking lies on the implementor.
If you are using API keys, you must ensure that your policies and application are set
up to prevent misuse of these keys. For example:
policy AshAuthentication.Checks.UsingApiKey do
 authorize_if action([:a, :list, :of, :allowed, :action, :names])
end
To detect that a user is signed in with an API key, you can see if
user.__metadata__[:using_api_key?] is set. If they are signed
in, then user.__metadata__[:api_key] will be set to the API key that they
used, allowing you to write policies that depend on the permissions granted
by the API key.
authentication.strategies.api_key
api_key name \\ :api_key
Strategy for authenticating using api keys
Options
	Name	Type	Default	Docs
	api_key_relationship	atom		The relationship from the user to their valid API keys.
	api_key_hash_attribute	atom	:api_key_hash	The attribute on the API key resource that contains the API key's hash.
	sign_in_action_name	atom		The name to use for the sign in action. Defaults to sign_in_with_<strategy_name>
	multitenancy_relationship	atom		The relationship from the API key to the issuing tenant, used to access the user resource. Defaults to global user resource.

Introspection
Target: AshAuthentication.Strategy.ApiKey

 AshAuthentication.Strategy.Apple

Strategy for authenticating using Apple Sign In
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Apple Sign In you need to provide the following minimum configuration:
	client_id
	team_id
	private_key_id
	private_key_path
	redirect_uri

More documentation:
	The Apple Sign In Documentation.
	The OIDC documentation

authentication.strategies.apple
apple name \\ :apple
Provides a pre-configured authentication strategy for Apple Sign In.
This strategy is built using the :oidc strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The Apple Sign In Documentation.
	The OIDC documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://appleid.apple.com".
	:openid_configuration is set to %{"authorization_endpoint" => "https://appleid.apple.com/auth/authorize", "issuer" => "https://appleid.apple.com", "jwks_uri" => "https://appleid.apple.com/auth/keys", "token_endpoint" => "https://appleid.apple.com/auth/token", "token_endpoint_auth_methods_supported" => ["client_secret_post"]}.
	:authorization_params is set to [scope: "email", response_mode: "form_post"].
	:client_authentication_method is set to "client_secret_post".
	:openid_default_scope is set to nil.

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	team_id	(any, any -> any) | module | String.t		The Apple team ID associated with the application.
	private_key_id	(any, any -> any) | module | String.t		The private key ID used for signing the JWT token.
	private_key_path	(any, any -> any) | module | String.t		The path to the private key file used for signing the JWT token.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	openid_configuration_uri	(any, any -> any) | module | String.t	"/.well-known/openid-configuration"	The URI for the OpenID provider
	id_token_signed_response_alg	"HS256" | "HS384" | "HS512" | "RS256" | "RS384" | "RS512" | "ES256" | "ES384" | "ES512" | "PS256" | "PS384" | "PS512" | "Ed25519" | "Ed25519ph" | "Ed448" | "Ed448ph" | "EdDSA"	"RS256"	The id_token_signed_response_alg parameter sent by the Client during Registration.
	id_token_ttl_seconds	nil | pos_integer		The number of seconds from iat that an ID Token will be considered valid.
	nonce	boolean | (any, any -> any) | module | String.t	true	A function for generating the session nonce, true to automatically generate it with AshAuthentication.Strategy.Oidc.NonceGenerator, or false to disable.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.Auth0

Strategy for authenticating using Auth0.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Auth0 you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

More documentation:
	The Auth0 Tutorial.
	The OAuth2 documentation

authentication.strategies.auth0
auth0 name \\ :auth0
Provides a pre-configured authentication strategy for Auth0.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The Auth0 Tutorial.
	The OAuth2 documentation

Strategy defaults:
The following defaults are applied:
	:authorization_params is set to [scope: "email profile"].
	:client_authentication_method is set to "client_secret_post".

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t		The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t		The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t		The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[scope: "email profile"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.Github

Strategy for authenticating using GitHub
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use GitHub you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

More documentation:
	The GitHub Tutorial.
	The OAuth2 documentation

authentication.strategies.github
github name \\ :github
Provides a pre-configured authentication strategy for GitHub.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The GitHub Tutorial.
	The OAuth2 documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://api.github.com".
	:authorize_url is set to "https://github.com/login/oauth/authorize".
	:token_url is set to "https://github.com/login/oauth/access_token".
	:user_url is set to "/user".
	:user_emails_url is set to "/user/emails".
	:authorization_params is set to [scope: "read:user,user:email"].
	:auth_method is set to :client_secret_post.

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t	"https://api.github.com"	The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t	"https://github.com/login/oauth/authorize"	The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t	"https://github.com/login/oauth/access_token"	The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t	"/user"	The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[scope: "read:user,user:email"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.Google

Strategy for authenticating using Google
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Google you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

As of Assent v0.3.0, the Google strategy uses OpenID Connect (OIDC) and
automatically retrieves configuration (token URL, user info URL, etc.)
from Google's discovery endpoint.
More documentation:
	The Google OpenID Connect Overview.
	The Google Tutorial
	The OIDC documentation

authentication.strategies.google
google name \\ :google
Provides a pre-configured authentication strategy for Google.
This strategy is built using the :oidc strategy, and automatically
retrieves configuration from Google's discovery endpoint.
More documentation:
	The Google OpenID Connect Overview.
	The Google Tutorial
	The OIDC documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://accounts.google.com/".
	:authorization_params is set to [scope: "email profile"].
	:client_authentication_method is set to "client_secret_post".

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t	"https://accounts.google.com/"	The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[scope: "email profile"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	openid_configuration_uri	(any, any -> any) | module | String.t	"/.well-known/openid-configuration"	The URI for the OpenID provider
	client_authentication_method	"client_secret_basic" | "client_secret_post" | "client_secret_jwt" | "private_key_jwt" | "none"	"client_secret_post"	The client authentication method to use.
	openid_configuration	nil | %{optional(String.t) => any}		The OpenID configuration. If not set, the configuration will be retrieved from openid_configuration_uri.
	id_token_signed_response_alg	"HS256" | "HS384" | "HS512" | "RS256" | "RS384" | "RS512" | "ES256" | "ES384" | "ES512" | "PS256" | "PS384" | "PS512" | "Ed25519" | "Ed25519ph" | "Ed448" | "Ed448ph" | "EdDSA"	"RS256"	The id_token_signed_response_alg parameter sent by the Client during Registration.
	id_token_ttl_seconds	nil | pos_integer		The number of seconds from iat that an ID Token will be considered valid.
	nonce	boolean | (any, any -> any) | module | String.t	true	A function for generating the session nonce, true to automatically generate it with AshAuthentication.Strategy.Oidc.NonceGenerator, or false to disable.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.MagicLink

Strategy for authentication using a magic link.
In order to use magic link authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email)
	Have tokens enabled.

There are other options documented in the DSL.
Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 magic_link do
 identity_field :email
 sender fn user_or_email, token, _opts ->
 # will be a user if the token relates to an existing user
 # will be an email if there is no matching user (such as during sign up)
 # opts will contain the `tenant` key, use this if you need to alter the link based
 # on the tenant that requested the token
 MyApp.Emails.deliver_magic_link(user_or_email, token)
 end
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Tenancy
Note that the tenant is provided to the sender in the opts key. Use this if you need
to modify the url (i.e tenant.app.com) based on the tenant that requested the token.
Actions
By default the magic link strategy will automatically generate the request and
sign-in actions for you, however you're free to define them yourself. If you
do, then the action will be validated to ensure that all the needed
configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.
Examples
Requesting that a magic link token is sent for a user:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> Strategy.action(strategy, :request, %{"username" => user.username})
:ok
Signing in using a magic link token:
...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> {:ok, signed_in_user} = Strategy.action(strategy, :sign_in, %{"token" => token})
...> signed_in_user.id == user
true
Usage with AshAuthenticationPhoenix
If you are using AshAuthenticationPhoenix, and have require_authentication? set to true, which you very much should, then you will need to add a magic_sign_in_route to your router. This is placed in the same location as auth_routes, and should be provided the user and the strategy name. For example:
Remove this if you do not want to use the magic link strategy
magic_sign_in_route(
 MyApp.Accounts.User,
 :sign_in,
 auth_routes_prefix: "/auth",
 overrides: [MyApp.AuthOverrides, AshAuthentication.Phoenix.Overrides.Default]
)
Plugs
The magic link strategy provides plug endpoints for both request and sign-in
actions.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Examples:
Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> conn = conn(:post, "/user/magic_link/request", %{"user" => %{"username" => user.username}})
...> conn = Strategy.plug(strategy, :request, conn)
...> {_conn, {:ok, nil}} = Plug.Helpers.get_authentication_result(conn)

...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> conn = conn(:get, "/user/magic_link", %{"token" => token})
...> conn = Strategy.plug(strategy, :sign_in, conn)
...> {_conn, {:ok, signed_in_user}} = Plug.Helpers.get_authentication_result(conn)
...> signed_in_user.id == user.id
true
See the Magic Link Tutorial for more information.
authentication.strategies.magic_link
magic_link name \\ :magic_link
Strategy for authenticating using local users with a magic link
Options
	Name	Type	Default	Docs
	sender	(any, any, any -> any) | module		How to send the magic link to the user.
	identity_field	atom	:username	The name of the attribute which uniquely identifies the user, usually something like username or email_address.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{10, :minutes}	How long the sign in token is valid. If no unit is provided, then minutes is assumed.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	require_interaction?	boolean	false	Whether or not to require user interaction to sign in. If true, the magic link URLs are changed to a POST request, and AshAuthenticationPhoenix will show a button to confirm when the page is visited
	request_action_name	atom		The name to use for the request action. Defaults to request_<strategy_name>
	lookup_action_name	atom		The action to use when looking up a user by their identity. Defaults to get_by_<identity_field>
	extra_claims	(any, any, any, any -> any)		A function that receives the user, strategy, magic link claims, and preparation context and returns a map of extra claims to include in the user's authenticated JWT.
	single_use_token?	boolean	true	Automatically revoke the token once it's been used for sign in.
	registration_enabled?	boolean		Allows registering via magic link. Signing in with magic link becomes an upsert action instead of a read action.
	sign_in_action_name	atom		The name to use for the sign in action. Defaults to sign_in_with_<strategy_name>
	token_param_name	atom	:token	The name of the token parameter in the incoming sign-in request.

Introspection
Target: AshAuthentication.Strategy.MagicLink

 AshAuthentication.Strategy.OAuth2

Strategy for authenticating using any OAuth 2.0 server as the source of truth.
This authentication strategy provides registration and sign-in for users using a
remote OAuth 2.0 server as the source of truth. You
will be required to provide either a "register" or a "sign-in" action depending
on your configuration, which the strategy will attempt to validate for common
misconfigurations.
This strategy wraps the excellent assent
package, which provides OAuth 2.0 capabilities.
In order to use OAuth 2.0 authentication on your resource, it needs to meet
the following minimum criteria:
	Have a primary key.
	Provide a strategy-specific action, either register or sign-in.
	Provide configuration for OAuth2 destinations, secrets, etc.

Example:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 oauth2 :example do
 client_id "OAuth Client ID"
 redirect_uri "https://my.app/"
 client_secret "My Super Secret Secret"
 site "https://auth.example.com/"
 end
 end
 end
end
Secrets and runtime configuration
In order to use OAuth 2.0 you need to provide a varying number of secrets and
other configuration which may change based on runtime environment. The
AshAuthentication.Secret behaviour is provided to accommodate this. This
allows you to provide configuration either directly on the resource (ie as a
string), as an anonymous function, or as a module.
Warning
We strongly urge you not to share actual secrets in your code or
repository.
Examples:
Providing configuration as an anonymous function:
oauth2 do
 client_secret fn _path, resource ->
 Application.fetch_env(:my_app, resource, :oauth2_client_secret)
 end
end
Providing configuration as a module:
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :example, :client_secret], MyApp.User, _opts), do: Application.fetch_env(:my_app, :oauth2_client_secret)
end

and in your strategies:

oauth2 :example do
 client_secret MyApp.Secrets
end
User identities
Because your users can be signed in via multiple providers at once, you can
specify an identity_resource in the DSL configuration which points to a
seperate Ash resource which has the AshAuthentication.UserIdentity extension
present. This resource will be used to store details of the providers in use
by each user and a relationship will be added to the user resource.
Setting the identity_resource will cause extra validations to be applied to
your resource so that changes are tracked correctly on sign-in or
registration.
Actions
When using an OAuth 2.0 provider you need to declare either a "register" or
"sign-in" action. The reason for this is that it's not possible for us to
know ahead of time how you want to manage the link between your user resources
and the "user info" provided by the OAuth server.
Both actions receive the following two arguments:
	user_info - a map with string keys containing the OpenID Successful
UserInfo
response.
Usually this will be used to populate your email, nickname or other
identifying field.
	oauth_tokens a map with string keys containing the OpenID Successful
Token
response
(or similar).

The actions themselves can be interacted with directly via the
AshAuthentication.Strategy protocol, but you are more likely to interact
with them via the web/plugs.
Sign-in
The sign-in action is called when a successful OAuth2 callback is received.
You should use it to constrain the query to the correct user based on the
arguments provided.
This action is only needed when the registration_enabled? DSL settings is
set to false.
Registration
The register action is a little more complicated than the sign-in action,
because we cannot tell the difference between a new user and a returning user
(they all use the same OAuth flow). In order to handle this your register
action must be defined as an upsert with a configured upsert_identity (see
example below).
Examples:
Providing sign-in to users who already exist in the database (and by extension
rejecting new users):
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 read :sign_in_with_example do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 prepare AshAuthentication.Strategy.OAuth2.SignInPreparation

 filter expr(email == get_path(^arg(:user_info), [:email]))
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 registration_enabled? false
 end
 end
 end
end
Providing registration or sign-in to all comers:
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 create :register_with_oauth2 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :email

 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 changeset
 |> Ash.Changeset.change_attribute(:email, user_info["email"])
 end
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 end
 end
 end
end
Plugs
OAuth 2.0 is (usually) a browser-based flow. This means that you're most
likely to interact with this strategy via it's plugs. There are two phases to
authentication with OAuth 2.0:
	The request phase, where the user's browser is redirected to the remote
authentication provider for authentication.
	The callback phase, where the provider redirects the user back to your app
to create a local database record, session, etc.

authentication.strategies.oauth2
oauth2 name \\ :oauth2
OAuth2 authentication
Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	authorize_url	(any, any -> any) | module | String.t		The API url to the OAuth2 authorize endpoint, relative to site, e.g authorize_url fn _, _ -> {:ok, "https://exampe.com/authorize"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	token_url	(any, any -> any) | module | String.t		The API url to access the token endpoint, relative to site, e.g token_url fn _, _ -> {:ok, "https://example.com/oauth_token"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	user_url	(any, any -> any) | module | String.t		The API url to access the user endpoint, relative to site, e.g user_url fn _, _ -> {:ok, "https://example.com/userinfo"} end. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	icon	atom	:oauth2	The name of an icon to use in any potential UI. This is a hint for UI generators to use, and not in any way canonical.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.Oidc

Strategy for authentication using an OpenID
Connect compatible server as the source of
truth.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use OIDC you need to provide the following minimum configuration:
	client_id - The client id, required
	site - The OIDC issuer, required
	openid_configuration_uri - The URI for OpenID Provider, optional, defaults
to /.well-known/openid-configuration
	client_authentication_method - The Client Authentication method to use,
optional, defaults to client_secret_basic
	client_secret - The client secret, required if
:client_authentication_method is :client_secret_basic,
:client_secret_post, or :client_secret_jwt
	openid_configuration - The OpenID configuration, optional, the
configuration will be fetched from :openid_configuration_uri if this is
not defined
	id_token_signed_response_alg - The id_token_signed_response_alg
parameter sent by the Client during Registration, defaults to RS256
	id_token_ttl_seconds - The number of seconds from iat that an ID Token
will be considered valid, optional, defaults to nil
	nonce - The nonce to use for authorization request, optional, MUST be
session based and unguessable.

Nonce
nonce can be set in the provider config. The nonce will be returned in the
session_params along with state. You can use this to store the value in
the current session e.g. a httpOnly session cookie.
A random value generator can look like this:
16
|> :crypto.strong_rand_bytes()
|> Base.encode64(padding: false)
AshAuthentication will dynamically generate one for the session if nonce is
set to true.
More documentation:
	The OAuth2 documentation

authentication.strategies.oidc
oidc name \\ :oidc
Provides an OpenID Connect authentication strategy.
This strategy is built using the :oauth2 strategy, and thus provides
all the same configuration options should you need them.
More documentation:
	The OAuth2 documentation

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	base_url	(any, any -> any) | module | String.t		The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	openid_configuration_uri	(any, any -> any) | module | String.t	"/.well-known/openid-configuration"	The URI for the OpenID provider
	client_authentication_method	"client_secret_basic" | "client_secret_post" | "client_secret_jwt" | "private_key_jwt" | "none"	"client_secret_basic"	The client authentication method to use.
	openid_configuration	nil | %{optional(String.t) => any}		The OpenID configuration. If not set, the configuration will be retrieved from openid_configuration_uri.
	id_token_signed_response_alg	"HS256" | "HS384" | "HS512" | "RS256" | "RS384" | "RS512" | "ES256" | "ES384" | "ES512" | "PS256" | "PS384" | "PS512" | "Ed25519" | "Ed25519ph" | "Ed448" | "Ed448ph" | "EdDSA"	"RS256"	The id_token_signed_response_alg parameter sent by the Client during Registration.
	id_token_ttl_seconds	nil | pos_integer		The number of seconds from iat that an ID Token will be considered valid.
	nonce	boolean | (any, any -> any) | module | String.t	true	A function for generating the session nonce, true to automatically generate it with AshAuthentication.Strategy.Oidc.NonceGenerator, or false to disable.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.Strategy.Password

Strategy for authenticating using local resources as the source of truth.
In order to use password authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email).
	A sensitive string field within which to store the hashed password.

There are other options documented in the DSL.
Example:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Actions
By default the password strategy will automatically generate the register,
sign-in, reset-request and reset actions for you, however you're free to
define them yourself. If you do, then the action will be validated to ensure
that all the needed configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.
Examples:
Interacting with the actions directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> {:ok, marty} = Strategy.action(strategy, :register, %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"})
...> marty.username |> to_string()
"marty"

...> {:ok, user} = Strategy.action(strategy, :sign_in, %{"username" => "marty", "password" => "outatime1985"})
...> user.username |> to_string()
"marty"
Plugs
The password strategy provides plug endpoints for all four actions, although
only sign-in and register will be reported by Strategy.routes/1 if the
strategy is not configured as resettable.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Examples:
Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> conn = conn(:post, "/user/password/register", %{"user" => %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"}})
...> conn = Strategy.plug(strategy, :register, conn)
...> {_conn, {:ok, marty}} = Plug.Helpers.get_authentication_result(conn)
...> marty.username |> to_string()
"marty"

...> conn = conn(:post, "/user/password/reset_request", %{"user" => %{"username" => "marty"}})
...> conn = Strategy.plug(strategy, :reset_request, conn)
...> {_conn, :ok} = Plug.Helpers.get_authentication_result(conn)
Testing
See the Testing guide for tips on testing resources using this strategy.
authentication.strategies.password
password name \\ :password
Strategy for authenticating using local resources as the source of truth.
Nested DSLs
	resettable

Examples
password :password do
 identity_field :email
 hashed_password_field :hashed_password
 hash_provider AshAuthentication.BcryptProvider
 confirmation_required? true
end

Options
	Name	Type	Default	Docs
	identity_field	atom	:username	The name of the attribute which uniquely identifies the user, usually something like username or email_address.
	hashed_password_field	atom	:hashed_password	The name of the attribute within which to store the user's password once it has been hashed.
	hash_provider	module	AshAuthentication.BcryptProvider	A module which implements the AshAuthentication.HashProvider behaviour, to provide cryptographic hashing of passwords.
	confirmation_required?	boolean	true	Whether a password confirmation field is required when registering or changing passwords.
	register_action_accept	list(atom)	[]	A list of additional fields to be accepted in the register action.
	password_field	atom	:password	The name of the argument used to collect the user's password in plaintext when registering, checking or changing passwords.
	password_confirmation_field	atom	:password_confirmation	The name of the argument used to confirm the user's password in plaintext when registering or changing passwords.
	register_action_name	atom		The name to use for the register action. Defaults to register_with_<strategy_name>
	registration_enabled?	boolean	true	If you do not want new users to be able to register using this strategy, set this to false.
	sign_in_action_name	atom		The name to use for the sign in action. Defaults to sign_in_with_<strategy_name>
	sign_in_enabled?	boolean	true	If you do not want new users to be able to sign in using this strategy, set this to false.
	sign_in_tokens_enabled?	boolean	true	Whether or not to support generating short lived sign in tokens. Requires the resource to have tokens enabled.
	sign_in_token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{60, :seconds}	A lifetime for which a generated sign in token will be valid, if sign_in_tokens_enabled?. Unit defaults to :seconds.
	sign_in_with_token_action_name	atom	:sign_in_with_token	The name to use for the sign in action.
	require_confirmed_with	atom | nil		The field that must be non-nil for a user to be allowed to log in. If unset or nil, no confirmation check will be enforced.

authentication.strategies.password.resettable
Configure password reset options for the resource
Options
	Name	Type	Default	Docs
	sender	(any, any, any -> any) | module		The sender to use when sending password reset instructions.
	token_lifetime	pos_integer | {pos_integer, :days | :hours | :minutes | :seconds}	{3, :days}	How long should the reset token be valid. If no unit is provided :hours is assumed.
	request_password_reset_action_name	atom		The name to use for the action which generates a password reset token. Defaults to request_password_reset_with_<strategy_name>.
	password_reset_action_name	atom		The name to use for the action which actually resets the user's password. Defaults to password_reset_with_<strategy_name>.

Introspection
Target: AshAuthentication.Strategy.Password.Resettable
Introspection
Target: AshAuthentication.Strategy.Password

 AshAuthentication.Strategy.Slack

Strategy for authenticating using Slack
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Slack you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

More documentation:
	The Slack Tutorial.
	The OIDC documentation

authentication.strategies.slack
slack name \\ :slack
Provides a pre-configured authentication strategy for Slack.
This strategy is built using the :oauth2 strategy, and thus provides all the same
configuration options should you need them.
More documentation:
	The Slack Tutorial.
	The OIDC documentation

Strategy defaults:
The following defaults are applied:
	:base_url is set to "https://slack.com".
	:authorization_params is set to [scope: "openid email profile"].
	:client_authentication_method is set to "client_secret_post".

Arguments
	Name	Type	Default	Docs
	name	atom		Uniquely identifies the strategy.

Options
	Name	Type	Default	Docs
	client_id	(any, any -> any) | module | String.t		The OAuth2 client ID. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	redirect_uri	(any, any -> any) | module | String.t		The callback URI base. Not the whole URI back to the callback endpoint, but the URI to your AuthPlug. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	team_id	(any, any -> any) | module | String.t		The team id to restrict authorization for.
	base_url	(any, any -> any) | module | String.t	"https://slack.com"	The base URL of the OAuth2 server - including the leading protocol (ie https://). Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	site	(any, any -> any) | module | String.t		Deprecated: Use base_url instead.
	prevent_hijacking?	boolean	true	Requires a confirmation add_on to be present if the password strategy is used with the same identity_field.
	auth_method	nil | :client_secret_basic | :client_secret_post | :client_secret_jwt | :private_key_jwt	:client_secret_post	The authentication strategy used, optional. If not set, no authentication will be used during the access token request.
	client_secret	(any, any -> any) | module | String.t		The OAuth2 client secret. Required if :auth_method is :client_secret_basic, :client_secret_post or :client_secret_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	trusted_audiences	(any, any -> any) | module | list(any) | nil		A list of audiences which are trusted. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	private_key	(any, any -> any) | module | String.t		The private key to use if :auth_method is :private_key_jwt. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.
	code_verifier	boolean	false	Boolean to generate and use a random 128 byte long url safe code verifier for PKCE flow, optional, defaults to false. When set to true the session params will contain :code_verifier, :code_challenge, and :code_challenge_method params
	authorization_params	(any, any -> any) | module | keyword | nil	[scope: "openid email profile"]	Any additional parameters to encode in the request phase. eg: authorization_params scope: "openid profile email"
	registration_enabled?	boolean	true	If enabled, new users will be able to register for your site when authenticating and not already present. If not, only existing users will be able to authenticate.
	register_action_name	atom		The name of the action to use to register a user, if registration_enabled? is true. Defaults to register_with_<name> See the "Registration and Sign-in" section of the strategy docs for more.
	sign_in_action_name	atom		The name of the action to use to sign in an existing user, if sign_in_enabled? is true. Defaults to sign_in_with_<strategy>, which is generated for you by default. See the "Registration and Sign-in" section of the strategy docs for more information.
	identity_resource	module | false	false	The resource used to store user identities, or false to disable. See the User Identities section of the strategy docs for more.
	identity_relationship_name	atom	:identities	Name of the relationship to the provider identities resource
	identity_relationship_user_id_attribute	atom	:user_id	The name of the destination (user_id) attribute on your provider identity resource. Only necessary if you've changed the user_id_attribute_name option of the provider identity.
	openid_configuration_uri	(any, any -> any) | module | String.t	"/.well-known/openid-configuration"	The URI for the OpenID provider
	client_authentication_method	"client_secret_basic" | "client_secret_post" | "client_secret_jwt" | "private_key_jwt" | "none"	"client_secret_post"	The client authentication method to use.
	openid_configuration	nil | %{optional(String.t) => any}		The OpenID configuration. If not set, the configuration will be retrieved from openid_configuration_uri.
	id_token_signed_response_alg	"HS256" | "HS384" | "HS512" | "RS256" | "RS384" | "RS512" | "ES256" | "ES384" | "ES512" | "PS256" | "PS384" | "PS512" | "Ed25519" | "Ed25519ph" | "Ed448" | "Ed448ph" | "EdDSA"	"RS256"	The id_token_signed_response_alg parameter sent by the Client during Registration.
	id_token_ttl_seconds	nil | pos_integer		The number of seconds from iat that an ID Token will be considered valid.
	nonce	boolean | (any, any -> any) | module | String.t	true	A function for generating the session nonce, true to automatically generate it with AshAuthentication.Strategy.Oidc.NonceGenerator, or false to disable.

