

 ash_postgres

 v2.0.0-rc.13

 [image: Logo]

 Table of contents

 	Home

 	Change Log

 	Tutorials

 	Get Started With Postgres

 	Resources

 	References

 	Polymorphic Resources

 	Development

 	Migrations

 	Testinging with AshPostgres

 	Upgrading to 2.0

 	Advanced

 	Expressions

 	Schema Based Multitenancy

 	Manual Relationships

 	Reference

 	DSL: AshPostgres.DataLayer

 	Modules

 	AshPostgres

 	AshPostgres.DataLayer

 	AshPostgres.Repo

 	AshPostgres.ManualRelationship

 	AshPostgres.CheckConstraint

 	AshPostgres.CustomExtension

 	AshPostgres.CustomIndex

 	AshPostgres.DataLayer.Info

 	AshPostgres.Reference

 	AshPostgres.Statement

 	AshPostgres.Tsquery

 	AshPostgres.Tsvector

 	AshPostgres.Type

 	AshPostgres.Extensions.Vector

 	AshPostgres.CustomAggregate

 	AshPostgres.Migration

 	EctoMigrationDefault

 	AshPostgres.Functions.ILike

 	AshPostgres.Functions.Like

 	AshPostgres.Functions.TrigramSimilarity

 	AshPostgres.Functions.VectorCosineDistance

 	Mix Tasks

 	mix ash_postgres.create

 	mix ash_postgres.drop

 	mix ash_postgres.generate_migrations

 	mix ash_postgres.migrate

 	mix ash_postgres.rollback

AshPostgres Documentation

Welcome! This documentation is for AshPostgres, the PostgreSQL data layer for Ash Framework. If you have not yet, please see the Ash Framework documentation.

 Dive In

	Get Started

 Tutorials

	Get Started

 Topics

 Resources

	References
	Polymorphic Resources

 Development

	Migrations and tasks
	Testing
	Upgrading to 2.0

 Advanced

	Expressions
	Manual Relationships
	Schema Based Multitenancy

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v2.0.0-rc.13 (2024-04-27)

 Bug Fixes:

	ensure limit/offset triggers joining for update/destroy query

	only reference sub if a subquery is created

 v2.0.0-rc.12 (2024-04-27)

 Bug Fixes:

	update ash_sql for inner join fixes

	fix argument order in AshSql.Bindings.default_bindings/4 (#251)

 v2.0.0-rc.11 (2024-04-24)

 Bug Fixes:

	properly honor limit in bulk operations

 v2.0.0-rc.10 (2024-04-23)

 Bug Fixes:

	undo change that expresses that atomics cant be done without ash-functions

 v2.0.0-rc.9 (2024-04-23)

 Breaking Changes:

	change defaults for uuids to gen_random_uuid()

	Use UTC for default generated timestamps (#131)

	3.0 (#227)

 Features:

	add create? and drop? callbacks to AshPostgres.Repo (#143)

 Bug Fixes:

	handle missing aggregate relationships and fields better in transformers

	update ash_sql for bug fixes

	reproduce issue around atomic updates & validations

	ensure that exists with a filter paired with from_many? functions properly

	update ash_sql, fix credo

	use proper sql implementation in default_bindings

	don't wait for shell input when checking migrations

	properly handle non-filter aggregate filters

	ensure timestamps are present in extension migrations

	handle fully fleshed out aggregate fields

 Improvements:

	warn on missing ash-functions at compile time

	support mix ash.rollback with interactive rollback

	don't fetch version in agent when using sandbox

	loosen 3.0 release candidate requirement

	fixes for 3.0 changes and AshSql changes

	move many internals out to AshSql package

	add default implementation for pg_version, and rename to min_pg_version

	upgrade to 3.0

	properly show unsupported error expression

 v2.0.0-rc.8 (2024-04-22)

 Bug Fixes:

	ensure that exists with a filter paired with from_many? functions properly

 v2.0.0-rc.7 (2024-04-12)

 Bug Fixes:

	update ash_sql, fix credo

 v2.0.0-rc.6 (2024-04-10)

 Bug Fixes:

	use proper sql implementation in default_bindings

 Improvements:

	support mix ash.rollback with interactive rollback

 v2.0.0-rc.5 (2024-04-05)

 Bug Fixes:

	don't wait for shell input when checking migrations

 Improvements:

	don't fetch version in agent when using sandbox

 v2.0.0-rc.4 (2024-04-02)

 Improvements:

	loosen 3.0 release candidate requirement

 v2.0.0-rc.3 (2024-04-01)

 Improvements:

	fixes for 3.0 changes and AshSql changes

	move many internals out to AshSql package

 v2.0.0-rc.2 (2024-03-29)

 Breaking Changes:

	change defaults for uuids to gen_random_uuid()

	Use UTC for default generated timestamps (#131)

	3.0 (#227)

 Features:

	add create? and drop? callbacks to AshPostgres.Repo (#143)

 Bug Fixes:

	properly handle non-filter aggregate filters

	ensure timestamps are present in extension migrations

	handle fully fleshed out aggregate fields

 Improvements:

	add default implementation for pg_version, and rename to min_pg_version

	upgrade to 3.0

	properly show unsupported error expression

 v2.0.0-rc.1 (2024-03-28)

 Improvements:

	add default implementation for pg_version, and rename to min_pg_version

 v2.0.0-rc.0 (2024-03-27)

 Breaking Changes:

	change defaults for uuids to gen_random_uuid()

	Use UTC for default generated timestamps (#131)

 Features:

	add create? and drop? callbacks to AshPostgres.Repo (#143)

 Improvements:

	show proper error when using error expresison without ash-functions extension

 v1.5.22 (2024-03-20)

 Bug Fixes:

	don't fail on aggregate query generation

 v1.5.21 (2024-03-20)

 Bug Fixes:

	properly format migrations

	ensure exists aggregates have filters included

 v1.5.20 (2024-03-20)

 Bug Fixes:

	undo default of nulls_distinct option to true (#223)

	generate correct custom index name in down migration function (#222)

 v1.5.19 (2024-03-19)

 Bug Fixes:

	encode maps on update using fragments

 Improvements:

	Add nulls_distinct option to CustomIndex (#221)

 v1.5.18 (2024-03-19)

 Bug Fixes:

	don't reuse binding in many to many aggregate joins

	typo in extension generator creates invalid drop

	merge base_filter and custom index's where correctly (#219)

 Improvements:

	properly format generated migrations

	don't select fields in exists subquery

 v1.5.17 (2024-03-06)

 Bug Fixes:

	prevent ecto/pg from getting confused about the type of maps

 v1.5.16 (2024-03-05)

 Bug Fixes:

	always exclude :order_by on bulk updateable query

	don't apply join relationship sort for lateral join

 v1.5.15 (2024-03-01)

 Improvements:

	don't double cast to the same type

	detect more types

 v1.5.14 (2024-03-01)

 Improvements:

	no need for subquery for simple table aliases

 v1.5.13 (2024-02-29)

 Bug Fixes:

	properly handle multiple sorts in aggregate

 v1.5.12 (2024-02-29)

 Bug Fixes:

	ensure that from_many? joins are properly limited

	ensure that lateral joins are properly filtered

 v1.5.11 (2024-02-29)

 Bug Fixes:

	simplify(and fix) exists subquery generation

	properly leverage subqueries throughout relationship joining

	migration generator extensions in multiple repos (#214)

	Migration generator for extensions in multiple repos

 Improvements:

	optimize more cases for simple join aggregates

 v1.5.10 (2024-02-26)

 Bug Fixes:

	fix error when encoding vectors

	ensure select is applied (or not) properly in bulk update/destroys

 v1.5.9 (2024-02-25)

 Bug Fixes:

	handle more subquery filter cases for aggregates

	only apply filters inside aggregate subquery

 Improvements:

	add test for aggregates

 v1.5.8 (2024-02-24)

 Bug Fixes:

	properly handle complex types in lists

 v1.5.7 (2024-02-22)

 Bug Fixes:

	properly apply lateral join conditions to left lateral joins

 v1.5.6 (2024-02-21)

 Bug Fixes:

	ensure select is properly set on delete_all

 Improvements:

	optimize aggregate query filtering

 v1.5.5 (2024-02-21)

 Bug Fixes:

	ensure proper return value for single aggregate runs

 v1.5.4 (2024-02-21)

 Bug Fixes:

	don't sort a query that will be used with delete_all

	ensure that exists? aggregates use repo.exists?

	properly handle to_many joins in aggregates

	honor aggregate query filters

	use proper tables in joins originating from polymorphic resource (#211)

	properly transfer table names to non-inner wrapper queries (#210)

 v1.5.3 (2024-02-19)

 Bug Fixes:

	handle non-inner joins in delete_all

	handle non-inner joins in update

 v1.5.2 (2024-02-19)

 Bug Fixes:

	don't update_all or delete_all with order_by

	handle updating from queries w/ non-inner initial joins

 v1.5.1 (2024-02-19)

 Bug Fixes:

	joining to from_many?: true relationships not honoring limit

 v1.5.0 (2024-02-16)

 Features:

	Make MigrationGenerator accept atoms (#201)

 Bug Fixes:

	allow subquerying a through while aggregating a many to many

	don't subquery if we need to reference parent_as

	avoid double wrapping in subqueries

	properly set 0 binding on joined subquery creation

	properly alter renaming attributes in migration generator

	handle original data not available in destroy_query

	use primary key of source as join key

	use pkey if error fields is empty

	forgot to bind keys to a variable ð�¤¦ð��»

	ensure identity keys is never missing

	properly build subqueries when required for relationship queries

	only migrate/rollback one repo at a time

	proper return types for updates from queries

	allow atomics to return nil

	Correct the matching used in building a distinct expression (#196)

	only rollback to savepoint on specific errors

	keep fields of custom_index in format that they were provided (#195)

	remap selected fields, don't subquery in aggregate joins

	include explicit schema in snapshot folder name

	Support all_tenants? in custom index (#194)

 Improvements:

	update to latest ash

	mark (i)like functions as predicates (#205)

	detect bigserial when altering attributes

	Include modules in installed_extensions return type (#202)

	don't drop primary key in case of removal

	handle if select is present on query

	support Ash.Changeset.OriginalDataNotAvailable

	support count_nils expression

	error_fields for custom_index

	support latest ash changes

 v1.4.0 (2024-01-12)

 Features:

	Add unit test to check lateral joins

 Bug Fixes:

	unset sort/distinct on related queries

	subquery relationships that have filters

	don't overwrite manually set schema on lateral join query

	properly configure polymorphic_name option

	honor configured schema on bulk create

 Improvements:

	support all_tenants? option for identities

	support all_tenants? option for custom indexes

	support join_filters on aggregates

	use the target action when generating related queries

 v1.3.68 (2024-01-04)

 Bug Fixes:

	properly gather types for operator & function overloads

 v1.3.67 (2024-01-04)

 Bug Fixes:

	support encoding errors with expressions in them

 Improvements:

	support latest ash version & operator overrides

	support new bulk operations

 v1.3.66 (2023-12-30)

 Improvements:

	support new return_query/2 callback

	support new :no_rollback error signal

	require name when generating migrations

	support directly referencing aggregates from aggregates

	support aggregates as get_path subject

 v1.3.65 (2023-12-23)

 Bug Fixes:

	various fixes for unnecessary aggregate additions

	use lateral joins when joining to subquery w/ parent reference

	replace upsert field with source in EXCLUDED fragment (#187)

	handle strings in get_path

	reenable mix tasks that need calling

 Improvements:

	support aggregates using other aggregates

	support string_length and string_trim

	only start savepoints when necessary

	clean up nested if statements to single case statements

	support for error/2 expression

 v1.3.64 (2023-12-04)

 Bug Fixes:

	properly cast lazy update defaults to target type

 v1.3.63 (2023-12-03)

 Bug Fixes:

	use maps for composite_type instead of tuples

	avoid empty error on upserts with :nothing

	simplify aggregate bindings & calculation reference building

	hydrate aggregate refs when adding for calculations

	apply limit to from_many? relationship joins

	properly add filters for exists aggregates

	properly expand calculation values across aggregate invocations

	don't add filter for no_attributes? relationships

	handle no_attributes? flag on aggregates better

	properly handle sorted relationships in aggregates

 Improvements:

	support composite_type/2 expression

	support composite types

	optimize relationships with identity on other end

	allow specifying multi-column foreign keys (#180)

	add match_with option on references

	add match_type option on references

 v1.3.62 (2023-11-16)

 Bug Fixes:

	use synonymous_relationship_path when looking up ref bindings

	add calculation context to calculation expressions

 v1.3.61 (2023-11-15)

 Bug Fixes:

	don't append update_defaults automatically if upsert_fields was set

	don't ensure repo compiled at compile time

	handle additional case for new functional repo callback

	get resource from proper bindings on exists query

 Improvements:

	support a 2 argument function for the repo option

	spport CURRENT_DATE default

 v1.3.60 (2023-10-27)

 Improvements:

	support parent in sort expressions

 v1.3.59 (2023-10-25)

 Improvements:

	join relationships for aggregate filters

 v1.3.58 (2023-10-24)

 Bug Fixes:

	don't traverse new types for storage type

	properly join to related references in relationship filters

 v1.3.57 (2023-10-17)

