

 ash_typescript

 v0.11.0

 [image: Logo]

 Table of contents

 	Home

 	Tutorials

 	Getting Started with AshTypescript

 	React Setup Guide

 	How-To Guides

 	Basic CRUD Operations

 	Advanced Field Selection

 	Error Handling

 	Custom Fetch Functions and Request Options

 	Topics

 	Lifecycle Hooks

 	Error Handling

 	Phoenix Channel-based RPC Actions

 	Embedded Resources

 	Union Types

 	Multitenancy Support

 	Action Metadata Support

 	Form Validation Functions

 	Zod Runtime Validation

 	Reference

 	Configuration Reference

 	Mix Tasks Reference

 	Troubleshooting

 	DSLs

 	AshTypescript.Rpc

 	AshTypescript.Resource

 	About AshTypescript

 	Change Log

 	
 Modules

 	AshTypescript.Codegen

 	AshTypescript.Codegen.FilterTypes

 	AshTypescript.Codegen.Helpers

 	AshTypescript.Codegen.ResourceSchemas

 	AshTypescript.Codegen.TypeAliases

 	AshTypescript.Codegen.TypeDiscovery

 	AshTypescript.Codegen.TypeMapper

 	AshTypescript.FieldFormatter

 	AshTypescript.Helpers

 	AshTypescript.Resource

 	AshTypescript.Resource.Info

 	AshTypescript.Resource.Verifiers.VerifyFieldNames

 	AshTypescript.Resource.Verifiers.VerifyMapFieldNames

 	AshTypescript.Resource.Verifiers.VerifyMappedFieldNames

 	AshTypescript.Resource.Verifiers.VerifyUniqueTypeNames

 	AshTypescript.Rpc.Codegen

 	AshTypescript.Rpc.Codegen.FunctionGenerators.ChannelRenderer

 	AshTypescript.Rpc.Codegen.FunctionGenerators.FunctionCore

 	AshTypescript.Rpc.Codegen.FunctionGenerators.HttpRenderer

 	AshTypescript.Rpc.Codegen.FunctionGenerators.TypeBuilders

 	AshTypescript.Rpc.Codegen.FunctionGenerators.TypedQueries

 	AshTypescript.Rpc.Codegen.Helpers.ActionIntrospection

 	AshTypescript.Rpc.Codegen.Helpers.ConfigBuilder

 	AshTypescript.Rpc.Codegen.Helpers.PayloadBuilder

 	AshTypescript.Rpc.Codegen.RpcConfigCollector

 	AshTypescript.Rpc.Codegen.TypeGenerators.InputTypes

 	AshTypescript.Rpc.Codegen.TypeGenerators.MetadataTypes

 	AshTypescript.Rpc.Codegen.TypeGenerators.PaginationTypes

 	AshTypescript.Rpc.Codegen.TypeGenerators.ResultTypes

 	AshTypescript.Rpc.Codegen.TypescriptStatic

 	AshTypescript.Rpc.DefaultErrorHandler

 	AshTypescript.Rpc.Error

 	AshTypescript.Rpc.ErrorBuilder

 	AshTypescript.Rpc.ErrorHandler

 	AshTypescript.Rpc.Errors

 	AshTypescript.Rpc.FieldExtractor

 	AshTypescript.Rpc.FieldProcessing.Atomizer

 	AshTypescript.Rpc.FieldProcessing.FieldSelector

 	AshTypescript.Rpc.FieldProcessing.FieldSelector.Validation

 	AshTypescript.Rpc.Info

 	AshTypescript.Rpc.InputFormatter

 	AshTypescript.Rpc.OutputFormatter

 	AshTypescript.Rpc.Pipeline

 	AshTypescript.Rpc.Request

 	AshTypescript.Rpc.RequestedFieldsProcessor

 	AshTypescript.Rpc.Resource

 	AshTypescript.Rpc.ResultProcessor

 	AshTypescript.Rpc.RpcAction

 	AshTypescript.Rpc.TypedQuery

 	AshTypescript.Rpc.ValidationErrorSchemas

 	AshTypescript.Rpc.ValueFormatter

 	AshTypescript.Rpc.Verifiers.VerifyActionTypes

 	AshTypescript.Rpc.Verifiers.VerifyIdentities

 	AshTypescript.Rpc.Verifiers.VerifyMetadataFieldNames

 	AshTypescript.Rpc.Verifiers.VerifyTypedQueryFields

 	AshTypescript.Rpc.Verifiers.VerifyUniqueInputFieldNames

 	AshTypescript.Rpc.VerifyRpc

 	AshTypescript.Rpc.VerifyRpcWarnings

 	AshTypescript.Rpc.ZodSchemaGenerator

 	AshTypescript.TypeSystem.Introspection

 	AshTypescript.TypeSystem.ResourceFields

 	AshTypescript.VerifierChecker

 	
 Mix Tasks

 	mix ash_typescript.codegen

 	mix ash_typescript.install

 Home

[image: Logo][image: Elixir CI]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
AshTypescript
🔥 Automatic TypeScript type generation for Ash resources and actions
Generate type-safe TypeScript clients directly from your Elixir Ash resources, ensuring end-to-end type safety between your backend and frontend. Never write API types manually again.
🚨 Breaking Changes
