

 ash_graphql

 v0.27.0

 [image: Logo]

 Table of contents

 	Tutorials

 	Getting Started With GraphQL

 	How To

 	Authorize with GraphQL

 	Handling Errors

 	Use Enums with GraphQL

 	Use JSON with GraphQL

 	Using Subscriptions

 	Use Unions with GraphQL

 	Topics

 	Monitoring

 	GraphQL Query Generation

 	Modifying the Resolution

 	Relay

 	DSLs

 	DSL: AshGraphql.Api

 	DSL: AshGraphql.Resource

 	Modules

 	AshGraphql

 	AshGraphql.Api

 	AshGraphql.Api.Info

 	AshGraphql.Resource

 	AshGraphql.Resource.Action

 	AshGraphql.Resource.Info

 	AshGraphql.Resource.ManagedRelationship

 	AshGraphql.Resource.Mutation

 	AshGraphql.Resource.Query

 	AshGraphql.Error

 	AshGraphql.Errors

 	AshGraphql.Resource.Helpers

 	AshGraphql.ContextHelpers

 	AshGraphql.DefaultErrorHandler

 	AshGraphql.Plug

 	AshGraphql.Subscription

 	AshGraphql.Type

 	AshGraphql.Types.JSON

 	AshGraphql.Types.JSONString

Getting Started With GraphQL

 Get familiar with Ash resources

If you haven't already, read the Ash Getting Started Guide. This assumes that you already have resources set up, and only gives you the steps to add AshGraphql to your resources/apis.

 Bring in the ash_graphql dependency

def deps()
 [
 ...
 {:ash_graphql, "~> 0.27.0"}
]
end

 Add some backwards compatibility configuration

in config/config.exs
config :ash_graphql, :default_managed_relationship_type_name_template, :action_name
config :ash_graphql, :allow_non_null_mutation_arguments?, true
This won't be necessary after the next major release, where this new configuration will be the default.

 Add the API Extension

Add the following to your API module. If you don't have one, be sure to start with the Ash Getting Started Guide.
defmodule Helpdesk.Support do
 use Ash.Api, extensions: [
 AshGraphql.Api
]

 graphql do
 authorize? false # Defaults to `true`, use this to disable authorization for the entire API (you probably only want this while prototyping)
 end

 ...
end

 Add graphql to your resources

Some example queries/mutations are shown below. If no queries/mutations are added, nothing will show up in the GraphQL API, so be sure to set one up if you want to try it out.
defmodule Helpdesk.Support.Ticket. do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 graphql do
 type :ticket

 queries do
 # Examples

 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticke
 get :get_ticket, :read
 # create a field called `most_important_ticket` that uses the `most_important` read action to fetch a single record
 read_one :most_important_ticket, :most_important

 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end

 mutations do
 # Examples

 create :create_ticket, :create
 update :update_ticket, :update
 destroy :destroy_ticket, :destroy
 end
 end

 ...
end

 Add AshGraphql to your schema

If you don't have an absinthe schema, you can create one just for ash.
in lib/helpdesk/schema.ex
defmodule Helpdesk.Schema do
 use Absinthe.Schema

 @apis [Helpdesk.Support]

 use AshGraphql, apis: @apis

 # The query and mutation blocks is where you can add custom absinthe code
 query do
 end

 mutation do
 end
end

 Connect your schema

 Using Plug

If you are unfamiliar with how plug works, this guide will be helpful for understanding it. It also guides you through
adding plug to your application.
Then you can use a Plug.Router and forward to your plugs similar to how it is done for phoenix:
plug AshGraphql.Plug

forward "/gql",
 to: Absinthe.Plug,
 init_opts: [schema: Helpdesk.Schema]

forward "/playground",
 to: Absinthe.Plug.GraphiQL,
 init_opts: [
 schema: Helpdesk.Schema,
 interface: :playground
]

 Using Phoenix

You will simply want to add some code to your router, like so.
You will also likely want to set up the "playground" for trying things out.
pipeline :graphql do
 plug AshGraphql.Plug
end

scope "/" do
 pipe_through [:graphql]

 forward "/gql", Absinthe.Plug, schema: Helpdesk.Schema

 forward "/playground",
 Absinthe.Plug.GraphiQL,
 schema: Helpdesk.Schema,
 interface: :playground
end
If you started with mix new ... instead of mix phx.new ... and you want to
still use phoenix, the fastest path that way is typically to just create a new
phoenix application and copy your resources/config over.

 What's next?

Topics:
	GraphQL Generation

How Tos:
	Authorize With GraphQL
	Handle Errors
	Use Enums with GraphQL
	Use JSON with GraphQL

Monitoring

Authorize with GraphQL

AshGraphql uses three special keys in the absinthe context:
	:actor - the current actor, to be used for authorization/preparations/changes
	:tenant - a tenant when using multitenancy.
	:ash_context - a map of arbitrary context to be passed into the changeset/query. Accessible via changeset.context and query.context

By default, authorize? in the api is set to true. To disable authorization for a given API in graphql, use:
graphql do
 authorize? false
end
If you are doing authorization, you'll need to provide an actor.
To set the actor for authorization, you'll need to add an actor key to the
absinthe context. Typically, you would have a plug that fetches the current user
and uses Ash.PlugHelpers.set_actor/2 to set the actor in the conn (likewise
with Ash.PlugHelpers.set_tenant/2).
Just add AshGraphql.Plug somewhere after that in the pipeline and the your
GraphQL APIs will have the correct authorization.
defmodule MyAppWeb.Router do
 pipeline :api do
 # ...
 plug :get_actor_from_token
 plug AshGraphql.Plug
 end

 scope "/" do
 forward "/gql", Absinthe.Plug, schema: YourSchema

 forward "/playground",
 Absinthe.Plug.GraphiQL,
 schema: YourSchema,
 interface: :playground
 end

 def get_actor_from_token(conn, _opts) do
 with ["" <> token] <- get_req_header(conn, "authorization"),
 {:ok, user, _claims} <- MyApp.Guardian.resource_from_token(token) do
 conn
 |> set_actor(user)
 else
 _ -> conn
 end
 end
end

 Policy Breakdowns

By default, unauthorized requests simply return forbidden in the message. If you prefer to show policy breakdowns in your GraphQL errors, you can set the config option:
config :ash_graphql, :policies, show_policy_breakdowns?: true
{
 "data": {
 "attendanceRecords": null
 },
 "errors": [
 {
 "code": "forbidden",
 "fields": [],
 "locations": [
 {
 "column": 3,
 "line": 2
 }
],
 "message": "MyApp.Authentication.User.read\n\n\n\n\nPolicy Breakdown\n Policy | ⛔:\n forbid unless: actor is active | ✓ | ⬇ \n authorize if: actor is Executive | ✘ | ⬇",
 "path": [
 "attendanceRecords"
],
 "short_message": "forbidden",
 "vars": {}
 }
]
}
Be careful, as this can be an attack vector in some systems (i.e "here is exactly what you need to make true to do what you want to do").

