

 ash_state_machine

 v0.2.3

 [image: Logo]

 Table of contents

 	Home

 	Tutorials

 	Getting Started with State Machines

 	Topics

 	What is AshStateMachine?

 	Charts

 	Working with Ash.can?

 	DSLs

 	DSL: AshStateMachine

 	About AshStateMachine

 	Change Log

 	

 	Modules

 	Dsl

 	AshStateMachine

 	Introspection

 	AshStateMachine.Info

 	AshStateMachine.Transition

 	Helpers

 	AshStateMachine.BuiltinChanges

 	Charts

 	AshStateMachine.Charts

 	Errors

 	AshStateMachine.Errors.InvalidInitialState

 	AshStateMachine.Errors.NoMatchingTransition

 	Internals

 	AshStateMachine.Checks.ValidNextState

 	Mix Tasks

 	mix ash_state_machine.generate_flow_charts

Home

[image: Logo]
[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
AshStateMachine
Welcome! This is the extension for building state machines with Ash resources.

 Tutorials

	Getting Started with AshStateMachine

 Topics

	What is AshStateMachine?
	Charts
	Working with Ash.can?

 Reference

	AshStateMachine DSL

Getting Started with State Machines

 Get familiar with Ash resources

If you haven't already, read the Ash Getting Started Guide, and familiarize yourself with Ash and Ash resources.

 Bring in the ash_state_machine dependency

{:ash_state_machine, "~> 0.2.3"}

 Add the extension to your resource

use Ash.Resource,
 extensions: [AshStateMachine]

 Add initial states, and a default initial state

use Ash.Resource,
 extensions: [AshStateMachine]

...

state_machine do
 inital_states [:pending]
 default_inital_state :pending
end

 Add allowed transitions

state_machine do
 inital_states [:pending]
 default_inital_state :pending

 transitions do
 # `:begin` action can move state from `:pending` to `:started`/`:aborted`
 transition :begin, from: :pending, to: [:started, :aborted]
 end
end

 Use transition_state in your actions

 For simple/static state transitions

actions do
 update :begin do
 # for a static state transition
 change transition_state(:started)
 end
end

 For dynamic/conditional state transitions

defmodule Start do
 use Ash.Resource.Change

 def change(changeset, _, _) do
 if ready_to_start?(changeset) do
 AshStateMachine.transition_state(changeset, :started)
 else
 AshStateMachine.transition_state(changeset, :aborted)
 end
 end
end

actions do
 update :begin do
 # for a dynamic state transition
 change Start
 end
end

 Making a resource into a state machine

The concept of a state machine (in this case a "Finite State Machine"), essentially involves a single state, with specified transitions between states. For example, you might have an order state machine with states [:pending, :on_its_way, :delivered]. However, you can't go from :pending to :delivered (probably), and so you want to only allow certain transitions in certain circumstances, i.e :pending -> :on_its_way -> :delivered.
This extension's goal is to help you write clear and clean state machines, with all of the extensibility and power of Ash resources and actions.

What is AshStateMachine?

 What is a State Machine?

A state machine is a program who's purpose is to manage an internal "state". The simplest example of a state machine could be a program representing a light switch. A light switch might have two states, "on" and "off". You can transition from "on" to "off", and back.
classDiagram

class Switch {
 state on | off
 turnOn() off -> on
 turnOff() on -> off
}
To build state machines with Ash.Resource, we use AshStateMachine.
When we refer to "state machines" in AshStateMachine, we're referring to a specific type of state machine known as a "Finite State Machine".
It is "finite", because there are a statically known list of states that the machine may be in at any time, just like the Switch example above.

 Why should we use state machines?

Flexible
State machines are a simple and powerful way to represent complex workflows. They are flexible to modifications over time by adding new states, or new transitions between states.
Migrateable
State machines typically contain additional data about the state that they are in, or past states that they have been in, and this state must be migrated over time. When representing data as state machines, it becomes simple to do things like "update all package records that are in the pending_shipment state".
Easy to reason about for humans
State machines, when compared to things like workflows, are easy for people to reason about. We have an intuition for things like "the package is currently on_its_way, with a current_location of New York, New York", or "your package is now out_for_delivery with an ETA of 6PM".
Compatible with any storage mechanism
Since state machines are backed by simple state, you can often avoid any fancy workflow runners or complex storage mechanisms. You can store them in a database table, a json blob, a CSV file, at the end of the day its just a :state field and accompanying additional fields.

