

 ash_postgres

 v2.6.11

 [image: Logo]

 Table of contents

 	Home

 	AshPostgres.DataLayer

 	Tutorials

 	Get Started With Postgres

 	Setting AshPostgres up with an existing database

 	Resources

 	What is AshPostgres?

 	References

 	Polymorphic Resources

 	Migrations

 	Testing with AshPostgres

 	Upgrading to 2.0

 	Expressions

 	Schema Based Multitenancy

 	Using Multiple Repos

 	Manual Relationships

 	About AshPostgres

 	Change Log

 	
 Modules

 	AshPostgres.Igniter

 	AshPostgres.MigrationCompileCache

 	AshPostgres.Functions.Binding

 	AshPostgres.Functions.VectorL2Distance

 	AshPostgres

 	AshPostgres

 	AshPostgres.DataLayer

 	AshPostgres.Repo

 	Utilities

 	AshPostgres.ManualRelationship

 	Introspection

 	AshPostgres.CheckConstraint

 	AshPostgres.CustomExtension

 	AshPostgres.CustomIndex

 	AshPostgres.DataLayer.Info

 	AshPostgres.Reference

 	AshPostgres.Statement

 	Types

 	AshPostgres.Ltree

 	AshPostgres.Timestamptz

 	AshPostgres.TimestamptzUsec

 	AshPostgres.Tsquery

 	AshPostgres.Tsvector

 	AshPostgres.Type

 	Extensions

 	AshPostgres.Extensions.Vector

 	Custom Aggregates

 	AshPostgres.CustomAggregate

 	Postgres Migrations

 	AshPostgres.Migration

 	EctoMigrationDefault

 	Expressions

 	AshPostgres.Functions.ILike

 	AshPostgres.Functions.Like

 	AshPostgres.Functions.TrigramSimilarity

 	AshPostgres.Functions.VectorCosineDistance

 	
 Mix Tasks

 	mix ash_postgres.create

 	mix ash_postgres.drop

 	mix ash_postgres.gen.resources

 	mix ash_postgres.generate_migrations

 	mix ash_postgres.install

 	mix ash_postgres.migrate

 	mix ash_postgres.rollback

 	mix ash_postgres.setup_vector

 	mix ash_postgres.squash_snapshots

 Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
AshPostgres
Welcome! AshPostgres is the PostgreSQL data layer for Ash Framework.
Minimum required PostgreSQL version: 13.0
Tutorials
	Get Started

Topics
	What is AshPostgres?

Resources
	References
	Polymorphic Resources

Development
	Migrations and tasks
	Testing
	Upgrading to 2.0

Advanced
	Expressions
	Manual Relationships
	Schema Based Multitenancy
	Read Replicas

Reference
	AshPostgres.DataLayer DSL

 AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.
postgres
Postgres data layer configuration
Nested DSLs
	custom_indexes	index

	custom_statements	statement

	manage_tenant
	references	reference

	check_constraints	check_constraint

Examples
postgres do
 repo MyApp.Repo
 table "organizations"
end

Options
	Name	Type	Default	Docs
	repo	module | (any, any -> any)		The repo that will be used to fetch your data. See the AshPostgres.Repo documentation for more. Can also be a function that takes a resource and a type :read | :mutate and returns the repo
	migrate?	boolean	true	Whether or not to include this resource in the generated migrations with mix ash.generate_migrations
	storage_types	keyword	[]	A keyword list of attribute names to the ecto type that should be used for that attribute. Only necessary if you need to override the defaults.
	migration_types	keyword	[]	A keyword list of attribute names to the ecto migration type that should be used for that attribute. Only necessary if you need to override the defaults.
	migration_defaults	keyword	[]	A keyword list of attribute names to the ecto migration default that should be used for that attribute. The string you use will be placed verbatim in the migration. Use fragments like fragment(\\"now()\\"), or for nil, use \\"nil\\".
	calculations_to_sql	keyword		A keyword list of calculations and their SQL representation. Used when creating unique indexes for identities over calculations
	identity_wheres_to_sql	keyword		A keyword list of identity names and the SQL representation of their where clause. See AshPostgres.DataLayer.Info.identity_wheres_to_sql/1 for more details.
	base_filter_sql	String.t		A raw sql version of the base_filter, e.g representative = true. Required if trying to create a unique constraint on a resource with a base_filter
	simple_join_first_aggregates	list(atom)	[]	A list of :first type aggregate names that can be joined to using a simple join. Use when you have a :first aggregate that uses a to-many relationship , but your filter statement ensures that there is only one result. Optimizes the generated query.
	skip_unique_indexes	atom | list(atom)	[]	Skip generating unique indexes when generating migrations
	unique_index_names	list({list(atom), String.t} | {list(atom), String.t, String.t})	[]	A list of unique index names that could raise errors that are not configured in identities, or an mfa to a function that takes a changeset and returns the list. In the format {[:affected, :keys], "name_of_constraint"} or {[:affected, :keys], "name_of_constraint", "custom error message"}
	exclusion_constraint_names	any	[]	A list of exclusion constraint names that could raise errors. Must be in the format {:affected_key, "name_of_constraint"} or {:affected_key, "name_of_constraint", "custom error message"}
	identity_index_names	any	[]	A keyword list of identity names to the unique index name that they should use when being managed by the migration generator.
	foreign_key_names	list({atom | String.t, String.t} | {atom | String.t, String.t, String.t})	[]	A list of foreign keys that could raise errors, or an mfa to a function that takes a changeset and returns a list. In the format: {:key, "name_of_constraint"} or {:key, "name_of_constraint", "custom error message"}
	migration_ignore_attributes	list(atom)	[]	A list of attributes that will be ignored when generating migrations.
	table	String.t		The table to store and read the resource from. If this is changed, the migration generator will not remove the old table.
	schema	String.t		The schema that the table is located in. Schema-based multitenancy will supercede this option. If this is changed, the migration generator will not remove the old schema.
	polymorphic?	boolean	false	Declares this resource as polymorphic. See the polymorphic resources guide for more.

postgres.custom_indexes
A section for configuring indexes to be created by the migration generator.
In general, prefer to use identities for simple unique constraints. This is a tool to allow
for declaring more complex indexes.
Nested DSLs
	index

Examples
custom_indexes do
 index [:column1, :column2], unique: true, where: "thing = TRUE"
end

postgres.custom_indexes.index
index fields
Add an index to be managed by the migration generator.
Examples
index ["column", "column2"], unique: true, where: "thing = TRUE"
Arguments
	Name	Type	Default	Docs
	fields	atom | String.t | list(atom | String.t)		The fields to include in the index.

Options
	Name	Type	Default	Docs
	error_fields	list(atom)		The fields to attach the error to.
	name	String.t		the name of the index. Defaults to "#{table}_#{column}_index".
	unique	boolean	false	indicates whether the index should be unique.
	concurrently	boolean	false	indicates whether the index should be created/dropped concurrently.
	using	String.t		configures the index type.
	prefix	String.t		specify an optional prefix for the index.
	where	String.t		specify conditions for a partial index.
	include	list(String.t)		specify fields for a covering index. This is not supported by all databases. For more information on PostgreSQL support, please read the official docs.
	nulls_distinct	boolean	true	specify whether null values should be considered distinct for a unique index. Requires PostgreSQL 15 or later
	message	String.t		A custom message to use for unique indexes that have been violated
	all_tenants?	boolean	false	Whether or not the index should factor in the multitenancy attribute or not.

Introspection
Target: AshPostgres.CustomIndex
postgres.custom_statements
A section for configuring custom statements to be added to migrations.
Changing custom statements may require manual intervention, because Ash can't determine what order they should run
in (i.e if they depend on table structure that you've added, or vice versa). As such, any down statements we run
for custom statements happen first, and any up statements happen last.
Additionally, when changing a custom statement, we must make some assumptions, i.e that we should migrate
the old structure down using the previously configured down and recreate it.
This may not be desired, and so what you may end up doing is simply modifying the old migration and deleting whatever was
generated by the migration generator. As always: read your migrations after generating them!
Nested DSLs
	statement

Examples
custom_statements do
 # the name is used to detect if you remove or modify the statement
 statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
 end
end

postgres.custom_statements.statement
statement name
Add a custom statement for migrations.
Examples
statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
end

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the statement, must be unique within the resource

Options
	Name	Type	Default	Docs
	up	String.t		How to create the structure of the statement
	down	String.t		How to tear down the structure of the statement
	code?	boolean	false	By default, we place the strings inside of ecto migration's execute/1 function and assume they are sql. Use this option if you want to provide custom elixir code to be placed directly in the migrations

Introspection
Target: AshPostgres.Statement
postgres.manage_tenant
Configuration for the behavior of a resource that manages a tenant
Examples
manage_tenant do
 template ["organization_", :id]
 create? true
 update? false
end

Options
	Name	Type	Default	Docs
	template	String.t | atom | list(String.t | atom)		A template that will cause the resource to create/manage the specified schema.
	create?	boolean	true	Whether or not to automatically create a tenant when a record is created
	update?	boolean	true	Whether or not to automatically update the tenant name if the record is udpated

postgres.references
A section for configuring the references (foreign keys) in resource migrations.
This section is only relevant if you are using the migration generator with this resource.
Otherwise, it has no effect.
Nested DSLs
	reference

Examples
references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
end

Options
	Name	Type	Default	Docs
	polymorphic_on_delete	:delete | :nilify | :nothing | :restrict | {:nilify, atom | list(atom)}		For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables.
	polymorphic_on_update	:update | :nilify | :nothing | :restrict		For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables.

postgres.references.reference
reference relationship
Configures the reference for a relationship in resource migrations.
Keep in mind that multiple relationships can theoretically involve the same destination and foreign keys.
In those cases, you only need to configure the reference behavior for one of them. Any conflicts will result
in an error, across this resource and any other resources that share a table with this one. For this reason,
instead of adding a reference configuration for :nothing, its best to just leave the configuration out, as that
is the default behavior if no relationship anywhere has configured the behavior of that reference.
Examples
reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
Arguments
	Name	Type	Default	Docs
	relationship	atom		The relationship to be configured

Options
	Name	Type	Default	Docs
	ignore?	boolean		If set to true, no reference is created for the given relationship. This is useful if you need to define it in some custom way
	on_delete	:delete | :nilify | :nothing | :restrict | {:nilify, atom | list(atom)}		What should happen to records of this resource when the referenced record of the destination resource is deleted.
	on_update	:update | :nilify | :nothing | :restrict		What should happen to records of this resource when the referenced destination_attribute of the destination record is update.
	deferrable	false | true | :initially	false	Whether or not the constraint is deferrable. This only affects the migration generator.
	name	String.t		The name of the foreign key to generate in the database. Defaults to <table>_<source_attribute>_fkey
	match_with	keyword		Defines additional keys to the foreign key in order to build a composite foreign key. The key should be the name of the source attribute (in the current resource), the value the name of the destination attribute.
	match_type	:simple | :partial | :full		select if the match is :simple, :partial, or :full
	index?	boolean	false	Whether to create or not a corresponding index

Introspection
Target: AshPostgres.Reference
postgres.check_constraints
A section for configuring the check constraints for a given table.
This can be used to automatically create those check constraints, or just to provide message when they are raised
Nested DSLs
	check_constraint

Examples
check_constraints do
 check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"
end

postgres.check_constraints.check_constraint
check_constraint attribute, name
Add a check constraint to be validated.
If a check constraint exists on the table but not in this section, and it produces an error, a runtime error will be raised.
Provide a list of attributes instead of a single attribute to add the message to multiple attributes.
By adding the check option, the migration generator will include it when generating migrations.
Examples
check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"

Arguments
	Name	Type	Default	Docs
	attribute	any		The attribute or list of attributes to which an error will be added if the check constraint fails
	name	String.t		The name of the constraint

Options
	Name	Type	Default	Docs
	message	String.t		The message to be added if the check constraint fails
	check	String.t		The contents of the check. If this is set, the migration generator will include it when generating migrations

Introspection
Target: AshPostgres.CheckConstraint

 Get Started With Postgres

Installation
We recommend reading up on postgresql if you haven't.
	Postgres must be installed with a sufficiently permissive user