Handling Errors

There are various options that can be set on the Api module to determine how errors behave and/or are shown in the GraphQL.

 Showing raised errors

For security purposes, if an error is raised as opposed to returned somewhere, the error is hidden. Set this to true in dev/test environments for an easier time debugging.
graphql do
 show_raised_errors? true
end

or it can be done in config
make sure you've set `otp_app` in your api, i.e use Ash.Api, otp_app: :my_app

config :my_app, YourApi, [
 graphql: [
 show_raised_errors?: true
]
]

 Root level errors

By default, action errors are simply shown in the errors field for mutations. Set this to true to return them as root level errors instead.
graphql do
 root_level_errors? true
end

 Error Handler

Setting an error handler allows you to use things like gettext to translate errors and/or modify errors in some way. This error handler will take the error object to be returned, and the context. See the absinthe docs for adding to the absinthe context (i.e for setting a locale).
graphql do
 error_handler {MyApp.GraphqlErrorHandler, :handle_error, []}
end
Keep in mind, that you will want to ensure that any custom error handler you add performs the logic to replace variables in error messages.
This is what the default error handler looks like, for example:
defmodule AshGraphql.DefaultErrorHandler do
 @moduledoc "Replaces any text in message or short_message with variables"

 def handle_error(
 %{message: message, short_message: short_message, vars: vars} = error,
 _context
) do
 %{
 error
 | message: replace_vars(message, vars),
 short_message: replace_vars(short_message, vars)
 }
 end

 def handle_error(other, _), do: other

 defp replace_vars(string, vars) do
 vars =
 if is_map(vars) do
 vars
 else
 List.wrap(vars)
 end

 Enum.reduce(vars, string, fn {key, value}, acc ->
 if String.contains?(acc, "%{#{key}}") do
 String.replace(acc, "%{#{key}}", to_string(value))
 else
 acc
 end
 end)
 end
end

Use Enums with GraphQL

 Automatically created enums

Enums are implemented automatically for any atom attribute (not arguments) with a one_of constraint. For example:
On the resource of type `:ticket`
attribute :type, :atom do
 constraints one_of: [:foo, :bar, :baz]
end
This would produce an enum called :ticket_type/TicketType.

 Custom enums

 Using Ash Enum types

If you define an Ash.Type.Enum, that enum type can be used both in attributes and arguments. You will need to add graphql_type/0 to your implementation. AshGraphql will ensure that a single type is defined for it, which will be reused across all occurrences. If an enum
type is referenced, but does not have graphql_type/0 defined, it will
be treated as a string input.
For example:
defmodule AshPostgres.Test.Types.Status do
 @moduledoc false
 use Ash.Type.Enum, values: [:open, :closed]

 def graphql_type, do: :ticket_status

 # Optionally, remap the names used in GraphQL, for instance if you have a value like `:"10"`
 # that value is not compatible with GraphQL

 def graphql_rename_value(:"10"), do: :ten
 def graphql_rename_value(value), do: value
end

 Using custom absinthe types

You can implement a custom enum by first adding the enum type to your absinthe schema (more here). Then you can define a custom Ash type that refers to that absinthe enum type.
In your absinthe schema:

enum :status do
 value(:open, description: "The post is open")
 value(:closed, description: "The post is closed")
end
Your custom Ash Type
defmodule AshGraphql.Test.Status do
 use Ash.Type

 @values [:open, :closed]
 @string_values Enum.map(@values, &to_string/1)

 def graphql_input_type(_), do: :status
 def graphql_type(_), do: :status

 @impl true
 def storage_type, do: :string

 @impl true
 def cast_input(value, _) when value in @values do
 {:ok, value}
 end

 def cast_input(value, _) when is_binary(value) do
 value = String.downcase(value)

 if value in @string_values do
 {:ok, String.to_existing_atom(value)}
 else
 :error
 end
 end

 @impl true
 def cast_stored(value, _) when value in @values do
 {:ok, value}
 end

 def cast_stored(value, _) when value in @string_values do
 {:ok, String.to_existing_atom(value)}
 rescue
 ArgumentError ->
 :error
 end

 @impl true
 def dump_to_native(value, _) when is_atom(value) do
 {:ok, to_string(value)}
 end

 def dump_to_native(_, _), do: :error
end

Use JSON with GraphQL

AshGraphql provides two JSON types that may be used. They are the same except for how the type is serialized in responses.
	:json_string - serializes the json to a string, e.g "{\"foo\":1}"
	:json - leaves the json as an object, e.g {foo: 1}

By default, :json_string is used. The configuration for this is (uncharacteristically) placed in application config, for example:
config :ash_graphql, :json_type, :json

Using Subscriptions

The AshGraphql DSL does not currently support subscriptions. However, you can do this with Absinthe direclty, and use AshGraphql.Subscription.query_for_subscription/3. Here is an example of how you could do this for a subscription for a single record. This example could be extended to support lists of records as well.
in your absinthe schema file
subscription do
 field :field, :type_name do
 config(fn
 _args, %{context: %{current_user: %{id: user_id}}} ->
 {:ok, topic: user_id, context_id: "user/#{user_id}"}