 What does AshStateMachine do differently than other implementations?

AshStateMachine is an Ash.Resource extension, meaning it enhances a resource with state machine capabilities. In Ash, all modifications go through actions. In accordance with this, AshStateMachine offers a DSL for declaring valid states and transitions, but does not, itself, perform those transitions. You will use a change called transition_state/1 in an action to move from one state to the other. For more, check out the CookBook

Charts

Run mix ash_state_machine.generate_flow_charts to generate flow charts for your resources. See the task documentation for more. Here is an example:
stateDiagram-v2
pending --> confirmed: confirm
confirmed --> on_its_way: begin_delivery
on_its_way --> arrived: package_arrived
on_its_way --> error: error
confirmed --> error: error
pending --> error: error

Working with <code class="inline">Ash.can?</code>

Using Ash.can?/3 won't return false if a given state machine transition is invalid. This is because Ash.can?/3 is only concerned with policies, not changes/validations. However, many folks use Ash.can?/3 in their UI to determine whether a given button/form/etc should be shown. To help with this you can add the following to your resource:
policies do
 policy always() do
 authorize_if AshStateMachine.Checks.ValidNextState
 end
end
This check is only used in pre_flight authorization checks (i.e calling Ash.can?/3), but it will return true in all cases when running real authorization checks. This is because the change is validated when you use the transition_state/1 change and AshStateMachine.transition_state/2, and so you would be doing extra work for no reason.

DSL: AshStateMachine

Provides tools for defining and working with resource-backed state machines.

 state_machine

 Nested DSLs

	transitions	transition

 Options

	Name	Type	Default	Docs
	initial_states	list(atom)		The allowed starting states of this state machine.
	deprecated_states	list(atom)	[]	A list of states that have been deprecated but are still valid. These will still be in the possible list of states, but :* will not include them.
	extra_states	list(atom)	[]	A list of states that may be used by transitions to/from :*. See the docs on wildcards for more.
	state_attribute	atom	:state	The attribute to store the state in.
	default_initial_state	atom		The default initial state

 state_machine.transitions

 Wildcards

Use :* to represent "any action" when used in place of an action, or "any state" when used in place of a state.
For example:
transition :*, from: :*, to: :*
The full list of states is derived at compile time from the transitions.
Use the extra_states to express that certain types should be included
in that list even though no transitions go to/from that state explicitly.
This is necessary for cases where there are states that use :* and no
transition explicitly leads to that transition.

 Nested DSLs

	transition

 state_machine.transitions.transition

transition action

 Arguments

	Name	Type	Default	Docs
	action	atom		The corresponding action that is invoked for the transition. Use :* to allow any update action to perform this transition.

 Options

	Name	Type	Default	Docs
	from	list(atom) | atom		The states in which this action may be called. If not specified, then any state is accepted. Use :* to refer to all states.
	to	list(atom) | atom		The states that this action may move to. If not specified, then any state is accepted. Use :* to refer to all states.

 Introspection

Target: AshStateMachine.Transition

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v0.2.3 (2024-05-10)

 v0.2.3-rc.1 (2024-05-04)

 Improvements:

	policy for including state machine in can? checks

	optimize atomic state transition check

	add atomic implementation

 v0.2.3-rc.0 (2024-03-29)

 Improvements:

	update to Ash 3.0

 v0.2.2 (2023-09-15)

 Bug Fixes:

	scrub :* from the list of states

	proper entity path in replace logic

 Improvements:

	Add possible_next_states helper. (#9)

	Add possible_next_states helper.

	detect states used that don't exist and log an error

 v0.2.1 (2023-09-08)

 Bug Fixes:

	Allow next_state to to match transitions from *. (#7)

 v0.2.0 (2023-09-08)

 Features:

	Add next_state builtin change. (#6)

 Improvements:

	exclude star from state_machine_all_states/1 to avoid inclusion in add_attribuet builder (#4)

 v0.1.5 (2023-08-04)

 Improvements:

	support :* in states

 v0.1.4 (2023-05-03)

 Bug Fixes:

	Rename from to old_state in NoMatchingTransition error (#3)

 v0.1.3 (2023-04-28)

 Bug Fixes:

	== not != for checking all states

 v0.1.2 (2023-04-28)

 v0.1.1 (2023-04-23)

 Improvements:

	make state diagrams the default chart

 v0.1.0 (2023-04-23)

 Features:

	add mix task ash_state_machine.generate_flow_charts (#1)

 Bug Fixes:

	action does not uniquely identify a transition

	require allow_nil? false on state attribute

 Improvements:

	require initial_states

	fix lint/credo, handle all changeset types

	require from/to

	flow chart generation

	support :* as a transition action name to match all

AshStateMachine

Provides tools for defining and working with resource-backed state machines.