Using Igniter (recommended)
mix igniter.install ash_postgres

Manually
Add AshPostgres
Add the :ash_postgres dependency to your application
{:ash_postgres, "~> 2.0.0"}
Add :ash_postgres to your .formatter.exs file
[
 # import the formatter rules from `:ash_postgres`
 import_deps: [..., :ash_postgres],
 inputs: [...]
]
Create and configure your Repo
Create lib/helpdesk/repo.ex with the following contents. AshPostgres.Repo is a thin wrapper around Ecto.Repo, so see their documentation for how to use it if you need to use it directly. For standard Ash usage, all you will need to do is configure your resources to use your repo.
in lib/helpdesk/repo.ex

defmodule Helpdesk.Repo do
 use AshPostgres.Repo, otp_app: :helpdesk

 def installed_extensions do
 # Ash installs some functions that it needs to run the
 # first time you generate migrations.
 ["ash-functions"]
 end
end
Next we will need to create configuration files for various environments. Run the following to create the configuration files we need.
mkdir -p config
touch config/config.exs
touch config/dev.exs
touch config/runtime.exs
touch config/test.exs

Place the following contents in those files, ensuring that the credentials match the user you created for your database. For most conventional installations this will work out of the box. If you've followed other guides before this one, they may have had you create these files already, so just make sure these contents are there.
in config/config.exs
import Config

This should already have been added in the first
getting started guide
config :helpdesk,
 ash_domains: [Helpdesk.Support]

config :helpdesk,
 ecto_repos: [Helpdesk.Repo]

Import environment specific config. This must remain at the bottom
of this file so it overrides the configuration defined above.
import_config "#{config_env()}.exs"
in config/dev.exs

import Config

Configure your database
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_dev",
 port: 5432,
 show_sensitive_data_on_connection_error: true,
 pool_size: 10
in config/runtime.exs

import Config

if config_env() == :prod do
 database_url =
 System.get_env("DATABASE_URL") ||
 raise """
 environment variable DATABASE_URL is missing.
 For example: ecto://USER:PASS@HOST/DATABASE
 """

 config :helpdesk, Helpdesk.Repo,
 url: database_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE") || "10")
end
in config/test.exs

import Config

Configure your database
#
The MIX_TEST_PARTITION environment variable can be used
to provide built-in test partitioning in CI environment.
Run `mix help test` for more information.
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_test#{System.get_env("MIX_TEST_PARTITION")}",
 pool: Ecto.Adapters.SQL.Sandbox,
 pool_size: 10
And finally, add the repo to your application
in lib/helpdesk/application.ex

 def start(_type, _args) do
 children = [
 # Starts a worker by calling: Helpdesk.Worker.start_link(arg)
 # {Helpdesk.Worker, arg}
 Helpdesk.Repo
]

 ...
Adding AshPostgres to your resources
With Igniter
You can add AshPostgres to a resource with mix ash.patch.extend Your.Resource.Name postgres. For example:
mix ash.patch.extend Helpdesk.Support.Ticket postgres
mix ash.patch.extend Helpdesk.Support.Representative postgres

Manually
The basic configuration for a resource requires the d:AshPostgres.postgres|table and the d:AshPostgres.postgres|repo.
in lib/helpdesk/support/ticket.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "tickets"
 repo Helpdesk.Repo
 end
in lib/helpdesk/support/representative.ex

 use Ash.Resource,
 domain: Helpdesk.Support,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "representatives"
 repo Helpdesk.Repo
 end
Create the database and tables
First, we'll create the database with mix ash.setup.
Then we will generate database migrations. This is one of the many ways that AshPostgres can save time and reduce complexity.
For example:
mix ash.codegen add_tickets_and_representatives

If you are unfamiliar with database migrations, it is a good idea to get a rough idea of what they are and how they work. See the links at the bottom of this guide for more. A rough overview of how migrations work is that each time you need to make changes to your database, they are saved as small, reproducible scripts that can be applied in order. This is necessary both for clean deploys as well as working with multiple developers making changes to the structure of a single database.
Typically, you need to write these by hand. AshPostgres, however, will store snapshots each time you run the command to generate migrations and will figure out what migrations need to be created.
You should always look at the generated migrations to ensure that they look correct. Do so now by looking at the generated file in priv/repo/migrations.
Finally, we will create the local database and apply the generated migrations:
mix ash.setup

Try it out
This is based on the Get Started guide.
If you haven't already, you should read that first.
And now we're ready to try it out! Run the following in iex:
Lets create some data. We'll make a representative and give them some open and some closed tickets.
require Ash.Query

representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Ash.create!()
)

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Ash.create!()
 |> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
 |> Ash.update!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Ash.update!()
 end
end
And now we can read that data. You should see some debug logs that show the sql queries AshPostgres is generating.
require Ash.Query

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Ash.read!()
require Ash.Query

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Ash.read!()
And, naturally, now that we are storing this in postgres, this database is persisted even if we stop/start our application. The nice thing, however, is that this was the exact same code that we ran against our resources when they were backed by ETS.
Aggregates
Lets add some aggregates to our representatives resource. Aggregates are a tool to include grouped up data about relationships. You can read more about them in the Aggregates guide.
Here we will add an aggregate to easily query how many tickets are assigned to a representative, and how many of those tickets are open/closed.
in lib/helpdesk/support/representative.ex

 aggregates do
 # The first argument here is the name of the aggregate
 # The second is the relationship
 count :total_tickets, :tickets

 count :open_tickets, :tickets do
 # Here we add a filter over the data that we are aggregating
 filter expr(status == :open)
 end

 count :closed_tickets, :tickets do
 filter expr(status == :closed)
 end
 end
Aggregates are powerful because they will be translated to SQL, and can be used in filters and sorts. For example:
in iex

require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(closed_tickets < 4)
|> Ash.Query.sort(closed_tickets: :desc)
|> Ash.read!()
You can also load individual aggregates on demand after queries have already been run, and minimal SQL will be issued to run the aggregate.
in iex

require Ash.Query

representatives = Helpdesk.Support.read!(Helpdesk.Support.Representative)

Ash.load!(representatives, :open_tickets)
Calculations
Calculations can be pushed down into SQL in the same way. Calculations are similar to aggregates, except they work on individual records. They can, however, refer to aggregates on the resource, which opens up powerful possibilities with very simple code.
For example, we can determine the percentage of tickets that are open:
in lib/helpdesk/support/representative.ex

 calculations do
 calculate :percent_open, :float, expr(open_tickets / total_tickets)
 end
Calculations can be loaded and used in the same way as aggregates.
require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(percent_open > 0.25)
|> Ash.Query.sort(:percent_open)
|> Ash.Query.load(:percent_open)
|> Ash.read!()
Rich Configuration Options
Take a look at the DSL documentation for more information on what you can configure. You can add check constraints, configure the behavior of foreign keys, use postgres schemas with Ash's multitenancy feature, and more!
What next?
	Check out the data layer docs: AshPostgres.DataLayer

	Ecto's documentation. AshPostgres (and much of Ash itself) is made possible by the amazing Ecto. If you find yourself looking for escape hatches when using Ash or ways to work directly with your database, you will want to know how Ecto works. Ash and AshPostgres intentionally do not hide Ecto, and in fact encourages its use whenever you need an escape hatch.

	Postgres' documentation. Although AshPostgres makes things a lot easier, you should understand the basics of postgres and SQL.

	Ecto's Migration documentation read more about migrations. Even with the ash_postgres migration generator, you will very likely need to modify your own migrations some day.

 Setting AshPostgres up with an existing database

If you already have a postgres database and you'd like to get
started quickly, you can scaffold resources directly from your
database.
First, create an application with AshPostgres if you haven't already:
mix igniter.new my_app
 --install ash,ash_postgres
 --with phx.new # add this if you will be using phoenix too

Then, go into your config/dev.exs and configure your repo to use
your existing database.
Finally, run:
mix ash_postgres.gen.resources MyApp.MyDomain --tables table1,table2,table3

More fine grained control
You may want to do multiple passes to separate your application into multiple domains. For example:
mix ash_postgres.gen.resources MyApp.Accounts --tables users,roles,tokens
mix ash_postgres.gen.resources MyApp.Blog --tables posts,comments

See the docs for mix ash_postgres.gen.resources for more information.

 What is AshPostgres?

AshPostgres is the PostgreSQL Ash.DataLayer for Ash Framework. This is the most fully-featured Ash data layer, and unless you need a specific characteristic or feature of another data layer, you should use AshPostgres.
What versions are supported?
Any version higher than 13 is fully supported. Versions lower than this can be made to work, but certain edge cases may need to be manually handled. This becomes more and more true the further back in versions that you go.
Use this to persist records in a PostgreSQL table or view. For example, the resource below would be persisted in a table called tweets:
defmodule MyApp.Tweet do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 attributes do
 integer_primary_key :id
 attribute :text, :string
 end

 relationships do
 belongs_to :author, MyApp.User
 end

 postgres do
 table "tweets"
 repo MyApp.Repo
 end
end
The table might look like this:
	id	text	author_id
	1	"Hello, world!"	1

Creating records would add to the table, destroying records would remove from the table, and updating records would update the table.

 References

To configure the behavior of generated foreign keys on a resource, we use the references section, within the postgres configuration block.
For example:
postgres do
 # other PostgreSQL config here

 references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
 end
end
All supported DSL options can be found in a datalayer documentation.
Actions are not used for this behavior
No resource logic is applied with these operations! No authorization rules or validations take place, and no notifications are issued. This operation happens directly in the database.
On Delete
This option describes what to do if the referenced row is deleted.
The option is called on_delete, instead of on_destroy, because it is hooking into the database level deletion, not a destroy action in your resource. See the warning above.
The possible values for the option are :nothing, :restrict, :delete, :nilify, {:nilify, columns}.
With :nothing or :restrict the deletion of the referenced row is prevented.
With :delete the row is deleted together with the referenced row.
With :nilify all columns of the foreign-key constraint are nilified.
With {:nilify, columns} a column list can specify which columns should be set to nil.
If you intend to use this option to nilify a subset of the columns, note that it cannot be used together with the match: :full option otherwise a mix of nil and non-nil values would fail the constraint and prevent the deletion of the referenced row.
In addition, keep into consideration that this option is only supported from Postgres v15.0 onwards.
On Update
This option describes what to do if the referenced row is updated.
The possible values for the option are :nothing, :restrict, :update, :nilify.
With :nothing or :restrict the update of the referenced row is prevented.
With :update the row is updated according to the referenced row.
With :nilify all columns of the foreign-key constraint are nilified.
Nothing vs Restrict
references do
 reference :post, on_delete: :nothing
 # vs
 reference :post, on_delete: :restrict
end
The difference between :nothing and :restrict is subtle and, if you are unsure, choose :nothing (the default behavior). :restrict will immediately check the foreign-key constraint and prevent the update or deletion from happening, whereas :nothing allows the check to be deferred until later in the transaction. This allows for things like updating or deleting the destination row and then updating updating or deleting the reference (as long as you are in a transaction). The reason that :nothing still ultimately prevents the update or deletion is because postgres enforces foreign key referential integrity.

 Polymorphic Resources

To support leveraging the same resource backed by multiple tables (useful for things like polymorphic associations), AshPostgres supports setting the data_layer.table context for a given resource. For this example, lets assume that you have a MyApp.Post resource and a MyApp.Comment resource. For each of those resources, users can submit reactions. However, you want a separate table for post_reactions and comment_reactions. You could accomplish that like so:
defmodule MyApp.Reaction do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 postgres do
 polymorphic? true # Without this, `table` is a required configuration
 end

 attributes do
 attribute :resource_id, :uuid, public?: true
 end

 ...
end
Then, in your related resources, you set the table context like so:
defmodule MyApp.Post do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "post_reactions"}},
 destination_attribute: :resource_id
 end
end

defmodule MyApp.Comment do
 use Ash.Resource,
 domain: MyDomain,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "comment_reactions"}},
 destination_attribute: :resource_id
 end
end
With this, when loading or editing related data, ash will automatically set that context.
For managing related data, see Ash.Changeset.manage_relationship/4 and other relationship functions
in Ash.Changeset
Table specific actions
To make actions use a specific table, you can use the set_context query preparation/change.
For example:
defmodule MyApp.Reaction do
 # ...
 actions do
 read :for_comments do
 prepare set_context(%{data_layer: %{table: "comment_reactions"}})
 end

 read :for_posts do
 prepare set_context(%{data_layer: %{table: "post_reactions"}})
 end
 end
end
Migrations
When a migration is marked as polymorphic? true, the migration generator will look at
all resources that are related to it, that set the %{data_layer: %{table: "table"}} context.
For each of those, a migration is generated/managed automatically. This means that adding reactions
to a new resource is as easy as adding the relationship and table context, and then running
mix ash.codegen.