Introspection
Target: AshAuthentication.Strategy.OAuth2

 AshAuthentication.TokenResource

This is an Ash resource extension which generates the default token resource.
The token resource is used to store information about tokens that should not
be shared with the end user. It does not actually contain any tokens.
For example:
	When an authentication token has been revoked
	When a confirmation token has changes to apply

Storage
The information stored in this resource is essentially ephemeral - all tokens
have an expiry date, so it doesn't make sense to keep them after that time has
passed. However, if you have any tokens with very long expiry times then we
suggest you store this resource in a resilient data-layer such as Postgres.
Usage
There is no need to define any attributes or actions (although you can if you
want). The extension will wire up everything that's needed for the token
system to function.
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end
end
Whilst it is possible to have multiple token resources, there is no need to do
so.
Removing expired records
Once a token has expired there's no point in keeping the information it refers
to, so expired tokens can be automatically removed by adding the
AshAuthentication.Supervisor to your application supervision tree. This
will start the AshAuthentication.TokenResource.Expunger GenServer which
periodically scans and removes any expired records.
token
Configuration options for this token resource
Nested DSLs
	revocation
	confirmation

Options
	Name	Type	Default	Docs
	domain	module		The Ash domain to use to access this resource.
	created_at_attribute_name	atom	:created_at	The name of the created_at attribute on this resource.
	expunge_expired_action_name	atom	:expunge_expired	The name of the action used to remove expired tokens.
	read_expired_action_name	atom	:read_expired	The name of the action use to find all expired tokens.
	expunge_interval	pos_integer	12	How often (in hours) to scan this resource for records which have expired and thus can be removed.
	store_token_action_name	atom	:store_token	The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.
	get_token_action_name	atom	:get_token	The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.
	endpoints	module | list(module)	[]	The list of the endpoints where we will propagate the disconnect notification, when the user logs out or triggers log out from all devices.
	live_socket_id_template	(any -> any)		A function that receives a map containing %{jti: jti} and returns the live socket ID string. Additional keys may be added in future versions.

token.revocation
Configuration options for token revocation
Options
	Name	Type	Default	Docs
	revoke_token_action_name	atom	:revoke_token	The name of the action used to revoke tokens.
	revoke_jti_action_name	atom	:revoke_jti	The name of the action used to revoke jtis.
	revoke_all_stored_for_subject_action_name	atom	:revoke_all_stored_for_subject	The name of the action used to revoke all stored tokens for a given subject.
	is_revoked_action_name	atom	:revoked?	The name of the action used to check if a token is revoked.

token.confirmation
Configuration options for confirmation tokens
Options
	Name	Type	Default	Docs
	store_changes_action_name	atom	:store_confirmation_changes	The name of the action used to store confirmation changes.
	get_changes_action_name	atom	:get_confirmation_changes	The name of the action used to get confirmation changes.

 AshAuthentication.UserIdentity

An Ash extension which generates the default user identities resource.
If you plan to support multiple different strategies at once (eg giving your
users the choice of more than one authentication provider, or signing them into
multiple services simultaneously) then you will want to create a resource with
this extension enabled. It is used to keep track of the links between your
local user records and their many remote identities.
The user identities resource is used to store information returned by remote
authentication strategies (such as those provided by OAuth2) and maps them to
your user resource(s). This provides the following benefits:
	A user can be signed in to multiple authentication strategies at once.
	For those providers that support it, AshAuthentication can handle
automatic refreshing of tokens.

Storage
User identities are expected to be relatively long-lived (although they're
deleted on log out), so should probably be stored using a permanent data layer
such as ash_postgres.
Usage
There is no need to define any attributes, etc. The extension will generate
them all for you. As there is no other use-case for this resource it's
unlikely that you will need to customise it.
defmodule MyApp.Accounts.UserIdentity do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.UserIdentity],
 domain: MyApp.Accounts

 user_identity do
 user_resource MyApp.Accounts.User
 end

 postgres do
 table "user_identities"
 repo MyApp.Repo
 end
end
If you intend to operate with multiple user resources, you will need to define
multiple user identity resources.
user_identity
Configure identity options for this resource
Options
	Name	Type	Default	Docs
	user_resource	module		The user resource to which these identities belong.
	domain	module		The Ash domain to use to access this resource.
	uid_attribute_name	atom	:uid	The name of the uid attribute on this resource.
	strategy_attribute_name	atom	:strategy	The name of the strategy attribute on this resource.
	user_id_attribute_name	atom	:user_id	The name of the user_id attribute on this resource.
	access_token_attribute_name	atom	:access_token	The name of the access_token attribute on this resource.
	access_token_expires_at_attribute_name	atom	:access_token_expires_at	The name of the access_token_expires_at attribute on this resource.
	refresh_token_attribute_name	atom	:refresh_token	The name of the refresh_token attribute on this resource.
	upsert_action_name	atom	:upsert	The name of the action used to create and update records.
	destroy_action_name	atom	:destroy	The name of the action used to destroy records.
	read_action_name	atom	:read	The name of the action used to query identities.
	user_relationship_name	atom	:user	The name of the belongs-to relationship between identities and users.

AshAuthentication

AshAuthentication provides a turn-key authentication solution for folks using
Ash.
Usage
This package assumes that you have Ash installed and
configured. See the Ash documentation for details.
Once installed you can easily add support for authentication by configuring
the AshAuthentication extension on your resource:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
If you plan on providing authentication via the web, then you will need to
define a plug using AshAuthentication.Plug which builds a Plug.Router that
routes incoming authentication requests to the correct provider and provides
callbacks for you to manipulate the conn after success or failure.
If you're using AshAuthentication with Phoenix, then check out
ash_authentication_phoenix
which provides route helpers, a controller abstraction and LiveView components
for easy set up.
Authentication Strategies
Currently supported strategies:
	AshAuthentication.Strategy.Password	authenticate users against your local database using a unique identity
(such as username or email address) and a password.

	AshAuthentication.Strategy.OAuth2	authenticate using local or remote OAuth 2.0 compatible services.
	also includes:	AshAuthentication.Strategy.Apple
	AshAuthentication.Strategy.Auth0
	AshAuthentication.Strategy.Github
	AshAuthentication.Strategy.Google
	AshAuthentication.Strategy.Oidc
	AshAuthentication.Strategy.Slack

	AshAuthentication.Strategy.MagicLink	authenticate by sending a single-use link to the user.

HTTP client settings
Most of the authentication strategies based on OAuth2 wrap the assent package.
If you needs to customize the behavior of the http client used by assent, define a custom http_adapter in the
application settings:
config :ash_authentication, :http_adapter, {Assent.HTTPAdapter.Finch, supervisor: MyApp.CustomFinch}
See assent's documentation for more details on the supported
http clients and their configuration.
Magic Link configuration
When using the MagicLink strategy, you can configure whether invalid
magic link tokens should return an error or an empty result. The current
default for backward compatibility is to return an empty result when a
token is invalid. However, this makes it difficult to distinguish between
a successful sign-in and a failed sign-in due to an invalid token.
To return an error when an invalid token is provided (recommended), set:
config :ash_authentication, return_error_on_invalid_magic_link_token?: true
This is especially important if you're using the AuditLog add-on, as it
ensures failed sign-in attempts are logged correctly. In the next major
version, returning an error will be the default behavior.
Add-ons
Add-ons are like strategies, except that they don't actually provide
authentication - they just provide features adjacent to authentication.
Current add-ons:
	AshAuthentication.AddOn.Confirmation	allows you to force the user to confirm changes using a confirmation
token (eg. sending a confirmation email when a new user registers).

	AshAuthentication.AddOn.LogOutEverywhere	allows you to revoke all of a user's tokens on sign out.

	AshAuthentication.AddOn.AuditLog	provides audit logging for other add-ons and strategies.

Supervisor
Some add-ons or strategies may require processes to be started which manage
their state over the lifetime of the application (eg periodically deleting
expired token revocations). Because of this you should add
{AshAuthentication.Supervisor, otp_app: :my_app} to your application's
supervision tree. See the Elixir
docs
for more information.

 Summary

 Types

 resource_config()

 subject()

 Functions

 add_token_claims(changeset, claims)

 Add extra claims to be included in the generated token.

 authenticated_resources(otp_app)

 Find all resources which support authentication for a given OTP application.

 authentication(body)

 do_subject_to_user(subject, resource, options)

 subject_to_user(subject, resource, options \\ [])

 Given a subject string, attempt to retrieve a user record.

 user_to_subject(record)

 Return a subject string for user.

 Types

 resource_config()

 @type resource_config() :: %{
 domain: module(),
 providers: [module()],
 resource: module(),
 subject_name: atom()
}

 subject()

 @type subject() :: String.t()

 Functions

 add_token_claims(changeset, claims)

 @spec add_token_claims(Ash.Changeset.t() | Ash.Query.t() | Ash.ActionInput.t(), map()) ::
 Ash.Changeset.t() | Ash.Query.t() | Ash.ActionInput.t()

Add extra claims to be included in the generated token.
Works with changesets, queries, and action inputs.
Examples
For create actions (like registration):
create :register_with_password do
 # ...
 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 AshAuthentication.add_token_claims(changeset, %{"session_type" => "web"})
 end
end
For read actions (like sign-in):
MyApp.User
|> Ash.Query.for_read(:sign_in_with_password, %{email: email, password: password})
|> AshAuthentication.add_token_claims(%{"session_type" => "api"})
|> Ash.read_one!()
These claims will be merged with any claims configured via the extra_claims
DSL option, with action-level claims taking precedence.

 authenticated_resources(otp_app)

 @spec authenticated_resources(atom() | [atom()]) :: [Ash.Resource.t()]

Find all resources which support authentication for a given OTP application.
Returns a list of resource modules.

 authentication(body)

 (macro)

 do_subject_to_user(subject, resource, options)

 subject_to_user(subject, resource, options \\ [])

 @spec subject_to_user(subject() | URI.t(), Ash.Resource.t(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Given a subject string, attempt to retrieve a user record.
iex> %{id: user_id} = build_user()
...> {:ok, %{id: ^user_id}} = subject_to_user("user?id=#{user_id}", Example.User)
Any options passed will be passed to the underlying Domain.read/2 callback.

 user_to_subject(record)

 @spec user_to_subject(Ash.Resource.record()) :: subject()

Return a subject string for user.
This is done by concatenating the resource's subject name with the resource's
primary key field(s) to generate a uri-like string.
Example:
iex> build_user(id: "ce7969f9-afa5-474c-bc52-ac23a103cef6") |> user_to_subject()
"user?id=ce7969f9-afa5-474c-bc52-ac23a103cef6"

AshAuthentication.TokenResource

This is an Ash resource extension which generates the default token resource.
The token resource is used to store information about tokens that should not
be shared with the end user. It does not actually contain any tokens.
For example:
	When an authentication token has been revoked
	When a confirmation token has changes to apply

Storage
The information stored in this resource is essentially ephemeral - all tokens
have an expiry date, so it doesn't make sense to keep them after that time has
passed. However, if you have any tokens with very long expiry times then we
suggest you store this resource in a resilient data-layer such as Postgres.
Usage
There is no need to define any attributes or actions (although you can if you
want). The extension will wire up everything that's needed for the token
system to function.
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 postgres do
 table "tokens"
 repo MyApp.Repo
 end
end
Whilst it is possible to have multiple token resources, there is no need to do
so.
Removing expired records
Once a token has expired there's no point in keeping the information it refers
to, so expired tokens can be automatically removed by adding the
AshAuthentication.Supervisor to your application supervision tree. This
will start the AshAuthentication.TokenResource.Expunger GenServer which
periodically scans and removes any expired records.

 Summary

 Functions

 expunge_expired(resource, opts \\ [])

 Remove all expired records.

 jti_revoked?(resource, jti, opts \\ [])

 Has the token been revoked?

 revoke(resource, token, opts \\ [])

 Revoke a token.

 token(body)

 token_revoked?(resource, token, opts \\ [])

 Has the token been revoked?

 Functions

 expunge_expired(resource, opts \\ [])

 @spec expunge_expired(
 Ash.Resource.t(),
 keyword()
) :: :ok | {:error, any()}

Remove all expired records.

 jti_revoked?(resource, jti, opts \\ [])

 @spec jti_revoked?(Ash.Resource.t(), String.t(), keyword()) :: boolean()

Has the token been revoked?
Similar to token-revoked?/2..3 except that rather than extracting the JTI
from the token, assumes that it's being passed in directly.

 revoke(resource, token, opts \\ [])

 @spec revoke(Ash.Resource.t(), String.t(), keyword()) :: :ok | {:error, any()}

Revoke a token.
Extracts the JTI from the provided token and uses it to generate a revocation
record.

 token(body)

 (macro)

 token_revoked?(resource, token, opts \\ [])

 @spec token_revoked?(Ash.Resource.t(), String.t(), keyword()) :: boolean()

Has the token been revoked?
Similar to jti_revoked?/2..3 except that it extracts the JTI from the token,
rather than relying on it to be passed in.

AshAuthentication.UserIdentity

An Ash extension which generates the default user identities resource.
If you plan to support multiple different strategies at once (eg giving your
users the choice of more than one authentication provider, or signing them into
multiple services simultaneously) then you will want to create a resource with
this extension enabled. It is used to keep track of the links between your
local user records and their many remote identities.
The user identities resource is used to store information returned by remote
authentication strategies (such as those provided by OAuth2) and maps them to
your user resource(s). This provides the following benefits:
	A user can be signed in to multiple authentication strategies at once.
	For those providers that support it, AshAuthentication can handle
automatic refreshing of tokens.

Storage
User identities are expected to be relatively long-lived (although they're
deleted on log out), so should probably be stored using a permanent data layer
such as ash_postgres.
Usage
There is no need to define any attributes, etc. The extension will generate
them all for you. As there is no other use-case for this resource it's
unlikely that you will need to customise it.
defmodule MyApp.Accounts.UserIdentity do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.UserIdentity],
 domain: MyApp.Accounts

 user_identity do
 user_resource MyApp.Accounts.User
 end

 postgres do
 table "user_identities"
 repo MyApp.Repo
 end
end
If you intend to operate with multiple user resources, you will need to define
multiple user identity resources.

 Summary

 Functions

 user_identity(body)

 Functions

 user_identity(body)

 (macro)

AshAuthentication.AddOn.Confirmation

Confirmation support.
Sometimes when creating a new user, or changing a sensitive attribute (such as
their email address) you may want to wait for the user to confirm by way of
sending them a confirmation token to prove that it was really them that took
the action.
In order to add confirmation to your resource, it must been the following
minimum requirements:
	Have a primary key
	Have at least one attribute you wish to confirm
	Tokens must be enabled

Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 add_ons do
 confirmation :confirm do
 monitor_fields [:email]
 sender MyApp.ConfirmationSender
 end
 end

 strategies do
 # ...
 end
 end

 identities do
 identity :email, [:email]
 end
end
Attributes
A confirmed_at attribute will be added to your resource if it's not already
present (see confirmed_at_field in the DSL documentation).
Actions
By default confirmation will add an action which updates the confirmed_at
attribute as well as retrieving previously stored changes and applying them to
the resource.
If you wish to perform the confirm action directly from your code you can do
so via the AshAuthentication.Strategy protocol.
Example
iex> strategy = Info.strategy!(Example.User, :confirm)
...> {:ok, user} = Strategy.action(strategy, :confirm, %{"confirm" => confirmation_token()})
...> user.confirmed_at >= one_second_ago()
true
Usage with AshAuthenticationPhoenix
If you are using AshAuthenticationPhoenix, and have require_interaction? set to true,
which you very much should, then you will need to add a confirm_route to your router. This
is placed in the same location as auth_routes, and should be provided the user and the
strategy name. For example:
Remove this if you do not want to use the confirmation strategy
confirm_route(
 MyApp.Accounts.User,
 :confirm_new_user,
 auth_routes_prefix: "/auth",
 overrides: [MyApp.AuthOverrides, AshAuthentication.Phoenix.Overrides.Default]
)
Plugs
Confirmation provides a single endpoint for the :confirm phase. If you wish
to interact with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Example
iex> strategy = Info.strategy!(Example.User, :confirm)
...> conn = conn(:get, "/user/confirm", %{"confirm" => confirmation_token()})
...> conn = Strategy.plug(strategy, :confirm, conn)
...> {_conn, {:ok, user}} = Plug.Helpers.get_authentication_result(conn)
...> user.confirmed_at >= one_second_ago()
true

 Summary

 Types

 t()

 Functions

 confirmation_token(strategy, changeset, user, opts \\ [])

 Generate a confirmation token for a changeset.

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.AddOn.Confirmation{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 auto_confirm_actions: [atom()],
 confirm_action_name: atom(),
 confirm_on_create?: boolean(),
 confirm_on_update?: boolean(),
 confirmed_at_field: atom(),
 inhibit_updates?: boolean(),
 monitor_fields: [atom()],
 name: :confirm,
 prevent_hijacking?: boolean(),
 provider: :confirmation,
 require_interaction?: term(),
 resource: module(),
 sender: nil | {module(), keyword()},
 token_lifetime: hours :: pos_integer()
}

 Functions

 confirmation_token(strategy, changeset, user, opts \\ [])

 @spec confirmation_token(
 t(),
 Ash.Changeset.t(),
 Ash.Resource.record(),
 opts :: Keyword.t()
) :: {:ok, String.t()} | {:error, any()}

Generate a confirmation token for a changeset.
This will generate a token with the "act" claim set to the confirmation
action for the strategy, and the "chg" claim will contain any changes.

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.AddOn.LogOutEverywhere

Log out everywhere support.
Sometimes it's necessary to be able to invalidate all of a user's sessions
with a single action. This add-on provides this functionality.
In order to use this feature the following features must be enabled:
	Tokens must be enabled.
	The authentication.tokens.store_all_tokens? option is enabled.
	The authentication.tokens.require_token_presence_for_authentication?
option is enabled.
	For the apply_on_password_change? option, at least one password strategy
must be enabled.

Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 tokens do
 enabled? true
 store_all_tokens? true
 require_token_presence_for_authentication? true
 end

 add_ons do
 log_out_everywhere do
 apply_on_password_change? true
 end
 end
Actions
By default the add-on will add a log_out_everywhere action which reverts all
the existing non-expired tokens for the user in question.
Example
iex> strategy = Info.strategy!(Example.User, :log_out_everywhere)
...> {:ok, user} = Strategy.action(strategy, :log_out_everywhere, %{"user_id" => user_id()})
...> user.id == user_id()
true

 Summary

 Types

 t()

 Functions

 transform(entity, dsl)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.AddOn.LogOutEverywhere{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 action_name: atom(),
 apply_on_password_change?: boolean(),
 argument_name: nil,
 exclude_purposes: term(),
 include_purposes: term(),
 name: :log_out_everywhere,
 provider: :log_out_everywhere,
 resource: module()
}

 Functions

 transform(entity, dsl)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy protocol

The protocol used for interacting with authentication strategies.
Any new Authentication strategy must implement this protocol.

 Summary

 Types

 action()

 The name of an individual action supported by the strategy.

 http_method()

 path()

 A path to match in web requests

 phase()

 The "phase" of the request.

 route()

 An individual route.

 t()

 All the types that implement this protocol.

 Functions

 action(strategy, action_name, params, options \\ [])

 Perform an named action.

 actions(strategy)

 Return a list of actions supported by the strategy.

 method_for_phase(t, phase)

 Return the HTTP method for a phase.

 name(strategy)

 The "short name" of the strategy, used for genererating routes, etc.

 phases(strategy)

 Return a list of phases supported by the strategy.

 plug(strategy, phase, conn)

 Handle requests routed to the strategy.

 routes(strategy)

 Used to build the routing table to route web requests to request phases for
each strategy.

 tokens_required?(strategy)

 Indicates that the strategy creates or consumes tokens.

 Types

 action()

 @type action() :: atom()

The name of an individual action supported by the strategy.
This maybe not be the action name on the underlying resource, which may be
generated, but the name that the strategy itself calls the action.

 http_method()

 @type http_method() ::
 :get | :head | :post | :put | :delete | :connect | :options | :trace | :patch

 path()

 @type path() :: String.t()

A path to match in web requests

 phase()

 @type phase() :: atom()

The "phase" of the request.
Usually :request or :callback but can be any atom.

 route()

 @type route() :: {path(), phase()}

An individual route.
Eg: {"/user/password/sign_in", :sign_in}

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 action(strategy, action_name, params, options \\ [])

 @spec action(t(), action(), params :: map(), options :: keyword()) ::
 :ok | {:ok, Ash.Resource.record()} | {:ok, boolean()} | {:error, any()}

Perform an named action.
Different strategies are likely to implement a number of different actions
depending on their configuration. Calling them via this function will ensure
that the context is correctly set, etc.
See actions/1 for a list of actions provided by the strategy.
Any options passed to the action will be passed to the underlying Ash.Domain function.

 actions(strategy)

 @spec actions(t()) :: [action()]

Return a list of actions supported by the strategy.
Example
iex> strategy = Info.strategy!(Example.User, :password)
...> actions(strategy)
[:sign_in_with_token, :register, :sign_in, :reset_request, :reset]

 method_for_phase(t, phase)

 @spec method_for_phase(t(), phase()) :: http_method()

Return the HTTP method for a phase.
Example
iex> strategy = Info.strategy!(Example.User, :oauth2)
...> method_for_phase(strategy, :request)
:get

 name(strategy)

 @spec name(t()) :: atom()

The "short name" of the strategy, used for genererating routes, etc.
This is most likely the same value that you use for the entity's name
argument.

 phases(strategy)

 @spec phases(t()) :: [phase()]

Return a list of phases supported by the strategy.
Example
iex> strategy = Info.strategy!(Example.User, :password)
...> phases(strategy)
[:sign_in_with_token, :register, :sign_in, :reset_request, :reset]

 plug(strategy, phase, conn)

 @spec plug(t(), phase(), Plug.Conn.t()) :: Plug.Conn.t()

Handle requests routed to the strategy.
Each phase will be an atom (ie the second element in the route tuple).
See phases/1 for a list of phases supported by the strategy.

 routes(strategy)

 @spec routes(t()) :: [route()]

Used to build the routing table to route web requests to request phases for
each strategy.
Example
iex> strategy = Info.strategy!(Example.User, :password)
...> routes(strategy)
[
 {"/user/password/sign_in_with_token", :sign_in_with_token},
 {"/user/password/register", :register},
 {"/user/password/sign_in", :sign_in},
 {"/user/password/reset_request", :reset_request},
 {"/user/password/reset", :reset}
]

 tokens_required?(strategy)

 @spec tokens_required?(t()) :: boolean()

Indicates that the strategy creates or consumes tokens.

AshAuthentication.Strategy.Apple

Strategy for authenticating using Apple Sign In
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Apple Sign In you need to provide the following minimum configuration:
	client_id
	team_id
	private_key_id
	private_key_path
	redirect_uri

More documentation:
	The Apple Sign In Documentation.
	The OIDC documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Auth0

Strategy for authenticating using Auth0.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use Auth0 you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret
	site

More documentation:
	The Auth0 Tutorial.
	The OAuth2 documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Custom behaviour

Define your own custom authentication strategy.
See the Custom Strategies guide
for more information.

 Summary

 Types

 entity()

 A Strategy DSL Entity.

 strategy()

 This is the DSL target for your entity and the struct for which you will
implement the AshAuthentication.Strategy protocol.

 Callbacks

 transform(strategy, t)

 If your strategy needs to modify either the entity or the parent resource then
you can implement this callback.

 verify(strategy, t)

 If your strategy needs to verify either the entity or the parent resource then
you can implement this callback.

 Functions

 set_defaults(dsl, defaults)

 Sets default values for a DSL schema based on a set of defaults.

 Types

 entity()

 @type entity() :: Spark.Dsl.Entity.t()

A Strategy DSL Entity.
See Spark.Dsl.Entity for more information.

 strategy()

 @type strategy() :: %{
 :__struct__ => module(),
 :resource => module(),
 optional(:strategy_module) => module(),
 optional(atom()) => any()
}

This is the DSL target for your entity and the struct for which you will
implement the AshAuthentication.Strategy protocol.
The only required field is resource which will contain the resource module
that the strategy has been added to.
Optionally, you can include a strategy_module field if you're reusing
another strategy's entity, and thus the __struct__ key can't be used to
introspect the location of the transform/2 and verify/2 callbacks.

 Callbacks

 transform(strategy, t)

 @callback transform(strategy(), Spark.Dsl.t()) ::
 {:ok, strategy()} | {:ok, Spark.Dsl.t()} | {:error, Exception.t()}

If your strategy needs to modify either the entity or the parent resource then
you can implement this callback.
This callback can return one of three results:
	{:ok, Entity.t} - an updated DSL entity - useful if you're just changing
the entity itself and not changing the wider DSL state of the resource.
If this is the response then the transformer will take care of updating
the entity in the DSL state.
	{:ok, Dsl.t} - an updated DSL state for the entire resource.
	{:error, Exception.t} - a compilation-stopping problem was found. Any
exception can be returned, but we strongly advise you to return a
Spark.Error.DslError.

 verify(strategy, t)

 @callback verify(strategy(), Spark.Dsl.t()) :: :ok | {:error, Exception.t()}

If your strategy needs to verify either the entity or the parent resource then
you can implement this callback.
This is called post-compilation in the @after_verify hook - see Module for
more information.
This callback can return one of the following results:
	:ok - everything is A-Okay.
	{:error, Exception.t} - a compilation-stopping problem was found. Any
exception can be returned, but we strongly advise you to return a
Spark.Error.DslError.