 Improvements:

	allow for combining AshPostgres.Repo with other repos

 v1.3.56 (2023-10-11)

 Bug Fixes:

	don't raise all errors

 v1.3.55 (2023-10-11)

 Improvements:

	support atomics on upserts

 v1.3.54 (2023-10-10)

 Bug Fixes:

	fix type specification for foreign_key_names

 v1.3.53 (2023-10-10)

 Bug Fixes:

	don't run main query if only exists aggs are specified

	subquery aggregate if limit is applied

 Improvements:

	update ash dependency

	support :ci_string as a storage_type

	support to-one references in calculations

 v1.3.52 (2023-09-26)

 Bug Fixes:

	use :wrap_list type instead of custom validaitons (#167)

 Improvements:

	fix upsert_fields behavior for upserts

	support data_layer_context option on transactions

 v1.3.51 (2023-09-20)

 Improvements:

	add AshPostgres.Tsvector

	add AshPostgres.Tsquery

	support vector types and vector_cosine_distance

 v1.3.50 (2023-09-06)

 Improvements:

	Allow resources to opt out of the primary key requirement. (#166)

 v1.3.49 (2023-09-04)

 Improvements:

	implement ash lifecycle tasks

 v1.3.48 (2023-09-04)

 Improvements:

	better error message for missing table config

 v1.3.47 (2023-08-31)

 Bug Fixes:

	ensure we always select at least one field, and change one field

 v1.3.46 (2023-08-31)

 Bug Fixes:

	use provided values for updates

 v1.3.45 (2023-08-31)

 Bug Fixes:

	don't clobber loaded data on update

 v1.3.44 (2023-08-31)

 Bug Fixes:

	properly handle ensure nsted calls to get_path are jsonb

 Improvements:

	support atomics (#165)

 v1.3.43 (2023-08-22)

 Bug Fixes:

	properly provide constraints on all type casting

 v1.3.42 (2023-08-22)

 Bug Fixes:

	support non-atom named aggregates

	handle case where multiple grouped aggregates depend on further aggregates

 Improvements:

	support in-line aggregates

	specify @behaviour in AshPostgres.Type

	add value_to_postgres_default/3 and AshPostgres.Type

	handle non-cast-in-type queries

 v1.3.41 (2023-08-08)

 Bug Fixes:

	handle interaction between distinct, join filters and sort

 Improvements:

	custom-extension implementation (#162)

	custom-extension implementation

	allow adding custom-extension by module's reference and fixes formatting

	support new from_many? option

	subquery after distinct to handle distinct

 v1.3.40 (2023-08-01)

 Bug Fixes:

	properly detect optimizable first aggregates

 v1.3.39 (2023-08-01)

 Bug Fixes:

	properly alter deferrability on attribute alter

 Improvements:

	update ash

	handle empty maps in migration defaults automatically

	handle empty lists in migraiton defaults automatically

	apply sort in subqueries properly

	handle no_attributes? better in more places

	support the new parent/1 expr in relationships

	explicitly lock the source row

 v1.3.38 (2023-07-21)

 Bug Fixes:

	un-break aggregates referencing calculations

 Improvements:

	properly handle context for referenced calculations

 v1.3.37 (2023-07-19)

 Improvements:

	support new distinct_sort option

 v1.3.36 (2023-07-19)

 Bug Fixes:

	type casting improvements, handle manual relationships in exists

	protected names in conflict_target (#158)

 v1.3.35 (2023-07-18)

 Improvements:

	support new distinct features from ash core

 v1.3.34 (2023-07-18)

 Improvements:

	support unary -/1 operator

 v1.3.33 (2023-07-14)

 Bug Fixes:

	convert Ash.Resource.Aggregate to Ash.Query.Aggregate when adding

 Improvements:

	support deferrable option in migration generator

	support exists aggregates

 v1.3.32 (2023-07-12)

 Improvements:

	support at/2 expression

 v1.3.31 (2023-07-12)

 Bug Fixes:

	raise better error on invalid filter values

	Fixes multiple schema identities migrations (#156)

	fix Logger deprecations for elixir 1.15 (#155)

	interpolate table names with inspect in generated migrations (#152)

 Improvements:

	better ash_functions message

	support string_split

	add postgres expressions guide

	add simple_join_first_aggregates option

 v1.3.30 (2023-06-06)

 Bug Fixes:

	handle changing custom index names better

	validate custom index names

 v1.3.29 (2023-06-05)

 Bug Fixes:

	properly handle nested aggregate references

 v1.3.28 (2023-05-23)

 Bug Fixes:

	handle raised errors in bulk actions

 v1.3.27 (2023-05-17)

 Improvements:

	raise better errors on conflicting locks

 v1.3.26 (2023-05-16)

 Bug Fixes:

	use proper lock list again

	use proper list of row level locks

	check changeset.action_type not changeset.action.type

 Improvements:

	support more lock types

 v1.3.25 (2023-05-08)

 Improvements:

	support changeset.filters (for optimistic locking)

 v1.3.24 (2023-05-03)

 Improvements:

	support bulk upserts

 v1.3.23 (2023-05-01)

 Bug Fixes:

	don't incorrectly mark references as primary key references

	go back to old migration sorting algorithm

 v1.3.22 (2023-04-28)

 Improvements:

	support locking

 v1.3.21 (2023-04-27)

 Improvements:

	handle new spark versions better, more explicit snapshots

 v1.3.20 (2023-04-22)

 Bug Fixes:

	subquery aggregates when a distinct is being added

	don't call .table on nil

	wrap datetime_add in parenthesis

	handle primary key changes properly

 Improvements:

	update ash

	don't call .table on nil snapshot

	use digraph for operation ordering

 v1.3.19 (2023-04-07)

 Bug Fixes:

	properly handle newtypes, add test

	honor newtypes when determining migration type

	handle nil ash_functions_version in another place

	handle nil ash_functions_version

 Improvements:

	update ash

 v1.3.18 (2023-03-23)

 v1.3.17 (2023-03-20)

 Bug Fixes:

	properly map parent bindings in exists

 v1.3.16 (2023-03-03)

 Improvements:

	support new date expressions

 v1.3.15 (2023-02-23)

 Improvements:

	add aggregates used by sorts

 v1.3.14 (2023-02-21)

 Improvements:

	Implement string_join expr (#132)

 v1.3.13 (2023-02-17)

 Bug Fixes:

	don't use :distinct when uniq? is not true

 v1.3.12 (2023-02-16)

 Bug Fixes:

	exclude order_by when building aggregates

 v1.3.11 (2023-02-16)

 Bug Fixes:

	properly find migration directories in umbrella apps

	don't double-cast to array for list aggregates

 Improvements:

	significantly optimize aggregate queries

	better type casting for concat operator

 v1.3.10 (2023-02-09)

 Bug Fixes:

	sorting on optimized first aggregates

 v1.3.9 (2023-02-09)

 Bug Fixes:

	do limit/offset outside of query if distinct is required

	load by order ascending

 Improvements:

	support new uniq? option on count/list aggregates

	optimized first aggregates where possible

 v1.3.8 (2023-02-06)

 Bug Fixes:

	Actually use AshPostgres.Repo behaviour (#129)

 Improvements:

	authorization filters are now attached by ash core

 v1.3.7 (2023-02-06)

 Bug Fixes:

	Actually use AshPostgres.Repo behaviour (#129)

 Improvements:

	authorization filters are now attached by ash core

 v1.3.6 (2023-02-03)

 Bug Fixes:

	properly set next migration name

	override insert function for proper ecto interop

 Improvements:

	add migration_ignore_attributes

 v1.3.5 (2023-01-29)

 Bug Fixes:

	properly convert to/from ecto, only when necessary

 v1.3.4 (2023-01-28)

 Bug Fixes:

	support latest ecto interop changes in ash core

 Improvements:

	properly cast division to floats for elixir-y behavior

	support for dynamically set repo

	update ash

 v1.3.3 (2023-01-18)

 Improvements:

	update to new docs patterns

 v1.3.2 (2023-01-17)

 Bug Fixes:

	nest subqueries when required for distinct

	replace {:in, ...} type with {:array, ...}

 v1.3.1 (2023-01-11)

 Bug Fixes:

	allow for non attribute aggregate references for first/list

 v1.3.0 (2023-01-11)

 Improvements:

	update to latest ash

 v1.3.0-rc.4 (2023-01-09)

 Bug Fixes:

	properly join to all required relationships

 v1.3.0-rc.3 (2023-01-09)

 Bug Fixes:

	properly type cast in fragments (and elsewhere)

 v1.3.0-rc.2 (2023-01-06)

 Bug Fixes:

	undo changes that caused type casting bugs

 v1.3.0-rc.1 (2023-01-06)

 Bug Fixes:

	undo changes that caused type casting bugs

 v1.3.0-rc.1 (2023-01-06)

 Bug Fixes:

	use parent_expr instead of this

	various expression & type building fixes

 v1.3.0-rc.0 (2023-01-04)

 Features:

	support latest ash

 Bug Fixes:

	honor calculation constraints

	handle lists with expressions inside

 Improvements:

	support calc constraints

	support new cast_in_query?/2

	support calculations as aggregate targets

 v1.2.6 (2022-12-27)

 Bug Fixes:

	properly set migrations_path default in umbrellas

	don't subquery unless we have to

 v1.2.5 (2022-12-21)

 Bug Fixes:

	don't group aggregates that reference relationships in their filters

	properly skip unique indexes when configured

 Improvements:

	add like and ilike

 v1.2.4 (2022-12-18)

 Bug Fixes:

	properly add aggregates to query when referenced from calculations

 Improvements:

	distinct on source of query, not relationship destination

 v1.2.3 (2022-12-15)

 Bug Fixes:

	properly combine sort + to many join filter

 v1.2.2 (2022-12-15)

 Improvements:

	udpate to latest ash, fix array issues

 v1.2.1 (2022-12-13)

 Bug Fixes:

	pattern match error in lazy_non_matching_defaults/1

	use attribute name not attribute for default funs

	actually fix default_fun upserts

	fix upserting update_defaults

 v1.2.0 (2022-12-13)

 Bug Fixes:

	make migration generator work better for umbrellas

 v1.2.0-rc.1 (2022-12-10)

 Bug Fixes:

	don't make migration generation recursive

	nevermind, can't make migrate recursive

 Improvements:

	make migrate task recursive as well

	mark generate_migrations as recursive for umbrellas

 v1.2.0-rc.0 (2022-12-10)

 Features:

	avg/min/max/custom aggregate support

 Bug Fixes:

	various broken behavior from new aggregate work

	forgot a

	fix various problems with the model behind aggregates

	properly set binding names for many to many join filters

 Improvements:

	better error messages from mix tasks

	validate that references refer to relationships

	avg/min/max/custom aggregate support

	upgrade and depend on ash version

	fix lateral many to many joins

	inform users about postgres incompatibility with multidimensional arrays

 v1.1.3 (2022-12-01)

 Bug Fixes:

	properly turn custom index keys into atoms

 Improvements:

	update ash, add test for transaction hooks

	support new transaction info with hooks

	add unique constraints to changeset for custom unique indexes

	separate out concurrent index creations and do them in a separate transaction

 v1.1.2 (2022-11-21)

 Bug Fixes:

	don't use hard-coded join assoc name (#118)

 Improvements:

	add migration_defaults for customizing default values

 v1.1.1 (2022-10-25)

 Bug Fixes:

	&& operator in expressions to point to ash_elixir_and (#115)

 Improvements:

	add check for unsupported expression

 v1.1.0 (2022-10-20)

 Features:

	support now() in latest Ash

 v1.0.0 (2022-10-17)

 Bug Fixes:

	no unnecessary type cast on count/sum aggregates

	don't apply filter to array_agg

 Improvements:

	update to Ash 2.0

	handle UUID types better

	set lateral join source for latest ash

	use prepend?: true option when applying relationship sorts

 v1.0.0-rc.9 (2022-10-07)

 Bug Fixes:

	handle custom calculation selects properly

	use attribute source for identity fields

 Improvements:

	update to the latest ash

	remove the need to dynamically expand fragments

	when casting string to uuid, dump to binary

	update to latest ash

 v1.0.0-rc.8 (2022-09-29)

 Bug Fixes:

	never attempt to group custom operations

	wrap case statement in parens

 Improvements:

	exists filters necessitate multiple aggregate joins (for now)

 v1.0.0-rc.7 (2022-09-28)

 Bug Fixes:

	properly type cast top level fragments

 Improvements:

	update to the latest ash

	upgrade to new exists usage

 v1.0.0-rc.6 (2022-09-21)

 Improvements:

	support latest ash

 v1.0.0-rc.5 (2022-09-15)

 Improvements:

	update to latest ash

	implement Length function (#111)

	upgrade to latest ash

 v1.0.0-rc.4 (2022-09-14)

 Improvements:

	support latest ash

	support manual relationships with joins

 v1.0.0-rc.3 (2022-09-12)

 Bug Fixes:

	keep unique index keys in order in migrations

 v1.0.0-rc.2 (2022-09-06)

 Improvements:

	support latest ash exists/2 expr

 v1.0.0-rc.1 (2022-09-04)

 v0.43.0 (2022-08-05)