 Migrations

Tasks
Ash comes with its own tasks, and AshPostgres exposes lower level tasks that you can use if necessary. This guide shows the process using ash.* tasks, and the ash_postgres.* tasks are illustrated at the bottom.
Basic Workflow
	Make resource changes
	Run mix ash.codegen --dev to generate a migration tagged as a dev migration, which will later be squashed and does not require a name.
	Run mix ash.migrate to run the migrations.
	Make some more resource changes.
	Once you're all done, run mix ash.codegen add_a_combobulator, using a good name for your changes to generate migrations and resource snapshots. This will rollback the dev migrations, and squash them into a the new named migration (or sometimes migrations).
	Run mix ash.migrate to run those migrations

The --dev workflow enables you to avoid having to think of a name for migrations while developing, and also enables some
upcoming workflows that will detect when code generation needs to be run on page load and will show you a button to generate
dev migrations and run them.
For more information on generating migrations, run mix help ash_postgres.generate_migrations (the underlying task that is called by mix ash.migrate)
list_tenants/0
If you have are using schema-based multitenancy, you will also need to define a list_tenants/0 function in your repo module. See AshPostgres.Repo for more.
Regenerating Migrations
Often, you will run into a situation where you want to make a slight change to a resource after you've already generated and run migrations. If you are using git and would like to undo those changes, then regenerate the migrations, this script may prove useful:
#!/bin/bash

Get count of untracked migrations
N_MIGRATIONS=$(git ls-files --others priv/repo/migrations | wc -l)

Rollback untracked migrations
mix ash_postgres.rollback -n $N_MIGRATIONS

Delete untracked migrations and snapshots
git ls-files --others priv/repo/migrations | xargs rm
git ls-files --others priv/resource_snapshots | xargs rm

Regenerate migrations
mix ash.codegen --name $1

Run migrations if flag
if echo $* | grep -e "-m" -q
then
 mix ash.migrate
fi

After saving this file to something like regen.sh, make it executable with chmod +x regen.sh. Now you can run it with ./regen.sh name_of_operation. If you would like the migrations to automatically run after regeneration, add the -m flag: ./regen.sh name_of_operation -m.
Running Migrations in Production
Define a module similar to the following:
defmodule MyApp.Release do
 @moduledoc """
Tasks that need to be executed in the released application (because mix is not present in releases).
 """
 @app :my_app
 def migrate do
 load_app()

 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_tenants do
 load_app()

 for repo <- repos() do
 path = Ecto.Migrator.migrations_path(repo, "tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 fn repo ->
 for tenant <- repo.all_tenants() do
 Ecto.Migrator.run(repo, path, :up, all: true, prefix: tenant)
 end
 end
)
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_all do
 load_app()
 migrate()
 migrate_tenants()
 end

 def rollback(repo, version) do
 load_app()
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 # only needed if you are using postgres multitenancy
 def rollback_tenants(repo, version) do
 load_app()

 path = Ecto.Migrator.migrations_path(repo, "tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 for tenant <- repo.all_tenants() do
 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 &Ecto.Migrator.run(&1, path, :down,
 to: version,
 prefix: tenant
)
)
 end
 end

 defp repos do
 domains()
 |> Enum.flat_map(fn domain ->
 domain
 |> Ash.Domain.Info.resources()
 |> Enum.map(&AshPostgres.DataLayer.Info.repo/1)
 |> Enum.reject(&is_nil/1)
 end)
 |> Enum.uniq()
 end

 defp domains do
 Application.fetch_env!(@app, :ash_domains)
 end

 defp load_app do
 Application.load(@app)
 end
end
AshPostgres-specific mix tasks
	mix ash_postgres.generate_migrations
	mix ash_postgres.create
	mix ash_postgres.drop
	mix ash_postgres.migrate (use mix ash_postgres.migrate --tenants to run tenant migrations)
	mix ash_postgres.rollback (use mix ash_postgres.rollback --tenants to rollback tenant migrations)

 Testing with AshPostgres

When using AshPostgres resources in tests, you will likely want to include use a test case similar to the following. This will ensure that your repo runs everything in a transaction.
defmodule MyApp.DataCase do
 @moduledoc """
 This module defines the setup for tests requiring
 access to the application's data layer.

 You may define functions here to be used as helpers in
 your tests.

 Finally, if the test case interacts with the database,
 we enable the SQL sandbox, so changes done to the database
 are reverted at the end of every test. If you are using
 PostgreSQL, you can even run database tests asynchronously
 by setting `use AshHq.DataCase, async: true`, although
 this option is not recommended for other databases.
 """

 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Changeset
 import Ecto.Query
 import MyApp.DataCase
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
This should be coupled with to make sure that Ash does not spawn any tasks.
config :ash, :disable_async?, true

 Upgrading to 2.0

There are only three breaking changes in this release, one of them is very significant, the other two are minor.
AshPostgres officially supports only postgresql version 14 or higher
A new callback min_pg_version/0 has been added to the repo, but a default implementation is set up that reads the version from postgres directly, the first time it is required. It is cached until the repo is reinitialized, at which point it is looked up again.
While most things will work with versions as low as 9, we are relying on features of newer postgres versions and intend to do so more in the future. We will not be testing against versions lower than 14, and we will not be supporting them. If you are using an older version of postgres, you will need to upgrade.
If you must use an older version, the only thing that you'll need to change in the short term is to handle the fact that we now use gen_random_uuid() as the default for generated uuids (see below), which is only available after postgres 13. Additionally, if you are on postgres 12 or earlier, you will need to replace ANYCOMPATIBLE with ANYELEMENT in the ash-functions extension migration.
gen_random_uuid() is now the default for generated uuids
In the past, we used uuid_generate_v4() as the default for generated uuids. This function is part of the uuid-ossp extension, which is not installed by default in postgres. gen_random_uuid() is a built-in function that is available in all versions of postgres 13 and higher. If you are using an older version of postgres, you will need to install the uuid-ossp extension and change the default in your migrations.
utc datetimes that default to &DateTime.now/0 are now cast to UTC
This is a layer of safety to ensure consistency in the default values of a database and the datetimes that are sent to/from the database. When you generate migrations you will notice your timestamps change from defaulting to now() in your migrations to now() AT TIMESTAMP 'utc'. You are free to undo this change, by setting migration_defaults in your resource, or simply by deleting the generated migration.

 Expressions

In addition to the expressions listed in the Ash expressions guide, AshPostgres provides the following expressions
Fragments
Fragments allow you to use arbitrary postgres expressions in your queries. Fragments can often be an escape hatch to allow you to do things that don't have something officially supported with Ash.
Examples
Simple expressions
fragment("? / ?", points, count)
Calling functions
fragment("repeat('hello', 4)")
Using entire queries
fragment("points > (SELECT SUM(points) FROM games WHERE user_id = ? AND id != ?)", user_id, id)
a last resort
Using entire queries as shown above is a last resort, but can sometimes be the best way to accomplish a given task.
In calculations
calculations do
 calculate :lower_name, :string, expr(
 fragment("LOWER(?)", name)
)
end
In migrations
create table(:managers, primary_key: false) do
 add :id, :uuid, null: false, default: fragment("UUID_GENERATE_V4()"), primary_key: true
end
Like and ILike
These wrap the postgres builtin like and ilike operators.
Please be aware, these match patterns not raw text. Use contains/1 if you want to match text without supporting patterns, i.e % and _ have semantic meaning!
For example:
Ash.Query.filter(User, like(name, "%obo%")) # name contains obo anywhere in the string, case sensitively
Ash.Query.filter(User, ilike(name, "%ObO%")) # name contains ObO anywhere in the string, case insensitively
Trigram similarity
To use this expression, you must have the pg_trgm extension in your repos installed_extensions list.
This calls the similarity function from that extension. See more in the pgtrgm guide
For example:
Ash.Query.filter(User, trigram_similarity(first_name, "fred") > 0.8)

 Schema Based Multitenancy

Multitenancy in AshPostgres is implemented via postgres schemas. For more information on schemas, see postgres' schema documentation
Implementing multitenancy via schema's involves tracking "tenant migrations" separately from migrations for your public schema. You can see what this looks like by simply creating a multitenant resource, and using the migration generator mix ash.codegen. It will put schema specific migrations in priv/repo/tenant_migrations. When you generate migrations, you'll want to be sure to audit migrations in both directories. Additionally, when you deploy, you'll want to run your migrations, as well as running them with the migrations path priv/repo/tenant_migrations.
Generated migrations
The generated migrations include a lot of niceties around multitenancy. Specifically, foreign keys will point at tables in the correct schema, and foreign keys to non-multitenant resources will point to the correct table. If you are using attribute multitenancy, foreign keys to tables also using attribute multitenancy will be composite foreign keys, including the tenant attribute as well as the referencing field.
Migrations in the tenant directory will call repo().all_tenants(), which is a callback you will need to implement in your repo that should return a list of all schemas that need to be migrated.
For example, if you use the manage_tenant directive described below, you could do:
defmodule Myapp.Repo do
 use AshPostgres.Repo, ...

 import Ecto.Query, only: [from: 2]

 ...

 def all_tenants do
 all(from(row in "organizations", select: fragment("? || ?", "org_", row.id)))
 end
end
Automatically managing tenants
By setting the template configuration, in the manage_tenant section, you can cause the creation/updating of a given resource to create/rename tenants. For example:
defmodule MyApp.Organization do
 use Ash.Resource,
 ...

 postgres do
 ...

 manage_tenant do
 template ["org_", :id]
 end
 end
end
With this configuration, if you create an organization, it will create a corresponding schema, e.g. org_10 in the database. Then it will run your tenant migrations on that schema. To override the tenant_migrations path, implement the AshPostgres.Repo.tenant_migrations_path/0 callback.
Notice that manage_tenant is nested inside the postgres block. This is because the method of managing tenants is specific to postgres, and if another data layer supported multitenancy they may or may not support managing tenants in the same way.

 Using Multiple Repos

When scaling PostgreSQL you may want to setup read replicas to improve
performance and availability. This can be achieved by configuring multiple
repositories in your application.
Setup Read Replicas
Following the ecto docs, change your Repo configuration:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 @replicas [
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

 def replica do
 Enum.random(@replicas)
 end

 for repo <- @replicas do
 defmodule repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres,
 read_only: true
 end
 end
end
Configure AshPostgres
Now change the repo argument for your postgres block as such:
defmodule MyApp.MyDomain.MyResource do
 use Ash.Resource,
 date_layer: AshPostgres.DataLayer

 postgres do
 table "my_resources"
 repo fn
 _resource, :read -> MyApp.Repo.replica()
 _resource, :mutate -> MyApp.Repo
 end
 end
end

 Manual Relationships

See Manual Relationships for an idea of manual relationships in general.
Manual relationships allow for expressing complex/non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.
Example
in the resource

relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end

implementation
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship

 require Ash.Query
 require Ecto.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 # Use existing records to limit resultds
 rep_ids = Enum.map(records, & &1.id)
 # Using Ash to get the destination records is ideal, so you can authorize access like normal
 # but if you need to use a raw ecto query here, you can. As long as you return the right structure.