 Functions

 set_defaults(dsl, defaults)

Sets default values for a DSL schema based on a set of defaults.
If a given default is in the schema, it can be overriden, so we just set the default
and mark it not required.
If not, then we add it to auto_set_fields, and the user cannot override it.

AshAuthentication.Strategy.Github

Strategy for authenticating using GitHub
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use GitHub you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

More documentation:
	The GitHub Tutorial.
	The OAuth2 documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Google

Strategy for authenticating using Google
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Google you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

As of Assent v0.3.0, the Google strategy uses OpenID Connect (OIDC) and
automatically retrieves configuration (token URL, user info URL, etc.)
from Google's discovery endpoint.
More documentation:
	The Google OpenID Connect Overview.
	The Google Tutorial
	The OIDC documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.MagicLink

Strategy for authentication using a magic link.
In order to use magic link authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email)
	Have tokens enabled.

There are other options documented in the DSL.
Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 magic_link do
 identity_field :email
 sender fn user_or_email, token, _opts ->
 # will be a user if the token relates to an existing user
 # will be an email if there is no matching user (such as during sign up)
 # opts will contain the `tenant` key, use this if you need to alter the link based
 # on the tenant that requested the token
 MyApp.Emails.deliver_magic_link(user_or_email, token)
 end
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Tenancy
Note that the tenant is provided to the sender in the opts key. Use this if you need
to modify the url (i.e tenant.app.com) based on the tenant that requested the token.
Actions
By default the magic link strategy will automatically generate the request and
sign-in actions for you, however you're free to define them yourself. If you
do, then the action will be validated to ensure that all the needed
configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.
Examples
Requesting that a magic link token is sent for a user:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> Strategy.action(strategy, :request, %{"username" => user.username})
:ok
Signing in using a magic link token:
...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> {:ok, signed_in_user} = Strategy.action(strategy, :sign_in, %{"token" => token})
...> signed_in_user.id == user
true
Usage with AshAuthenticationPhoenix
If you are using AshAuthenticationPhoenix, and have require_authentication? set to true, which you very much should, then you will need to add a magic_sign_in_route to your router. This is placed in the same location as auth_routes, and should be provided the user and the strategy name. For example:
Remove this if you do not want to use the magic link strategy
magic_sign_in_route(
 MyApp.Accounts.User,
 :sign_in,
 auth_routes_prefix: "/auth",
 overrides: [MyApp.AuthOverrides, AshAuthentication.Phoenix.Overrides.Default]
)
Plugs
The magic link strategy provides plug endpoints for both request and sign-in
actions.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Examples:
Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :magic_link)
...> user = build_user()
...> conn = conn(:post, "/user/magic_link/request", %{"user" => %{"username" => user.username}})
...> conn = Strategy.plug(strategy, :request, conn)
...> {_conn, {:ok, nil}} = Plug.Helpers.get_authentication_result(conn)

...> {:ok, token} = MagicLink.request_token_for(strategy, user)
...> conn = conn(:get, "/user/magic_link", %{"token" => token})
...> conn = Strategy.plug(strategy, :sign_in, conn)
...> {_conn, {:ok, signed_in_user}} = Plug.Helpers.get_authentication_result(conn)
...> signed_in_user.id == user.id
true
See the Magic Link Tutorial for more information.

 Summary

 Types

 t()

 Functions

 request_token_for(strategy, user, opts \\ [], context \\ %{})

 Generate a magic link token for a user.

 request_token_for_identity(strategy, identity, opts \\ [], context \\ %{})

 Generate a magic link token for an identity field.

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.MagicLink{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 extra_claims: term(),
 identity_field: atom(),
 lookup_action_name: nil,
 name: atom(),
 prevent_hijacking?: boolean(),
 registration_enabled?: boolean(),
 request_action_name: atom(),
 require_interaction?: boolean(),
 resource: module(),
 sender: {module(), keyword()},
 sign_in_action_name: atom(),
 single_use_token?: boolean(),
 token_lifetime: pos_integer(),
 token_param_name: atom()
}

 Functions

 request_token_for(strategy, user, opts \\ [], context \\ %{})

 @spec request_token_for(
 t(),
 Ash.Resource.record(),
 opts :: Keyword.t(),
 context :: map()
) ::
 {:ok, binary()} | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Generate a magic link token for a user.
Used by AshAuthentication.Strategy.MagicLink.RequestPreparation.

 request_token_for_identity(strategy, identity, opts \\ [], context \\ %{})

 @spec request_token_for_identity(t(), term(), opts :: Keyword.t(), context :: map()) ::
 {:ok, binary()} | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Generate a magic link token for an identity field.
Used by AshAuthentication.Strategy.MagicLink.RequestPreparation.

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.OAuth2

Strategy for authenticating using any OAuth 2.0 server as the source of truth.
This authentication strategy provides registration and sign-in for users using a
remote OAuth 2.0 server as the source of truth. You
will be required to provide either a "register" or a "sign-in" action depending
on your configuration, which the strategy will attempt to validate for common
misconfigurations.
This strategy wraps the excellent assent
package, which provides OAuth 2.0 capabilities.
In order to use OAuth 2.0 authentication on your resource, it needs to meet
the following minimum criteria:
	Have a primary key.
	Provide a strategy-specific action, either register or sign-in.
	Provide configuration for OAuth2 destinations, secrets, etc.

Example:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 strategies do
 oauth2 :example do
 client_id "OAuth Client ID"
 redirect_uri "https://my.app/"
 client_secret "My Super Secret Secret"
 site "https://auth.example.com/"
 end
 end
 end
end
Secrets and runtime configuration
In order to use OAuth 2.0 you need to provide a varying number of secrets and
other configuration which may change based on runtime environment. The
AshAuthentication.Secret behaviour is provided to accommodate this. This
allows you to provide configuration either directly on the resource (ie as a
string), as an anonymous function, or as a module.
Warning
We strongly urge you not to share actual secrets in your code or
repository.
Examples:
Providing configuration as an anonymous function:
oauth2 do
 client_secret fn _path, resource ->
 Application.fetch_env(:my_app, resource, :oauth2_client_secret)
 end
end
Providing configuration as a module:
defmodule MyApp.Secrets do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :example, :client_secret], MyApp.User, _opts), do: Application.fetch_env(:my_app, :oauth2_client_secret)
end

and in your strategies:

oauth2 :example do
 client_secret MyApp.Secrets
end
User identities
Because your users can be signed in via multiple providers at once, you can
specify an identity_resource in the DSL configuration which points to a
seperate Ash resource which has the AshAuthentication.UserIdentity extension
present. This resource will be used to store details of the providers in use
by each user and a relationship will be added to the user resource.
Setting the identity_resource will cause extra validations to be applied to
your resource so that changes are tracked correctly on sign-in or
registration.
Actions
When using an OAuth 2.0 provider you need to declare either a "register" or
"sign-in" action. The reason for this is that it's not possible for us to
know ahead of time how you want to manage the link between your user resources
and the "user info" provided by the OAuth server.
Both actions receive the following two arguments:
	user_info - a map with string keys containing the OpenID Successful
UserInfo
response.
Usually this will be used to populate your email, nickname or other
identifying field.
	oauth_tokens a map with string keys containing the OpenID Successful
Token
response
(or similar).

The actions themselves can be interacted with directly via the
AshAuthentication.Strategy protocol, but you are more likely to interact
with them via the web/plugs.
Sign-in
The sign-in action is called when a successful OAuth2 callback is received.
You should use it to constrain the query to the correct user based on the
arguments provided.
This action is only needed when the registration_enabled? DSL settings is
set to false.
Registration
The register action is a little more complicated than the sign-in action,
because we cannot tell the difference between a new user and a returning user
(they all use the same OAuth flow). In order to handle this your register
action must be defined as an upsert with a configured upsert_identity (see
example below).
Examples:
Providing sign-in to users who already exist in the database (and by extension
rejecting new users):
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 read :sign_in_with_example do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 prepare AshAuthentication.Strategy.OAuth2.SignInPreparation

 filter expr(email == get_path(^arg(:user_info), [:email]))
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 registration_enabled? false
 end
 end
 end
end
Providing registration or sign-in to all comers:
defmodule MyApp.Accounts.User do
 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 actions do
 create :register_with_oauth2 do
 argument :user_info, :map, allow_nil?: false
 argument :oauth_tokens, :map, allow_nil?: false
 upsert? true
 upsert_identity :email

 change AshAuthentication.GenerateTokenChange
 change fn changeset, _ctx ->
 user_info = Ash.Changeset.get_argument(changeset, :user_info)

 changeset
 |> Ash.Changeset.change_attribute(:email, user_info["email"])
 end
 end
 end

 authentication do
 strategies do
 oauth2 :example do
 end
 end
 end
end
Plugs
OAuth 2.0 is (usually) a browser-based flow. This means that you're most
likely to interact with this strategy via it's plugs. There are two phases to
authentication with OAuth 2.0:
	The request phase, where the user's browser is redirected to the remote
authentication provider for authentication.
	The callback phase, where the provider redirects the user back to your app
to create a local database record, session, etc.

 Summary

 Types

 secret()

 secret_keyword()

 secret_list()

 t()

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 secret()

 @type secret() :: nil | String.t() | {module(), keyword()}

 secret_keyword()

 @type secret_keyword() :: nil | Keyword.t() | {module(), keyword()}

 secret_list()

 @type secret_list() :: nil | [any()] | {module(), keyword()}

 t()

 @type t() :: %AshAuthentication.Strategy.OAuth2{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 assent_strategy: module(),
 auth_method:
 nil
 | :client_secret_basic
 | :client_secret_post
 | :client_secret_jwt
 | :private_key_jwt,
 authorization_params: secret_keyword(),
 authorize_url: secret(),
 base_url: secret(),
 client_authentication_method: nil | binary(),
 client_id: secret(),
 client_secret: secret(),
 code_verifier: secret(),
 icon: nil | atom(),
 id_token_signed_response_alg: nil | binary(),
 id_token_ttl_seconds: nil | pos_integer(),
 identity_relationship_name: atom(),
 identity_relationship_user_id_attribute: atom(),
 identity_resource: module() | false,
 name: atom(),
 nonce: boolean() | secret(),
 openid_configuration: nil | map(),
 openid_configuration_uri: nil | binary(),
 prevent_hijacking?: boolean(),
 private_key: secret(),
 private_key_id: secret(),
 private_key_path: secret(),
 provider: atom(),
 redirect_uri: secret(),
 register_action_name: atom(),
 registration_enabled?: boolean(),
 resource: module(),
 sign_in_action_name: atom(),
 site: secret(),
 strategy_module: module(),
 team_id: secret(),
 token_url: secret(),
 trusted_audiences: secret_list(),
 user_url: secret()
}

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Oidc

Strategy for authentication using an OpenID
Connect compatible server as the source of
truth.
This strategy builds on-top of AshAuthentication.Strategy.OAuth2 and
assent.
In order to use OIDC you need to provide the following minimum configuration:
	client_id - The client id, required
	site - The OIDC issuer, required
	openid_configuration_uri - The URI for OpenID Provider, optional, defaults
to /.well-known/openid-configuration
	client_authentication_method - The Client Authentication method to use,
optional, defaults to client_secret_basic
	client_secret - The client secret, required if
:client_authentication_method is :client_secret_basic,
:client_secret_post, or :client_secret_jwt
	openid_configuration - The OpenID configuration, optional, the
configuration will be fetched from :openid_configuration_uri if this is
not defined
	id_token_signed_response_alg - The id_token_signed_response_alg
parameter sent by the Client during Registration, defaults to RS256
	id_token_ttl_seconds - The number of seconds from iat that an ID Token
will be considered valid, optional, defaults to nil
	nonce - The nonce to use for authorization request, optional, MUST be
session based and unguessable.

Nonce
nonce can be set in the provider config. The nonce will be returned in the
session_params along with state. You can use this to store the value in
the current session e.g. a httpOnly session cookie.
A random value generator can look like this:
16
|> :crypto.strong_rand_bytes()
|> Base.encode64(padding: false)
AshAuthentication will dynamically generate one for the session if nonce is
set to true.
More documentation:
	The OAuth2 documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Password

Strategy for authenticating using local resources as the source of truth.
In order to use password authentication your resource needs to meet the
following minimum requirements:
	Have a primary key.
	A uniquely constrained identity field (eg username or email).
	A sensitive string field within which to store the hashed password.

There are other options documented in the DSL.
Example:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 attribute :hashed_password, :string, allow_nil?: false, sensitive?: true
 end

 authentication do
 strategies do
 password :password do
 identity_field :email
 hashed_password_field :hashed_password
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Actions
By default the password strategy will automatically generate the register,
sign-in, reset-request and reset actions for you, however you're free to
define them yourself. If you do, then the action will be validated to ensure
that all the needed configuration is present.
If you wish to work with the actions directly from your code you can do so via
the AshAuthentication.Strategy protocol.
Examples:
Interacting with the actions directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> {:ok, marty} = Strategy.action(strategy, :register, %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"})
...> marty.username |> to_string()
"marty"

...> {:ok, user} = Strategy.action(strategy, :sign_in, %{"username" => "marty", "password" => "outatime1985"})
...> user.username |> to_string()
"marty"
Plugs
The password strategy provides plug endpoints for all four actions, although
only sign-in and register will be reported by Strategy.routes/1 if the
strategy is not configured as resettable.
If you wish to work with the plugs directly, you can do so via the
AshAuthentication.Strategy protocol.
Examples:
Dispatching to plugs directly:
iex> strategy = Info.strategy!(Example.User, :password)
...> conn = conn(:post, "/user/password/register", %{"user" => %{"username" => "marty", "password" => "outatime1985", "password_confirmation" => "outatime1985"}})
...> conn = Strategy.plug(strategy, :register, conn)
...> {_conn, {:ok, marty}} = Plug.Helpers.get_authentication_result(conn)
...> marty.username |> to_string()
"marty"

...> conn = conn(:post, "/user/password/reset_request", %{"user" => %{"username" => "marty"}})
...> conn = Strategy.plug(strategy, :reset_request, conn)
...> {_conn, :ok} = Plug.Helpers.get_authentication_result(conn)
Testing
See the Testing guide for tips on testing resources using this strategy.

 Summary

 Types

 t()

 Functions

 reset_token_for(strategy, user)

 Generate a reset token for a user.

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.Password{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 confirmation_required?: boolean(),
 hash_provider: module(),
 hashed_password_field: atom(),
 identity_field: atom(),
 name: atom(),
 password_confirmation_field: atom(),
 password_field: atom(),
 provider: atom(),
 register_action_accept: [atom()],
 register_action_name: atom(),
 registration_enabled?: boolean(),
 require_confirmed_with: :atom | nil,
 resettable: nil | AshAuthentication.Strategy.Password.Resettable.t(),
 resource: module(),
 sign_in_action_name: atom(),
 sign_in_enabled?: boolean(),
 sign_in_token_lifetime: pos_integer(),
 sign_in_tokens_enabled?: boolean(),
 sign_in_with_token_action_name: atom()
}

 Functions

 reset_token_for(strategy, user)

 @spec reset_token_for(t(), Ash.Resource.record()) ::
 {:ok, String.t()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Generate a reset token for a user.
Used by AshAuthentication.Strategy.Password.RequestPasswordResetPreparation.

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Slack

Strategy for authenticating using Slack
This strategy builds on-top of AshAuthentication.Strategy.Oidc and
assent.
In order to use Slack you need to provide the following minimum configuration:
	client_id
	redirect_uri
	client_secret

More documentation:
	The Slack Tutorial.
	The OIDC documentation

 Summary

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.BcryptProvider

Provides the default implementation of AshAuthentication.HashProvider using Bcrypt.

 Summary

 Functions

 hash(input)

 Given some user input as a string, convert it into it's hashed form using Bcrypt.

 simulate()

 Simulate a password check to help avoid timing attacks.

 valid?(input, hash)

 Check if the user input matches the hash.

 Functions

 hash(input)

 @spec hash(String.t()) :: {:ok, String.t()} | :error

Given some user input as a string, convert it into it's hashed form using Bcrypt.
Example
iex> {:ok, hashed} = hash("Marty McFly")
...> String.starts_with?(hashed, "$2b$04$")
true

 simulate()

 @spec simulate() :: false

Simulate a password check to help avoid timing attacks.
Example
iex> simulate()
false

 valid?(input, hash)

 @spec valid?(input :: String.t() | nil, hash :: String.t()) :: boolean()

Check if the user input matches the hash.
Example
iex> valid?("Marty McFly", "$2b$04$qgacrnrAJz8aPwaVQiGJn.PvryldV.NfOSYYvF/CZAGgMvvzhIE7S")
true

AshAuthentication.HashProvider behaviour

A behaviour providing password hashing.

 Summary

 Callbacks

 hash(input)

 Given some user input as a string, convert it into it's hashed form.

 simulate()

 Attempt to defeat timing attacks by simulating a password hash check.

 valid?(input, hash)

 Check if the user input matches the hash.

 Callbacks

 hash(input)

 @callback hash(input :: String.t()) :: {:ok, hash :: String.t()} | :error

Given some user input as a string, convert it into it's hashed form.

 simulate()

 @callback simulate() :: false

Attempt to defeat timing attacks by simulating a password hash check.
See Bcrypt.no_user_verify/1 for more information.

 valid?(input, hash)

 @callback valid?(input :: String.t(), hash :: String.t()) :: boolean()

Check if the user input matches the hash.

AshAuthentication.Jwt

Uses the excellent joken hex package to generate and sign Json Web Tokens.
Configuration
There are a few things we need to know in order to generate and sign a JWT:
	signing_algorithm - the crypographic algorithm used to to sign tokens.
	token_lifetime - how long the token is valid for (in hours).
	signing_secret - the secret key used to sign the tokens.

These can be configured in your resource's token DSL:
defmodule MyApp.Accounts.User do
 # ...

 authentication do
 tokens do
 token_lifetime 32
 signing_secret fn _, _ ->
 System.fetch_env("TOKEN_SIGNING_SECRET")
 end
 end
 end

 # ...
end
The signing secret is retrieved using the AshAuthentication.Secret
behaviour, which means that it can be retrieved one of three ways:
	As a string directly in your resource DSL (please don't do this unless you
know why this is a bad idea!), or
	a two-arity anonymous function which returns {:ok, secret}, or
	the name of a module which implements the AshAuthentication.Secret
behaviour.

Available signing algorithms are EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 or HS256. Defaults to HS256.
We strongly advise against storing the signing secret in your mix config or
directly in your resource configuration. We instead suggest you make use of
runtime.exs
and read it from the system environment or other secret store.
The default token lifetime is 168 and should be
specified in integer positive hours.

 Summary

 Types

 claims()

 "claims" are the decoded contents of a JWT. A map of (short) string keys to
string values.

 token()

 A string likely to contain a valid JWT.

 Functions

 default_algorithm()

 The default signing algorithm

 default_lifetime_hrs()

 The default token lifetime

 peek(token)

 Given a token, read it's claims without validating.

 supported_algorithms()

 Supported signing algorithms

 token_for_resource(resource, extra_claims, opts \\ [], context)

 Given a resource, generate a signed JWT with a set of claims.

 token_for_user(user, extra_claims \\ %{}, opts \\ [], context \\ %{})

 Given a user, generate a signed JWT for use while authenticating.

 token_to_resource(token, otp_app)

 Given a token, find a matching resource configuration.

 verify(token, otp_app_or_resource, opts \\ [], context \\ %{})

 Given a token, verify it's signature and validate it's claims.

 Types

 claims()

 @type claims() :: %{
 required(String.t()) => String.t() | number() | boolean() | claims()
}

"claims" are the decoded contents of a JWT. A map of (short) string keys to
string values.

 token()

 @type token() :: String.t()

A string likely to contain a valid JWT.

 Functions

 default_algorithm()

 @spec default_algorithm() :: String.t()

The default signing algorithm

 default_lifetime_hrs()

 @spec default_lifetime_hrs() :: pos_integer()

The default token lifetime

 peek(token)

 @spec peek(token()) :: {:ok, claims()} | {:error, any()}

Given a token, read it's claims without validating.

 supported_algorithms()

 @spec supported_algorithms() :: [String.t()]

Supported signing algorithms

 token_for_resource(resource, extra_claims, opts \\ [], context)

 @spec token_for_resource(
 Ash.Resource.t(),
 extra_claims :: map(),
 options :: keyword(),
 context :: map()
) ::
 {:ok, token(), claims()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Given a resource, generate a signed JWT with a set of claims.

 token_for_user(user, extra_claims \\ %{}, opts \\ [], context \\ %{})

 @spec token_for_user(
 Ash.Resource.record(),
 extra_claims :: map(),
 options :: keyword(),
 context :: map()
) ::
 {:ok, token(), claims()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Given a user, generate a signed JWT for use while authenticating.

 token_to_resource(token, otp_app)

 @spec token_to_resource(token(), module()) :: {:ok, Ash.Resource.t()} | :error

Given a token, find a matching resource configuration.
Warning
This function does not validate the token, so don't rely on it for
authentication or authorisation.

 verify(token, otp_app_or_resource, opts \\ [], context \\ %{})

 @spec verify(
 token(),
 Ash.Resource.t() | atom(),
 opts :: Keyword.t(),
 context :: map()
) ::
 {:ok, claims(), Ash.Resource.t()} | :error

Given a token, verify it's signature and validate it's claims.

AshAuthentication.Info

Generated configuration functions based on a resource's DSL configuration.

 Summary

 Types

 dsl_or_resource()

 Functions

 authentication_add_ons(dsl_or_extended)

 authentication.add_ons DSL entities

 authentication_domain(dsl_or_extended)

 The name of the Ash domain to use to access this resource when doing anything authentication related.

 authentication_domain!(dsl_or_extended)

 The name of the Ash domain to use to access this resource when doing anything authentication related.

 authentication_get_by_subject_action_name(dsl_or_extended)

 The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.

 authentication_get_by_subject_action_name!(dsl_or_extended)

 The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.

 authentication_options(dsl_or_extended)

 authentication DSL options

 authentication_providers(dsl_or_extended)

 authentication.providers DSL entities

 authentication_select_for_senders(dsl_or_extended)

 A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

 authentication_select_for_senders!(dsl_or_extended)

 A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

 authentication_session_identifier(dsl_or_extended)

 How to uniquely identify a session. Only necessary if require_token_presence_for_authentication? is not set to true. Should always be :jti, if set.

 authentication_session_identifier!(dsl_or_extended)

 How to uniquely identify a session. Only necessary if require_token_presence_for_authentication? is not set to true. Should always be :jti, if set.

 authentication_strategies(dsl_or_extended)

 authentication.strategies DSL entities

 authentication_subject_name(dsl_or_extended)

 The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).

 authentication_subject_name!(dsl_or_extended)

 The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).

 authentication_tokens_enabled?(dsl_or_extended)

 Should JWTs be generated by this resource?

 authentication_tokens_extra_claims(dsl_or_extended)

 A 2-arity function (user, opts) -> claims_map or a static map of extra claims to include in tokens. See the tokens guide for more.

 authentication_tokens_extra_claims!(dsl_or_extended)

 A 2-arity function (user, opts) -> claims_map or a static map of extra claims to include in tokens. See the tokens guide for more.

 authentication_tokens_options(dsl_or_extended)

 authentication.tokens DSL options

 authentication_tokens_require_token_presence_for_authentication?(dsl_or_extended)

 Require a locally-stored token for authentication. See the tokens guide for more.

 authentication_tokens_signing_algorithm(dsl_or_extended)

 The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.

 authentication_tokens_signing_algorithm!(dsl_or_extended)

 The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.

 authentication_tokens_signing_secret(dsl_or_extended)

 The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.

 authentication_tokens_signing_secret!(dsl_or_extended)

 The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.

 authentication_tokens_store_all_tokens?(dsl_or_extended)

 Store all tokens in the token_resource. See the tokens guide for more.

 authentication_tokens_token_lifetime(dsl_or_extended)

 How long a token should be valid. See the tokens guide for more.

 authentication_tokens_token_lifetime!(dsl_or_extended)

 How long a token should be valid. See the tokens guide for more.

 authentication_tokens_token_resource(dsl_or_extended)

 The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.

 authentication_tokens_token_resource!(dsl_or_extended)

 The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.

 domain(dsl_or_resource)

 Retrieve the domain to use for authentication.

 domain!(dsl_or_resource)

 Raising version of domain/1

 find_strategy(queryset, context \\ %{}, options)

 Find the underlying strategy that required a change/preparation to be used.

 list_strategies(dsl_or_resource)

 Retrieve a list of all strategies and add-ons.

 strategy(dsl_or_resource, name)

 Retrieve a named strategy from a resource.

 strategy!(dsl_or_resource, name)

 Retrieve a named strategy from a resource (raising version).

 strategy_enabled?(dsl_or_resource, type)

 Is at least one strategy of the provided type available?

 strategy_for_action(dsl_or_resource, action_name)

 Given an action name, retrieve the strategy it is for from the DSL
configuration.

 strategy_for_action!(dsl_or_resource, action_name)

 Given an action name, retrieve the strategy it is for from the DSL
configuration.

 strategy_present?(dsl_or_resource, name)

 Is the named strategy present on the resource?