 Bug Fixes:

	properly order check constraints

	remove check constraints before adding them

 Improvements:

	fix typecasting for calculations & embed access

	add custom_statements to migration generator

	support || and &&

 v0.42.0-rc.7 (2022-07-14)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	use new doc_index patterns

	support upsert_identity with base_filter

	support upsert_identity with base filters

	handle various join bugs

	use attribute.name if attribute.source is nil

	set attribute source properly

	ensure source is always set on attributes in snapshots

	handle paths for aggregates w/ > 2 relationships

	rename attributes correctly in down migration (#98)

	don't generate modify commands for attributes due to schema changes

	default schema to primary schema

	test and confirm behavior of schemas

	use correct bindings for filtered relationships

	cast calcs in query expressions

	explicitly type cast aggregate/calc selects

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	add default guide, and empty ash postgres guide

	set update_defaults on upsert results

	handle fallback ecto migration default elegantly (#94)

	add ignore? option to references

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.6 (2022-07-10)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	use new doc_index patterns

	support upsert_identity with base_filter

	support upsert_identity with base filters

	handle various join bugs

	use attribute.name if attribute.source is nil

	set attribute source properly

	ensure source is always set on attributes in snapshots

	handle paths for aggregates w/ > 2 relationships

	rename attributes correctly in down migration (#98)

	don't generate modify commands for attributes due to schema changes

	default schema to primary schema

	test and confirm behavior of schemas

	use correct bindings for filtered relationships

	cast calcs in query expressions

	explicitly type cast aggregate/calc selects

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	set update_defaults on upsert results

	handle fallback ecto migration default elegantly (#94)

	add ignore? option to references

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.5 (2022-07-06)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	support upsert_identity with base_filter

	support upsert_identity with base filters

	handle various join bugs

	use attribute.name if attribute.source is nil

	set attribute source properly

	ensure source is always set on attributes in snapshots

	handle paths for aggregates w/ > 2 relationships

	rename attributes correctly in down migration (#98)

	don't generate modify commands for attributes due to schema changes

	default schema to primary schema

	test and confirm behavior of schemas

	use correct bindings for filtered relationships

	cast calcs in query expressions

	explicitly type cast aggregate/calc selects

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	set update_defaults on upsert results. For most users, this means that where previously updated_at would not get set on an upsert that ultimately resulted in an update, it will now.

	handle fallback ecto migration default elegantly (#94)

	add ignore? option to references

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.4 (2022-06-28)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	use attribute.name if attribute.source is nil

	set attribute source properly

	ensure source is always set on attributes in snapshots

	handle paths for aggregates w/ > 2 relationships

	rename attributes correctly in down migration (#98)

	don't generate modify commands for attributes due to schema changes

	default schema to primary schema

	test and confirm behavior of schemas

	use correct bindings for filtered relationships

	cast calcs in query expressions

	explicitly type cast aggregate/calc selects

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	handle fallback ecto migration default elegantly (#94)

	add ignore? option to references

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.3 (2022-06-28)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	set attribute source properly

	ensure source is always set on attributes in snapshots

	handle paths for aggregates w/ > 2 relationships

	rename attributes correctly in down migration (#98)

	don't generate modify commands for attributes due to schema changes

	default schema to primary schema

	test and confirm behavior of schemas

	use correct bindings for filtered relationships

	cast calcs in query expressions

	explicitly type cast aggregate/calc selects

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	handle fallback ecto migration default elegantly (#94)

	add ignore? option to references

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.2 (2022-05-18)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	don't try and match reference schema to table schema

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.1 (2022-05-18)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	don't use table where we should use schema in migration generator

	handle combinations of distinct & sort

	ensure all single actions are explicitly marked as primary? (#95)

	only rename schema when necessary

	inspect un-defaultable value in error message

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	check_migrations, rename to --check

	add explicit timeout capability declaration

	add static schema specification in DSL

	support static schema specification in migration generator

	implement decimal ecto migration default (#91)

	support float as Ecto migration default (#89)

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.42.0-rc.0 (2022-04-26)

 Features:

	support cast_in_query?/0 and source

 Bug Fixes:

	select custom aggregates properly

	don't add reference when renaming column if unnecessary

	don't cast nil to ""

	!is_atom/1 -> !is_boolean/1

	sanitize lists to stringify atoms

	cast embedded atoms to strings first

	don't cast {:in, :any} types

	more don't cast any types

	don't cast if there is no type

	properly handle relationship filter bindings

	don't consider fields changed with only source -> name changes

	handle name -> source change in more places

	handle name -> source rename in operation ordering

	fix aggregate/base filters

	don't select more fields than necessary

	don't call ecto_type twice when resolving types

	place expressions in the proper order in selects

	match on count in expr

	remove incorrect param count tracking

	properly track param count

	properly reverse parameters before/after expansion

	don't use the base ecto type

	don't sort when joining

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	update ecto

	add atom impl for EctoMigrationDefault

	Add EctoMigrationDefault protocol and implement defaults (#87)

	update ecto, fix dialyzer

	support new timeouts

	make select unique before running query

	add doc_index

	add exclusion_constraint_names (#83)

	support referencing aggregates from aggregate filters

	support access syntax

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.7 (2021-12-21)

 Bug Fixes:

	ensure repo is compiled (#80)

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.6 (2021-12-21)

 Bug Fixes:

	properly construct nested join relationships

	use CiStringWrapper type in ash_postgres

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.5 (2021-11-26)

 Bug Fixes:

	ensure we are returning * on upserts (#79)

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.4 (2021-11-25)

 Bug Fixes:

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	don't upsert defaults on conflict (#77)

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.3 (2021-11-13)

 Bug Fixes:

	handle new if types

	copy query prefix to newly created query (#74)

 Improvements:

	relax ash version requirement

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.2 (2021-11-10)

 Bug Fixes:

	copy query prefix to newly created query (#74)

 Improvements:

	add custom migration types, and repo level override

	update to latest version of ash

 v0.41.1 (2021-11-03)

 Bug Fixes:

	copy query prefix to newly created query (#74)

 Improvements:

	update to latest version of ash

 v0.41.0-rc.9 (2021-11-01)

 Bug Fixes:

	use proper ecto types everywhere

	try to fix missing paren issue in array_agg

	fix can? for :joins (#73)

	remove unused default value

	use proper identity names for polymorphic resources

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support default on aggregates

	support custom_indexes

 v0.41.0-rc.8 (2021-10-25)

 Bug Fixes:

	fix can? for :joins (#73)

	remove unused default value

	use proper identity names for polymorphic resources

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support default on aggregates

	support custom_indexes

 v0.41.0-rc.7 (2021-10-24)

 Bug Fixes:

	fix can? for :joins (#73)

	remove unused default value

	use proper identity names for polymorphic resources

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.6 (2021-09-26)

 Bug Fixes:

	remove unused default value

	use proper identity names for polymorphic resources

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.5 (2021-09-21)

 Bug Fixes:

	use proper identity names for polymorphic resources

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.4 (2021-09-21)

 Bug Fixes:

	set identity names propertly for polymorphic resources

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.3 (2021-09-21)

 Bug Fixes:

	handle nil values in snapshots better

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.2 (2021-09-21)

 Bug Fixes:

	remove unused field from snapshot parsing

 Improvements:

	support custom_indexes

 v0.41.0-rc.1 (2021-09-20)

 Improvements:

	support custom_indexes

 v0.41.0-rc.0 (2021-09-13)

 Breaking Changes:

	update to latest ash/ecto versions w/ parameterized types

 Improvements:

	Support default tenant migration path in releases (#69)

 v0.40.11 (2021-07-28)

 Bug Fixes:

	set subquery prefix properly

 v0.40.10 (2021-07-27)

 Bug Fixes:

	set subquery source correctly

	create parameter for ci strings

	explicitly set prefix at each level

	interaction w/ attribute and context tenancy

 Improvements:

	info on migration generator output

	use match: :full on attr multitenancy

	update to latest ash

	update to latest ash

	upgrade ash dep

 v0.40.9 (2021-07-22)

 Bug Fixes:

	don't add a non-list to a list

 Improvements:

	add sort + select test

 v0.40.8 (2021-07-19)

 Bug Fixes:

	ensure source table is sorted in lateral join

 Improvements:

	fix significant performance issue in lateral joins

 v0.40.7 (2021-07-12)

 Improvements:

	support default_prefix configuration

 v0.40.6 (2021-07-08)

 Bug Fixes:

	fix migrator mix tasks w/ only/except tenants

	drop foreign keys after table create properly

	drop foreign keys before dropping table

	left_lateral_join for many_to_many aggregates

	properly reference nested aggregate fields for join

	properly determine fallback table for polymorphic resources

	ensure non-tenant resources can be aggregates

	properly set aggregate query sources

	retain parent as bindings

	don't add rel_source at all

	properly build atoms list

	horribly hack ecto for dynamic bindings

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	--name when generating migrations

	add mix ash_postgres.rollback

	update to latest ash

	update to latest ash

	leverage new private_vars for errs

 v0.40.5 (2021-07-08)

 Bug Fixes:

	fix migrator mix tasks w/ only/except tenants

	drop foreign keys after table create properly

	drop foreign keys before dropping table

	left_lateral_join for many_to_many aggregates

	properly reference nested aggregate fields for join

	properly determine fallback table for polymorphic resources

	ensure non-tenant resources can be aggregates

	properly set aggregate query sources

	retain parent as bindings

	don't add rel_source at all

	properly build atoms list

	horribly hack ecto for dynamic bindings

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	add mix ash_postgres.rollback

	update to latest ash

	update to latest ash

	leverage new private_vars for errs

 v0.40.4 (2021-07-05)

 Bug Fixes:

	left_lateral_join for many_to_many aggregates

	properly reference nested aggregate fields for join

	properly determine fallback table for polymorphic resources

	ensure non-tenant resources can be aggregates

	properly set aggregate query sources

	retain parent as bindings

	don't add rel_source at all

	properly build atoms list

	horribly hack ecto for dynamic bindings

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	update to latest ash

	update to latest ash

	leverage new private_vars for errs

 v0.40.3 (2021-07-03)

 Bug Fixes:

	ensure non-tenant resources can be aggregates

	properly set aggregate query sources

	retain parent as bindings

	don't add rel_source at all

	properly build atoms list

	horribly hack ecto for dynamic bindings

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	update to latest ash

	leverage new private_vars for errs

 v0.40.2 (2021-07-02)

 Bug Fixes:

	properly set aggregate query sources

	retain parent as bindings

	don't add rel_source at all

	properly build atoms list

	horribly hack ecto for dynamic bindings

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	update to latest ash

	leverage new private_vars for errs

 v0.40.1 (2021-07-02)

 Bug Fixes:

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	update to latest ash

	leverage new private_vars for errs

 v0.40.0-rc5 (2021-07-01)

 Bug Fixes:

	properly coalesce aggregate values

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	leverage new private_vars for errs

 v0.40.0-rc4 (2021-06-23)

 Bug Fixes:

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 Improvements:

	leverage new private_vars for errs

 v0.40.0-rc3 (2021-06-15)

 Bug Fixes:

	always add nullability flag

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 v0.40.0-rc2 (2021-06-08)

 Bug Fixes:

	sort references only after other same-table ops

	generate multitenant foreign keys properly

 v0.40.0-rc1 (2021-06-05)

 v0.39.0-rc.0 (2021-06-04)

 Features:

	support expression based calculations

	support concat + if expressions

 Improvements:

	various other improvements

 v0.38.11 (2021-05-23)

 Bug Fixes:

	set prefix to "public" for fkeys to public schema

 Improvements:

	set explicit prefix on join filters

 v0.38.10 (2021-05-19)

 Improvements:

	support new ash upsert specifying targets

	update to latest ash

 v0.38.9 (2021-05-12)

 Bug Fixes:

	properly group many_to_many aggregates

 v0.38.8 (2021-05-09)

 Improvements:

	update to the latest ash version

 v0.38.7 (2021-05-09)

 Improvements:

	support latest ash/filtering on related aggregates

 v0.38.6 (2021-05-07)

 Bug Fixes:

	properly construct sources for lateral joins

	copy the correct data for lateral join queries

	better errors in error cases

 Improvements:

	update to latest ash

 v0.38.5 (2021-05-07)

 Bug Fixes:

	don't cast booleans to string in last_ditch_cast

 v0.38.4 (2021-05-07)

 Improvements:

	support latest ash version resource sorts

 v0.38.3 (2021-05-06)

 Improvements:

	update to latest ash

	document script to iterate migrations (#65)

 v0.38.2 (2021-05-04)

 Bug Fixes:

	join to join table in lateral join query

	multitenancy + lateral join sources

	don't distinct in lateral joins

 v0.38.1 (2021-05-04)

 Bug Fixes:

	fix fragment processing broken (#64)

 v0.38.0 (2021-04-29)

 Features:

	support new side load improvements

 Improvements:

	Preserve attribute order (#63)

 v0.37.8 (2021-04-27)

 Bug Fixes:

	simpler index names

	don't prefix unique indices with prefix()

	sort index operations last

 Improvements:

	custom index names

 v0.37.7 (2021-04-27)

 Bug Fixes:

	remove inspects that were left in by accident

 v0.37.6 (2021-04-27)

 Bug Fixes:

	type cast atoms to strings in last ditch cast

	properly type cast

	Remove duplicate file extension (#60)

 v0.37.5 (2021-04-27)