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end

 # query is the "source" query that is being built.

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `as(^current_binding).field`

 # as_binding is the binding that your join should create. When you join, make sure you say `as: ^as_binding` on the
 # part of the query that represents the destination of the relationship

 # type is `:inner` or `:left`.
 # destination_query is what you should join to to add the destination to the query, i.e `join: dest in ^destination-query`
 def ash_postgres_join(query, _opts, current_binding, as_binding, :inner, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 def ash_postgres_join(query, _opts, current_binding, as_binding, :left, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 left_join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `parent_as(^current_binding).field`

 # as_binding is the binding that has already been created for your join. Access fields on it via `as(^as_binding)`

 # destination_query is what you should use as the basis of your query
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 {:ok,
 Ecto.Query.from(_ in destination_query,
 where: parent_as(^current_binding).id == as(^as_binding).representative_id,
 where: as(^as_binding).priority > parent_as(^current_binding).priority_threshold
)}
 end
end
Recursive Relationships
Manual relationships can be very powerful, as they can leverage the full power of Ecto to do arbitrarily complex things.
Here is an example of a recursive relationship that loads all employees under the purview of a given manager using a recursive CTE.
Use ltree
While the below is very powerful, if at all possible we suggest using ltree for hierarchical data. Its built in to postgres
and AshPostgres has built in support for it. For more, see: AshPostgres.Ltree.
Keep in mind this is an example of a very advanced use case, not something you'd typically need to do.
defmodule MyApp.Employee.ManagedEmployees do
 @moduledoc """
 A manual relationship which uses a recursive CTE to find all employees managed by a given employee.
 """

 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship
 alias MyApp.Employee
 alias MyApp.Repo
 import Ecto.Query

 @doc false
 @impl true
 @spec load([Employee.t()], keyword, map) ::
 {:ok, %{Ash.UUID.t() => [Employee.t()]}} | {:error, any}
 def load(employees, _opts, context) do
 relationship_name = context.relationship.name

 employee_ids = Enum.map(employees, & &1.id)

 all_descendants =
 Employee
 |> where([l], l.manager_id in ^employee_ids)
 |> recursive_cte_query("employee_tree", Employee)
 |> Repo.all()
 |> Enum.group_by(& &1.manager_id, & &1)

 employees
 |> with_descendants(all_descendants, relationship_name)
 |> Map.new(&{&1.id, Map.get(&1, relationship_name)})
 |> then(&{:ok, &1})
 end

 defp with_descendants([], _, _), do: []

 defp with_descendants(employees, all_descendants, relationship_name) do
 Enum.map(employees, fn employee ->
 descendants = Map.get(all_descendants, employee.id, [])

 Map.put(employee, relationship_name, with_descendants(descendants, all_descendants, relationship_name))
 end)
 end

 @doc false
 @impl true
 @spec ash_postgres_join(
 Ecto.Query.t(),
 opts :: keyword,
 current_binding :: any,
 as_binding :: any,
 :inner | :left,
 Ecto.Query.t()
) ::
 {:ok, Ecto.Query.t()} | {:error, any}
 # Add a join from some binding in the query, producing *as_binding*.
 def ash_postgres_join(query, _opts, current_binding, as_binding, join_type, destination_query) do
 immediate_parents =
 from(destination in destination_query,
 where: parent_as(^current_binding).manager_id == destination.id
)

 cte_name = "employees_#{as_binding}"

 descendant_query =
 recursive_cte_query_for_join(
 immediate_parents,
 cte_name,
 destination_query
)

 case join_type do
 :inner ->
 {:ok,
 from(row in query,
 inner_lateral_join: descendant in subquery(descendant_query),
 on: true,
 as: ^as_binding
)}

 :left ->
 {:ok,
 from(row in query,
 left_lateral_join: descendant in subquery(descendant_query),
 on: true,
 as: ^as_binding
)}
 end
 end

 @impl true
 @spec ash_postgres_subquery(keyword, any, any, Ecto.Query.t()) ::
 {:ok, Ecto.Query.t()} | {:error, any}
 # Produce a subquery using which will use the given binding and will be
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 immediate_descendants =
 from(destination in Employee,
 where: parent_as(^current_binding).id == destination.manager_id
)

 cte_name = "employees_#{as_binding}"

 recursive_cte_query =
 recursive_cte_query_for_join(
 immediate_descendants,
 cte_name,
 Employee
)

 other_query =
 from(row in subquery(recursive_cte_query),
 where:
 row.id in subquery(
 from(row in Ecto.Query.exclude(destination_query, :select), select: row.id)
)
)

 {:ok, other_query}
 end

 defp recursive_cte_query(immediate_parents, cte_name, query) do
 recursion_query =
 query
 |> join(:inner, [l], lt in ^cte_name, on: l.manager_id == lt.id)

 descendants_query =
 immediate_parents
 |> union(^recursion_query)

 {cte_name, Employee}
 |> recursive_ctes(true)
 |> with_cte(^cte_name, as: ^descendants_query)
 end

 defp recursive_cte_query_for_join(immediate_parents, cte_name, query) do
 # This is due to limitations in ecto's recursive CTE implementation
 # For more, see here:
 # https://elixirforum.com/t/ecto-cte-queries-without-a-prefix/33148/2
 # https://stackoverflow.com/questions/39458572/ecto-declare-schema-for-a-query
 employee_keys = Employee.__schema__(:fields)

 cte_name_ref =
 from(cte in fragment("?", identifier(^cte_name)), select: map(cte, ^employee_keys))

 recursion_query =
 query
 |> join(:inner, [l], lt in ^cte_name_ref, on: l.manager_id == lt.id)

 descendants_query =
 immediate_parents
 |> union(^recursion_query)

 cte_name_ref
 |> recursive_ctes(true)
 |> with_cte(^cte_name, as: ^descendants_query)
 end
end
With the above definition, employees could have a relationship like this:
has_many :managed_employees, MyApp.Employee do
 manual MyApp.Employee.ManagedEmployees
end
And you could then use it in calculations and aggregates! For example, to see the count of employees managed by each employee:
aggregates do
 count :count_of_managed_employees, :managed_employees
end

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v2.6.11 (2025-07-17)
Bug Fixes:
	clean args and properly scope rollback task by Zach Daniel

	Reverse migrations order when reverting dev migrations (#590) by Kenneth Kostrešević

Improvements:
	make rollbacks safer by using --to instead of -n by Zach Daniel

v2.6.10 (2025-07-09)
Bug Fixes:
	properly return the type when configured by Zach Daniel

	retain sort when upgrading to a subquery by Zach Daniel

v2.6.9 (2025-06-25)
Bug Fixes:
	smallserial not mapping to proper type (#574) by Marc Planelles

	Fix foreign key constraint on specially named references (#572) by olivermt

v2.6.8 (2025-06-18)
Bug Fixes:
	ensure prefix is set even with create_schemas_in_migrations? false by Zach Daniel

v2.6.7 (2025-06-13)
Bug Fixes:
	double select error (#569) by Barnabas Jovanovics

v2.6.6 (2025-06-10)
Bug Fixes:
	simply storage of size/scale/precision information

v2.6.5 (2025-06-10)
Bug Fixes:
	remove spurios debug logging

	properly detect nested array decimals

v2.6.4 (2025-06-09)
Bug Fixes:
	reenable migrate task

	use force: true, not force?: true calling mix.generator

	casting integers to string in expressions works as intended (#564)

	use better wrappers around string/ci_string

Improvements:
	add c:AshPostgres.Repo.create_schemas_in_migrations? callback

v2.6.3 (2025-06-04)
Bug Fixes:
	undo change for timestamptz usec, retaining precision

v2.6.2 (2025-06-04)
Bug Fixes:
	don't use :"timestamptz(6)" in ecto storage type

v2.6.1 (2025-05-30)
Bug Fixes:
	retain repo as atom in migrator task (#560)

v2.6.0 (2025-05-30)
Features:
	--dev flag for codegen (#555)

Bug Fixes:
	properly encode decimal scale & preicison into snapshots

Improvements:
	use new PendingCodegen error

	assume not renaming when generating dev migrations

	support scale & precision in decimal types

v2.5.22 (2025-05-22)
Bug Fixes:
	Convert sensitive patterns from module constant to function for OTP/28 (#552)

v2.5.21 (2025-05-21)
Improvements:
	update igniter, remove inflex

v2.5.20 (2025-05-20)
Bug Fixes:
	self-join if combination queries require more fields

	enforce tenant name rules at creation (#550)

v2.5.19 (2025-05-06)
Improvements:
	support unions (#543)

v2.5.18 (2025-04-29)
Bug Fixes:
	fix some issues in migration generator related to tenancy (#539)

	use old multitenancy in generated removals of previous indexes (#536)

	add tenant to ash bindings in update (#534)

	correct order, when renaming attribute with an identity (#533)

v2.5.17 (2025-04-22)
Bug Fixes:
	add tenant to ash bindings in update (#534)

	correct order, when renaming attribute with an identity (#533)

v2.5.16 (2025-04-15)
Bug Fixes:
	fixes for map types nested in expressions

	use proper migrations path configuration

v2.5.15 (2025-04-09)
Bug Fixes:
	ash postgres subquery usage (#524)

	use subqueries for join resources

	use schema when changing reference deferrability (#519)

Improvements:
	propagate -r flag to Ecto (#521)

v2.5.14 (2025-03-28)
Bug Fixes:
	remove debugging code accidentally committed

	retain loads on atomic upgrade update actions

Improvements:
	create schema before table creation (#518)

v2.5.13 (2025-03-25)
Bug Fixes:
	order when renaming attribute with an index (#514)

v2.5.12 (2025-03-18)
Improvements:
	include error detail in constraint violation errors

v2.5.11 (2025-03-11)
Bug Fixes:
	ignore attributes with no known type

	honor skip_unknown option in spec table generator

	honor --no-migrations flag

	allow optional input for relationship name guesser

	put move up/down in the right place

	go to top of if block

	use configures_key?/3

	don't modify repo in runtime.exs

	remove Helpdesk.Repo from installer ð�¤¦

	only configure repo in installer if not already configured

	install ash if not installed already

Improvements:
	document options, add --no-migrations

	add skip_unknown option to ash_postgres.gen.resources

v2.5.10 (2025-03-06)
Bug Fixes:
	honor skip_tables

Improvements:
	never import schema_migrations table

v2.5.9 (2025-03-06)
Bug Fixes:
	match on non-empty repo options

Improvements:
	add --public option to gen.resources, default true

	add --default-actions option to gen.resources, default true

v2.5.8 (2025-03-06)
Bug Fixes:
	handle CLI args better for ash_postgres.gen.resources

	compose check constraints and base filters properly

v2.5.7 (2025-03-04)
Bug Fixes:
	handle errors from identities in polymorphic resources properly (#497)

	Use exclusion_constraint instead of check_constraint in add_exclusion_constraints (#495)

	check for stale record errors on destroy

	don't rely on private function from Ecto.Repo (#492)

v2.5.6 (2025-02-25)
Bug Fixes:
	start lateral join source query bindings at 500

	Ensure primary key migrations use prefix for multitenancy (#488)

	don't rewrite identities when only global? is changed

	don't modify an attribute when it only needs to be renamed

Improvements:
	support SKIP LOCKED in locks

v2.5.5 (2025-02-17)
Bug Fixes:
	ensure field names defaults to the field of the constraint

v2.5.4 (2025-02-17)
Improvements:
	Add support for field names in idenitity constraints (#478)

v2.5.3 (2025-02-14)
Bug Fixes:
	handle dropping primary key columns properly

	Ignore module conflict when compiling migration file (#482)

v2.5.2 (2025-02-11)
Bug Fixes:
	update lateral join logic to match ash_sql's

	simplify lateral join source filter

	update sql log switches for migration and rollback tasks (#470)

Improvements:
	add vector l2 distance function

	use dimenstions constraint on vector for size

	consider identity.where in identity deduplicator

	generate migrations task support concurrent indexes flag (#471)

v2.5.1 (2025-01-27)
Bug Fixes:
	handle cross global to tenant references in migration generator

v2.5.0 (2025-01-20)
Features:
	add repo callback to disable atomic actions and error expressions (#464)

Bug Fixes:
	generate a repo when selecting one

	handle regex match correctly (#460)

Improvements:
	use prettier SQL in Ash.calculate

	add c:AshPostgres.Repo.default_constraint_match_type

	mark ash_raise_error as STABLE

v2.4.22 (2025-01-13)
Bug Fixes:
	inner join bulk operations if distinct? is present

	fully specificy synthesized indices from multi-resource tables

v2.4.21 (2025-01-06)
Bug Fixes:
	filter query by source record ids when lateral joining

	don't use symlinked app dir for migration's path

v2.4.20 (2024-12-26)
Bug Fixes:
	use passed in version of postgres when modifying existing repo

v2.4.19 (2024-12-26)
Bug Fixes:
	ensure there is always at least one upsert field so filter is run

Improvements:
	better min_pg_version when modifying a repo

	automatically set min_pg_version where possible

	use a notice to suggest configuring min_pg_version

v2.4.18 (2024-12-20)
Bug Fixes:
	handle double select issue

Improvements:
	make igniter optional

	make tsvector type selectable

v2.4.17 (2024-12-16)
Bug Fixes:
	Fix query for metadata on foreign keys and fix duplicate references being produced (#444)

	alter resource generation query to go to the source pg_constraints table instead of to the view to fetch constraint data (#443)

v2.4.16 (2024-12-12)
Bug Fixes:
	properly support expr errors in bulk create

	only build references for belongs_to relationships

Improvements:
	add postgres_reference_expr callback (#438)

v2.4.15 (2024-12-06)
Bug Fixes:
	split off varchar options from index

	don't attempt to use non-existent relationship

	handle manual/no_attributes? relationships in lateral join logic

	don't use priv configuration for snapshot_path

Improvements:
	update sql implementation for type determination

v2.4.14 (2024-11-27)
Bug Fixes:
	pass AST to deal with stupid igniter behavior

v2.4.13 (2024-11-26)
Bug Fixes:
	[mix ash.migrate] honor the snapshots_only option

Improvements:
	[mix ash.migrate] honor repo configuration in migration generator

	[mix ash.codegen] honor :priv in migration generator, and make it explicitly configurable

	[mix ash_postgres.install] don't generate task aliases that run seeds in test

v2.4.12 (2024-10-30)
Bug Fixes:
	[query builder] don't double add distinct clauses

	[AshPostgres.DataLayer] don't use cast for changes

Improvements:
	[AshPostgres.Repo] set prefer_transaction? to false in generated repos

	[AshPostgres.DataLayer] support prefer_transaction?

v2.4.11 (2024-10-23)
Bug Fixes:
	[upserts] ensure repo_opts is passed through to repo.all/2

v2.4.10 (2024-10-23)
Security
	Patch of GHSA-hf59-7rwq-785m Empty, atomic, non-bulk actions, policy bypass for side-effects vulnerability.

