

 ash_graphql

 v1.4.6

 [image: Logo]

 Table of contents

 	Home

 	Tutorials

 	Getting Started With GraphQL

 	Topics

 	Authorize with GraphQL

 	Handling Errors

 	Generic Actions

 	Using the SDL File

 	Use Enums with GraphQL

 	Use JSON with GraphQL

 	Using Subscriptions

 	Use Unions with GraphQL

 	Use Maps with GraphQL

 	Monitoring

 	GraphQL Query Generation

 	Modifying the Resolution

 	Relay

 	Custom Queries & Mutations

 	Upgrading to 1.0

 	DSLs

 	DSL: AshGraphql.Domain

 	DSL: AshGraphql.Resource

 	About AshGraphql

 	Change Log

 	

 	Modules

 	AshGraphql.Igniter

 	AshGraphql.Resource.Subscription

 	AshGraphql.Resource.Transformers.Subscription

 	AshGraphql.Subscription.Actor

 	AshGraphql.Subscription.Batcher

 	AshGraphql.Subscription.Config

 	AshGraphql.Subscription.Endpoint

 	AshGraphql.Subscription.Notifier

 	AshGraphql.Subscription.Runner

 	AshGraphql

 	AshGraphql

 	Introspection

 	AshGraphql.Domain

 	AshGraphql.Domain.Info

 	AshGraphql.Resource

 	AshGraphql.Resource.Action

 	AshGraphql.Resource.Info

 	AshGraphql.Resource.ManagedRelationship

 	AshGraphql.Resource.Mutation

 	AshGraphql.Resource.Query

 	Errors

 	AshGraphql.Error

 	AshGraphql.Errors

 	Miscellaneous

 	AshGraphql.Resource.Helpers

 	Utilities

 	AshGraphql.ContextHelpers

 	AshGraphql.DefaultErrorHandler

 	AshGraphql.Plug

 	AshGraphql.Subscription

 	AshGraphql.Type

 	AshGraphql.Types.JSON

 	AshGraphql.Types.JSONString

 	Mix Tasks

 	mix ash_graphql.install

Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
AshGraphql
Welcome! This is the extension for building GraphQL APIs with Ash. The generated GraphQL APIs are powered by Absinthe. Generate a powerful Graphql API in minutes!

 Tutorials

	Getting Started with GraphQL

 Topics

	Authorize with GraphQL
	Handle Errors
	Monitoring
	Use JSON with GraphQL
	Use Subscriptions with GraphQL
	GraphQL Generation
	Modifying the Resolution
	Relay
	Use Enums with GraphQL
	Use Maps with GraphQL
	Use Unions with GraphQL
	Upgrading to 1.0

 Reference

	AshGraphql.Resource DSL
	AshGraphql.Domain DSL

Getting Started With GraphQL

 Get familiar with Ash resources

If you haven't already, read the Ash Getting Started Guide. This assumes that you already have resources set up, and only gives you the steps to add AshGraphql to your resources/domains.

 Installation

 Using Igniter (recommended)

mix igniter.install ash_graphql

 Manual

Bring in the ash_graphql dependency
def deps()
 [
 ...
 {:ash_graphql, "~> 1.4.6"}
]
end
Setting up your schema
If you don't have an absinthe schema, you can create one just for ash.
Replace helpdesk in the examples with your own application name.
See the SDL file guide for more information on using the SDL file,
or remove the generate_sdl_file option to skip generating it on calls to mix ash.codegen.
in lib/helpdesk/schema.ex
defmodule Helpdesk.GraphqlSchema do
 use Absinthe.Schema

 # Add your domains here
 use AshGraphql,
 domains: [Your.Domains]

 query do
 # Custom absinthe queries can be placed here
 @desc "Remove me once you have a query of your own!"
 field :remove_me, :string do
 resolve fn _, _, _ ->
 {:ok, "Remove me!"}
 end
 end
 end

 mutation do
 # Custom absinthe mutations can be placed here
 end
end
Connect your schema
Using Phoenix
Add the following code to your Phoenix router. It's useful to set up the Absinthe playground for trying things out, but it's optional.
pipeline :graphql do
 plug AshGraphql.Plug
end

scope "/gql" do
 pipe_through [:graphql]

 forward "/playground",
 Absinthe.Plug.GraphiQL,
 schema: Module.concat(["Helpdesk.GraphqlSchema"]),
 interface: :playground

 forward "/",
 Absinthe.Plug,
 schema: Module.concat(["Helpdesk.GraphqlSchema"])
end

 Whats up with Module.concat/1?