 Types

 dsl_or_resource()

 @type dsl_or_resource() :: module() | map()

 Functions

 authentication_add_ons(dsl_or_extended)

 @spec authentication_add_ons(dsl_or_extended :: module() | map()) :: [struct()]

authentication.add_ons DSL entities

 authentication_domain(dsl_or_extended)

 @spec authentication_domain(dsl_or_extended :: module() | map()) ::
 {:ok, module()} | :error

The name of the Ash domain to use to access this resource when doing anything authentication related.

 authentication_domain!(dsl_or_extended)

 @spec authentication_domain!(dsl_or_extended :: module() | map()) ::
 module() | no_return()

The name of the Ash domain to use to access this resource when doing anything authentication related.

 authentication_get_by_subject_action_name(dsl_or_extended)

 @spec authentication_get_by_subject_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.

 authentication_get_by_subject_action_name!(dsl_or_extended)

 @spec authentication_get_by_subject_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the read action used to retrieve records. If the action doesn't exist, one will be generated for you.

 authentication_options(dsl_or_extended)

 @spec authentication_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

authentication DSL options
Returns a map containing the and any configured or default values.

 authentication_providers(dsl_or_extended)

 @spec authentication_providers(dsl_or_extended :: module() | map()) :: [struct()]

authentication.providers DSL entities

 authentication_select_for_senders(dsl_or_extended)

 @spec authentication_select_for_senders(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

 authentication_select_for_senders!(dsl_or_extended)

 @spec authentication_select_for_senders!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A list of fields that we will ensure are selected whenever a sender will be invoked. Defaults to [:email] if there is an :email attribute on the resource, and [] otherwise.

 authentication_session_identifier(dsl_or_extended)

 @spec authentication_session_identifier(dsl_or_extended :: module() | map()) ::
 {:ok, :unsafe | :jti | :error} | :error

How to uniquely identify a session. Only necessary if require_token_presence_for_authentication? is not set to true. Should always be :jti, if set.

 authentication_session_identifier!(dsl_or_extended)

 @spec authentication_session_identifier!(dsl_or_extended :: module() | map()) ::
 (:unsafe | :jti | :error) | no_return()

How to uniquely identify a session. Only necessary if require_token_presence_for_authentication? is not set to true. Should always be :jti, if set.

 authentication_strategies(dsl_or_extended)

 @spec authentication_strategies(dsl_or_extended :: module() | map()) :: [struct()]

authentication.strategies DSL entities

 authentication_subject_name(dsl_or_extended)

 @spec authentication_subject_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).

 authentication_subject_name!(dsl_or_extended)

 @spec authentication_subject_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The subject name is used anywhere that a short version of your resource name is needed. Must be unique system-wide and will be inferred from the resource name by default (ie MyApp.Accounts.User -> user).

 authentication_tokens_enabled?(dsl_or_extended)

 @spec authentication_tokens_enabled?(dsl_or_extended :: module() | map()) :: boolean()

Should JWTs be generated by this resource?

 authentication_tokens_extra_claims(dsl_or_extended)

 @spec authentication_tokens_extra_claims(dsl_or_extended :: module() | map()) ::
 {:ok, (any(), any() -> any()) | map()} | :error

A 2-arity function (user, opts) -> claims_map or a static map of extra claims to include in tokens. See the tokens guide for more.

 authentication_tokens_extra_claims!(dsl_or_extended)

 @spec authentication_tokens_extra_claims!(dsl_or_extended :: module() | map()) ::
 ((any(), any() -> any()) | map()) | no_return()

A 2-arity function (user, opts) -> claims_map or a static map of extra claims to include in tokens. See the tokens guide for more.

 authentication_tokens_options(dsl_or_extended)

 @spec authentication_tokens_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

authentication.tokens DSL options
Returns a map containing the and any configured or default values.

 authentication_tokens_require_token_presence_for_authentication?(dsl_or_extended)

 @spec authentication_tokens_require_token_presence_for_authentication?(
 dsl_or_extended :: module() | map()
) :: boolean()

Require a locally-stored token for authentication. See the tokens guide for more.

 authentication_tokens_signing_algorithm(dsl_or_extended)

 @spec authentication_tokens_signing_algorithm(dsl_or_extended :: module() | map()) ::
 {:ok, String.t()} | :error

The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.

 authentication_tokens_signing_algorithm!(dsl_or_extended)

 @spec authentication_tokens_signing_algorithm!(dsl_or_extended :: module() | map()) ::
 String.t() | no_return()

The algorithm to use for token signing. Available signing algorithms are; EdDSA, Ed448ph, Ed448, Ed25519ph, Ed25519, PS512, PS384, PS256, ES512, ES384, ES256, RS512, RS384, RS256, HS512, HS384 and HS256.

 authentication_tokens_signing_secret(dsl_or_extended)

 @spec authentication_tokens_signing_secret(dsl_or_extended :: module() | map()) ::
 {:ok, (module() | tuple() | (any(), any() -> any())) | String.t()} | :error

The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.

 authentication_tokens_signing_secret!(dsl_or_extended)

 @spec authentication_tokens_signing_secret!(dsl_or_extended :: module() | map()) ::
 ((module() | tuple() | (any(), any() -> any())) | String.t()) | no_return()

The secret used to sign tokens. Takes either a module which implements the AshAuthentication.Secret behaviour, a 2 arity anonymous function or a string.

 authentication_tokens_store_all_tokens?(dsl_or_extended)

 @spec authentication_tokens_store_all_tokens?(dsl_or_extended :: module() | map()) ::
 boolean()

Store all tokens in the token_resource. See the tokens guide for more.

 authentication_tokens_token_lifetime(dsl_or_extended)

 @spec authentication_tokens_token_lifetime(dsl_or_extended :: module() | map()) ::
 {:ok, pos_integer() | {pos_integer(), :seconds | :minutes | :hours | :days}}
 | :error

How long a token should be valid. See the tokens guide for more.

 authentication_tokens_token_lifetime!(dsl_or_extended)

 @spec authentication_tokens_token_lifetime!(dsl_or_extended :: module() | map()) ::
 (pos_integer() | {pos_integer(), :seconds | :minutes | :hours | :days})
 | no_return()

How long a token should be valid. See the tokens guide for more.

 authentication_tokens_token_resource(dsl_or_extended)

 @spec authentication_tokens_token_resource(dsl_or_extended :: module() | map()) ::
 {:ok, module() | false} | :error

The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.

 authentication_tokens_token_resource!(dsl_or_extended)

 @spec authentication_tokens_token_resource!(dsl_or_extended :: module() | map()) ::
 (module() | false) | no_return()

The resource used to store token information, such as in-flight confirmations, revocations, and if store_all_tokens? is enabled, authentication tokens themselves.

 domain(dsl_or_resource)

 @spec domain(dsl_or_resource()) :: {:ok, Ash.Domain.t()} | :error

Retrieve the domain to use for authentication.
If the authentication.domain DSL option is set, it will be used, otherwise
it will default to that configured on the resource.

 domain!(dsl_or_resource)

Raising version of domain/1

 find_strategy(queryset, context \\ %{}, options)

 @spec find_strategy(
 Ash.Query.t() | Ash.Changeset.t() | Ash.ActionInput.t(),
 context,
 options
) ::
 {:ok, AshAuthentication.Strategy.t()} | :error
when context: map(), options: Keyword.t()

Find the underlying strategy that required a change/preparation to be used.
This is because the strategy_name can be passed on the change options, eg:
change {AshAuthentication.Strategy.Password.HashPasswordChange, strategy_name: :banana_custard}
Or via the action context, eg:
prepare set_context(%{strategy_name: :banana_custard})
prepare AshAuthentication.Strategy.Password.SignInPreparation
Or via the passed-in context on calling the action.

 list_strategies(dsl_or_resource)

 @spec list_strategies(dsl_or_resource()) :: [strategy] when strategy: struct()

Retrieve a list of all strategies and add-ons.

 strategy(dsl_or_resource, name)

 @spec strategy(dsl_or_resource() | module(), atom()) :: {:ok, strategy} | :error
when strategy: struct()

Retrieve a named strategy from a resource.

 strategy!(dsl_or_resource, name)

 @spec strategy!(dsl_or_resource() | module(), atom()) :: strategy | no_return()
when strategy: struct()

Retrieve a named strategy from a resource (raising version).

 strategy_enabled?(dsl_or_resource, type)

 @spec strategy_enabled?(dsl_or_resource(), atom()) :: boolean()

Is at least one strategy of the provided type available?

 strategy_for_action(dsl_or_resource, action_name)

 @spec strategy_for_action(dsl_or_resource(), atom()) ::
 {:ok, AshAuthentication.Strategy.t()} | :error

Given an action name, retrieve the strategy it is for from the DSL
configuration.

 strategy_for_action!(dsl_or_resource, action_name)

 @spec strategy_for_action!(dsl_or_resource(), atom()) ::
 AshAuthentication.Strategy.t() | no_return()

Given an action name, retrieve the strategy it is for from the DSL
configuration.

 strategy_present?(dsl_or_resource, name)

 @spec strategy_present?(dsl_or_resource() | module(), atom()) :: boolean()

Is the named strategy present on the resource?

AshAuthentication.TokenResource.Info

Introspection functions for the AshAuthentication.TokenResource Ash
extension.

 Summary

 Functions

 token_confirmation_get_changes_action_name(dsl_or_extended)

 The name of the action used to get confirmation changes.

 token_confirmation_get_changes_action_name!(dsl_or_extended)

 The name of the action used to get confirmation changes.

 token_confirmation_options(dsl_or_extended)

 token.confirmation DSL options

 token_confirmation_store_changes_action_name(dsl_or_extended)

 The name of the action used to store confirmation changes.

 token_confirmation_store_changes_action_name!(dsl_or_extended)

 The name of the action used to store confirmation changes.

 token_created_at_attribute_name(dsl_or_extended)

 The name of the created_at attribute on this resource.

 token_created_at_attribute_name!(dsl_or_extended)

 The name of the created_at attribute on this resource.

 token_domain(dsl_or_extended)

 The Ash domain to use to access this resource.

 token_domain!(dsl_or_extended)

 The Ash domain to use to access this resource.

 token_endpoints(dsl_or_extended)

 The list of the endpoints where we will propagate the disconnect notification, when the user logs out or triggers log out from all devices.

 token_endpoints!(dsl_or_extended)

 The list of the endpoints where we will propagate the disconnect notification, when the user logs out or triggers log out from all devices.

 token_expunge_expired_action_name(dsl_or_extended)

 The name of the action used to remove expired tokens.

 token_expunge_expired_action_name!(dsl_or_extended)

 The name of the action used to remove expired tokens.

 token_expunge_interval(dsl_or_extended)

 How often (in hours) to scan this resource for records which have expired and thus can be removed.

 token_expunge_interval!(dsl_or_extended)

 How often (in hours) to scan this resource for records which have expired and thus can be removed.

 token_get_token_action_name(dsl_or_extended)

 The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_get_token_action_name!(dsl_or_extended)

 The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_live_socket_id_template(dsl_or_extended)

 A function that receives a map containing %{jti: jti} and returns the live socket ID string. Additional keys may be added in future versions.

 token_live_socket_id_template!(dsl_or_extended)

 A function that receives a map containing %{jti: jti} and returns the live socket ID string. Additional keys may be added in future versions.

 token_options(dsl_or_extended)

 token DSL options

 token_read_expired_action_name(dsl_or_extended)

 The name of the action use to find all expired tokens.

 token_read_expired_action_name!(dsl_or_extended)

 The name of the action use to find all expired tokens.

 token_revocation_is_revoked_action_name(dsl_or_extended)

 The name of the action used to check if a token is revoked.

 token_revocation_is_revoked_action_name!(dsl_or_extended)

 The name of the action used to check if a token is revoked.

 token_revocation_options(dsl_or_extended)

 token.revocation DSL options

 token_revocation_revoke_all_stored_for_subject_action_name(dsl_or_extended)

 The name of the action used to revoke all stored tokens for a given subject.

 token_revocation_revoke_all_stored_for_subject_action_name!(dsl_or_extended)

 The name of the action used to revoke all stored tokens for a given subject.

 token_revocation_revoke_jti_action_name(dsl_or_extended)

 The name of the action used to revoke jtis.

 token_revocation_revoke_jti_action_name!(dsl_or_extended)

 The name of the action used to revoke jtis.

 token_revocation_revoke_token_action_name(dsl_or_extended)

 The name of the action used to revoke tokens.

 token_revocation_revoke_token_action_name!(dsl_or_extended)

 The name of the action used to revoke tokens.

 token_store_token_action_name(dsl_or_extended)

 The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_store_token_action_name!(dsl_or_extended)

 The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.

 Functions

 token_confirmation_get_changes_action_name(dsl_or_extended)

 @spec token_confirmation_get_changes_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to get confirmation changes.

 token_confirmation_get_changes_action_name!(dsl_or_extended)

 @spec token_confirmation_get_changes_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to get confirmation changes.

 token_confirmation_options(dsl_or_extended)

 @spec token_confirmation_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

token.confirmation DSL options
Returns a map containing the and any configured or default values.

 token_confirmation_store_changes_action_name(dsl_or_extended)

 @spec token_confirmation_store_changes_action_name(
 dsl_or_extended :: module() | map()
) ::
 {:ok, atom()} | :error

The name of the action used to store confirmation changes.

 token_confirmation_store_changes_action_name!(dsl_or_extended)

 @spec token_confirmation_store_changes_action_name!(
 dsl_or_extended :: module() | map()
) ::
 atom() | no_return()

The name of the action used to store confirmation changes.

 token_created_at_attribute_name(dsl_or_extended)

 @spec token_created_at_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the created_at attribute on this resource.

 token_created_at_attribute_name!(dsl_or_extended)

 @spec token_created_at_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the created_at attribute on this resource.

 token_domain(dsl_or_extended)

 @spec token_domain(dsl_or_extended :: module() | map()) :: {:ok, module()} | :error

The Ash domain to use to access this resource.

 token_domain!(dsl_or_extended)

 @spec token_domain!(dsl_or_extended :: module() | map()) :: module() | no_return()

The Ash domain to use to access this resource.

 token_endpoints(dsl_or_extended)

 @spec token_endpoints(dsl_or_extended :: module() | map()) ::
 {:ok, [module()]} | :error

The list of the endpoints where we will propagate the disconnect notification, when the user logs out or triggers log out from all devices.

 token_endpoints!(dsl_or_extended)

 @spec token_endpoints!(dsl_or_extended :: module() | map()) ::
 [module()] | no_return()

The list of the endpoints where we will propagate the disconnect notification, when the user logs out or triggers log out from all devices.

 token_expunge_expired_action_name(dsl_or_extended)

 @spec token_expunge_expired_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to remove expired tokens.

 token_expunge_expired_action_name!(dsl_or_extended)

 @spec token_expunge_expired_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to remove expired tokens.

 token_expunge_interval(dsl_or_extended)

 @spec token_expunge_interval(dsl_or_extended :: module() | map()) ::
 {:ok, pos_integer()} | :error

How often (in hours) to scan this resource for records which have expired and thus can be removed.

 token_expunge_interval!(dsl_or_extended)

 @spec token_expunge_interval!(dsl_or_extended :: module() | map()) ::
 pos_integer() | no_return()

How often (in hours) to scan this resource for records which have expired and thus can be removed.

 token_get_token_action_name(dsl_or_extended)

 @spec token_get_token_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_get_token_action_name!(dsl_or_extended)

 @spec token_get_token_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to retrieve tokens from the store, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_live_socket_id_template(dsl_or_extended)

 @spec token_live_socket_id_template(dsl_or_extended :: module() | map()) ::
 {:ok, (any() -> any())} | :error

A function that receives a map containing %{jti: jti} and returns the live socket ID string. Additional keys may be added in future versions.

 token_live_socket_id_template!(dsl_or_extended)

 @spec token_live_socket_id_template!(dsl_or_extended :: module() | map()) ::
 (any() -> any()) | no_return()

A function that receives a map containing %{jti: jti} and returns the live socket ID string. Additional keys may be added in future versions.

 token_options(dsl_or_extended)

 @spec token_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

token DSL options
Returns a map containing the and any configured or default values.

 token_read_expired_action_name(dsl_or_extended)

 @spec token_read_expired_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action use to find all expired tokens.

 token_read_expired_action_name!(dsl_or_extended)

 @spec token_read_expired_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action use to find all expired tokens.

 token_revocation_is_revoked_action_name(dsl_or_extended)

 @spec token_revocation_is_revoked_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to check if a token is revoked.

 token_revocation_is_revoked_action_name!(dsl_or_extended)

 @spec token_revocation_is_revoked_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to check if a token is revoked.

 token_revocation_options(dsl_or_extended)

 @spec token_revocation_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

token.revocation DSL options
Returns a map containing the and any configured or default values.

 token_revocation_revoke_all_stored_for_subject_action_name(dsl_or_extended)

 @spec token_revocation_revoke_all_stored_for_subject_action_name(
 dsl_or_extended :: module() | map()
) ::
 {:ok, atom()} | :error

The name of the action used to revoke all stored tokens for a given subject.

 token_revocation_revoke_all_stored_for_subject_action_name!(dsl_or_extended)

 @spec token_revocation_revoke_all_stored_for_subject_action_name!(
 dsl_or_extended :: module() | map()
) ::
 atom() | no_return()

The name of the action used to revoke all stored tokens for a given subject.

 token_revocation_revoke_jti_action_name(dsl_or_extended)

 @spec token_revocation_revoke_jti_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to revoke jtis.

 token_revocation_revoke_jti_action_name!(dsl_or_extended)

 @spec token_revocation_revoke_jti_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to revoke jtis.

 token_revocation_revoke_token_action_name(dsl_or_extended)

 @spec token_revocation_revoke_token_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to revoke tokens.

 token_revocation_revoke_token_action_name!(dsl_or_extended)

 @spec token_revocation_revoke_token_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to revoke tokens.

 token_store_token_action_name(dsl_or_extended)

 @spec token_store_token_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.

 token_store_token_action_name!(dsl_or_extended)

 @spec token_store_token_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action to use to store a token, if require_tokens_for_authentication? is enabled in your authentication resource.

AshAuthentication.UserIdentity.Info

Introspection functions for the AshAuthentication.UserIdentity Ash
extension.

 Summary

 Functions

 user_identity_access_token_attribute_name(dsl_or_extended)

 The name of the access_token attribute on this resource.

 user_identity_access_token_attribute_name!(dsl_or_extended)

 The name of the access_token attribute on this resource.

 user_identity_access_token_expires_at_attribute_name(dsl_or_extended)

 The name of the access_token_expires_at attribute on this resource.

 user_identity_access_token_expires_at_attribute_name!(dsl_or_extended)

 The name of the access_token_expires_at attribute on this resource.

 user_identity_destroy_action_name(dsl_or_extended)

 The name of the action used to destroy records.

 user_identity_destroy_action_name!(dsl_or_extended)

 The name of the action used to destroy records.

 user_identity_domain(dsl_or_extended)

 The Ash domain to use to access this resource.

 user_identity_domain!(dsl_or_extended)

 The Ash domain to use to access this resource.

 user_identity_options(dsl_or_extended)

 user_identity DSL options

 user_identity_read_action_name(dsl_or_extended)

 The name of the action used to query identities.

 user_identity_read_action_name!(dsl_or_extended)

 The name of the action used to query identities.

 user_identity_refresh_token_attribute_name(dsl_or_extended)

 The name of the refresh_token attribute on this resource.

 user_identity_refresh_token_attribute_name!(dsl_or_extended)

 The name of the refresh_token attribute on this resource.

 user_identity_strategy_attribute_name(dsl_or_extended)

 The name of the strategy attribute on this resource.

 user_identity_strategy_attribute_name!(dsl_or_extended)

 The name of the strategy attribute on this resource.

 user_identity_uid_attribute_name(dsl_or_extended)

 The name of the uid attribute on this resource.

 user_identity_uid_attribute_name!(dsl_or_extended)

 The name of the uid attribute on this resource.

 user_identity_upsert_action_name(dsl_or_extended)

 The name of the action used to create and update records.

 user_identity_upsert_action_name!(dsl_or_extended)

 The name of the action used to create and update records.

 user_identity_user_id_attribute_name(dsl_or_extended)

 The name of the user_id attribute on this resource.

 user_identity_user_id_attribute_name!(dsl_or_extended)

 The name of the user_id attribute on this resource.

 user_identity_user_relationship_name(dsl_or_extended)

 The name of the belongs-to relationship between identities and users.

 user_identity_user_relationship_name!(dsl_or_extended)

 The name of the belongs-to relationship between identities and users.

 user_identity_user_resource(dsl_or_extended)

 The user resource to which these identities belong.

 user_identity_user_resource!(dsl_or_extended)

 The user resource to which these identities belong.

 Functions

 user_identity_access_token_attribute_name(dsl_or_extended)

 @spec user_identity_access_token_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the access_token attribute on this resource.

 user_identity_access_token_attribute_name!(dsl_or_extended)

 @spec user_identity_access_token_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the access_token attribute on this resource.

 user_identity_access_token_expires_at_attribute_name(dsl_or_extended)

 @spec user_identity_access_token_expires_at_attribute_name(
 dsl_or_extended :: module() | map()
) ::
 {:ok, atom()} | :error

The name of the access_token_expires_at attribute on this resource.

 user_identity_access_token_expires_at_attribute_name!(dsl_or_extended)

 @spec user_identity_access_token_expires_at_attribute_name!(
 dsl_or_extended :: module() | map()
) ::
 atom() | no_return()

The name of the access_token_expires_at attribute on this resource.

 user_identity_destroy_action_name(dsl_or_extended)

 @spec user_identity_destroy_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to destroy records.

 user_identity_destroy_action_name!(dsl_or_extended)

 @spec user_identity_destroy_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to destroy records.

 user_identity_domain(dsl_or_extended)

 @spec user_identity_domain(dsl_or_extended :: module() | map()) ::
 {:ok, module()} | :error

The Ash domain to use to access this resource.

 user_identity_domain!(dsl_or_extended)

 @spec user_identity_domain!(dsl_or_extended :: module() | map()) ::
 module() | no_return()

The Ash domain to use to access this resource.

 user_identity_options(dsl_or_extended)

 @spec user_identity_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

user_identity DSL options
Returns a map containing the and any configured or default values.

 user_identity_read_action_name(dsl_or_extended)

 @spec user_identity_read_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to query identities.

 user_identity_read_action_name!(dsl_or_extended)

 @spec user_identity_read_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to query identities.

 user_identity_refresh_token_attribute_name(dsl_or_extended)

 @spec user_identity_refresh_token_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the refresh_token attribute on this resource.

 user_identity_refresh_token_attribute_name!(dsl_or_extended)

 @spec user_identity_refresh_token_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the refresh_token attribute on this resource.

 user_identity_strategy_attribute_name(dsl_or_extended)

 @spec user_identity_strategy_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the strategy attribute on this resource.

 user_identity_strategy_attribute_name!(dsl_or_extended)

 @spec user_identity_strategy_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the strategy attribute on this resource.

 user_identity_uid_attribute_name(dsl_or_extended)

 @spec user_identity_uid_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the uid attribute on this resource.

 user_identity_uid_attribute_name!(dsl_or_extended)

 @spec user_identity_uid_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the uid attribute on this resource.

 user_identity_upsert_action_name(dsl_or_extended)

 @spec user_identity_upsert_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the action used to create and update records.

 user_identity_upsert_action_name!(dsl_or_extended)

 @spec user_identity_upsert_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the action used to create and update records.

 user_identity_user_id_attribute_name(dsl_or_extended)

 @spec user_identity_user_id_attribute_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the user_id attribute on this resource.

 user_identity_user_id_attribute_name!(dsl_or_extended)

 @spec user_identity_user_id_attribute_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the user_id attribute on this resource.

 user_identity_user_relationship_name(dsl_or_extended)

 @spec user_identity_user_relationship_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the belongs-to relationship between identities and users.

 user_identity_user_relationship_name!(dsl_or_extended)

 @spec user_identity_user_relationship_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the belongs-to relationship between identities and users.

 user_identity_user_resource(dsl_or_extended)

 @spec user_identity_user_resource(dsl_or_extended :: module() | map()) ::
 {:ok, module()} | :error

The user resource to which these identities belong.

 user_identity_user_resource!(dsl_or_extended)

 @spec user_identity_user_resource!(dsl_or_extended :: module() | map()) ::
 module() | no_return()

The user resource to which these identities belong.

AshAuthentication.Debug

Allows you to debug authentication failures in development.
Simply add config :ash_authentication, debug_authentication_failures?: true
to your dev.exs and get fancy log messages when authentication fails.

 Summary

 Functions

 enabled?()

 Has authentication debug logging been enabled?

 Functions

 enabled?()

 @spec enabled?() :: boolean()

Has authentication debug logging been enabled?

AshAuthentication.Secret behaviour

A module to implement retrieving of secrets.
Allows you to implement secrets access via your method or choice at runtime.
The context parameter is either a map with the conn key containing the Plug.Conn
if the secret is being retrieved in a plug, or the context of the ash action it is
called in
Example
defmodule MyApp.GetSecret do
 use AshAuthentication.Secret

 def secret_for([:authentication, :strategies, :oauth2, :client_id], MyApp.User, _opts, _context), do: Application.fetch_env(:my_app, :oauth_client_id)
end

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 oauth2 do
 client_id MyApp.GetSecret
 client_secret MyApp.GetSecret
 end
 end
 end
end
You can also implement it directly as a function:
defmodule MyApp.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 oauth2 do
 client_id fn _secret, _resource ->
 Application.fetch_env(:my_app, :oauth_client_id)
 end
 end
 end
 end
end
Secret name
Because you may wish to reuse this module for a number of different providers
and resources, the first argument passed to the callback is the "secret name",
it contains the "path" to the option being set. The path is made up of a list
containing the DSL path to the secret.

