

 ash_postgres

 v2.4.18

 [image: Logo]

 Table of contents

 	Home

 	Tutorials

 	Get Started With Postgres

 	Setting AshPostgres up with an existing database

 	Resources

 	What is AshPostgres?

 	References

 	Polymorphic Resources

 	Migrations

 	Testing with AshPostgres

 	Upgrading to 2.0

 	Expressions

 	Schema Based Multitenancy

 	Manual Relationships

 	About AshPostgres

 	Change Log

 	DSLs

 	DSL: AshPostgres.DataLayer

 	

 	Modules

 	AshPostgres.Igniter

 	AshPostgres.MigrationCompileCache

 	AshPostgres.Functions.Binding

 	AshPostgres

 	AshPostgres

 	AshPostgres.DataLayer

 	AshPostgres.Repo

 	Utilities

 	AshPostgres.ManualRelationship

 	Introspection

 	AshPostgres.CheckConstraint

 	AshPostgres.CustomExtension

 	AshPostgres.CustomIndex

 	AshPostgres.DataLayer.Info

 	AshPostgres.Reference

 	AshPostgres.Statement

 	Types

 	AshPostgres.Ltree

 	AshPostgres.Timestamptz

 	AshPostgres.TimestamptzUsec

 	AshPostgres.Tsquery

 	AshPostgres.Tsvector

 	AshPostgres.Type

 	Extensions

 	AshPostgres.Extensions.Vector

 	Custom Aggregates

 	AshPostgres.CustomAggregate

 	Postgres Migrations

 	AshPostgres.Migration

 	EctoMigrationDefault

 	Expressions

 	AshPostgres.Functions.ILike

 	AshPostgres.Functions.Like

 	AshPostgres.Functions.TrigramSimilarity

 	AshPostgres.Functions.VectorCosineDistance

 	Mix Tasks

 	mix ash_postgres.create

 	mix ash_postgres.drop

 	mix ash_postgres.gen.resources

 	mix ash_postgres.generate_migrations

 	mix ash_postgres.install

 	mix ash_postgres.migrate

 	mix ash_postgres.rollback

 	mix ash_postgres.squash_snapshots

Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
AshPostgres
Welcome! AshPostgres is the PostgreSQL data layer for Ash Framework.

 Tutorials

	Get Started

 Topics

	What is AshPostgres?

 Resources

	References
	Polymorphic Resources

 Development

	Migrations and tasks
	Testing
	Upgrading to 2.0

 Advanced

	Expressions
	Manual Relationships
	Schema Based Multitenancy

 Reference

	AshPostgres.DataLayer DSL

Get Started With Postgres

 Installation

We recommend reading up on postgresql if you haven't.
	Postgres must be installed with a sufficiently permissive user

 Using Igniter (recommended)

mix igniter.install ash_postgres

 Manually

Add AshPostgres
Add the :ash_postgres dependency to your application
{:ash_postgres, "~> 2.0.0"}
Add :ash_postgres to your .formatter.exs file
[
 # import the formatter rules from `:ash_postgres`
 import_deps: [..., :ash_postgres],
 inputs: [...]
]
Create and configure your Repo
Create lib/helpdesk/repo.ex with the following contents. AshPostgres.Repo is a thin wrapper around Ecto.Repo, so see their documentation for how to use it if you need to use it directly. For standard Ash usage, all you will need to do is configure your resources to use your repo.
in lib/helpdesk/repo.ex

defmodule Helpdesk.Repo do
 use AshPostgres.Repo, otp_app: :helpdesk

 def installed_extensions do
 # Ash installs some functions that it needs to run the
 # first time you generate migrations.
 ["ash-functions"]
 end
end
Next we will need to create configuration files for various environments. Run the following to create the configuration files we need.
mkdir -p config
touch config/config.exs
touch config/dev.exs
touch config/runtime.exs
touch config/test.exs

Place the following contents in those files, ensuring that the credentials match the user you created for your database. For most conventional installations this will work out of the box. If you've followed other guides before this one, they may have had you create these files already, so just make sure these contents are there.
in config/config.exs
import Config

This should already have been added in the first
getting started guide
config :helpdesk,
 ash_domains: [Helpdesk.Support]

config :helpdesk,
 ecto_repos: [Helpdesk.Repo]

Import environment specific config. This must remain at the bottom
of this file so it overrides the configuration defined above.
import_config "#{config_env()}.exs"
in config/dev.exs

import Config

Configure your database
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_dev",
 port: 5432,
 show_sensitive_data_on_connection_error: true,
 pool_size: 10
in config/runtime.exs

import Config

if config_env() == :prod do
 database_url =
 System.get_env("DATABASE_URL") ||
 raise """
 environment variable DATABASE_URL is missing.
 For example: ecto://USER:PASS@HOST/DATABASE
 """

 config :helpdesk, Helpdesk.Repo,
 url: database_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE") || "10")
end
in config/test.exs

import Config

Configure your database
#
The MIX_TEST_PARTITION environment variable can be used
to provide built-in test partitioning in CI environment.
Run `mix help test` for more information.
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_test#{System.get_env("MIX_TEST_PARTITION")}",
 pool: Ecto.Adapters.SQL.Sandbox,
 pool_size: 10
And finally, add the repo to your application
in lib/helpdesk/application.ex

 def start(_type, _args) do
 children = [
 # Starts a worker by calling: Helpdesk.Worker.start_link(arg)
 # {Helpdesk.Worker, arg}
 Helpdesk.Repo
]

 ...

 Adding AshPostgres to your resources

 With Igniter

You can add AshPostgres to a resource with mix ash.patch.extend Your.Resource.Name postgres. For example:
mix ash.patch.extend Helpdesk.Support.Ticket postgres
mix ash.patch.extend Helpdesk.Support.Representative postgres

 Manually

The basic configuration for a resource requires the d:AshPostgres.postgres|table and the d:AshPostgres.postgres|repo.
in lib/helpdesk/support/ticket.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "tickets"
 repo Helpdesk.Repo
 end
in lib/helpdesk/support/representative.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "representatives"
 repo Helpdesk.Repo
 end
Create the database and tables
First, we'll create the database with mix ash.setup.
Then we will generate database migrations. This is one of the many ways that AshPostgres can save time and reduce complexity.
For example:
mix ash.codegen add_tickets_and_representatives

If you are unfamiliar with database migrations, it is a good idea to get a rough idea of what they are and how they work. See the links at the bottom of this guide for more. A rough overview of how migrations work is that each time you need to make changes to your database, they are saved as small, reproducible scripts that can be applied in order. This is necessary both for clean deploys as well as working with multiple developers making changes to the structure of a single database.
Typically, you need to write these by hand. AshPostgres, however, will store snapshots each time you run the command to generate migrations and will figure out what migrations need to be created.
You should always look at the generated migrations to ensure that they look correct. Do so now by looking at the generated file in priv/repo/migrations.
Finally, we will create the local database and apply the generated migrations:
mix ash.setup

 Try it out

This is based on the Get Started guide.
If you haven't already, you should read that first.
And now we're ready to try it out! Run the following in iex:
Lets create some data. We'll make a representative and give them some open and some closed tickets.
require Ash.Query

representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Ash.create!()
)

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Helpdesk.Support.create!()
 |> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
 |> Ash.update!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Ash.update!()
 end
end
And now we can read that data. You should see some debug logs that show the sql queries AshPostgres is generating.
require Ash.Query

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.read!()
require Ash.Query

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.read!()
And, naturally, now that we are storing this in postgres, this database is persisted even if we stop/start our application. The nice thing, however, is that this was the exact same code that we ran against our resources when they were backed by ETS.