 Bug Fixes:

	properly type cast

 v0.37.4 (2021-04-26)

 Improvements:

	support list aggregate

 v0.37.3 (2021-04-26)

 Bug Fixes:

	stringify struct defaults in migration generator

	properly comment out extension uninstallation code

 v0.37.2 (2021-04-21)

 Improvements:

	support ash enums

 v0.37.1 (2021-04-19)

 Bug Fixes:

	include type in references (because it is not automatic)

 v0.37.0 (2021-04-19)

 Features:

	add check_constraints, both for validation and migrations

 v0.36.5 (2021-04-13)

 Bug Fixes:

	always drop constraints before modifying

	properly compare old references and new references

 v0.36.4 (2021-04-12)

 Bug Fixes:

	don't explicitly set type in references

 Improvements:

	default integers to :bigint

 v0.36.3 (2021-04-12)

 Improvements:

	primary autoincrement key as bigserial (#54)

 v0.36.2 (2021-04-09)

 Improvements:

	support new ash select feature

 v0.36.1 (2021-04-04)

 Bug Fixes:

	raise when all_tenants/0 default impl is called

 Improvements:

	add sum aggregate (#53)

 v0.36.0 (2021-04-01)

 Features:

	support configuring references

	support configuring polymorphic references

	support distinct Ash queries

 v0.35.5 (2021-03-29)

 Bug Fixes:

	Made AshPostgres.Repo.init/2 overridable (#51)

 Improvements:

	only count resources w/ create action for nullability

	better error message on missing table

 v0.35.4 (2021-03-21)

 Bug Fixes:

	reroute Ash.Type.UUID to :uuid in migrations

	force create extensions snapshot

 Improvements:

	consistent foreign key names

	support custom foreign key error messages

 v0.35.3 (2021-03-19)

 Bug Fixes:

	force create extensions snapshot

	more conservative inner join checks

	add back in inner join detection logic

 Improvements:

	consistent foreign key names

	support custom foreign key error messages

 v0.35.2 (2021-03-05)

 Bug Fixes:

	more conservative inner join checks

	add back in inner join detection logic

 v0.35.1 (2021-03-02)

 Bug Fixes:

	don't start the whole app in migrate

 v0.35.0 (2021-03-02)

 Features:

	automatically install extensions from repo

 v0.34.7 (2021-03-02)

 Bug Fixes:

	typo in references for multitenancy

	null: true when attr isn't on all resources for a table

 v0.34.6 (2021-02-24)

 Bug Fixes:

	better embedded filters, switch to latest ash

 v0.34.5 (2021-02-23)

 Improvements:

	support latest ash

 v0.34.4 (2021-02-08)

 Bug Fixes:

	trim when choosing new attribute name

 v0.34.3 (2021-02-06)

 Bug Fixes:

	don't reference polymorphic tables to belongs_to relationships

 v0.34.2 (2021-02-06)

 Bug Fixes:

	set up references properly

 v0.34.1 (2021-02-06)

 Bug Fixes:

	reference the configured table if set

 v0.34.0 (2021-02-06)

 Features:

	support polymorphic relationships

 v0.33.1 (2021-01-27)

 Bug Fixes:

	actually insert the tracking row

 v0.33.0 (2021-01-27)

 Features:

	add mix ash_postgres.create

	add mix ash_postgres.migrate

	add mix ash_postgres.migrate --tenants

	add mix ash_postgres.drop

 Bug Fixes:

	rework the way multitenant migrations work

 v0.32.2 (2021-01-26)

 Bug Fixes:

	un-break the in filter type casting code

 Improvements:

	better errors for multitenant unique constraints

 v0.32.1 (2021-01-24)

 Bug Fixes:

	ago was adding, not subtracting

 v0.32.0 (2021-01-24)

 Features:

	support latest ash + contains

 v0.31.1 (2021-01-22)

 Improvements:

	update to latest ash

 v0.31.0 (2021-01-22)

 Features:

	support fragments

	support type casting

	update to latest ash to support expressions

 Bug Fixes:

	update CI versions

 v0.30.1 (2021-01-13)

 v0.30.0 (2021-01-13)

 Features:

	Add check_migrated option to migration generator (#40) (#43)

 v0.29.6 (2021-01-12)

 Bug Fixes:

	rename out of phase, small migration fix

 v0.29.5 (2021-01-10)

 Improvements:

	Use ecto_sql formatter settings (#38)

 v0.29.4 (2021-01-10)

 Improvements:

	Omit field opts if they are default values (#37)

 v0.29.3 (2021-01-08)

 Improvements:

	support latest ash

 v0.29.2 (2021-01-08)

 Improvements:

	Make integer serial if generated

 v0.29.1 (2021-01-08)

 Improvements:

	support latest ash version

 v0.29.0 (2021-01-08)

 Features:

	retain snapshot history

 Improvements:

	support latest ash version

 v0.28.1 (2021-01-07)

 Improvements:

	Add :binary migration type (#33)

 v0.28.0 (2020-12-29)

 Features:

	support latest Ash version

 v0.27.0 (2020-12-23)

 Features:

	support refs on both sides of operators

 Bug Fixes:

	bump ash version

 v0.26.2 (2020-12-06)

 Bug Fixes:

	properly accept the tenant_migration_path

 v0.26.1 (2020-12-01)

 Bug Fixes:

	set default properly when modifying

 v0.26.0 (2020-11-25)

 Features:

	don't drop columns unless explicitly told to

 Bug Fixes:

	various migration generator bug fixes

 v0.25.5 (2020-11-17)

 Bug Fixes:

	drop constraints outside of phases (#29)

 v0.25.4 (2020-11-07)

 Bug Fixes:

	only alter the things that have changed

 v0.25.3 (2020-11-06)

 Improvements:

	add utc_datetime migration type

 v0.25.2 (2020-11-03)

 Bug Fixes:

	access data_layer_query with function

 v0.25.1 (2020-10-29)

 Improvements:

	mark repo as not requiring compile-time dep

 v0.25.0 (2020-10-29)

 Features:

	multitenancy (#25)

 Bug Fixes:

	verify repo using ensure_compiled

 v0.24.0 (2020-10-17)

 Features:

	support latest ash

 v0.23.2 (2020-10-07)

 v0.23.1 (2020-10-06)

 v0.23.0 (2020-10-06)

 Features:

	update to latest ash, trigram filter

 v0.22.1 (2020-10-01)

 Bug Fixes:

	don't group alters with creates (#22)

	add jason dependency, clean lockfile (#21)

 v0.22.0 (2020-09-24)

 Features:

	fix error when filtering with true

 Bug Fixes:

	broken types for in operator

 v0.21.0 (2020-09-19)

 Features:

	support base_filter (#18)

 v0.20.1 (2020-09-11)

 Bug Fixes:

	document/update migration path logic

 v0.20.0 (2020-09-11)

 Features:

	snapshot-based migration generator

 v0.19.0 (2020-09-02)

 Features:

	support inner joins when possible (#15)

 Bug Fixes:

	better support for aggregates/calculations when delegating

	don't fail w/ no extensions configured

 v0.18.0 (2020-08-26)

 Features:

	update to ash 1.11 (#13)

	support Ash v1.10 (#12)

	support latest ash

	update to latest ash

 v0.17.0 (2020-08-26)

 Features:

	update to ash 1.11 (#13)

	support Ash v1.10 (#12)

	support latest ash

	update to latest ash

 v0.16.1 (2020-08-19)

 Bug Fixes:

	fix compile/dialyzer issues

 v0.16.0 (2020-08-19)

 Features:

	update to latest ash

	update to latest version of ash

 v0.15.0 (2020-08-18)

 Features:

	update to latest version of ash

 v0.14.0 (2020-08-17)

 Features:

	support ash 1.7

	support named aggregates

 v0.13.0 (2020-07-25)

 Features:

	update to latest ash

	support latest ash

 v0.12.1 (2020-07-24)

 Bug Fixes:

	add can? for :aggregate

 v0.12.0 (2020-07-24)

 Features:

	update to latest ash

 v0.11.2 (2020-07-23)

 Bug Fixes:

 v0.11.1 (2020-07-23)

 Bug Fixes:

 v0.11.0 (2020-07-23)

 Features:

	support ash 13.0 aggregates

 v0.10.0 (2020-07-15)

 Features:

	update to latest ash

 v0.9.0 (2020-07-13)

 Features:

	update to latest ash

 v0.8.0 (2020-07-09)

 Features:

	update to latest ash

 v0.7.0 (2020-07-09)

 Features:

	update to latest ash

	update to latest ash, add docs

	update to ash 0.9.1 for transactions

 v0.6.0 (2020-06-29)

 Features:

	update to latest ash

 v0.5.0 (2020-06-29)

 Features:

	upgrade to latest ash

 v0.4.0 (2020-06-27)

 Features:

	update to latest ash

 v0.3.0 (2020-06-19)

 Features:

	New filter style (#10)

 v0.2.1 (2020-06-15)

 Bug Fixes:

	update .formatter.exs

 v0.2.0 (2020-06-14)

 Features:

	use the new DSL builder for config (#7)

 v0.1.4 (2020-06-05)

 Bug Fixes:

	update ash version dependency

	account for removal of name

 v0.1.3 (2020-06-03)

This release was a test of our automatic hex.pm package deployment

 Begin Changelog

Get Started With Postgres

 Goals

In this guide we will:
	Setup AshPostgres, which includes setting up Ecto
	Add AshPostgres to the resources created in the Ash getting started guide
	Show how the various features of AshPostgres can help you work quickly and cleanly against a postgres database
	Highlight some of the more advanced features you can use when using AshPostgres.
	Point you to additional resources you may need on your journey

 Things you may want to read

	Install PostgreSQL (I recommend the homebrew option for mac users)

 Requirements

	A working Postgres installation, with a sufficiently permissive user
	If you would like to follow along, you will need to add begin with the Ash getting started guide

 Steps

 Add AshPostgres

Add the :ash_postgres dependency to your application
{:ash_postgres, "~> 1.3.6"}
Add :ash_postgres to your .formatter.exs file
[
 # import the formatter rules from `:ash_postgres`
 import_deps: [..., :ash_postgres],
 inputs: [...]
]

 Create and configure your Repo

Create lib/helpdesk/repo.ex with the following contents. AshPostgres.Repo is a thin wrapper around Ecto.Repo, so see their documentation for how to use it if you need to use it directly. For standard Ash usage, all you will need to do is configure your resources to use your repo.
in lib/helpdesk/repo.ex

defmodule Helpdesk.Repo do
 use AshPostgres.Repo, otp_app: :helpdesk

 def installed_extensions do
 # Ash installs some functions that it needs to run the
 # first time you generate migrations.
 ["ash-functions"]
 end
end
Next we will need to create configuration files for various environments. Run the following to create the configuration files we need.
mkdir -p config
touch config/config.exs
touch config/dev.exs
touch config/runtime.exs
touch config/test.exs

Place the following contents in those files, ensuring that the credentials match the user you created for your database. For most conventional installations this will work out of the box. If you've followed other guides before this one, they may have had you create these files already, so just make sure these contents are there.
in config/config.exs
import Config

This should already have been added in the first
getting started guide
config :helpdesk,
 ash_domains: [Helpdesk.Support]

config :helpdesk,
 ecto_repos: [Helpdesk.Repo]

Import environment specific config. This must remain at the bottom
of this file so it overrides the configuration defined above.
import_config "#{config_env()}.exs"
in config/dev.exs

import Config

Configure your database
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_dev",
 port: 5432,
 show_sensitive_data_on_connection_error: true,
 pool_size: 10
in config/runtime.exs

import Config

if config_env() == :prod do
 database_url =
 System.get_env("DATABASE_URL") ||
 raise """
 environment variable DATABASE_URL is missing.
 For example: ecto://USER:PASS@HOST/DATABASE
 """

 config :helpdesk, Helpdesk.Repo,
 url: database_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE") || "10")
end
in config/test.exs

import Config

Configure your database
#
The MIX_TEST_PARTITION environment variable can be used
to provide built-in test partitioning in CI environment.
Run `mix help test` for more information.
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_test#{System.get_env("MIX_TEST_PARTITION")}",
 pool: Ecto.Adapters.SQL.Sandbox,
 pool_size: 10
And finally, add the repo to your application
in lib/helpdesk/application.ex

 def start(_type, _args) do
 children = [
 # Starts a worker by calling: Helpdesk.Worker.start_link(arg)
 # {Helpdesk.Worker, arg}
 Helpdesk.Repo
]

 ...