 Summary

 Functions

 possible_next_states(record)

 A reusable helper which returns all possible next states for a record
(regardless of action).

 possible_next_states(record, action_name)

 A reusable helper which returns all possible next states for a record given a
specific action.

 transition_state(changeset, target)

 A utility to transition the state of a changeset, honoring the rules of the resource.

 Functions

 Link to this function

 possible_next_states(record)

 View Source

 @spec possible_next_states(Ash.Resource.record()) :: [atom()]

A reusable helper which returns all possible next states for a record
(regardless of action).

 Link to this function

 possible_next_states(record, action_name)

 View Source

 @spec possible_next_states(Ash.Resource.record(), atom()) :: [atom()]

A reusable helper which returns all possible next states for a record given a
specific action.

 Link to this function

 transition_state(changeset, target)

 View Source

A utility to transition the state of a changeset, honoring the rules of the resource.

AshStateMachine.Info

Introspection helpers for AshStateMachine

 Summary

 Functions

 state_machine_all_states(resource_or_dsl)

 state_machine_default_initial_state(dsl_or_extended)

 The default initial state

 state_machine_default_initial_state!(dsl_or_extended)

 The default initial state

 state_machine_deprecated_states(dsl_or_extended)

 A list of states that have been deprecated but are still valid. These will still be in the possible list of states, but :* will not include them.

 state_machine_deprecated_states!(dsl_or_extended)

 A list of states that have been deprecated but are still valid. These will still be in the possible list of states, but :* will not include them.

 state_machine_extra_states(dsl_or_extended)

 A list of states that may be used by transitions to/from :*. See the docs on wildcards for more.

 state_machine_extra_states!(dsl_or_extended)

 A list of states that may be used by transitions to/from :*. See the docs on wildcards for more.

 state_machine_initial_states(dsl_or_extended)

 The allowed starting states of this state machine.

 state_machine_initial_states!(dsl_or_extended)

 The allowed starting states of this state machine.

 state_machine_options(dsl_or_extended)

 state_machine DSL options

 state_machine_state_attribute(dsl_or_extended)

 The attribute to store the state in.

 state_machine_state_attribute!(dsl_or_extended)

 The attribute to store the state in.

 state_machine_transitions(dsl_or_extended)

 state_machine.transitions DSL entities

 state_machine_transitions(resource_or_dsl, name)

 Functions

 Link to this function

 state_machine_all_states(resource_or_dsl)

 View Source

 @spec state_machine_all_states(Ash.Resource.t() | map()) :: [atom()]

 Link to this function

 state_machine_default_initial_state(dsl_or_extended)

 View Source

 @spec state_machine_default_initial_state(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The default initial state

 Link to this function

 state_machine_default_initial_state!(dsl_or_extended)

 View Source

 @spec state_machine_default_initial_state!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The default initial state

 Link to this function

 state_machine_deprecated_states(dsl_or_extended)

 View Source

 @spec state_machine_deprecated_states(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A list of states that have been deprecated but are still valid. These will still be in the possible list of states, but :* will not include them.

 Link to this function

 state_machine_deprecated_states!(dsl_or_extended)

 View Source

 @spec state_machine_deprecated_states!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A list of states that have been deprecated but are still valid. These will still be in the possible list of states, but :* will not include them.

 Link to this function

 state_machine_extra_states(dsl_or_extended)

 View Source

 @spec state_machine_extra_states(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A list of states that may be used by transitions to/from :*. See the docs on wildcards for more.

 Link to this function

 state_machine_extra_states!(dsl_or_extended)

 View Source

 @spec state_machine_extra_states!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A list of states that may be used by transitions to/from :*. See the docs on wildcards for more.

 Link to this function

 state_machine_initial_states(dsl_or_extended)

 View Source

 @spec state_machine_initial_states(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

The allowed starting states of this state machine.

 Link to this function

 state_machine_initial_states!(dsl_or_extended)

 View Source

 @spec state_machine_initial_states!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

The allowed starting states of this state machine.

 Link to this function

 state_machine_options(dsl_or_extended)

 View Source

 @spec state_machine_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

state_machine DSL options
Returns a map containing the and any configured or default values.