 Summary

 Callbacks

 secret_for(secret_name, t, keyword)

 deprecated

 secret_for(secret_name, t, keyword, context)

 Secret retrieval callback.

 Callbacks

 secret_for(secret_name, t, keyword)

 (optional)

 This callback is deprecated. Use AshAuthentication.Secret.secret_for/4 instead.

 @callback secret_for(secret_name :: [atom()], Ash.Resource.t(), keyword()) ::
 {:ok, String.t()} | :error

 secret_for(secret_name, t, keyword, context)

 (optional)

 @callback secret_for(
 secret_name :: [atom()],
 Ash.Resource.t(),
 keyword(),
 context :: map()
) ::
 {:ok, String.t()} | :error

Secret retrieval callback.
This function will be called with the "secret name", see the module
documentation for more info.
The context paramter is either a map with the conn key containing the Plug.Conn
if the secret is being retrieved in a plug, or the context of the ash action it is
called in

AshAuthentication.Sender behaviour

A module to implement sending of a token to a user.
Allows you to glue sending of instructions to
swoosh,
ex_twilio or whatever notification system
is appropriate for your application.
Senders should return :ok on success or {:error, reason} on failure.
Failures will propagate as AshAuthentication.Errors.SenderFailed errors
and cause the authentication action to fail.
If you need retry logic or want to avoid blocking the action on email delivery,
consider using a job queue like Oban. Your sender
can insert a job and return :ok immediately, letting the job handle delivery
and retries asynchronously.
Example
Implementing as a module:
defmodule MyApp.PasswordResetSender do
 use AshAuthentication.Sender
 import Swoosh.Email

 def send(user, reset_token, _opts) do
 new()
 |> to({user.name, user.email})
 |> from({"Doc Brown", "emmet@brown.inc"})
 |> subject("Password reset instructions")
 |> html_body("""
 <h1>Password reset instructions</h1>
 <p>
 Hi #{user.name},

 Someone (maybe you) has requested a password reset for your account.
 If you did not initiate this request then please ignore this email.
 </p>

 Click here to reset

 """)
 |> MyApp.Mailer.deliver()
 |> case do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end
end

defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 password :password do
 resettable do
 sender MyApp.PasswordResetSender
 end
 end
 end
 end
end
You can also implement it directly as a function:
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 strategies do
 password :password do
 resettable do
 sender fn user, token ->
 MyApp.Mailer.send_password_reset_email(user, token)
 end
 end
 end
 end
 end
end

 Summary

 Callbacks

 send(user, token, opts)

 Sending callback.

 Callbacks

 send(user, token, opts)

 @callback send(
 user :: Ash.Resource.record() | String.t(),
 token :: String.t(),
 opts :: list()
) ::
 :ok | {:error, term()}

Sending callback.
This function will be called with a value representing a user, the token and any options passed
to the module in the DSL.
Should return :ok on success or {:error, reason} on failure.

AshAuthentication.Supervisor

Starts and manages any processes required by AshAuthentication.
Add to your application supervisor:
Example
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 {AshAuthentication.Supervisor, otp_app: :my_app}
]

 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
 end
end

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

AshAuthentication.Plug behaviour

Generate an authentication plug.
Use in your app by creating a new module called AuthPlug or similar:
defmodule MyAppWeb.AuthPlug do
 use AshAuthentication.Plug, otp_app: :my_app

 def handle_success(conn, _activity, user, _token) do
 conn
 |> store_in_session(user)
 |> send_resp(200, "Welcome back #{user.name}")
 end

 def handle_failure(conn, _activity, reason) do
 conn
 |> send_resp(401, "Better luck next time")
 end
end
Using in Phoenix
In your Phoenix router you can add it:
scope "/auth" do
 pipe_through :browser
 forward "/", MyAppWeb.AuthPlug
end
In order to load any authenticated users for either web or API users you can add the following to your router:
import MyAppWeb.AuthPlug

pipeline :session_users do
 plug :load_from_session
end

pipeline :bearer_users do
 plug :load_from_bearer
end

scope "/", MyAppWeb do
 pipe_through [:browser, :session_users]

 live "/", PageLive, :home
end

scope "/api", MyAppWeb do
 pipe_through [:api, :bearer_users]

 get "/" ApiController, :index
end
Using in a Plug application
use Plug.Router

forward "/auth", to: MyAppWeb.AuthPlug
Note that you will need to include a bunch of other plugs in the pipeline to
do useful things like session and query param fetching.

 Summary

 Types

 activity()

 token()

 Callbacks

 handle_failure(t, activity, any)

 When there is any failure during authentication this callback is called.

 handle_success(t, activity, arg3, arg4)

 When authentication has been succesful, this callback will be called with the
conn, the successful activity, the authenticated resource and a token.

 Types

 activity()

 @type activity() :: {atom(), atom()}

 token()

 @type token() :: String.t()

 Callbacks

 handle_failure(t, activity, any)

 @callback handle_failure(Plug.Conn.t(), activity(), any()) :: Plug.Conn.t()

When there is any failure during authentication this callback is called.
Note that this includes not just authentication failures but potentially
route-not-found errors also.
The default implementation simply returns a 401 status with the message
"Access denied". You almost definitely want to override this.

 handle_success(t, activity, arg3, arg4)

 @callback handle_success(
 Plug.Conn.t(),
 activity(),
 Ash.Resource.record() | nil,
 token() | nil
) ::
 Plug.Conn.t()

When authentication has been succesful, this callback will be called with the
conn, the successful activity, the authenticated resource and a token.
This allows you to choose what action to take as appropriate for your
application.
The default implementation calls store_in_session/2 and returns a simple
"Access granted" message to the user. You almost definitely want to override
this behaviour.

AshAuthentication.Plug.Helpers

Authentication helpers for use in your router, etc.

 Summary

 Functions

 assign_new_resources(socket, session, assign_new, opts)

 Assigns all subjects from their equivalent sessions, if they are not already assigned.

 get_authentication_result(conn)

 load_subjects(subjects, otp_app, opts \\ [])

 Given a list of subjects, turn as many as possible into users.

 retrieve_from_bearer(conn, otp_app, opts \\ [])

 Validate authorization header(s).

 retrieve_from_session(conn, otp_app, opts \\ [])

 Attempt to retrieve all users from the connections' session.

 revoke_bearer_tokens(conn, otp_app, opts \\ [])

 Revoke all authorization header(s).

 revoke_session_tokens(conn, otp_app, opts \\ [])

 Revoke all tokens in the session.

 set_actor(conn, subject_name)

 Set a subject as the request actor.

 sign_in_using_remember_me(conn, otp_app, opts \\ [])

 Attempts to sign in all authenticated resources for the specificed otp_app
using the RememberMe strategy if not already signed in. You can limited it to
specific strategies using the strategy opt.

 store_authentication_result(conn, arg2)

 Store result in private.

 store_in_session(conn, user)

 Store the user in the connections' session.

 Functions

 assign_new_resources(socket, session, assign_new, opts)

Assigns all subjects from their equivalent sessions, if they are not already assigned.
This is meant to used via AshAuthenticationPhoenix for nested liveviews.
See AshAuthenticationPhoenix.LiveSession.assign_new_resources/3 for more.

 get_authentication_result(conn)

 load_subjects(subjects, otp_app, opts \\ [])

 @spec load_subjects([AshAuthentication.subject()], module(), opts :: Keyword.t()) ::
 map()

Given a list of subjects, turn as many as possible into users.
Opts are forwarded to AshAuthentication.subject_to_user/2

 retrieve_from_bearer(conn, otp_app, opts \\ [])

 @spec retrieve_from_bearer(Plug.Conn.t(), module(), keyword()) :: Plug.Conn.t()

Validate authorization header(s).
Assumes that your clients are sending a bearer-style authorization header with
your request. If a valid bearer token is present then the subject is loaded
into the assigns under their subject name (with the prefix current_).
If the authentication token is required to be present in the database, it is
loaded into the assigns using current_#{subject_name}_token_record
If there is no user present for a resource then the assign is set to nil.

 retrieve_from_session(conn, otp_app, opts \\ [])

 @spec retrieve_from_session(Plug.Conn.t(), module(), keyword()) :: Plug.Conn.t()

Attempt to retrieve all users from the connections' session.
Iterates through all configured authentication resources for otp_app and
retrieves any users stored in the session, loads them and stores them in the
assigns under their subject name (with the prefix current_).
If there is no user present for a resource then the assign is set to nil.

 revoke_bearer_tokens(conn, otp_app, opts \\ [])

 @spec revoke_bearer_tokens(Plug.Conn.t(), atom(), opts :: Keyword.t()) ::
 Plug.Conn.t()

Revoke all authorization header(s).
Any bearer-style authorization headers will have their tokens revoked.

 revoke_session_tokens(conn, otp_app, opts \\ [])

 @spec revoke_session_tokens(Plug.Conn.t(), atom(), opts :: Keyword.t()) ::
 Plug.Conn.t()

Revoke all tokens in the session.

 set_actor(conn, subject_name)

 @spec set_actor(Plug.Conn.t(), subject_name :: atom()) :: Plug.Conn.t()

Set a subject as the request actor.
Presumes that you have already loaded your user resource(s) into the
connection's assigns.
Uses Ash.PlugHelpers to streamline integration with AshGraphql and
AshJsonApi.
Examples
Setting the actor for a AshGraphql API using Plug.Router.
defmodule MyApp.ApiRouter do
 use Plug.Router
 import MyApp.AuthPlug

 plug :match

 plug :retrieve_from_bearer
 plug :set_actor, :user

 plug :dispatch

 forward "/gql",
 to: Absinthe.Plug,
 init_opts: [schema: MyApp.Schema]
end

 sign_in_using_remember_me(conn, otp_app, opts \\ [])

 @spec sign_in_using_remember_me(Plug.Conn.t(), module(), keyword()) :: Plug.Conn.t()

Attempts to sign in all authenticated resources for the specificed otp_app
using the RememberMe strategy if not already signed in. You can limited it to
specific strategies using the strategy opt.
Opts are forwarded to AshAuthentication.Strategies.RememberMe.Plug.sign_in_resource_with_remember_me/3

 store_authentication_result(conn, arg2)

 @spec store_authentication_result(
 Plug.Conn.t(),
 :ok | {:ok, Ash.Resource.record()} | :error | {:error, any()}
) :: Plug.Conn.t()

Store result in private.
This is used by authentication plug handlers to store their result for passing
back to the dispatcher.

 store_in_session(conn, user)

 @spec store_in_session(Plug.Conn.t(), Ash.Resource.record()) :: Plug.Conn.t()

Store the user in the connections' session.
Stores both the session identifier (token, jti:subject, or subject) and any
authentication metadata from the user. The metadata is stored separately and
will be restored onto the user when loading from the session.

AshAuthentication.Checks.AshAuthenticationInteraction

This check is true if the context private.ash_authentication? is set to true.
This context will only ever be set in code that is called internally by
ash_authentication, allowing you to create a bypass in your policies on your
user/user_token resources.
policies do
 bypass AshAuthenticationInteraction do
 authorize_if always()
 end
end

 Summary

 Functions

 eager_evaluate?()

 Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 prefer_expanded_description?()

 Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 eager_evaluate?()

Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 prefer_expanded_description?()

Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

Callback implementation for Ash.Policy.Check.type/0.

AshAuthentication.GenerateTokenChange

Given a successful registration or sign-in, generate a token.

AshAuthentication.Strategy.Password.HashPasswordChange

Set the hash based on the password input.
Uses the configured AshAuthentication.HashProvider to generate a hash of the
user's password input and store it in the changeset.
You can use this change in your actions where you want to change the user's
password. If you're not using one of the actions generated by the password
strategy then you'll need to manually pass the strategy name in the changeset
context. Eg:
Changeset.new(user, %{})
|> Changeset.set_context(%{strategy_name: :password})
|> Changeset.for_update(:update, params)
|> Accounts.update()
or by adding it statically to your action definition:
update :change_password do
 change set_context(%{strategy_name: :password})
 change AshAuthentication.Strategy.Password.HashPasswordChange
end
or by adding it as an option to the change definition:
update :change_password do
 change {AshAuthentication.Strategy.Password.HashPasswordChange, strategy_name: :password}
end

AshAuthentication.Strategy.Password.PasswordConfirmationValidation

Validate that the password and password confirmation match.
This check is only performed when the confirmation_required? DSL option is
set to true.
You can use this validation in your own actions where you want to validate
that the password and the password confirmation arguments match. If you're
not using one of the actions generated by the password strategy then you'll
need to manually pass the strategy name in the changeset context. Eg:
Changeset.new(user, %{})
|> Changeset.set_context(%{strategy_name: :password})
|> Changeset.for_update(:change_password, params)
|> Accounts.update()
or by adding it statically in your action definition:
update :change_password do
 change set_context(%{strategy_name: :password})
 change AshAuthentication.Strategy.Password.HashPasswordChange
end

 Summary

 Functions

 validate(changeset, options, context)

 Validates that the password and password confirmation fields contain
equivalent values - if confirmation is required.

 Functions

 validate(changeset, options, context)

 @spec validate(Ash.Changeset.t(), keyword(), Ash.Resource.Validation.Context.t()) ::
 :ok | {:error, String.t() | Exception.t()}

Validates that the password and password confirmation fields contain
equivalent values - if confirmation is required.

AshAuthentication.Strategy.Password.PasswordValidation

A convenience validation that checks that the password argument against the
hashed password stored in the record.
You can use this validation in your changes where you want the user to enter
their current password before being allowed to make a change (eg in a password
change flow).
Options:
You can provide these options either in the DSL options, or in the changeset
context.
	strategy_name - the name of the authentication strategy to use. Required.
	password_argument - the name of the argument to check for the current
password. If missing this will default to the password_field value
configured on the strategy.

Examples
defmodule MyApp.Accounts.User do
 # ...

 actions do
 update :change_password do
 accept []
 argument :current_password, :string, sensitive?: true, allow_nil?: false
 argument :password, :string, sensitive?: true, allow_nil?: false
 argument :password_confirmation, :string, sensitive?: true, allow_nil?: false

 validate confirm(:password, :password_confirmation)
 validate {AshAuthentication.Strategy.Password.PasswordValidation, strategy_name: :password, password_argument: :current_password}

 change {AshAuthentication.Strategy.Password.HashPasswordChange, strategy_name: :password}
 end
 end

 # ...
end

AshAuthentication.Validations

Common validations shared by several transformers.

 Summary

 Functions

 find_attribute(dsl_state, attribute_name)

 Find and return a named attribute in the DSL state.

 maybe_build_attribute(dsl_state, attribute_name, builder)

 Build an attribute if not present.

 persisted_option(dsl_state, option)

 Find and return a persisted option in the DSL state.

 validate_behaviour(module, behaviour)

 Ensure that the named module implements a specific behaviour.

 validate_extension(dsl_state, extension)

 Validates that extension is present on the resource.

 validate_field_in_values(map, field, values)

 Given a map validate that the provided field is one of the values provided.

 validate_field_with(map, field, predicate, message \\ nil)

 Given a map, validate that the provided field predicate returns true for the value.

 validate_secret(strategy, option, allowed_extras \\ [])

 Validate that a "secret" field is configured correctly.

 validate_token_generation_enabled(dsl_state, message)

 Ensure that token generation is enabled for the resource.

 Functions

 find_attribute(dsl_state, attribute_name)

 @spec find_attribute(Spark.Dsl.t(), atom()) ::
 {:ok, Ash.Resource.Attribute.t()} | {:error, Exception.t()}

Find and return a named attribute in the DSL state.

 maybe_build_attribute(dsl_state, attribute_name, builder)

 @spec maybe_build_attribute(Spark.Dsl.t(), atom(), (Spark.Dsl.t() ->
 {:ok,
 Ash.Resource.Attribute.t()})) ::
 {:ok, Spark.Dsl.t()}

Build an attribute if not present.

 persisted_option(dsl_state, option)

 @spec persisted_option(Spark.Dsl.t(), atom()) ::
 {:ok, any()} | {:error, {:unknown_persisted, atom()}}

Find and return a persisted option in the DSL state.

 validate_behaviour(module, behaviour)

 @spec validate_behaviour(module(), module()) :: :ok | {:error, Exception.t()}

Ensure that the named module implements a specific behaviour.

 validate_extension(dsl_state, extension)

 @spec validate_extension(Spark.Dsl.t(), module()) :: :ok | {:error, Exception.t()}

Validates that extension is present on the resource.

 validate_field_in_values(map, field, values)

 @spec validate_field_in_values(map(), any(), [any()]) :: :ok | {:error, String.t()}

Given a map validate that the provided field is one of the values provided.

 validate_field_with(map, field, predicate, message \\ nil)

 @spec validate_field_with(map(), field, (any() -> boolean()), message) ::
 :ok | {:error, message}
when field: any(), message: any()

Given a map, validate that the provided field predicate returns true for the value.

 validate_secret(strategy, option, allowed_extras \\ [])

Validate that a "secret" field is configured correctly.

 validate_token_generation_enabled(dsl_state, message)

 @spec validate_token_generation_enabled(Spark.Dsl.t(), binary()) ::
 :ok | {:error, Exception.t()}

Ensure that token generation is enabled for the resource.

AshAuthentication.Validations.Action

Validation helpers for Resource actions.

 Summary

 Functions

 validate_action_argument_option(action, argument_name, field, values)

 Validate an action's argument has an option set to one of the provided values.

 validate_action_exists(dsl_state, action_name)

 Validate that a named action actually exists.

 validate_action_has_argument(action, argument_name)

 Validate the presence of an argument on an action.

 validate_action_has_change(action, change_module)

 Validate the presence of the named change module on an action.

 validate_action_has_manual(action, manual_module)

 Validate the presence of the named manual module on an action.

 validate_action_has_preparation(action, preparation_module)

 Validate the presence of the named preparation module on an action.

 validate_action_has_validation(action, validation_module)

 Validate the presence of the named validation module on an action.

 validate_action_option(action, field, values)

 Validate the action has the provided option.

 Functions

 validate_action_argument_option(action, argument_name, field, values)

 @spec validate_action_argument_option(Ash.Resource.Actions.action(), atom(), atom(), [
 any()
]) ::
 :ok | {:error, Exception.t() | String.t()}

Validate an action's argument has an option set to one of the provided values.

 validate_action_exists(dsl_state, action_name)

 @spec validate_action_exists(map(), atom()) ::
 {:ok, Ash.Resource.Actions.action()} | {:error, Exception.t() | String.t()}

Validate that a named action actually exists.

 validate_action_has_argument(action, argument_name)

 @spec validate_action_has_argument(Ash.Resource.Actions.action(), atom()) ::
 :ok | {:error, Exception.t()}

Validate the presence of an argument on an action.

 validate_action_has_change(action, change_module)

 @spec validate_action_has_change(Ash.Resource.Actions.action(), module()) ::
 :ok | {:error, Exception.t()}

Validate the presence of the named change module on an action.

 validate_action_has_manual(action, manual_module)

 @spec validate_action_has_manual(Ash.Resource.Actions.action(), module()) ::
 :ok | {:error, Exception.t()}

Validate the presence of the named manual module on an action.

 validate_action_has_preparation(action, preparation_module)

 @spec validate_action_has_preparation(Ash.Resource.Actions.action(), module()) ::
 :ok | {:error, Exception.t()}

Validate the presence of the named preparation module on an action.

 validate_action_has_validation(action, validation_module)

 @spec validate_action_has_validation(Ash.Resource.Actions.action(), module()) ::
 :ok | {:error, Exception.t()}

Validate the presence of the named validation module on an action.

 validate_action_option(action, field, values)

 @spec validate_action_option(Ash.Resource.Actions.action(), atom(), [any()]) ::
 :ok | {:error, Exception.t()}

Validate the action has the provided option.

AshAuthentication.Validations.Attribute

Validation helpers for Resource attributes.

 Summary

 Functions

 validate_attribute_option(attribute, resource, field, values)

 Validate that an option is set correctly on an attribute

 validate_attribute_unique_constraint(dsl_state, fields, resource)

 Validate than an attribute has a unique identity applied.

 Functions

 validate_attribute_option(attribute, resource, field, values)

 @spec validate_attribute_option(Ash.Resource.Attribute.t(), module(), atom(), [any()]) ::
 :ok | {:error, Exception.t()}

Validate that an option is set correctly on an attribute

 validate_attribute_unique_constraint(dsl_state, fields, resource)

 @spec validate_attribute_unique_constraint(map(), [atom()], module()) ::
 :ok | {:error, Exception.t()}

Validate than an attribute has a unique identity applied.

AshAuthentication.Errors.AuthenticationFailed exception

A generic, authentication failed error.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.AuthenticationFailed without raising it.

 Types

 t()

 @type t() :: Exception.t()

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) ::
 %AshAuthentication.Errors.AuthenticationFailed{
 __exception__: true,
 bread_crumbs: term(),
 caused_by: term(),
 changeset: term(),
 class: term(),
 field: term(),
 path: term(),
 query: term(),
 splode: term(),
 stacktrace: term(),
 strategy: term(),
 vars: term()
 }

Create an Elixir.AshAuthentication.Errors.AuthenticationFailed without raising it.
Keys
	:caused_by
	:changeset
	:field
	:query
	:strategy

AshAuthentication.Errors.CannotConfirmUnconfirmedUser exception

An unconfirmed user cannot be confirmed outside of explicit actions.
This can be allowed by making an action confirm a user by placing it in the auto_confirm_actions list.
However, it is a security risk to allow unconfirmed users to be confirmed except for via the confirm action, invoked with a token.
See the confirmation tutorial on hexdocs for more.

 Summary

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.CannotConfirmUnconfirmedUser without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) ::
 %AshAuthentication.Errors.CannotConfirmUnconfirmedUser{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 confirmation_strategy: term(),
 path: term(),
 resource: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
 }

Create an Elixir.AshAuthentication.Errors.CannotConfirmUnconfirmedUser without raising it.
Keys
	:resource
	:confirmation_strategy

AshAuthentication.Errors.InvalidSecret exception

A secret returned an invalid value.

 Summary

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.InvalidSecret without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %AshAuthentication.Errors.InvalidSecret{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 resource: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

Create an Elixir.AshAuthentication.Errors.InvalidSecret without raising it.
Keys
	:resource
	:value

AshAuthentication.Errors.InvalidToken exception

An invalid token was presented.

 Summary

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.InvalidToken without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %AshAuthentication.Errors.InvalidToken{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 field: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 type: term(),
 vars: term()
}

Create an Elixir.AshAuthentication.Errors.InvalidToken without raising it.
Keys
	:type
	:field
	:reason

AshAuthentication.Errors.MissingSecret exception

A secret is now missing.

 Summary

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.MissingSecret without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %AshAuthentication.Errors.MissingSecret{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 resource: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.AshAuthentication.Errors.MissingSecret without raising it.
Keys
	:resource

AshAuthentication.Errors.SenderFailed exception

A sender failed to deliver a token.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.SenderFailed without raising it.

 Types

 t()

 @type t() :: Exception.t()

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %AshAuthentication.Errors.SenderFailed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 sender: term(),
 splode: term(),
 stacktrace: term(),
 strategy: term(),
 vars: term()
}

Create an Elixir.AshAuthentication.Errors.SenderFailed without raising it.
Keys
	:sender
	:reason
	:strategy

AshAuthentication.Errors.UnconfirmedUser exception

The user is unconfirmed and so the operation cannot be executed.

 Summary

 Functions

 exception(args)

 Create an Elixir.AshAuthentication.Errors.UnconfirmedUser without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %AshAuthentication.Errors.UnconfirmedUser{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 confirmation_field: term(),
 field: term(),
 path: term(),
 resource: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.AshAuthentication.Errors.UnconfirmedUser without raising it.
Keys
	:resource
	:field
	:confirmation_field

AshAuthentication.AddOn.AuditLog

Audit logging support.
Provides audit-logging support for authentication strategies by adding changes and preparations to all their actions.
In order to use this add-on you must have at least one resource configured with the AshAuthentication.AuditLogResource extension added.
Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 authentication do
 add_ons do
 audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 end
 end
 end
end

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AshAuthentication.AddOn.AuditLog{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 audit_log_resource: Ash.Resource.t(),
 exclude_actions: [atom()],
 exclude_strategies: [atom()],
 include_actions: [atom()],
 include_fields: [atom()],
 include_strategies: [atom()],
 ip_privacy_mode: :none | :hash | :truncate | :exclude,
 ipv4_truncation_mask: pos_integer(),
 ipv6_truncation_mask: pos_integer(),
 name: atom(),
 provider: :audit_log,
 resource: Ash.Resource.t()
}

AshAuthentication.AddOn.AuditLog.Auditor

Provides common audit logging behaviour for Ash actions.

 Summary

 Types

 input()

 result()

 Types

 input()

 @type input() :: Ash.ActionInput.t() | Ash.Changeset.t() | Ash.Query.t()

 result()

 @type result() ::
 {:ok, Ash.Resource.record()}
 | {:ok, [Ash.Resource.record()]}
 | {:error, any()}

AshAuthentication.AddOn.AuditLog.Auditor.Change

Implements the Ash.Resource.Change behaviour for audit logging

AshAuthentication.AddOn.AuditLog.Auditor.Preparation

Implements the Ash.Resource.Preparation behaviour for audit logging

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

AshAuthentication.AddOn.AuditLog.Dsl

Defines the Spark DSL entity for this add on.

AshAuthentication.AddOn.AuditLog.IpPrivacy

Provides IP address privacy transformations for audit logging.
This module handles transforming IP addresses according to privacy settings
to help comply with privacy regulations like GDPR.

 Summary

 Functions

 apply_privacy(ip, arg2, opts)

 Apply privacy transformation to an IP address string.

 apply_to_request(request, mode, opts)

 Apply privacy transformation to request data containing IP addresses.

 hash_ip(ip)

 Hash an IP address using SHA256.

 truncate_ip(ip, masks)

 Truncate an IP address to a network prefix.

