

    

        ash_rbac

        v0.4.0


          [image: Logo]



    



  

    Table of contents

    
      



            	Getting Started


            	Relationships


            	Readme





  	Modules
    

    	AshRbac


    	AshRbac.HasRole


    	AshRbac.Info


    	AshRbac.Policies


    	AshRbac.Role


    

  



      

    


  

    
Getting Started
    

Installation
Add the ash_rbac dependency to your mix.exs
defp deps do
  [
    {:ash_rbac, "~> 0.4.0"}
  ]
end
Adding AshRbac to your resource
First, the authorizer and the extension need to be added.
defmodule RootResource do
    @moduledoc false
    use Ash.Resource,
      data_layer: Ash.DataLayer.Ets,
      authorizers: [Ash.Policy.Authorizer], # Add the authorizer
      extensions: [AshRbac] # Add the extension
  ...
end
Afterwards, you can add a rbac block to your resource.
  rbac do
    role :user do
      fields [:name, :email]
      actions [:read]
    end
  end
The options defined in the rbac block are transformed into policies during compile time.
The previous example will generate the following policies:
field_policies do
  field_policy [:name, :email]do
    authorize_if {AshRbac.HasRole, [role: [:user]]}
  end

  # it also adds a policy for all other fields like this
  field_policy [:other_fields, ...] do
    forbid_if always()
  end
end

policies do
  policy [action(:read), {AshRbac.HasRole, [role: [:user]]}] do
    authorize_if always()
  end
end



  

    
Relationships
    

As relationships are not part of field policies it is necessary to protect them with an action policy.
This can be done by passing a custom condition to the action.
# only allow read access if accessed from a parent
rbac do
  role :user do
    actions [
      {:read, accessing_from(Parent, :child)}
    ]
  end
end

# result
policies do
  policy [action(:read), accessing_from(Parent, :child)] do
    authorize_if {AshRbac.HasRole, [role: :user]}
  end
end



  

    
AshRbac
    

A small extension that allows for easier application of policies
rbac do
  role :user do
    fields [:fields, :user, :can, :see]
    actions [:actions, :user, :can :use]
  end
end
Installation
The package can be installed by adding ash_rbac to your list of dependencies in mix.exs:
def deps do
  [
    {:ash_rbac, "~> 0.4.0"},
  ]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/ash_rbac.



  

    
AshRbac 
    







  

    
AshRbac.HasRole 
    



      
Check to determine if the actor has a specific role or if the actor has any of the roles in a list

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        strict_check(actor, context, opts)

      


        Callback implementation for Ash.Policy.Check.strict_check/3.



    


    
      
        type()

      


        Callback implementation for Ash.Policy.Check.type/0.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    strict_check(actor, context, opts)


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.strict_check/3.

  



  
    
      
      Link to this function
    
    type()


      
       
       View Source
     


  


  

Callback implementation for Ash.Policy.Check.type/0.

  


        

      



  

    
AshRbac.Info 
    



      
Introspection functions for the Rbac Extension

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        bypass(resource)

      


    


    
      
        bypass_roles_field(resource)

      


    


    
      
        public?(resource)

      


    


    
      
        roles(resource)

      


    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    bypass(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    bypass_roles_field(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    public?(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    roles(resource)


      
       
       View Source
     


  


  


  


        

      



  

    
AshRbac.Policies 
    



      
Adds the configured policies to the resource

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        after_compile?()

      


        Callback implementation for Spark.Dsl.Transformer.after_compile?/0.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    after_compile?()


      
       
       View Source
     


  


  

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

  


        

      



  

    
AshRbac.Role 
    



      
The Role entity for the DSL of the rbac extension

      





  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