This Module.concat/1 prevents a compile-time dependency from this router module to the schema module. It is an implementation detail of how forward/2 works that you end up with a compile-time dependency on the schema, but there is no need for this dependency, and that dependency can have drastic impacts on your compile times in certain scenarios.

If you started with mix new ... instead of mix phx.new ... and you want to
still use Phoenix, the fastest path that way is typically to just create a new
Phoenix application and copy your resources/config over.
Using Plug
If you are unfamiliar with how plug works, this guide
will be helpful for understanding it. It also guides you through adding plug to your application.
Then you can use a Plug.Router and forward to your plugs similar to how it is done for phoenix:
plug AshGraphql.Plug

forward "/gql",
 to: Absinthe.Plug,
 init_opts: [schema: Module.concat(["Helpdesk.GraphqlSchema"])]

forward "/playground",
 to: Absinthe.Plug.GraphiQL,
 init_opts: [
 schema: Module.concat(["Helpdesk.GraphqlSchema"]),
 interface: :playground
]
For information on why we are using Module.concat/1, see the note above in the Phoenix section.

 Select domains to show in your GraphQL

In the use AshGraphql call in your schema, you specify which domains you want to expose in your GraphQL API. Add any domains that will have AshGraphql queries/mutations to the domains list. For example:
use AshGraphql, domains: [Your.Domain1, Your.Domain2]

 Adding Queries and Mutations

Some example queries/mutations are shown below. If no queries/mutations are added, nothing will show up in the GraphQL API, so be sure to set one up if you want to try it out.

 Queries & Mutations on the Resource

Here we show queries and mutations being added to the resource, but you can also define them on the domain. See below for an equivalent definition
defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 graphql do
 type :ticket

 queries do
 # Examples

 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticke
 get :get_ticket, :read
 # create a field called `most_important_ticket` that uses the `most_important` read action to fetch a single record
 read_one :most_important_ticket, :most_important

 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end

 mutations do
 # Examples

 create :create_ticket, :create
 update :update_ticket, :update
 destroy :destroy_ticket, :destroy
 end
 end

 ...
end

 Queries & Mutations on the Domain

defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 # The resource still determines its type, and any other resource/type-based
 # configuration
 graphql do
 type :ticket
 end

 ...
end

defmodule Helpdesk.Support do
 use Ash.Domain,
 extensions: [
 AshGraphql.Domain
]

 ...
 graphql do
 # equivalent queries and mutations, but the first argument
 # is the resource because the domain can define queries for
 # any of its resources
 queries do
 get Helpdesk.Support.Ticket, :get_ticket, :read
 read_one Helpdesk.Support.Ticket, :most_important_ticket, :most_important
 list Helpdesk.Support.Ticket, :list_tickets, :read
 end

 mutations do
 create Helpdesk.Support.Ticket, :create_ticket, :create
 update Helpdesk.Support.Ticket, :update_ticket, :update
 destroy Helpdesk.Support.Ticket, :destroy_ticket, :destroy
 end
end

 What's next?

Topics:
	GraphQL Generation

How Tos:
	Authorize With GraphQL
	Handle Errors
	Use Enums with GraphQL
	Use JSON with GraphQL

Authorize with GraphQL

AshGraphql uses three special keys in the absinthe context:
	:actor - the current actor, to be used for authorization/preparations/changes
	:tenant - a tenant when using multitenancy.
	:ash_context - a map of arbitrary context to be passed into the changeset/query. Accessible via changeset.context and query.context