0.11.0 - Simplified Calculation Field Selection
Calculations without arguments no longer require the {fields: [...]} wrapper syntax. You can now select them directly as strings, just like regular attributes.
TypeScript Usage:
// ❌ Before (0.10.x) - fields-key was always required for all calculations
const todos = await listTodos({
 fields: ["id", "title", { someCalcField: { fields: ["field1", "field2"] } }]
});

// ✅ After (0.11.0+) - fields-key no longer needed for calculations without args
const todos = await listTodos({
 fields: ["id", "title", {someCalcField: ["field1", "field2"]}] // fullName is a calculation
});

// ✅ Calculations WITH arguments still use object syntax
const todos = await listTodos({
 fields: ["id", "title", { distanceFrom: { args: { lat: 40.7, lng: -74.0 }, fields: ["miles"] } }]
});
Key Changes:
	This simplifies the most common calculation usage patterns
	Calculations with arguments continue to require the object syntax with args

Migration:
	Simplify calculation selections that don't require arguments from { calcName: { fields: [...] } } to just "{calcName: [...]}"
	Keep the object syntax for calculations that need arguments

0.11.0 - Field Name Mappings Must Be Strings
The field_names, argument_names, and metadata_field_names DSL options now require string values instead of atoms. Additionally, the string value is used as the literal exposed field name without any additional formatting applied.
Elixir Configuration:
❌ Before (0.10.x) - atoms with automatic formatting
typescript do
 field_names id_1: :id1, is_active?: :isActive
end

✅ After (0.11.0+) - strings used literally
typescript do
 field_names id_1: "id1", is_active?: "isActive"
end
Custom Types with typescript_field_names/0 Callback:
For custom Ash types (e.g., Ash.Type.NewType wrapping maps or keyword lists), implement the typescript_field_names/0 callback to map invalid TypeScript field names:
defmodule MyApp.Types.CustomData do
 use Ash.Type.NewType,
 subtype_of: :map,
 constraints: [
 fields: [
 field_1: [type: :string],
 is_valid?: [type: :boolean]
]
]

 # ❌ Before (0.10.x) - atoms
 def typescript_field_names do
 %{field_1: :field1, is_valid?: :isValid}
 end

 # ✅ After (0.11.0+) - strings used literally
 def typescript_field_names do
 %{field_1: "field1", is_valid?: "isValid"}
 end
end
Key Changes:
	All mapped names must be strings (atoms will raise an error)
	The string value is the exact name exposed to TypeScript (no camelCase conversion or other formatting)
	This applies to field_names, argument_names, metadata_field_names DSL options, and the typescript_field_names/0 callback

Migration:
	Convert all atom values to strings in your field name mappings
	Update any typescript_field_names/0 callbacks in custom types to return string values
	Ensure the string values are exactly what you want exposed to TypeScript (apply any formatting manually)

0.10.0 - primaryKey Renamed to identity
The primaryKey field in update and destroy actions has been renamed to identity. This field now supports both primary key values and named identities for record lookup.
Elixir Configuration:
typescript_rpc do
 resource MyApp.Accounts.User do
 # Default: uses primary key (identities: [:_primary_key])
 rpc_action :update_user, :update

 # Named identity only (e.g., lookup by email)
 rpc_action :update_user_by_email, :update, identities: [:unique_email]

 # Multiple identities (primary key OR email)
 rpc_action :update_user_by_identity, :update, identities: [:_primary_key, :unique_email]

 # Actor-scoped actions (no identity required - uses actor from context)
 rpc_action :update_me, :update_me, identities: []
 end
end
TypeScript Usage:
// ❌ Before (0.9.x) - used primaryKey
const updated = await updateUser({
 primaryKey: "user-123",
 input: { firstName: "Updated" },
 fields: ["id", "title"]
});

