

 ash_phoenix

 v2.3.19

 [image: Logo]

 Table of contents

 	Home

 	Tutorials

 	Get Started with Ash and Phoenix

 	Topics

 	Union Forms

 	Nested Forms

 	Forms For Relationships Between Existing Records

 	About AshPhoenix

 	Change Log

 	Reference

 	AshPhoenix

 	
 Modules

 	AshPhoenix

 	AshPhoenix.AshEnum

 	AshPhoenix.FormDefinition

 	AshPhoenix.Inertia.Error

 	AshPhoenix.Info

 	AshPhoenix.Plug.CheckCodegenStatus

 	Phoenix Helpers

 	AshPhoenix.LiveView

 	AshPhoenix.LiveView.SubdomainHook

 	AshPhoenix.SubdomainPlug

 	Forms

 	AshPhoenix.Form

 	AshPhoenix.Form.Auto

 	AshPhoenix.Form.WrappedValue

 	AshPhoenix.FormData.Error

 	FilterForm

 	AshPhoenix.FilterForm

 	AshPhoenix.FilterForm.Arguments

 	AshPhoenix.FilterForm.Predicate

 	Errors

 	AshPhoenix.Form.InvalidPath

 	AshPhoenix.Form.NoActionConfigured

 	AshPhoenix.Form.NoDataLoaded

 	AshPhoenix.Form.NoFormConfigured

 	AshPhoenix.Form.NoResourceConfigured

 	
 Mix Tasks

 	mix ash_phoenix.install

 	mix ash_phoenix.gen.html

 	mix ash_phoenix.gen.live

 Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
AshPhoenix
Welcome! This is the package for integrating Phoenix Framework and Ash Framework. It provides tools for integrating with Phoenix forms (AshPhoenix.Form), Phoenix LiveViews (AshPhoenix.LiveView) and more.
Installation
Add ash_phoenix to your list of dependencies in mix.exs:
{:ash_phoenix, "~> 2.3.19"}
Whats in the box?
	AshPhoenix.Form - A form data structure for using resource actions with phoenix forms
	AshPhoenix.Form.Auto - Tools to automatically determine nested form structures based on calls to manage_relationship for an action.
	AshPhoenix.FilterForm - A form data structure for building filter statements
	AshPhoenix.LiveView - Helpers for querying data and integrating changes
	AshPhoenix.LiveView.SubdomainHook - A hook to determine a tenant using subdomains for multitenancy
	AshPhoenix.SubdomainPlug - A plug to determine a tenant using subdomains for multitenancy
	AshPhoenix.FormData.Error - A protocol to allow errors to be rendered in forms
	Phoenix.HTML.Safe implementations for Ash.CiString, Ash.NotLoaded and Decimal
	mix ash_phoenix.gen.live for generating liveview modules
	mix ash_phoenix.gen.html for generating controllers and views

Tutorials
	Getting Started with Ash and Phoenix

Topics
	Union Forms
	Nested Forms

 Get Started with Ash and Phoenix

This is a small guide to get you started with Ash & Phoenix.
See the AshPhoenix home page for more information on what is available.
Setup
To begin, you should go through the Ash getting started guide. You should choose the step
to create a new application with Phoenix pre-installed, as Phoenix cannot
easily be added to your project later.
Once you've done that, you'll have some Ash resources with which to follow the next steps.
Connecting your Resource to a Phoenix LiveView
In general, working with Ash and Phoenix is fairly "standard" with the exception that you
will be calling into your Ash resources & domains instead of context functions. For that
reason, we suggest reading their documentation as well, since nothing really changes about
controllers, liveviews etc.
mix ash_phoenix.gen.live
We can run mix ash_phoenix.gen.live to generate a liveview! Run the following command to
generate a starting point for your own liveview. Remember that it is just a starting point,
not a finished product.
mix ash_phoenix.gen.live --domain Helpdesk.Support --resource Helpdesk.Support.Ticket

Now, start the web server by running mix phx.server. Then, visit the tickets route that you added in your browser to see what we have just created.
Where to Next?
Examples
	The final chapter's branch for tunez from the Ash book is a great example.
	The Realworld app is another good example

Continue Learning
There's a few places you can go to learn more about how to use ash:
	Read more about how to query the data in your resources - Ash.Query
	Dig deeper into actions.
	Study resource relationship management

Ash Authentication & Ash Authentication Phoenix
See the power Ash can bring to your web app or API. Get authentication working in minutes.
Add an API (or two)
Check out the AshJsonApi and AshGraphql extensions to effortlessly build APIs around your resources.

 Union Forms

When building a form for a union, you use inputs_for as normal, but a few things are done for you under the hood.
Lets take this example union:
defmodule NormalContent do
 use Ash.Resource, data_layer: :embedded

 attributes do
 attribute :body, :string, allow_nil?: false, public?: true
 end

 actions do
 defaults [:read, create: [:body], update: [:body]]
 end
end

defmodule SpecialContent do
 use Ash.Resource, data_layer: :embedded

 attributes do
 attribute :text, :string, allow_nil?: false, public?: true
 end

 actions do
 defaults [:read, create: [:text], update: [:text]]
 end
end

defmodule Content do
 use Ash.Type.NewType,
 subtype_of: :union,
 constraints: [
 types: [
 normal: [
 type: :struct,
 constraints: [instance_of: NormalContent],
 tag: :type,
 tag_value: :normal
],
 special: [
 type: :struct,
 constraints: [instance_of: SpecialContent],
 tag: :type,
 tag_value: :special
]
]
]
end
Determining the type for a union form
We track the type of the value in a hidden param called _union_type. You can use this to show a different form depending on the type of thing.
Changing the type of a union form
If you want to let the user change the union type, you would use AshPhoenix.Form.remove_form/3 and AshPhoenix.Form.add_form/3. See the example below for the template, and here is an example event handler
def handle_event("type-changed", %{"_target" => path} = params, socket) do
 new_type = get_in(params, path)
 # The last part of the path in this case is the field name
 path = :lists.droplast(path)

 form =
 socket.assigns.form
 |> AshPhoenix.Form.remove_form(path)
 |> AshPhoenix.Form.add_form(path, params: %{"_union_type" => new_type})

 {:noreply, assign(socket, :form, form)}
end
Non-embedded types
If one of your union values is a non embedded type, like :integer, it will still be a nested form, but you would access the single value with <.input field={nested_form[:value]} .../>
Example
We might have a form like this:
<.inputs_for :let={fc} field={@form[:content]}>
 <!-- Dropdown for setting the union type -->
 <.input
 field={fc[:_union_type]}
 phx-change="type-changed"
 type="select"
 options={[Normal: "normal", Special: "special"]}
 />

 <!-- switch on the union type to display a form -->
 <%= case fc.params["_union_type"] do %>
 <% "normal" -> %>
 <.input type="text" field={fc[:body]} />
 <% "special" -> %>
 <.input type="text" field={fc[:text]} />
 <% end %>
</.inputs_for>

 Nested Forms

Make sure you're familiar with the basics of AshPhoenix.Form before reading this guide.
When we talk about "nested" or "related" forms, we mean sets of form inputs
that are for resource actions for related or embedded resources.
For example, you might have a form for creating a "business" that can also
include multiple "locations". In some cases, you may have buttons to add or
remove from a list of nested forms, you may be able to drag and drop to reorder
forms, etc. In other cases, the form may just be for one related thing, think
a form for updating a "user" that also contains inputs for its associated "profile".
Defining the structure
Inferring from the action
AshPhoenix.Form automatically infers what "nested forms" are available, based on introspecting actions
which use change manage_relationship. For example, in the following action:
on a `MyApp.Operations.Business` resource
create :create do
 accept [:name]

 argument :locations, {:array, :map}

 change manage_relationship(:locations, type: :create)
end
With this action, you could submit an input like so:
%{name: "Wally World", locations: [%{name: "HQ", address: "1 hq street"}]}
AshPhoenix.Form will look at the action, allowing you to use Phoenix's
<.inputs_for component for locations. Here is what it might look like in
practice:
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <.inputs_for :let={location} field={@form[:locations]}>
 <.input field={location[:name]} />
 </.inputs_for>
</.form>
To turn this automatic behavior off, you can specify forms: [auto?: false]
when creating the form.
Manually defining nested forms
You can manually specify nested form configurations using the forms option.
For example:
AshPhoenix.Form.for_create(
 MyApp.Operations.Business,
 :create,
 forms: [
 locations: [
 type: :list,
 resource: MyApp.Operations.Location,
 create_action: :create
]
]
)
You should prefer to use the automatic form definition wherever possible,
but this exists as an escape hatch to customize configuration.
Updating existing data
You should be sure to load any relationships that are necessary for your
manage_relationships when you want to update the nested items.
For example, if the form above was for an update action,
you may want to allow updating the existing locations all in a single form.
AshPhoenix.Form will show a form for each existing location, but only if
the locations are loaded on the business already. For example:
business = Ash.load!(business, :locations)

form = AshPhoenix.Form.for_update(business, :update)
Not using tailwind?
If you're not using tailwind, you'll need to replace class="hidden"
in the examples below with something else. In standard HTML, you'd do
<input hidden />. As long as the checkbox is hidden, you're good!
Adding nested forms
There are two ways to add nested forms.
The _add_* checkbox
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <.inputs_for :let={location} field={@form[:locations]}>
 <.input field={location[:name]} />
 </.inputs_for>

 <label>
 <input
 type="checkbox"
 name={"#{@form.name}[_add_locations]"}
 value="end"
 class="hidden"
 />
 <.icon name="hero-plus" />
 </label>
</.form>
This checkbox, when checked, will add a parameter like form[_add_locations]=end.
When AshPhoenix.Form is handling nested forms, it will see that and append an empty
form at the end. Valid values are "start", "end" and an index, i.e "3", in which
case the new form will be inserted at that index.
But the checkbox is hidden, what gives?
If you're anything like me, the label + checkbox combo above may confuse you
at first sight. When you have a checkbox inside of a label, clicking on the label
counts as clicking the checkbox itself!
AshPhoenix.Form.add_form
In some cases, you may want to add a form either in a way that can't be triggered by a checkbox
or that requires some additional data (like non-empty starting params). In those cases,
you can use a button and a handle_event For example:
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <.inputs_for :let={location} field={@form[:locations]}>
 <.input field={location[:name]} />
 </.inputs_for>

 <.button type="button" phx-click="add-form" phx-value-path={@form.name <> "[locations]"}>
 <.icon name="hero-plus" />
 </.button>
</.form>
whats with @form.name <> "[locations]"
By always using a path "relative" to the root form, we can handle cases where we are
adding a form to a multiply-nested form. So the path could be somethign like
locations[0][addresses][1]. The event handler has to know exactly where we are adding
a form. In the example above, we could just say add_form(form, :locations). It would
be simpler, but we want to highlight how to work with potentially deeply nested data.
def handle_event("add-form", %{"path" => path}, socket) do
 form = AshPhoenix.Form.add_form(socket.assigns.form, path, params: %{
 address: "Put your address here!"
 })

 {:noreply, assign(socket, :form, form)}
end
Removing nested forms
Just like adding nested forms, there are two ways to remove nested forms.
Using the _drop_* checkbox
The _drop_* checkbox uses checkboxes which add form indices to a list that should
be removed from the list. For example, given the following:
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <.inputs_for :let={location} field={@form[:locations]}>
 <.input field={location[:name]} />

 <label>
 <input
 type="checkbox"
 name={"#{@form.name}[_drop_locations][]"}
 value={location.index}
 class="hidden"
 />

 <.icon name="hero-x-mark" />
 </label>
 </.inputs_for>
</.form>
When the checkbox is checked, the server sees:
%{"form" => %{"_drop_locations" => ["0"]}}
We use this information to automatically remove the item at that index on validate.
Using AshPhoenix.Form.remove_form
Just like adding forms, there is a manual way to remove forms. In this case
we pass the full path to the form being removed.
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <.inputs_for :let={location} field={@form[:locations]}>
 <.input field={location[:name]} />

 <.button type="button" phx-click="remove-form" phx-value-path={location.name}>
 <.icon name="hero-x-mark" />
 </.button>
 </.inputs_for>
</.form>
def handle_event("remove-form", %{"path" => path}, socket) do
 form = AshPhoenix.Form.remove_form(socket.assigns.form, path)

 {:noreply, assign(socket, :form, form)}
end
Sorting nested forms
Just like adding and removing forms, there are two ways to sort nested forms too!
Using _sort_* checkboxes
This method is useful when combined with something like sortable.js
to allow for dragging and dropping on the front end.
the order_is_key option
If you are working with a sorted relationship, you will likely want to couple it
with the order_is_key option of managed_relationships. This writes the order
of items in the list of inputs into each input, as if it was provided as an input
change manage_relationship(:locations, type: :direct_control, order_is_key: :position)
In the above example, if you provided a list of inputs like
[%{address: "foo"}, %{address: "bar"}], it would first be converted into
[%{address: "foo, order: 0}, %{address: "bar", order: 1}] before being
processed.
Lets say you had the following Sortable hook in your app.js
import Sortable from "sortablejs"

export const Sortable = {
 mounted() {
 new Sortable(this.el, {
 animation: 150,
 draggable: '[data-sortable="true"]',
 ghostClass: "bg-yellow-100",
 dragClass: "shadow-2xl",
 onEnd: (evt) => {
 this.el.closest("form").querySelector("input").dispatchEvent(new Event("input", {bubbles: true}))
 }
 })
 }
}
...

let Hooks = {}

Hooks.Sortable = Sortable
You could use the _sort_* checkbox in each nested form like so:
<.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <div id="location-list" phx-hook="Sortable">
 <.inputs_for :let={location} field={@form[:locations]}>
 <div data-sortable="true">
 <input
 type="hidden"
 name={"#{@form.name}[_sort_locations][]"}
 value={location_form.index}
 />