 Add AshPostgres to our resources

Now we can add the data layer to our resources. The basic configuration for a resource requires the d:AshPostgres.postgres|table and the d:AshPostgres.postgres|repo.
in lib/helpdesk/support/resources/ticket.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "tickets"
 repo Helpdesk.Repo
 end
in lib/helpdesk/support/resources/representative.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "representatives"
 repo Helpdesk.Repo
 end

 Create the database and tables

First, we'll create the database with mix ash.setup.
Then we will generate database migrations. This is one of the many ways that AshPostgres can save time and reduce complexity.
mix ash.codegen add_tickets_and_representatives

If you are unfamiliar with database migrations, it is a good idea to get a rough idea of what they are and how they work. See the links at the bottom of this guide for more. A rough overview of how migrations work is that each time you need to make changes to your database, they are saved as small, reproducible scripts that can be applied in order. This is necessary both for clean deploys as well as working with multiple developers making changes to the structure of a single database.
Typically, you need to write these by hand. AshPostgres, however, will store snapshots each time you run the command to generate migrations and will figure out what migrations need to be created.
You should always look at the generated migrations to ensure that they look correct. Do so now by looking at the generated file in priv/repo/migrations.
Finally, we will create the local database and apply the generated migrations:
mix ash.setup

 Try it out

And now we're ready to try it out! Run the following in iex:
Lets create some data. We'll make a representative and give them some open and some closed tickets.
require Ash.Query

representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Helpdesk.Support.create!()
)

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Helpdesk.Support.create!()
 |> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
 |> Helpdesk.Support.update!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Helpdesk.Support.update!()
 end
end
And now we can read that data. You should see some debug logs that show the sql queries AshPostgres is generating.
require Ash.Query

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Helpdesk.Support.read!()
require Ash.Query

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Helpdesk.Support.read!()
And, naturally, now that we are storing this in postgres, this database is persisted even if we stop/start our application. The nice thing, however, is that this was the exact same code that we ran against our resources when they were backed by ETS.

 Aggregates

Lets add some aggregates to our representatives resource. Aggregates are a tool to include grouped up data about relationships. You can read more about them in the Aggregates guide.
Here we will add an aggregate to easily query how many tickets are assigned to a representative, and how many of those tickets are open/closed.
in lib/helpdesk/support/resources/representative.ex

 aggregates do
 # The first argument here is the name of the aggregate
 # The second is the relationship
 count :total_tickets, :tickets

 count :open_tickets, :tickets do
 # Here we add a filter over the data that we are aggregating
 filter expr(status == :open)
 end

 count :closed_tickets, :tickets do
 filter expr(status == :closed)
 end
 end
Aggregates are powerful because they will be translated to SQL, and can be used in filters and sorts. For example:
in iex

require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(closed_tickets < 4)
|> Ash.Query.sort(closed_tickets: :desc)
|> Helpdesk.Support.read!()
You can also load individual aggregates on demand after queries have already been run, and minimal SQL will be issued to run the aggregate.
in iex

require Ash.Query

representatives = Helpdesk.Support.read!(Helpdesk.Support.Representative)

Helpdesk.Support.load!(representatives, :open_tickets)

 Calculations

Calculations can be pushed down into SQL in the same way. Calculations are similar to aggregates, except they work on individual records. They can, however, refer to aggregates on the resource, which opens up powerful possibilities with very simple code.
For example, we can determine the percentage of tickets that are open:
in lib/helpdesk/support/resources/representative.ex

 calculations do
 calculate :percent_open, :float, expr(open_tickets / total_tickets)
 end
Calculations can be loaded and used in the same way as aggregates.
require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(percent_open > 0.25)
|> Ash.Query.sort(:percent_open)
|> Ash.Query.load(:percent_open)
|> Helpdesk.Support.read!()

 Rich Configuration Options

Take a look at the DSL documentation for more information on what you can configure. You can add check constraints, configure the behavior of foreign keys, use postgres schemas with Ash's multitenancy feature, and more!

 What next?

	Check out the data layer docs: AshPostgres.DataLayer

	Ecto's documentation. AshPostgres (and much of Ash itself) is made possible by the amazing Ecto. If you find yourself looking for escape hatches when using Ash or ways to work directly with your database, you will want to know how Ecto works. Ash and AshPostgres intentionally do not hide Ecto, and in fact encourages its use whenever you need an escape hatch.

	Postgres' documentation. Although AshPostgres makes things a lot easier, you generally can't get away with not understanding the basics of postgres and SQL.

	Ecto's Migration documentation read more about migrations. Even with the ash_postgres migration generator, you will very likely need to modify your own migrations some day.

References

To configure the behavior of generated foreign keys on a resource, we use the references section.
For example:
references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
end

 Actions are not used for this behavior

 No resource logic is applied with these operations! No authorization rules or validations take place, and no notifications are issued. This operation happens directly in the database.

 Nothing vs Restrict

The difference between :nothing and :restrict is subtle and, if you are unsure, choose :nothing (the default behavior). :restrict will prevent the deletion from happening before the end of the database transaction, whereas :nothing allows the transaction to complete before doing so. This allows for things like updating or deleting the destination row and then updating updating or deleting the reference(as long as you are in a transaction).

 On Delete

This option is called on_delete, instead of on_destroy, because it is hooking into the database level deletion, not a destroy action in your resource. See the warning above.

Polymorphic Resources

To support leveraging the same resource backed by multiple tables (useful for things like polymorphic associations), AshPostgres supports setting the data_layer.table context for a given resource. For this example, lets assume that you have a MyApp.Post resource and a MyApp.Comment resource. For each of those resources, users can submit reactions. However, you want a separate table for post_reactions and comment_reactions. You could accomplish that like so:
defmodule MyApp.Reaction do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 postgres do
 polymorphic? true # Without this, `table` is a required configuration
 end

 attributes do
 attribute :resource_id, :uuid, public?: true
 end

 ...
end
Then, in your related resources, you set the table context like so:
defmodule MyApp.Post do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "post_reactions"}},
 destination_attribute: :resource_id
 end
end

defmodule MyApp.Comment do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "comment_reactions"}},
 destination_attribute: :resource_id
 end
end
With this, when loading or editing related data, ash will automatically set that context.
For managing related data, see Ash.Changeset.manage_relationship/4 and other relationship functions
in Ash.Changeset

 Table specific actions

To make actions use a specific table, you can use the set_context query preparation/change.
For example:
defmodule MyApp.Reaction do
 # ...
 actions do
 read :for_comments do
 prepare set_context(%{data_layer: %{table: "comment_reactions"}})
 end

 read :for_posts do
 prepare set_context(%{data_layer: %{table: "post_reactions"}})
 end
 end
end

 Migrations

When a migration is marked as polymorphic? true, the migration generator will look at
all resources that are related to it, that set the %{data_layer: %{table: "table"}} context.
For each of those, a migration is generated/managed automatically. This means that adding reactions
to a new resource is as easy as adding the relationship and table context, and then running
mix ash.codegen.

Migrations

 Tasks

Ash comes with its own tasks, and AshPostgres exposes lower level tasks that you can use if necessary. This guide shows the process using ash.* tasks, and the ash_postgres.* tasks are illustrated at the bottom.

 Basic Workflow

	Make resource changes
	Run mix ash.codegen --name add_a_combobulator to generate migrations and resource snapshots
	Run mix ash.migrate to run those migrations

For more information on generating migrations, run mix help ash_postgres.generate_migrations (the underlying task that is called by mix ash.migrate)

 list_tenants/0

If you have are using schema-based multitenancy, you will also need to define a list_tenants/0 function in your repo module. See AshPostgres.Repo for more.

 Regenerating Migrations

Often, you will run into a situation where you want to make a slight change to a resource after you've already generated and run migrations. If you are using git and would like to undo those changes, then regenerate the migrations, this script may prove useful:
#!/bin/bash

Get count of untracked migrations
N_MIGRATIONS=$(git ls-files --others priv/repo/migrations | wc -l)

Rollback untracked migrations
mix ash_postgres.rollback -n $N_MIGRATIONS

Delete untracked migrations and snapshots
git ls-files --others priv/repo/migrations | xargs rm
git ls-files --others priv/resource_snapshots | xargs rm

Regenerate migrations
mix ash.codegen --name $1

Run migrations if flag
if echo $* | grep -e "-m" -q
then
 mix ash.migrate
fi

After saving this file to something like regen.sh, make it executable with chmod +x regen.sh. Now you can run it with ./regen.sh name_of_operation. If you would like the migrations to automatically run after regeneration, add the -m flag: ./regen.sh name_of_operation -m.

 Running Migrations in Production

Define a module similar to the following:
defmodule MyApp.Release do
 @moduledoc """
Tasks that need to be executed in the released application (because mix is not present in releases).
 """
 @app :my_app
 def migrate do
 load_app()

 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_tenants do
 load_app()

 for repo <- repos() do
 repo_name = repo |> Module.split() |> List.last() |> Macro.underscore()

 path =
 "priv/"
 |> Path.join(repo_name)
 |> Path.join("tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 fn repo ->
 for tenant <- repo.all_tenants() do
 Ecto.Migrator.run(repo, path, :up, all: true, prefix: tenant)
 end
 end
)
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_all do
 load_app()
 migrate()
 migrate_tenants()
 end

 def rollback(repo, version) do
 load_app()
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 # only needed if you are using postgres multitenancy
 def rollback_tenants(repo, version) do
 load_app()
 repo_name = repo |> Module.split() |> List.last() |> Macro.underscore()

 path =
 "priv/"
 |> Path.join(repo_name)
 |> Path.join("tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 for tenant <- repo.all_tenants() do
 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 &Ecto.Migrator.run(&1, path, :down,
 to: version,
 prefix: tenant
)
)
 end
 end

 defp repos do
 domains()
 |> Enum.flat_map(fn domain ->
 domain
 |> Ash.Domain.Info.resources()
 |> Enum.map(&AshPostgres.DataLayer.Info.repo/1)
 end)
 |> Enum.uniq()
 end

 defp domains do
 Application.fetch_env!(@app, :ash_domains)
 end

 defp load_app do
 Application.load(@app)
 end
end

 AshPostgres-specific mix tasks

	mix ash_postgres.generate_migrations
	mix ash_postgres.create
	mix ash_postgres.drop
	mix ash_postgres.migrate (use mix ash_postgres.migrate --tenants to run tenant migrations)
	mix ash_postgres.rollback (use mix ash_postgres.rollback --tenants to rollback tenant migrations)

Testinging with AshPostgres

When using AshPostgres resources in tests, you will likely want to include use a test case similar to the following. This will ensure that your repo runs everything in a transaction.
defmodule MyApp.DataCase do
 @moduledoc """
 This module defines the setup for tests requiring
 access to the application's data layer.

 You may define functions here to be used as helpers in
 your tests.

 Finally, if the test case interacts with the database,
 we enable the SQL sandbox, so changes done to the database
 are reverted at the end of every test. If you are using
 PostgreSQL, you can even run database tests asynchronously
 by setting `use AshHq.DataCase, async: true`, although
 this option is not recommended for other databases.
 """

 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Changeset
 import Ecto.Query
 import MyApp.DataCase
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
This should be coupled with to make sure that Ash does not spawn any tasks.
config :ash, :disable_async?, true

Upgrading to 2.0

There are only three breaking changes in this release, one of them is very significant, the other two are minor.
AshPostgres officially supports only postgresql version 14 or higher
A new callback min_pg_version/0 has been added to the repo, but a default implementation is set up that reads the version from postgres directly, the first time it is required. It is cached until the repo is reinitialized, at which point it is looked up again.
While most things will work with versions as low as 9, we are relying on features of newer postgres versions and intend to do so more in the future. We will not be testing against versions lower than 14, and we will not be supporting them. If you are using an older version of postgres, you will need to upgrade.
If you must use an older version, the only thing that you'll need to change in the short term is to handle the fact that we now use gen_random_uuid() as the default for generated uuids (see below), which is only available after postgres 13. Additionally, if you are on postgres 12 or earlier, you will need to replace ANYCOMPATIBLE with ANYELEMENT in the ash-functions extension migration.

 gen_random_uuid() is now the default for generated uuids

In the past, we used uuid_generate_v4() as the default for generated uuids. This function is part of the uuid-ossp extension, which is not installed by default in postgres. gen_random_uuid() is a built-in function that is available in all versions of postgres 13 and higher. If you are using an older version of postgres, you will need to install the uuid-ossp extension and change the default in your migrations.

 utc datetimes that default to &DateTime.now/0 are now cast to UTC

This is a layer of safety to ensure consistency in the default values of a database and the datetimes that are sent to/from the database. When you generate migrations you will notice your timestamps change from defaulting to now() in your migrations to now() AT TIMESTAMP 'utc'. You are free to undo this change, by setting migration_defaults in your resource, or simply by deleting the generated migration.

Expressions

In addition to the expressions listed in the Ash expressions guide, AshPostgres provides the following expressions
Fragments
Fragments allow you to use arbitrary postgres expressions in your queries. Fragments can often be an escape hatch to allow you to do things that don't have something officially supported with Ash.

 Examples

Simple expressions
fragment("? / ?", points, count)
Calling functions
fragment("repeat('hello', 4)")
Using entire queries
fragment("points > (SELECT SUM(points) FROM games WHERE user_id = ? AND id != ?)", user_id, id)

 a last resport

Using entire queries as shown above is a last resort, but can sometimes be the best way to accomplish a given task.