// ✅ After (0.10.0+) - uses identity
const updated = await updateTodo({
 identity: "todo-123",
 input: { firstName: "Updated" },
 fields: ["id", "title"]
});

// ✅ New: Named identities (e.g., lookup by email)
const updated = await updateUserByEmail({
 identity: { email: "user@example.com" },
 input: { firstName: "New Name" },
 fields: ["id", "name"]
});

const updated = await updateUserByIdentity({
 identity: { email: "user@example.com" }, // Identity is typed as string | {email: string}
 input: { firstName: "New Name" },
 fields: ["id", "name"]
});

// ✅ Actor-scoped actions (no identity parameter needed)
const updated = await updateMe({
 input: { firstName: "My New Name" },
 fields: ["id", "name"]
});
Migration:
	Replace all primaryKey usages with identity in your TypeScript code
	The value format remains the same for primary key lookups, but now other identities are also supported
	For actor-scoped actions where the action already does things like filter expr(id == ^actor.id), add identities: [] to the rpc_action configuration in order to not require any identities.

0.9.0 - Get Action Not Found Behavior
Get actions (get?, get_by, or Ash actions with get?: true) now return an error by default when no record is found:
// ❌ Before (0.8.x) - returned success with null data
const user = await getUserByEmail({ getBy: { email: "missing@example.com" }, fields: ["id"] });
// { success: true, data: null }

// ✅ After (0.9.0+) - returns error by default
const user = await getUserByEmail({ getBy: { email: "missing@example.com" }, fields: ["id"] });
// { success: false, errors: [{ type: "not_found", ... }] }
Migration options:
	Update error handling to check for not_found errors
	Add not_found_error?: false to specific actions to restore old behavior
	Set global default: config :ash_typescript, not_found_error?: false

0.8.0 - Error Field Type Change
The errors field in all action responses is now always of type AshRpcError[], providing more consistent error handling:
// ❌ Before (0.7.x) - errors could be different types
const result = await createTodo({...});
if (!result.success) {
 // errors could be various shapes
 console.log(result.errors); // Type was inconsistent
}

// ✅ After (0.8.0) - errors is always AshRpcError[]
const result = await createTodo({...});
if (!result.success) {
 // errors is always AshRpcError[]
 result.errors.forEach(error => {
 console.log(error.message, error.field, error.code);
 });
}

export type AshRpcError = {
 /** Machine-readable error type (e.g., "invalid_changes", "not_found") */
 type: string;
 /** Full error message (may contain template variables like %{key}) */
 message: string;
 /** Concise version of the message */
 shortMessage: string;
 /** Variables to interpolate into the message template */
 vars: Record<string, any>;
 /** List of affected field names (for field-level errors) */
 fields: string[];
 /** Path to the error location in the data structure */
 path: string[];
 /** Optional map with extra details (e.g., suggestions, hints) */
 details?: Record<string, any>;
}
Composite Type Field Selection
Type inference for certain composite types has improved after some internal refactoring. Earlier, the type-checking allowed users to select some composite fields using the string syntax, which would return the entire value.
Now however, since AshTypescript is able to more accurately see that a field is a composite type, you may experience that explicit field selection is now required in certain places where a string value earlier was okay.
// ❌ Before (0.7.x) - string syntax worked where fields should really be required
const todos = await listTodos({
 fields: ["id", "title", "item"] // ← "item" is a composite type
});

// ✅ After (0.8.0) - must specify fields for composite types
const todos = await listTodos({
 fields: ["id", "title", { item: ["id", "name", "description"] }]
});
Migration Guide:
	Update error handling code to expect AshRpcError[] for the errors field
	Replace string field names with object syntax for any composite types (embedded resources, union types, etc.)
	Run TypeScript compilation after upgrading to catch any remaining type errors