 <.input field={location[:name]} />
 </div>
 </.inputs_for>
</.form>
In this case you'd drag the entire div. sortable.js supports all kinds of useful features,
like drag handles. See their docs for more.
Now, lets say you were to drag the second form above the first form, the server would see the
params as:
%{"form" => %{"_sort_locations" => ["1", "0"]}}
AshPhoenix.Form would then sort the nested forms accordingly.
Using AshPhoenix.Form.sort_forms/3
The manual way is using AshPhoenix.Form.sort_forms/3. This can be used
to move a specific element up or down, or to sort all forms. sortable.js
can be used in such a way that it provides the full sorting back to your
server.
Providing a full sort order
This could be used to send a handle_event that gives you a list
of indices in a new order. An example of that setup can be seen
here. Keep in mind that you'll want to adjust the method to extract a field from
each element of the current index, using something like data-current-index={location_form.index} to
store the index.
indices might look something like this: ["0", "1", "3", "2"]
def handle_event("update-sorting", %{"path" => path, "indices" => indices}, socket) do
 form = AshPhoenix.Form.sort_forms(socket, path, indices)
 {:noreply, assign(socket, form: form)}
end
Moving a specific form up
If you wanted up/down buttons, you could use event handlers like the following.
def handle_event("move-up", %{"path" => form_to_move}, socket) do
 # decrement typically means "move up" visually
 # because forms are rendered down the page ascending
 form = AshPhoenix.Form.sort_forms(socket, form_to_move, :decrement)
 {:noreply, assign(socket, form: form)}
end

def handle_event("move-down", %{"path" => form_to_move}, socket) do
 # increment typically means "move down" visually
 # because forms are rendered down the page ascending
 form = AshPhoenix.Form.sort_forms(socket, form_to_move, :increment)
 {:noreply, assign(socket, form: form)}
end
Putting it all together
Lets look at what it looks like with all of the checkbox-based features in one:
defmodule MyApp.MyForm do
 use MyAppWeb, :live_view

 def render(assigns) do
 ~H"""
 <.simple_form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />

 <!-- Use sortable.js to allow sorting nested input -->
 <div id="location-list" phx-hook="Sortable">
 <.inputs_for :let={location} field={@form[:locations]}>
 <!-- inputs each nested location -->
 <div data-sortable="true">
 <!-- AshPhoenix.Form automatically applies this sort -->
 <input
 type="hidden"
 name={"#{@form.name}[_sort_locations][]"}
 value={location_form.index}
 />

 <.input field={location[:name]} />

 <!-- AshPhoenix.Form automatically removes items when checked -->
 <label>
 <input
 type="checkbox"
 name={"#{@form.name}[_drop_locations][]"}
 value={location_form.index}
 class="hidden"
 />

 <.icon name="hero-x-mark" />
 </label>
 </div>
 </.inputs_for>

 <!-- AshPhoenix.Form automatically appends a new item when checked -->
 <label>
 <input
 type="checkbox"
 name={"#{@form.name}[_add_locations]"}
 value="end"
 class="hidden"
 />
 <.icon name="hero-plus" />
 </label>
 </div>
 </.form>
 """
 end

 def mount(_params, _session, socket) do
 {:ok, assign(socket, form: MyApp.Operations.form_to_create_business())}
 end

 def handle_event("validate", %{"form" => params}, socket) do
 {:noreply, assign(socket, :form, AshPhoenix.Form.validate(socket.assigns.form, params))}
 end

 def handle_event("submit", %{"form" => params}, socket) do
 case AshPhoenix.Form.submit(socket.assigns.form, params: params) do
 {:ok, business} ->
 socket =
 socket
 |> put_flash(:success, "Business created successfully")
 |> push_navigate(to: ~p"/businesses/#{business.id}")

 {:noreply, socket}

 {:error, form} ->
 {:noreply, assign(socket, :form, form)}
 end
 end
end

 Forms For Relationships Between Existing Records

Make sure you're familiar with the basics of AshPhoenix.Form and relationships before reading this guide.
When we talk about "relationships between existing records", we mean inputs on a form that manage the relationships between records that already exist.
For example, you might have a form for creating a "service" that can be performed at some "locations", but not others.
When creating or updating a service, the user is only able to select from the existing locations.
Defining the resources and relationships
First, we have a simple Location
defmodule MyApp.Operations.Location do
 use Ash.Resource,
 otp_app: :my_app,
 domain: MyApp.Operations,
 data_layer: AshPostgres.DataLayer

 ...

 attributes do
 integer_primary_key :id

 attribute :name, :string do
 allow_nil? false
 end
 end
end
Then we have a Service, which has a many_to_many association to Location, through ServiceLocation.
We add a list aggregate for :location_ids for populating the form values.
defmodule MyApp.Operations.Service do
 use Ash.Resource,
 otp_app: :my_app,
 domain: MyApp.Operations,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :location_relationships, MyApp.Operations.ServiceLocation do
 destination_attribute :service_id
 end

 many_to_many :locations, MyApp.Operations.Location do
 join_relationship :location_relationships
 source_attribute_on_join_resource :service_id
 destination_attribute_on_join_resource :location_id
 end
 end

 aggregates do
 list :location_ids, :locations, :id
 end
end
ServiceLocation has default actions as well as the relationships declared to operate as the joining resource between a Service and one or more Locations.
defmodule MyApp.Operations.ServiceLocation do
 use Ash.Resource,
 otp_app: :my_app,
 domain: MyApp.Operations,
 data_layer: AshPostgres.DataLayer

 ...

 actions do
 defaults [:create, :read, :update, :destroy]
 default_accept [:service_id, :location_id]
 end

 relationships do
 belongs_to :service, MyApp.Operations.Service do
 attribute_type :integer
 allow_nil? false
 primary_key? true
 end

 belongs_to :location, MyApp.Operations.Location do
 attribute_type :integer
 allow_nil? false
 primary_key? true
 end
 end
end
Declaring the create and update actions
First, we need to update our Service and declare custom create and update actions, which take a list of Location ids as an argument.
We use type: :append_and_remove to cause a ServiceLocation to be added or removed for each Location as we add and remove them using our form.
(See Ash.Changeset.manage_relationship/4 for more.)
in lib/my_app/operations/service.ex
create :create do
 accept [:name]
 primary? true
 argument :location_ids, {:array, :integer}, allow_nil?: true

 change manage_relationship(:location_ids, :locations, type: :append_and_remove)
end

update :update do
 accept [:name]
 primary? true
 argument :location_ids, {:array, :integer}, allow_nil?: true
 require_atomic? false

 change manage_relationship(:location_ids, :locations, type: :append_and_remove)
end
Note: in this example, we are using integer_primary_key, so the argument's type is {:array, :integer}.
If we were using uuid_primary_key, the type would be {:array, :uuid}.
Now we can create and update our Services.
iex> service = Ash.create!(Service, %{name: "Tuneup", location_ids: [location_1_id, location_2_id]}, load: [:locations])
 %MyApp.Operations.Service{
 id: 9,
 name: "Tuneup",
 location_relationships: [
 %MyApp.Operations.ServiceLocation{ service_id: 9, location_id: 1, ... },
 %MyApp.Operations.ServiceLocation{ service_id: 9, location_id: 2, ... }
],
 locations: [
 %MyApp.Operations.Location{ id: 1, name: "HQ", ... },
 %MyApp.Operations.Location{ id: 2, name: "Downtown", ... }
],
 ...
}
iex> Ash.update!(service, %{location_ids: [location_2_id]}, load: [:locations])
%MyApp.Operations.Service{
 id: 9,
 name: "Tuneup",
 location_relationships: [
 %MyApp.Operations.ServiceLocation{ service_id: 9, location_id: 2, ... }
],
 locations: [
 %MyApp.Operations.Location{ id: 2, name: "Downtown", ... }
],
 ...
}
Now, let's expose this to a user.
Adding the forms
In our view, we create our form as normal.
For update forms, we'll make sure to load our locations.
We use the :prepare_params option with our for_update form to set "location_ids" to an empty list if no value is provided.
This allows the user to de-select all Locations to update a Service so that it's not available at any Location.
lib/my_app_web/service_live/form_component.ex
defp assign_form(%{assigns: %{service: service}} = socket) do
 form =
 if service do
 service
 |> Ash.load!([:locations, :location_ids])
 |> AshPhoenix.Form.for_update(:update, as: "service", prepare_params: &prepare_params/2)
 else
 AshPhoenix.Form.for_create(MyApp.Operations.Service, :create, as: "service")
 end

 assign(socket, form: to_form(form))
end

defp prepare_params(params, :validate) do
 Map.put_new(params, "location_ids", [])
end
When rendering the form, we'll have to manually provide the options to our input.
Using Phoenix generated core components, options is passed to Phoenix.HTML.Form.options_for_select/2, which expects a list of two-element tuples.
Assuming the available Locations are already assigned to @locations:
<.input
 field={@form[:location_ids]}
 type="select"
 multiple
 label="Locations"
 options={Enum.map(@locations, &{&1.name, &1.id})}
/>
Now, when our form is submitted, we will receive a list of location ids.
%{"service" => %{"locations" => ["1", "2"], "name" => "Overhaul"}}
That's all we need to do.
We can pass these parameters to AshPhoenix.Form.submit/2 as normal and manage_relationship will create and destroy our ServiceLocation records as needed.

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v2.3.19 (2026-01-19)
Bug Fixes:
	credo issue compare to empty list instead of length() > 0 by diogomrts (#451)

	create takes resource instead of resource_singular (#447) by Hemanth Bollamreddi (#447)

	Ensure that AshPhoenix.Form.update_params callback always receives a map for nested forms (#445) by sevenseacat (#445)

	don't generate license files by @zachdaniel

v2.3.18 (2025-11-05)
Bug Fixes:
	merge_options function to use correct update method (#438) by A.S. Zwaan

	cast to string before comparison by Minsub Kim

	fix type warnings and compile issues on elixir 1.19 by @zachdaniel

v2.3.17 (2025-10-16)
Bug Fixes:
	removed to_string because it was causing related entities to be recreated instead of updated (#421) by Abdessabour Moutik (#421)

	removed to_string because it was causing related entities to be recreated instead of being updated by Abdessabour Moutik (#421)

	AshPhoenix.Inertia.Error argument error when reporting validation errors (#418) by rmaspoch (#418)

	bug when creating a form for a union type which has nil as it's value (#417) by Rutgerdj (#417)

Improvements:
	add AshPhoenix.AshEnum by sevenseacat (#413)

	soft deprecate page_from_params/3 and introduce params_to_page_opts/3 (#422) by hy2k (#422)

	add AshPhoenix.AshEnum by Aidan Gauland (#413)

v2.3.16 (2025-09-01)
Improvements:
	add post_process_errors option by @zachdaniel

v2.3.15 (2025-08-31)
Bug Fixes:
	error in auto form creation for structs inside of union attributes (#411) by Rutgerdj

	update pattern match in WrappedValue Change by Rutgerdj

	Include constraints in auto form for WrappedValue by Rutgerdj

	handle regexes in error vars in inertia by @zachdaniel

v2.3.14 (2025-08-21)
Bug Fixes:
	ensure nested form errors are included (#401) by @joangavelan

	Remove Product from Save Product button - Save button (#403) by Kenneth Kostrešević

Improvements:
	remove unwanted sections from AGENTS.md when installing ash_phoenix (#406) by Rodolfo Torres

	add resource name for route option for ash_phoenix.gen.html (#402) by Kenneth Kostrešević

v2.3.13 (2025-08-07)
Bug Fixes:
	ensure nested form errors are included (#401) by @joangavelan

	Remove Product from Save Product button - Save button (#403) by Kenneth Kostrešević

Improvements:
	add resource name for route option for ash_phoenix.gen.html (#402) by Kenneth Kostrešević

v2.3.12 (2025-07-29)
Bug Fixes:
	fix typo in usage rules (#397) by albinkc

v2.3.11 (2025-07-17)
Improvements:
	Add to_form/2 in usage rules and improve error message when accessing a form without to_form/2 (#390) by Kenneth Kostrešević

v2.3.10 (2025-07-09)
Bug Fixes:
	handle value_is_key forms by @zachdaniel

v2.3.9 (2025-06-28)
Improvements:
	update usage rules with info on raw_errors by @zachdaniel

v2.3.8 (2025-06-25)
Bug Fixes:
	resolve warning about map key access as function call by @zachdaniel

Improvements:
	add AshPhoenix.Form.raw_errors/2 by @zachdaniel

v2.3.7 (2025-06-18)
Bug Fixes:
	access proper form field for nested argument inputs by @zachdaniel

	handle case where last item in add form path is an integer by @zachdaniel

v2.3.6 (2025-06-10)
Bug Fixes:
	merge overridden params with original params in code interfaces by @zachdaniel

v2.3.5 (2025-05-31)
Bug Fixes:
	live route instructions (#371)

v2.3.4 (2025-05-30)
Bug Fixes:
	reenable migrate task

v2.3.3 (2025-05-30)
Bug Fixes:
	new generators, use actor when getting resource

	new generators, close Layouts.app tag

	new generators, remove handle_params and apply_action, since this no longer handles create/update

	new generators, remove handle params + title, since this no longer handles update

Improvements:
	implement new codegen status plug

	support Ash.Scope

	resolve igniter task deprecation warning

	new generator tweaks (#368)

	explain importants of positional arguments in usage rules

v2.3.2 (2025-05-21)
Bug Fixes:
	support old phoenix generators (#365)