 Aggregates

Lets add some aggregates to our representatives resource. Aggregates are a tool to include grouped up data about relationships. You can read more about them in the Aggregates guide.
Here we will add an aggregate to easily query how many tickets are assigned to a representative, and how many of those tickets are open/closed.
in lib/helpdesk/support/representative.ex

 aggregates do
 # The first argument here is the name of the aggregate
 # The second is the relationship
 count :total_tickets, :tickets

 count :open_tickets, :tickets do
 # Here we add a filter over the data that we are aggregating
 filter expr(status == :open)
 end

 count :closed_tickets, :tickets do
 filter expr(status == :closed)
 end
 end
Aggregates are powerful because they will be translated to SQL, and can be used in filters and sorts. For example:
in iex

require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(closed_tickets < 4)
|> Ash.Query.sort(closed_tickets: :desc)
|> Ash.read!()
You can also load individual aggregates on demand after queries have already been run, and minimal SQL will be issued to run the aggregate.
in iex

require Ash.Query

representatives = Helpdesk.Support.read!(Helpdesk.Support.Representative)

Ash.load!(representatives, :open_tickets)

 Calculations

Calculations can be pushed down into SQL in the same way. Calculations are similar to aggregates, except they work on individual records. They can, however, refer to aggregates on the resource, which opens up powerful possibilities with very simple code.
For example, we can determine the percentage of tickets that are open:
in lib/helpdesk/support/representative.ex

 calculations do
 calculate :percent_open, :float, expr(open_tickets / total_tickets)
 end
Calculations can be loaded and used in the same way as aggregates.
require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(percent_open > 0.25)
|> Ash.Query.sort(:percent_open)
|> Ash.Query.load(:percent_open)
|> Ash.read!()

 Rich Configuration Options

Take a look at the DSL documentation for more information on what you can configure. You can add check constraints, configure the behavior of foreign keys, use postgres schemas with Ash's multitenancy feature, and more!

 What next?

	Check out the data layer docs: AshPostgres.DataLayer

	Ecto's documentation. AshPostgres (and much of Ash itself) is made possible by the amazing Ecto. If you find yourself looking for escape hatches when using Ash or ways to work directly with your database, you will want to know how Ecto works. Ash and AshPostgres intentionally do not hide Ecto, and in fact encourages its use whenever you need an escape hatch.

	Postgres' documentation. Although AshPostgres makes things a lot easier, you should understand the basics of postgres and SQL.

	Ecto's Migration documentation read more about migrations. Even with the ash_postgres migration generator, you will very likely need to modify your own migrations some day.

Setting AshPostgres up with an existing database

If you already have a postgres database and you'd like to get
started quickly, you can scaffold resources directly from your
database.
First, create an application with AshPostgres if you haven't already:
mix igniter.new my_app
 --install ash,ash_postgres
 --with phx.new # add this if you will be using phoenix too

Then, go into your config/dev.exs and configure your repo to use
your existing database.
Finally, run:
mix ash_postgres.gen.resources MyApp.MyDomain --tables table1,table2,table3

 More fine grained control

You may want to do multiple passes to separate your application into multiple domains. For example:
mix ash_postgres.gen.resources MyApp.Accounts --tables users,roles,tokens
mix ash_postgres.gen.resources MyApp.Blog --tables posts,comments

See the docs for mix ash_postgres.gen.resources for more information.

What is AshPostgres?

AshPostgres is the PostgreSQL Ash.DataLayer for Ash Framework. This is the most fully-featured Ash data layer, and unless you need a specific characteristic or feature of another data layer, you should use AshPostgres.

 What versions are supported?

Any version higher than 13 is fully supported. Versions lower than this can be made to work, but certain edge cases may need to be manually handled. This becomes more and more true the further back in versions that you go.
Use this to persist records in a PostgreSQL table or view. For example, the resource below would be persisted in a table called tweets:
defmodule MyApp.Tweet do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 attributes do
 integer_primary_key :id
 attribute :text, :string
 end

 relationships do
 belongs_to :author, MyApp.User
 end

 postgres do
 table "tweets"
 repo MyApp.Repo
 end
end
The table might look like this:
	id	text	author_id
	1	"Hello, world!"	1

Creating records would add to the table, destroying records would remove from the table, and updating records would update the table.

References

To configure the behavior of generated foreign keys on a resource, we use the references section, within the postgres configuration block.
For example:
postgres do
 # other PostgreSQL config here

 references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
 end
end

 Actions are not used for this behavior

No resource logic is applied with these operations! No authorization rules or validations take place, and no notifications are issued. This operation happens directly in the database.

 On Delete

This option describes what to do if the referenced row is deleted.
The option is called on_delete, instead of on_destroy, because it is hooking into the database level deletion, not a destroy action in your resource. See the warning above.
The possible values for the option are :nothing, :restrict, :delete, :nilify, {:nilify, columns}.
With :nothing or :restrict the deletion of the referenced row is prevented.
With :delete the row is deleted together with the referenced row.
With :nilify all columns of the foreign-key constraint are nilified.
With {:nilify, columns} a column list can specify which columns should be set to nil.
If you intend to use this option to nilify a subset of the columns, note that it cannot be used together with the match: :full option otherwise a mix of nil and non-nil values would fail the constraint and prevent the deletion of the referenced row.
In addition, keep into consideration that this option is only supported from Postgres v15.0 onwards.

 On Update

This option describes what to do if the referenced row is updated.
The possible values for the option are :nothing, :restrict, :update, :nilify.
With :nothing or :restrict the update of the referenced row is prevented.
With :update the row is updated according to the referenced row.
With :nilify all columns of the foreign-key constraint are nilified.

 Nothing vs Restrict

references do
 reference :post, on_delete: :nothing
 # vs
 reference :post, on_delete: :restrict
end
The difference between :nothing and :restrict is subtle and, if you are unsure, choose :nothing (the default behavior). :restrict will immediately check the foreign-key constraint and prevent the update or deletion from happening, whereas :nothing allows the check to be deferred until later in the transaction. This allows for things like updating or deleting the destination row and then updating updating or deleting the reference (as long as you are in a transaction). The reason that :nothing still ultimately prevents the update or deletion is because postgres enforces foreign key referential integrity.