By default, authorize? in the domain is set to true. To disable authorization for a given domain in graphql, use:
graphql do
 authorize? false
end
If you are doing authorization, you'll need to provide an actor.
To set the actor for authorization, you'll need to add an actor key to the
absinthe context. Typically, you would have a plug that fetches the current user and uses Ash.PlugHelpers.set_actor/2 to set the actor in the conn (likewise with Ash.PlugHelpers.set_tenant/2).
Just add AshGraphql.Plug somewhere after that in the pipeline and the your
GraphQL APIs will have the correct authorization.
defmodule MyAppWeb.Router do
 pipeline :api do
 # ...
 plug :get_actor_from_token
 plug AshGraphql.Plug
 end

 scope "/" do
 forward "/gql", Absinthe.Plug, schema: YourSchema

 forward "/playground",
 Absinthe.Plug.GraphiQL,
 schema: YourSchema,
 interface: :playground
 end

 def get_actor_from_token(conn, _opts) do
 with ["" <> token] <- get_req_header(conn, "authorization"),
 {:ok, user, _claims} <- MyApp.Guardian.resource_from_token(token) do
 conn
 |> set_actor(user)
 else
 _ -> conn
 end
 end
end

 Policy Breakdowns

By default, unauthorized requests simply return forbidden in the message. If you prefer to show policy breakdowns in your GraphQL errors, you can set the config option:
config :ash_graphql, :policies, show_policy_breakdowns?: true
{
 "data": {
 "attendanceRecords": null
 },
 "errors": [
 {
 "code": "forbidden",
 "fields": [],
 "locations": [
 {
 "column": 3,
 "line": 2
 }
],
 "message": "MyApp.Authentication.User.read\n\n\n\n\nPolicy Breakdown\n Policy | ⛔:\n forbid unless: actor is active | ✓ | ⬇ \n authorize if: actor is Executive | ✘ | ⬇",
 "path": ["attendanceRecords"],
 "short_message": "forbidden",
 "vars": {}
 }
]
}
Be careful, as this can be an attack vector in some systems (i.e "here is exactly what you need to make true to do what you want to do").

 Field Policies

Field policies in AshGraphql work by producing a null value for any forbidden field, as well as an error in the errors list.

 nullability

Any fields with field policies on them should be nullable. If they are not nullable, the parent object will also be null (and considered in an error state), because null is not a valid type for that field.

To make fields as nullable even if it is not nullable by its definition, use the nullable_fields option.
graphql do
 type :post

 nullable_fields [:foo, :bar, :baz]
end

Handling Errors

There are various options that can be set on the Domain module to determine how errors behave and/or are shown in the GraphQL.

 Showing raised errors

For security purposes, if an error is raised as opposed to returned somewhere, the error is hidden. Set this to true in dev/test environments for an easier time debugging.
graphql do
 show_raised_errors? true
end

or it can be done in config
make sure you've set `otp_app` in your domain, i.e use Ash.Domain, otp_app: :my_app

config :my_app, YourDomain, [
 graphql: [
 show_raised_errors?: true
]
]

 Root level errors

By default, action errors are simply shown in the errors field for mutations. Set this to true to return them as root level errors instead.
graphql do
 root_level_errors? true
end

 Error Handler

Setting an error handler allows you to use things like gettext to translate errors and/or modify errors in some way. This error handler will take the error object to be returned, and the context. See the absinthe docs for adding to the absinthe context (i.e for setting a locale).
graphql do
 error_handler {MyApp.GraphqlErrorHandler, :handle_error, []}
end
Keep in mind, that you will want to ensure that any custom error handler you add performs the logic to replace variables in error messages.
This is what the default error handler looks like, for example:
defmodule AshGraphql.DefaultErrorHandler do
 @moduledoc "Replaces any text in message or short_message with variables"

 def handle_error(
 %{message: message, short_message: short_message, vars: vars} = error,
 _context
) do
 %{
 error
 | message: replace_vars(message, vars),
 short_message: replace_vars(short_message, vars)
 }
 end

 def handle_error(other, _), do: other

 defp replace_vars(string, vars) do
 vars =
 if is_map(vars) do
 vars
 else
 List.wrap(vars)
 end