Improvements:
	update igniter, remove inflex

	add usage-rules.md

v2.3.1 (2025-05-15)
Bug Fixes:
	Initialize :raw_params field of for_action() Form (#362)

	for action params option (#359)

	Accept Phoenix.LiveView.Socket in SubdomainPlug (#355)

Improvements:
	Document :params option for for_action (#361)

	Rework gen.live (#353)

	support AshPhoenix.Form in error subject

v2.3.0 (2025-04-29)
Features:
	Add Inertia.Errors impl for Ash.Error types (#352)

Bug Fixes:
	properly route inertia errors to implementation

	handle invalid query error different formats

v2.2.0 (2025-04-13)
Features:
	Add basic Igniter installer to add ash_phoenix to the formatter list

v2.1.26 (2025-04-09)
Improvements:
	allow configuring positional args for form code interfaces

	Add subdomain live_view hook (#339)

v2.1.25 (2025-03-27)
Improvements:
	add error impl for Ash.Error.Action.InvalidArgument (#336)

v2.1.24 (2025-03-25)
Bug Fixes:
	assign page and stream to actually stream the stream (#334)

	Prevent empty errors pass to error class (#332)

v2.1.23 (2025-03-21)
Bug Fixes:
	also handle nil errors

v2.1.22 (2025-03-21)
Bug Fixes:
	unhandled error in form submission warning (#329)

v2.1.21 (2025-03-18)
Bug Fixes:
	translate errors into an error class before rendering

	Additional function clause for keyset pagination (page_link_params) (#323)

v2.1.20 (2025-03-11)
Bug Fixes:
	always remove auto? option after handling it

v2.1.19 (2025-03-04)
Bug Fixes:
	handle case w/ set list of join attributes

v2.1.18 (2025-02-10)
Bug Fixes:
	page_link_params supports integers

v2.1.17 (2025-01-30)
Improvements:
	guess the plural name for resources automatically

v2.1.16 (2025-01-29)
Bug Fixes:
	don't try to build form interfaces for calculations

	reindex forms sorted with sort_forms/3

v2.1.15 (2025-01-27)
Bug Fixes:
	handle nil nested form when carrying over errors

	Handle invalid params and warn when invalid (#301)

	In AshPhoenix.Form.errors parse path before errors get (#300)

	Make ash_errors private and remove unused default values

	Show correct error message when no form is configured but a relationship is present

Improvements:
	Move get params logic to private function, put get params on every for call (#304)

	add AshPhoenix.LiveView.assign_page_and_stream_result/3 (#303)

	make arguments have higher precedence in do_value (#294)

v2.1.14 (2025-01-19)
Bug Fixes:
	print routes on ash_phoenix.gen.live again

	properly find matching forms by primary key

	Allow re-adding forms to a nested form after deleting the last one from a list (#291)

	handle case where last form is deleted

	simplifications and fixes for drop_param

	ensure that form interfaces properly set data

	fix warning in filter_form.ex (#285)

Improvements:
	support _drop_*, _add_* and _sort_* params

	add AshPhoenix.Form.sort_forms utility

v2.1.13 (2025-01-03)
Bug Fixes:
	ensure that form interfaces properly set data

	update html generators to properly call actions

v2.1.12 (2024-12-22)
Improvements:
	Add AshPhoenix extension

v2.1.11 (2024-12-20)
Bug Fixes:
	only ever raise error classes

Improvements:
	make igniter optional

	simplify setting valid on AshPhoenix.Form.add_error/3

	don't populate args that aren't set

v2.1.10 (2024-12-12)
Bug Fixes:
	use Igniter.Project.Module.parse to get module names for generator (#274)

v2.1.9 (2024-12-11)
Bug Fixes:
	ensure that errors on before_action hooks invalidate the form

Improvements:
	Migrate phoenix gen to igniter (#261)

	add AshPhoenix.Form.update_params/2

v2.1.8 (2024-10-29)
Improvements:
	track raw_params

v2.1.7 (2024-10-29)
Bug Fixes:
	set _union_type param when unnesting a resource in a union

	don't wrap resources inside of unions as WrappedValue

	warn on missing params on submit

	unwrap unions & wrapped values when fetching values

v2.1.6 (2024-10-17)
Improvements:
	allow phoenix_live_view rc

v2.1.5 (2024-10-14)
Improvements:
	support generic actions (#250)

v2.1.4 (2024-09-30)
Bug Fixes:
	properly include calc args in to_filter_map

v2.1.3 (2024-09-30)
Bug Fixes:
	properly apply calculations with arguments in filter form

v2.1.2 (2024-09-03)
Bug Fixes:
	spec update_form to accept functions of lists

v2.1.1 (2024-08-01)
Bug Fixes:
	Use :public? instead of :private? (#221)

Improvements:
	raise an error on usage of old option name

v2.1.0 (2024-07-26)
Bug Fixes:
	ensure we prepare_source for all read action forms

v2.0.4 (2024-06-13)
Bug Fixes:
	various fixes for union form handling

	properly fill union values on update

	ensure changing union type is reflected in param transformer

Improvements:
	honor _union_type when applying input

v2.0.3 (2024-06-05)
Bug Fixes:
	properly (i.e safely) encode ci strings to iodata and params

	various union param handling fixes

	properly transform nested params

	make sure that _index is correctly updated before and after removal for sparse forms (#196) (#197)

v2.0.2 (2024-05-22)
Bug Fixes:
	don't assume all embeds have a create/update action

v2.0.1 (2024-05-17)
Bug Fixes:
	improve union handling

	Convert entered action names into atoms for lookup in the resource (#187)

	various fixes around union forms

Improvements:
	support adding a form by inserting to an index

v2.0.0 (2024-04-30)
The changelog is being restarted. See /documentation/1.0-CHANGELOG.md in GitHub for the old changelog.
Improvements:
	[AshPhoenix.Form] better error message with hints for accepted/non accepted missing forms

Bug Fixes:
	[AshPhoenix.Form] don't use public_attributes?, check for all accepted attributes. In Ash 3.0, private attributes can be accepted

	[AshPhoenix.Form]

	Pass the tenant to Ash.can/3 and Ash.can?/3. (#165)

	Pass the tenant to Ash.can/3 and Ash.can?/3.

 AshPhoenix

An extension to add form builders to the code interface.
There is currently no DSL for this extension.
This defines a form_to_<name> function for each code interface
function. Arguments are processed according to any custom input
transformations defined on the code interface, while the params
option remains untouched.
The generated function passes all options through to
AshPhoenix.Form.for_action/3
Update and destroy actions take the record being updated/destroyed
as the first argument.
For example, given this code interface definition on a domain
called MyApp.Accounts:
resources do
 resource MyApp.Accounts.User do
 define :register_with_password, args: [:email, :password]
 define :update_user, action: :update, args: [:email, :password]
 end
end
Adding the AshPhoenix extension would define
form_to_register_with_password/2.
Custom Input Transformations
If your code interface defines custom inputs with transformations,
the form interface will honor those transformations for arguments,
but not for params passed via the params option:
In your domain
resource MyApp.Blog.Comment do
 define :create_with_post do
 action :create_with_post_id
 args [:post]

 custom_input :post, :struct do
 constraints instance_of: MyApp.Blog.Post
 transform to: :post_id, using: & &1.id
 end
 end
end

Usage - the post argument will be transformed
form = MyApp.Blog.form_to_create_with_post(
 %MyApp.Blog.Post{id: "some-id"},
 params: %{"text" => "Hello world"}
)
The post struct gets transformed to post_id in the form
The params remain unchanged
Usage
Without options:
MyApp.Accounts.form_to_register_with_password()
#=> %AshPhoenix.Form{}
With options:
MyApp.Accounts.form_to_register_with_password(params: %{"email" => "placeholder@email"})
#=> %AshPhoenix.Form{}
For update/destroy actions, the record is required as the first parameter:
user = MyApp.Accounts.get_user!(id)
MyApp.Accounts.form_to_update_user(user)
#=> %AshPhoenix.Form{}
Update/destroy with options
user = MyApp.Accounts.get_user!(id)
MyApp.Accounts.form_to_update_user(user, params: %{"email" => "placeholder@email"})
#=> %AshPhoenix.Form{}
forms
Customize the definition of forms for code interfaces
Nested DSLs
	form

Examples
forms do
 # customize the generated `form_to_create_student` function
 form :create_student, args: [:school_id]
end

forms.form
form name
Customize the definition of a form for a code inteface
Examples
customize the generated `form_to_create_student` function
args defaults to empty for form definitions
form :create_student, args: [:school_id]

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the interface to modify. Must match an existing interface definition.

Options
	Name	Type	Default	Docs
	args	list(atom | {:optional, atom})		Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.

Introspection
Target: AshPhoenix.FormDefinition

AshPhoenix

An extension to add form builders to the code interface.
There is currently no DSL for this extension.
This defines a form_to_<name> function for each code interface
function. Arguments are processed according to any custom input
transformations defined on the code interface, while the params
option remains untouched.
The generated function passes all options through to
AshPhoenix.Form.for_action/3
Update and destroy actions take the record being updated/destroyed
as the first argument.
For example, given this code interface definition on a domain
called MyApp.Accounts:
resources do
 resource MyApp.Accounts.User do
 define :register_with_password, args: [:email, :password]
 define :update_user, action: :update, args: [:email, :password]
 end
end
Adding the AshPhoenix extension would define
form_to_register_with_password/2.
Custom Input Transformations
If your code interface defines custom inputs with transformations,
the form interface will honor those transformations for arguments,
but not for params passed via the params option:
In your domain
resource MyApp.Blog.Comment do
 define :create_with_post do
 action :create_with_post_id
 args [:post]

 custom_input :post, :struct do
 constraints instance_of: MyApp.Blog.Post
 transform to: :post_id, using: & &1.id
 end
 end
end

Usage - the post argument will be transformed
form = MyApp.Blog.form_to_create_with_post(
 %MyApp.Blog.Post{id: "some-id"},
 params: %{"text" => "Hello world"}
)
The post struct gets transformed to post_id in the form
The params remain unchanged
Usage
Without options:
MyApp.Accounts.form_to_register_with_password()
#=> %AshPhoenix.Form{}
With options:
MyApp.Accounts.form_to_register_with_password(params: %{"email" => "placeholder@email"})
#=> %AshPhoenix.Form{}
For update/destroy actions, the record is required as the first parameter:
user = MyApp.Accounts.get_user!(id)
MyApp.Accounts.form_to_update_user(user)
#=> %AshPhoenix.Form{}
Update/destroy with options
user = MyApp.Accounts.get_user!(id)
MyApp.Accounts.form_to_update_user(user, params: %{"email" => "placeholder@email"})
#=> %AshPhoenix.Form{}

 Summary

 Functions

 forms(body)

 Functions

 forms(body)

 (macro)

AshPhoenix.AshEnum

Utilities for using Ash.Type.Enum
with Phoenix.

 Summary

 Functions

 options_for_select(enum)

 Takes an Ash enum module and returns a list suitable for passing to
Phoenix.HTML.Form.options_for_select/2,
using the enum values and their labels.

 Functions

 options_for_select(enum)

 @spec options_for_select(module()) :: [{String.t(), atom()}]

Takes an Ash enum module and returns a list suitable for passing to
Phoenix.HTML.Form.options_for_select/2,
using the enum values and their labels.

AshPhoenix.FormDefinition

A customized form code interface

AshPhoenix.Inertia.Error

Provides a mapping from an Ash Error type to a plain map that can be used with the Inertia.Controller.assign_errors/2 function.
Note this module is only available when the :inertia dependency is included in your application.
Typical usage with Inertia
Inertia users will typically pass Ash errors directly into the Inertia.Controller.assign_errors/2 function in their controllers.
Internally the Inertia library will use the Inertia.Errors protocol to transform the Ash Error to a plain map for JSON serialization.
 def create(conn, params) do
 case MyApp.Posts.create(params, actor: conn.assigns.current_user) do
 {:ok, post} ->
 redirect(conn, to: ~p"/posts/#{post.slug}")

 {:error, errors} ->
 conn
 |> assign_errors(errors)
 |> render_inertia("CreatePost")
 end
 end
The Inertia.Errors protocol is implemented for common error types and the Ash error classes, such as Ash.Error.Invalid and Ash.Error.Forbidden.
If you have a situation where there is no protocol implementation for your error type, you may need to call Ash.Error.to_error_class/1 on the error
first, before passing it to Inertia.Controller.assign_errors/2, or providing an implementation of the Inertia.Errors protocol for the error type.

 Summary

 Functions

 to_errors(error_or_errors, message_func \\ &default_message_func/1)

 Converts an error, or list of errors to a map of error field to error message.

 Functions

 to_errors(error_or_errors, message_func \\ &default_message_func/1)

 @spec to_errors(error_or_errors :: term(), message_func :: function()) :: %{
 required(String.t()) => String.t()
}

Converts an error, or list of errors to a map of error field to error message.
Nested field errors are flattened with the error path added as a dotted prefex, eg
%{
 "user.contact.email_address" => "Is required"
}
Parameters
	error_or_errors (required) The error struct or list
	message_func (optional) A function to transform a tuple of message string and variables map to a single string.