 Functions

 apply_privacy(ip, arg2, opts)

 @spec apply_privacy(String.t() | nil, atom(), map()) :: String.t() | nil

Apply privacy transformation to an IP address string.
Options
	:mode - The privacy mode (:none, :hash, :truncate, :exclude)
	:truncation_masks - Map with :ipv4 and :ipv6 keys for truncation bits

 apply_to_request(request, mode, opts)

 @spec apply_to_request(map(), atom(), map()) :: map()

Apply privacy transformation to request data containing IP addresses.
Transforms the following fields:
	remote_ip
	x_forwarded_for (list of IPs)
	forwarded (list of forwarded headers)

 hash_ip(ip)

 @spec hash_ip(String.t()) :: String.t()

Hash an IP address using SHA256.
Uses the application's secret key base as salt for consistent hashing.

 truncate_ip(ip, masks)

 @spec truncate_ip(String.t(), map()) :: String.t() | nil

Truncate an IP address to a network prefix.
For IPv4: Applies a subnet mask (e.g., /24 keeps first 3 octets)
For IPv6: Applies a prefix length (e.g., /48 keeps first 3 hextets)

AshAuthentication.AddOn.AuditLog.Verifier

Provides configuration validation for the AuditLog add-on.

AshAuthentication.AddOn.Confirmation.Actions

Actions for the confirmation add-on.
Provides the code interface for working with resources via confirmation.

 Summary

 Functions

 confirm(strategy, params, opts \\ [])

 Attempt to confirm a user.

 get_changes(strategy, jti, opts \\ [])

 Get changes from the tokens resource for application.

 store_changes(strategy, token, changeset, opts \\ [])

 Store changes in the tokens resource for later re-use.

 Functions

 confirm(strategy, params, opts \\ [])

 @spec confirm(AshAuthentication.AddOn.Confirmation.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to confirm a user.

 get_changes(strategy, jti, opts \\ [])

 @spec get_changes(AshAuthentication.AddOn.Confirmation.t(), String.t(), keyword()) ::
 {:ok, map()} | :error

Get changes from the tokens resource for application.

 store_changes(strategy, token, changeset, opts \\ [])

 @spec store_changes(
 AshAuthentication.AddOn.Confirmation.t(),
 String.t(),
 Ash.Changeset.t(),
 keyword()
) ::
 :ok | {:error, any()}

Store changes in the tokens resource for later re-use.

AshAuthentication.AddOn.Confirmation.ConfirmChange

Performs a change based on the contents of a confirmation token.

AshAuthentication.AddOn.Confirmation.ConfirmationHookChange

Triggers a confirmation flow when one of the monitored fields is changed.
Optionally inhibits changes to monitored fields on update.
You can use this change in your actions where you want to send the user a
confirmation (or inhibit changes after confirmation). If you're not using one
of the actions generated by the confirmation add-on then you'll need to
manually pass the strategy name in the changeset context. Eg:
Changeset.new(user, %{})
|> Changeset.set_context(%{strategy_name: :confirm})
|> Changeset.for_update(:update, params)
|> Accounts.update()
or by adding it statically to your action definition:
update :change_email do
 change set_context(%{strategy_name: :confirm})
 change AshAuthentication.AddOn.Confirmation.ConfirmationHookChange
end
or by adding it as an option to the change definition:
update :change_email do
 change {AshAuthentication.AddOn.Confirmation.ConfirmationHookChange, strategy_name: :confirm}
end

AshAuthentication.AddOn.Confirmation.Dsl

Defines the Spark DSL entity for this add on.

AshAuthentication.AddOn.Confirmation.Plug

Handlers for incoming OAuth2 HTTP requests.

 Summary

 Functions

 accept(conn, strategy)

 Present a confirm button to the user.

 confirm(conn, strategy)

 Attempt to perform a confirmation.

 Functions

 accept(conn, strategy)

 @spec accept(Plug.Conn.t(), AshAuthentication.AddOn.Confirmation.t()) :: Plug.Conn.t()

Present a confirm button to the user.

 confirm(conn, strategy)

 @spec confirm(Plug.Conn.t(), AshAuthentication.AddOn.Confirmation.t()) ::
 Plug.Conn.t()

Attempt to perform a confirmation.

AshAuthentication.AddOn.Confirmation.Transformer

DSL transformer for confirmation add-on.
Ensures that there is only ever one present and that it is correctly
configured.

AshAuthentication.AddOn.Confirmation.Verifier

DSL verifier for confirmation add-on.

AshAuthentication.AddOn.LogOutEverywhere.Action

Revokes all tokens for the specified user.

AshAuthentication.AddOn.LogOutEverywhere.Dsl

Defines the Spark DSL entity for this add on.

AshAuthentication.AddOn.LogOutEverywhere.OnPasswordChange

Logs a user out from everywhere by revoking all stored tokens.

AshAuthentication.AddOn.LogOutEverywhere.Transformer

DSL transformer the the log-out-everywhere add-on.
Ensures that there is only ever one present and that it is correctly
configured.

AshAuthentication.AddOn.LogOutEverywhere.Verifier

DSL verifier for the log-out-everywhere add-on.

AshAuthentication.Argon2Provider

Provides an implementation of AshAuthentication.HashProvider using Argon2.

 Summary

 Functions

 hash(input)

 Given some user input as a string, convert it into it's hashed form using Argon2.

 simulate()

 Simulate a password check to help avoid timing attacks.

 valid?(input, hash)

 Check if the user input matches the hash.

 Functions

 hash(input)

 @spec hash(String.t()) :: {:ok, String.t()} | :error

Given some user input as a string, convert it into it's hashed form using Argon2.
Example
iex> {:ok, hashed} = hash("Marty McFly")
...> String.starts_with?(hashed, "$argon2id$")
true

 simulate()

 @spec simulate() :: false

Simulate a password check to help avoid timing attacks.
Example
iex> simulate()
false

 valid?(input, hash)

 @spec valid?(input :: String.t() | nil, hash :: String.t()) :: boolean()

Check if the user input matches the hash.
Example
iex> valid?("Marty McFly", "$argon2id$v=19$m=256,t=1,p=2$T9zYADIg2xF5P21FgyIX5g$5K1vy8VTMlEZUWuO8HPOJcu239FkHen5XKmg7uviHEk")
true

AshAuthentication.AuditLogResource

This is an Ash resource extension which generates the default audit log resource.
The audit log resource is used to store user interactions with the authentication system in order to derive extra security behaviour from this information.
Storage
The information stored in this resource is essentially time-series, and should be stored in a resilient data-layer such as postgres.
Usage
There is no need to define any attributes or actions (thought you can if you want). The extension will wire up everything that's needed for the audit log to function.
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 postgres do
 table "account_audit_log"
 repo MyApp.Repo
 end
end
Whilst it is possible to have multiple audit log resources, there is no need to do so.
Batched writes
In order to reduce the write load on the database writes to the audit log (via the AuditLogResource.log_activity/2 function) will be buffered in a GenServer and written in batches.
Batching can be disabled entirely by setting audit_log.write_batching.enabled? to false.
By default it write a batch every 100 records or every 10 seconds, whichever happens first. This can also be controlled by options in the audit_log.write_batching DSL.
Removing old records
When the log_lifetime DSL option is set to a positive integer then log entries will be automatically removed after that many days. To disable this behaviour, or to manage it manually set it to :infinity. Defaults to 90 days.

 Summary

 Functions

 audit_log(body)

 log_activity(strategy, params)

 Log an authentication event into the audit logger.

 Functions

 audit_log(body)

 (macro)

 log_activity(strategy, params)

 @spec log_activity(strategy :: AshAuthentication.AddOn.AuditLog.t(), map()) ::
 :ok | {:error, any()}

Log an authentication event into the audit logger.

AshAuthentication.AuditLogResource.Batcher

A GenServer which batches up writes to the audit log to reduce write pressure in busy environments.
Scans all audit log resources based on their configured write batching options.
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 audit_log do
 write_batching do
 enabled? true
 timeout :timer.seconds(10)
 max_size 100
 end
 end
end
This GenServer is started by the AshAuthentication.Supervisor which should be added to your app's supervision tree.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 enqueue(changeset)

 Queues an event for writing.

 flush()

 Flushes all queued events to the database immediately.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 enqueue(changeset)

Queues an event for writing.

 flush()

Flushes all queued events to the database immediately.
Useful for testing to ensure all audit log entries are written before assertions.

AshAuthentication.AuditLogResource.Expunger

A GenServer which removes old audit log entries once they're no longer relevant.
Scans all audit log resources based on their configured lifetime options.
defmodule MyApp.Accounts.AuditLog do
 use Ash.Resource,
 extensions: [AshAuthentication.AuditLogResource],
 domain: MyApp.Accounts

 audit_log do
 log_lifetime 90 # days
 expunge_interval 12 # hours
 end
end
This GenServer is started by the AshAuthentication.Supervisor which should be added to your app's supervision tree.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

AshAuthentication.AuditLogResource.Info

Introspection functions for the AshAuthentication.AuditLogResource Ash extension.

 Summary

 Functions

 audit_log_attributes_action_name(dsl_or_extended)

 The attribute within which to store the triggering action.

 audit_log_attributes_action_name!(dsl_or_extended)

 The attribute within which to store the triggering action.

 audit_log_attributes_audit_log(dsl_or_extended)

 The attribute within which to store the audit log add-on's name.

 audit_log_attributes_audit_log!(dsl_or_extended)

 The attribute within which to store the audit log add-on's name.

 audit_log_attributes_extra_data(dsl_or_extended)

 The attribute within which to store any additional information about the event.

 audit_log_attributes_extra_data!(dsl_or_extended)

 The attribute within which to store any additional information about the event.

 audit_log_attributes_id(dsl_or_extended)

 The name of the primary key attribute

 audit_log_attributes_id!(dsl_or_extended)

 The name of the primary key attribute

 audit_log_attributes_logged_at(dsl_or_extended)

 The attribute within which to store the time that the event occurred.

 audit_log_attributes_logged_at!(dsl_or_extended)

 The attribute within which to store the time that the event occurred.

 audit_log_attributes_options(dsl_or_extended)

 audit_log.attributes DSL options

 audit_log_attributes_resource(dsl_or_extended)

 The attribute within which to store the name of the affected resource.

 audit_log_attributes_resource!(dsl_or_extended)

 The attribute within which to store the name of the affected resource.

 audit_log_attributes_status(dsl_or_extended)

 The attribute within which to store the status of the event as defined by the authentication strategy.

 audit_log_attributes_status!(dsl_or_extended)

 The attribute within which to store the status of the event as defined by the authentication strategy.

 audit_log_attributes_strategy(dsl_or_extended)

 The attribute within which to store the authentication strategy's name.

 audit_log_attributes_strategy!(dsl_or_extended)

 The attribute within which to store the authentication strategy's name.

 audit_log_attributes_subject(dsl_or_extended)

 The attribute within which to store the user's authentication subject (if available).

 audit_log_attributes_subject!(dsl_or_extended)

 The attribute within which to store the user's authentication subject (if available).

 audit_log_destroy_action_name(dsl_or_extended)

 The name of the generated expunge action.

 audit_log_destroy_action_name!(dsl_or_extended)

 The name of the generated expunge action.

 audit_log_destroy_action_options(dsl_or_extended)

 audit_log.destroy_action DSL options

 audit_log_domain(dsl_or_extended)

 The Ash domain to use to access this resource.

 audit_log_domain!(dsl_or_extended)

 The Ash domain to use to access this resource.

 audit_log_expunge_interval(dsl_or_extended)

 How often (in hours) to scan this resource for records which have expired and thus can be removed.

 audit_log_expunge_interval!(dsl_or_extended)

 How often (in hours) to scan this resource for records which have expired and thus can be removed.

 audit_log_log_lifetime(dsl_or_extended)

 How long to keep event logs before removing them in days.

 audit_log_log_lifetime!(dsl_or_extended)

 How long to keep event logs before removing them in days.

 audit_log_options(dsl_or_extended)

 audit_log DSL options

 audit_log_read_expired_action_name(dsl_or_extended)

 The name of the generated read action.

 audit_log_read_expired_action_name!(dsl_or_extended)

 The name of the generated read action.

 audit_log_read_expired_action_options(dsl_or_extended)

 audit_log.read_expired_action DSL options

 audit_log_write_action_name(dsl_or_extended)

 The name of the generated write action.

 audit_log_write_action_name!(dsl_or_extended)

 The name of the generated write action.

 audit_log_write_action_options(dsl_or_extended)

 audit_log.write_action DSL options

 audit_log_write_batching_enabled?(dsl_or_extended)

 Whether or not write batching should be enabled. When set to false every event will be written to the log in it's own transaction.

 audit_log_write_batching_max_size(dsl_or_extended)

 Maximum number of events that can be written in a single batch.

 audit_log_write_batching_max_size!(dsl_or_extended)

 Maximum number of events that can be written in a single batch.

 audit_log_write_batching_options(dsl_or_extended)

 audit_log.write_batching DSL options

 audit_log_write_batching_timeout(dsl_or_extended)

 Maximum time to wait between writing batches in milliseconds.

 audit_log_write_batching_timeout!(dsl_or_extended)

 Maximum time to wait between writing batches in milliseconds.

 Functions

 audit_log_attributes_action_name(dsl_or_extended)

 @spec audit_log_attributes_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the triggering action.

 audit_log_attributes_action_name!(dsl_or_extended)

 @spec audit_log_attributes_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the triggering action.

 audit_log_attributes_audit_log(dsl_or_extended)

 @spec audit_log_attributes_audit_log(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the audit log add-on's name.

 audit_log_attributes_audit_log!(dsl_or_extended)

 @spec audit_log_attributes_audit_log!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the audit log add-on's name.

 audit_log_attributes_extra_data(dsl_or_extended)

 @spec audit_log_attributes_extra_data(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store any additional information about the event.

 audit_log_attributes_extra_data!(dsl_or_extended)

 @spec audit_log_attributes_extra_data!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store any additional information about the event.

 audit_log_attributes_id(dsl_or_extended)

 @spec audit_log_attributes_id(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the primary key attribute

 audit_log_attributes_id!(dsl_or_extended)

 @spec audit_log_attributes_id!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the primary key attribute

 audit_log_attributes_logged_at(dsl_or_extended)

 @spec audit_log_attributes_logged_at(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the time that the event occurred.

 audit_log_attributes_logged_at!(dsl_or_extended)

 @spec audit_log_attributes_logged_at!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the time that the event occurred.

 audit_log_attributes_options(dsl_or_extended)

 @spec audit_log_attributes_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log.attributes DSL options
Returns a map containing the and any configured or default values.

 audit_log_attributes_resource(dsl_or_extended)

 @spec audit_log_attributes_resource(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the name of the affected resource.

 audit_log_attributes_resource!(dsl_or_extended)

 @spec audit_log_attributes_resource!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the name of the affected resource.

 audit_log_attributes_status(dsl_or_extended)

 @spec audit_log_attributes_status(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the status of the event as defined by the authentication strategy.

 audit_log_attributes_status!(dsl_or_extended)

 @spec audit_log_attributes_status!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the status of the event as defined by the authentication strategy.

 audit_log_attributes_strategy(dsl_or_extended)

 @spec audit_log_attributes_strategy(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the authentication strategy's name.

 audit_log_attributes_strategy!(dsl_or_extended)

 @spec audit_log_attributes_strategy!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the authentication strategy's name.

 audit_log_attributes_subject(dsl_or_extended)

 @spec audit_log_attributes_subject(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute within which to store the user's authentication subject (if available).

 audit_log_attributes_subject!(dsl_or_extended)

 @spec audit_log_attributes_subject!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute within which to store the user's authentication subject (if available).

 audit_log_destroy_action_name(dsl_or_extended)

 @spec audit_log_destroy_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the generated expunge action.

 audit_log_destroy_action_name!(dsl_or_extended)

 @spec audit_log_destroy_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the generated expunge action.

 audit_log_destroy_action_options(dsl_or_extended)

 @spec audit_log_destroy_action_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log.destroy_action DSL options
Returns a map containing the and any configured or default values.

 audit_log_domain(dsl_or_extended)

 @spec audit_log_domain(dsl_or_extended :: module() | map()) ::
 {:ok, module()} | :error

The Ash domain to use to access this resource.

 audit_log_domain!(dsl_or_extended)

 @spec audit_log_domain!(dsl_or_extended :: module() | map()) :: module() | no_return()

The Ash domain to use to access this resource.

 audit_log_expunge_interval(dsl_or_extended)

 @spec audit_log_expunge_interval(dsl_or_extended :: module() | map()) ::
 {:ok, pos_integer()} | :error

How often (in hours) to scan this resource for records which have expired and thus can be removed.

 audit_log_expunge_interval!(dsl_or_extended)

 @spec audit_log_expunge_interval!(dsl_or_extended :: module() | map()) ::
 pos_integer() | no_return()

How often (in hours) to scan this resource for records which have expired and thus can be removed.

 audit_log_log_lifetime(dsl_or_extended)

 @spec audit_log_log_lifetime(dsl_or_extended :: module() | map()) ::
 {:ok, pos_integer() | :infinity} | :error

How long to keep event logs before removing them in days.

 audit_log_log_lifetime!(dsl_or_extended)

 @spec audit_log_log_lifetime!(dsl_or_extended :: module() | map()) ::
 (pos_integer() | :infinity) | no_return()

How long to keep event logs before removing them in days.

 audit_log_options(dsl_or_extended)

 @spec audit_log_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log DSL options
Returns a map containing the and any configured or default values.

 audit_log_read_expired_action_name(dsl_or_extended)

 @spec audit_log_read_expired_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the generated read action.

 audit_log_read_expired_action_name!(dsl_or_extended)

 @spec audit_log_read_expired_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the generated read action.

 audit_log_read_expired_action_options(dsl_or_extended)

 @spec audit_log_read_expired_action_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log.read_expired_action DSL options
Returns a map containing the and any configured or default values.

 audit_log_write_action_name(dsl_or_extended)

 @spec audit_log_write_action_name(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The name of the generated write action.

 audit_log_write_action_name!(dsl_or_extended)

 @spec audit_log_write_action_name!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The name of the generated write action.

 audit_log_write_action_options(dsl_or_extended)

 @spec audit_log_write_action_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log.write_action DSL options
Returns a map containing the and any configured or default values.

 audit_log_write_batching_enabled?(dsl_or_extended)

 @spec audit_log_write_batching_enabled?(dsl_or_extended :: module() | map()) ::
 boolean()

Whether or not write batching should be enabled. When set to false every event will be written to the log in it's own transaction.

 audit_log_write_batching_max_size(dsl_or_extended)

 @spec audit_log_write_batching_max_size(dsl_or_extended :: module() | map()) ::
 {:ok, pos_integer()} | :error

Maximum number of events that can be written in a single batch.

 audit_log_write_batching_max_size!(dsl_or_extended)

 @spec audit_log_write_batching_max_size!(dsl_or_extended :: module() | map()) ::
 pos_integer() | no_return()

Maximum number of events that can be written in a single batch.

 audit_log_write_batching_options(dsl_or_extended)

 @spec audit_log_write_batching_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

audit_log.write_batching DSL options
Returns a map containing the and any configured or default values.

 audit_log_write_batching_timeout(dsl_or_extended)

 @spec audit_log_write_batching_timeout(dsl_or_extended :: module() | map()) ::
 {:ok, timeout()} | :error

Maximum time to wait between writing batches in milliseconds.

 audit_log_write_batching_timeout!(dsl_or_extended)

 @spec audit_log_write_batching_timeout!(dsl_or_extended :: module() | map()) ::
 timeout() | no_return()

Maximum time to wait between writing batches in milliseconds.

AshAuthentication.Checks.UsingApiKey

This check is true if user.__metadata__[:using_api_key?] is set to true.

 Summary

 Functions

 eager_evaluate?()

 Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 prefer_expanded_description?()

 Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 eager_evaluate?()

Callback implementation for Ash.Policy.Check.eager_evaluate?/0.

 prefer_expanded_description?()

Callback implementation for Ash.Policy.Check.prefer_expanded_description?/0.

 requires_original_data?(_, _)

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, context, opts)

Callback implementation for Ash.Policy.Check.strict_check/3.

 type()

Callback implementation for Ash.Policy.Check.type/0.

AshAuthentication.Igniter

Codemods for working with AshAuthentication

 Summary

 Functions

 add_add_on(igniter, resource, contents)

 Adds an add on to the authentication.add_ons section of a resource

 add_new_add_on(igniter, resource, type, name, contents)

 Adds a new add_on to the authentication.strategies section of a resource

 add_new_secret_from_env(igniter, module, resource, path, env_key)

 Adds a secret to a secret module that reads from application env, if one for that module/path doesn't exist already.

 add_new_strategy(igniter, resource, type, name, contents)

 Adds a new strategy to the authentication.strategies section of a resource

 add_secret_from_env(igniter, module, resource, path, env_key)

 Adds a secret to a secret module that reads from application env

 add_strategy(igniter, resource, contents)

 Adds a strategy to the authentication.strategies section of a resource

 defines_add_on(igniter, resource, constructor, name)

 Returns true if the given resource defines an authentication add on with the provided name

 defines_strategy(igniter, resource, constructor, name)

 Returns true if the given resource defines an authentication strategy with the provided name

 defines_strategy_of_type(igniter, resource, constructor)

 Returns true if the given resource defines an authentication strategy of the provided type

 Functions

 add_add_on(igniter, resource, contents)

 @spec add_add_on(
 Igniter.t(),
 Ash.Resource.t(),
 contents :: String.t()
) :: Igniter.t()

Adds an add on to the authentication.add_ons section of a resource

 add_new_add_on(igniter, resource, type, name, contents)

 @spec add_new_add_on(
 Igniter.t(),
 Ash.Resource.t(),
 type :: atom(),
 name :: atom() | nil,
 contents :: String.t()
) :: Igniter.t()

Adds a new add_on to the authentication.strategies section of a resource

 add_new_secret_from_env(igniter, module, resource, path, env_key)

 @spec add_new_secret_from_env(
 Igniter.t(),
 module(),
 Ash.Resource.t(),
 [atom()],
 atom()
) :: Igniter.t()

Adds a secret to a secret module that reads from application env, if one for that module/path doesn't exist already.

 add_new_strategy(igniter, resource, type, name, contents)

 @spec add_new_strategy(
 Igniter.t(),
 Ash.Resource.t(),
 type :: atom(),
 name :: atom(),
 contents :: String.t()
) :: Igniter.t()

Adds a new strategy to the authentication.strategies section of a resource

 add_secret_from_env(igniter, module, resource, path, env_key)

 @spec add_secret_from_env(Igniter.t(), module(), Ash.Resource.t(), [atom()], atom()) ::
 Igniter.t()

Adds a secret to a secret module that reads from application env

 add_strategy(igniter, resource, contents)

 @spec add_strategy(
 Igniter.t(),
 Ash.Resource.t(),
 contents :: String.t()
) :: Igniter.t()

Adds a strategy to the authentication.strategies section of a resource

 defines_add_on(igniter, resource, constructor, name)

 @spec defines_add_on(
 Igniter.t(),
 Ash.Resource.t(),
 constructor :: atom(),
 name :: atom()
) ::
 {Igniter.t(), true | false}

Returns true if the given resource defines an authentication add on with the provided name

 defines_strategy(igniter, resource, constructor, name)

 @spec defines_strategy(
 Igniter.t(),
 Ash.Resource.t(),
 constructor :: atom(),
 name :: atom()
) ::
 {Igniter.t(), true | false}

Returns true if the given resource defines an authentication strategy with the provided name

 defines_strategy_of_type(igniter, resource, constructor)

 @spec defines_strategy_of_type(
 Igniter.t(),
 Ash.Resource.t(),
 constructor :: atom()
) :: {Igniter.t(), true | false}

Returns true if the given resource defines an authentication strategy of the provided type

AshAuthentication.Jwt.Config

Implementation details JWT generation and validation.
Provides functions to generate token configuration at runtime, based on the
resource being signed for and for verifying claims and checking for token
revocation.

 Summary

 Functions

 default_claims(resource, opts \\ [])

 Generate the default claims for a specified resource.

 generate_audience(vsn)

 The generator function used to generate the "aud" claim.

 generate_issuer(vsn)

 The generator function used to generate the "iss" claim.

 token_signer(resource, opts \\ [], context \\ %{})

 The signer used to sign the token on a per-resource basis.

 validate_audience(claim, _, _, vsn)

 The validation function used to validate the "aud" claim.

 validate_issuer(claim, _, _)

 The validation function used to validate the "iss" claim.

 validate_jti(jti, arg2, resource, opts \\ [])

 The validation function used to the validate the "jti" claim.

 validate_tenant(maybe_tenant, tenant)

 Validate that the "tenant" claim matches the provided tenant option.