 _args, _context ->
 {:error, :unauthorized}
 end)

 resolve(fn args, _, resolution ->
 # loads all the data you need
 AshGraphql.Subscription.query_for_subscription(
 YourResource,
 YourAPi,
 resolution
)
 |> Ash.Query.filter(id == ^args.id)
 |> YourAPi.read(actor: resolution.context.current_user)
 end)
 end
end

Use Unions with GraphQL

By default, if a union is used in your resource in line, it will get a nice type generated for it based on the
resource/key name. Often, you'll want to define a union using Ash.Type.NewType. For example:
defmodule MyApp.Armor do
 use Ash.Type.NewType, subtype_of: :union, constraints: [
 types: [
 plate: [
 # This is an embedded resource, with its own fields
 type: MyApp.Armor.Plate
],
 chain_mail: [
 # And so is this
 type: MyApp.Armor.ChainMail
],
 custom: [
 type: :string
]
]
]

 use AshGraphql.Type

 # Add this to define the union in ash_graphql
 def graphql_type(_), do: :armor
end
By default, the type you would get for this on input and output would look something like this:
type Armor = {plate: {value: Plate}} | {chain_mail: {value: ChainMail}} | {custom: {value: String}}
We do this by default to solve for potentially ambiguous types. An example of this might be if you had multiple different types of strings in a union, and you wanted the client to be able to tell exactly which type of string they'd been given. i.e {social: {value: "555-55-5555"}} | {phone_number: {value: "555-5555"}}.
However, you can clean the type in cases where you have no such conflicts by by providing
Put anything in here that does not need to be named/nested with `{type_name: {value: value}}`
def graphql_unnested_unions(_constraints), do: [:plate, :chain_mail]
Which, in this case, would yield:
type Armor = Plate | ChainMail | {custom: {value: String}}

Monitoring

Please read the Ash monitoring guide for more information. Here we simply cover the additional traces & telemetry events that we publish from this extension.
A tracer can be configured in the api. It will fallback to the global tracer configuration config :ash, :tracer, Tracer
graphql do
 trace MyApp.Tracer
end

 Traces

Each graphql resolver, and batch resolution of the underlying data loader, will produce a span with an appropriate name. We also set a source: :graphql metadata if you want to filter them out or annotate them in some way.

 Telemetry

AshGraphql emits the following telemetry events, suffixed with :start and :stop. Start events have system_time measurements, and stop events have system_time and duration measurements. All times will be in the native time unit.
	[:ash, <api_short_name>, :gql_mutation] - The execution of a mutation. Use resource_short_name and mutation (or action) metadata to break down measurements.

	[:ash, <api_short_name>, :gql_query] - The execution of a mutation. Use resource_short_name and query (or action) metadata to break down measurements.

	[:ash, <api_short_name>, :gql_relationship] - The resolution of a relationship. Use resource_short_name and relationship metadata to break down measurements.

	[:ash, <api_short_name>, :gql_calculation] - The resolution of a calculation. Use resource_short_name and calculation metadata to break down measurements.

	[:ash, <api_short_name>, :gql_relationship_batch] - The resolution of a batch of relationships by the data loader. Use resource_short_name and relationship metadata to break down measurements.

	[:ash, <api_short_name>, :gql_calculation_batch] - The resolution of a batch of calculations by the data loader. Use resource_short_name and calculation metadata to break down measurements.

GraphQL Query Generation

 Fetch Data by ID

Following where we left off from Getting Started with GraphQL, we'll explore what the GraphQL
requests and responses look like for different queries defined with the AshGraphql DSL.
defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:subject`
 attribute :subject, :string
 end

 actions do
 # Add a set of simple actions. You'll customize these later.
 defaults [:read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticket
 get :get_ticket, :read
 end
 end
end
For the get_ticket query defined above, the corresponding GraphQL would look like this:
query($id: ID!) {
 getTicket(id: $id) {
 id
 subject
 }
}
And the response would look similar to this:
{
 "data": {
 "getTicket": {
 "id": "",
 "subject": ""
 }
 }
}
Let's look at an example of querying a list of things.
 graphql do
 type :ticket

 queries do
 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticket
 get :get_ticket, :read

 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end
 end
This time, we've added list :list_tickets, :read, to generate a GraphQL query for listing tickets.
The request would look something like this:
query {
 listTickets {
 id
 subject
 }
}
And the response would look similar to this:
{
 "data": {
 "listTickets": [
 {
 "id": "",
 "subject": ""
 }
]
 }
}

 Filter Data With Arguments

Now, let's say we want to add query parameters to listTickets. How do we do that?
Consider list :list_tickets, :read and the actions section:
 actions do
 # Add a set of simple actions. You'll customize these later.
 defaults [:read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end
 end
The second argument to list :list_tickets, :read is the action that will be called when the query is run.
In the current example, the action is :read, which is the generic Read action.
Let's create a custom action in order to define query parameters for the listTickets query.
We'll call this action :query_tickets:
 actions do
 defaults [:read, :update, :destroy]

 read :query_tickets do
 argument :representative_id, :uuid

 filter(
 expr do
 is_nil(^arg(:representative_id)) or representative_id == ^arg(:representative_id)
 end
)
 end
 end

 graphql do
 type :ticket

 queries do
 # create a field called `list_tickets` that uses the `:query_tickets` read action to fetch a list of tickets
 list :list_tickets, :query_tickets
 end
 end
In the graphql section, the list/2 call has been changed, replacing the :read action with :query_tickets.
The GraphQL request would look something like this:
query($representative_id: ID) {
 list_tickets(representative_id: $representative_id) {
 id
 representative_id
 subject
 }
}

 Mutations and Enums

Now, let's look at how to create a ticket by using a GraphQL mutation.
Let's say you have a Resource that defines an enum-like attribute:
defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 attributes do
 uuid_primary_key :id
 attribute :subject, :string
 attribute :status, :atom, constraints: [one_of: [:open, :closed]]
 end

 actions do
 defaults [:create, :read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 get :get_ticket, :read
 end

 mutations do
 create :create_ticket, :create
 end
 end
end
Above, the following changes have been added:
	In the attributes section, the :status attribute has been added.
	In the actions section, the :create action has been added.
	The :create_ticket mutation has been defined in the new graphql.mutations section.