Examples
iex> AshPhoenix.Inertia.Error.to_errors(
iex> %Ash.Error.Action.InvalidArgument{
iex> path: [:customer, :contact],
iex> field: :email,
iex> message: "%{email} is already taken",
iex> vars: %{email: "acme@example.com"}
iex> }
iex>)
%{"customer.contact.email" => "acme@example.com is already taken"}

iex> AshPhoenix.Inertia.Error.to_errors(
iex> %Ash.Error.Invalid{
iex> errors: [
iex> %Ash.Error.Action.InvalidArgument{
iex> path: [:customer, :contact],
iex> field: :email,
iex> message: "%{email} is already taken",
iex> vars: %{email: "acme@example.com"}
iex> },
iex> %Ash.Error.Action.InvalidArgument{
iex> path: [:product],
iex> field: :sku,
iex> message: "%{product_name} is out of stock",
iex> vars: %{product_name: "acme powder"}
iex> }
iex>]
iex> }
iex>)
%{
 "customer.contact.email" => "acme@example.com is already taken",
 "product.sku" => "acme powder is out of stock"
}

AshPhoenix.Info

Introspection helpers for the AshPhoenix DSL extension

 Summary

 Functions

 form(domain_or_resource, name)

 forms(dsl_or_extended)

 forms DSL entities

 Functions

 form(domain_or_resource, name)

 forms(dsl_or_extended)

 @spec forms(dsl_or_extended :: module() | map()) :: [struct()]

forms DSL entities

AshPhoenix.Plug.CheckCodegenStatus

A plug that checks if there are pending codegen tasks for your application.
Place plug AshPhoenix.Plug.CheckCodegenStatus just after plug Phoenix.CodeReloader in your endpoint.

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

AshPhoenix.LiveView

Utilities for keeping Ash query results up to date in a LiveView.

 Summary

 Types

 assign()

 assigns()

 callback()

 callback_result()

 liveness_options()

 page_params()

 socket()

 topic()

 Functions

 assign_page_and_stream_result(socket, page, opts \\ [])

 Shorthand to add results of a page onto a socket along with the page.

 can_link_to_page?(page, target)

 change_page(socket, assign, target)

 handle_live(socket, notification, assigns, refetch_info \\ [])

 Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.

 keep_live(socket, assign, callback, opts \\ [])

 Runs the callback, and stores the information required to keep it live in the socket assigns.

 last_page(arg1)

 next_page?(page)

 Returns true if there's a next page.

 on_page?(page, num)

 page_from_params(params, default_limit, count? \\ false)

 deprecated

 Generates a page request for doing pagination based on the passed in parameters.

 page_link_params(offset, target)

 Converts Ash.Page.Offset to query link params

 page_number(arg1)

 page_params(keyset)

 Converts an Ash.Page.Keyset or Ash.Page.Offset struct into page parameters in keyword format.

 params_to_page_opts(params, opts \\ [])

 Generates page request options for pagination based on the passed in parameters and options.

 prev_page?(page)

 Returns true if there's a previous page.

 Types

 assign()

 @type assign() :: atom()

 assigns()

 @type assigns() :: map()

 callback()

 @type callback() ::
 (socket() -> callback_result())
 | (socket(), Keyword.t() | nil -> callback_result())

 callback_result()

 @type callback_result() :: struct() | [struct()] | Ash.Page.page() | nil

 liveness_options()

 @type liveness_options() :: Keyword.t()

 page_params()

 @type page_params() :: %{required(String.t()) => String.t()}

 socket()

 @type socket() :: term()

 topic()

 @type topic() :: String.t()

 Functions

 assign_page_and_stream_result(socket, page, opts \\ [])

 @spec assign_page_and_stream_result(
 Phoenix.LiveView.Socket.t(),
 Ash.Page.page(),
 Keyword.t()
) :: Phoenix.LiveView.Socket.t()

Shorthand to add results of a page onto a socket along with the page.
Examples:
AshPhoenix.LiveView.assign_page_and_stream_result(%Phoenix.LiveView.Socket{}, %Ash.Page.Offset{results: [1,2,3]})
=> %Phoenix.LiveView.Socket{assigns: %{streams: %{results: [1,2,3]}, page: %Ash.Page.Offset{results: nil}}}
Options
	:results_key (atom/0) - The default value is :results.

	:page_key (atom/0) - The default value is :page.

	:stream_opts (keyword/0) - The default value is [reset: true].

 can_link_to_page?(page, target)

 change_page(socket, assign, target)

 handle_live(socket, notification, assigns, refetch_info \\ [])

Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.
You will want to match on receiving a notification from Ash, and the easiest way to do that is to match
on the payload like so:
@impl true
def handle_info(%{topic: topic, payload: %Ash.Notifier.Notification{}}, socket) do
 {:noreply, handle_live(socket, topic, [:query1, :query2, :query3])}
end
Feel free to intercept notifications and do your own logic to respond to events. Ultimately, all
that matters is that you also call handle_live/3 if you want it to update your query results.
The assign or list of assigns passed as the third argument must be the same names passed into
keep_live. If you only want some queries to update based on some events, you can define multiple
matches on events, and only call handle_live/3 with the assigns that should be updated for that
notification.

 keep_live(socket, assign, callback, opts \\ [])

 @spec keep_live(socket(), assign(), callback(), liveness_options()) :: socket()

Runs the callback, and stores the information required to keep it live in the socket assigns.
The data will be assigned to the provided key, e.g keep_live(socket, :me, ...) would assign the results
to :me (accessed as @me in the template).
Additionally, you'll need to define a handle_info/2 callback for your liveview to receive any
notifications, and pass that notification into handle_live/3. See handle_live/3 for more.
Important
The logic for handling events to keep data live is currently very limited. It will simply rerun the query
every time. To this end, you should feel free to intercept individual events and handle them yourself for
more optimized liveness.
Pagination
To make paginated views convenient, as well as making it possible to keep those views live, Ash does not
simply rerun the query when it gets an update, as that could involve shuffling the records around on the
page. Eventually this will be configurable, but for now, Ash simply adjusts the query to only include the
records that are on the page. If a record would be removed from a page due to a data change, it will simply
be left there. For the best performance, use keyset pagination. If you need the ability to jump to a
page by number, you'll want to use offset pagination, but keep in mind that it performs worse on large
tables.
To support this, accept a second parameter to your callback function, which will be the options to use in page_opts
Options:
	:subscribe - A topic or list of topics that should cause this data to update.

	:refetch? (boolean/0) - A boolean flag indicating whether a refetch is allowed to happen. Defaults to true

	:after_fetch (term/0) - A two argument function that takes the results, and the socket, and returns the new socket. Can be used to set assigns based on the result of the query.

	:results - For list and page queries, by default the records shown are never changed (unless the page changes) Valid values are :keep, :lose The default value is :keep.

	:load_until_connected? (boolean/0) - If the socket is not connected, then the value of the provided assign is set to :loading. Has no effect if initial is provided.

	:initial (term/0) - Results to use instead of running the query immediately.

	:refetch_interval (non_neg_integer/0) - An interval (in ms) to periodically refetch the query

	:refetch_window (non_neg_integer/0) - The minimum time (in ms) between refetches, including refetches caused by notifications.

A great way to get readable millisecond values is to use the functions in erlang's :timer module,
like :timer.hours/1, :timer.minutes/1, and :timer.seconds/1
refetch_interval
If this option is set, a message is sent as {:refetch, assign_name, opts} on that interval.
You can then match on that event, like so:
def handle_info({:refetch, assign, opts}, socket) do
 {:noreply, handle_live(socket, :refetch, assign, opts)}
end
This is the equivalent of :timer.send_interval(interval, {:refetch, assign, opts}), so feel free to
roll your own solution if you have complex refetching requirements.
refetch_window
Normally, when a pubsub message is received the query is rerun. This option will cause the query to wait at least
this amount of time before doing a refetch. This is accomplished with Process.send_after/4, and recording the
last time each query was refetched. For example if a refetch happens at time 0, and the refetch_window is
10,000 ms, we would refetch, and record the time. Then if another refetch should happen 5,000 ms later, we would
look and see that we need to wait another 5,000ms. So we use Process.send_after/4 to send a
{:refetch, assign, opts} message in 5,000ms. The time that a refetch was requested is tracked, so if the
data has since been refetched, it won't be refetched again.
Future Plans
One interesting thing here is that, given that we know the scope of data that a resource cares about,
we should be able to make optimizations to this code, to support partial refetches, or even just updating
the data directly. However, this will need to be carefully considered, as the risks involve showing users
data they could be unauthorized to see, or having state in the socket that is inconsistent.

 last_page(arg1)

 next_page?(page)

 @spec next_page?(Ash.Page.page()) :: boolean()

Returns true if there's a next page.
Examples
iex> AshPhoenix.LiveView.next_page?(%Ash.Page.Offset{offset: 10, limit: 10, more?: true})
true

iex> AshPhoenix.LiveView.next_page?(%{offset: 0, limit: 10, more?: false})
false

 on_page?(page, num)

 page_from_params(params, default_limit, count? \\ false)

 This function is deprecated. Use params_to_page_opts/2 instead.

 @spec page_from_params(page_params(), pos_integer(), boolean()) :: Keyword.t()

Generates a page request for doing pagination based on the passed in parameters.
Examples
iex> AshPhoenix.LiveView.page_from_params(%{"offset" => "10", "limit" => "10"}, 20, true)
[count: true, limit: 10, offset: 10]

iex> AshPhoenix.LiveView.page_from_params(%{"offset" => "10", "limit" => "10"}, 20)
[count: false, limit: 10, offset: 10]

iex> AshPhoenix.LiveView.page_from_params(%{"offset" => "10", "count" => "true"}, 20)
[count: true, limit: 20, offset: 10]

 page_link_params(offset, target)

 @spec page_link_params(Ash.Page.Offset.t(), String.t() | pos_integer()) ::
 [any()] | :invalid

Converts Ash.Page.Offset to query link params
Options:
	"first" - first page
	"prev" - prev page
	"next" - next page
	"last" - last page (if the page is loaded with count: true)

Returns :invalid or a list of query link params.

 page_number(arg1)

 page_params(keyset)

 @spec page_params(Ash.Page.page()) :: Keyword.t()

Converts an Ash.Page.Keyset or Ash.Page.Offset struct into page parameters in keyword format.

 params_to_page_opts(params, opts \\ [])

 @spec params_to_page_opts(page_params(), Keyword.t()) :: Keyword.t()

Generates page request options for pagination based on the passed in parameters and options.
Options
	:default_limit (pos_integer/0) - The default limit to use if not provided in params. The default value is 250.

	:count? (boolean/0) - Whether to include a count query. The default value is false.

Counting records
Count queries are only included if count?: true is explicitly set in options.
Unlike page_from_params/3, this function does not override :count based on user params, even if params map contains "count" key.
This makes developer intent more explicit, and prevents potentially expensive queries from being run unexpectedly.
If you'd like to include a count query from user params, you can explicitly do:
AshPhoenix.LiveView.params_to_page_opts(params, count?: params["count"] == "true")
Examples
iex> AshPhoenix.LiveView.params_to_page_opts(%{"offset" => "10", "limit" => "10"}, default_limit: 20, count?: true)
[count: true, limit: 10, offset: 10]

iex> AshPhoenix.LiveView.params_to_page_opts(%{"offset" => "10", "limit" => "10"})
[count: false, limit: 10, offset: 10]

iex> AshPhoenix.LiveView.params_to_page_opts(%{"offset" => "10", "count" => "true"}, default_limit: 20)
[count: false, limit: 20, offset: 10]
User params
This function safely ignores any keys in the params map that are not related to pagination ("after", "before", "limit", "offset").
You can pass the entire user params map directly to this function since extra keys will be ignored.
This makes it easy to use with LiveView's handle_params/3 callback, for example:
def handle_params(params, _url, socket) do
 page_opts = AshPhoenix.LiveView.params_to_page_opts(params, default_limit: @limit)

 page = MyDomain.search_resources!(query_text, page: page_opts)

 {:noreply, assign(socket, :page, page)}
end
This allows you to change the pagination type (keyset or offset) without changing your view code.

 prev_page?(page)

 @spec prev_page?(Ash.Page.page()) :: boolean()

Returns true if there's a previous page.
Examples
iex> AshPhoenix.LiveView.prev_page?(%Ash.Page.Offset{offset: 10, limit: 10})
true

iex> AshPhoenix.LiveView.prev_page?(%{offset: 0, limit: 10})
false

AshPhoenix.LiveView.SubdomainHook

This is a basic hook that loads the current tenant assign from a given
value set on subdomain.
Options:
	:assign (atom/0) - The key to use when assigning the current tenant The default value is :current_tenant.

	:handle_subdomain - An mfa to call with the socket and a subdomain value. Can be used to do something like fetch the current user given the tenant.
 Must return either `{:cont, socket}`, `{:cont, socket, opts} or `{:halt, socket}`.
To use the hook, you can do one of the following:
live_session :foo, on_mount: [
AshPhoenix.LiveView.SubdomainHook,
]
This will assign the tenant's subdomain value to :current_tenant key by default.
If you want to specify the assign key
live_session :foo, on_mount: [
{AshPhoenix.LiveView.SubdomainHook, [assign: :different_assign_key}]
]
You can also provide handle_subdomain module, function, arguments tuple
that will be run after the tenant is assigned.
live_session :foo, on_mount: [
{AshPhoenix.LiveView.SubdomainHook, [handle_subdomain: {FooApp.SubdomainHandler, :handle_subdomain, [:bar]}]
]
This can be any module, function, and list of arguments as it uses Elixir's apply/3.
The socket and tenant will be the first two arguments.
The function return must match Phoenix LiveView's on_mount/1
defmodule FooApp.SubdomainHandler do
def handle_subdomain(socket, tenant, :bar) do
 # your logic here
 {:cont, socket}
end
end

 Summary

 Functions

 on_mount(opts, params, session, socket)

 Functions

 on_mount(opts, params, session, socket)

AshPhoenix.SubdomainPlug

This is a basic plug that loads the current tenant assign from a given
value set on subdomain.
This was copied from Triplex.SubdomainPlug, here:
 https://github.com/ateliware/triplex/blob/master/lib/triplex/plugs/subdomain_plug.ex
Options:
	:endpoint (atom/0) - Required. The endpoint that the plug is in, used for deterining the host

	:assign (atom/0) - The key to use when assigning the current tenant The default value is :current_tenant.