 Link to this function

 state_machine_state_attribute(dsl_or_extended)

 View Source

 @spec state_machine_state_attribute(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute to store the state in.

 Link to this function

 state_machine_state_attribute!(dsl_or_extended)

 View Source

 @spec state_machine_state_attribute!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute to store the state in.

 Link to this function

 state_machine_transitions(dsl_or_extended)

 View Source

 @spec state_machine_transitions(dsl_or_extended :: module() | map()) :: [struct()]

state_machine.transitions DSL entities

 Link to this function

 state_machine_transitions(resource_or_dsl, name)

 View Source

 @spec state_machine_transitions(Ash.Resource.t() | map(), name :: atom()) :: [
 AshStateMachine.Transition.t()
]

AshStateMachine.Transition

The configuration for an transition.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %AshStateMachine.Transition{
 __identifier__: any(),
 action: atom(),
 from: [atom()],
 to: [atom()]
}

AshStateMachine.BuiltinChanges

Changes for working with AshStateMachine resources.

 Summary

 Functions

 next_state()

 Try and transition to the next state. Must be only one possible next state.

 transition_state(target)

 Changes the state to the target state, validating the transition

 Functions

 Link to this function

 next_state()

 View Source

Try and transition to the next state. Must be only one possible next state.

 Link to this function

 transition_state(target)

 View Source

Changes the state to the target state, validating the transition

AshStateMachine.Charts

Returns a mermaid flow chart of a given state machine resource.

 Summary

 Functions

 mermaid_flowchart(resource)

 mermaid_state_diagram(resource)

 Functions

 Link to this function

 mermaid_flowchart(resource)

 View Source

 @spec mermaid_flowchart(Ash.Resource.t()) :: String.t()

 Link to this function

 mermaid_state_diagram(resource)

 View Source

 @spec mermaid_state_diagram(Ash.Resource.t()) :: String.t()

AshStateMachine.Errors.InvalidInitialState exception

Used when an initial state is set that is not a valid initial state

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

AshStateMachine.Errors.NoMatchingTransition exception

Used when a state change occurs in an action with no matching transition

 Summary

 Functions

 exception()

 Functions

 Link to this function

 exception()

 View Source

AshStateMachine.Checks.ValidNextState

A policy for pre_flight checking if a state transition is allowed.

 Summary

 Functions

 auto_filter(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.auto_filter/3.

 auto_filter_not(actor, authorizer, opts)

 check(actor, data, authorizer, opts)

 Callback implementation for Ash.Policy.Check.check/4.

 describe(_)

 Callback implementation for Ash.Policy.Check.describe/1.

 filter(actor, context, options)

 Callback implementation for Ash.Policy.FilterCheck.filter/3.

 reject(actor, authorizer, opts)

 Callback implementation for Ash.Policy.FilterCheck.reject/3.

 requires_original_data?(_, _)

 Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 strict_check(actor, authorizer, opts)

 Callback implementation for Ash.Policy.Check.strict_check/3.

 strict_check_context(opts)

 type()

 Callback implementation for Ash.Policy.Check.type/0.

 Functions

 Link to this function

 auto_filter(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.auto_filter/3.

 Link to this function

 auto_filter_not(actor, authorizer, opts)

 View Source

 Link to this function

 check(actor, data, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.check/4.

 Link to this function

 describe(_)

 View Source

Callback implementation for Ash.Policy.Check.describe/1.

 Link to this function

 filter(actor, context, options)

 View Source

Callback implementation for Ash.Policy.FilterCheck.filter/3.

 Link to this function

 reject(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.FilterCheck.reject/3.

 Link to this function

 requires_original_data?(_, _)

 View Source

Callback implementation for Ash.Policy.Check.requires_original_data?/2.

 Link to this function

 strict_check(actor, authorizer, opts)

 View Source

Callback implementation for Ash.Policy.Check.strict_check/3.

 Link to this function

 strict_check_context(opts)

 View Source

 Link to this function

 type()

 View Source

Callback implementation for Ash.Policy.Check.type/0.

mix ash_state_machine.generate_flow_charts

Generates a Mermaid Flow Chart for each Ash.Resource with the AshStateMachine
extension alongside the resource.

 Prerequisites

This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli

 Command line options

	--type - generates a given type. Valid values are "state_diagram" and "flow_chart". Defaults to "state_diagram".
	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(argv)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

OEBPS/assets/logo.png