Polymorphic Resources

To support leveraging the same resource backed by multiple tables (useful for things like polymorphic associations), AshPostgres supports setting the data_layer.table context for a given resource. For this example, lets assume that you have a MyApp.Post resource and a MyApp.Comment resource. For each of those resources, users can submit reactions. However, you want a separate table for post_reactions and comment_reactions. You could accomplish that like so:
defmodule MyApp.Reaction do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 postgres do
 polymorphic? true # Without this, `table` is a required configuration
 end

 attributes do
 attribute :resource_id, :uuid, public?: true
 end

 ...
end
Then, in your related resources, you set the table context like so:
defmodule MyApp.Post do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "post_reactions"}},
 destination_attribute: :resource_id
 end
end

defmodule MyApp.Comment do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "comment_reactions"}},
 destination_attribute: :resource_id
 end
end
With this, when loading or editing related data, ash will automatically set that context.
For managing related data, see Ash.Changeset.manage_relationship/4 and other relationship functions
in Ash.Changeset

 Table specific actions

To make actions use a specific table, you can use the set_context query preparation/change.
For example:
defmodule MyApp.Reaction do
 # ...
 actions do
 read :for_comments do
 prepare set_context(%{data_layer: %{table: "comment_reactions"}})
 end

 read :for_posts do
 prepare set_context(%{data_layer: %{table: "post_reactions"}})
 end
 end
end

 Migrations

When a migration is marked as polymorphic? true, the migration generator will look at
all resources that are related to it, that set the %{data_layer: %{table: "table"}} context.
For each of those, a migration is generated/managed automatically. This means that adding reactions
to a new resource is as easy as adding the relationship and table context, and then running
mix ash.codegen.

Migrations

 Tasks

Ash comes with its own tasks, and AshPostgres exposes lower level tasks that you can use if necessary. This guide shows the process using ash.* tasks, and the ash_postgres.* tasks are illustrated at the bottom.

 Basic Workflow

	Make resource changes
	Run mix ash.codegen --name add_a_combobulator to generate migrations and resource snapshots
	Run mix ash.migrate to run those migrations

For more information on generating migrations, run mix help ash_postgres.generate_migrations (the underlying task that is called by mix ash.migrate)

 list_tenants/0

If you have are using schema-based multitenancy, you will also need to define a list_tenants/0 function in your repo module. See AshPostgres.Repo for more.

 Regenerating Migrations

Often, you will run into a situation where you want to make a slight change to a resource after you've already generated and run migrations. If you are using git and would like to undo those changes, then regenerate the migrations, this script may prove useful:
#!/bin/bash

Get count of untracked migrations
N_MIGRATIONS=$(git ls-files --others priv/repo/migrations | wc -l)

Rollback untracked migrations
mix ash_postgres.rollback -n $N_MIGRATIONS

Delete untracked migrations and snapshots
git ls-files --others priv/repo/migrations | xargs rm
git ls-files --others priv/resource_snapshots | xargs rm

Regenerate migrations
mix ash.codegen --name $1

Run migrations if flag
if echo $* | grep -e "-m" -q
then
 mix ash.migrate
fi

After saving this file to something like regen.sh, make it executable with chmod +x regen.sh. Now you can run it with ./regen.sh name_of_operation. If you would like the migrations to automatically run after regeneration, add the -m flag: ./regen.sh name_of_operation -m.

 Running Migrations in Production

Define a module similar to the following:
defmodule MyApp.Release do
 @moduledoc """
Tasks that need to be executed in the released application (because mix is not present in releases).
 """
 @app :my_app
 def migrate do
 load_app()

 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_tenants do
 load_app()

 for repo <- repos() do
 path = Ecto.Migrator.migrations_path(repo, "tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 fn repo ->
 for tenant <- repo.all_tenants() do
 Ecto.Migrator.run(repo, path, :up, all: true, prefix: tenant)
 end
 end
)
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_all do
 load_app()
 migrate()
 migrate_tenants()
 end

 def rollback(repo, version) do
 load_app()
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 # only needed if you are using postgres multitenancy
 def rollback_tenants(repo, version) do
 load_app()

 path = Ecto.Migrator.migrations_path(repo, "tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 for tenant <- repo.all_tenants() do
 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 &Ecto.Migrator.run(&1, path, :down,
 to: version,
 prefix: tenant
)
)
 end
 end

 defp repos do
 domains()
 |> Enum.flat_map(fn domain ->
 domain
 |> Ash.Domain.Info.resources()
 |> Enum.map(&AshPostgres.DataLayer.Info.repo/1)
 |> Enum.reject(&is_nil/1)
 end)
 |> Enum.uniq()
 end

 defp domains do
 Application.fetch_env!(@app, :ash_domains)
 end

 defp load_app do
 Application.load(@app)
 end
end

 AshPostgres-specific mix tasks

	mix ash_postgres.generate_migrations
	mix ash_postgres.create
	mix ash_postgres.drop
	mix ash_postgres.migrate (use mix ash_postgres.migrate --tenants to run tenant migrations)
	mix ash_postgres.rollback (use mix ash_postgres.rollback --tenants to rollback tenant migrations)

Testing with AshPostgres

When using AshPostgres resources in tests, you will likely want to include use a test case similar to the following. This will ensure that your repo runs everything in a transaction.
defmodule MyApp.DataCase do
 @moduledoc """
 This module defines the setup for tests requiring
 access to the application's data layer.

 You may define functions here to be used as helpers in
 your tests.

 Finally, if the test case interacts with the database,
 we enable the SQL sandbox, so changes done to the database
 are reverted at the end of every test. If you are using
 PostgreSQL, you can even run database tests asynchronously
 by setting `use AshHq.DataCase, async: true`, although
 this option is not recommended for other databases.
 """

 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Changeset
 import Ecto.Query
 import MyApp.DataCase
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
This should be coupled with to make sure that Ash does not spawn any tasks.
config :ash, :disable_async?, true

Upgrading to 2.0

There are only three breaking changes in this release, one of them is very significant, the other two are minor.
AshPostgres officially supports only postgresql version 14 or higher
A new callback min_pg_version/0 has been added to the repo, but a default implementation is set up that reads the version from postgres directly, the first time it is required. It is cached until the repo is reinitialized, at which point it is looked up again.
While most things will work with versions as low as 9, we are relying on features of newer postgres versions and intend to do so more in the future. We will not be testing against versions lower than 14, and we will not be supporting them. If you are using an older version of postgres, you will need to upgrade.
If you must use an older version, the only thing that you'll need to change in the short term is to handle the fact that we now use gen_random_uuid() as the default for generated uuids (see below), which is only available after postgres 13. Additionally, if you are on postgres 12 or earlier, you will need to replace ANYCOMPATIBLE with ANYELEMENT in the ash-functions extension migration.

 gen_random_uuid() is now the default for generated uuids

In the past, we used uuid_generate_v4() as the default for generated uuids. This function is part of the uuid-ossp extension, which is not installed by default in postgres. gen_random_uuid() is a built-in function that is available in all versions of postgres 13 and higher. If you are using an older version of postgres, you will need to install the uuid-ossp extension and change the default in your migrations.

 utc datetimes that default to &DateTime.now/0 are now cast to UTC

This is a layer of safety to ensure consistency in the default values of a database and the datetimes that are sent to/from the database. When you generate migrations you will notice your timestamps change from defaulting to now() in your migrations to now() AT TIMESTAMP 'utc'. You are free to undo this change, by setting migration_defaults in your resource, or simply by deleting the generated migration.

Expressions

In addition to the expressions listed in the Ash expressions guide, AshPostgres provides the following expressions
Fragments
Fragments allow you to use arbitrary postgres expressions in your queries. Fragments can often be an escape hatch to allow you to do things that don't have something officially supported with Ash.