 Enum.reduce(vars, string, fn {key, value}, acc ->
 if String.contains?(acc, "%{#{key}}") do
 String.replace(acc, "%{#{key}}", to_string(value))
 else
 acc
 end
 end)
 end
end

 Custom Errors

If you created your own Errors as described in the Ash Docs you also need to implement
the protocol for it to be displayed in the Api.
defmodule Ash.Error.Action.InvalidArgument do
 @moduledoc "Used when an invalid value is provided for an action argument"
 use Splode.Error, fields: [:field, :message, :value], class: :invalid

 def message(error) do
 """
 Invalid value provided#{for_field(error)}#{do_message(error)}

 #{inspect(error.value)}
 """
 end

 defimpl AshGraphql.Error, for: Ash.Error.Changes.InvalidArgument do
 def to_error(error) do
 %{
 message: error.message,
 short_message: error.message,
 code: "invalid_argument",
 vars: Map.new(error.vars),
 fields: [error.field]
 }
 end
 end
end

Generic Actions

Generic actions allow us to build any interface we want in Ash. AshGraphql
has full support for generic actions, from type generation to data loading.
This means that you can write actions that return records or lists of records
and those will have all of their fields appropriately loadable, or you can have
generic actions that return simple scalars, like integers or strings.

 Examples

Here we have a simple generic action returning a scalar value.
graphql do
 queries do
 action :say_hello, :say_hello
 end
end

actions do
 action :say_hello, :string do
 argument :to, :string, allow_nil?: false

 run fn input, _ ->
 {:ok, "Hello, #{input.arguments.to}"}
 end
 end
end
And here we have a generic action returning a list of records.
graphql do
 type :post

 queries do
 action :random_ten, :random_ten
 end
end

actions do
 action :random_ten, {:array, :struct} do
 constraints items: [instance_of: __MODULE__]

 run fn input, context ->
 # This is just an example, not an efficient way to get
 # ten random records
 with {:ok, records} <- Ash.read(__MODULE__) do
 {:ok, Enum.take_random(records, 10)}
 end
 end
 end
end

Using the SDL File

By passing the generate_sdl_file to use AshGraphql, AshGraphql will generate
a schema file when you run mix ash.codegen. For example:
use AshGraphql,
 domains: [Domain1, Domain2],
 generate_sdl_file: "priv/schema.graphql"

 Ensure your schema is up to date, gitignored, or not generated

We suggest first adding mix ash.codegen --check to your CI/CD pipeline to
ensure the schema is always up-to-date. Alternatively you can add the file
to your .gitignore, or you can remove the generate_sdl_file option to skip
generating the file.

With the generate_sdl_file option, calls to mix ash.codegen <name> will generate
a .graphql file at the specified path.
Some things that you can use this SDL file for:

 Documentation

The schema file itself represents your entire GraphQL API definition, and examining it can be very useful.

 Code Generation

You can use tools like GraphQL codegen to generate a client
for your GraphQL API.

 Validating Changes

Use the SDL file to check for breaking changes in your schema, especially if you are exposing a public API.
A plug and play github action for this can be found here: https://the-guild.dev/graphql/inspector/docs/products/action

Use Enums with GraphQL

If you define an Ash.Type.Enum, that enum type can be used both in attributes and arguments. You will need to add graphql_type/0 to your implementation. AshGraphql will ensure that a single type is defined for it, which will be reused across all occurrences. If an enum
type is referenced, but does not have graphql_type/0 defined, it will
be treated as a string input.
For example:
defmodule AshPostgres.Test.Types.Status do
 @moduledoc false
 use Ash.Type.Enum, values: [:open, :closed]

 def graphql_type(_), do: :ticket_status

 # Optionally, remap the names used in GraphQL, for instance if you have a value like `:"10"`
 # that value is not compatible with GraphQL

 def graphql_rename_value(:"10"), do: :ten
 def graphql_rename_value(value), do: value

 # You can also provide descriptions for the enum values, which will be exposed in the GraphQL
 # schema.
 # Remember to have a fallback clause that returns nil if you don't provide descriptions for all
 # values.

 def graphql_describe_enum_value(:open), do: "The post is open"
 def graphql_describe_enum_value(_), do: nil
end