The :status attribute is an enum that is constrained to the values [:open, :closed].
When used in conjunction with AshGraphql, a GraphQL enum type called TicketStatus will be generated for this attribute.
The possible GraphQL values for TicketStatus are OPEN and CLOSED.
See Use Enums with GraphQL for more information.
We can now create a ticket with the createTicket mutation:
mutation($input: CreateTicketInput!) {
 createTicket(input: $input) {
 result {
 id
 subject
 status
 }
 errors {
 code
 fields
 message
 shortMessage
 vars
 }
 }
}
Note
	The resulting ticket data is wrapped in AshGraphql's result object.

	Validation errors are wrapped in a list of error objects under errors, also specified in the query.
AshGraphql does this by default instead of exposing errors in GraphQL's standard errors array.
This behavior can be changed by setting root_level_errors? true in the graphql section
of your Ash API module:
defmodule Helpdesk.Support do
 use Ash.Api, extensions: [AshGraphql.Api]

 graphql do
 root_level_errors? true
 end
end

If we were to run this mutation in a test, it would look something like this:
input = %{
 subject: "My Ticket",
 status: "OPEN"
}

resp_body =
 post(conn, "/api/graphql", %{
 query: query,
 variables: %{input: input}
 })
 |> json_response(200)
Notice that the status attribute is set to "OPEN" and not "open". It is important that the value of the status be uppercase.
This is required by GraphQL enums. AshGraphql will automatically convert the value to the correct case.
The response will look something like this:
 {
 "data": {
 "createTicket": {
 "result": {
 "id": "b771e433-0979-4d07-a280-4d12373849aa",
 "subject": "My Ticket",
 "status": "OPEN"
 }
 }
 }
 }
Again, AshGraphql will automatically convert the status value from :open to "OPEN".

 More GraphQL Docs

If you haven't already, please turn on the documentation tag for AshGraphql. Tags can be controlled
at the top of the left navigation menu, under "Including Libraries:".
	Getting Started With GraphQL
	AshGraphql.Api

Modifying the Resolution

Using the modify_resolution option, you can alter the Absinthe resolution.
modify_resoltion is an MFA that will be called with the resolution, the query, and the result of the action as the first three arguments. Must return a new absinthe resolution.
This can be used to implement things like setting cookies based on resource actions. A method of using resolution context
for that is documented here: https://hexdocs.pm/absinthe_plug/Absinthe.Plug.html#module-before-send
Important if you are modifying the context in a query, then you should also set as_mutation? to true and represent this in your graphql as a mutation. See as_mutation? for more.

Relay

Enabling relay for a resource sets it up to follow the relay specification.
The two changes that are made currently are:
	the type for the resource will implement the Node interface
	pagination over that resource will behave as a Connection.

 Using with Absinthe.Relay

Use the following option when calling use AshGraphql
use AshGraphql, define_relay_types?: false

 Relay Global IDs

Use the following option to generate Relay Global IDs (see
here).
use AshGraphql, relay_ids?: true
This allows refetching a node using the node query and passing its global ID.

 Translating Relay Global IDs passed as arguments

When relay_ids?: true is passed, users of the API will have access only to the global IDs, so they
will also need to use them when an ID is required as argument. You actions, though, internally use the
normal IDs defined by the data layer.
To handle the translation between the two ID domains, you can use the relay_id_translations
option. With this, you can define a list of arguments that will be translated from Relay global IDs
to internal IDs.
For example, if you have a Post resource with an action to create a post associated with an
author:
create :create do
 argument :author_id, :uuid

 # Do stuff with author_id
end
You can add this to the mutation connected to that action:
mutations do
 create :create_post, :create do
 relay_id_translations [input: [author_id: :user]]
 end
end

DSL: AshGraphql.Api

The entrypoint for adding graphql behavior to an Ash API

 graphql

Global configuration for graphql

 Examples

graphql do
 authorize? false # To skip authorization for this API
end

 Options

	Name	Type	Default	Docs
	authorize?	boolean	true	Whether or not to perform authorization for this API
	tracer	atom		A tracer to use to trace execution in the graphql. Will use config :ash, :tracer if it is set.
	root_level_errors?	boolean	false	By default, mutation errors are shown in their result object's errors key, but this setting places those errors in the top level errors list
	error_handler	mfa	{AshGraphql.DefaultErrorHandler, :handle_error, []}	Set an MFA to intercept/handle any errors that are generated.
	show_raised_errors?	boolean	false	For security purposes, if an error is raised then Ash simply shows a generic error. If you want to show those errors, set this to true.
	debug?	boolean	false	Whether or not to log (extremely verbose) debug information

DSL: AshGraphql.Resource

This Ash resource extension adds configuration for exposing a resource in a graphql.

 graphql

Configuration for a given resource in graphql

 Nested DSLs

	queries	get
	read_one
	list
	action

	mutations	create
	update
	destroy
	action

	managed_relationships	managed_relationship

 Examples

graphql do
 type :post

 queries do
 get :get_post, :read
 list :list_posts, :read
 end

 mutations do
 create :create_post, :create
 update :update_post, :update
 destroy :destroy_post, :destroy
 end
end

 Options

	Name	Type	Default	Docs
	type	atom		The type to use for this entity in the graphql schema
	derive_filter?	boolean	true	Set to false to disable the automatic generation of a filter input for read actions.
	derive_sort?	boolean	true	Set to false to disable the automatic generation of a sort input for read actions.
	encode_primary_key?	boolean	true	For resources with composite primary keys, or primary keys not called :id, this will cause the id to be encoded as a single id attribute, both in the representation of the resource and in get requests
	relationships	list(atom)		A list of relationships to include on the created type. Defaults to all public relationships where the destination defines a graphql type.
	field_names	keyword		A keyword list of name overrides for attributes.
	hide_fields	list(atom)		A list of attributes to hide from the api
	argument_names	keyword		A nested keyword list of action names, to argument name remappings. i.e create: [arg_name: :new_name]
	keyset_field	atom		If set, the keyset will be displayed on all read actions in this field. It will be nil unless at least one of the read actions on a resource uses keyset pagination or it is the result of a mutation
	attribute_types	keyword		A keyword list of type overrides for attributes. The type overrides should refer to types available in the graphql (absinthe) schema. list_of/1 and non_null/1 helpers can be used.
	attribute_input_types	keyword		A keyword list of input type overrides for attributes. The type overrides should refer to types available in the graphql (absinthe) schema. list_of/1 and non_null/1 helpers can be used.
	primary_key_delimiter	String.t	"~"	If a composite primary key exists, this can be set to determine delimiter used in the id field value.
	depth_limit	integer		A simple way to prevent massive queries.
	generate_object?	boolean	true	Whether or not to create the GraphQL object, this allows you to manually create the GraphQL object.
	filterable_fields	list(atom)		A list of fields that are allowed to be filtered on. Defaults to all filterable fields for which a GraphQL type can be created.

 graphql.queries

Queries (read actions) to expose for the resource.