 Examples

Simple expressions
fragment("? / ?", points, count)
Calling functions
fragment("repeat('hello', 4)")
Using entire queries
fragment("points > (SELECT SUM(points) FROM games WHERE user_id = ? AND id != ?)", user_id, id)

 a last resort

Using entire queries as shown above is a last resort, but can sometimes be the best way to accomplish a given task.
In calculations
calculations do
 calculate :lower_name, :string, expr(
 fragment("LOWER(?)", name)
)
end
In migrations
create table(:managers, primary_key: false) do
 add :id, :uuid, null: false, default: fragment("UUID_GENERATE_V4()"), primary_key: true
end

 Like and ILike

These wrap the postgres builtin like and ilike operators.
Please be aware, these match patterns not raw text. Use contains/1 if you want to match text without supporting patterns, i.e % and _ have semantic meaning!
For example:
Ash.Query.filter(User, like(name, "%obo%")) # name contains obo anywhere in the string, case sensitively
Ash.Query.filter(User, ilike(name, "%ObO%")) # name contains ObO anywhere in the string, case insensitively

 Trigram similarity

To use this expression, you must have the pg_trgm extension in your repos installed_extensions list.
This calls the similarity function from that extension. See more in the pgtrgm guide
For example:
Ash.Query.filter(User, trigram_similarity(first_name, "fred") > 0.8)

Schema Based Multitenancy

Multitenancy in AshPostgres is implemented via postgres schemas. For more information on schemas, see postgres' schema documentation
Implementing multitenancy via schema's involves tracking "tenant migrations" separately from migrations for your public schema. You can see what this looks like by simply creating a multitenant resource, and using the migration generator mix ash.codegen. It will put schema specific migrations in priv/repo/tenant_migrations. When you generate migrations, you'll want to be sure to audit migrations in both directories. Additionally, when you deploy, you'll want to run your migrations, as well as running them with the migrations path priv/repo/tenant_migrations.

 Generated migrations

The generated migrations include a lot of niceties around multitenancy. Specifically, foreign keys will point at tables in the correct schema, and foreign keys to non-multitenant resources will point to the correct table. If you are using attribute multitenancy, foreign keys to tables also using attribute multitenancy will be composite foreign keys, including the tenant attribute as well as the referencing field.
Migrations in the tenant directory will call repo().all_tenants(), which is a callback you will need to implement in your repo that should return a list of all schemas that need to be migrated.

 Automatically managing tenants

By setting the template configuration, in the manage_tenant section, you can cause the creation/updating of a given resource to create/rename tenants. For example:
defmodule MyApp.Organization do
 use Ash.Resource,
 ...

 postgres do
 ...

 manage_tenant do
 template ["org_", :id]
 end
 end
end
With this configuration, if you create an organization, it will create a corresponding schema, e.g. org_10 in the database. Then it will run your tenant migrations on that schema. To override the tenant_migrations path, implement the AshPostgres.Repo.tenant_migrations_path/0 callback.
Notice that manage_tenant is nested inside the postgres block. This is because the method of managing tenants is specific to postgres, and if another data layer supported multitenancy they may or may not support managing tenants in the same way.

Manual Relationships

See Manual Relationships for an idea of manual relationships in general.
Manual relationships allow for expressing complex/non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.

 Example

in the resource

relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end

implementation
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship

 require Ash.Query
 require Ecto.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 # Use existing records to limit resultds
 rep_ids = Enum.map(records, & &1.id)
 # Using Ash to get the destination records is ideal, so you can authorize access like normal
 # but if you need to use a raw ecto query here, you can. As long as you return the right structure.

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end

 # query is the "source" query that is being built.

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `as(^current_binding).field`

 # as_binding is the binding that your join should create. When you join, make sure you say `as: ^as_binding` on the
 # part of the query that represents the destination of the relationship

 # type is `:inner` or `:left`.
 # destination_query is what you should join to to add the destination to the query, i.e `join: dest in ^destination-query`
 def ash_postgres_join(query, _opts, current_binding, as_binding, :inner, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 def ash_postgres_join(query, _opts, current_binding, as_binding, :left, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 left_join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `parent_as(^current_binding).field`

 # as_binding is the binding that has already been created for your join. Access fields on it via `as(^as_binding)`

 # destination_query is what you should use as the basis of your query
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 {:ok,
 Ecto.Query.from(_ in destination_query,
 where: parent_as(^current_binding).id == as(^as_binding).representative_id,
 where: as(^as_binding).priority > parent_as(^current_binding).priority_threshold
)}
 end
end

 Recursive Relationships

Manual relationships can be very powerful, as they can leverage the full power of Ecto to do arbitrarily complex things.
Here is an example of a recursive relationship that loads all employees under the purview of a given manager using a recursive CTE.

 Use ltree

While the below is very powerful, if at all possible we suggest using ltree for hierarchical data. Its built in to postgres
and AshPostgres has built in support for it. For more, see: AshPostgres.Ltree.
Keep in mind this is an example of a very advanced use case, not something you'd typically need to do.
defmodule MyApp.Employee.ManagedEmployees do
 @moduledoc """
 A manual relationship which uses a recursive CTE to find all employees managed by a given employee.
 """

 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship
 alias MyApp.Employee
 alias MyApp.Repo
 import Ecto.Query

 @doc false
 @impl true
 @spec load([Employee.t()], keyword, map) ::
 {:ok, %{Ash.UUID.t() => [Employee.t()]}} | {:error, any}
 def load(employees, _opts, _context) do
 employee_ids = Enum.map(employees, & &1.id)

 all_descendants =
 Employee
 |> where([l], l.manager_id in ^employee_ids)
 |> recursive_cte_query("employee_tree", Employee)
 |> Repo.all()

 employees
 |> with_descendants(all_descendants)
 |> Map.new(&{&1.id, &1.descendants})
 |> then(&{:ok, &1})
 end

 defp with_descendants([], _), do: []

 defp with_descendants(employees, all_descendants) do
 Enum.map(employees, fn employee ->
 descendants = Map.get(all_descendants, employee.id, [])

 %{employee | descendants: with_descendants(descendants, all_descendants)}
 end)
 end

 @doc false
 @impl true
 @spec ash_postgres_join(
 Ecto.Query.t(),
 opts :: keyword,
 current_binding :: any,
 as_binding :: any,
 :inner | :left,
 Ecto.Query.t()
) ::
 {:ok, Ecto.Query.t()} | {:error, any}
 # Add a join from some binding in the query, producing *as_binding*.
 def ash_postgres_join(query, _opts, current_binding, as_binding, join_type, destination_query) do
 immediate_parents =
 from(destination in destination_query,
 where: parent_as(^current_binding).manager_id == destination.id
)

 cte_name = "employees_#{as_binding}"

 descendant_query =
 recursive_cte_query_for_join(
 immediate_parents,
 cte_name,
 destination_query
)

 case join_type do
 :inner ->
 {:ok,
 from(row in query,
 inner_lateral_join: descendant in subquery(descendant_query),
 on: true,
 as: ^as_binding
)}

 :left ->
 {:ok,
 from(row in query,
 left_lateral_join: descendant in subquery(descendant_query),
 on: true,
 as: ^as_binding
)}
 end
 end