 Using custom absinthe types

You can implement a custom enum by first adding the enum type to your absinthe schema (more here). Then you can define a custom Ash type that refers to that absinthe enum type.
In your absinthe schema:

enum :status do
 value(:open, description: "The post is open")
 value(:closed, description: "The post is closed")
end
Your custom Ash Type
defmodule AshGraphql.Test.Status do
 use Ash.Type.Enum, values: [:open, :closed]

 use AshGraphql.Type

 @impl true
 # tell Ash not to define the type for that enum
 def graphql_define_type?(_), do: false
end

Use JSON with GraphQL

AshGraphql provides two JSON types that may be used. They are the same except for how the type is serialized in responses.
	:json_string - serializes the json to a string, e.g "{\"foo\":1}"
	:json - leaves the json as an object, e.g {foo: 1}

By default, :json_string is used. The configuration for this is (uncharacteristically) placed in application config, for example:
config :ash_graphql, :json_type, :json

Using Subscriptions

You can do this with Absinthe directly, and use
AshGraphql.Subscription.query_for_subscription/3. Here is an example of how
you could do this for a subscription for a single record. This example could be
extended to support lists of records as well.
in your absinthe schema file
subscription do
 field :field, :type_name do
 config(fn
 _args, %{context: %{current_user: %{id: user_id}}} ->
 {:ok, topic: user_id, context_id: "user/#{user_id}"}

 _args, _context ->
 {:error, :unauthorized}
 end)

 resolve(fn args, _, resolution ->
 # loads all the data you need
 AshGraphql.Subscription.query_for_subscription(
 YourResource,
 YourDomain,
 resolution
)
 |> Ash.Query.filter(id == ^args.id)
 |> Ash.read(actor: resolution.context.current_user)
 end)
 end
end

 Subscription DSL (beta)

The subscription DSL is currently in beta and before using it you have to enable
them in your config.

 Subscription response order

The order in which the subscription responses are sent to the client is not
guaranteed to be the same as the order in which the mutations were executed.

config :ash_graphql, :subscriptions, true
First you'll need to do some setup, follow the the
setup guide
in the absinthe docs, but instead of using Absinthe.Pheonix.Endpoint use
AshGraphql.Subscription.Endpoint.
By default subscriptions are resolved synchronously as part of the mutation.
This means that a resolver is run for every subscriber that is not deduplicated.
If you have a lot of subscribers you can add the
AshGraphql.Subscription.Batcher to your supervision tree, which batches up
notifications and runs subscription resolution out-of-band.
 @impl true
 def start(_type, _args) do
 children = [
 ...,
 {Absinthe.Subscription, MyAppWeb.Endpoint},
 AshGraphql.Subscription.Batcher
]

 # See https://hexdocs.pm/elixir/Supervisor.html
 # for other strategies and supported options
 opts = [strategy: :one_for_one, name: MyAppWeb.Supervisor]
 Supervisor.start_link(children, opts)
 end
Afterwards, add an empty subscription block to your schema module.
defmodule MyAppWeb.Schema do
 ...

 subscription do
 end
end
Now you can define subscriptions on your resource or domain
defmodule MyApp.Resource do
 use Ash.Resource,
 data_layer: Ash.DataLayer.Ets,
 extensions: [AshGraphql.Resource]

 graphql do
 subscriptions do
 subscribe :resource_created do
 action_types :create
 end
 end
 end
end
For further Details checkout the DSL docs for
resource
and domain

 Deduplication

By default, Absinthe will deduplicate subscriptions based on the context_id.
We use the some of the context like actor and tenant to create a context_id
for you.
If you want to customize the deduplication you can do so by adding a actor
function to your subscription. This function will be called with the actor that
subscribes and you can return a more generic actor, this way you can have one
actor for multiple users, which will lead to less resolver executions.
defmodule MyApp.Resource do
 use Ash.Resource,
 data_layer: Ash.DataLayer.Ets,
 extensions: [AshGraphql.Resource]

 graphql do
 subscriptions do
 subscribe :resource_created do
 action_types :create
 actor fn actor ->
 if check_actor(actor) do
 %{id: "your generic actor", ...}
 else
 actor
 end
 end
 end
 end
 end
end