	:handle_subdomain - An mfa to call with the conn and a subdomain value. Can be used to do something like fetch the current user given the tenant. Must return the new conn.

To plug it on your router, you can use:
plug AshPhoenix.SubdomainPlug,
 endpoint: MyApp.Endpoint
An additional helper here can be used for determining the host in your liveview, and/or using
the host that was already assigned to the conn.
For example:
def handle_params(params, uri, socket) do
 socket =
 assign_new(socket, :current_tenant, fn ->
 AshPhoenix.SubdomainPlug.live_tenant(socket, uri)
 end)

 socket =
 assign_new(socket, :current_organization, fn ->
 if socket.assigns[:current_tenant] do
 MyApp.Accounts.Ash.get!(MyApp.Accounts.Organization,
 subdomain: socket.assigns[:current_tenant]
)
 end
 end)

 {:noreply, socket}
end

 Summary

 Functions

 live_tenant(socket, url)

 Functions

 live_tenant(socket, url)

AshPhoenix.Form

A module to allow you to fluidly use resources with Phoenix forms.
Life cycle
The general workflow is, with either LiveView or Phoenix forms:
	Create a form with AshPhoenix.Form
	Render the form with Phoenix.Component.form (or CoreComponents.simple_form), or, if using Surface, <Form>
	To validate the form (e.g with phx-change for liveview), pass the submitted params to AshPhoenix.Form.validate/3
	On form submission, pass the params to AshPhoenix.Form.submit/2
	On success, use the result to redirect or assign. On failure, reassign the provided form.

The following keys exist on the form to show where in the lifecycle you are:
	submitted_once? - If the form has ever been submitted. Useful for not showing any errors on the first attempt to fill out a form.
	just_submitted? - If the form has just been submitted and no validation has happened since. Useful for things like
triggering a UI effect that should stop when the form is modified again.
	.changed? - If something about the form is different than it originally was. Note that in some cases this can yield a
false positive, specifically if a nested form is removed and then a new one is added with the exact same values.
	.touched_forms - A MapSet containing all keys in the form that have been modified. When submitting a form, only these keys are included in the parameters.

Forms in the code interface
Throughout this documentation you will see forms created with AshPhoenix.Form.for_create/3 and other functions like it.
This is perfectly fine to do, however there is a way to use AshPhoenix.Form in a way that adds clarity to its usage
and makes it easier to find usage of each action. Code interfaces allow us to do this for standard action calls, i.e:
resources do
 resource MyApp.Accounts.User do
 define :register_with_password, args: [:email, :password]
 define :update_user, action: :update, args: [:email, :password]
 end
end
Adding the AshPhoenix extension to our domains and resources, like so:
use Ash.Domain,
 extensions: [AshPhoenix]
will cause another function to be generated for each definition, beginning with form_to_.
By default, the args option in define is ignored when building forms. If you want to have
positional arguments, configure that in the forms section which is added by the AshPhoenix
section. For example:
forms do
 form :update_user, args: [:email]
end
With this extension, the standard setup for forms looks something like this:
def render(assigns) do
 ~H"""
 <.form for={@form} phx-change="validate" phx-submit="submit">
 <.input field={@form[:email]} />
 <.input field={@form[:password]} />
 <.button type="submit" />
 </.form>
 """
end

def mount(_params, _session, socket) do
 # Here we call our new generated function to create the form
 {:ok, assign(socket, form: MyApp.Accounts.form_to_register_with_password() |> to_form())}
end

def handle_event("validate", %{"form" => params}, socket) do
 form = AshPhoenix.Form.validate(socket.assigns.form, params)
 {:noreply, assign(socket, :form, form)}
end

def handle_event("submit", %{"form" => params}, socket) do
 case AshPhoenix.Form.submit(socket.assigns.form, params: params) do
 {:ok, _user} ->
 socket =
 socket
 |> put_flash(:success, "User registered successfully")
 |> push_navigate(to: ~p"/")

 {:noreply, socket}

 {:error, form} ->
 socket =
 socket
 |> put_flash(:error, "Something went wrong")
 |> assign(:form, form)

 {:noreply, socket}
 end
end
Working with related or embedded data
See the nested forms guide
Working with compound types
Compound types, such as Ash.Money, will need some extra work to make it work.
For instance, when working with the Transfer type in AshDoubleEntry.Transfer, it will have the Ash.Money type for amount. When rendering the forms, you should do as follows:
<.input
 name={@form[:amount].name <> "[amount]"}
 id={@form[:amount].id <> "_amount"}
 label="Amount"
 value={if(@form[:amount].value, do: @form[:amount].value.amount)}
 />
 <.input
 type="select"
 name={@form[:amount].name <> "[currency]"}
 id={@form[:amount].id <> "_currency"}
 options={[:USD, :HKD, :EUR]}
 label="Currency"
 value={if(@form[:amount].value, do: @form[:amount].value.currency)}
 />
Handling errors for composite inputs
When working with composite inputs like the example above, you may need to map errors from the composite field
to the individual input fields. The post_process_errors option can help with this:
AshPhoenix.Form.for_create(Transfer, :create,
 post_process_errors: fn _form, _path, {field, message, vars} ->
 # Map amount field errors to the amount input specifically
 case field do
 :amount ->
 # Could check the error message to determine which sub-field
 if String.contains?(message, "currency") do
 {:amount_currency, message, vars}
 else
 {:amount_amount, message, vars}
 end
 _ ->
 # you can return `nil`
 {field, message, vars}
 end
 end
)
The above will allow the fields to be used by the AshPhoenix.Form when creating or updating a Transfer.
You can follow the same style with other compound types.

 Summary

 Types

 path()

 source()

 t()

 Functions

 add_error(form, error, opts \\ [])

 Adds an error to the source underlying the form.

 add_form(form, path, opts \\ [])

 Adds a new form at the provided path.

 arguments(form)

 A utility to get the list of arguments the action underlying the form accepts

 attributes(form)

 A utility to get the list of attributes the action underlying the form accepts

 can_submit?(form)

 clear_value(form, field_or_fields)

 Clears a given input's value on a form.

 do_sort_forms(forms, arg2, indices, name, id)

 ensure_can_submit!(form)

 errors(form, opts \\ [])

 Returns the errors on the form, sanitized for displaying to the end user.

 for_action(resource_or_data, action, opts \\ [])

 Creates a form corresponding to any given action on a resource.

 for_create(resource, action, opts \\ [])

 Creates a form corresponding to a create action on a resource.

 for_destroy(data, action, opts \\ [])

 Creates a form corresponding to a destroy action on a record.

 for_read(resource, action, opts \\ [])

 Creates a form corresponding to a read action on a resource.

 for_update(data, action, opts \\ [])

 Creates a form corresponding to an update action on a record.

 get_form(form, path)

 Gets the form at the specified path

 has_form?(form, path)

 Returns true if a given form path exists in the form

 hidden_fields(form)

 Returns the hidden fields for a form as a keyword list

 ignore(form)

 Toggles the form to be ignored or not ignored.

 ignored?(form)

 Returns true if the form is ignored

 merge_options(form, opts)

 Merge the new options with the saved options on a form. See update_options/2 for more.

 params(form, opts \\ [])

 Returns the parameters from the form that would be submitted to the action.

 parse_path!(form, original_path, opts \\ [])

 A utility for parsing paths of nested forms in query encoded format.

 raw_errors(form, opts \\ [])

 Returns the raw errors from the underlying source without protocol formatting.

 remove_form(form, path, opts \\ [])

 Removes a form at the provided path.

 set_data(form, data)

 Sets the data of the form, in addition to the data of the underlying source, if applicable.

 sort_forms(form, path, instruction)

 This function sorts nested forms at the specified path.

 submit(form, opts \\ [])

 Submits the form.

 submit!(form, opts \\ [])

 Same as submit/2, but raises an error if the submission fails.

 touch(form, fields)

 Mark a field or fields as touched

 update_form(form, path, func, opts \\ [])

 Updates the form at the provided path using the given function.

 update_forms_at_path(form, path, func, opts \\ [])

 Updates the list of forms matching a given path. Does not validate that the path points at a single form like update_form/4.

 update_options(form, fun)

 Update the saved options on a form.

 update_params(form, func, validate_opts \\ [])

 Update the previous params provided to the form, and revalidate.

 validate(form, new_params, opts \\ [])

 Validates the parameters against the form.

 value(form, field)

 Gets the value for a given field in the form.

 Types

 path()

 @type path() :: String.t() | atom() | [String.t() | atom() | integer()]

 source()

 @type source() :: Ash.Changeset.t() | Ash.Query.t() | Ash.Resource.record()

 t()

 @type t() :: %AshPhoenix.Form{
 action: atom(),
 added?: term(),
 any_removed?: term(),
 changed?: term(),
 data: nil | Ash.Resource.record(),
 domain: term(),
 errors: boolean(),
 form_keys: Keyword.t(),
 forms: map(),
 id: term(),
 just_submitted?: boolean(),
 method: String.t(),
 name: term(),
 opts: Keyword.t(),
 original_data: term(),
 params: map(),
 post_process_errors:
 nil
 | (t(),
 [String.t() | atom()],
 {field :: atom(), message :: String.t(), vars :: Keyword.t()} ->
 {field :: atom(), message :: String.t(), vars :: Keyword.t()} | nil),
 prepare_params: term(),
 prepare_source: nil | (source() -> source()),
 raw_params: term(),
 resource: Ash.Resource.t(),
 source: source(),
 submit_errors: Keyword.t() | nil,
 submitted_once?: boolean(),
 touched_forms: term(),
 transform_errors:
 nil
 | (source(), error :: Ash.Error.t() ->
 [
 {field :: atom(), message :: String.t(),
 substituations :: Keyword.t()}
]),
 transform_params:
 nil | (map(), atom() -> term()) | (t(), map(), atom() -> term()),
 type: :create | :update | :destroy | :read,
 valid?: boolean(),
 warn_on_unhandled_errors?: term()
}

 Functions

 add_error(form, error, opts \\ [])

Adds an error to the source underlying the form.
This can be used for adding errors from different sources to a form. Keep in mind, if they don't match
a field on the form (typically extracted via the field key in the error), they won't be displayed by default.
Ensure that the errors field of the form is set to true if you want the errors to be visible.
See Ash.Error.to_ash_error/3 for more on supported values for error.
Options
	:path - The path to add the error to. If the error(s) already have a path, don't specify a path yourself.

 add_form(form, path, opts \\ [])

 @spec add_form(t(), path(), Keyword.t()) :: t()

 @spec add_form(Phoenix.HTML.Form.t(), path(), Keyword.t()) :: Phoenix.HTML.Form.t()

Adds a new form at the provided path.
Doing this requires that the form has a create_action and a resource configured.
path can be one of two things:
	A list of atoms and integers that lead to a form in the forms option provided. [:posts, 0, :comments] to add a comment to the first post.
	The html name of the form, e.g form[posts][0][comments] to mimic the above

If you pass parameters to this function, keep in mind that, unless they are string keyed in
the same shape they might come from your form, then the result of params/1 will reflect that,
i.e add_form(form, "foo", params: %{bar: 10}), could produce params like %{"field" => value, "foo" => [%{bar: 10}]}.
Notice how they are not string keyed as you would expect. However, once the form is changed (in liveview) and a call
to validate/2 is made with that input, then the parameters would become what you'd expect. In this way, if you are using
add_form with not string keys/values you may not be able to depend on the shape of the params map (which you should ideally
not depend on anyway).
	:prepend (boolean/0) - If specified, the form is placed at the beginning of the list instead of the end of the list The default value is false.

	:params (term/0) - The initial parameters to add the form with. The default value is %{}.

	:validate? (boolean/0) - Validates the new full form. The default value is true.

	:validate_opts (term/0) - Options to pass to validate. Only used if validate? is set to true (the default) The default value is [].

	:type - If type is set to :read, the form will be created for a read action. A hidden field will be set in the form called _form_type to track this information. Valid values are :read, :create, :update, :destroy The default value is :create.

	:data (term/0) - The data to set backing the form. Generally you'd only want to do this if you are adding a form with type: :read additionally.

 arguments(form)

A utility to get the list of arguments the action underlying the form accepts

 attributes(form)

A utility to get the list of attributes the action underlying the form accepts

 can_submit?(form)

 @spec can_submit?(t()) :: boolean()

 @spec can_submit?(Phoenix.HTML.Form.t()) :: boolean()

 clear_value(form, field_or_fields)

 @spec clear_value(t(), atom() | [atom()]) :: t()

Clears a given input's value on a form.
Accepts a field (atom) or a list of fields (atoms) as a second argument.

 do_sort_forms(forms, arg2, indices, name, id)

 ensure_can_submit!(form)

 @spec ensure_can_submit!(t()) :: t()

 @spec ensure_can_submit!(Phoenix.HTML.Form.t()) :: Phoenix.HTML.Form.t()

 errors(form, opts \\ [])

 @spec errors(t() | Phoenix.HTML.Form.t(), Keyword.t()) ::
 ([{atom(), {String.t(), Keyword.t()}}]
 | [String.t()]
 | [{atom(), String.t()}])
 | %{
 required(list()) =>
 [{atom(), {String.t(), Keyword.t()}}]
 | [String.t()]
 | [{atom(), String.t()}]
 }

Returns the errors on the form, sanitized for displaying to the end user.
By default, only errors on the form being passed in (not nested forms) are provided.
Use for_path to get errors for nested forms.
	:format - Values:
- `:raw` - `[field:, {message, substitutions}}]` (for translation)
- `:simple` - `[field: "message w/ variables substituted"]`
- `:plaintext` - `["field: message w/ variables substituted"]`
 Valid values are :simple, :raw, :plaintext The default value is :simple.