 @impl true
 @spec ash_postgres_subquery(keyword, any, any, Ecto.Query.t()) ::
 {:ok, Ecto.Query.t()} | {:error, any}
 # Produce a subquery using which will use the given binding and will be
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 immediate_descendants =
 from(destination in Employee,
 where: parent_as(^current_binding).id == destination.manager_id
)

 cte_name = "employees_#{as_binding}"

 recursive_cte_query =
 recursive_cte_query_for_join(
 immediate_descendants,
 cte_name,
 Employee
)

 other_query =
 from(row in subquery(recursive_cte_query),
 where:
 row.id in subquery(
 from(row in Ecto.Query.exclude(destination_query, :select), select: row.id)
)
)

 {:ok, other_query}
 end

 defp recursive_cte_query(immediate_parents, cte_name, query) do
 recursion_query =
 query
 |> join(:inner, [l], lt in ^cte_name, on: l.manager_id == lt.id)

 descendants_query =
 immediate_parents
 |> union(^recursion_query)

 {cte_name, Employee}
 |> recursive_ctes(true)
 |> with_cte(^cte_name, as: ^descendants_query)
 end

 defp recursive_cte_query_for_join(immediate_parents, cte_name, query) do
 # This is due to limitations in ecto's recursive CTE implementation
 # For more, see here:
 # https://elixirforum.com/t/ecto-cte-queries-without-a-prefix/33148/2
 # https://stackoverflow.com/questions/39458572/ecto-declare-schema-for-a-query
 employee_keys = Employee.__schema__(:fields)

 cte_name_ref =
 from(cte in fragment("?", literal(^cte_name)), select: map(cte, ^employee_keys))

 recursion_query =
 query
 |> join(:inner, [l], lt in ^cte_name_ref, on: l.manager_id == lt.id)

 descendants_query =
 immediate_parents
 |> union(^recursion_query)

 cte_name_ref
 |> recursive_ctes(true)
 |> with_cte(^cte_name, as: ^descendants_query)
 end
end
With the above definition, employees could have a relationship like this:
has_many :managed_employees, MyApp.Employee do
 manual MyApp.Employee.ManagedEmployees
end
And you could then use it in calculations and aggregates! For example, to see the count of employees managed by each employee:
aggregates do
 count :count_of_managed_employees, :managed_employees
end

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v2.4.18 (2024-12-20)

 Bug Fixes:

	handle double select issue

 Improvements:

	make igniter optional

	make tsvector type selectable

 v2.4.17 (2024-12-16)

 Bug Fixes:

	Fix query for metadata on foreign keys and fix duplicate references being produced (#444)

	alter resource generation query to go to the source pg_constraints table instead of to the view to fetch constraint data (#443)

 v2.4.16 (2024-12-12)

 Bug Fixes:

	properly support expr errors in bulk create

	only build references for belongs_to relationships

 Improvements:

	add postgres_reference_expr callback (#438)

 v2.4.15 (2024-12-06)

 Bug Fixes:

	split off varchar options from index

	don't attempt to use non-existent relationship

	handle manual/no_attributes? relationships in lateral join logic

	don't use priv configuration for snapshot_path

 Improvements:

	update sql implementation for type determination

 v2.4.14 (2024-11-27)

 Bug Fixes:

	pass AST to deal with stupid igniter behavior

 v2.4.13 (2024-11-26)

 Bug Fixes:

	[mix ash.migrate] honor the snapshots_only option

 Improvements:

	[mix ash.migrate] honor repo configuration in migration generator

	[mix ash.codegen] honor :priv in migration generator, and make it explicitly configurable

	[mix ash_postgres.install] don't generate task aliases that run seeds in test

 v2.4.12 (2024-10-30)

 Bug Fixes:

	[query builder] don't double add distinct clauses

	[AshPostgres.DataLayer] don't use cast for changes

 Improvements:

	[AshPostgres.Repo] set prefer_transaction? to false in generated repos

	[AshPostgres.DataLayer] support prefer_transaction?

 v2.4.11 (2024-10-23)

 Bug Fixes:

	[upserts] ensure repo_opts is passed through to repo.all/2

 v2.4.10 (2024-10-23)

 Security

	Patch of GHSA-hf59-7rwq-785m Empty, atomic, non-bulk actions, policy bypass for side-effects vulnerability.

 Bug Fixes:

	[upserts] run any query that could produce errors when performing atomic upgrade

	[multitenant migrations] race condition compiling migrations when concurrently creating new tenants (#406)

 v2.4.9 (2024-10-16)

 Bug Fixes:

	[mix ash_postgres.gen.resources] fix resource generator task & tests

 v2.4.8 (2024-10-11)

 Improvements:

	[migration generator] use the name parameter when generating migrations

 v2.4.7 (2024-10-10)

 Improvements:

	[upserts] adapt to fixes and optimizations around skipped upserts in ash core

 v2.4.6 (2024-10-07)

 Improvements:

	[mix ash_postgres.install] with --yes assume oldest version

 v2.4.5 (2024-10-06)

 Bug Fixes:

	[upserts] ensure upsert fields are uniq

 Improvements:

	[mix ash_postgres.install] detect 1 arg repo use in installer

	[AshPostgres.Repo] support to_ecto(%Ecto.Changeset{}) and from_ecto(%Ecto.Changeset{}) (#395)

 v2.4.4 (2024-09-29)

 Bug Fixes:

	[atomic updates] handle atomic array operations

 v2.4.3 (2024-09-27)

 Bug Fixes:

	[mix ash_postgres.gen.resources] support pg <= 14 in resource generator, and update tests

 v2.4.2 (2024-09-24)

 Bug Fixes:

	[migration generator] typo of biging -> bigint

	[migration generator] altering attributes not properly generating foreign keys in some cases

	[mix ash_postres.install] use correct module name in the DataCase moduledocs. (#393)

	[migration generator] trim input before passing to String.to_integer/1. (#389)

 Improvements:

	[mix ash_postgres.install] add --repo option to installer, and warn on clashing existing repo

	[mix ash_postgres.install] prompt for minimum pg version

	[mix ash_postgres.install] adjust mix task aliases to be used with ash_postgres

	[migration generator] set a name for generated migrations

 v2.4.1 (2024-09-16)

 Bug Fixes:

	[bulk updates] ensure that returning is never an empty list

	[mix ash_postgres.gen.resources] match on table schema as well as table name

 v2.4.0 (2024-09-13)

 Features:

	[AshPostgres.Ltree] Implement Ltree Type (#385)

 Improvements:

	[migration generator] remove LEAKPROOF from function to prevent migration issues

	[Ash.Changeset] support upcoming action_select options

	[mix ash.install] ensure Repo is started after telemetry in igniter installer

 v2.3.1 (2024-09-05)

 Improvements:

	[mix ash_postgres.gen.migrations] better imported index names

	[mix ash_postgres.gen.migrations] add --extend option, forwarded to generated resource

 v2.3.0 (2024-09-05)

 Features:

	[mix ash_postgres.gen.resources] Add mix ash_postgres.gen.resources for importing tables from an existing database as resources

 v2.2.5 (2024-09-04)

 Improvements:

	[AshPostgres.DataLayer] support ash main upsert_condition logic

 v2.2.4 (2024-09-03)

 Bug Fixes:

	[AshPostgres.DataLayer] ensure default bindings are present on data layer

	[AshPostgres.DataLayer] properly traverse newtypes when determining types

 v2.2.3 (2024-08-18)