✨ Features
	🔥 Zero-config TypeScript generation - Automatically generates types from Ash resources
	🛡️ End-to-end type safety - Catch integration errors at compile time, not runtime
	⚡ Smart field selection - Request only needed fields with full type inference
	🎯 RPC client generation - Type-safe function calls for all action types
	🔍 Get actions - Single record retrieval with get?, get_by, and not_found_error? options
	📡 Phoenix Channel support - Generate channel-based RPC functions for real-time applications
	🪝 Lifecycle hooks - Inject custom logic before/after requests (auth, logging, telemetry, error tracking)
	🏢 Multitenancy ready - Automatic tenant parameter handling
	📦 Advanced type support - Enums, unions, embedded resources, and calculations
	📊 Action metadata support - Attach and retrieve additional context with action results
	🔧 Highly configurable - Custom endpoints, formatting, and output options
	🧪 Runtime validation - Zod schemas for runtime type checking and form validation
	🔍 Auto-generated filters - Type-safe filtering with comprehensive operator support
	📋 Form validation - Client-side validation functions for all actions
	🎯 Typed queries - Pre-configured queries for SSR and optimized data fetching
	🎨 Flexible field formatting - Separate input/output formatters (camelCase, snake_case, etc.)
	🔌 Custom HTTP clients - Support for custom fetch functions and request options (axios, interceptors, etc.)
	🏷️ Field/argument name mapping - Map invalid TypeScript identifiers to valid names

⚡ Quick Start
Get up and running in under 5 minutes:
Basic installation
mix igniter.install ash_typescript

Full-stack Phoenix + React setup
mix igniter.install ash_typescript --framework react

1. Add Resource Extension
defmodule MyApp.Todo do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 typescript do
 type_name "Todo"
 end

 attributes do
 uuid_primary_key :id
 attribute :title, :string, allow_nil?: false
 attribute :completed, :boolean, default: false
 end
end
2. Configure Domain
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Todo do
 rpc_action :list_todos, :read
 rpc_action :create_todo, :create
 rpc_action :get_todo, :get
 end
 end
end
3. Generate Types & Use
mix ash.codegen --dev

import { listTodos, createTodo } from './ash_rpc';

// ✅ Fully type-safe API calls
const todos = await listTodos({
 fields: ["id", "title", "completed"],
 filter: { completed: false }
});

const newTodo = await createTodo({
 fields: ["id", "title", { user: ["name", "email"] }],
 input: { title: "Learn AshTypescript", priority: "high" }
});
🎉 That's it! Your TypeScript frontend now has compile-time type safety for your Elixir backend.
👉 For complete setup instructions, see the Getting Started Guide
📚 Documentation
Tutorials
	Getting Started - Complete installation and setup guide
	React Setup - Full Phoenix + React + TypeScript integration

How-To Guides
	Basic CRUD Operations - Create, read, update, delete patterns
	Field Selection - Advanced field selection and nested relationships
	Error Handling - Comprehensive error handling strategies
	Custom Fetch Functions - Using custom HTTP clients and request options

Topics
	Lifecycle Hooks - Inject custom logic (auth, logging, telemetry)
	Phoenix Channels - Real-time WebSocket-based RPC actions
	Embedded Resources - Working with embedded data structures
	Union Types - Type-safe union type handling
	Multitenancy - Multi-tenant application support
	Action Metadata - Attach and retrieve action metadata
	Form Validation - Client-side validation functions
	Zod Schemas - Runtime validation with Zod

Reference
	Configuration - Complete configuration options
	Mix Tasks - Available Mix tasks and commands
	Troubleshooting - Common issues and solutions

🏗️ Core Concepts
AshTypescript bridges the gap between Elixir and TypeScript by automatically generating type-safe client code:
	Resource Definition - Define Ash resources with attributes, relationships, and actions
	RPC Configuration - Expose specific actions through your domain's RPC configuration
	Type Generation - Run mix ash.codegen to generate TypeScript types and RPC functions
	Frontend Integration - Import and use fully type-safe client functions in your TypeScript code

Type Safety Benefits
	Compile-time validation - TypeScript compiler catches API misuse before runtime
	Autocomplete support - Full IntelliSense for all resource fields and actions
	Refactoring safety - Rename fields in Elixir, get TypeScript errors immediately
	Living documentation - Generated types serve as up-to-date API documentation

🚀 Example Repository
Check out the AshTypescript Demo by Christian Alexander featuring:
	Complete Phoenix + React + TypeScript integration
	TanStack Query for data fetching
	TanStack Table for data display
	Best practices and patterns

📋 Requirements
	Elixir 1.15 or later
	Ash 3.0 or later
	Phoenix (for RPC controller integration)
	Node.js 16+ (for TypeScript)

🤝 Contributing
Contributions are welcome! Please:
	Fork the repository
	Create a feature branch (git checkout -b feature/amazing-feature)
	Make your changes with tests
	Ensure all tests pass (mix test)
	Run code formatter (mix format)
	Commit your changes (git commit -m 'Add amazing feature')
	Push to the branch (git push origin feature/amazing-feature)
	Open a Pull Request