 Functions

 default_claims(resource, opts \\ [])

 @spec default_claims(
 Ash.Resource.t(),
 keyword()
) :: Joken.token_config()

Generate the default claims for a specified resource.

 generate_audience(vsn)

 @spec generate_audience(Version.t()) :: String.t()

The generator function used to generate the "aud" claim.
It generates an Elixir-style ~> version requirement against the current
major and minor version numbers of AshAuthentication.

 generate_issuer(vsn)

 @spec generate_issuer(Version.t()) :: String.t()

The generator function used to generate the "iss" claim.

 token_signer(resource, opts \\ [], context \\ %{})

The signer used to sign the token on a per-resource basis.

 validate_audience(claim, _, _, vsn)

 @spec validate_audience(String.t(), any(), any(), Version.t()) :: boolean()

The validation function used to validate the "aud" claim.
Uses Version.match?/2 to validate the provided claim against the current
version. The use of ~> means that tokens generated by versions of
AshAuthentication with the the same major version and at least the same minor
version should be compatible.

 validate_issuer(claim, _, _)

 @spec validate_issuer(String.t(), any(), any()) :: boolean()

The validation function used to validate the "iss" claim.
It simply verifies that the claim starts with "AshAuthentication"

 validate_jti(jti, arg2, resource, opts \\ [])

 @spec validate_jti(String.t(), any(), Ash.Resource.t() | any(), Keyword.t()) ::
 boolean()

The validation function used to the validate the "jti" claim.
This is done by checking that the token is valid with the token revocation
resource. Requires that the subject's resource configuration be passed as the
validation context. This is automatically done by calling Jwt.verify/2.

 validate_tenant(maybe_tenant, tenant)

 @spec validate_tenant(nil | :null | String.t(), nil | String.t()) :: boolean()

Validate that the "tenant" claim matches the provided tenant option.

AshAuthentication.Plug.Defaults

Provides the default implementations of handle_success/3 and
handle_failure/2 used in generated authentication plugs.

 Summary

 Functions

 handle_failure(conn, _, _)

 The default implementation of handle_failure/1.

 handle_success(conn, activity, user, token)

 The default implementation of handle_success/3.

 Functions

 handle_failure(conn, _, _)

 @spec handle_failure(Plug.Conn.t(), {atom(), atom()}, any()) :: Plug.Conn.t()

The default implementation of handle_failure/1.
Sends a very basic 401 response.

 handle_success(conn, activity, user, token)

 @spec handle_success(
 Plug.Conn.t(),
 {atom(), atom()},
 Ash.Resource.record() | nil,
 String.t() | nil
) ::
 Plug.Conn.t()

The default implementation of handle_success/3.
Calls AshAuthentication.Plug.Helpers.store_in_session/2 then sends a
basic 200 response.

AshAuthentication.Plug.Dispatcher

Route requests and callbacks to the correct provider plugs.

 Summary

 Types

 config()

 Functions

 call(conn, return_to)

 Send the request to the correct strategy and then return the result.

 Types

 config()

 @type config() :: {atom(), AshAuthentication.Strategy.t(), module()} | module()

 Functions

 call(conn, return_to)

 @spec call(Plug.Conn.t(), config() | any()) :: Plug.Conn.t()

Send the request to the correct strategy and then return the result.

AshAuthentication.Plug.Macros

Generators used within use AshAuthentication.Plug.

 Summary

 Functions

 define_load_from_bearer(otp_app)

 Generates the load_from_bearer/2 plug with the otp_app prefilled.

 define_load_from_session(otp_app)

 Generates the load_from_session/2 plug with the otp_app prefilled.

 define_revoke_bearer_tokens(otp_app)

 Generates the revoke_bearer_tokens/2 plug with the otp_app prefilled.

 define_sign_in_with_remember_me(otp_app)

 Generates the sign_in_with_remember_me/2 plug with the otp_app prefilled.

 validate_subject_name_uniqueness(otp_app)

 Generates the subject name validation code for the auth plug.

 Functions

 define_load_from_bearer(otp_app)

 (macro)

 @spec define_load_from_bearer(atom()) :: Macro.t()

Generates the load_from_bearer/2 plug with the otp_app prefilled.

 define_load_from_session(otp_app)

 (macro)

 @spec define_load_from_session(atom()) :: Macro.t()

Generates the load_from_session/2 plug with the otp_app prefilled.

 define_revoke_bearer_tokens(otp_app)

 (macro)

 @spec define_revoke_bearer_tokens(atom()) :: Macro.t()

Generates the revoke_bearer_tokens/2 plug with the otp_app prefilled.

 define_sign_in_with_remember_me(otp_app)

 (macro)

 @spec define_sign_in_with_remember_me(atom()) :: Macro.t()

Generates the sign_in_with_remember_me/2 plug with the otp_app prefilled.

 validate_subject_name_uniqueness(otp_app)

 (macro)

 @spec validate_subject_name_uniqueness(atom()) :: Macro.t()

Generates the subject name validation code for the auth plug.

AshAuthentication.Plug.Router

Dynamically generates the authentication router for the authentication
requests and callbacks.
Used internally by AshAuthentication.Plug.

AshAuthentication.Preparations.FilterBySubject

Filters a user by the identifier in the subject of a JWT.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.SecretFunction

Implements AshAuthentication.Secret for functions that are provided to the
DSL instead of modules.

AshAuthentication.SenderFunction

Implements AshAuthentication.Sender for functions that are provided to the
DSL instead of modules.

AshAuthentication.Strategy.ApiKey

Strategy for authenticating using an API key.
Security Considerations
Responsibility for generating, securing, expiring and revoking lies on the implementor.
If you are using API keys, you must ensure that your policies and application are set
up to prevent misuse of these keys. For example:
policy AshAuthentication.Checks.UsingApiKey do
 authorize_if action([:a, :list, :of, :allowed, :action, :names])
end
To detect that a user is signed in with an API key, you can see if
user.__metadata__[:using_api_key?] is set. If they are signed
in, then user.__metadata__[:api_key] will be set to the API key that they
used, allowing you to write policies that depend on the permissions granted
by the API key.

 Summary

 Types

 t()

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.ApiKey{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 api_key_hash_attribute: atom(),
 api_key_relationship: atom(),
 multitenancy_relationship: atom(),
 name: atom(),
 resource: Ash.Resource.t(),
 sign_in_action_name: atom()
}

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.ApiKey.Actions

Actions for the API key strategy.
Provides the code interface for working with user resources for providing
API keys resurce.

 Summary

 Functions

 sign_in(strategy, params, options)

 Attempt to sign a user in via API key.

 Functions

 sign_in(strategy, params, options)

 @spec sign_in(AshAuthentication.Strategy.ApiKey.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Attempt to sign a user in via API key.

AshAuthentication.Strategy.ApiKey.GenerateApiKey

Generates a random API key for a user.
The API key is generated using a random byte string and a prefix. The prefix
is used to generate a key that is compliant with secret scanning. You can use
this to set up an endpoint that will automatically revoke leaked tokens, which
is an extremely powerful and useful security feature.
See the guide on Github for more information.
Options
	:prefix - The prefix to use for the API key.

AshAuthentication.Strategy.ApiKey.Plug

Plug for authenticating using API keys.
This plug validates API keys from either a query parameter or HTTP header.

 Summary

 Types

 auth_error()

 source_type()

 Functions

 call(conn, config)

 Process the connection and attempt to authenticate using the API key.

 init(opts)

 Initialize the plug with options.

 on_error(conn, error)

 Handles errors that occur during the api key authentication process.

 Types

 auth_error()

 @type auth_error() :: :invalid_api_key | :missing_api_key | :authentication_failed

 source_type()

 @type source_type() :: :header | :query_param | :header_or_query_param

 Functions

 call(conn, config)

Process the connection and attempt to authenticate using the API key.

 init(opts)

Initialize the plug with options.
Options
	:resource - The resource to authenticate against.
	:source - Where to get the API key from. Can be :header, :query_param or :header_or_query_param. Default: :header.
Keep in mind that query params are often stored in logs etc, so we highly recommend using :header.
	:param_name - The name of the query parameter when source: :query_param. Default: "api_key"
	:header_prefix - The prefix to strip from the Authorization header value when source: :header. Default: "Bearer "
	:strategy - The name of the API key strategy being used, defaults to the only api key strategy on the resource, or an error if there are multiple.
	:required? - If true, the absence of an API key is treated as an error, and the on_error function is called with :missing_api_key. Default: true.
	:on_error - The function to call when an error occurs. Takes a conn and an error which will be :invalid_api_key or an AshAuthentication error. The default is: AshAuthentication.Strategy.ApiKey.Plug.on_error/2
	:assign - The name of the assign to set the authenticated subject. Default: :current_<subject>, i.e :current_user

 on_error(conn, error)

Handles errors that occur during the api key authentication process.
This function determines the response format based on the Accept header
of the incoming request. If the client accepts JSON responses, it returns
a JSON-formatted error message. Otherwise, it returns a plain text error
message.
	If the Accept header contains "json", the response will be:	Status: 401 Unauthorized
	Content-Type: application/json
	Body: {"error":"Unauthorized"}

	Otherwise, the response will be:	Status: 401 Unauthorized
	Content-Type: text/plain (default)
	Body: Unauthorized

AshAuthentication.Strategy.ApiKey.SignInPreparation

Prepare a query for sign in.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.ApiKey.Transformer

DSL transformer for API keys.

AshAuthentication.Strategy.ApiKey.Verifier

DSL verifier for API key authentication.

AshAuthentication.Strategy.Apple.Verifier

DSL verifier for Apple strategy.

AshAuthentication.Strategy.Custom.Helpers

Helpers for use within custom strategies.

 Summary

 Functions

 put_add_on(dsl_state, strategy)

 Update the add-on in the DSL state by name.

 put_strategy(dsl_state, strategy)

 Update the strategy in the DSL state by name.

 register_strategy_actions(action, dsl_state, strategy)

 If there's any chance that an implementor may try and use actions genrated by
your strategy programatically then you should register your actions with Ash
Authentication so that it can find the appropriate strategy when needed.

 Functions

 put_add_on(dsl_state, strategy)

 @spec put_add_on(dsl_state, AshAuthentication.Strategy.Custom.strategy()) :: dsl_state
when dsl_state: map()

Update the add-on in the DSL state by name.
This helper should only be used within transformers.

 put_strategy(dsl_state, strategy)

 @spec put_strategy(dsl_state, AshAuthentication.Strategy.Custom.strategy()) ::
 dsl_state
when dsl_state: map()

Update the strategy in the DSL state by name.
This helper should only be used within transformers.

 register_strategy_actions(action, dsl_state, strategy)

 @spec register_strategy_actions(
 action_or_actions,
 dsl_state,
 AshAuthentication.Strategy.Custom.strategy()
) :: dsl_state
when dsl_state: map(), action_or_actions: atom() | [atom()]

If there's any chance that an implementor may try and use actions genrated by
your strategy programatically then you should register your actions with Ash
Authentication so that it can find the appropriate strategy when needed.
The strategy can be retrieved again by calling
AshAuthentication.Info.strategy_for_action/2.
This helper should only be used within transformers.

AshAuthentication.Strategy.Custom.Transformer

Transformer used by custom strategies.
It delegates transformation passes to the individual strategies.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

AshAuthentication.Strategy.Custom.Verifier

Verifier used by custom strategies.
It delegates verification passes to the individual strategies.

AshAuthentication.Strategy.MagicLink.Actions

Actions for the magic link strategy.
Provides the code interface for working with user resources for providing
magic links.

 Summary

 Functions

 request(strategy, params, options)

 Request a magic link for a user.

 sign_in(strategy, params, options)

 Attempt to sign a user in via magic link.

 Functions

 request(strategy, params, options)

 @spec request(AshAuthentication.Strategy.MagicLink.t(), map(), keyword()) ::
 :ok | {:error, any()}

Request a magic link for a user.

 sign_in(strategy, params, options)

 @spec sign_in(AshAuthentication.Strategy.MagicLink.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Attempt to sign a user in via magic link.

AshAuthentication.Strategy.MagicLink.Plug

Plugs for the magic link strategy.
Handles requests and sign-ins.

 Summary

 Functions

 accept(conn, strategy)

 Present a sign in button to the user.

 request(conn, strategy)

 Handle a request for a magic link.

 sign_in(conn, strategy)

 Sign in via magic link.

 Functions

 accept(conn, strategy)

 @spec accept(Plug.Conn.t(), AshAuthentication.Strategy.MagicLink.t()) :: Plug.Conn.t()

Present a sign in button to the user.

 request(conn, strategy)

 @spec request(Plug.Conn.t(), AshAuthentication.Strategy.MagicLink.t()) ::
 Plug.Conn.t()

Handle a request for a magic link.
Retrieves form parameters from nested within the subject name, eg:
%{
 "user" => %{
 "email" => "marty@mcfly.me"
 }
}

 sign_in(conn, strategy)

 @spec sign_in(Plug.Conn.t(), AshAuthentication.Strategy.MagicLink.t()) ::
 Plug.Conn.t()

Sign in via magic link.

AshAuthentication.Strategy.MagicLink.Request

Requests a magic link for the given identity field.

AshAuthentication.Strategy.MagicLink.RequestPreparation

Prepare a query for a magic link request.
This preparation performs three jobs, one before the query executes and two
after:
	it constraints the query to match the identity field passed to the action.
	if there is a user returned by the query, then
a. generate a magic link token and
b. publish a notification.

Always returns an empty result.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.MagicLink.SignInChange

Set up a create action for magic link sign in.

AshAuthentication.Strategy.MagicLink.SignInPreparation

Prepare a query for sign in.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.MagicLink.Transformer

DSL transformer for magic links.

AshAuthentication.Strategy.MagicLink.Verifier

DSL verifier for magic links.

AshAuthentication.Strategy.OAuth2.Actions

Actions for the oauth2 strategy.
Provides the code interface for working with resources via an OAuth2 strategy.

 Summary

 Functions

 register(strategy, params, options)

 Attempt to register a new user.

 sign_in(strategy, params, options)

 Attempt to sign in a user.

 Functions

 register(strategy, params, options)

 @spec register(AshAuthentication.Strategy.OAuth2.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to register a new user.

 sign_in(strategy, params, options)

 @spec sign_in(AshAuthentication.Strategy.OAuth2.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to sign in a user.

AshAuthentication.Strategy.OAuth2.Dsl

Defines the Spark DSL entity for this strategy.

AshAuthentication.Strategy.OAuth2.IdentityChange

Updates the identity resource when a user is registered.

AshAuthentication.Strategy.OAuth2.Plug

Handlers for incoming OAuth2 HTTP requests.

 Summary

 Functions

 callback(conn, strategy)

 Perform the callback phase of OAuth2.

 request(conn, strategy)

 Perform the request phase of OAuth2.

 Functions

 callback(conn, strategy)

 @spec callback(Plug.Conn.t(), AshAuthentication.Strategy.OAuth2.t()) :: Plug.Conn.t()

Perform the callback phase of OAuth2.
Responds to a user being redirected back from the remote authentication
provider, and validates the passed options, ultimately registering or
signing-in a user if the authentication was successful.

 request(conn, strategy)

 @spec request(Plug.Conn.t(), AshAuthentication.Strategy.OAuth2.t()) :: Plug.Conn.t()

Perform the request phase of OAuth2.
Builds a redirection URL based on the provider configuration and redirects the
user to that endpoint.

AshAuthentication.Strategy.OAuth2.SignInPreparation

Prepare a query for sign in
Performs three main tasks:
	Ensures that there is only one matching user record returned, otherwise
returns an authentication failed error.
	Generates an access token if token generation is enabled.
	Updates the user identity resource, if one is enabled.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.OAuth2.Transformer

DSL transformer for oauth2 strategies.
Iterates through any oauth2 strategies and ensures that all the correct
actions and settings are in place.

AshAuthentication.Strategy.OAuth2.Verifier

DSL verifier for oauth2 strategies.

AshAuthentication.Strategy.Oidc.NonceGenerator

An implmentation of AshAuthentication.Secret that generates nonces for
OpenID Connect strategies.
Defaults to 16 bytes of random data. You can change this by setting the
byte_size option in your DSL:
oidc do
 nonce {AshAuthentication.NonceGenerator, byte_size: 32}
 # ...
end

AshAuthentication.Strategy.Oidc.Transformer

DSL transformer for oidc strategies.
Adds a nonce generator to the strategy if nonce is set to true.
Delegates to the default OAuth2 transformer.

AshAuthentication.Strategy.Oidc.Verifier

DSL verifier for OpenID Connect strategy.

AshAuthentication.Strategy.Password.Actions

Actions for the password strategy
Provides the code interface for working with resources via a password
strategy.

 Summary

 Functions

 register(strategy, params, options)

 Attempt to register a new user.

 reset(strategy, params, options)

 Attempt to change a user's password using a reset token.

 reset_request(strategy, params, options)

 Request a password reset.

 sign_in(strategy, params, options)

 Attempt to sign in a user.

 sign_in_with_token(strategy, params, options)

 Attempt to sign in a previously-authenticated user with a short-lived sign in token.

 Functions

 register(strategy, params, options)

 @spec register(AshAuthentication.Strategy.Password.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to register a new user.

 reset(strategy, params, options)

 @spec reset(AshAuthentication.Strategy.Password.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to change a user's password using a reset token.

 reset_request(strategy, params, options)

 @spec reset_request(AshAuthentication.Strategy.Password.t(), map(), keyword()) ::
 :ok | {:error, any()}

Request a password reset.

 sign_in(strategy, params, options)

 @spec sign_in(AshAuthentication.Strategy.Password.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()}
 | {:error, AshAuthentication.Errors.AuthenticationFailed.t()}

Attempt to sign in a user.

 sign_in_with_token(strategy, params, options)

 @spec sign_in_with_token(AshAuthentication.Strategy.Password.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Attempt to sign in a previously-authenticated user with a short-lived sign in token.

AshAuthentication.Strategy.Password.Dsl

Defines the Spark DSL entity for this strategy.

AshAuthentication.Strategy.Password.Plug

Plugs for the password strategy.
Handles registration, sign-in and password resets.

 Summary

 Functions

 register(conn, strategy)

 Handle a registration request

 reset(conn, strategy)

 Handle a reset request

 reset_request(conn, strategy)

 Handle a reset request request

 sign_in(conn, strategy)

 Handle a sign-in request

 sign_in_with_token(conn, strategy)

 Handle a request to validate a sign in token

 Functions

 register(conn, strategy)

 @spec register(Plug.Conn.t(), AshAuthentication.Strategy.Password.t()) ::
 Plug.Conn.t()

Handle a registration request

 reset(conn, strategy)

 @spec reset(Plug.Conn.t(), AshAuthentication.Strategy.Password.t()) :: Plug.Conn.t()

Handle a reset request

 reset_request(conn, strategy)

 @spec reset_request(Plug.Conn.t(), AshAuthentication.Strategy.Password.t()) ::
 Plug.Conn.t()

Handle a reset request request

 sign_in(conn, strategy)

 @spec sign_in(Plug.Conn.t(), AshAuthentication.Strategy.Password.t()) :: Plug.Conn.t()

Handle a sign-in request

 sign_in_with_token(conn, strategy)

 @spec sign_in_with_token(Plug.Conn.t(), AshAuthentication.Strategy.Password.t()) ::
 Plug.Conn.t()

Handle a request to validate a sign in token

AshAuthentication.Strategy.Password.RequestPasswordReset

Requests a password reset.
This implementation performs three jobs:
	looks up the user with the given action and field
	if a matching user is found:
a. a reset token is generated
b. and the password reset sender is invoked

AshAuthentication.Strategy.Password.RequestPasswordResetPreparation

Prepare a query for a password reset request.
This preparation performs three jobs, one before the query executes and two
after:
	it constraints the query to match the identity field passed to the action.
	if there is a user returned by the query, then
a. generate a reset token and
b. publish a notification.

Always returns an empty result.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.Password.ResetTokenValidation

Validate that the token is a valid password reset request token.

AshAuthentication.Strategy.Password.Resettable

The entity used to store password reset information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.Password.Resettable{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 password_reset_action_name: atom(),
 request_password_reset_action_name: atom(),
 sender: {module(), keyword()},
 token_lifetime: hours :: pos_integer()
}

AshAuthentication.Strategy.Password.SignInPreparation

Prepare a query for sign in
This preparation performs two jobs, one before the query executes and one
after.
Firstly, it constrains the query to match the identity field passed to the
action.
Secondly, it validates the supplied password using the configured hash
provider, and if correct allows the record to be returned, otherwise returns
an authentication failed error.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 user_confirmed_if_needed(user, strategy)

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

 user_confirmed_if_needed(user, strategy)

AshAuthentication.Strategy.Password.SignInWithTokenPreparation

Prepare a query for sign in via token.
This preparation first validates the token argument and extracts the subject
from it and constrains the query to a matching user.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.Password.Transformer

DSL transformer for the password strategy.
Iterates through any password authentication strategies and ensures that all
the correct actions and settings are in place.

AshAuthentication.Strategy.Password.Verifier

DSL verifier for the password strategy.

AshAuthentication.Strategy.RememberMe

Strategy for authenticating using a remember me token that has a configurable token_lifetime
and is typically valid longer than a session token. Remember me tokens are generated by other
strategies (e.g. MagicLink) to allow for authentication to continue beyond the scope of the
current session.
In order to use remember me authentication you need to have another strategy
enabled that supports remember me.
Example Usage
Add the Remember Me strategy to your authenticated resource and update another
strategy to the generate the remember_me token.
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false
 end

 authentication do
 # Tokens are required for RememberMe
 tokens do
 enabled? true
 store_all_tokens? true
 require_token_presence_for_authentication? true
 end

 # Make sure you use the log_out_everywhere add on
 # to revoke remember me tokens on password change otherwise
 # the remember me tokens will continue to sign in users
 add_ons do
 log_out_everywhere do
 apply_on_password_change? true
 end
 end

 strategies do
 password do
 identity_field :email
 hashed_password_field :hashed_password
 hash_provider AshAuthentication.BcryptProvider
 confirmation_required? true
 end

 # Add the remember me Strategy
 remember_me :remember_me do
 sign_in_action_name :sign_in_with_remember_me # Optional defaults to :sign_in_with_[:strategy_name]
 cookie_name :remember_me # Optional. Defaults to :remember_me
 token_lifetime {30, :days} # Optional. Defaults to {30, :days}
 end
 end
 end

 # In any of the actions used by your other strategies...
 actions do
 read :sign_in_with_password do
 ...
 # Add an argument to your form
 argument :remember_me, :boolean do
 description "Whether to generate a remember me token."
 allow_nil? true
 end

 # Add the preparation that generates the token
 prepare {AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenPreparation, strategy_name: :remember_me}

 # Add the metadata map that will contain the cookie_name, token, and other values
 # after a successful sign in.
 metadata :remember_me, :map do
 description "A map that includes the token options"
 allow_nil? true
 end
 end

 read :sign_in_with_remember_me do
 description "Attempt to sign in using a remember me token."
 get? true

 argument :token, :string do
 description "The remember me token"
 allow_nil? false
 sensitive? true
 end

 # validates the provided the remember me token and generates a token for the session
 prepare AshAuthentication.Strategy.RememberMe.SignInPreparation

 metadata :token, :string do
 description "A JWT that can be used to authenticate the user."
 allow_nil? false
 end
 end
 end
end
When the user successfully signs in, the user.metadata.remember_me field will contain a map
with the token and max_age.
For create actions, such as registering a new user and signing them in immediately,
use AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenChange. This serves as
an alternative to the preparation used for read actions and mirrors the behavior of the Magic Link strategy.
If you're using AshAuthentication.Phoenix, update your AuthController to store the cookie with
a put_remember_me_cookie/3 callback. Other callbacks include delete_remember_me_cookie/2,
and delete_all_remember_me_cookies/1
defmodule MyAppWeb.AuthController do
 use MyAppWeb, :controller
 use AshAuthentication.Phoenix.Controller

 @impl AshAuthentication.Phoenix.Controller
 def put_remember_me_cookie(conn, cookie_name, %{token: token, max_age: max_age}) do
 cookie_options = [
 max_age: max_age, # matches the token lifetime
 http_only: true, # prevents the cookie from being accessed by JavaScript
 secure: true, # only send the cookie over HTTPS
 same_site: "lax" # prevents the cookie from being sent with cross-site requests
]
 conn
 |> put_resp_cookie(cookie_name, token, cookie_options)
 end
end
Update your router to sign in the user with the remember me token.
defmodule MyAppWeb.Router do
 pipeline :browser do
 ...
 plug :sign_in_with_remember_me # make sure this comes before load_from_session
 plug :load_from_session
 end
end
You should also delete the remember me token on sign out to prevent the
user from immediately being signed back in. This will sign them out of their
current session, but it will not revoke remember me tokens on other devices.
defmodule MyAppWeb.AuthController do
 use MyAppWeb, :controller
 use AshAuthentication.Phoenix.Controller

 @impl AshAuthentication.Phoenix.Controller
 def sign_out(conn, _params) do
 return_to = get_session(conn, :return_to) || ~p"/"

 conn
 |> clear_session(:my_otp_app)
 |> AshAuthentication.Strategy.RememberMe.Plug.Helpers.delete_all_remember_me_cookies(:my_otp_app)
 |> put_flash(:info, "You are now signed out")
 |> redirect(to: return_to)
 end
end

 Summary

 Types

 t()

 Functions

 transform(entity, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.RememberMe{
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 cookie_name: atom(),
 identity_field: atom(),
 name: atom(),
 registration_enabled?: boolean(),
 resource: module(),
 sign_in_action_name: :atom,
 token_lifetime: pos_integer()
}

 Functions

 transform(entity, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl_state)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.RememberMe.Dsl

Defines the Spark DSL entity for the RememberMe strategy.

AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenChange

Maybe generate a remember me token and put it in the metadata of the resource to
later be dropped as a cookie.
Add this to a sign action to support generating a remember me token.
Example:
 create :sign_in_with_magic_link do
 ...
 argument :remember_me, :boolean do
 description "Whether to generate a remember me token."
 allow_nil? true
 end

 change AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenChange
 # change {AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenChange, strategy_name: :remember_me, argument: :remember_me}

 metadata :remember_me_token, :string do
 description "A remember me token that can be used to authenticate the user."
 allow_nil? false
 end
 end

AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenPreparation

Maybe generate a remember me token and put it in the metadata of the resource to
later be dropped as a cookie.
Add this to a sign action to support generating a remember me token.
Example:
 read :sign_in do
 ...
 argument :remember_me, :boolean do
 description "Whether to generate a remember me token."
 allow_nil? true
 end

 prepare AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenPreparation
 # prepare {AshAuthentication.Strategy.RememberMe.MaybeGenerateTokenPreparation, strategy_name: :remember_me, argument: :remember_me}

 metadata :remember_me_token, :string do
 description "A remember me token that can be used to authenticate the user."
 allow_nil? false
 end
 end

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.RememberMe.Plug.Helpers

Plug for signing in with remember me token in cookies.