 Bug Fixes:

	[mix ash_postgres.install] was not adding ash_functions/min_pg_version

 v2.2.2 (2024-08-17)

 Bug Fixes:

	[mix ash_postgres.install] properly handle new igniter installer functions

 v2.2.1 (2024-08-16)

 Bug Fixes:

	[AshPostgres.DataLayer] set a proper default for skip_unique_indexes

 Improvements:

	[mix ash_postgres.install] include min_pg_version in new generators

 v2.2.0 (2024-08-13)

 Bug Fixes:

	[AshPostgres.Repo] remove Agent "convenience" for determining min pg version

We need to require that users provide this function. To that end we're
adding a warning in a minor release branch telling users to define this.
The agent was acting as a bottleneck that all queries must go through,
causing nontrivial performance issues at scale.
	[upserts] handle filter condition on create (#368)

 v2.1.19 (2024-08-12)

 Bug Fixes:

	[ecto compatibility] we missed a change when preparing for ecto 3.12 parameterized type changes

	[exists aggregates] update ash_sql for exists aggregate fixes

 v2.1.18 (2024-08-09)

 Improvements:

	[ash_postgres.gen.migration] dynamically select and allow setting a repo

 v2.1.17 (2024-07-27)

 Improvements:

	[ash_sql] update ash & ash_sql for various fixes

 v2.1.16 (2024-07-25)

 Bug Fixes:

	[updates] don't overwrite non-updated fields on update

	[mix ash_postgres.generate_migrations] ensure app is compiled before using repo modules

 Improvements:

	[ash_sql] update ash_sql for cleaner queries

 v2.1.15 (2024-07-23)

 Bug Fixes:

	[query building] use a subquery if any exists aggregates are in play

 v2.1.14 (2024-07-22)

 Bug Fixes:

	[multitenancy] properly convert tenant to string when building lateral join

 v2.1.13 (2024-07-22)

 Bug Fixes:

	[atomic validations] update ash & ash_sql for fixes, test atomic validations in destroys

 v2.1.12 (2024-07-19)

 Bug Fixes:

	[mix ash_postgres.install] properly add prod config in installer

 Bug Fixes:

	[mix ash_postgres.install] properly perform or don't perform configuration modification code

	[has_many relationships] allow non-unique has_many source_attributes (#355)

 Improvements:

	[mix ash_postgres.install] prepend :postgres to section order

	[mix ash.patch.extend] pluralize table name in extender

 v2.1.10 (2024-07-18)

 Bug Fixes:

	[lateral joins] allow non-unique has_many source_attributes (#355)

 v2.1.9 (2024-07-18)

 Bug Fixes:

 Improvements:

	[mix ash.gen.resource] pluralize table name in extender

 v2.1.8 (2024-07-17)

 Bug Fixes:

	[aggregates] update ash_sql & ash for include_nil? fix (and test it)

	[aggregates] ensure synthesized query aggregates have context set

 Improvements:

	[installers] update igniter dependencies

	[expressions] add binding() expression, for referring to the current table

 v2.1.7 (2024-07-17)

 Bug Fixes:

	update to latest ash version for aggregate fix

	update ash_sql for include_nil? fix and test it

	ensure synthesized query aggregates have context set

 Improvements:

	update ash/igniter dependencies

	add binding() expression

	use latest type casting code from ash

	support new type determination code

 v2.1.6 (2024-07-16)

 Bug Fixes:

	ensure synthesized query aggregates have context set

 Improvements:

	update ash/igniter dependencies

	add binding() expression

	use latest type casting code from ash

	support new type determination code

 v2.1.5 (2024-07-15)

 Bug Fixes:

	ensure synthesized query aggregates have context set

 Improvements:

	[Ash.Expr] add binding() expression to refer to current table

	[Ash.Expr] use latest type casting code from ash

 v2.1.4 (2024-07-14)

 Improvements:

	[Ash.Expr] use latest type casting code from ash

 v2.1.3 (2024-07-14)

 Improvements:

	[Ash.Expr] support new type determination code

 v2.1.2 (2024-07-13)

	[query builder] update ash & improve type casting behavior

 v2.1.1 (2024-07-10)

 Bug Fixes:

	[mix ash_postgres.install] properly interpolate module names in installer

 v2.1.0 (2024-07-10)

 Features:

	[AshPostgres.DataLayer] add storage_types configuration (#342)
	[generators] add mix ash_postgres.install (mix igniter.install ash_postgres)

 Bug Fixes:

	[AshPostgres.DataLayer] ensure that from_many? relationships in lateral join have a limit applied

	[migration generator] properly delete args passed from migrate to ecto

 Improvements:

	[Ash.Type.UUIDv7] add support for :uuid_v7 type (#333)

	[migration generator] order keys in snapshot json (#339)

 v2.0.12 (2024-06-20)

 Bug Fixes:

	[migration generator] only add references indexes if they've changed

 v2.0.11 (2024-06-19)

 Bug Fixes:

	[AshPostgres.DataLayer] rework expression type detection

	[migration generator] ensure index keys are atoms in generated migrations (#332)

 v2.0.10 (2024-06-18)

 Bug Fixes:

	[AshPostgres.DataLayer] update ash_sql to fix query generation issues

	[migration generator] ensure that parens are always added to calculation generated SQL

	[migration generator] properly get calculation sql

 Improvements:

	[AshPostgres.DataLayer] better type handling using new type inference

	[identities] identities w/ calculations and where clauses in upserts

 v2.0.9 (2024-06-13)

 Features:

	[migration generator] autogenerate index in references (#321)

 Bug Fixes:

	[AshPostgres.DataLayer] fix invalid select on sorting by some calculations

	[AshPostgres.DataLayer] fix error message displaying in identity verifier

	[lateral joining] ensure that context multitenancy is properly applied to lateral many-to-many joins

	[migration generator] don't assume old snapshots have index? key for attributes

	[ash.rollback] list_tenants -> all_tenants

	[ash.rollback] when checking for roll back-able migrations, only check Path.basename

 Improvements:

	[migration generator] don't sort identity keys.

 v2.0.8 (2024-06-06)

 v2.0.7 (2024-06-06)

 Bug Fixes:

	[fix] update ash_sql and fix issues retaining lateral join context

	[fix] ensure that all current attribute values are selected on bulk update shifted root query

 v2.0.6 (2024-05-29)

 Bug Fixes:

	[atomic updates] properly support aggregate references in atomic updates

	[migration generator] ensure that identities are dropped when where/nils_distinct? are changed

	[migration generator] ensure that where is wrapped in parenthesis

	[ecto compatibility] support old/new parameterized type format

 Improvements:

	[identities] require clarification of index names > 63 characters

	[mix ash_postgres.squash_snapshots] add ash_postgres.squash_snapshots mix task (#302)

 v2.0.5 (2024-05-24)

 Improvements:

	[idenities] update ash and support new identity features

 v2.0.4 (2024-05-23)

 Bug Fixes:

[updates] ensure update's reselect all changing values

 v2.0.3 (2024-05-22)

 Bug Fixes:

[updates] handle complex maps/list on update
[Ash.Query] support anonymous aggregates in sorts
[exists] ensure parent_as bindings properly reference binding names
[migration generator] add and remove custom indexes in tandem properly

 Improvements:

[references] support on_delete: :nilify for specific columns (#289)

 v2.0.2 (2024-05-15)

 Bug Fixes:

	[update_query/destroy_query] rework the update and destroy query builder to support multiple kinds of joining

	[mix ash_postgres.migrate] remove duplicate repo flags (#285)

	[Ash.Error.Changes.StaleRecord] ensure filter is included in stale record error messages we return

	[AshPostgres.MigrationGenerator] properly parse previous version from migration generation

 v2.0.1 (2024-05-12)

 Bug Fixes:

	[AshPostgres.MigrationGenerator] properly parse previous version of custom extensions when generating migrations

 v2.0.0

The changelog is starting over. Please see /documentation/1.0-CHANGELOG.md in GitHub for previous changelogs.