Use Unions with GraphQL

Unions must be defined with Ash.Type.NewType:
defmodule MyApp.Armor do
 use Ash.Type.NewType, subtype_of: :union, constraints: [
 types: [
 plate: [
 # This is an embedded resource, with its own fields
 type: :struct,
 constraints: [MyApp.Armor.Plate]
],
 chain_mail: [
 # And so is this
 type: :struct,
 constraints: [instance_of: MyApp.Armor.ChainMail]
],
 custom: [
 type: :string
]
]
]

 use AshGraphql.Type

 # Add this to define the union in ash_graphql
 def graphql_type(_), do: :armor
end
By default, the type you would get for this on input and output would look something like this:
type Armor = {plate: {value: Plate}} | {chain_mail: {value: ChainMail}} | {custom: {value: String}}
We do this by default to solve for potentially ambiguous types. An example of this might be if you had multiple different types of strings in a union, and you wanted the client to be able to tell exactly which type of string they'd been given. i.e {social: {value: "555-55-5555"}} | {phone_number: {value: "555-5555"}}.
However, you can clean the type in cases where you have no such conflicts by by providing
Put anything in here that does not need to be named/nested with `{type_name: {value: value}}`
def graphql_unnested_unions(_constraints), do: [:plate, :chain_mail]
Which, in this case, would yield:
type Armor = Plate | ChainMail | {custom: {value: String}}

 Bypassing type generation for a union

Add the graphql_define_type?/1 callback, like so, to skip Ash's generation (i.e if you're defining it yourself)
@impl true
def graphql_define_type?(_), do: false

Use Maps with GraphQL

If you define an Ash.Type.NewType that is a subtype of :map, and you add the fields constraint which specifies field names and their types, AshGraphql will automatically derive an appropriate GraphQL type for it.
For example:
defmodule MyApp.Types.Metadata do
 @moduledoc false
 use Ash.Type.NewType, subtype_of: :map, constraints: [
 fields: [
 title: [
 type: :string
],
 description: [
 type: :string
]
]
]

 def graphql_type(_), do: :metadata
end

 Bypassing type generation for an map

Add the graphql_define_type?/1 callback, like so, to skip Ash's generation (i.e if you're defining it yourself)
@impl true
def graphql_define_type?(_), do: false

Monitoring

Please read the Ash monitoring guide for more information. Here we simply cover the additional traces & telemetry events that we publish from this extension.
A tracer can be configured in the domain. It will fallback to the global tracer configuration config :ash, :tracer, Tracer
graphql do
 trace MyApp.Tracer
end

 Traces

Each graphql resolver, and batch resolution of the underlying data loader, will produce a span with an appropriate name. We also set a source: :graphql metadata if you want to filter them out or annotate them in some way.

 Telemetry

AshGraphql emits the following telemetry events, suffixed with :start and :stop. Start events have system_time measurements, and stop events have system_time and duration measurements. All times will be in the native time unit.
	[:ash, <domain_short_name>, :gql_mutation] - The execution of a mutation. Use resource_short_name and mutation (or action) metadata to break down measurements.

	[:ash, <domain_short_name>, :gql_query] - The execution of a mutation. Use resource_short_name and query (or action) metadata to break down measurements.

	[:ash, <domain_short_name>, :gql_relationship] - The resolution of a relationship. Use resource_short_name and relationship metadata to break down measurements.

	[:ash, <domain_short_name>, :gql_calculation] - The resolution of a calculation. Use resource_short_name and calculation metadata to break down measurements.

	[:ash, <domain_short_name>, :gql_relationship_batch] - The resolution of a batch of relationships by the data loader. Use resource_short_name and relationship metadata to break down measurements.

	[:ash, <domain_short_name>, :gql_calculation_batch] - The resolution of a batch of calculations by the data loader. Use resource_short_name and calculation metadata to break down measurements.

GraphQL Query Generation

Following where we left off from Getting Started with GraphQL, this guide explores what the GraphQL requests and responses look like for different queries defined with the AshGraphql DSL.
All of the following examples apply to queries & mutations places on the domain as well.