Please ensure:
	All tests pass
	Code is formatted with mix format
	Documentation is updated for new features
	Commits follow conventional commit format

📄 License
This project is licensed under the MIT License - see the MIT.txt file for details.
🆘 Support
	Documentation: https://hexdocs.pm/ash_typescript
	GitHub Issues: https://github.com/ash-project/ash_typescript/issues
	Discord: Ash Framework Discord
	Forum: Elixir Forum - Ash Framework

 Getting Started with AshTypescript

This guide will walk you through setting up AshTypescript in your Phoenix application and creating your first type-safe API client.
Prerequisites
	Elixir 1.15 or later
	Phoenix application with Ash 3.0+
	Node.js 16+ (for TypeScript)

Installation
Automated Installation
The easiest way to get started is using the automated installer:
Basic installation
mix igniter.install ash_typescript

Full-stack Phoenix + React setup
mix igniter.install ash_typescript --framework react

The installer automatically:
	✅ Adds AshTypescript to your dependencies
	✅ Configures AshTypescript settings in config.exs
	✅ Creates RPC controller and routes
	✅ With --framework react: Sets up React + TypeScript environment

Manual Installation
If you prefer manual setup, add to your mix.exs:
defp deps do
 [
 {:ash_typescript, "~> 0.8"}
]
end
Then run:
mix deps.get

Configuration
1. Add Resource Extension
All resources that should be accessible through TypeScript must use the AshTypescript.Resource extension:
defmodule MyApp.Todo do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 typescript do
 type_name "Todo"
 end

 attributes do
 uuid_primary_key :id
 attribute :title, :string, allow_nil?: false
 attribute :completed, :boolean, default: false
 attribute :priority, :string
 end

 actions do
 defaults [:read, :create, :update, :destroy]

 read :get_by_id do
 get_by :id
 end
 end
end
2. Configure Domain
Add the RPC extension to your domain and expose actions:
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Todo do
 rpc_action :list_todos, :read
 rpc_action :get_todo, :get_by_id
 rpc_action :create_todo, :create
 rpc_action :update_todo, :update
 rpc_action :destroy_todo, :destroy
 end
 end

 resources do
 resource MyApp.Todo
 end
end
3. Create RPC Controller
Create a controller to handle RPC requests:
defmodule MyAppWeb.RpcController do
 use MyAppWeb, :controller

 def run(conn, params) do
 # Set actor and tenant if needed
 # conn = Ash.PlugHelpers.set_actor(conn, conn.assigns[:current_user])
 # conn = Ash.PlugHelpers.set_tenant(conn, conn.assigns[:tenant])

 result = AshTypescript.Rpc.run_action(:my_app, conn, params)
 json(conn, result)
 end

 def validate(conn, params) do
 result = AshTypescript.Rpc.validate_action(:my_app, conn, params)
 json(conn, result)
 end
end
4. Add Routes
Add RPC endpoints to your router.ex:
scope "/rpc", MyAppWeb do
 pipe_through :api # or :browser for session-based auth

 post "/run", RpcController, :run
 post "/validate", RpcController, :validate
end
5. Configure AshTypescript
Add configuration to config/config.exs:
config :ash_typescript,
 ash_domains: [MyApp.Domain],
 output_file: "assets/js/ash_rpc.ts",
 run_endpoint: "/rpc/run",
 validate_endpoint: "/rpc/validate",
 input_field_formatter: :camel_case, # :camel_case or :snake_case
 output_field_formatter: :camel_case
Generate TypeScript Types
Run the code generator:
Recommended: Generate for all Ash extensions (includes AshTypescript)
mix ash.codegen

Alternative: Generate only for AshTypescript
mix ash_typescript.codegen

This creates a TypeScript file with:
	Type definitions for all resources
	Type-safe RPC functions for each action
	Helper types for field selection
	Error handling types

Using in Your Frontend
Basic Usage
import { listTodos, createTodo, getTodo } from './ash_rpc';