 Summary

 Functions

 all_remember_me_cookie_names(otp_app)

 Get all the remember me cookie names for the given otp_app.

 delete_all_remember_me_cookies(conn, otp_app)

 Delete all the remember me tokens from the response cookies.

 delete_remember_me_cookie(conn, cookie_name)

 Delete the remember me token from the connection response cookies.

 maybe_put_remember_me_cookies(conn_with_auth_result, return_to)

 Take a connection and possibly an authentication result tuple, call the endpoint
to put the remember me cookie

 put_remember_me_cookie(conn, cookie_name, map)

 Put the remember me token in connection response cookies.

 sign_in_resource_with_remember_me(conn, resource, opts)

 Sign in the given Ash Resource with the AshAuthentication RememberMe strategy.
To sign in with any Ash Resource see sign_in_resource_with_remember_me.

 Functions

 all_remember_me_cookie_names(otp_app)

 @spec all_remember_me_cookie_names(atom()) :: [String.t()]

Get all the remember me cookie names for the given otp_app.

 delete_all_remember_me_cookies(conn, otp_app)

 @spec delete_all_remember_me_cookies(Plug.Conn.t(), atom()) :: Plug.Conn.t()

Delete all the remember me tokens from the response cookies.

 delete_remember_me_cookie(conn, cookie_name)

 @spec delete_remember_me_cookie(Plug.Conn.t(), String.t()) :: Plug.Conn.t()

Delete the remember me token from the connection response cookies.

 maybe_put_remember_me_cookies(conn_with_auth_result, return_to)

 @spec maybe_put_remember_me_cookies({Plug.Conn.t(), any()} | Plug.Conn.t(), any()) ::
 {Plug.Conn.t(), any()} | Plug.Conn.t()

Take a connection and possibly an authentication result tuple, call the endpoint
to put the remember me cookie

 put_remember_me_cookie(conn, cookie_name, map)

 @spec put_remember_me_cookie(Plug.Conn.t(), String.t(), map()) :: Plug.Conn.t()

Put the remember me token in connection response cookies.

 sign_in_resource_with_remember_me(conn, resource, opts)

 @spec sign_in_resource_with_remember_me(Plug.Conn.t(), Ash.Resource.t(), Keyword.t()) ::
 Plug.Conn.t() | {Plug.Conn.t(), Ash.Resource.record()}

Sign in the given Ash Resource with the AshAuthentication RememberMe strategy.
To sign in with any Ash Resource see sign_in_resource_with_remember_me.
For the given resource, find the remember me strategies.
If no remember me strategies are found, do nothing.
If a remember me strategy is found, but no token is found, do nothing.
If a remember me strategy is found, and a token is found in the cookies,
and the token is valid, login the user.
If a remember me strategy is found, and a token is found in the cookies,
and the token is invalid, delete the cookie.

AshAuthentication.Strategy.RememberMe.SignInPreparation

Prepare a query for sign in via the remember me token.
This preparation first validates the token argument and extracts the subject
from it and constrains the query to a matching user.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.RememberMe.Token.Helpers

Helpers for remember me tokens.

 Summary

 Functions

 revoke_remember_me_token(token, otp_app, opts \\ [])

 Revokes a remember me token.

 Functions

 revoke_remember_me_token(token, otp_app, opts \\ [])

 @spec revoke_remember_me_token(String.t(), atom(), keyword()) :: :ok | {:error, any()}

Revokes a remember me token.

AshAuthentication.Strategy.RememberMe.Transformer

DSL transformer for the remember me strategy.
Iterates through any remember me authentication strategies and ensures that all
the correct actions and settings are in place.

AshAuthentication.Strategy.RememberMe.Verifier

DSL verifier for the remember me strategy.

AshAuthentication.Strategy.Slack.Verifier

DSL verifier for Slack strategy.

AshAuthentication.Strategy.Totp

Strategy for Time-based One-Time Password (TOTP) authentication.
Provides TOTP support via nimble_totp,
allowing users to authenticate using time-based codes from authenticator apps
like Google Authenticator, Authy, or 1Password.
Requirements
Your resource needs to meet the following minimum requirements:
	Have a primary key.
	An identity field (e.g., email or username) for identifying users.
	A sensitive binary field for storing the TOTP secret.
	A sensitive datetime field for tracking the last successful TOTP authentication.
	A brute force protection strategy (rate limiting, audit log, or custom preparation).

Example
defmodule MyApp.Accounts.User do
 use Ash.Resource,
 extensions: [AshAuthentication],
 domain: MyApp.Accounts

 attributes do
 uuid_primary_key :id
 attribute :email, :ci_string, allow_nil?: false, public?: true
 attribute :totp_secret, :binary, sensitive?: true
 attribute :last_totp_at, :utc_datetime, sensitive?: true
 end

 authentication do
 tokens do
 enabled? true
 token_resource MyApp.Accounts.Token
 end

 strategies do
 totp do
 identity_field :email
 issuer "MyApp"
 brute_force_strategy {:audit_log, :my_audit_log}
 end
 end

 add_ons do
 audit_log :my_audit_log do
 audit_log_resource MyApp.Accounts.AuditLog
 log_actions [:sign_in_with_totp, :verify_with_totp, :confirm_setup_with_totp]
 end
 end
 end

 identities do
 identity :unique_email, [:email]
 end
end
Actions
The TOTP strategy can generate up to four actions:
	setup - Generates a new TOTP secret for the user. Returns the user with
a totp_url calculation that can be rendered as a QR code.
	confirm_setup - When confirm_setup_enabled? is true, this action verifies
a TOTP code before activating the secret. Requires tokens to be enabled.
	sign_in - Authenticates a user using their identity and a TOTP code.
	verify - Checks if a TOTP code is valid for a given user (without signing in).

Brute Force Protection
TOTP codes have a small keyspace (typically 6 digits), making them vulnerable
to brute force attacks. You must configure a brute_force_strategy:
	:rate_limit - Uses AshRateLimiter to limit attempts.
	{:audit_log, :audit_log_name} - Uses an audit log to track failed attempts.
	{:preparation, ModuleName} - Custom preparation for rate limiting.

Working with Actions
You can interact with TOTP actions via the AshAuthentication.Strategy protocol:
iex> strategy = AshAuthentication.Info.strategy!(MyApp.Accounts.User, :totp)
...> {:ok, user} = AshAuthentication.Strategy.action(strategy, :setup, %{user: existing_user})
...> user.totp_url_for_totp # QR code URL

iex> {:ok, true} = AshAuthentication.Strategy.action(strategy, :verify, %{user: user, code: "123456"})

 Summary

 Types

 t()

 Functions

 transform(entity, dsl)

 Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl)

 Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

 Types

 t()

 @type t() :: %AshAuthentication.Strategy.Totp{
 __identifier__: any(),
 __spark_metadata__: any(),
 audit_log_max_failures: pos_integer(),
 audit_log_window:
 pos_integer() | {pos_integer(), :days | :hours | :minutes | :seconds},
 brute_force_strategy:
 :rate_limit | {:audit_log, atom()} | {:preparation, module()},
 confirm_setup_action_name: atom(),
 confirm_setup_enabled?: boolean(),
 identity_field: atom(),
 issuer: String.t(),
 last_totp_at_field: atom(),
 name: atom(),
 period: pos_integer(),
 read_secret_from: atom() | nil,
 resource: Ash.Resource.t(),
 secret_field: atom(),
 secret_length: pos_integer(),
 setup_action_name: atom(),
 setup_enabled?: boolean(),
 setup_token_lifetime:
 pos_integer() | {pos_integer(), :days | :hours | :minutes | :seconds},
 sign_in_action_name: atom(),
 sign_in_enabled?: boolean(),
 totp_url_field: atom(),
 verify_action_name: atom(),
 verify_enabled?: boolean()
}

 Functions

 transform(entity, dsl)

Callback implementation for AshAuthentication.Strategy.Custom.transform/2.

 verify(strategy, dsl)

Callback implementation for AshAuthentication.Strategy.Custom.verify/2.

AshAuthentication.Strategy.Totp.Actions

Actions for the TOTP strategy.
Provides the code interface for TOTP setup, sign-in, and verification.

 Summary

 Functions

 confirm_setup(strategy, params, options)

 Confirm TOTP setup by verifying a code and activating the secret.

 setup(strategy, params, options)

 Set up TOTP for a user by generating a new secret.

 sign_in(strategy, params, options)

 Sign in using a TOTP code.

 verify(strategy, params, options)

 Verify a TOTP code for a user.

 Functions

 confirm_setup(strategy, params, options)

 @spec confirm_setup(AshAuthentication.Strategy.Totp.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Confirm TOTP setup by verifying a code and activating the secret.
Used when confirm_setup_enabled? is true. Takes a user, setup_token, and
TOTP code. If the code is valid, the secret is stored on the user and the
setup token is revoked.
Options
	:domain - The domain to use for the action. Defaults to the domain
configured on the user resource.

 setup(strategy, params, options)

 @spec setup(AshAuthentication.Strategy.Totp.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Set up TOTP for a user by generating a new secret.
Takes a user record and runs the setup action which generates a new TOTP
secret. The user can then retrieve the totp_url calculation to display
a QR code for scanning with an authenticator app.
Options
	:domain - The domain to use for the action. Defaults to the domain
configured on the user resource. This allows the strategy to work when
invoked from a different domain context (e.g., an admin domain managing
users from an accounts domain).

 sign_in(strategy, params, options)

 @spec sign_in(AshAuthentication.Strategy.Totp.t(), map(), keyword()) ::
 {:ok, Ash.Resource.record()} | {:error, any()}

Sign in using a TOTP code.
Takes an identity (e.g., email) and a TOTP code, and returns the user if
the code is valid.
Options
	:domain - The domain to use for the action. Defaults to the domain
configured on the user resource.

 verify(strategy, params, options)

 @spec verify(AshAuthentication.Strategy.Totp.t(), map(), keyword()) ::
 {:ok, boolean()} | {:error, any()}

Verify a TOTP code for a user.
Takes a user and a TOTP code, and returns {:ok, true} if the code is valid
or {:ok, false} if it is not.
Options
	:domain - The domain to use for the action. Defaults to the domain
configured on the user resource.

AshAuthentication.Strategy.Totp.AuditLogChange

Change that checks the audit log for failed TOTP attempts before update actions.
This is the change variant of AuditLogPreparation for use with update actions
like confirm_setup.
When brute_force_strategy: {:audit_log, :my_audit_log} is configured,
this change queries the audit log for failed TOTP attempts within
a time window. If the number of failures exceeds the configured maximum,
the request is denied with an AuthenticationFailed error.
The window and max failures are configured via DSL options:
	audit_log_window - time window for counting failures (default: 5 minutes)
	audit_log_max_failures - maximum allowed failures before blocking (default: 5)

Failures are counted across ALL TOTP actions (sign_in, verify, confirm_setup)
for the same user, not per-action.

AshAuthentication.Strategy.Totp.AuditLogHelpers

Shared helpers for audit log-based brute force protection.
This module provides common functionality used by both AuditLogChange and
AuditLogPreparation to count failed TOTP attempts from the audit log.

 Summary

 Functions

 count_failures(audit_log, subject, cutoff)

 Counts failed TOTP attempts for a subject within a time window.

 Functions

 count_failures(audit_log, subject, cutoff)

 @spec count_failures(struct(), String.t(), DateTime.t()) ::
 {:ok, non_neg_integer()} | {:error, any()}

Counts failed TOTP attempts for a subject within a time window.
Queries the audit log resource for entries matching:
	The given subject (user identifier)
	Strategy = :totp
	Status = :failure
	Logged at or after the cutoff time

Uses a FOR UPDATE lock to prevent race conditions where multiple concurrent
requests could slip past the brute force limit. While this creates some
contention, it ensures accurate rate limiting enforcement.
Returns {:ok, count} or {:error, reason}.

AshAuthentication.Strategy.Totp.AuditLogPreparation

Preparation that checks the audit log for failed TOTP attempts.
When brute_force_strategy: {:audit_log, :my_audit_log} is configured,
this preparation queries the audit log for failed TOTP attempts within
a time window. If the number of failures exceeds the configured maximum,
the request is denied with an AuthenticationFailed error.
The window and max failures are configured via DSL options:
	audit_log_window - time window for counting failures (default: 5 minutes)
	audit_log_max_failures - maximum allowed failures before blocking (default: 5)

Failures are counted across ALL TOTP actions (sign_in, verify, confirm_setup)
for the same user, not per-action.

AshAuthentication.Strategy.Totp.ConfirmSetupChange

Confirms a pending TOTP setup by verifying a code and storing the secret.
This change is used when confirm_setup_enabled? is true. It:
	Validates the TOTP code format (6 digits)
	Verifies the setup_token JWT
	Retrieves the pending secret from the token resource
	Verifies the TOTP code against the secret
	Stores the secret on the user
	Revokes the setup token (after successful storage)

Token revocation is performed after the secret is stored to avoid losing the
token if storage fails for any reason.
This ensures the user has correctly saved their TOTP secret before it's activated.

AshAuthentication.Strategy.Totp.Dsl

Defines the Spark DSL entity for this strategy.

AshAuthentication.Strategy.Totp.GeneratePendingSetupChange

Generates a pending TOTP setup for two-step confirmation.
This change is used when confirm_setup_enabled? is true. Instead of storing
the secret directly on the user, it:
	Generates a new TOTP secret
	Creates a setup token containing the secret
	Stores the token in the token resource
	Returns the setup_token and totp_url in the user's metadata

The user must then call the confirm_setup action with a valid TOTP code to
activate the secret.

AshAuthentication.Strategy.Totp.GenerateSecretChange

Generates a new TOTP secret for a user.
This change is used by the setup action to generate a cryptographically
secure random secret for TOTP authentication.

AshAuthentication.Strategy.Totp.Plug

Plugs for the TOTP strategy.
Handles setup and sign-in for TOTP authentication.

 Summary

 Functions

 confirm_setup(conn, strategy)

 Handle a TOTP confirm setup request

 setup(conn, strategy)

 Handle a TOTP setup request

 sign_in(conn, strategy)

 Handle a TOTP sign-in request

 verify(conn, strategy)

 Handle a TOTP verification request for step-up authentication.

 Functions

 confirm_setup(conn, strategy)

 @spec confirm_setup(Plug.Conn.t(), AshAuthentication.Strategy.Totp.t()) ::
 Plug.Conn.t()

Handle a TOTP confirm setup request

 setup(conn, strategy)

 @spec setup(Plug.Conn.t(), AshAuthentication.Strategy.Totp.t()) :: Plug.Conn.t()

Handle a TOTP setup request

 sign_in(conn, strategy)

 @spec sign_in(Plug.Conn.t(), AshAuthentication.Strategy.Totp.t()) :: Plug.Conn.t()

Handle a TOTP sign-in request

 verify(conn, strategy)

 @spec verify(Plug.Conn.t(), AshAuthentication.Strategy.Totp.t()) :: Plug.Conn.t()

Handle a TOTP verification request for step-up authentication.
This is used when an already-authenticated user needs to verify their TOTP
code to access protected resources. The user is obtained from the connection's
actor (set by authentication middleware).
On success, stores the verification result and marks TOTP as verified in the
user's metadata.

AshAuthentication.Strategy.Totp.SignInPreparation

Preparation for the TOTP sign-in action.
Verifies the TOTP code against the user's secret and generates a token
on successful authentication.
Replay Attack Protection
TOTP codes can only be used once. After a successful authentication, the
last_totp_at field is updated to the code's timestamp to prevent replay
attacks. This update is performed atomically with a filter condition to
prevent race conditions where concurrent requests could both use the same code.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.Strategy.Totp.TotpUrlCalculation

Calculates the TOTP URL for a user record.
This calculation generates an otpauth:// URI suitable for encoding into a
QR code. Users can scan the QR code with an authenticator app (like Google
Authenticator or Authy) to set up TOTP-based authentication.
The calculation requires the user to have a TOTP secret already set up
(typically via the setup action). If no secret is present, it returns nil.
Options
	:strategy_name - The name of the TOTP strategy to use for configuration.
This is required and is set automatically by the transformer.

Example
Given a user resource with TOTP configured:
defmodule MyApp.Accounts.User do
 use Ash.Resource, ...

 authentication do
 strategies do
 totp do
 identity_field :email
 issuer "MyApp"
 end
 end
 end
end
The calculation will generate URIs like:
"otpauth://totp/MyApp:user@example.com?secret=BASE32SECRET&issuer=MyApp&period=30"

 Summary

 Functions

 describe(opts)

 Callback implementation for Ash.Resource.Calculation.describe/1.

 has_calculate?()

 has_expression?()

 Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 strict_loads?()

 Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

 Functions

 describe(opts)

Callback implementation for Ash.Resource.Calculation.describe/1.

 has_calculate?()

 has_expression?()

Callback implementation for Ash.Resource.Calculation.has_expression?/0.

 strict_loads?()

Callback implementation for Ash.Resource.Calculation.strict_loads?/0.

AshAuthentication.Strategy.Totp.Transformer

DSL transformer for the totp strategy.

AshAuthentication.Strategy.Totp.Verifier

DSL verifier for the totp strategy.

AshAuthentication.Strategy.Totp.VerifyAction

Implementation of the TOTP verify action.
This module is used as the run implementation for the verify action,
which checks if a provided TOTP code is valid for a given user.

AshAuthentication.TokenResource.Actions

The code interface for interacting with the token resource.

 Summary

 Functions

 expunge_expired(resource, opts \\ [])

 Remove all expired records.

 get_token(resource, params, opts \\ [])

 Retrieve a token by token or JTI optionally filtering by purpose.

 jti_revoked?(resource, jti, opts \\ [])

 Has the token been revoked?

 revoke(resource, token, opts \\ [])

 Revoke a token.

 revoke_jti(resource, jti, subject, opts \\ [])

 Revoke a token by JTI.

 store_token(resource, params, opts \\ [])

 Store a token.

 token_revoked?(resource, token, opts \\ [])

 Has the token been revoked?

 Functions

 expunge_expired(resource, opts \\ [])

 @spec expunge_expired(
 Ash.Resource.t(),
 keyword()
) :: :ok | {:error, any()}

Remove all expired records.

 get_token(resource, params, opts \\ [])

 @spec get_token(Ash.Resource.t(), map(), keyword()) ::
 {:ok, [Ash.Resource.record()]} | {:error, any()}

Retrieve a token by token or JTI optionally filtering by purpose.

 jti_revoked?(resource, jti, opts \\ [])

 @spec jti_revoked?(Ash.Resource.t(), String.t(), keyword()) :: boolean()

Has the token been revoked?
Similar to token-revoked?/2..3 except that rather than extracting the JTI
from the token, assumes that it's being passed in directly.

 revoke(resource, token, opts \\ [])

 @spec revoke(Ash.Resource.t(), String.t(), keyword()) :: :ok | {:error, any()}

Revoke a token.
Extracts the JTI from the provided token and uses it to generate a revocation
record.

 revoke_jti(resource, jti, subject, opts \\ [])

 @spec revoke_jti(Ash.Resource.t(), String.t(), String.t(), keyword()) ::
 :ok | {:error, any()}

Revoke a token by JTI.
If you have the token, you should use revoke/2 instead.

 store_token(resource, params, opts \\ [])

 @spec store_token(Ash.Resource.t(), map(), keyword()) :: :ok | {:error, any()}

Store a token.
Stores a token for any purpose.

 token_revoked?(resource, token, opts \\ [])

 @spec token_revoked?(Ash.Resource.t(), String.t(), keyword()) :: boolean()

Has the token been revoked?
Similar to jti_revoked?/2..3 except that it extracts the JTI from the token,
rather than relying on it to be passed in.

AshAuthentication.TokenResource.Expunger

A GenServer which periodically removes expired token revocations.
Scans all token revocation resources based on their configured expunge
interval and removes any expired records.
defmodule MyApp.Accounts.Token do
 use Ash.Resource,
 extensions: [AshAuthentication.TokenResource],
 domain: MyApp.Accounts

 token do
 expunge_interval 12
 end
end
This GenServer is started by the AshAuthentication.Supervisor which should
be added to your app's supervision tree.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

AshAuthentication.TokenResource.GetConfirmationChangesPreparation

Constrains a query to only records which are confirmations that match the jti
argument.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.TokenResource.GetTokenPreparation

Constrains a query to only records which match the jti or token argument
and optionally by the purpose argument.

 Summary

 Functions

 init(opts)

 Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

 Callback implementation for Ash.Resource.Preparation.supports/1.

 Functions

 init(opts)

Callback implementation for Ash.Resource.Preparation.init/1.

 supports(opts)

Callback implementation for Ash.Resource.Preparation.supports/1.

AshAuthentication.TokenResource.IsRevoked

Checks for the existence of a revocation token for the provided token revocation token for the provided token.

AshAuthentication.TokenResource.RevokeAllStoredForSubjectChange

Updates all tokens for a given subject to have the purpose revocation

AshAuthentication.TokenResource.RevokeJtiChange

Generates a revocation record for a given token.

AshAuthentication.TokenResource.RevokeTokenChange

Generates a revocation record for a given token.

AshAuthentication.TokenResource.StoreConfirmationChangesChange

Populates the JTI based on the token argument.

AshAuthentication.TokenResource.StoreTokenChange

Stores an arbitrary token.

AshAuthentication.TokenResource.Transformer

The token resource transformer.
Sets up the default schema and actions for the token resource.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

AshAuthentication.TokenResource.Verifier

The token resource verifier.

AshAuthentication.Transformer

The Authentication transformer
Sets up non-provider-specific configuration for authenticated resources.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

AshAuthentication.Transformer.SetSelectForSenders

Sets the select_for_senders options to its default value.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

Callback implementation for Spark.Dsl.Transformer.before?/1.

AshAuthentication.UserIdentity.Actions

Code interface for provider identity actions.
Allows you to interact with UserIdentity resources without having to mess
around with changesets, domains, etc. These functions are delegated to from
within AshAuthentication.UserIdentity.

 Summary

 Functions

 upsert(resource, attributes)

 Upsert an identity for a user.

 Functions

 upsert(resource, attributes)

 @spec upsert(Ash.Resource.t(), map()) ::
 {:ok, Ash.Resource.record()} | {:error, term()}

Upsert an identity for a user.

AshAuthentication.UserIdentity.Transformer

The user identity transformer.
Sets up the default schema and actions for a user identity resource.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

AshAuthentication.UserIdentity.UpsertIdentityChange

A change which upserts a user's identity into the user identity resource.
Expects the following arguments:
	user_info a map with string keys as returned from the OAuth2/OpenID
upstream provider.
	oauth_tokens a map with string keys containing the OAuth2 token
response.
	user_id the ID of the user this identity relates to.
	strategy the name of the strategy.

This is usually dynamically inserted into a generated action, however you can
add it to your own action if needed.

AshAuthentication.UserIdentity.Verifier

The user identity verifier.

AshAuthentication.Verifier

The Authentication verifier.
Checks configuration constraints after compile.

mix ash_authentication.add_add_on

Adds the provided add-on to your user resource
This task will add the provided add-on to your user resource and set up any required supporting resources.
The following add-ons are available:
	audit_log - Track authentication events for security and compliance.

Example
mix ash_authentication.add_add_on audit_log

Global options
	--user, -u - The user resource. Defaults to YourApp.Accounts.User

Audit Log options
	audit-log - The audit log resource name. Defaults to <domain>.AuditLog.
	include-fields - Comma-separated list of sensitive fields to include in audit logs.
	exclude-strategies - Comma-separated list of authentication strategies to exclude from logging.
	exclude-actions - Comma-separated list of actions to exclude from logging.

 Summary

 Functions

 data_layer_args(igniter, opts)

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 data_layer_args(igniter, opts)

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix ash_authentication.add_strategy

Adds the provided strategy or strategies to your user resource
This task will add the provided strategy or strategies to your user resource.
The following strategies are available. For all others, see the relevant documentation for setup
	password - Register and sign in with a username/email and a password.
	magic_link - Register and sign in with a magic link, sent via email to the user.
	api_key - Sign in with an API key.

Example
mix ash_authentication.add_strategy password

Global options
	--user, -u - The user resource. Defaults to YourApp.Accounts.User
	--identity-field, -i - The field on the user resource that will be used to identify
the user. Defaults to email

Password options
	hash-provider - The hash provider to use, either bcrypt or argon2. Defaults to bcrypt2.

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

mix ash_authentication.install

Installs AshAuthentication. Invoke with mix igniter.install ash_authentication
Example
To install with default settings:
mix igniter.install ash_authentication

To install with a custom domain and resources:
mix igniter.install ash_authentication --auth-strategy magic_link,password --accounts MyApp.AshAccounts --user MyApp.AshAccounts.User --token MyApp.AshAccounts.Token

Options
	--accounts or -a - The domain that contains your resources. Defaults to YourApp.Accounts.
	--user or -u - The resource that represents a user. Defaults to <accounts>.User.
	--token or -t - The resource that represents a token. Defaults to <accounts>.Token.
	--auth-strategy - The strategy or strategies to use for authentication.
None by default, can be specified multiple times for more than one strategy.
To add after installation, use mix ash_authentication.add_strategy password

 Summary

 Functions

 data_layer_args(igniter, opts)

 setup_data_layer(igniter, repo)

 Functions

 data_layer_args(igniter, opts)

 setup_data_layer(igniter, repo)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