In calculations
calculations do
 calculate :lower_name, :string, expr(
 fragment("LOWER(?)", name)
)
end
In migrations
create table(:managers, primary_key: false) do
 add :id, :uuid, null: false, default: fragment("UUID_GENERATE_V4()"), primary_key: true
end

 Like and ILike

These wrap the postgres builtin like and ilike operators.
Please be aware, these match patterns not raw text. Use contains/1 if you want to match text without supporting patterns, i.e % and _ have semantic meaning!
For example:
Ash.Query.filter(User, like(name, "%obo%")) # name contains obo anywhere in the string, case sensitively
Ash.Query.filter(User, ilike(name, "%ObO%")) # name contains ObO anywhere in the string, case insensitively

 Trigram similarity

To use this expression, you must have the pg_trgm extension in your repos installed_extensions list.
This calls the similarity function from that extension. See more https://www.postgresql.org/docs/current/pgtrgm.htmlhere: https://www.postgresql.org/docs/current/pgtrgm.html
For example:
Ash.Query.filter(User, trigram_similarity(first_name, "fred") > 0.8)

Schema Based Multitenancy

Multitenancy in AshPostgres is implemented via postgres schemas. For more information on schemas, see postgres' schema documentation
Implementing multitenancy via schema's involves tracking "tenant migrations" separately from migrations for your public schema. You can see what this looks like by simply creating a multitenant resource, and using the migration generator mix ash.codegen. It will put schema specific migrations in priv/repo/tenant_migrations. When you generate migrations, you'll want to be sure to audit migrations in both directories. Additionally, when you deploy, you'll want to run your migrations, as well as running them with the migrations path priv/repo/tenant_migrations.

 Generated migrations

The generated migrations include a lot of niceties around multitenancy. Specifically, foreign keys will point at tables in the correct schema, and foreign keys to non-multitenant resources will point to the correct table. If you are using attribute multitenancy, foreign keys to tables also using attribute multitenancy will be composite foreign keys, including the tenant attribute as well as the referencing field.
Migrations in the tenant directory will call repo().all_tenants(), which is a callback you will need to implement in your repo that should return a list of all schemas that need to be migrated.

 Automatically managing tenants

By setting the template configuration, in the manage_tenant section, you can cause the creation/updating of a given resource to create/rename tenants. For example:
defmodule MyApp.Organization do
 use Ash.Resource,
 ...

 postgres do
 ...

 manage_tenant do
 template ["org_", :id]
 end
 end
end
With this configuration, if you create an organization, it will create a corresponding schema, e.g. org_10 in the database. Then it will run your tenant migrations on that schema. To override the tenant_migrations path, implement the AshPostgres.Repo.tenant_migrations_path/0 callback.
Notice that manage_tenant is nested inside the postgres block. This is because the method of managing tenants is specific to postgres, and if another data layer supported multitenancy they may or may not support managing tenants in the same way.

Manual Relationships

See Defining Manual Relationships for an idea of manual relationships in general.
Manual relationships allow for expressing complex/non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.

 Example

in the resource

relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end

implementation
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship

 require Ash.Query
 require Ecto.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 # Use existing records to limit resultds
 rep_ids = Enum.map(records, & &1.id)
 # Using Ash to get the destination records is ideal, so you can authorize access like normal
 # but if you need to use a raw ecto query here, you can. As long as you return the right structure.

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end

 # query is the "source" query that is being built.

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `as(^current_binding).field`

 # as_binding is the binding that your join should create. When you join, make sure you say `as: ^as_binding` on the
 # part of the query that represents the destination of the relationship

 # type is `:inner` or `:left`.
 # destination_query is what you should join to to add the destination to the query, i.e `join: dest in ^destination-query`
 def ash_postgres_join(query, _opts, current_binding, as_binding, :inner, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 def ash_postgres_join(query, _opts, current_binding, as_binding, :left, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 left_join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `parent_as(^current_binding).field`

 # as_binding is the binding that has already been created for your join. Access fields on it via `as(^as_binding)`

 # destination_query is what you should use as the basis of your query
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 {:ok,
 Ecto.Query.from(_ in destination_query,
 where: parent_as(^current_binding).id == as(^as_binding).representative_id,
 where: as(^as_binding).priority > parent_as(^current_binding).priority_threshold
)}
 end
end

DSL: AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.

 postgres

Postgres data layer configuration

 Nested DSLs

	custom_indexes	index

	custom_statements	statement

	manage_tenant
	references	reference

	check_constraints	check_constraint

 Examples

postgres do
 repo MyApp.Repo
 table "organizations"
end

 Options

	Name	Type	Default	Docs
	repo	module | (any, any -> any)		The repo that will be used to fetch your data. See the AshPostgres.Repo documentation for more. Can also be a function that takes a resource and a type :read | :mutate and returns the repo
	migrate?	boolean	true	Whether or not to include this resource in the generated migrations with mix ash.generate_migrations
	migration_types	keyword	[]	A keyword list of attribute names to the ecto migration type that should be used for that attribute. Only necessary if you need to override the defaults.
	migration_defaults	keyword	[]	A keyword list of attribute names to the ecto migration default that should be used for that attribute. The string you use will be placed verbatim in the migration. Use fragments like fragment(\\"now()\\"), or for nil, use \\"nil\\".
	base_filter_sql	String.t		A raw sql version of the base_filter, e.g representative = true. Required if trying to create a unique constraint on a resource with a base_filter
	simple_join_first_aggregates	list(atom)	[]	A list of :first type aggregate names that can be joined to using a simple join. Use when you have a :first aggregate that uses a to-many relationship , but your filter statement ensures that there is only one result. Optimizes the generated query.
	skip_unique_indexes	atom | list(atom)	false	Skip generating unique indexes when generating migrations
	unique_index_names	list({list(atom), String.t} | {list(atom), String.t, String.t})	[]	A list of unique index names that could raise errors that are not configured in identities, or an mfa to a function that takes a changeset and returns the list. In the format {[:affected, :keys], "name_of_constraint"} or {[:affected, :keys], "name_of_constraint", "custom error message"}
	exclusion_constraint_names	any	[]	A list of exclusion constraint names that could raise errors. Must be in the format {:affected_key, "name_of_constraint"} or {:affected_key, "name_of_constraint", "custom error message"}
	identity_index_names	any	[]	A keyword list of identity names to the unique index name that they should use when being managed by the migration generator.
	foreign_key_names	list({atom | String.t, String.t} | {atom | String.t, String.t, String.t})	[]	A list of foreign keys that could raise errors, or an mfa to a function that takes a changeset and returns a list. In the format: {:key, "name_of_constraint"} or {:key, "name_of_constraint", "custom error message"}
	migration_ignore_attributes	list(atom)	[]	A list of attributes that will be ignored when generating migrations.
	table	String.t		The table to store and read the resource from. If this is changed, the migration generator will not remove the old table.
	schema	String.t		The schema that the table is located in. Schema-based multitenancy will supercede this option. If this is changed, the migration generator will not remove the old schema.
	polymorphic?	boolean	false	Declares this resource as polymorphic. See the polymorphic resources guide for more.

 postgres.custom_indexes

A section for configuring indexes to be created by the migration generator.
In general, prefer to use identities for simple unique constraints. This is a tool to allow
for declaring more complex indexes.

 Nested DSLs

	index

 Examples

custom_indexes do
 index [:column1, :column2], unique: true, where: "thing = TRUE"
end

 postgres.custom_indexes.index

index fields
Add an index to be managed by the migration generator.

 Examples

index ["column", "column2"], unique: true, where: "thing = TRUE"

 Arguments

	Name	Type	Default	Docs
	fields	atom | String.t | list(atom | String.t)		The fields to include in the index.

 Options

	Name	Type	Default	Docs
	error_fields	list(atom)		The fields to attach the error to.
	name	String.t		the name of the index. Defaults to "#{table}_#{column}_index".
	unique	boolean	false	indicates whether the index should be unique.
	concurrently	boolean	false	indicates whether the index should be created/dropped concurrently.
	using	String.t		configures the index type.
	prefix	String.t		specify an optional prefix for the index.
	where	String.t		specify conditions for a partial index.
	include	list(String.t)		specify fields for a covering index. This is not supported by all databases. For more information on PostgreSQL support, please read the official docs.
	nulls_distinct	boolean	true	specify whether null values should be considered distinct for a unique index.
	message	String.t		A custom message to use for unique indexes that have been violated
	all_tenants?	boolean	false	Whether or not the index should factor in the multitenancy attribute or not.

 Introspection

Target: AshPostgres.CustomIndex

 postgres.custom_statements

A section for configuring custom statements to be added to migrations.
Changing custom statements may require manual intervention, because Ash can't determine what order they should run
in (i.e if they depend on table structure that you've added, or vice versa). As such, any down statements we run
for custom statements happen first, and any up statements happen last.
Additionally, when changing a custom statement, we must make some assumptions, i.e that we should migrate
the old structure down using the previously configured down and recreate it.
This may not be desired, and so what you may end up doing is simply modifying the old migration and deleting whatever was
generated by the migration generator. As always: read your migrations after generating them!

 Nested DSLs

	statement

 Examples

custom_statements do
 # the name is used to detect if you remove or modify the statement
 statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
 end
end

 postgres.custom_statements.statement

statement name
Add a custom statement for migrations.

 Examples

statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the statement, must be unique within the resource

 Options

	Name	Type	Default	Docs
	up	String.t		How to create the structure of the statement
	down	String.t		How to tear down the structure of the statement
	code?	boolean	false	By default, we place the strings inside of ecto migration's execute/1 function and assume they are sql. Use this option if you want to provide custom elixir code to be placed directly in the migrations

 Introspection

Target: AshPostgres.Statement

 postgres.manage_tenant

Configuration for the behavior of a resource that manages a tenant

 Examples

manage_tenant do
 template ["organization_", :id]
 create? true
 update? false
end

 Options

	Name	Type	Default	Docs
	template	String.t | atom | list(String.t | atom)		A template that will cause the resource to create/manage the specified schema.
	create?	boolean	true	Whether or not to automatically create a tenant when a record is created
	update?	boolean	true	Whether or not to automatically update the tenant name if the record is udpated

 postgres.references

A section for configuring the references (foreign keys) in resource migrations.
This section is only relevant if you are using the migration generator with this resource.
Otherwise, it has no effect.

 Nested DSLs

	reference

 Examples

references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
end

 Options

	Name	Type	Default	Docs
	polymorphic_on_delete	:delete | :nilify | :nothing | :restrict		For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables.
	polymorphic_on_update	:update | :nilify | :nothing | :restrict		For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables.

 postgres.references.reference

reference relationship
Configures the reference for a relationship in resource migrations.
Keep in mind that multiple relationships can theoretically involve the same destination and foreign keys.
In those cases, you only need to configure the reference behavior for one of them. Any conflicts will result
in an error, across this resource and any other resources that share a table with this one. For this reason,
instead of adding a reference configuration for :nothing, its best to just leave the configuration out, as that
is the default behavior if no relationship anywhere has configured the behavior of that reference.

 Examples

reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"

 Arguments

	Name	Type	Default	Docs
	relationship	atom		The relationship to be configured

 Options

	Name	Type	Default	Docs
	ignore?	boolean		If set to true, no reference is created for the given relationship. This is useful if you need to define it in some custom way
	on_delete	:delete | :nilify | :nothing | :restrict		What should happen to records of this resource when the referenced record of the destination resource is deleted.
	on_update	:update | :nilify | :nothing | :restrict		What should happen to records of this resource when the referenced destination_attribute of the destination record is update.
	deferrable	false | true | :initially	false	Wether or not the constraint is deferrable. This only affects the migration generator.
	name	String.t		The name of the foreign key to generate in the database. Defaults to <table>_<source_attribute>_fkey
	match_with	keyword		Defines additional keys to the foreign key in order to build a composite foreign key. The key should be the name of the source attribute (in the current resource), the value the name of the destination attribute.
	match_type	:simple | :partial | :full		select if the match is :simple, :partial, or :full

 Introspection

Target: AshPostgres.Reference

 postgres.check_constraints

A section for configuring the check constraints for a given table.
This can be used to automatically create those check constraints, or just to provide message when they are raised

 Nested DSLs

	check_constraint

 Examples

check_constraints do
 check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"
end

 postgres.check_constraints.check_constraint

check_constraint attribute, name
Add a check constraint to be validated.
If a check constraint exists on the table but not in this section, and it produces an error, a runtime error will be raised.
Provide a list of attributes instead of a single attribute to add the message to multiple attributes.
By adding the check option, the migration generator will include it when generating migrations.

 Examples

check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"

 Arguments

	Name	Type	Default	Docs
	attribute	any		The attribute or list of attributes to which an error will be added if the check constraint fails
	name	String.t		The name of the constraint

 Options

	Name	Type	Default	Docs
	message	String.t		The message to be added if the check constraint fails
	check	String.t		The contents of the check. If this is set, the migration generator will include it when generating migrations

 Introspection

Target: AshPostgres.CheckConstraint

AshPostgres

The AshPostgres extension gives you tools to map a resource to a postgres database table.
For more, check out the getting started guide

 Summary

 Functions

 base_filter_sql(resource)

 deprecated

 See AshPostgres.DataLayer.Info.base_filter_sql/1.

 check_constraints(resource)

 deprecated

 See AshPostgres.DataLayer.Info.check_constraints/1.

 custom_indexes(resource)

 deprecated

 See AshPostgres.DataLayer.Info.custom_indexes/1.

 custom_statements(resource)

 deprecated

 See AshPostgres.DataLayer.Info.custom_statements/1.

 exclusion_constraint_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

 foreign_key_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.foreign_key_names/1.

 identity_index_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.identity_index_names/1.

 manage_tenant_create?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_create?/1.

 manage_tenant_template(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_template/1.

 manage_tenant_update?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_update?/1.

 migrate?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.migrate?/1.

 migration_types(resource)

 deprecated

 See AshPostgres.DataLayer.Info.migration_types/1.

 polymorphic?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic?/1.

 polymorphic_name(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_name/1.

 polymorphic_on_delete(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

 polymorphic_on_update(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_on_update/1.

 references(resource)

 deprecated

 See AshPostgres.DataLayer.Info.references/1.

 repo(resource)

 deprecated

 See AshPostgres.DataLayer.Info.repo/1.

 schema(resource)

 deprecated

 See AshPostgres.DataLayer.Info.schema/1.

 skip_unique_indexes(resource)

 deprecated

 See AshPostgres.DataLayer.Info.skip_unique_indexes/1.

 table(resource)

 deprecated

 See AshPostgres.DataLayer.Info.table/1.

 unique_index_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.unique_index_names/1.