 Nested DSLs

	get
	read_one
	list
	action

 Examples

queries do
 get :get_post, :read
 read_one :current_user, :current_user
 list :list_posts, :read
end

 graphql.queries.get

get name, action
A query to fetch a record by primary key

 Examples

get :get_post, :read

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the query.
	action	atom		The action to use for the query.

 Options

	Name	Type	Default	Docs
	identity	atom		The identity to use for looking up the record. Pass false to not use an identity.
	allow_nil?	boolean	true	Whether or not the action can return nil.
	modify_resolution	mfa		An MFA that will be called with the resolution, the query, and the result of the action as the first three arguments. See the the guide for more.
	type_name	atom		Override the type name returned by this query. Must be set if the read action has metadata that is not hidden via the show_metadata key.
	metadata_names	keyword	[]	Name overrides for metadata fields on the read action.
	metadata_types	keyword	[]	Type overrides for metadata fields on the read action.
	show_metadata	list(atom)		The metadata attributes to show. Defaults to all.
	as_mutation?	boolean	false	Places the query in the mutations key instead. Not typically necessary, but is often paired with as_mutation?. See the the guide for more.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Query

 graphql.queries.read_one

read_one name, action
A query to fetch a record

 Examples

read_one :current_user, :current_user

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the query.
	action	atom		The action to use for the query.

 Options

	Name	Type	Default	Docs
	allow_nil?	boolean	true	Whether or not the action can return nil.
	type_name	atom		Override the type name returned by this query. Must be set if the read action has metadata that is not hidden via the show_metadata key.
	metadata_names	keyword	[]	Name overrides for metadata fields on the read action.
	metadata_types	keyword	[]	Type overrides for metadata fields on the read action.
	show_metadata	list(atom)		The metadata attributes to show. Defaults to all.
	as_mutation?	boolean	false	Places the query in the mutations key instead. Not typically necessary, but is often paired with as_mutation?. See the the guide for more.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Query

 graphql.queries.list

list name, action
A query to fetch a list of records

 Examples

list :list_posts, :read
list :list_posts_paginated, :read, relay?: true

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the query.
	action	atom		The action to use for the query.

 Options

	Name	Type	Default	Docs
	relay?	boolean	false	If true, the graphql queries/resolvers for this resource will be built to honor the relay specification. See the relay guide for more.
	type_name	atom		Override the type name returned by this query. Must be set if the read action has metadata that is not hidden via the show_metadata key.
	metadata_names	keyword	[]	Name overrides for metadata fields on the read action.
	metadata_types	keyword	[]	Type overrides for metadata fields on the read action.
	show_metadata	list(atom)		The metadata attributes to show. Defaults to all.
	as_mutation?	boolean	false	Places the query in the mutations key instead. Not typically necessary, but is often paired with as_mutation?. See the the guide for more.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Query

 graphql.queries.action

action name, action
Runs a generic action

 Examples

action :check_status, :check_status

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the query.
	action	atom		The action to use for the query.

 Options

	Name	Type	Default	Docs
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Action

 graphql.mutations

Mutations (create/update/destroy actions) to expose for the resource.

 Nested DSLs

	create
	update
	destroy
	action

 Examples

mutations do
 create :create_post, :create
 update :update_post, :update
 destroy :destroy_post, :destroy
end

 graphql.mutations.create

create name, action
A mutation to create a record

 Examples

create :create_post, :create

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the mutation.
	action	atom		The action to use for the mutation.

 Options

	Name	Type	Default	Docs
	upsert?	boolean	false	Whether or not to use the upsert?: true option when calling YourApi.create/2.
	upsert_identity	atom	false	Which identity to use for the upsert
	modify_resolution	mfa		An MFA that will be called with the resolution, the query, and the result of the action as the first three arguments. See the the guide for more.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Mutation

 graphql.mutations.update

update name, action
A mutation to update a record

 Examples

update :update_post, :update

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the mutation.
	action	atom		The action to use for the mutation.

 Options

	Name	Type	Default	Docs
	identity	atom		The identity to use to fetch the record to be updated. Use false if no identity is required.
	read_action	atom		The read action to use to fetch the record to be updated. Defaults to the primary read action.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Mutation

 graphql.mutations.destroy

destroy name, action
A mutation to destroy a record

 Examples

destroy :destroy_post, :destroy

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the mutation.
	action	atom		The action to use for the mutation.

 Options

	Name	Type	Default	Docs
	read_action	atom		The read action to use to fetch the record to be destroyed. Defaults to the primary read action.
	identity	atom		The identity to use to fetch the record to be destroyed. Use false if no identity is required.
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Mutation

 graphql.mutations.action

action name, action
Runs a generic action

 Examples

action :check_status, :check_status

 Arguments

	Name	Type	Default	Docs
	name	atom	:get	The name to use for the query.
	action	atom		The action to use for the query.

 Options

	Name	Type	Default	Docs
	relay_id_translations	keyword	[]	A keyword list indicating arguments or attributes that have to be translated from global Relay IDs to internal IDs. See the Relay guide for more.

 Introspection

Target: AshGraphql.Resource.Action

 graphql.managed_relationships

Generates input objects for manage_relationship arguments on resource actions.