Bug Fixes:
	[upserts] run any query that could produce errors when performing atomic upgrade

	[multitenant migrations] race condition compiling migrations when concurrently creating new tenants (#406)

v2.4.9 (2024-10-16)
Bug Fixes:
	[mix ash_postgres.gen.resources] fix resource generator task & tests

v2.4.8 (2024-10-11)
Improvements:
	[migration generator] use the name parameter when generating migrations

v2.4.7 (2024-10-10)
Improvements:
	[upserts] adapt to fixes and optimizations around skipped upserts in ash core

v2.4.6 (2024-10-07)
Improvements:
	[mix ash_postgres.install] with --yes assume oldest version

v2.4.5 (2024-10-06)
Bug Fixes:
	[upserts] ensure upsert fields are uniq

Improvements:
	[mix ash_postgres.install] detect 1 arg repo use in installer

	[AshPostgres.Repo] support to_ecto(%Ecto.Changeset{}) and from_ecto(%Ecto.Changeset{}) (#395)

v2.4.4 (2024-09-29)
Bug Fixes:
	[atomic updates] handle atomic array operations

v2.4.3 (2024-09-27)
Bug Fixes:
	[mix ash_postgres.gen.resources] support pg <= 14 in resource generator, and update tests

v2.4.2 (2024-09-24)
Bug Fixes:
	[migration generator] typo of biging -> bigint

	[migration generator] altering attributes not properly generating foreign keys in some cases

	[mix ash_postres.install] use correct module name in the DataCase moduledocs. (#393)

	[migration generator] trim input before passing to String.to_integer/1. (#389)

Improvements:
	[mix ash_postgres.install] add --repo option to installer, and warn on clashing existing repo

	[mix ash_postgres.install] prompt for minimum pg version

	[mix ash_postgres.install] adjust mix task aliases to be used with ash_postgres

	[migration generator] set a name for generated migrations

v2.4.1 (2024-09-16)
Bug Fixes:
	[bulk updates] ensure that returning is never an empty list

	[mix ash_postgres.gen.resources] match on table schema as well as table name

v2.4.0 (2024-09-13)
Features:
	[AshPostgres.Ltree] Implement Ltree Type (#385)

Improvements:
	[migration generator] remove LEAKPROOF from function to prevent migration issues

	[Ash.Changeset] support upcoming action_select options

	[mix ash.install] ensure Repo is started after telemetry in igniter installer

v2.3.1 (2024-09-05)
Improvements:
	[mix ash_postgres.gen.migrations] better imported index names

	[mix ash_postgres.gen.migrations] add --extend option, forwarded to generated resource

v2.3.0 (2024-09-05)
Features:
	[mix ash_postgres.gen.resources] Add mix ash_postgres.gen.resources for importing tables from an existing database as resources

v2.2.5 (2024-09-04)
Improvements:
	[AshPostgres.DataLayer] support ash main upsert_condition logic

v2.2.4 (2024-09-03)
Bug Fixes:
	[AshPostgres.DataLayer] ensure default bindings are present on data layer

	[AshPostgres.DataLayer] properly traverse newtypes when determining types

v2.2.3 (2024-08-18)
Bug Fixes:
	[mix ash_postgres.install] was not adding ash_functions/min_pg_version

v2.2.2 (2024-08-17)
Bug Fixes:
	[mix ash_postgres.install] properly handle new igniter installer functions

v2.2.1 (2024-08-16)
Bug Fixes:
	[AshPostgres.DataLayer] set a proper default for skip_unique_indexes

Improvements:
	[mix ash_postgres.install] include min_pg_version in new generators

v2.2.0 (2024-08-13)
Bug Fixes:
	[AshPostgres.Repo] remove Agent "convenience" for determining min pg version

We need to require that users provide this function. To that end we're
adding a warning in a minor release branch telling users to define this.
The agent was acting as a bottleneck that all queries must go through,
causing nontrivial performance issues at scale.
	[upserts] handle filter condition on create (#368)

v2.1.19 (2024-08-12)
Bug Fixes:
	[ecto compatibility] we missed a change when preparing for ecto 3.12 parameterized type changes

	[exists aggregates] update ash_sql for exists aggregate fixes

v2.1.18 (2024-08-09)
Improvements:
	[ash_postgres.gen.migration] dynamically select and allow setting a repo

v2.1.17 (2024-07-27)
Improvements:
	[ash_sql] update ash & ash_sql for various fixes

v2.1.16 (2024-07-25)
Bug Fixes:
	[updates] don't overwrite non-updated fields on update

	[mix ash_postgres.generate_migrations] ensure app is compiled before using repo modules

Improvements:
	[ash_sql] update ash_sql for cleaner queries

v2.1.15 (2024-07-23)
Bug Fixes:
	[query building] use a subquery if any exists aggregates are in play

v2.1.14 (2024-07-22)
Bug Fixes:
	[multitenancy] properly convert tenant to string when building lateral join

v2.1.13 (2024-07-22)
Bug Fixes:
	[atomic validations] update ash & ash_sql for fixes, test atomic validations in destroys

v2.1.12 (2024-07-19)
Bug Fixes:
	[mix ash_postgres.install] properly add prod config in installer

Bug Fixes:
	[mix ash_postgres.install] properly perform or don't perform configuration modification code

	[has_many relationships] allow non-unique has_many source_attributes (#355)

Improvements:
	[mix ash_postgres.install] prepend :postgres to section order

	[mix ash.patch.extend] pluralize table name in extender

v2.1.10 (2024-07-18)
Bug Fixes:
	[lateral joins] allow non-unique has_many source_attributes (#355)

v2.1.9 (2024-07-18)
Bug Fixes:
Improvements:
	[mix ash.gen.resource] pluralize table name in extender

v2.1.8 (2024-07-17)
Bug Fixes:
	[aggregates] update ash_sql & ash for include_nil? fix (and test it)

	[aggregates] ensure synthesized query aggregates have context set

Improvements:
	[installers] update igniter dependencies

	[expressions] add binding() expression, for referring to the current table

v2.1.7 (2024-07-17)
Bug Fixes:
	update to latest ash version for aggregate fix

	update ash_sql for include_nil? fix and test it

	ensure synthesized query aggregates have context set

Improvements:
	update ash/igniter dependencies

	add binding() expression

	use latest type casting code from ash

	support new type determination code

v2.1.6 (2024-07-16)
Bug Fixes:
	ensure synthesized query aggregates have context set

Improvements:
	update ash/igniter dependencies

	add binding() expression

	use latest type casting code from ash

	support new type determination code

v2.1.5 (2024-07-15)
Bug Fixes:
	ensure synthesized query aggregates have context set

Improvements:
	[Ash.Expr] add binding() expression to refer to current table

	[Ash.Expr] use latest type casting code from ash

v2.1.4 (2024-07-14)
Improvements:
	[Ash.Expr] use latest type casting code from ash

v2.1.3 (2024-07-14)
Improvements:
	[Ash.Expr] support new type determination code

v2.1.2 (2024-07-13)
	[query builder] update ash & improve type casting behavior

v2.1.1 (2024-07-10)
Bug Fixes:
	[mix ash_postgres.install] properly interpolate module names in installer

v2.1.0 (2024-07-10)
Features:
	[AshPostgres.DataLayer] add storage_types configuration (#342)
	[generators] add mix ash_postgres.install (mix igniter.install ash_postgres)

Bug Fixes:
	[AshPostgres.DataLayer] ensure that from_many? relationships in lateral join have a limit applied

	[migration generator] properly delete args passed from migrate to ecto

Improvements:
	[Ash.Type.UUIDv7] add support for :uuid_v7 type (#333)

	[migration generator] order keys in snapshot json (#339)

v2.0.12 (2024-06-20)
Bug Fixes:
	[migration generator] only add references indexes if they've changed

v2.0.11 (2024-06-19)
Bug Fixes:
	[AshPostgres.DataLayer] rework expression type detection

	[migration generator] ensure index keys are atoms in generated migrations (#332)

v2.0.10 (2024-06-18)
Bug Fixes:
	[AshPostgres.DataLayer] update ash_sql to fix query generation issues

	[migration generator] ensure that parens are always added to calculation generated SQL

	[migration generator] properly get calculation sql

Improvements:
	[AshPostgres.DataLayer] better type handling using new type inference

	[identities] identities w/ calculations and where clauses in upserts

v2.0.9 (2024-06-13)
Features:
	[migration generator] autogenerate index in references (#321)

Bug Fixes:
	[AshPostgres.DataLayer] fix invalid select on sorting by some calculations

	[AshPostgres.DataLayer] fix error message displaying in identity verifier

	[lateral joining] ensure that context multitenancy is properly applied to lateral many-to-many joins

	[migration generator] don't assume old snapshots have index? key for attributes

	[ash.rollback] list_tenants -> all_tenants

	[ash.rollback] when checking for roll back-able migrations, only check Path.basename

Improvements:
	[migration generator] don't sort identity keys.

v2.0.8 (2024-06-06)
v2.0.7 (2024-06-06)
Bug Fixes:
	[fix] update ash_sql and fix issues retaining lateral join context

	[fix] ensure that all current attribute values are selected on bulk update shifted root query

v2.0.6 (2024-05-29)
Bug Fixes:
	[atomic updates] properly support aggregate references in atomic updates

	[migration generator] ensure that identities are dropped when where/nils_distinct? are changed

	[migration generator] ensure that where is wrapped in parenthesis

	[ecto compatibility] support old/new parameterized type format

Improvements:
	[identities] require clarification of index names > 63 characters

	[mix ash_postgres.squash_snapshots] add ash_postgres.squash_snapshots mix task (#302)

v2.0.5 (2024-05-24)
Improvements:
	[idenities] update ash and support new identity features

v2.0.4 (2024-05-23)
Bug Fixes:
[updates] ensure update's reselect all changing values
v2.0.3 (2024-05-22)
Bug Fixes:
[updates] handle complex maps/list on update
[Ash.Query] support anonymous aggregates in sorts
[exists] ensure parent_as bindings properly reference binding names
[migration generator] add and remove custom indexes in tandem properly
Improvements:
[references] support on_delete: :nilify for specific columns (#289)
v2.0.2 (2024-05-15)
Bug Fixes:
	[update_query/destroy_query] rework the update and destroy query builder to support multiple kinds of joining

	[mix ash_postgres.migrate] remove duplicate repo flags (#285)

	[Ash.Error.Changes.StaleRecord] ensure filter is included in stale record error messages we return

	[AshPostgres.MigrationGenerator] properly parse previous version from migration generation

v2.0.1 (2024-05-12)
Bug Fixes:
	[AshPostgres.MigrationGenerator] properly parse previous version of custom extensions when generating migrations

v2.0.0
The changelog is starting over. Please see /documentation/1.0-CHANGELOG.md in GitHub for previous changelogs.
Breaking Changes:
	[Ash.Type.UUID] change defaults in migrations for uuids to gen_random_uuid()
	[Ash.Type.DateTime] Use UTC for default generated timestamps (#131)
	[AshPostgres.DataLayer] must now know the min_pg_version that will be used. By default we check this at repo startup by asking the database, but you can also define it yourself.
	[AshPostgres.DataLayer] Now requires postgres version 14 or higher

Features:
	[AshPostgres.Timestamptz] add timestamptz types (#266)
	[AshPostgres.Repo] add create? and drop? callbacks to AshPostgres.Repo (#143)
	[AshPostgres.DataLayer] support c:AshDataLayer.calculate/3 capability

Bug Fixes:
	[AshPostgres.MigrationGenerator] honor dry_run option in extension migrations
	[AshPostgres.MigrationGenerator] don't wait for shell input when checking migrations
	[AshPostgres.DataLayer] ensure limit/offset triggers joining for update/destroy query
	[AshPostgres.DataLayer] properly honor limit in bulk operations
	[AshPostgres.DataLayer] ensure that exists with a filter paired with from_many? functions properly

Improvements:
	[AshPostgres.Repo] warn on missing ash-functions at compile time
	[AshPostgres.Repo] add default implementation for pg_version, and rename to min_pg_version
	[mix ash.rollback] support mix ash.rollback with interactive rollback
	[AshSql] move many internals out to AshSql package to be shared

AshPostgres.Igniter

Codemods and utilities for working with AshPostgres & Igniter

 Summary

 Functions

 add_postgres_extension(igniter, repo_name, extension)

 list_repos(igniter)

 repo(igniter, resource)

 select_repo(igniter, opts \\ [])

 table(igniter, resource)

 Functions

 add_postgres_extension(igniter, repo_name, extension)

 list_repos(igniter)

 repo(igniter, resource)

 select_repo(igniter, opts \\ [])

 table(igniter, resource)

AshPostgres.MigrationCompileCache

A cache for the compiled migrations.
This is used to avoid recompiling the migration files
every time a migration is run, as well as ensuring that
migrations are compiled sequentially.
This is important because otherwise there is a race condition
where two invocations could be compiling the same migration at
once, which would error out.