	:for_path (term/0) - The path of the form you want errors for, either as a list or as a string, e.g [:comments, 0] or form[comments][0]
Passing :all will cause this function to return a map of path to its errors, like so:
%{[:comments, 0] => [body: "is invalid"], ...} The default value is [].

 for_action(resource_or_data, action, opts \\ [])

Creates a form corresponding to any given action on a resource.
If given a create, read, update, or destroy action, the appropriate for_*
function will be called instead. So use this function when you don't know
the type of the action, or it is a generic action.
Options
	:actor (term/0) - The actor performing the action. Passed through to the underlying action.

	:scope (term/0) - A value that implements the Ash.Scope protocol, for passing around actor/tenant/context in a single value. See Ash.Scope for more.

	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:domain (atom/0) - The domain to use when calling the action.

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors. You may prefer post_process_errors as a simpler API.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]
Example:
AshPhoenix.Form.for_create(..., transform_errors: fn
 _changeset, %{field: :field1} = error ->
 %{error | field: :field2}
 _changeset, error ->
 error
end

	:post_process_errors - Allows for post-processing of errors after they have been converted to the standard triple format.
This function receives the form, the path to the form, and an error triple {field, message, vars}.
It should return either a modified triple or nil to filter out the error.
This is useful for:
	Filtering out certain errors based on custom criteria
	Remapping field names from one field to another
	Modifying error messages or variables
Example:AshPhoenix.Form.for_create(..., post_process_errors: fn form, _path, {field, message, vars} ->
case field do
 :status ->
 # hide these errors
 nil
 field when field in [:currency, :amount] ->
 # remap the field, and replace the error message
 {:money, "please enter a real money amount", []}
 field ->
 # leave the others unchanged
 {field, message, vars}
end
end)

	:prepare_source - A 1-argument function the receives the initial changeset (or query) and makes any relevant changes to it.
This can be used to do things like:
	Set default argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	Set changeset context
	Do any other pre-processing on the changeset

	:prepare_params - A 2-argument function that receives the params map and the :validate atom and should return prepared params.
Called before the form is validated.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3-argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

	:tenant (term/0) - The current tenant. Passed through to the underlying action.

	:params (term/0) - The initial parameters to use for the form. This is useful for setting up a form with default values. The default value is %{}.

Any additional options will be passed to the underlying call to build the source, i.e
Ash.ActionInput.for_action/4, or Ash.Changeset.for_*. This means you can set things
like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Nested Form Options
	:type - The cardinality of the nested form - :list or :single. Valid values are :list, :single The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use Phoenix.Components.inputs_for to render the nested forms, or manually add hidden inputs using
hidden_inputs_for (or HiddenInputs if using Surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases.

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types. Valid values are :read, :create, :update

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 for_create(resource, action, opts \\ [])

 @spec for_create(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a create action on a resource.
Options
Options not listed below are passed to the underlying call to build the changeset/query, i.e Ash.Changeset.for_create/4
	:actor (term/0) - The actor performing the action. Passed through to the underlying action.

	:scope (term/0) - A value that implements the Ash.Scope protocol, for passing around actor/tenant/context in a single value. See Ash.Scope for more.

	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:domain (atom/0) - The domain to use when calling the action.

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors. You may prefer post_process_errors as a simpler API.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]
Example:
AshPhoenix.Form.for_create(..., transform_errors: fn
 _changeset, %{field: :field1} = error ->
 %{error | field: :field2}
 _changeset, error ->
 error
end

	:post_process_errors - Allows for post-processing of errors after they have been converted to the standard triple format.
This function receives the form, the path to the form, and an error triple {field, message, vars}.
It should return either a modified triple or nil to filter out the error.
This is useful for:
	Filtering out certain errors based on custom criteria
	Remapping field names from one field to another
	Modifying error messages or variables
Example:AshPhoenix.Form.for_create(..., post_process_errors: fn form, _path, {field, message, vars} ->
case field do
 :status ->
 # hide these errors
 nil
 field when field in [:currency, :amount] ->
 # remap the field, and replace the error message
 {:money, "please enter a real money amount", []}
 field ->
 # leave the others unchanged
 {field, message, vars}
end
end)

	:prepare_source - A 1-argument function the receives the initial changeset (or query) and makes any relevant changes to it.
This can be used to do things like:
	Set default argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	Set changeset context
	Do any other pre-processing on the changeset

	:prepare_params - A 2-argument function that receives the params map and the :validate atom and should return prepared params.
Called before the form is validated.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3-argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

	:tenant (term/0) - The current tenant. Passed through to the underlying action.

	:params (term/0) - The initial parameters to use for the form. This is useful for setting up a form with default values. The default value is %{}.

Nested Form Options
AshPhoenix.Form automatically determines the nested forms available based on an action's usage of
change manage_relationship(...). See the Related Forms
for more.
	:type - The cardinality of the nested form - :list or :single. Valid values are :list, :single The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use Phoenix.Components.inputs_for to render the nested forms, or manually add hidden inputs using
hidden_inputs_for (or HiddenInputs if using Surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases.

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types. Valid values are :read, :create, :update

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 for_destroy(data, action, opts \\ [])

 @spec for_destroy(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a destroy action on a record.
Options:
	:actor (term/0) - The actor performing the action. Passed through to the underlying action.

	:scope (term/0) - A value that implements the Ash.Scope protocol, for passing around actor/tenant/context in a single value. See Ash.Scope for more.

	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:domain (atom/0) - The domain to use when calling the action.

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors. You may prefer post_process_errors as a simpler API.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]
Example:
AshPhoenix.Form.for_create(..., transform_errors: fn
 _changeset, %{field: :field1} = error ->
 %{error | field: :field2}
 _changeset, error ->
 error
end

	:post_process_errors - Allows for post-processing of errors after they have been converted to the standard triple format.
This function receives the form, the path to the form, and an error triple {field, message, vars}.
It should return either a modified triple or nil to filter out the error.
This is useful for:
	Filtering out certain errors based on custom criteria
	Remapping field names from one field to another
	Modifying error messages or variables
Example:AshPhoenix.Form.for_create(..., post_process_errors: fn form, _path, {field, message, vars} ->
case field do
 :status ->
 # hide these errors
 nil
 field when field in [:currency, :amount] ->
 # remap the field, and replace the error message
 {:money, "please enter a real money amount", []}
 field ->
 # leave the others unchanged
 {field, message, vars}
end
end)

	:prepare_source - A 1-argument function the receives the initial changeset (or query) and makes any relevant changes to it.
This can be used to do things like:
	Set default argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	Set changeset context
	Do any other pre-processing on the changeset

	:prepare_params - A 2-argument function that receives the params map and the :validate atom and should return prepared params.
Called before the form is validated.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3-argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

	:tenant (term/0) - The current tenant. Passed through to the underlying action.

	:params (term/0) - The initial parameters to use for the form. This is useful for setting up a form with default values. The default value is %{}.

Any additional options will be passed to the underlying call to Ash.Changeset.for_destroy/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Nested Form Options
AshPhoenix.Form automatically determines the nested forms available based on an action's usage of
change manage_relationship(...). See the Related Forms
for more.
	:type - The cardinality of the nested form - :list or :single. Valid values are :list, :single The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use Phoenix.Components.inputs_for to render the nested forms, or manually add hidden inputs using
hidden_inputs_for (or HiddenInputs if using Surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases.

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types. Valid values are :read, :create, :update

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 for_read(resource, action, opts \\ [])

 @spec for_read(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a read action on a resource.
Options:
	:actor (term/0) - The actor performing the action. Passed through to the underlying action.

	:scope (term/0) - A value that implements the Ash.Scope protocol, for passing around actor/tenant/context in a single value. See Ash.Scope for more.

	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:domain (atom/0) - The domain to use when calling the action.

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors. You may prefer post_process_errors as a simpler API.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]
Example:
AshPhoenix.Form.for_create(..., transform_errors: fn
 _changeset, %{field: :field1} = error ->
 %{error | field: :field2}
 _changeset, error ->
 error
end

	:post_process_errors - Allows for post-processing of errors after they have been converted to the standard triple format.
This function receives the form, the path to the form, and an error triple {field, message, vars}.
It should return either a modified triple or nil to filter out the error.
This is useful for:
	Filtering out certain errors based on custom criteria
	Remapping field names from one field to another
	Modifying error messages or variables
Example:AshPhoenix.Form.for_create(..., post_process_errors: fn form, _path, {field, message, vars} ->
case field do
 :status ->
 # hide these errors
 nil
 field when field in [:currency, :amount] ->
 # remap the field, and replace the error message
 {:money, "please enter a real money amount", []}
 field ->
 # leave the others unchanged
 {field, message, vars}
end
end)

	:prepare_source - A 1-argument function the receives the initial changeset (or query) and makes any relevant changes to it.
This can be used to do things like:
	Set default argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	Set changeset context
	Do any other pre-processing on the changeset

	:prepare_params - A 2-argument function that receives the params map and the :validate atom and should return prepared params.
Called before the form is validated.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3-argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

	:tenant (term/0) - The current tenant. Passed through to the underlying action.

	:params (term/0) - The initial parameters to use for the form. This is useful for setting up a form with default values. The default value is %{}.

Any additional options will be passed to the underlying call to Ash.Query.for_read/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Keep in mind that the source of the form in this case is a query, not a changeset. This means that, very likely,
you would not want to use nested forms here. However, it could make sense if you had a query argument that was an
embedded resource, so the capability remains.
Nested Form Options
	:type - The cardinality of the nested form - :list or :single. Valid values are :list, :single The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use Phoenix.Components.inputs_for to render the nested forms, or manually add hidden inputs using
hidden_inputs_for (or HiddenInputs if using Surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases.

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types. Valid values are :read, :create, :update

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 for_update(data, action, opts \\ [])

 @spec for_update(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to an update action on a record.
Options:
	:actor (term/0) - The actor performing the action. Passed through to the underlying action.

	:scope (term/0) - A value that implements the Ash.Scope protocol, for passing around actor/tenant/context in a single value. See Ash.Scope for more.

	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:domain (atom/0) - The domain to use when calling the action.

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors. You may prefer post_process_errors as a simpler API.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]
Example:
AshPhoenix.Form.for_create(..., transform_errors: fn
 _changeset, %{field: :field1} = error ->
 %{error | field: :field2}
 _changeset, error ->
 error
end

	:post_process_errors - Allows for post-processing of errors after they have been converted to the standard triple format.
This function receives the form, the path to the form, and an error triple {field, message, vars}.
It should return either a modified triple or nil to filter out the error.
This is useful for:
	Filtering out certain errors based on custom criteria
	Remapping field names from one field to another
	Modifying error messages or variables
Example:AshPhoenix.Form.for_create(..., post_process_errors: fn form, _path, {field, message, vars} ->
case field do
 :status ->
 # hide these errors
 nil
 field when field in [:currency, :amount] ->
 # remap the field, and replace the error message
 {:money, "please enter a real money amount", []}
 field ->
 # leave the others unchanged
 {field, message, vars}
end
end)

	:prepare_source - A 1-argument function the receives the initial changeset (or query) and makes any relevant changes to it.
This can be used to do things like:
	Set default argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	Set changeset context
	Do any other pre-processing on the changeset

	:prepare_params - A 2-argument function that receives the params map and the :validate atom and should return prepared params.
Called before the form is validated.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3-argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

	:tenant (term/0) - The current tenant. Passed through to the underlying action.

	:params (term/0) - The initial parameters to use for the form. This is useful for setting up a form with default values. The default value is %{}.

Any additional options will be passed to the underlying call to Ash.Changeset.for_update/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Nested Form Options
AshPhoenix.Form automatically determines the nested forms available based on an action's usage of
change manage_relationship(...). See the Related Forms
for more.
	:type - The cardinality of the nested form - :list or :single. Valid values are :list, :single The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use Phoenix.Components.inputs_for to render the nested forms, or manually add hidden inputs using
hidden_inputs_for (or HiddenInputs if using Surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases.

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types. Valid values are :read, :create, :update

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 get_form(form, path)

 @spec get_form(t() | Phoenix.HTML.Form.t(), path()) :: t() | nil

Gets the form at the specified path

 has_form?(form, path)

 @spec has_form?(t(), path()) :: boolean()

Returns true if a given form path exists in the form

 hidden_fields(form)

 @spec hidden_fields(t() | Phoenix.HTML.Form.t()) :: Keyword.t()

Returns the hidden fields for a form as a keyword list

 ignore(form)

 @spec ignore(t()) :: t()

Toggles the form to be ignored or not ignored.
To set this manually in an html form, use the field :_ignored and set it
to the string "true". Any other value will not result in the form being ignored.

 ignored?(form)

 @spec ignored?(t() | Phoenix.HTML.Form.t()) :: boolean()

Returns true if the form is ignored

 merge_options(form, opts)

 @spec merge_options(t(), Keyword.t()) :: t()

 @spec merge_options(Phoenix.HTML.Form.t(), Keyword.t()) :: Phoenix.HTML.Form.t()

Merge the new options with the saved options on a form. See update_options/2 for more.

 params(form, opts \\ [])

Returns the parameters from the form that would be submitted to the action.
This can be useful if you want to get the parameters and manipulate them/build a custom changeset
afterwards.

 parse_path!(form, original_path, opts \\ [])

 @spec parse_path!(t() | Phoenix.HTML.Form.t(), path(), opts :: Keyword.t()) ::
 [atom() | integer()] | no_return()

A utility for parsing paths of nested forms in query encoded format.
For example:
parse_path!(form, "post[comments][0][sub_comments][0])

[:comments, 0, :sub_comments, 0]

 raw_errors(form, opts \\ [])

Returns the raw errors from the underlying source without protocol formatting.
This function provides access to the original errors from the changeset, query, or
action input without any transformation through the AshPhoenix.FormData.Error protocol.
Options
	:for_path - The path to get errors for. Defaults to [] (the current form).
Set to :all to get all errors for all forms.
	:format - This option is ignored for raw_errors/2 as it always returns raw errors.