// List all todos
const todos = await listTodos({
 fields: ["id", "title", "completed"]
});

if (todos.success) {
 console.log("Todos:", todos.data.results);
}

// Create a new todo
const newTodo = await createTodo({
 fields: ["id", "title", "completed"],
 input: {
 title: "Learn AshTypescript",
 priority: "high"
 }
});

if (newTodo.success) {
 console.log("Created:", newTodo.data);
}

// Get single todo
const todo = await getTodo({
 fields: ["id", "title", "completed"],
 input: { id: "123" }
});
Error Handling
All RPC functions return a result object with success boolean:
const result = await createTodo({
 fields: ["id", "title"],
 input: { title: "New Todo" }
});

if (result.success) {
 // Access the created todo
 const todoId: string = result.data.id;
 const todoTitle: string = result.data.title;
} else {
 // Handle errors
 result.errors.forEach(error => {
 console.error(`Error: ${error.message}`);
 if (error.fields.length > 0) {
 console.error(`Fields: ${error.fields.join(', ')}`);
 }
 });
}
With Relationships
Request nested relationship data:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 user: ["name", "email"],
 tags: ["name", "color"]
 }
],
 input: { id: "123" }
});

if (todo.success) {
 console.log("User:", todo.data.user?.name);
 console.log("Tags:", todo.data.tags);
}
Next Steps
Now that you have AshTypescript set up, explore these topics:
	React Setup - Full Phoenix + React integration
	Basic CRUD Operations - Common CRUD patterns
	Field Selection - Advanced field selection
	Error Handling - Comprehensive error handling
	Configuration - Full configuration options
	Phoenix Channels - Real-time channel-based RPC

Troubleshooting
For troubleshooting help, see the Troubleshooting Guide.

 React Setup Guide

This guide covers setting up a full-stack Phoenix + React + TypeScript application with AshTypescript.
Quick Setup
Use the React framework installer for automated setup:
mix igniter.install ash_typescript --framework react

This command automatically sets up:
	📦 Package.json with React 19 & TypeScript
	⚛️ React components with welcome page and documentation
	🎨 Tailwind CSS integration with modern styling
	🔧 Build configuration with esbuild and TypeScript compilation
	📄 Templates with proper script loading and syntax highlighting
	🌐 Getting started guide accessible at /ash-typescript in your Phoenix app

What Gets Created
Frontend Structure
assets/
├── js/
│ ├── app.tsx # React entry point
│ ├── ash_rpc.ts # Generated TypeScript types
│ └── components/
│ └── Welcome.tsx # Example component
├── css/
│ └── app.css # Tailwind styles
└── package.json # Dependencies
Welcome Page
After running your Phoenix server, visit:
http://localhost:4000/ash-typescript
The welcome page includes:
	Step-by-step setup instructions
	Code examples with syntax highlighting
	Links to documentation and demo projects
	Type-safe RPC function examples

Manual React Setup
If you prefer manual setup or need to customize:
1. Install Dependencies
cd assets
npm install --save react react-dom
npm install --save-dev @types/react @types/react-dom typescript

2. Configure TypeScript
Create assets/tsconfig.json:
{
 "compilerOptions": {
 "target": "ES2020",
 "lib": ["ES2020", "DOM", "DOM.Iterable"],
 "jsx": "react-jsx",
 "module": "ESNext",
 "moduleResolution": "bundler",
 "strict": true,
 "esModuleInterop": true,
 "skipLibCheck": true,
 "forceConsistentCasingInFileNames": true,
 "resolveJsonModule": true,
 "isolatedModules": true,
 "noEmit": true
 },
 "include": ["js/**/*"],
 "exclude": ["node_modules"]
}
3. Create React Entry Point
Create assets/js/app.tsx:
import React from 'react';
import ReactDOM from 'react-dom/client';
import { App } from './components/App';

const root = document.getElementById('root');
if (root) {
 ReactDOM.createRoot(root).render(
 <React.StrictMode>
 <App />
 </React.StrictMode>
);
}
4. Update Phoenix Template
In your lib/my_app_web/components/layouts/root.html.heex:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <link phx-track-static rel="stylesheet" href={~p"/assets/app.css"} />
 <script defer phx-track-static type="text/javascript" src={~p"/assets/app.js"}></script>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>
5. Configure esbuild
Update config/config.exs:
config :esbuild,
 version: "0.17.11",
 default: [
 args: ~w(
 js/app.tsx
 --bundle
 --target=es2020
 --outdir=../priv/static/assets
 --external:/fonts/*
 --external:/images/*
),
 cd: Path.expand("../assets", __DIR__),
 env: %{"NODE_PATH" => Path.expand("../deps", __DIR__)}
]
Using AshTypescript with React
Basic Component Example
import React, { useEffect, useState } from 'react';
import { listTodos, createTodo, type Todo } from '../ash_rpc';

