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Getting Started
    

Installation
Add the ash_rbac dependency to your mix.exs
defp deps do
  [
    {:ash_rbac, "~> 0.4.0"}
  ]
end
Adding AshRbac to your resource
First, the authorizer and the extension need to be added.
defmodule RootResource do
    @moduledoc false
    use Ash.Resource,
      data_layer: Ash.DataLayer.Ets,
      authorizers: [Ash.Policy.Authorizer], # Add the authorizer
      extensions: [AshRbac] # Add the extension
  ...
end
Afterwards, you can add a rbac block to your resource.
  rbac do
    role :user do
      fields [:name, :email]
      actions [:read]
    end
  end
The options defined in the rbac block are transformed into policies during compile time.
The previous example will generate the following policies:
field_policies do
  field_policy [:name, :email]do
    authorize_if {AshRbac.HasRole, [role: [:user]]}
  end

  # it also adds a policy for all other fields like this
  field_policy [:other_fields, ...] do
    forbid_if always()
  end
end

policies do
  policy [action(:read), {AshRbac.HasRole, [role: [:user]]}] do
    authorize_if always()
  end
end



  

    
Relationships
    

As relationships are not part of field policies it is necessary to protect them with an action policy.
This can be done by passing a custom condition to the action.
# only allow read access if accessed from a parent
rbac do
  role :user do
    actions [
      {:read, accessing_from(Parent, :child)}
    ]
  end
end

# result
policies do
  policy [action(:read), accessing_from(Parent, :child)] do
    authorize_if {AshRbac.HasRole, [role: :user]}
  end
end



  

    
AshRbac
    

A small extension that allows for easier application of policies
rbac do
  role :user do
    fields [:fields, :user, :can, :see]
    actions [:actions, :user, :can :use]
  end
end
Installation
The package can be installed by adding ash_rbac to your list of dependencies in mix.exs:
def deps do
  [
    {:ash_rbac, "~> 0.4.0"},
  ]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/ash_rbac.
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Check to determine if the actor has a specific role or if the actor has any of the roles in a list
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Introspection functions for the Rbac Extension
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Adds the configured policies to the resource
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Callback implementation for Spark.Dsl.Transformer.after_compile?/0.
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The Role entity for the DSL of the rbac extension
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