 Functions

 Link to this function

 base_filter_sql(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.base_filter_sql/1.

See AshPostgres.DataLayer.Info.base_filter_sql/1.

 Link to this function

 check_constraints(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.check_constraints/1.

See AshPostgres.DataLayer.Info.check_constraints/1.

 Link to this function

 custom_indexes(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.custom_indexes/1.

See AshPostgres.DataLayer.Info.custom_indexes/1.

 Link to this function

 custom_statements(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.custom_statements/1.

See AshPostgres.DataLayer.Info.custom_statements/1.

 Link to this function

 exclusion_constraint_names(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

See AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

 Link to this function

 foreign_key_names(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.foreign_key_names/1.

See AshPostgres.DataLayer.Info.foreign_key_names/1.

 Link to this function

 identity_index_names(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.identity_index_names/1.

See AshPostgres.DataLayer.Info.identity_index_names/1.

 Link to this function

 manage_tenant_create?(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_create?/1.

See AshPostgres.DataLayer.Info.manage_tenant_create?/1.

 Link to this function

 manage_tenant_template(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_template/1.

See AshPostgres.DataLayer.Info.manage_tenant_template/1.

 Link to this function

 manage_tenant_update?(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_update?/1.

See AshPostgres.DataLayer.Info.manage_tenant_update?/1.

 Link to this function

 migrate?(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.migrate?/1.

See AshPostgres.DataLayer.Info.migrate?/1.

 Link to this function

 migration_types(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.migration_types/1.

See AshPostgres.DataLayer.Info.migration_types/1.

 Link to this function

 polymorphic?(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic?/1.

See AshPostgres.DataLayer.Info.polymorphic?/1.

 Link to this function

 polymorphic_name(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_name/1.

See AshPostgres.DataLayer.Info.polymorphic_name/1.

 Link to this function

 polymorphic_on_delete(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

See AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

 Link to this function

 polymorphic_on_update(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_on_update/1.

See AshPostgres.DataLayer.Info.polymorphic_on_update/1.

 Link to this function

 references(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.references/1.

See AshPostgres.DataLayer.Info.references/1.

 Link to this function

 repo(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.repo/1.

See AshPostgres.DataLayer.Info.repo/1.

 Link to this function

 schema(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.schema/1.

See AshPostgres.DataLayer.Info.schema/1.

 Link to this function

 skip_unique_indexes(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.skip_unique_indexes/1.

See AshPostgres.DataLayer.Info.skip_unique_indexes/1.

 Link to this function

 table(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.table/1.

See AshPostgres.DataLayer.Info.table/1.

 Link to this function

 unique_index_names(resource)

 View Source

 This function is deprecated. use AshPostgres.DataLayer.Info.unique_index_names/1.

See AshPostgres.DataLayer.Info.unique_index_names/1.

AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.

 Summary

 Functions

 add_known_binding(query, data, known_binding)

 codegen(args)

 from_ecto(other)

 migrate(args)

 rollback(args)

 setup(args)

 tear_down(args)

 to_ecto(value)

 Functions

 Link to this function

 add_known_binding(query, data, known_binding)

 View Source

 Link to this function

 codegen(args)

 View Source

 Link to this function

 from_ecto(other)

 View Source

 Link to this function

 migrate(args)

 View Source

 Link to this function

 rollback(args)

 View Source

 Link to this function

 setup(args)

 View Source

 Link to this function

 tear_down(args)

 View Source

 Link to this function

 to_ecto(value)

 View Source

AshPostgres.Repo behaviour

Resources that use AshPostgres.DataLayer use a Repo to access the database.
This repo is a thin wrapper around an Ecto.Repo.
You can use Ecto.Repo's init/2 to configure your repo like normal, but
instead of returning {:ok, config}, use super(config) to pass the
configuration to the AshPostgres.Repo implementation.

 Installed Extensions

To configure your list of installed extensions, define installed_extensions/0
Extensions can be a string, representing a standard postgres extension, or a module that implements AshPostgres.CustomExtension.
That custom extension will be called to generate migrations that serve a specific purpose.
Extensions that are relevant to ash_postgres:
	"ash-functions" - This isn't really an extension, but it expresses that certain functions
should be added when generating migrations, to support the || and && operators in expressions.
	"uuid-ossp" - Sets UUID primary keys defaults in the migration generator
	"pg_trgm" - Makes the AshPostgres.Functions.TrigramSimilarity function available
	"citext" - Allows case insensitive fields to be used
	"vector" - Makes the AshPostgres.Functions.VectorCosineDistance function available. See AshPostgres.Extensions.Vector for more setup instructions.

def installed_extensions() do
 ["pg_trgm", "uuid-ossp", "vector", YourCustomExtension]
end

 Transaction Hooks

You can define on_transaction_begin/1, which will be invoked whenever a transaction is started for Ash.
This will be invoked with a map containing a type key and metadata.
%{type: :create, %{resource: YourApp.YourResource, action: :action}}

 Summary

 Callbacks

 all_tenants()

 Return a list of all schema names (only relevant for a multitenant implementation)

 create?()

 Should the repo should be created by mix ash_postgres.create?

 default_prefix()

 The default prefix(postgres schema) to use when building queries

 drop?()

 Should the repo should be dropped by mix ash_postgres.drop?

 installed_extensions()

 Use this to inform the data layer about what extensions are installed

 migrations_path()

 The path where your migrations are stored

 min_pg_version()

 Configure the version of postgres that is being used.

 on_transaction_begin(reason)

 Use this to inform the data layer about the oldest potential postgres version it will be run on.

 override_migration_type(atom)

 Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 tenant_migrations_path()

 The path where your tenant migrations are stored (only relevant for a multitenant implementation)

 Callbacks

 Link to this callback

 all_tenants()

 View Source

 @callback all_tenants() :: [String.t()]

Return a list of all schema names (only relevant for a multitenant implementation)

 Link to this callback

 create?()

 View Source

 @callback create?() :: boolean()

Should the repo should be created by mix ash_postgres.create?

 Link to this callback

 default_prefix()

 View Source

 @callback default_prefix() :: String.t()

The default prefix(postgres schema) to use when building queries

 Link to this callback

 drop?()

 View Source

 @callback drop?() :: boolean()

Should the repo should be dropped by mix ash_postgres.drop?

 Link to this callback

 installed_extensions()

 View Source

 @callback installed_extensions() :: [String.t() | module()]

Use this to inform the data layer about what extensions are installed

 Link to this callback

 migrations_path()

 View Source

 @callback migrations_path() :: String.t() | nil

The path where your migrations are stored

 Link to this callback

 min_pg_version()

 View Source

 @callback min_pg_version() :: Version.t()

Configure the version of postgres that is being used.

 Link to this callback

 on_transaction_begin(reason)

 View Source

 @callback on_transaction_begin(reason :: Ash.DataLayer.transaction_reason()) :: term()

Use this to inform the data layer about the oldest potential postgres version it will be run on.
Must be an integer greater than or equal to 13.

 Combining with other tools

For things like Fly.Repo, where you might need to have more fine grained control over the repo module,
you can use the define_ecto_repo?: false option to use AshPostgres.Repo.

 Link to this callback

 override_migration_type(atom)

 View Source

 @callback override_migration_type(atom()) :: atom()

Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 Link to this callback

 tenant_migrations_path()

 View Source

 @callback tenant_migrations_path() :: String.t() | nil

The path where your tenant migrations are stored (only relevant for a multitenant implementation)

AshPostgres.ManualRelationship behaviour

A behavior for postgres-specific manual relationship functionality

 Summary

 Callbacks

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 ash_postgres_subquery(opts, current_binding, destination_binding, destination_query)

 Callbacks

 Link to this callback

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 View Source

 @callback ash_postgres_join(
 source_query :: Ecto.Query.t(),
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 type :: :inner | :left,
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

 Link to this callback

 ash_postgres_subquery(opts, current_binding, destination_binding, destination_query)

 View Source

 @callback ash_postgres_subquery(
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

AshPostgres.CheckConstraint

Represents a configured check constraint on the table backing a resource

 Summary

 Functions

 schema()

 Functions

 Link to this function

 schema()

 View Source

AshPostgres.CustomExtension behaviour

A custom extension implementation.

 Summary

 Callbacks

 install(version)

 uninstall(version)

 Callbacks

 Link to this callback

 install(version)

 View Source

 @callback install(version :: integer()) :: String.t()

 Link to this callback

 uninstall(version)

 View Source

 @callback uninstall(version :: integer()) :: String.t()

AshPostgres.CustomIndex

Represents a custom index on the table backing a resource

 Summary

 Functions

 fields()

 name(table, map)

 schema()

 transform(index)

 Functions

 Link to this function

 fields()

 View Source

 Link to this function

 name(table, map)

 View Source

 Link to this function

 schema()

 View Source

 Link to this function

 transform(index)

 View Source

AshPostgres.DataLayer.Info

Introspection functions for

 Summary

 Functions

 base_filter_sql(resource)

 A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 check_constraints(resource)

 The configured check_constraints for a resource

 custom_indexes(resource)

 The configured custom_indexes for a resource

 custom_statements(resource)

 The configured custom_statements for a resource

 exclusion_constraint_names(resource)

 The configured exclusion_constraint_names

 foreign_key_names(resource)

 The configured foreign_key_names

 global_upsert_keys(resource)

 A list of keys to always include in upserts.

 identity_index_names(resource)

 The configured identity_index_names

 manage_tenant_create?(resource)

 Whether or not to create a tenant for a given resource

 manage_tenant_template(resource)

 The template for a managed tenant

 manage_tenant_update?(resource)

 Whether or not to update a tenant for a given resource

 migrate?(resource)

 Whether or not the resource should be included when generating migrations

 migration_defaults(resource)

 A keyword list of customized migration defaults

 migration_ignore_attributes(resource)

 A list of attributes to be ignored when generating migrations

 migration_types(resource)

 A keyword list of customized migration types

 min_pg_version(resource)

 Gets the resource's repo's postgres version

 pg_version_matches?(resource, requirement)

 Checks a version requirement against the resource's repo's postgres version

 polymorphic?(resource)

 The configured polymorphic? for a resource

 polymorphic_name(resource)

 The configured polymorphic_reference_name for a resource

 polymorphic_on_delete(resource)

 The configured polymorphic_reference_on_delete for a resource

 polymorphic_on_update(resource)

 The configured polymorphic_reference_on_update for a resource

 reference(resource, relationship)

 The configured reference for a given relationship of a resource

 references(resource)

 The configured references for a resource

 repo(resource, type \\ :mutate)

 The configured repo for a resource

 schema(resource)

 The configured schema for a resource

 simple_join_first_aggregates(resource)

 skip_identities(resource)

 Identities not to include in the migrations

 skip_unique_indexes(resource)

 Skip generating unique indexes when generating migrations

 table(resource)

 The configured table for a resource

 unique_index_names(resource)

 The configured unique_index_names

 Functions

 Link to this function

 base_filter_sql(resource)

 View Source

A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 Link to this function

 check_constraints(resource)

 View Source

The configured check_constraints for a resource

 Link to this function

 custom_indexes(resource)

 View Source

The configured custom_indexes for a resource

 Link to this function

 custom_statements(resource)

 View Source

The configured custom_statements for a resource

 Link to this function

 exclusion_constraint_names(resource)

 View Source

The configured exclusion_constraint_names

 Link to this function

 foreign_key_names(resource)

 View Source

The configured foreign_key_names

 Link to this function

 global_upsert_keys(resource)

 View Source

A list of keys to always include in upserts.