 Breaking Changes:

	[Ash.Type.UUID] change defaults in migrations for uuids to gen_random_uuid()
	[Ash.Type.DateTime] Use UTC for default generated timestamps (#131)
	[AshPostgres.DataLayer] must now know the min_pg_version that will be used. By default we check this at repo startup by asking the database, but you can also define it yourself.
	[AshPostgres.DataLayer] Now requires postgres version 14 or higher

 Features:

	[AshPostgres.Timestamptz] add timestamptz types (#266)
	[AshPostgres.Repo] add create? and drop? callbacks to AshPostgres.Repo (#143)
	[AshPostgres.DataLayer] support c:AshDataLayer.calculate/3 capability

 Bug Fixes:

	[AshPostgres.MigrationGenerator] honor dry_run option in extension migrations
	[AshPostgres.MigrationGenerator] don't wait for shell input when checking migrations
	[AshPostgres.DataLayer] ensure limit/offset triggers joining for update/destroy query
	[AshPostgres.DataLayer] properly honor limit in bulk operations
	[AshPostgres.DataLayer] ensure that exists with a filter paired with from_many? functions properly

 Improvements:

	[AshPostgres.Repo] warn on missing ash-functions at compile time
	[AshPostgres.Repo] add default implementation for pg_version, and rename to min_pg_version
	[mix ash.rollback] support mix ash.rollback with interactive rollback
	[AshSql] move many internals out to AshSql package to be shared

DSL: AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.

 postgres

Postgres data layer configuration

 Nested DSLs

	custom_indexes	index

	custom_statements	statement

	manage_tenant
	references	reference

	check_constraints	check_constraint

 Examples

postgres do
 repo MyApp.Repo
 table "organizations"
end

 Options

	Name	Type	Default	Docs
	repo	module | (any, any -> any)		The repo that will be used to fetch your data. See the AshPostgres.Repo documentation for more. Can also be a function that takes a resource and a type :read | :mutate and returns the repo
	migrate?	boolean	true	Whether or not to include this resource in the generated migrations with mix ash.generate_migrations
	storage_types	keyword	[]	A keyword list of attribute names to the ecto type that should be used for that attribute. Only necessary if you need to override the defaults.
	migration_types	keyword	[]	A keyword list of attribute names to the ecto migration type that should be used for that attribute. Only necessary if you need to override the defaults.
	migration_defaults	keyword	[]	A keyword list of attribute names to the ecto migration default that should be used for that attribute. The string you use will be placed verbatim in the migration. Use fragments like fragment(\\"now()\\"), or for nil, use \\"nil\\".
	calculations_to_sql	keyword		A keyword list of calculations and their SQL representation. Used when creating unique indexes for identities over calculations
	identity_wheres_to_sql	keyword		A keyword list of identity names and the SQL representation of their where clause. See AshPostgres.DataLayer.Info.identity_wheres_to_sql/1 for more details.
	base_filter_sql	String.t		A raw sql version of the base_filter, e.g representative = true. Required if trying to create a unique constraint on a resource with a base_filter
	simple_join_first_aggregates	list(atom)	[]	A list of :first type aggregate names that can be joined to using a simple join. Use when you have a :first aggregate that uses a to-many relationship , but your filter statement ensures that there is only one result. Optimizes the generated query.
	skip_unique_indexes	atom | list(atom)	[]	Skip generating unique indexes when generating migrations
	unique_index_names	list({list(atom), String.t} | {list(atom), String.t, String.t})	[]	A list of unique index names that could raise errors that are not configured in identities, or an mfa to a function that takes a changeset and returns the list. In the format {[:affected, :keys], "name_of_constraint"} or {[:affected, :keys], "name_of_constraint", "custom error message"}
	exclusion_constraint_names	any	[]	A list of exclusion constraint names that could raise errors. Must be in the format {:affected_key, "name_of_constraint"} or {:affected_key, "name_of_constraint", "custom error message"}
	identity_index_names	any	[]	A keyword list of identity names to the unique index name that they should use when being managed by the migration generator.
	foreign_key_names	list({atom | String.t, String.t} | {atom | String.t, String.t, String.t})	[]	A list of foreign keys that could raise errors, or an mfa to a function that takes a changeset and returns a list. In the format: {:key, "name_of_constraint"} or {:key, "name_of_constraint", "custom error message"}
	migration_ignore_attributes	list(atom)	[]	A list of attributes that will be ignored when generating migrations.
	table	String.t		The table to store and read the resource from. If this is changed, the migration generator will not remove the old table.
	schema	String.t		The schema that the table is located in. Schema-based multitenancy will supercede this option. If this is changed, the migration generator will not remove the old schema.
	polymorphic?	boolean	false	Declares this resource as polymorphic. See the polymorphic resources guide for more.

 postgres.custom_indexes

A section for configuring indexes to be created by the migration generator.
In general, prefer to use identities for simple unique constraints. This is a tool to allow
for declaring more complex indexes.

 Nested DSLs

	index

 Examples

custom_indexes do
 index [:column1, :column2], unique: true, where: "thing = TRUE"
end

 postgres.custom_indexes.index

index fields
Add an index to be managed by the migration generator.

 Examples

index ["column", "column2"], unique: true, where: "thing = TRUE"

 Arguments

	Name	Type	Default	Docs
	fields	atom | String.t | list(atom | String.t)		The fields to include in the index.

 Options

	Name	Type	Default	Docs
	error_fields	list(atom)		The fields to attach the error to.
	name	String.t		the name of the index. Defaults to "#{table}_#{column}_index".
	unique	boolean	false	indicates whether the index should be unique.
	concurrently	boolean	false	indicates whether the index should be created/dropped concurrently.
	using	String.t		configures the index type.
	prefix	String.t		specify an optional prefix for the index.
	where	String.t		specify conditions for a partial index.
	include	list(String.t)		specify fields for a covering index. This is not supported by all databases. For more information on PostgreSQL support, please read the official docs.
	nulls_distinct	boolean	true	specify whether null values should be considered distinct for a unique index. Requires PostgreSQL 15 or later
	message	String.t		A custom message to use for unique indexes that have been violated
	all_tenants?	boolean	false	Whether or not the index should factor in the multitenancy attribute or not.

 Introspection

Target: AshPostgres.CustomIndex

 postgres.custom_statements

A section for configuring custom statements to be added to migrations.
Changing custom statements may require manual intervention, because Ash can't determine what order they should run
in (i.e if they depend on table structure that you've added, or vice versa). As such, any down statements we run
for custom statements happen first, and any up statements happen last.
Additionally, when changing a custom statement, we must make some assumptions, i.e that we should migrate
the old structure down using the previously configured down and recreate it.
This may not be desired, and so what you may end up doing is simply modifying the old migration and deleting whatever was
generated by the migration generator. As always: read your migrations after generating them!