export function TodoList() {
 const [todos, setTodos] = useState<Todo[]>([]);
 const [loading, setLoading] = useState(true);
 const [error, setError] = useState<string | null>(null);

 useEffect(() => {
 loadTodos();
 }, []);

 async function loadTodos() {
 setLoading(true);
 const result = await listTodos({
 fields: ["id", "title", "completed"]
 });

 if (result.success) {
 setTodos(result.data.results);
 setError(null);
 } else {
 setError(result.errors.map(e => e.message).join(', '));
 }
 setLoading(false);
 }

 async function handleCreate(title: string) {
 const result = await createTodo({
 fields: ["id", "title", "completed"],
 input: { title }
 });

 if (result.success) {
 setTodos([...todos, result.data]);
 } else {
 setError(result.errors.map(e => e.message).join(', '));
 }
 }

 if (loading) return <div>Loading...</div>;
 if (error) return <div>Error: {error}</div>;

 return (
 <div>
 <h1>Todos</h1>

 {todos.map(todo => (
 <li key={todo.id}>
 {todo.title} - {todo.completed ? '✓' : '○'}

))}

 <button onClick={() => handleCreate('New Todo')}>
 Add Todo
 </button>
 </div>
);
}
With TanStack Query
For better data fetching, use TanStack Query (React Query):
npm install @tanstack/react-query

import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
import { listTodos, createTodo } from '../ash_rpc';

export function TodoListWithQuery() {
 const queryClient = useQueryClient();

 const { data, isLoading, error } = useQuery({
 queryKey: ['todos'],
 queryFn: async () => {
 const result = await listTodos({
 fields: ["id", "title", "completed"]
 });
 if (!result.success) {
 throw new Error(result.errors.map(e => e.message).join(', '));
 }
 return result.data.results;
 }
 });

 const createMutation = useMutation({
 mutationFn: async (title: string) => {
 const result = await createTodo({
 fields: ["id", "title", "completed"],
 input: { title }
 });
 if (!result.success) {
 throw new Error(result.errors.map(e => e.message).join(', '));
 }
 return result.data;
 },
 onSuccess: () => {
 queryClient.invalidateQueries({ queryKey: ['todos'] });
 }
 });

 if (isLoading) return <div>Loading...</div>;
 if (error) return <div>Error: {error.message}</div>;

 return (
 <div>
 <h1>Todos</h1>

 {data?.map(todo => (
 <li key={todo.id}>
 {todo.title} - {todo.completed ? '✓' : '○'}

))}

 <button onClick={() => createMutation.mutate('New Todo')}>
 Add Todo
 </button>
 </div>
);
}
Example Repository
Check out the AshTypescript Demo by Christian Alexander for a complete example featuring:
	Complete Phoenix + React + TypeScript integration
	TanStack Query for data fetching
	TanStack Table for data display
	Best practices and patterns

Adding Tailwind CSS
1. Install Tailwind
cd assets
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init

2. Configure Tailwind
Update assets/tailwind.config.js:
module.exports = {
 content: [
 './js/**/*.{js,jsx,ts,tsx}',
 '../lib/*_web/**/*.*ex'
],
 theme: {
 extend: {},
 },
 plugins: [],
}
3. Add Tailwind Directives
In assets/css/app.css:
@tailwind base;
@tailwind components;
@tailwind utilities;
4. Configure PostCSS
Create assets/postcss.config.js:
module.exports = {
 plugins: {
 tailwindcss: {},
 autoprefixer: {},
 }
}
Development Workflow
1. Start Phoenix Server
mix phx.server

This automatically:
	Compiles TypeScript
	Watches for file changes
	Hot-reloads the browser

2. Generate Types
Whenever you change resources or actions:
mix ash.codegen

3. Type Check
Add a script to package.json:
{
 "scripts": {
 "typecheck": "tsc --noEmit"
 }
}
Run type checking:
npm run typecheck

CSRF Protection
When using session-based authentication, use CSRF headers:
import { listTodos, buildCSRFHeaders } from '../ash_rpc';

const result = await listTodos({
 fields: ["id", "title"],
 headers: buildCSRFHeaders()
});
The buildCSRFHeaders() function automatically reads the CSRF token from the meta tag in your layout.
Next Steps
	Basic CRUD Operations - Common patterns
	Field Selection - Advanced queries
	Error Handling - Handling errors
	Form Validation - Client-side validation
	Lifecycle Hooks - Auth, logging, telemetry