 Fetch Data by ID

defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id

 # Add a string type attribute called `:subject`
 attribute :subject, :string
 end

 actions do
 # Add a set of simple actions. You'll customize these later.
 defaults [:read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticket
 get :get_ticket, :read
 end
 end
end
For the get_ticket query defined above, the corresponding GraphQL would look like this:
query ($id: ID!) {
 getTicket(id: $id) {
 id
 subject
 }
}
And the response would look similar to this:
{
 "data": {
 "getTicket": {
 "id": "",
 "subject": ""
 }
 }
}
Let's look at an example of querying a list of things.
 graphql do
 type :ticket

 queries do
 # create a field called `get_ticket` that uses the `read` read action to fetch a single ticket
 get :get_ticket, :read

 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end
 end
This time, we've added list :list_tickets, :read, to generate a GraphQL query for listing tickets.
The request would look something like this:
query {
 listTickets {
 id
 subject
 }
}
And the response would look similar to this:
{
 "data": {
 "listTickets": [
 {
 "id": "",
 "subject": ""
 }
]
 }
}

 Filter Data With Arguments

Now, let's say we want to add query parameters to listTickets. How do we do that?
Consider list :list_tickets, :read and the actions section:
 actions do
 # Add a set of simple actions. You'll customize these later.
 defaults [:read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 # create a field called `list_tickets` that uses the `read` read action to fetch a list of tickets
 list :list_tickets, :read
 end
 end
The second argument to list :list_tickets, :read is the action that will be called when the query is run.
In the current example, the action is :read, which is the generic Read action.
Let's create a custom action in order to define query parameters for the listTickets query.
We'll call this action :query_tickets:
 actions do
 defaults [:read, :update, :destroy]

 read :query_tickets do
 argument :representative_id, :uuid

 filter(
 expr do
 is_nil(^arg(:representative_id)) or representative_id == ^arg(:representative_id)
 end
)
 end
 end

 graphql do
 type :ticket

 queries do
 # create a field called `list_tickets` that uses the `:query_tickets` read action to fetch a list of tickets
 list :list_tickets, :query_tickets
 end
 end
In the graphql section, the list/2 call has been changed, replacing the :read action with :query_tickets.
The GraphQL request would look something like this:
query ($representative_id: ID) {
 list_tickets(representative_id: $representative_id) {
 id
 representative_id
 subject
 }
}

 Mutations and Enums

Now, let's look at how to create a ticket by using a GraphQL mutation.
Let's say you have a Resource that defines an enum-like attribute:
defmodule Helpdesk.Support.Ticket do
 use Ash.Resource,
 ...,
 extensions: [
 AshGraphql.Resource
]

 attributes do
 uuid_primary_key :id
 attribute :subject, :string
 attribute :status, :atom, constraints: [one_of: [:open, :closed]]
 end

 actions do
 defaults [:create, :read, :update, :destroy]
 end

 graphql do
 type :ticket

 queries do
 get :get_ticket, :read
 end

 mutations do
 create :create_ticket, :create
 end
 end
end
Above, the following changes have been added:
	In the attributes section, the :status attribute has been added.
	In the actions section, the :create action has been added.
	The :create_ticket mutation has been defined in the new graphql.mutations section.

The :status attribute is an enum that is constrained to the values [:open, :closed].
When used in conjunction with AshGraphql, a GraphQL enum type called TicketStatus will be generated for this attribute.
The possible GraphQL values for TicketStatus are OPEN and CLOSED.
See Use Enums with GraphQL for more information.
We can now create a ticket with the createTicket mutation:
mutation ($input: CreateTicketInput!) {
 createTicket(input: $input) {
 result {
 id
 subject
 status
 }
 errors {
 code
 fields
 message
 shortMessage
 vars
 }
 }
}
Note
	The resulting ticket data is wrapped in AshGraphql's result object.

	Validation errors are wrapped in a list of error objects under errors, also specified in the query.
AshGraphql does this by default instead of exposing errors in GraphQL's standard errors array.
This behavior can be