 Nested DSLs

	managed_relationship

 Examples

managed_relationships do
 manage_relationship :create_post, :comments
end

 Options

	Name	Type	Default	Docs
	auto?	boolean		Automatically derive types for all arguments that have a manage_relationship call change.

 graphql.managed_relationships.managed_relationship

managed_relationship action, argument
Instructs ash_graphql that a given argument with a manage_relationship change should have its input objects derived automatically from the potential actions to be called.
For example, given an action like:
actions do
create :create do
argument :comments, {:array, :map}

change manage_relationship(:comments, type: :direct_control) # <- we look for this change with a matching argument name
end
end
You could add the following managed_relationship
graphql do
...

managed_relationships do
managed_relationship :create, :comments
end
end
By default, the {:array, :map} would simply be a json[] type. If the argument name
is placed in this list, all of the potential actions that could be called will be combined
into a single input object. If there are type conflicts (for example, if the input could create
or update a record, and the create and update actions have an argument of the same name but with a different type),
a warning is emitted at compile time and the first one is used. If that is insufficient, you will need to do one of the following:
1.) provide the :types option to the managed_relationship constructor (see that option for more)
2.) define a custom type, with a custom input object (see the custom types guide), and use that custom type instead of :map
3.) change your actions to not have overlapping inputs with different types
Since managed relationships can ultimately call multiple actions, there is the possibility
of field type conflicts. Use the types option to determine the type of fields and remove the conflict warnings.
For non_null use {:non_null, type}, and for a list, use {:array, type}, for example:
{:non_null, {:array, {:non_null, :string}}} for a non null list of non null strings.
To remove a key from the input object, simply pass nil as the type.

 Arguments

	Name	Type	Default	Docs
	action	atom		The action that accepts the argument
	argument	atom		The argument for which an input object should be derived.

 Options

	Name	Type	Default	Docs
	lookup_with_primary_key?	boolean		If the managed_relationship has on_lookup behavior, this option determines whether or not the primary key is provided in the input object for looking up.
	lookup_identities	list(atom)		Determines which identities are provided in the input object for looking up, if there is on_lookup behavior. Defalts to the use_identities option.
	type_name	atom		The name of the input object that will be derived. Defaults to <action_type>_<resource>_<argument_name>_input
	types	any		A keyword list of field names to their graphql type identifiers.

 Introspection

Target: AshGraphql.Resource.ManagedRelationship

AshGraphql

AshGraphql is a GraphQL extension for the Ash framework.
For more information, see the getting started guide

 Summary

 Functions

 add_context(ctx, apis, options \\ [])

 deprecated

 get_embed(type)

 get_embedded_types(all_resources, schema, relay_ids?)

 global_enums(resources, schema, env)

 global_unions(resources, schema, env)

 mutation(list)

 relay_queries(apis_with_resources, schema, env)

 Functions

 Link to this function

 add_context(ctx, apis, options \\ [])

 View Source

 This function is deprecated. add_context is no longer necessary.

 Link to this function

 get_embed(type)

 View Source

 Link to this function

 get_embedded_types(all_resources, schema, relay_ids?)

 View Source

 Link to this function

 global_enums(resources, schema, env)

 View Source

 Link to this function

 global_unions(resources, schema, env)

 View Source

 Link to this macro

 mutation(list)

 View Source

 (macro)

 Link to this function

 relay_queries(apis_with_resources, schema, env)

 View Source

AshGraphql.Api

The entrypoint for adding graphql behavior to an Ash API

 Summary

 Functions

 authorize?(api)

 deprecated

 See AshGraphql.Api.Info.authorize?/1.

 debug?(api)

 deprecated

 See AshGraphql.Api.Info.debug?/1.

 global_type_definitions(schema, env)

 root_level_errors?(api)

 deprecated

 See AshGraphql.Api.Info.root_level_errors?/1.

 show_raised_errors?(api)

 deprecated

 See AshGraphql.Api.Info.show_raised_errors?/1.

 Functions

 Link to this function

 authorize?(api)

 View Source

 This function is deprecated. See `AshGraphql.Api.Info.authorize?/1`.

See AshGraphql.Api.Info.authorize?/1.

 Link to this function

 debug?(api)

 View Source

 This function is deprecated. See `AshGraphql.Api.Info.debug?/1`.

See AshGraphql.Api.Info.debug?/1.

 Link to this function

 global_type_definitions(schema, env)

 View Source

 Link to this function

 root_level_errors?(api)

 View Source

 This function is deprecated. See `AshGraphql.Api.Info.root_level_errors?/1`.

See AshGraphql.Api.Info.root_level_errors?/1.

 Link to this function

 show_raised_errors?(api)

 View Source

 This function is deprecated. See `AshGraphql.Api.Info.show_raised_errors?/1`.

See AshGraphql.Api.Info.show_raised_errors?/1.

AshGraphql.Api.Info

Introspection helpers for AshGraphql.Api

 Summary

 Functions

 authorize?(api)

 Wether or not to run authorization on this api

 debug?(api)

 Wether or not to pass debug? down to internal execution

 error_handler(api)

 An error handler for errors produced by api

 root_level_errors?(api)

 Wether or not to surface errors to the root of the response

 show_raised_errors?(api)

 Wether or not to render raised errors in the graphql response

 tracer(api)

 The tracer to use for the given schema

 Functions

 Link to this function

 authorize?(api)

 View Source

Wether or not to run authorization on this api

 Link to this function

 debug?(api)

 View Source

Wether or not to pass debug? down to internal execution

 Link to this function

 error_handler(api)

 View Source

An error handler for errors produced by api

 Link to this function

 root_level_errors?(api)

 View Source

Wether or not to surface errors to the root of the response

 Link to this function

 show_raised_errors?(api)

 View Source

Wether or not to render raised errors in the graphql response

 Link to this function

 tracer(api)

 View Source

The tracer to use for the given schema

AshGraphql.Resource

This Ash resource extension adds configuration for exposing a resource in a graphql.