 Nested DSLs

	statement

 Examples

custom_statements do
 # the name is used to detect if you remove or modify the statement
 statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
 end
end

 postgres.custom_statements.statement

statement name
Add a custom statement for migrations.

 Examples

statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
end

 Arguments

	Name	Type	Default	Docs
	name	atom		The name of the statement, must be unique within the resource

 Options

	Name	Type	Default	Docs
	up	String.t		How to create the structure of the statement
	down	String.t		How to tear down the structure of the statement
	code?	boolean	false	By default, we place the strings inside of ecto migration's execute/1 function and assume they are sql. Use this option if you want to provide custom elixir code to be placed directly in the migrations

 Introspection

Target: AshPostgres.Statement

 postgres.manage_tenant

Configuration for the behavior of a resource that manages a tenant

 Examples

manage_tenant do
 template ["organization_", :id]
 create? true
 update? false
end

 Options

	Name	Type	Default	Docs
	template	String.t | atom | list(String.t | atom)		A template that will cause the resource to create/manage the specified schema.
	create?	boolean	true	Whether or not to automatically create a tenant when a record is created
	update?	boolean	true	Whether or not to automatically update the tenant name if the record is udpated

 postgres.references

A section for configuring the references (foreign keys) in resource migrations.
This section is only relevant if you are using the migration generator with this resource.
Otherwise, it has no effect.

 Nested DSLs

	reference

 Examples

references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
end

 Options

	Name	Type	Default	Docs
	polymorphic_on_delete	:delete | :nilify | :nothing | :restrict | {:nilify, atom | list(atom)}		For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables.
	polymorphic_on_update	:update | :nilify | :nothing | :restrict		For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables.

 postgres.references.reference

reference relationship
Configures the reference for a relationship in resource migrations.
Keep in mind that multiple relationships can theoretically involve the same destination and foreign keys.
In those cases, you only need to configure the reference behavior for one of them. Any conflicts will result
in an error, across this resource and any other resources that share a table with this one. For this reason,
instead of adding a reference configuration for :nothing, its best to just leave the configuration out, as that
is the default behavior if no relationship anywhere has configured the behavior of that reference.

 Examples

reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"

 Arguments

	Name	Type	Default	Docs
	relationship	atom		The relationship to be configured

 Options

	Name	Type	Default	Docs
	ignore?	boolean		If set to true, no reference is created for the given relationship. This is useful if you need to define it in some custom way
	on_delete	:delete | :nilify | :nothing | :restrict | {:nilify, atom | list(atom)}		What should happen to records of this resource when the referenced record of the destination resource is deleted.
	on_update	:update | :nilify | :nothing | :restrict		What should happen to records of this resource when the referenced destination_attribute of the destination record is update.
	deferrable	false | true | :initially	false	Whether or not the constraint is deferrable. This only affects the migration generator.
	name	String.t		The name of the foreign key to generate in the database. Defaults to <table>_<source_attribute>_fkey
	match_with	keyword		Defines additional keys to the foreign key in order to build a composite foreign key. The key should be the name of the source attribute (in the current resource), the value the name of the destination attribute.
	match_type	:simple | :partial | :full		select if the match is :simple, :partial, or :full
	index?	boolean	false	Whether to create or not a corresponding index

 Introspection

Target: AshPostgres.Reference

 postgres.check_constraints

A section for configuring the check constraints for a given table.
This can be used to automatically create those check constraints, or just to provide message when they are raised

 Nested DSLs

	check_constraint

 Examples

check_constraints do
 check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"
end

 postgres.check_constraints.check_constraint

check_constraint attribute, name
Add a check constraint to be validated.
If a check constraint exists on the table but not in this section, and it produces an error, a runtime error will be raised.
Provide a list of attributes instead of a single attribute to add the message to multiple attributes.
By adding the check option, the migration generator will include it when generating migrations.

 Examples

check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"

 Arguments

	Name	Type	Default	Docs
	attribute	any		The attribute or list of attributes to which an error will be added if the check constraint fails
	name	String.t		The name of the constraint

 Options

	Name	Type	Default	Docs
	message	String.t		The message to be added if the check constraint fails
	check	String.t		The contents of the check. If this is set, the migration generator will include it when generating migrations

 Introspection

Target: AshPostgres.CheckConstraint

AshPostgres.Igniter

Codemods and utilities for working with AshPostgres & Igniter

 Summary

 Functions

 AshPostgres.MigrationCompileCache - ash_postgres v2.4.18

AshPostgres.MigrationCompileCache

A cache for the compiled migrations.
This is used to avoid recompiling the migration files
every time a migration is run, as well as ensuring that
migrations are compiled sequentially.
This is important because otherwise there is a race condition
where two invocations could be compiling the same migration at
once, which would error out.

 Summary

 Functions

 AshPostgres.Functions.Binding - ash_postgres v2.4.18

AshPostgres.Functions.Binding

Refers to the current table binding.

 Summary

 Functions

 AshPostgres - ash_postgres v2.4.18

AshPostgres

The AshPostgres extension gives you tools to map a resource to a postgres database table.
For more, check out the getting started guide

 Summary

 Functions

 AshPostgres.DataLayer - ash_postgres v2.4.18

AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.

 Summary

 Functions

 AshPostgres.Repo - ash_postgres v2.4.18

AshPostgres.Repo behaviour

Resources that use AshPostgres.DataLayer use a Repo to access the database.
This repo is a thin wrapper around an Ecto.Repo.
You can use Ecto.Repo's init/2 to configure your repo like normal, but
instead of returning {:ok, config}, use super(config) to pass the
configuration to the AshPostgres.Repo implementation.

 Installed Extensions

To configure your list of installed extensions, define installed_extensions/0
Extensions can be a string, representing a standard postgres extension, or a module that implements AshPostgres.CustomExtension.
That custom extension will be called to generate migrations that serve a specific purpose.
Extensions that are relevant to ash_postgres:
	"ash-functions" - This isn't really an extension, but it expresses that certain functions
should be added when generating migrations, to support the || and && operators in expressions.
	"uuid-ossp" - Sets UUID primary keys defaults in the migration generator
	"pg_trgm" - Makes the AshPostgres.Functions.TrigramSimilarity function available
	"citext" - Allows case insensitive fields to be used
	"vector" - Makes the AshPostgres.Functions.VectorCosineDistance function available. See AshPostgres.Extensions.Vector for more setup instructions.

def installed_extensions() do
 ["pg_trgm", "uuid-ossp", "vector", YourCustomExtension]
end

 Transaction Hooks

You can define on_transaction_begin/1, which will be invoked whenever a transaction is started for Ash.
This will be invoked with a map containing a type key and metadata.
%{type: :create, %{resource: YourApp.YourResource, action: :action}}

 Additional Repo Configuration

Because an AshPostgres.Repo is also an Ecto.Repo, it has all of the same callbacks.
In the Ecto.Repo.init/2 callback, you can configure the following additional items:
	:tenant_migrations_path - The path where