 Summary

 Functions

 compile_file(file)

 Compile a file, caching the result for future calls.

 start_link(opts \\ %{})

 Functions

 compile_file(file)

Compile a file, caching the result for future calls.

 start_link(opts \\ %{})

AshPostgres.Functions.Binding

Refers to the current table binding.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.VectorL2Distance

Maps to the vector l2 distance operator. Requires vector extension to be installed.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

AshPostgres

The AshPostgres extension gives you tools to map a resource to a postgres database table.
For more, check out the getting started guide

 Summary

 Functions

 base_filter_sql(resource)

 deprecated

 See AshPostgres.DataLayer.Info.base_filter_sql/1.

 check_constraints(resource)

 deprecated

 See AshPostgres.DataLayer.Info.check_constraints/1.

 custom_indexes(resource)

 deprecated

 See AshPostgres.DataLayer.Info.custom_indexes/1.

 custom_statements(resource)

 deprecated

 See AshPostgres.DataLayer.Info.custom_statements/1.

 exclusion_constraint_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

 foreign_key_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.foreign_key_names/1.

 identity_index_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.identity_index_names/1.

 manage_tenant_create?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_create?/1.

 manage_tenant_template(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_template/1.

 manage_tenant_update?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.manage_tenant_update?/1.

 migrate?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.migrate?/1.

 migration_types(resource)

 deprecated

 See AshPostgres.DataLayer.Info.migration_types/1.

 polymorphic?(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic?/1.

 polymorphic_name(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_name/1.

 polymorphic_on_delete(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

 polymorphic_on_update(resource)

 deprecated

 See AshPostgres.DataLayer.Info.polymorphic_on_update/1.

 references(resource)

 deprecated

 See AshPostgres.DataLayer.Info.references/1.

 repo(resource)

 deprecated

 See AshPostgres.DataLayer.Info.repo/1.

 schema(resource)

 deprecated

 See AshPostgres.DataLayer.Info.schema/1.

 skip_unique_indexes(resource)

 deprecated

 See AshPostgres.DataLayer.Info.skip_unique_indexes/1.

 table(resource)

 deprecated

 See AshPostgres.DataLayer.Info.table/1.

 unique_index_names(resource)

 deprecated

 See AshPostgres.DataLayer.Info.unique_index_names/1.

 Functions

 base_filter_sql(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.base_filter_sql/1.

See AshPostgres.DataLayer.Info.base_filter_sql/1.

 check_constraints(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.check_constraints/1.

See AshPostgres.DataLayer.Info.check_constraints/1.

 custom_indexes(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.custom_indexes/1.

See AshPostgres.DataLayer.Info.custom_indexes/1.

 custom_statements(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.custom_statements/1.

See AshPostgres.DataLayer.Info.custom_statements/1.

 exclusion_constraint_names(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

See AshPostgres.DataLayer.Info.exclusion_constraint_names/1.

 foreign_key_names(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.foreign_key_names/1.

See AshPostgres.DataLayer.Info.foreign_key_names/1.

 identity_index_names(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.identity_index_names/1.

See AshPostgres.DataLayer.Info.identity_index_names/1.

 manage_tenant_create?(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_create?/1.

See AshPostgres.DataLayer.Info.manage_tenant_create?/1.

 manage_tenant_template(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_template/1.

See AshPostgres.DataLayer.Info.manage_tenant_template/1.

 manage_tenant_update?(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.manage_tenant_update?/1.

See AshPostgres.DataLayer.Info.manage_tenant_update?/1.

 migrate?(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.migrate?/1.

See AshPostgres.DataLayer.Info.migrate?/1.

 migration_types(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.migration_types/1.

See AshPostgres.DataLayer.Info.migration_types/1.

 polymorphic?(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic?/1.

See AshPostgres.DataLayer.Info.polymorphic?/1.

 polymorphic_name(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_name/1.

See AshPostgres.DataLayer.Info.polymorphic_name/1.

 polymorphic_on_delete(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

See AshPostgres.DataLayer.Info.polymorphic_on_delete/1.

 polymorphic_on_update(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.polymorphic_on_update/1.

See AshPostgres.DataLayer.Info.polymorphic_on_update/1.

 references(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.references/1.

See AshPostgres.DataLayer.Info.references/1.

 repo(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.repo/1.

See AshPostgres.DataLayer.Info.repo/1.

 schema(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.schema/1.

See AshPostgres.DataLayer.Info.schema/1.

 skip_unique_indexes(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.skip_unique_indexes/1.

See AshPostgres.DataLayer.Info.skip_unique_indexes/1.

 table(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.table/1.

See AshPostgres.DataLayer.Info.table/1.

 unique_index_names(resource)

 This function is deprecated. use AshPostgres.DataLayer.Info.unique_index_names/1.

See AshPostgres.DataLayer.Info.unique_index_names/1.

AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.

 Summary

 Functions

 add_known_binding(query, data, known_binding)

 codegen(args)

 from_ecto(other)

 install(igniter, _, _, _)

 install(igniter, module, arg, path, argv)

 migrate(args)

 postgres(body)

 rollback(args)

 setup(args)

 tear_down(args)

 to_ecto(value)

 Functions

 add_known_binding(query, data, known_binding)

 codegen(args)

 from_ecto(other)

 install(igniter, _, _, _)

 install(igniter, module, arg, path, argv)

 migrate(args)

 postgres(body)

 (macro)

 rollback(args)

 setup(args)

 tear_down(args)

 to_ecto(value)

AshPostgres.Repo behaviour

Resources that use AshPostgres.DataLayer use a Repo to access the database.
This repo is a thin wrapper around an Ecto.Repo.
You can use Ecto.Repo's init/2 to configure your repo like normal, but
instead of returning {:ok, config}, use super(config) to pass the
configuration to the AshPostgres.Repo implementation.
Installed Extensions
To configure your list of installed extensions, define installed_extensions/0
Extensions can be a string, representing a standard postgres extension, or a module that implements AshPostgres.CustomExtension.
That custom extension will be called to generate migrations that serve a specific purpose.
Extensions that are relevant to ash_postgres:
	"ash-functions" - This isn't really an extension, but it expresses that certain functions
should be added when generating migrations, to support the || and && operators in expressions.
	"uuid-ossp" - Sets UUID primary keys defaults in the migration generator
	"pg_trgm" - Makes the AshPostgres.Functions.TrigramSimilarity function available
	"citext" - Allows case insensitive fields to be used
	"vector" - Makes the AshPostgres.Functions.VectorCosineDistance function available. See AshPostgres.Extensions.Vector for more setup instructions.

def installed_extensions() do
 ["pg_trgm", "uuid-ossp", "vector", YourCustomExtension]
end
Transaction Hooks
You can define on_transaction_begin/1, which will be invoked whenever a transaction is started for Ash.
This will be invoked with a map containing a type key and metadata.
%{type: :create, %{resource: YourApp.YourResource, action: :action}}
Additional Repo Configuration
Because an AshPostgres.Repo is also an Ecto.Repo, it has all of the same callbacks.
In the Ecto.Repo.init/2 callback, you can configure the following additional items:
	:tenant_migrations_path - The path where your tenant migrations are stored (only relevant for a multitenant implementation)
	:snapshots_path - The path where the resource snapshots for the migration generator are stored.

 Summary

 Callbacks

 all_tenants()

 Return a list of all schema names (only relevant for a multitenant implementation)

 create?()

 Should the repo should be created by mix ash_postgres.create?

 create_schemas_in_migrations?()

 Whether or not to create schemas for tables when generating migrations

 default_constraint_match_type(type, name)

 Determine how constraint names are matched when generating errors.

 default_prefix()

 The default prefix(postgres schema) to use when building queries

 disable_atomic_actions?()

 Disable atomic actions for this repo

 disable_expr_error?()

 Disable expression errors for this repo

 drop?()

 Should the repo should be dropped by mix ash_postgres.drop?

 installed_extensions()

 Use this to inform the data layer about what extensions are installed

 migrations_path()

 The path where your migrations are stored

 min_pg_version()

 Configure the version of postgres that is being used.

 on_transaction_begin(reason)

 Use this to inform the data layer about the oldest potential postgres version it will be run on.

 override_migration_type(atom)

 Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 prefer_transaction?()

 Whether or not to explicitly start and close a transaction for each action, even if there are no transaction hooks. Defaults to true.

 prefer_transaction_for_atomic_updates?()

 Whether or not to explicitly start and close a transaction for each atomic update action, even if there are no transaction hooks. Defaults to false.

 tenant_migrations_path()

 The path where your tenant migrations are stored (only relevant for a multitenant implementation)

 Callbacks

 all_tenants()

 @callback all_tenants() :: [String.t()]

Return a list of all schema names (only relevant for a multitenant implementation)

 create?()

 @callback create?() :: boolean()

Should the repo should be created by mix ash_postgres.create?

 create_schemas_in_migrations?()

 @callback create_schemas_in_migrations?() :: boolean()

Whether or not to create schemas for tables when generating migrations

 default_constraint_match_type(type, name)

 @callback default_constraint_match_type(
 type :: :custom | :exclusion | :unique | :foreign | :check,
 name :: String.t()
) :: :exact | :prefix | :suffix | {:regex, Regex.t()}

Determine how constraint names are matched when generating errors.
This is useful if you are using something like citus that creates generated constraint
names for each node. In that case, for example, you might return a regex that
matches the name plus digits.

 default_prefix()

 @callback default_prefix() :: String.t()

The default prefix(postgres schema) to use when building queries

 disable_atomic_actions?()

 @callback disable_atomic_actions?() :: boolean()

Disable atomic actions for this repo

 disable_expr_error?()

 @callback disable_expr_error?() :: boolean()

Disable expression errors for this repo

 drop?()

 @callback drop?() :: boolean()

Should the repo should be dropped by mix ash_postgres.drop?

 installed_extensions()

 @callback installed_extensions() :: [String.t() | module()]

Use this to inform the data layer about what extensions are installed

 migrations_path()

 @callback migrations_path() :: String.t() | nil

The path where your migrations are stored

 min_pg_version()

 @callback min_pg_version() :: Version.t()

Configure the version of postgres that is being used.

 on_transaction_begin(reason)

 @callback on_transaction_begin(reason :: Ash.DataLayer.transaction_reason()) :: term()

Use this to inform the data layer about the oldest potential postgres version it will be run on.
Must be an integer greater than or equal to 13.
Combining with other tools
For things like Fly.Repo, where you might need to have more fine grained control over the repo module,
you can use the define_ecto_repo?: false option to use AshPostgres.Repo.

 override_migration_type(atom)

 @callback override_migration_type(atom()) :: atom()

Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 prefer_transaction?()

 @callback prefer_transaction?() :: boolean()

Whether or not to explicitly start and close a transaction for each action, even if there are no transaction hooks. Defaults to true.

 prefer_transaction_for_atomic_updates?()

 @callback prefer_transaction_for_atomic_updates?() :: boolean()

Whether or not to explicitly start and close a transaction for each atomic update action, even if there are no transaction hooks. Defaults to false.

 tenant_migrations_path()

 @callback tenant_migrations_path() :: String.t() | nil

The path where your tenant migrations are stored (only relevant for a multitenant implementation)

AshPostgres.ManualRelationship behaviour

A behavior for postgres-specific manual relationship functionality

 Summary

 Callbacks

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 ash_postgres_subquery(opts, current_binding, destination_binding, destination_query)

 Callbacks

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 @callback ash_postgres_join(
 source_query :: Ecto.Query.t(),
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 type :: :inner | :left,
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

 ash_postgres_subquery(opts, current_binding, destination_binding, destination_query)

 @callback ash_postgres_subquery(
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

AshPostgres.CheckConstraint

Represents a configured check constraint on the table backing a resource

 Summary

 Functions

 schema()

 Functions

 schema()

AshPostgres.CustomExtension behaviour

A custom extension implementation.