Examples
raw_errors(form)
#=> [%Ash.Error.Invalid{...}, ...]

raw_errors(form, for_path: [:posts, 0])
#=> [%Ash.Error.Invalid{...}, ...]

raw_errors(form, for_path: :all)
#=> %{[] => [...], [:posts, 0] => [...]}

 remove_form(form, path, opts \\ [])

 @spec remove_form(t(), path(), Keyword.t()) :: t()

 @spec remove_form(Phoenix.HTML.Form.t(), path(), Keyword.t()) :: Phoenix.HTML.Form.t()

Removes a form at the provided path.
See add_form/3 for more information on the path argument.
If you are not using liveview, and you want to support removing forms that were created based on the data
option from the browser, you'll need to include in the form submission a custom list of strings to remove, and
then manually iterate over them in your controller, for example:
Enum.reduce(removed_form_paths, form, &AshPhoenix.Form.remove_form(&2, &1))
	:validate? (boolean/0) - Validates the new full form. The default value is true.

	:validate_opts (term/0) - Options to pass to validate. Only used if validate? is set to true (the default) The default value is [].

 set_data(form, data)

Sets the data of the form, in addition to the data of the underlying source, if applicable.
Queries do not track data (because that wouldn't make sense), so this will not update the data
for read actions

 sort_forms(form, path, instruction)

 @spec sort_forms(
 t(),
 [atom() | integer()],
 [String.t() | integer()] | :increment | :decrement
) :: t()

This function sorts nested forms at the specified path.
The path can either be an attribute, e.g. [:comments] (for changing the entire order) or an attribute with an index,
like [:comments, 2] (used for incrementing or decrementing).
You can provide the following instructions:
	[0, 1, 2]: indices in the new order (they can be either strings or integers).
	:increment: increment the index of a specific form, swapping it with the next form.
	:decrement: decrement the index of a specific form, swapping it with the previous form.

 submit(form, opts \\ [])

 @spec submit(t(), Keyword.t()) ::
 {:ok, Ash.Resource.record() | nil | [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | :ok
 | {:error, t()}

 @spec submit(Phoenix.HTML.Form.t(), Keyword.t()) ::
 {:ok, Ash.Resource.record() | nil | [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | :ok
 | {:error, Phoenix.HTML.Form.t()}

Submits the form.
If the submission returns an error, the resulting form can be rerendered. Any nested
errors will be passed down to the corresponding form for that input.
Options:
	:force? (boolean/0) - Submit the form even if it is invalid in its current state. The default value is false.

	:action_opts (keyword/0) - Opts to pass to the call to Ash when calling the action. The default value is [].

	:errors (boolean/0) - Wether or not to show errors after submitting. The default value is true.

	:override_params (term/0) - If specified, then the params are not extracted from the form.
How this different from params: providing params is simply results in calling validate(form, params) before proceeding.
The values that are passed into the action are then extracted from the form using params/2. With override_params, the form
is not validated again, and the override_params are passed directly into the action.

	:params (term/0) - If specified, validate/3 is called with the new params before submitting the form.
This is a shortcut to avoid needing to explicitly validate before every submit.
For example:
form
|> AshPhoenix.Form.validate(params)
|> AshPhoenix.Form.submit()
Is the same as:
form
|> AshPhoenix.Form.submit(params: params)

	:read_one? (boolean/0) - If submitting a read form, a single result will be returned (via read_one) instead of a list of results.
Ignored for non-read forms. The default value is false.

	:before_submit (function of arity 1) - A function to apply to the source (changeset or query) just before submitting the action. Must return the modified changeset.

 submit!(form, opts \\ [])

 @spec submit!(t(), Keyword.t()) :: Ash.Resource.record() | :ok | no_return()

Same as submit/2, but raises an error if the submission fails.

 touch(form, fields)

Mark a field or fields as touched
To mark nested fields as touched use with update_form/4 or update_forms_at_path/4

 update_form(form, path, func, opts \\ [])

Updates the form at the provided path using the given function.
Marks all forms along the path as touched by default. To prevent it, provide mark_as_touched?: false.
This can be useful if you have a button that should modify a nested form in some way, for example.

 update_forms_at_path(form, path, func, opts \\ [])

Updates the list of forms matching a given path. Does not validate that the path points at a single form like update_form/4.
Additionally, if it gets to a list of child forms and the next part of the path is not an integer,
it will update all of the forms at that path.

 update_options(form, fun)

Update the saved options on a form.
When a form is created, options like actor and authorize? are stored in the opts key.
If you have a case where these options change over time, for example a select box that determines the actor, use this function to override those opts.
You may want to validate again after this has been changed if it can change the results of your form validation.

 update_params(form, func, validate_opts \\ [])

 @spec update_params(t(), fun :: (map() -> map()), validate_opts :: Keyword.t()) :: t()

 @spec update_params(
 Phoenix.HTML.Form.t(),
 params :: (map() -> map()),
 validate_opts :: Keyword.t()
) ::
 Phoenix.HTML.Form.t()

Update the previous params provided to the form, and revalidate.
Accepts the same options as validate/2, passing them through directly.
You should prefer to use validate/2 when you have all of the params from the form.
This is meant for cases when some event has occured that should modify the params,
not as a replacement for validate/2.
This can be useful for things like customized inputs or buttons, that have special
handlers in your live view. For example, if you have an appointment that expresses
a list of available times in the UI, but the action just takes a single time argument,
you can make each available time a button, like so:
<.button phx-click="time-selected" phx-value-time="<%= time %>" />
and then have an event handler like this:
def handle_event("time-selected", %{"time" => time}, socket) do
 form = AshPhoenix.Form.update_params(socket.assigns.form, &Map.put(&1, "time", time))
 {:noreply, assign(socket, :form, form)}
end

 validate(form, new_params, opts \\ [])

 @spec validate(t(), map(), Keyword.t()) :: t()

 @spec validate(Phoenix.HTML.Form.t(), map(), Keyword.t()) :: Phoenix.HTML.Form.t()

Validates the parameters against the form.
Options:
	:errors (boolean/0) - Set to false to hide errors after validation. The default value is true.

	:target (list of String.t/0) - The _target param provided by phoenix. Used to support the only_touched? option.

	:only_touched? (boolean/0) - If set to true, only fields that have been marked as touched will be used
If you use this for validation you likely want to use it when submitting as well. The default value is false.

 value(form, field)

 @spec value(t() | Phoenix.HTML.Form.t(), atom()) :: any()

Gets the value for a given field in the form.

AshPhoenix.Form.Auto

A tool to automatically generate available nested forms based on a resource and action.
To use this, specify forms: [auto?: true] when creating the form.
Keep in mind, you can always specify these manually when creating a form by simply specifying the forms option.
There are two things that this builds forms for:
	Attributes/arguments who's type is an embedded resource.
	Arguments that have a corresponding change manage_relationship(..) configured.

For more on relationships see the documentation for Ash.Changeset.manage_relationship/4.
When building forms, you can switch on the action type and/or resource of the form, in order to have different
fields depending on the form. For example, if you have a simple relationship called :comments with
on_match: :update and on_no_match: :create, there are two types of forms that can be in inputs_for(form, :comments).
In which case you may have something like this:
<%= for comment_form <- inputs_for(f, :comments) do %>
 <%= hidden_inputs_for(comment_form) %>
 <%= if comment_form.source.type == :create do %>
 <%= text_input comment_form, :text %>
 <%= text_input comment_form, :on_create_field %>
 <% else %>
 <%= text_input comment_form, :text %>
 <%= text_input comment_form, :on_update_field %>
 <% end %>

 <button phx-click="remove_form" phx-value-path="<%= comment_form.name %>">Remove Comment</button>
 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
<% end %>
This also applies to adding forms of different types manually. For instance, if you had a "search" field
to allow them to search for a record (e.g in a liveview), and you had an on_lookup read action, you could
render a search form for that read action, and once they've selected a record, you could render the fields
to update that record (in the case of on_lookup: :relate_and_update configurations).
Options
	:relationship_fetcher (term/0) - A two argument function that receives the parent data, the relationship to fetch.
The default simply fetches the relationship value, and if it isn't loaded, it uses [] or nil.

	:sparse_lists? (boolean/0) - Sets all list type forms to sparse?: true by default. Has no effect on forms derived for embedded resources. The default value is false.

	:include_non_map_types? (boolean/0) - Creates form for non map or array of map type inputs The default value is false.

Special Considerations
on_lookup: :relate_and_update
For on_lookup: :relate_and_update configurations, the "read" form for that relationship will use the appropriate read action.
However, you may also want to include the relevant fields for the update that would subsequently occur. To that end, a special
nested form called :_update is created, that uses an empty instance of that resource as the base of its changeset. This may require
some manual manipulation of that data before rendering the relevant form because it assumes all the default values. To solve for this,
if you are using liveview, you could actually look up the record using the input from the read action, and then use AshPhoenix.Form.update_form/3
to set that looked up record as the data of the _update form.
Many to Many Relationships
In the case that a manage_change option points to a join relationship, that form is presented via a special nested form called
_join. So the first form in inputs_for(form, :relationship) would be for the destination, and then inside of that you could say
inputs_for(nested_form, :_join). The parameters are merged together during submission.

 Summary

 Functions

 auto(resource, action, opts \\ [])

 embedded(resource, action, auto_opts)

 related(resource, action, auto_opts)

 unions(resource, action, auto_opts)

 Functions

 auto(resource, action, opts \\ [])

 embedded(resource, action, auto_opts)

 related(resource, action, auto_opts)

 unions(resource, action, auto_opts)

AshPhoenix.Form.WrappedValue

A sentinal value used when editing a union that has non-map values

 Summary

 Types

 t()

 Functions

 apply_constraints_array(term, constraints)

 Callback implementation for Ash.Type.apply_constraints_array/2.

 cast_input(input, constraints)

 Callback implementation for Ash.Type.cast_input/2.

 cast_stored(value, constraints)

 Callback implementation for Ash.Type.cast_stored/2.

 check_atomic(value, constraints, list? \\ false)

 default_short_name()

 dump_to_native(value, _)

 Callback implementation for Ash.Type.dump_to_native/2.

 equal?(left, right)

 Callback implementation for Ash.Type.equal?/2.

 fetch_key(map, atom)

 get_rewrites(merged_load, calculation, path, _)

 Callback implementation for Ash.Type.get_rewrites/4.

 handle_change(old_value, new_value, constraints)

 Callback implementation for Ash.Type.handle_change/3.

 handle_change?()

 handle_change_array(old_values, new_values, constraints)

 Callback implementation for Ash.Type.handle_change_array/3.

 input(opts)

 Validates that the keys in the provided input are valid for at least one action on the resource.

 input(opts, action)

 Same as input/1, except restricts the keys to values accepted by the action provided.

 load(record, load, constraints, context)

 Callback implementation for Ash.Type.load/4.

 prepare_change(old_value, new_value, constraints)

 Callback implementation for Ash.Type.prepare_change/3.

 prepare_change?()

 prepare_change_array(old_values, new_uncasted_values, constraints)

 Callback implementation for Ash.Type.prepare_change_array/3.

 rewrite(value, rewrites, constraints)

 Callback implementation for Ash.Type.rewrite/3.

 storage_type(_)

 Callback implementation for Ash.Type.storage_type/1.

 Types

 t()

 @type t() :: %AshPhoenix.Form.WrappedValue{
 __lateral_join_source__: term(),
 __meta__: term(),
 __metadata__: term(),
 __order__: term(),
 aggregates: term(),
 calculations: term(),
 value: term()
}

 Functions

 apply_constraints_array(term, constraints)

Callback implementation for Ash.Type.apply_constraints_array/2.

 cast_input(input, constraints)

Callback implementation for Ash.Type.cast_input/2.

 cast_stored(value, constraints)

Callback implementation for Ash.Type.cast_stored/2.

 check_atomic(value, constraints, list? \\ false)

 default_short_name()

 dump_to_native(value, _)

Callback implementation for Ash.Type.dump_to_native/2.

 equal?(left, right)

Callback implementation for Ash.Type.equal?/2.

 fetch_key(map, atom)

 get_rewrites(merged_load, calculation, path, _)

Callback implementation for Ash.Type.get_rewrites/4.

 handle_change(old_value, new_value, constraints)

Callback implementation for Ash.Type.handle_change/3.

 handle_change?()

 handle_change_array(old_values, new_values, constraints)

Callback implementation for Ash.Type.handle_change_array/3.

 input(opts)

 @spec input(values :: map() | Keyword.t()) :: map() | no_return()

Validates that the keys in the provided input are valid for at least one action on the resource.
Raises a KeyError error at compile time if not. This exists because generally a struct should only ever
be created by Ash as a result of a successful action. You should not be creating records manually in code,
e.g %MyResource{value: 1, value: 2}. Generally that is fine, but often with embedded resources it is nice
to be able to validate the keys that are being provided, e.g
Resource
|> Ash.Changeset.for_create(:create, %{embedded: EmbeddedResource.input(foo: 1, bar: 2)})
|> Ash.create()

 input(opts, action)

 @spec input(values :: map() | Keyword.t(), action :: atom()) :: map() | no_return()

Same as input/1, except restricts the keys to values accepted by the action provided.

 load(record, load, constraints, context)

Callback implementation for Ash.Type.load/4.

 prepare_change(old_value, new_value, constraints)

Callback implementation for Ash.Type.prepare_change/3.

 prepare_change?()

 prepare_change_array(old_values, new_uncasted_values, constraints)

Callback implementation for Ash.Type.prepare_change_array/3.

 rewrite(value, rewrites, constraints)

Callback implementation for Ash.Type.rewrite/3.

 storage_type(_)

Callback implementation for Ash.Type.storage_type/1.