 Summary

 Functions

 decode_id(resource, id, relay_ids?)

 decode_primary_key(resource, value)

 decode_relay_id(id)

 encode_id(record, relay_ids?)

 encode_primary_key(record)

 encode_relay_id(record)

 enum_definitions(resource, schema, env, only_auto? \\ false)

 generate_object?(resource)

 deprecated

 See AshGraphql.Resource.Info.generate_object?/1.

 managed_relationships(resource)

 deprecated

 See AshGraphql.Resource.Info.managed_relationships/1.

 map_definitions(resource, schema, env)

 mutations(resource)

 deprecated

 See AshGraphql.Resource.Info.mutations/1.

 no_graphql_types(resource, schema)

 node_type?(type)

 primary_key_delimiter(resource)

 deprecated

 See AshGraphql.Resource.Info.primary_key_delimiter/1.

 primary_key_get_query(resource)

 queries(resource)

 deprecated

 See AshGraphql.Resource.Info.queries/1.

 query_type_definitions(resource, api, schema, relay_ids?)

 ref(env)

 type(resource)

 deprecated

 See AshGraphql.Resource.Info.type/1.

 type_definition(resource, api, schema, relay_ids?)

 union_definitions(resource, schema, env)

 Functions

 Link to this function

 decode_id(resource, id, relay_ids?)

 View Source

 Link to this function

 decode_primary_key(resource, value)

 View Source

 Link to this function

 decode_relay_id(id)

 View Source

 Link to this function

 encode_id(record, relay_ids?)

 View Source

 Link to this function

 encode_primary_key(record)

 View Source

 Link to this function

 encode_relay_id(record)

 View Source

 Link to this function

 enum_definitions(resource, schema, env, only_auto? \\ false)

 View Source

 Link to this function

 generate_object?(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.generate_object?/1`.

See AshGraphql.Resource.Info.generate_object?/1.

 Link to this function

 managed_relationships(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.managed_relationships/1`.

See AshGraphql.Resource.Info.managed_relationships/1.

 Link to this function

 map_definitions(resource, schema, env)

 View Source

 Link to this function

 mutations(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.mutations/1`.

See AshGraphql.Resource.Info.mutations/1.

 Link to this function

 no_graphql_types(resource, schema)

 View Source

 Link to this function

 node_type?(type)

 View Source

 Link to this function

 primary_key_delimiter(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.primary_key_delimiter/1`.

See AshGraphql.Resource.Info.primary_key_delimiter/1.

 Link to this function

 primary_key_get_query(resource)

 View Source

 Link to this function

 queries(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.queries/1`.

See AshGraphql.Resource.Info.queries/1.

 Link to this function

 query_type_definitions(resource, api, schema, relay_ids?)

 View Source

 Link to this function

 ref(env)

 View Source

 Link to this function

 type(resource)

 View Source

 This function is deprecated. See `AshGraphql.Resource.Info.type/1`.

See AshGraphql.Resource.Info.type/1.

 Link to this function

 type_definition(resource, api, schema, relay_ids?)

 View Source

 Link to this function

 union_definitions(resource, schema, env)

 View Source

AshGraphql.Resource.Action

Represents a configured generic action

AshGraphql.Resource.Info

Introspection helpers for AshGraphql.Resource

 Summary

 Functions

 argument_names(resource)

 Graphql argument name overrides for the resource

 attribute_input_types(resource)

 Graphql type overrides for the resource

 attribute_types(resource)

 Graphql type overrides for the resource

 derive_filter?(resource)

 Wether or not to derive a filter input for the resource automatically

 derive_sort?(resource)

 Wether or not to derive a sort input for the resource automatically

 encode_primary_key?(resource)

 Wether or not to encode the primary key as a single id field when reading and getting

 field_names(resource)

 Graphql field name (attribute/relationship/calculation/arguments) overrides for the resource

 filterable_field?(resource, field)

 May the specified field be filtered on?

 filterable_fields(resource)

 Fields that may be filtered on

 generate_object?(resource)

 Wether or not an object should be generated, or if one with the type name for this resource should be used.

 hide_fields(resource)

 Fields to hide from the graphql api

 keyset_field(resource)

 The field name to place the keyset of a result in

 managed_relationship(resource, action, argument)

 The managed_relationshi configuration for a given action/argument

 managed_relationships(resource)

 The managed_relationship configurations

 managed_relationships_auto?(resource)

 mutations(resource)

 The mutations exposed for the resource

 primary_key_delimiter(resource)

 The delimiter for a resource with a composite primary key

 queries(resource)

 The queries exposed for the resource

 relationships(resource)

 Which relationships should be included in the generated type

 show_field?(resource, field)

 Wether or not a given field will be shown

 type(resource)

 The graphql type of the resource

 Functions

 Link to this function

 argument_names(resource)

 View Source

Graphql argument name overrides for the resource

 Link to this function

 attribute_input_types(resource)

 View Source

Graphql type overrides for the resource

 Link to this function

 attribute_types(resource)

 View Source

Graphql type overrides for the resource

 Link to this function

 derive_filter?(resource)

 View Source

Wether or not to derive a filter input for the resource automatically

 Link to this function

 derive_sort?(resource)

 View Source

Wether or not to derive a sort input for the resource automatically

 Link to this function

 encode_primary_key?(resource)

 View Source

Wether or not to encode the primary key as a single id field when reading and getting

 Link to this function

 field_names(resource)

 View Source

Graphql field name (attribute/relationship/calculation/arguments) overrides for the resource

 Link to this function

 filterable_field?(resource, field)

 View Source

May the specified field be filtered on?

 Link to this function

 filterable_fields(resource)

 View Source

Fields that may be filtered on

 Link to this function

 generate_object?(resource)

 View Source

Wether or not an object should be generated, or if one with the type name for this resource should be used.