 Summary

 Callbacks

 install(version)

 uninstall(version)

 Callbacks

 install(version)

 @callback install(version :: integer()) :: String.t()

 uninstall(version)

 @callback uninstall(version :: integer()) :: String.t()

AshPostgres.CustomIndex

Represents a custom index on the table backing a resource

 Summary

 Functions

 fields()

 name(table, map)

 schema()

 transform(index)

 Functions

 fields()

 name(table, map)

 schema()

 transform(index)

AshPostgres.DataLayer.Info

Introspection functions for

 Summary

 Functions

 base_filter_sql(resource)

 A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 calculation_to_sql(resource, calc)

 calculations_to_sql(resource)

 A keyword list of calculations to their sql representation

 check_constraints(resource)

 The configured check_constraints for a resource

 custom_indexes(resource)

 The configured custom_indexes for a resource

 custom_statements(resource)

 The configured custom_statements for a resource

 exclusion_constraint_names(resource)

 The configured exclusion_constraint_names

 foreign_key_names(resource)

 The configured foreign_key_names

 global_upsert_keys(resource)

 A list of keys to always include in upserts.

 identity_index_names(resource)

 The configured identity_index_names

 identity_where_to_sql(resource, identity)

 Returns the literal SQL for the where clause given a resource and an
identity name.

 identity_wheres_to_sql(resource)

 A keyword list of identity names to the literal SQL string representation of
the where clause portion of identity's partial unique index.

 manage_tenant_create?(resource)

 Whether or not to create a tenant for a given resource

 manage_tenant_template(resource)

 The template for a managed tenant

 manage_tenant_update?(resource)

 Whether or not to update a tenant for a given resource

 migrate?(resource)

 Whether or not the resource should be included when generating migrations

 migration_defaults(resource)

 A keyword list of customized migration defaults

 migration_ignore_attributes(resource)

 A list of attributes to be ignored when generating migrations

 migration_types(resource)

 A keyword list of customized migration types

 min_pg_version(resource)

 Gets the resource's repo's postgres version

 pg_version_matches?(resource, requirement)

 Checks a version requirement against the resource's repo's postgres version

 polymorphic?(resource)

 The configured polymorphic? for a resource

 polymorphic_name(resource)

 The configured polymorphic_reference_name for a resource

 polymorphic_on_delete(resource)

 The configured polymorphic_reference_on_delete for a resource

 polymorphic_on_update(resource)

 The configured polymorphic_reference_on_update for a resource

 reference(resource, relationship)

 The configured reference for a given relationship of a resource

 references(resource)

 The configured references for a resource

 repo(resource, type \\ :mutate)

 The configured repo for a resource

 schema(resource)

 The configured schema for a resource

 simple_join_first_aggregates(resource)

 skip_identities(resource)

 Identities not to include in the migrations

 skip_unique_indexes(resource)

 Skip generating unique indexes when generating migrations

 storage_types(resource)

 A keyword list of customized storage types

 table(resource)

 The configured table for a resource

 unique_index_names(resource)

 The configured unique_index_names

 Functions

 base_filter_sql(resource)

A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 calculation_to_sql(resource, calc)

 calculations_to_sql(resource)

A keyword list of calculations to their sql representation

 check_constraints(resource)

The configured check_constraints for a resource

 custom_indexes(resource)

The configured custom_indexes for a resource

 custom_statements(resource)

The configured custom_statements for a resource

 exclusion_constraint_names(resource)

The configured exclusion_constraint_names

 foreign_key_names(resource)

The configured foreign_key_names

 global_upsert_keys(resource)

A list of keys to always include in upserts.

 identity_index_names(resource)

The configured identity_index_names

 identity_where_to_sql(resource, identity)

 @spec identity_where_to_sql(Ash.Resource.t(), atom()) :: String.t() | nil

Returns the literal SQL for the where clause given a resource and an
identity name.
See identity_wheres_to_sql/1 for more details.

 identity_wheres_to_sql(resource)

 @spec identity_wheres_to_sql(Ash.Resource.t()) :: keyword(String.t())

A keyword list of identity names to the literal SQL string representation of
the where clause portion of identity's partial unique index.
For example, given the following identity for a resource:
identities do
 identity :active, [:status] do
 where expr(status == "active")
 end
end
An appropriate identity_wheres_to_sql would need to be made to generate the
correct migration for the partial index used by the identity:
postgres do
 ...

 identity_wheres_to_sql active: "status = 'active'"
end

 manage_tenant_create?(resource)

Whether or not to create a tenant for a given resource

 manage_tenant_template(resource)

The template for a managed tenant

 manage_tenant_update?(resource)

Whether or not to update a tenant for a given resource

 migrate?(resource)

Whether or not the resource should be included when generating migrations

 migration_defaults(resource)

A keyword list of customized migration defaults

 migration_ignore_attributes(resource)

A list of attributes to be ignored when generating migrations

 migration_types(resource)

A keyword list of customized migration types

 min_pg_version(resource)

Gets the resource's repo's postgres version

 pg_version_matches?(resource, requirement)

Checks a version requirement against the resource's repo's postgres version

 polymorphic?(resource)

The configured polymorphic? for a resource

 polymorphic_name(resource)

The configured polymorphic_reference_name for a resource

 polymorphic_on_delete(resource)

The configured polymorphic_reference_on_delete for a resource

 polymorphic_on_update(resource)

The configured polymorphic_reference_on_update for a resource

 reference(resource, relationship)

The configured reference for a given relationship of a resource

 references(resource)

The configured references for a resource

 repo(resource, type \\ :mutate)

The configured repo for a resource

 schema(resource)

The configured schema for a resource

 simple_join_first_aggregates(resource)

 skip_identities(resource)

Identities not to include in the migrations

 skip_unique_indexes(resource)

Skip generating unique indexes when generating migrations

 storage_types(resource)

A keyword list of customized storage types

 table(resource)

The configured table for a resource

 unique_index_names(resource)

The configured unique_index_names

AshPostgres.Reference

Represents the configuration of a reference (i.e foreign key).

 Summary

 Functions

 schema()

 Functions

 schema()

AshPostgres.Statement

Represents a custom statement to be run in generated migrations

 Summary

 Functions

 fields()

 schema()

 Functions

 fields()

 schema()

AshPostgres.Ltree

Ash Type for postgres ltree,
a hierarchical tree-like data type.
Postgres Extension
To be able to use the ltree type, you'll have to enable the postgres ltree
extension first.
See AshPostgres.Repo
Constraints
	:escape? (boolean/0) - Escape the ltree segments to make it possible to include characters that
are either . (the separation character) or any other unsupported
character like - (Postgres <= 15).
If the option is enabled, any characters besides [0-9a-zA-Z] will be
replaced with _[HEX Ascii Code].
Additionally the type will no longer take strings as user input since
it's impossible to decide between . being a separator or part of a
segment.
If the option is disabled, any string will be relayed directly to
postgres. If the segments are provided as a list, they can't contain .
since postgres would split the segment.

	:min_length (non_neg_integer/0) - A minimum length for the tree segments.

	:max_length (non_neg_integer/0) - A maximum length for the tree segments.

 Summary

 Types

 segment()

 t()

 Functions

 handle_change?()

 prepare_change?()

 shared_root(ltree1, ltree2)

 Get shared root of given ltrees.

 Types

 segment()

 @type segment() :: String.t()

 t()

 @type t() :: [segment()]

 Functions

 handle_change?()

 prepare_change?()

 shared_root(ltree1, ltree2)

 @spec shared_root(ltree1 :: t(), ltree2 :: t()) :: t()

Get shared root of given ltrees.
Examples
iex> Ltree.shared_root(["1", "2"], ["1", "1"])
["1"]

iex> Ltree.shared_root(["1", "2"], ["2", "1"])
[]

AshPostgres.Timestamptz

Implements the PostgresSQL timestamptz (aka timestamp with time zone) type.
Postgres strongly recommends using this type instead of the standard timestamps/datetimes without a time zone. Generally speaking, it is best practice to use the nanosecond-precision variant.
The basic reason timestamptz exists is to guarantee that the precise moment in time is stored as microseconds since January 1st, 2000 in UTC. This guarantee eliminates many time arithmetic problems, and ensures portability.
It does not actually store a timezone, in spite of the name. As far as Elixir/Ecto is concerned, it is always of type DateTime and set to UTC. Using this type ensures Postgres internally uses the same contract as Ecto's :utc_datetime, which is to always store DateTime in UTC. This is especially helpful if you need to do complex time arithmetic in SQL fragments, or build reports/materialized views that use localized time formatting.
Using this type ubiquitously in your schemas is particularly beneficial for consistency, and this is currently under consideration as a configuration option for the default datetime storage type.
attribute :timestamp, AshPostgres.Timestamptz
timestamps type: AshPostgres.Timestamptz
Alternatively, you can set up a shortname:
config.exs
config :ash, :custom_types, timestamptz: AshPostgres.Timestamptz
After saving, you will need to run mix compile ash --force.
attribute :timestamp, :timestamptz
timestamps type: :timestamptz

 Summary

 Functions

 handle_change?()

 prepare_change?()

 Functions

 handle_change?()

 prepare_change?()

AshPostgres.TimestamptzUsec

Implements the PostgresSQL timestamptz (aka timestamp with time zone) type with nanosecond precision.
attribute :timestamp, AshPostgres.TimestamptzUsec
timestamps type: AshPostgres.TimestamptzUsec
Alternatively, you can set up a shortname:
config.exs
config :ash, :custom_types, timestamptz_usec: AshPostgres.TimestamptzUsec
After saving, you will need to run mix compile ash --force.
attribute :timestamp, :timestamptz_usec
timestamps type: :timestamptz_usec
Please see AshPostgres.Timestamptz for details about the usecase for this type.

 Summary

 Functions

 handle_change?()

 prepare_change?()

 Functions

 handle_change?()

 prepare_change?()

AshPostgres.Tsquery

A thin wrapper around :string for working with tsquery types in calculations.
A calculation of this type cannot be selected, but may be used in calculations.

 Summary

 Functions

 handle_change?()

 prepare_change?()

 Functions

 handle_change?()

 prepare_change?()

AshPostgres.Tsvector

A type for representing postgres' tsvectors.
Values will be a list of Postgrex.Lexeme

 Summary

 Functions

 handle_change?()

 prepare_change?()

 Functions

 handle_change?()

 prepare_change?()

AshPostgres.Type behaviour

Postgres specific callbacks for Ash.Type.
Use this in addition to Ash.Type.

 Summary

 Callbacks

 migration_type(constraints)

 postgres_reference_expr(t, constraints, term)

 value_to_postgres_default(t, constraints, term)

 Callbacks

 migration_type(constraints)

 (optional)

 @callback migration_type(Ash.Type.constraints()) :: term()

 postgres_reference_expr(t, constraints, term)

 (optional)

 @callback postgres_reference_expr(Ash.Type.t(), Ash.Type.constraints(), term()) ::
 {:ok, term()} | :error

 value_to_postgres_default(t, constraints, term)

 (optional)

 @callback value_to_postgres_default(Ash.Type.t(), Ash.Type.constraints(), term()) ::
 {:ok, String.t()} | :error

AshPostgres.Extensions.Vector

An extension that adds support for the vector type.
Create a file with these contents, not inside of a module:
Postgrex.Types.define(<YourApp>.PostgrexTypes, [AshPostgres.Extensions.Vector] ++ Ecto.Adapters.Postgres.extensions(), [])
And then ensure that you refer to these types in your repo configuration, i.e
config :my_app, YourApp.Repo,
 types: <YourApp>.PostgrexTypes

 Summary

 Functions

 decode(arg1)

 encode(_)

 format(_)

 init(opts)

 matching(_)

 Functions

 decode(arg1)

 encode(_)

 format(_)

 init(opts)

 matching(_)

AshPostgres.CustomAggregate behaviour

A custom aggregate implementation for ecto.

 Summary

 Callbacks

 dynamic(opts, binding)

 The dynamic expression to create the aggregate.