AshPhoenix.FormData.Error protocol

A protocol for allowing errors to be rendered into a form.
To implement, define a to_form_error/1 and return a single error or list of errors of the following shape:
{:field_name, message, replacements}
Replacements is a keyword list to allow for translations, by extracting out the constants like numbers from the message.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_form_error(exception)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_form_error(exception)

AshPhoenix.FilterForm

A module to help you create complex forms that generate Ash filters.
Create a FilterForm
filter_form = AshPhoenix.FilterForm.new(MyApp.Payroll.Employee)
FilterForm's comprise 2 concepts, predicates and groups. Predicates are the simple boolean
expressions you can use to build a query (name == "Joe"), and groups can be used to group
predicates and more groups together. Groups can apply and or or operators to its nested
components.
Add a predicate to the root of the form (which is itself a group)
filter_form = AshPhoenix.FilterForm.add_predicate(filter_form, :some_field, :eq, "Some Value")

Add a group and another predicate to that group
{filter_form, group_id} = AshPhoenix.FilterForm.add_group(filter_form, operator: :or, return_id?: true)
filter_form = AshPhoenix.FilterForm.add_predicate(filter_form, :another, :eq, "Other", to: group_id)
validate/1 is used to merge the submitted form params into the filter form, and one of the
provided filter functions to apply the filter as a query, or generate an expression map,
depending on your requirements:
filter_form = AshPhoenix.FilterForm.validate(socket.assigns.filter_form, params)

Generate a query and pass it to the Domain
query = AshPhoenix.FilterForm.filter!(MyApp.Payroll.Employee, filter_form)
filtered_employees = MyApp.Payroll.read!(query)

Or use one of the other filter functions
AshPhoenix.FilterForm.to_filter_expression(filter_form)
AshPhoenix.FilterForm.to_filter_map(filter_form)
LiveView Example
You can build a form and handle adding and removing nested groups and predicates with the following:
alias MyApp.Payroll.Employee

@impl true
def render(assigns) do
 ~H"""
 <.simple_form
 :let={filter_form}
 for={@filter_form}
 phx-change="filter_validate"
 phx-submit="filter_submit"
 >
 <.filter_form_component component={filter_form} />
 <:actions>
 <.button>Submit</.button>
 </:actions>
 </.simple_form>
 <.table id="employees" rows={@employees}>
 <:col :let={employee} label="Payroll ID"><%= employee.employee_id %></:col>
 <:col :let={employee} label="Name"><%= employee.name %></:col>
 <:col :let={employee} label="Position"><%= employee.position %></:col>
 </.table>
 """
end

attr :component, :map, required: true, doc: "Could be a FilterForm (group) or a Predicate"

defp filter_form_component(%{component: %{source: %AshPhoenix.FilterForm{}}} = assigns) do
 ~H"""
 <div class="border-gray-50 border-8 p-4 rounded-xl mt-4">
 <div class="flex flex-row justify-between">
 <div class="flex flex-row gap-2 items-center">Filter</div>
 <div class="flex flex-row gap-2 items-center">
 <.input type="select" field={@component[:operator]} options={["and", "or"]} />
 <.button phx-click="add_filter_group" phx-value-component-id={@component.source.id} type="button">
 Add Group
 </.button>
 <.button
 phx-click="add_filter_predicate"
 phx-value-component-id={@component.source.id}
 type="button"
 >
 Add Predicate
 </.button>
 <.button
 phx-click="remove_filter_component"
 phx-value-component-id={@component.source.id}
 type="button"
 >
 Remove Group
 </.button>
 </div>
 </div>
 <.inputs_for :let={component} field={@component[:components]}>
 <.filter_form_component component={component} />
 </.inputs_for>
 </div>
 """
end

defp filter_form_component(
 %{component: %{source: %AshPhoenix.FilterForm.Predicate{}}} = assigns
) do
 ~H"""
 <div class="flex flex-row gap-2 mt-4">
 <.input
 type="select"
 options={AshPhoenix.FilterForm.fields(Employee)}
 field={@component[:field]}
 />
 <.input
 type="select"
 options={AshPhoenix.FilterForm.predicates(Employee)}
 field={@component[:operator]}
 />
 <.input field={@component[:value]} />
 <.button
 phx-click="remove_filter_component"
 phx-value-component-id={@component.source.id}
 type="button"
 >
 Remove
 </.button>
 </div>
 """
end

@impl true
def mount(_params, _session, socket) do
 socket =
 socket
 |> assign(:filter_form, AshPhoenix.FilterForm.new(Employee))
 |> assign(:employees, Employee.read_all!())

 {:ok, socket}
end

@impl true
def handle_event("filter_validate", %{"filter" => params}, socket) do
 {:noreply,
 assign(socket,
 filter_form: AshPhoenix.FilterForm.validate(socket.assigns.filter_form, params)
)}
end

def handle_event("filter_submit", %{"filter" => params}, socket) do
 filter_form = AshPhoenix.FilterForm.validate(socket.assigns.filter_form, params)

 case AshPhoenix.FilterForm.filter(Employee, filter_form) do
 {:ok, query} ->
 {:noreply,
 socket
 |> assign(:employees, Employee.read_all!(query: query))
 |> assign(:filter_form, filter_form)}

 {:error, filter_form} ->
 {:noreply, assign(socket, filter_form: filter_form)}
 end
end

def handle_event("remove_filter_component", %{"component-id" => component_id}, socket) do
 {:noreply,
 assign(socket,
 filter_form:
 AshPhoenix.FilterForm.remove_component(socket.assigns.filter_form, component_id)
)}
end

def handle_event("add_filter_group", %{"component-id" => component_id}, socket) do
 {:noreply,
 assign(socket,
 filter_form: AshPhoenix.FilterForm.add_group(socket.assigns.filter_form, to: component_id)
)}
end

def handle_event("add_filter_predicate", %{"component-id" => component_id}, socket) do
 {:noreply,
 assign(socket,
 filter_form:
 AshPhoenix.FilterForm.add_predicate(socket.assigns.filter_form, :name, :contains, nil,
 to: component_id
)
)}
end

 Summary

 Functions

 add_group(form, opts \\ [])

 Add a group to the filter. A group can contain predicates and other groups,
allowing you to build quite complex nested filters.

 add_predicate(form, field, operator_or_function, value, opts \\ [])

 Add a predicate to the filter.

 errors(form, opts \\ [])

 Returns a flat list of all errors on all predicates in the filter, made safe for display in a form.

 fields(resource)

 Returns the list of available fields, which may be attributes, calculations, or aggregates.

 filter(query, form)

 Converts the form into a filter, and filters the provided query or resource with that filter.

 filter!(query, form)

 Same as filter/2 but raises on errors.

 new(resource, opts \\ [])

 Create a new filter form.

 params_for_query(predicate)

 Returns the minimal set of params (at the moment just strips ids) for use in a query string.

 predicates(resource)

 Returns the list of available predicates for the given resource, which may be functions or operators.

 raw_errors(predicate)

 Returns a flat list of all errors on all predicates in the filter, without transforming.

 remove_component(form, group_or_predicate_id)

 Removes the group or predicate with the given id

 remove_group(form, group_id)

 Remove the group with the given id

 remove_predicate(form, id)

 Remove the predicate with the given id

 to_filter!(form)

 deprecated

 to_filter_expression(form)

 Returns a filter expression that can be provided to Ash.Query.filter/2

 to_filter_expression!(form)

 Same as to_filter_expression/1 but raises on errors.

 to_filter_map(form)

 Returns a filter map that can be provided to Ash.Filter.parse

 update_predicate(form, id, func)

 Update the predicate with the given id

 validate(form, params \\ %{}, opts \\ [])

 Updates the filter with the provided input and validates it.

 Functions

 add_group(form, opts \\ [])

Add a group to the filter. A group can contain predicates and other groups,
allowing you to build quite complex nested filters.
Options:
	:to (String.t/0) - The nested group id to add the group to.

	:operator - The operator that the group should have internally. Valid values are :and, :or The default value is :and.

	:return_id? (boolean/0) - If set to true, the function returns {form, predicate_id} The default value is false.

 add_predicate(form, field, operator_or_function, value, opts \\ [])

Add a predicate to the filter.
Options:
	:to (String.t/0) - The group id to add the predicate to. If not set, will be added to the top level group.

	:return_id? (boolean/0) - If set to true, the function returns {form, predicate_id} The default value is false.

	:path - The relationship path to apply the predicate to

 errors(form, opts \\ [])

Returns a flat list of all errors on all predicates in the filter, made safe for display in a form.
Only errors that implement the AshPhoenix.FormData.Error protocol are displayed.

 fields(resource)

Returns the list of available fields, which may be attributes, calculations, or aggregates.

 filter(query, form)

Converts the form into a filter, and filters the provided query or resource with that filter.

 filter!(query, form)

Same as filter/2 but raises on errors.

 new(resource, opts \\ [])

Create a new filter form.
Options:
	:params (term/0) - Initial parameters to create the form with The default value is %{}.

	:as (String.t/0) - Set the parameter name for the form. The default value is "filter".

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the predicate and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:warn_on_unhandled_errors? (boolean/0) - Whether or not to emit warning log on unhandled form errors The default value is true.

	:remove_empty_groups? (boolean/0) - If true (the default), then any time a group would be made empty by removing a group or predicate, it is removed instead.
An empty form can still be added, this only affects a group if its last component is removed. The default value is false.

 params_for_query(predicate)

Returns the minimal set of params (at the moment just strips ids) for use in a query string.

 predicates(resource)

Returns the list of available predicates for the given resource, which may be functions or operators.

 raw_errors(predicate)

Returns a flat list of all errors on all predicates in the filter, without transforming.

 remove_component(form, group_or_predicate_id)

Removes the group or predicate with the given id

 remove_group(form, group_id)

Remove the group with the given id

 remove_predicate(form, id)

Remove the predicate with the given id

 to_filter!(form)

 This function is deprecated. Use to_filter_expression!/1 instead.

 to_filter_expression(form)

Returns a filter expression that can be provided to Ash.Query.filter/2
To add this to a query, remember to use ^, for example:
filter = AshPhoenix.FilterForm.to_filter_expression(form)

Ash.Query.filter(MyApp.Post, ^filter)
Alternatively, you can use the shorthand: filter/2 to apply the expression directly to a query.

 to_filter_expression!(form)

Same as to_filter_expression/1 but raises on errors.

 to_filter_map(form)

Returns a filter map that can be provided to Ash.Filter.parse
This allows for things like saving a stored filter. Does not currently support parameterizing calculations or functions.

 update_predicate(form, id, func)

Update the predicate with the given id

 validate(form, params \\ %{}, opts \\ [])

Updates the filter with the provided input and validates it.
At present, no validation actually occurs, but this will eventually be added.
Passing reset_on_change?: false into opts will prevent predicates to reset
the value and operator fields to nil if the predicate field changes.

AshPhoenix.FilterForm.Arguments

Represents the arguments to a calculation being filtered on

 Summary

 Functions

 errors(arguments, transform_errors)

 new(params, arguments)

 validate_arguments(arguments, params)

 Functions

 errors(arguments, transform_errors)

 new(params, arguments)

 validate_arguments(arguments, params)

AshPhoenix.FilterForm.Predicate

Represents an individual predicate appearing in a filter form.
Predicates are grouped up in an AshPhoenix.FilterForm to create boolean
filter statements.

 Summary

 Functions

 errors(predicate, transform_errors)

 Functions

 errors(predicate, transform_errors)

AshPhoenix.Form.InvalidPath exception

Raised when an invalid path is used to find, update or remove a form

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 message(map)

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoActionConfigured exception

Raised when a form action should happen but no action of the appropriate type has been configured

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 message(map)

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoDataLoaded exception

Raised when a data needed to be used but the required data was not loaded

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 message(map)

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoFormConfigured exception

Raised when attempting to refer to a form but no nested form with that name was configured.

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Functions

 message(error)

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoResourceConfigured exception

Raised when a form needed to be constructed but the resource for that form could not be determined

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 message(map)

Callback implementation for Exception.message/1.

mix ash_phoenix.install

Installs AshPhoenix into a project. Should be called with mix igniter.install ash_phoenix

mix ash_phoenix.gen.html

This task renders .ex and .heex templates and copies them to specified directories.
Positional Arguments
	domain - The domain (e.g. "Shop").
	resource - The resource (e.g. "Product").

Options
	--resource-plural - The plural resource name (e.g. "products")

mix ash_phoenix.gen.html MyApp.Shop MyApp.Shop.Product --resource-plural products

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix ash_phoenix.gen.live

Generates liveviews for a given domain and resource.
The domain and resource must already exist, this task does not define them.
Example
mix ash_phoenix.gen.live --domain MyApp.Shop --resource MyApp.Shop.Product --resourceplural products

Options
	--domain - Existing domain
	--resource - Existing resource module name
	--resource-plural - Pluralized version resource name for the route paths and templates
	--phx-version - Phoenix version 1.7 (old) or 1.8 (new). Defaults to 1.8

 Summary

 Functions

 igniter(igniter)

 Callback implementation for Igniter.Mix.Task.igniter/1.

 Functions

 igniter(igniter)

Callback implementation for Igniter.Mix.Task.igniter/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