 Link to this function

 identity_index_names(resource)

 View Source

The configured identity_index_names

 Link to this function

 manage_tenant_create?(resource)

 View Source

Whether or not to create a tenant for a given resource

 Link to this function

 manage_tenant_template(resource)

 View Source

The template for a managed tenant

 Link to this function

 manage_tenant_update?(resource)

 View Source

Whether or not to update a tenant for a given resource

 Link to this function

 migrate?(resource)

 View Source

Whether or not the resource should be included when generating migrations

 Link to this function

 migration_defaults(resource)

 View Source

A keyword list of customized migration defaults

 Link to this function

 migration_ignore_attributes(resource)

 View Source

A list of attributes to be ignored when generating migrations

 Link to this function

 migration_types(resource)

 View Source

A keyword list of customized migration types

 Link to this function

 min_pg_version(resource)

 View Source

Gets the resource's repo's postgres version

 Link to this function

 pg_version_matches?(resource, requirement)

 View Source

Checks a version requirement against the resource's repo's postgres version

 Link to this function

 polymorphic?(resource)

 View Source

The configured polymorphic? for a resource

 Link to this function

 polymorphic_name(resource)

 View Source

The configured polymorphic_reference_name for a resource

 Link to this function

 polymorphic_on_delete(resource)

 View Source

The configured polymorphic_reference_on_delete for a resource

 Link to this function

 polymorphic_on_update(resource)

 View Source

The configured polymorphic_reference_on_update for a resource

 Link to this function

 reference(resource, relationship)

 View Source

The configured reference for a given relationship of a resource

 Link to this function

 references(resource)

 View Source

The configured references for a resource

 Link to this function

 repo(resource, type \\ :mutate)

 View Source

The configured repo for a resource

 Link to this function

 schema(resource)

 View Source

The configured schema for a resource

 Link to this function

 simple_join_first_aggregates(resource)

 View Source

 Link to this function

 skip_identities(resource)

 View Source

Identities not to include in the migrations

 Link to this function

 skip_unique_indexes(resource)

 View Source

Skip generating unique indexes when generating migrations

 Link to this function

 table(resource)

 View Source

The configured table for a resource

 Link to this function

 unique_index_names(resource)

 View Source

The configured unique_index_names

AshPostgres.Reference

Represents the configuration of a reference (i.e foreign key).

 Summary

 Functions

 schema()

 Functions

 Link to this function

 schema()

 View Source

AshPostgres.Statement

Represents a custom statement to be run in generated migrations

 Summary

 Functions

 fields()

 schema()

 Functions

 Link to this function

 fields()

 View Source

 Link to this function

 schema()

 View Source

AshPostgres.Tsquery

A thin wrapper around :string for working with tsquery types in calculations.
A calculation of this type cannot be selected, but may be used in calculations.

AshPostgres.Tsvector

A thin wrapper around :string for working with tsvector types in calculations.
A calculation of this type cannot be selected, but may be used in calculations.

AshPostgres.Type behaviour

Postgres specific callbacks for Ash.Type.
Use this in addition to Ash.Type.

 Summary

 Callbacks

 value_to_postgres_default(t, constraints, term)

 Callbacks

 Link to this callback

 value_to_postgres_default(t, constraints, term)

 View Source

 @callback value_to_postgres_default(Ash.Type.t(), Ash.Type.constraints(), term()) ::
 {:ok, String.t()} | :error

AshPostgres.Extensions.Vector

An extension that adds support for the vector type.
Create a file with these contents, not inside of a module:
Postgrex.Types.define(<YourApp>.PostgrexTypes, [AshPostgres.Extensions.Vector] ++ Ecto.Adapters.Postgres.extensions(), [])
And then ensure that you refer to these types in your repo configuration, i.e
config :my_app, YourApp.Repo,
 types: <YourApp>.PostgrexTypes

 Summary

 Functions

 decode(arg1)

 encode(_)

 format(_)

 init(opts)

 matching(_)

 Functions

 Link to this function

 decode(arg1)

 View Source

 Link to this function

 encode(_)

 View Source

 Link to this function

 format(_)

 View Source

 Link to this function

 init(opts)

 View Source

 Link to this function

 matching(_)

 View Source

AshPostgres.CustomAggregate behaviour

A custom aggregate implementation for ecto.

 Summary

 Callbacks

 dynamic(opts, binding)

 The dynamic expression to create the aggregate.

 Callbacks

 Link to this callback

 dynamic(opts, binding)

 View Source

 @callback dynamic(opts :: Keyword.t(), binding :: integer()) :: Ecto.Query.dynamic_expr()

The dynamic expression to create the aggregate.
The binding refers to the resource being aggregated,
use as(^binding) to reference it.
For example:
Ecto.Query.dynamic(
 [],
 fragment("string_agg(?, ?)", field(as(^binding), ^opts[:field]), ^opts[:delimiter])
)

AshPostgres.Migration

Utilities for use in migrations

 Summary

 Functions

 create_enum(type, constraints \\ [])

 A utility for creating postgres enums for an Ash enum type.

 drop_enum(type)

 Functions

 Link to this function

 create_enum(type, constraints \\ [])

 View Source

A utility for creating postgres enums for an Ash enum type.
In your migration, you can say:
def up() do
 AshPostgres.Migration.create_enum(MyEnumType)
end
Attribution:
This code and example was copied from ecto_enum. I didn't use the library itself
because it has a lot that would not currently be relevant for Ash.
https://github.com/gjaldon/ecto_enum
Must be done manually, as the migration generator will not do it.
Additionally, altering the type must be done in its own, separate migration, which
must have @disable_ddl_transaction true, as you cannot do this operation
in a transaction.
For example:
defmodule MyApp.Repo.Migrations.AddToGenderEnum do
 use Ecto.Migration
 @disable_ddl_transaction true

 def up do
 Ecto.Migration.execute "ALTER TYPE gender ADD VALUE IF NOT EXISTS 'other'"
 end

 def down do
 ...
 end
end
Keep in mind, that if you want to create a custom enum type, you will want to add
def storage_type(_), do: :my_type_name

 Link to this function

 drop_enum(type)

 View Source

EctoMigrationDefault protocol

Allows configuring how values are translated to default values in migrations.
Still a work in progress, but covers most standard values aside from maps.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_default(value)

 Returns the text (elixir code) that will be placed into a migration as the default value

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 to_default(value)

 View Source

Returns the text (elixir code) that will be placed into a migration as the default value

AshPostgres.Functions.ILike

Maps to the builtin postgres function ilike.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.Like

Maps to the builtin postgres function like.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.TrigramSimilarity

Maps to the builtin postgres trigram similarity function. Requires pgtrgm extension to be installed.
See the postgres docs on trigram for more information.
Requires the pg_trgm extension. Configure which extensions you have installed in your AshPostgres.Repo
Example

filter(query, trigram_similarity(name, "geoff") > 0.4)

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.VectorCosineDistance

Maps to the vector cosine distance operator. Requires vector extension to be installed.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 Link to this function

 args()

 View Source

Callback implementation for Ash.Query.Function.args/0.

mix ash_postgres.create

Create the storage for repos in all resources for the given (or configured) domains.

 Examples

mix ash_postgres.create
mix ash_postgres.create --domains MyApp.Domain1,MyApp.Domain2

 Command line options

	--domains - the domains who's repos you want to migrate.
	--quiet - do not log output
	--no-compile - do not compile before creating
	--no-deps-check - do not compile before creating

mix ash_postgres.drop

Drop the storage for the given repository.

 Examples

mix ash_postgres.drop
mix ash_postgres.drop -r MyApp.Repo1,MyApp.Repo2

 Command line options

	--domains - the domains who's repos should be dropped
	-q, --quiet - run the command quietly
	-f, --force - do not ask for confirmation when dropping the database.
Configuration is asked only when :start_permanent is set to true
(typically in production)
	--force-drop - force the database to be dropped even
if it has connections to it (requires PostgreSQL 13+)
	--no-compile - do not compile before dropping
	--no-deps-check - do not compile before dropping

mix ash_postgres.generate_migrations

Generates migrations, and stores a snapshot of your resources.
Options:
	domains - a comma separated list of Domain modules, for which migrations will be generated
	snapshot-path - a custom path to store the snapshots, defaults to "priv/resource_snapshots"
	migration-path - a custom path to store the migrations, defaults to "priv".
Migrations are stored in a folder for each repo, so priv/repo_name/migrations
	tenant-migration-path - Same as migration_path, except for any tenant specific migrations
	drop-columns - whether or not to drop columns as attributes are removed. See below for more
	name -
 names the generated migrations, prepending with the timestamp. The default is migrate_resources_<n>,
 where <n> is the count of migrations matching *migrate_resources* plus one.
 For example, --name add_special_column would get a name like 20210708181402_add_special_column.exs

Flags:
	quiet - messages for file creations will not be printed
	no-format - files that are created will not be formatted with the code formatter
	dry-run - no files are created, instead the new migration is printed
	check - no files are created, returns an exit(1) code if the current snapshots and resources don't fit

Snapshots
Snapshots are stored in a folder for each table that migrations are generated for. Each snapshot is
stored in a file with a timestamp of when it was generated.
This is important because it allows for simultaneous work to be done on separate branches, and for rolling back
changes more easily, e.g removing a generated migration, and deleting the most recent snapshot, without having to redo
all of it
Dropping columns
Generally speaking, it is bad practice to drop columns when you deploy a change that
would remove an attribute. The main reasons for this are backwards compatibility and rolling restarts.
If you deploy an attribute removal, and run migrations. Regardless of your deployment sstrategy, you
won't be able to roll back, because the data has been deleted. In a rolling restart situation, some of
the machines/pods/whatever may still be running after the column has been deleted, causing errors. With
this in mind, its best not to delete those columns until later, after the data has been confirmed unnecessary.
To that end, the migration generator leaves the column dropping code commented. You can pass --drop_columns
to tell it to uncomment those statements. Additionally, you can just uncomment that code on a case by case
basis.
Conflicts/Multiple Resources
The migration generator can support multiple schemas using the same table.
It will raise on conflicts that it can't resolve, like the same field with different
types. It will prompt to resolve conflicts that can be resolved with human input.
For example, if you remove an attribute and add an attribute, it will ask you if you are renaming
the column in question. If not, it will remove one column and add the other.
Additionally, it lowers things to the database where possible:
Defaults
There are three anonymous functions that will translate to database-specific defaults currently:
	&Ash.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&Ecto.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&DateTime.utc_now/0

Non-function default values will be dumped to their native type and inspected. This may not work for some types,
and may require manual intervention/patches to the migration generator code.
Identities
Identities will cause the migration generator to generate unique constraints. If multiple
resources target the same table, you will be asked to select the primary key, and any others
will be added as unique constraints.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix ash_postgres.migrate

Runs the pending migrations for the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application (or tenant_migrations for multitenancy),
where "YOUR_REPO" is the last segment
in your repository name. For example, the repository MyApp.Repo
will use "priv/repo/migrations". The repository Whatever.MyRepo
will use "priv/my_repo/migrations".
This task runs all pending migrations by default. To migrate up to a
specific version number, supply --to version_number. To migrate a
specific number of times, use --step n.
This is only really useful if your domains only use a single repo.
If you have multiple repos and you want to run a single migration and/or
migrate/roll them back to different points, you will need to use the
ecto specific task, mix ecto.migrate and provide your repo name.
If a repository has not yet been started, one will be started outside
your application supervision tree and shutdown afterwards.

 Examples

mix ash_postgres.migrate
mix ash_postgres.migrate --domains MyApp.Domain1,MyApp.Domain2

mix ash_postgres.migrate -n 3
mix ash_postgres.migrate --step 3

mix ash_postgres.migrate --to 20080906120000

 Command line options

	--domains - the domains who's repos should be migrated

	--tenants - Run the tenant migrations

	--only-tenants - in combo with --tenants, only runs migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--except-tenants - in combo with --tenants, does not run migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--all - run all pending migrations

	--step, -n - run n number of pending migrations

	--to - run all migrations up to and including version

	--quiet - do not log migration commands

	--prefix - the prefix to run migrations on. This is ignored if --tenants is provided.

	--pool-size - the pool size if the repository is started only for the task (defaults to 2)

	--log-sql - log the raw sql migrations are running

	--strict-version-order - abort when applying a migration with old timestamp

	--no-compile - does not compile applications before migrating

	--no-deps-check - does not check depedendencies before migrating

	--migrations-path - the path to load the migrations from, defaults to
"priv/repo/migrations". This option may be given multiple times in which case the migrations
are loaded from all the given directories and sorted as if they were in the same one.
Note, if you have migrations paths e.g. a/ and b/, and run
mix ecto.migrate --migrations-path a/, the latest migrations from a/ will be run (even
if b/ contains the overall latest migrations.)

mix ash_postgres.rollback

Reverts applied migrations in the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application but it can be configured by specifying
the :priv key under the repository configuration.
Runs the latest applied migration by default. To roll back to
a version number, supply --to version_number. To roll back a
specific number of times, use --step n. To undo all applied
migrations, provide --all.
This is only really useful if your domains only use a single repo.
If you have multiple repos and you want to run a single migration and/or
migrate/roll them back to different points, you will need to use the
ecto specific task, mix ecto.migrate and provide your repo name.

 Examples

mix ash_postgres.rollback
mix ash_postgres.rollback -r Custom.Repo
mix ash_postgres.rollback -n 3
mix ash_postgres.rollback --step 3
mix ash_postgres.rollback -v 20080906120000
mix ash_postgres.rollback --to 20080906120000

 Command line options

	--domains - the domains who's repos should be rolledback
	--all - revert all applied migrations
	--step / -n - revert n number of applied migrations
	--to / -v - revert all migrations down to and including version
	--quiet - do not log migration commands
	--prefix - the prefix to run migrations on
	--pool-size - the pool size if the repository is started only for the task (defaults to 1)
	--log-sql - log the raw sql migrations are running
	--tenants - roll back tenant migrations
	--only-tenants - in combo with --tenants, only rolls back the provided tenants, e.g tenant1,tenant2,tenant3
	--except-tenants - in combo with --tenants, does not rollback the provided tenants, e.g tenant1,tenant2,tenant3

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