 Callbacks

 dynamic(opts, binding)

 @callback dynamic(opts :: Keyword.t(), binding :: integer()) :: Ecto.Query.dynamic_expr()

The dynamic expression to create the aggregate.
The binding refers to the resource being aggregated,
use as(^binding) to reference it.
For example:
Ecto.Query.dynamic(
 [],
 fragment("string_agg(?, ?)", field(as(^binding), ^opts[:field]), ^opts[:delimiter])
)

AshPostgres.Migration

Utilities for use in migrations

 Summary

 Functions

 create_enum(type, constraints \\ [])

 A utility for creating postgres enums for an Ash enum type.

 drop_enum(type)

 Functions

 create_enum(type, constraints \\ [])

A utility for creating postgres enums for an Ash enum type.
In your migration, you can say:
def up() do
 AshPostgres.Migration.create_enum(MyEnumType)
end
Attribution:
This code and example was copied from ecto_enum. I didn't use the library itself
because it has a lot that would not currently be relevant for Ash.
https://github.com/gjaldon/ecto_enum
Must be done manually, as the migration generator will not do it.
Additionally, altering the type must be done in its own, separate migration, which
must have @disable_ddl_transaction true, as you cannot do this operation
in a transaction.
For example:
defmodule MyApp.Repo.Migrations.AddToGenderEnum do
 use Ecto.Migration
 @disable_ddl_transaction true

 def up do
 Ecto.Migration.execute "ALTER TYPE gender ADD VALUE IF NOT EXISTS 'other'"
 end

 def down do
 ...
 end
end
Keep in mind, that if you want to create a custom enum type, you will want to add
def storage_type(_), do: :my_type_name

 drop_enum(type)

EctoMigrationDefault protocol

Allows configuring how values are translated to default values in migrations.
Still a work in progress, but covers most standard values aside from maps.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_default(value)

 Returns the text (elixir code) that will be placed into a migration as the default value

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_default(value)

Returns the text (elixir code) that will be placed into a migration as the default value

AshPostgres.Functions.ILike

Maps to the builtin postgres function ilike.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.Like

Maps to the builtin postgres function like.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.TrigramSimilarity

Maps to the builtin postgres trigram similarity function. Requires pgtrgm extension to be installed.
See the postgres docs on trigram for more information.
Requires the pg_trgm extension. Configure which extensions you have installed in your AshPostgres.Repo
Example

filter(query, trigram_similarity(name, "geoff") > 0.4)

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

AshPostgres.Functions.VectorCosineDistance

Maps to the vector cosine distance operator. Requires vector extension to be installed.

 Summary

 Functions

 args()

 Callback implementation for Ash.Query.Function.args/0.

 Functions

 args()

Callback implementation for Ash.Query.Function.args/0.

mix ash_postgres.create

Create the storage for repos in all resources for the given (or configured) domains.
Examples
mix ash_postgres.create
mix ash_postgres.create --domains MyApp.Domain1,MyApp.Domain2
Command line options
	--domains - the domains who's repos you want to migrate.
	-r, --repo - the repo to create
	--quiet - do not log output
	--no-compile - do not compile before creating
	--no-deps-check - do not compile before creating

mix ash_postgres.drop

Drop the storage for the given repository.
Examples
mix ash_postgres.drop
mix ash_postgres.drop --domains MyApp.Domain1,MyApp.Domain2
Command line options
	--domains - the domains who's repos should be dropped
	-r, --repo - the repo to drop
	-q, --quiet - run the command quietly
	-f, --force - do not ask for confirmation when dropping the database.
Configuration is asked only when :start_permanent is set to true
(typically in production)
	--force-drop - force the database to be dropped even
if it has connections to it (requires PostgreSQL 13+)
	--no-compile - do not compile before dropping
	--no-deps-check - do not check dependencies before dropping

mix ash_postgres.gen.resources

Generates resources based on a database schema
Example
mix ash_postgres.gen.resources MyApp.MyDomain
Domain
The domain will be generated if it does not exist. If you aren't sure,
we suggest using something like MyApp.App.
Options
	repo, r - The repo or repos to generate resources for, comma separated. Can be specified multiple times. Defaults to all repos.
	tables, t - Defaults to public.*. The tables to generate resources for, comma separated. Can be specified multiple times. See the section on tables for more.
	skip-tables, s - The tables to skip generating resources for, comma separated. Can be specified multiple times. See the section on tables for more. schema_migrations is always skipped.
	snapshots-only - Only generate snapshots for the generated resources, and not migrations.
	extend, e - Extension or extensions to apply to the generated resources. See mix ash.patch.extend for more.
	yes, y - Answer yes (or skip) to all questions.
	default-actions - Add default actions for each resource. Defaults to true.
	public - Mark all attributes and relationships as public? true. Defaults to true.
	no-migrations - Do not generate snapshots & migrations for the resources. Defaults to false.
	skip-unknown - Skip any attributes with types that we don't have a corresponding Elixir type for, and relationships that we can't assume the name of.
	public - Mark all attributes and relationships as public? true. Defaults to true.

Tables
When specifying tables to include with --tables, you can specify the table name, or the schema and table name separated by a period.
For example, users will generate resources for the users table in the public schema, but accounts.users will generate resources for the users table in the accounts schema.
To include all tables in a given schema, add a period only with no table name, i.e schema., i.e accounts..
When skipping tables with --skip-tables, the same rules apply, except that the schema. format is not supported.

mix ash_postgres.generate_migrations

Generates migrations, and stores a snapshot of your resources.
Options:
	domains - a comma separated list of Domain modules, for which migrations will be generated
	snapshot-path - a custom path to store the snapshots, defaults to "priv/repo_name/resource_snapshots"
	migration-path - a custom path to store the migrations, defaults to "priv/repo_name/migrations".
Migrations are stored in a folder for each repo, so priv/repo_name/migrations
	tenant-migration-path - Same as migration_path, except for tenant-specific migrations
	dont-drop-columns - whether or not to drop columns as attributes are removed. See below for more
	name -
 names the generated migrations, prepending with the timestamp. The default is migrate_resources_<n>,
 where <n> is the count of migrations matching *migrate_resources* plus one.
 For example, --name add_special_column would get a name like 20210708181402_add_special_column.exs

Flags:
	quiet - messages for file creations will not be printed
	no-format - files that are created will not be formatted with the code formatter
	dry-run - no files are created, instead the new migration is printed
	check - no files are created, returns an exit(1) code if the current snapshots and resources don't fit
	dev - dev files are created
	snapshots-only - no migrations are generated, only snapshots are stored
	concurrent-indexes - new identities will be run concurrently and in a separate migration (like concurrent custom indexes)

Snapshots
Snapshots are stored in a folder for each table that migrations are generated for. Each snapshot is
stored in a file with a timestamp of when it was generated.
This is important because it allows for simultaneous work to be done on separate branches, and for rolling back
changes more easily, e.g removing a generated migration, and deleting the most recent snapshot, without having to redo
all of it
Dropping columns
Generally speaking, it is bad practice to drop columns when you deploy a change that
would remove an attribute. The main reasons for this are backwards compatibility and rolling restarts.
If you deploy an attribute removal, and run migrations. Regardless of your deployment strategy, you
won't be able to roll back, because the data has been deleted. In a rolling restart situation, some of
the machines/pods/whatever may still be running after the column has been deleted, causing errors. With
this in mind, its best not to delete those columns until later, after the data has been confirmed unnecessary.
To that end, you can pass --dont-drop-columns to tell it to comment out those statements.
Conflicts/Multiple Resources
The migration generator can support multiple schemas using the same table.
It will raise on conflicts that it can't resolve, like the same field with different
types. It will prompt to resolve conflicts that can be resolved with human input.
For example, if you remove an attribute and add an attribute, it will ask you if you are renaming
the column in question. If not, it will remove one column and add the other.
Additionally, it lowers things to the database where possible:
Defaults
There are three anonymous functions that will translate to database-specific defaults currently:
	&Ash.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&Ecto.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&DateTime.utc_now/0

Non-function default values will be dumped to their native type and inspected. This may not work for some types,
and may require manual intervention/patches to the migration generator code.
Identities
Identities will cause the migration generator to generate unique constraints. If multiple
resources target the same table, you will be asked to select the primary key, and any others
will be added as unique constraints.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix ash_postgres.install

Installs AshPostgres. Should be run with mix igniter.install ash_postgres

mix ash_postgres.migrate

Runs the pending migrations for the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application (or tenant_migrations for multitenancy),
where "YOUR_REPO" is the last segment
in your repository name. For example, the repository MyApp.Repo
will use "priv/repo/migrations". The repository Whatever.MyRepo
will use "priv/my_repo/migrations".
This task runs all pending migrations by default. To migrate up to a
specific version number, supply --to version_number. To migrate a
specific number of times, use --step n.
If you have multiple repos and you want to run a single migration and/or
migrate them to different points, you will need to use the ecto specific task,
mix ecto.migrate and provide your repo name.
If a repository has not yet been started, one will be started outside
your application supervision tree and shutdown afterwards.
Examples
mix ash_postgres.migrate
mix ash_postgres.migrate --domains MyApp.Domain1,MyApp.Domain2

mix ash_postgres.migrate -n 3
mix ash_postgres.migrate --step 3

mix ash_postgres.migrate --to 20080906120000
Command line options
	--domains - the domains who's repos should be migrated

	--tenants - Run the tenant migrations

	--only-tenants - in combo with --tenants, only runs migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--except-tenants - in combo with --tenants, does not run migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--all - run all pending migrations

	--repo, -r - the repo to migrate

	--step, -n - run n number of pending migrations

	--to - run all migrations up to and including version

	--quiet - do not log migration commands

	--prefix - the prefix to run migrations on. This is ignored if --tenants is provided.

	--pool-size - the pool size if the repository is started only for the task (defaults to 2)

	--log-migrations-sql - log SQL generated by migration commands

	--log-migrator-sql - log SQL generated by the migrator, such as
transactions, table locks, etc

	--strict-version-order - abort when applying a migration with old timestamp

	--no-compile - does not compile applications before migrating

	--no-deps-check - does not check dependencies before migrating

	--migrations-path - the path to load the migrations from, defaults to
"priv/repo/migrations". This option may be given multiple times in which case the migrations
are loaded from all the given directories and sorted as if they were in the same one.
Note, if you have migrations paths e.g. a/ and b/, and run
mix ecto.migrate --migrations-path a/, the latest migrations from a/ will be run (even
if b/ contains the overall latest migrations.)

mix ash_postgres.rollback

Reverts applied migrations in the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application but it can be configured by specifying
the :priv key under the repository configuration.
Runs the latest applied migration by default. To roll back to
a version number, supply --to version_number. To roll back a
specific number of times, use --step n. To undo all applied
migrations, provide --all.
This is only really useful if your domains only use a single repo.
If you have multiple repos and you want to run a single migration and/or
migrate/roll them back to different points, you will need to use the
ecto specific task, mix ecto.migrate and provide your repo name.
Examples
mix ash_postgres.rollback
mix ash_postgres.rollback -r Custom.Repo
mix ash_postgres.rollback -n 3
mix ash_postgres.rollback --step 3
mix ash_postgres.rollback -v 20080906120000
mix ash_postgres.rollback --to 20080906120000
Command line options
	--domains - the domains whose repos should be rolled back
	--all - revert all applied migrations
	--repo, -r - the repo to rollback
	--step / -n - revert n number of applied migrations
	--to / -v - revert all migrations down to and including version
	--quiet - do not log migration commands
	--prefix - the prefix to run migrations on
	--pool-size - the pool size if the repository is started only for the task (defaults to 1)
	--log-migrations-sql - log SQL generated by migration commands
	--log-migrator-sql - log SQL generated by the migrator, such as transactions, table locks, etc
	--tenants - roll back tenant migrations
	--only-tenants - in combo with --tenants, only rolls back the provided tenants, e.g tenant1,tenant2,tenant3
	--except-tenants - in combo with --tenants, does not rollback the provided tenants, e.g tenant1,tenant2,tenant3

mix ash_postgres.setup_vector

Sets up pgvector for AshPostgres
Example
mix ash_postgres.setup_vector

mix ash_postgres.squash_snapshots

Cleans snapshots folder, leaving only one snapshot per resource.
Examples
mix ash_postgres.squash_snapshots
mix ash_postgres.squash_snapshots --check --quiet
mix ash_postgres.squash_snapshots --into zero
mix ash_postgres.squash_snapshots --dry-run
Command line options
	--into -
 last, first or zero. The default is last. Determines which name to use for
 a remaining snapshot. last keeps the name of the last snapshot, first renames it to the previously first,
 zero sets name with fourteen zeros.
	--snapshot-path - a custom path to stored snapshots. The default is "priv/resource_snapshots".
	--quiet - no messages will be printed.
	--dry-run - no files are touched, instead prints folders that have snapshots to squash.
	--check - no files are touched, instead returns an exit(1) code if there are snapshots to squash.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