 Link to this function

 hide_fields(resource)

 View Source

Fields to hide from the graphql api

 Link to this function

 keyset_field(resource)

 View Source

The field name to place the keyset of a result in

 Link to this function

 managed_relationship(resource, action, argument)

 View Source

The managed_relationshi configuration for a given action/argument

 Link to this function

 managed_relationships(resource)

 View Source

The managed_relationship configurations

 Link to this function

 managed_relationships_auto?(resource)

 View Source

 Link to this function

 mutations(resource)

 View Source

The mutations exposed for the resource

 Link to this function

 primary_key_delimiter(resource)

 View Source

The delimiter for a resource with a composite primary key

 Link to this function

 queries(resource)

 View Source

The queries exposed for the resource

 Link to this function

 relationships(resource)

 View Source

Which relationships should be included in the generated type

 Link to this function

 show_field?(resource, field)

 View Source

Wether or not a given field will be shown

 Link to this function

 type(resource)

 View Source

The graphql type of the resource

AshGraphql.Resource.ManagedRelationship

Represents a managed relationship configuration on a mutation

 Summary

 Functions

 schema()

 Functions

 Link to this function

 schema()

 View Source

AshGraphql.Resource.Mutation

Represents a configured mutation on a resource

 Summary

 Functions

 create_schema()

 destroy_schema()

 update_schema()

 Functions

 Link to this function

 create_schema()

 View Source

 Link to this function

 destroy_schema()

 View Source

 Link to this function

 update_schema()

 View Source

AshGraphql.Resource.Query

Represents a configured query on a resource

 Summary

 Functions

 get_schema()

 list_schema()

 read_one_schema()

 Functions

 Link to this function

 get_schema()

 View Source

 Link to this function

 list_schema()

 View Source

 Link to this function

 read_one_schema()

 View Source

AshGraphql.Error protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_error(exception)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 to_error(exception)

 View Source

AshGraphql.Errors

Utilities for working with errors in custom resolvers.

 Summary

 Functions

 to_errors(errors, context, api)

 Transform an error or list of errors into the response for graphql.

 Functions

 Link to this function

 to_errors(errors, context, api)

 View Source

Transform an error or list of errors into the response for graphql.

AshGraphql.Resource.Helpers

Imported helpers for the graphql DSL section

 Summary

 Functions

 list_of(value)

 A list of a given type, idiomatic for those used to absinthe notation.

 non_null(value)

 A non nullable type, idiomatic for those used to absinthe notation.

 Functions

 Link to this function

 list_of(value)

 View Source

 @spec list_of(v) :: {:array, v} when v: term()

A list of a given type, idiomatic for those used to absinthe notation.

 Link to this function

 non_null(value)

 View Source

 @spec non_null(v) :: {:non_null, v} when v: term()

A non nullable type, idiomatic for those used to absinthe notation.

AshGraphql.ContextHelpers

Helper to extract context from its various locations

 Summary

 Functions

 get_context(context)

 Functions

 Link to this function

 get_context(context)

 View Source

AshGraphql.DefaultErrorHandler

Replaces any text in message or short_message with variables

 Summary

 Functions

 handle_error(error, arg2)

 Functions

 Link to this function

 handle_error(error, arg2)

 View Source

AshGraphql.Plug

Automatically set up the GraphQL actor and tenant.
Adding this plug to your pipeline will automatically set the actor and
tenant if they were previously put there by Ash.PlugHelpers.set_actor/2 or
Ash.PlugHelpers.set_tenant/2.

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

AshGraphql.Subscription

Helpers for working with absinthe subscriptions

 Summary

 Functions

 query_for_subscription(query, api, resolution)

 Produce a query that will load the correct data for a subscription.

 Functions

 Link to this function

 query_for_subscription(query, api, resolution)

 View Source

Produce a query that will load the correct data for a subscription.

AshGraphql.Type behaviour

Callbacks used to enrich types with GraphQL-specific metadata.

 Summary

 Callbacks

 graphql_input_type(constraints)

 Sets the name of the graphql input type for a given Ash type. For example: :weekday.

 graphql_rename_value(constraints)

 Used for Ash.Type.Enum to rename individual values. For example

 graphql_type(constraints)

 Sets the name of the graphql type for a given Ash type. For example: :weekday.

 graphql_unnested_unions(constraints)

 Used for map/embedded types embedded in unions, to avoid nesting them in a key by their name.

 Callbacks

 Link to this callback

 graphql_input_type(constraints)

 View Source

 (optional)

 @callback graphql_input_type(Ash.Type.constraints()) :: atom()

Sets the name of the graphql input type for a given Ash type. For example: :weekday.
This will do different things depending on the type you're adding it to.

 Regular Types

This expresses that you will define a custom type for representing this input in your graphql

 NewTypes

If it is a subtype of a union, or map/keyword with fields the type will be created with that name.
So you can use this to decide what it will be named. Otherwise, it behaves as stated above for
regular types.

 Link to this callback

 graphql_rename_value(constraints)

 View Source

 (optional)

 @callback graphql_rename_value(Ash.Type.constraints()) :: String.t() | atom()

Used for Ash.Type.Enum to rename individual values. For example:
defmodule MyEnum do
 use Ash.Type.Enum, values: [:foo, :bar, :baz]

 def graphql_rename_value(:baz), do: :buz
 def graphql_rename_value(other), do: other
end

 Link to this callback

 graphql_type(constraints)

 View Source

 (optional)

 @callback graphql_type(Ash.Type.constraints()) :: atom()

Sets the name of the graphql type for a given Ash type. For example: :weekday.
This will do different things depending on the type you're adding it to.

 Regular Types

This expresses that you will define a custom type for representing this in your graphql

 NewTypes

If it is a subtype of a union, or map/keyword with fields the type will be created with that name.
So you can use this to decide what it will be named. Otherwise, it behaves as stated above for
regular types.

 Link to this callback

 graphql_unnested_unions(constraints)

 View Source

 (optional)

 @callback graphql_unnested_unions(Ash.Type.constraints()) :: [atom()]

Used for map/embedded types embedded in unions, to avoid nesting them in a key by their name.
See the unions guide for more.

AshGraphql.Types.JSON

The Json scalar type allows arbitrary JSON values to be passed in and out.

 Summary

 Functions

 decode(arg1)

 encode(value)

 Functions

 Link to this function

 decode(arg1)

 View Source

 Link to this function

 encode(value)

 View Source

AshGraphql.Types.JSONString

The Json scalar type allows arbitrary JSON values to be passed in and out.

 Summary

 Functions

 decode(arg1)

 encode(value)

 Functions

 Link to this function

 decode(arg1)

 View Source

 Link to this function

 encode(value)

 View Source

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