 Basic CRUD Operations

This guide covers the fundamental Create, Read, Update, and Delete operations using AshTypescript-generated RPC functions.
Overview
All CRUD operations follow a consistent pattern:
	Field selection using the fields parameter
	Type-safe input/output based on your Ash resources
	Explicit error handling with {success: true/false} return values
	Support for relationships and nested field selection

List/Read Operations
List Multiple Records
Use list operations to retrieve multiple records with filtering and sorting:
import { listTodos } from './ash_rpc';

// List todos with field selection
const todos = await listTodos({
 fields: ["id", "title", "completed", "priority"],
 filter: { completed: { eq: false } },
 sort: "-priority,+createdAt"
});

if (todos.success) {
 console.log("Found todos:", todos.data);
 todos.data.forEach(todo => {
 console.log(`${todo.id}: ${todo.title}`);
 });
}
Get Single Record
Retrieve a single record by its identifier:
import { getTodo } from './ash_rpc';

// Get single todo with basic fields
const todo = await getTodo({
 fields: ["id", "title", "completed", "priority"],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Todo:", todo.data);
}
Get by Specific Fields
Use get_by actions to lookup records by specific fields:
// Configured in Elixir: rpc_action :get_user_by_email, :read, get_by: [:email]
const user = await getUserByEmail({
 getBy: { email: "user@example.com" },
 fields: ["id", "name", "email"]
});

if (user.success) {
 console.log("User:", user.data);
}
Handling Not Found
By default, get actions return an error when no record is found. Use not_found_error?: false to return null instead:
Elixir configuration
rpc_action :find_user, :read, get_by: [:email], not_found_error?: false
const user = await findUser({
 getBy: { email: "maybe@example.com" },
 fields: ["id", "name"]
});

if (user.success) {
 // user.data is User | null
 if (user.data) {
 console.log("Found:", user.data.name);
 } else {
 console.log("User not found");
 }
}
Get with Relationships
Include related data using nested field selection:
// Get single todo with relationships
const todo = await getTodo({
 fields: [
 "id",
 "title",
 { user: ["name", "email"] }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Todo:", todo.data.title);
 console.log("Created by:", todo.data.user.name);
}
Advanced Field Selection
Use complex nested structures for detailed data retrieval:
// Complex nested field selection
const todoWithDetails = await getTodo({
 fields: [
 "id", "title", "description", "tags",
 {
 user: ["id", "name", "email"],
 comments: ["id", "content", "authorName"]
 }
],
 input: { id: "todo-123" }
});

if (todoWithDetails.success) {
 console.log("Todo:", todoWithDetails.data.title);
 console.log("Comments:", todoWithDetails.data.comments.length);
 console.log("Tags:", todoWithDetails.data.tags); // Array of strings
 todoWithDetails.data.comments.forEach(comment => {
 console.log(`Comment by ${comment.authorName}: ${comment.content}`);
 });
}
Calculated Fields
Request calculated fields that are computed by your Ash resource:
// Calculated fields
const todoWithCalc = await getTodo({
 fields: [
 "id",
 "title",
 "dueDate",
 "isOverdue", // Boolean calculation
 "daysUntilDue" // Integer calculation
],
 input: { id: "todo-123" }
});

if (todoWithCalc.success) {
 console.log("Todo:", todoWithCalc.data.title);
 console.log("Due date:", todoWithCalc.data.dueDate);
 console.log("Is overdue:", todoWithCalc.data.isOverdue);
 console.log("Days until due:", todoWithCalc.data.daysUntilDue);
}
Create Operations
Create new records with type-safe input validation:
import { createTodo } from './ash_rpc';

// Create new todo
const newTodo = await createTodo({
 fields: ["id", "title", "createdAt"],
 input: {
 title: "Learn AshTypescript",
 priority: "high",
 dueDate: "2024-01-01",
 userId: "user-id-123"
 }
});

if (newTodo.success) {
 console.log("Created todo:", newTodo.data);
 console.log("ID:", newTodo.data.id);
 console.log("Created at:", newTodo.data.createdAt);
} else {
 console.error("Failed to create todo:", newTodo.errors);
}
Update Operations
Update existing records using a separate identity parameter:
import { updateTodo } from './ash_rpc';

// Update existing todo (identity separate from input)
const updatedTodo = await updateTodo({
 fields: ["id", "title", "priority", "updatedAt"],
 identity: "todo-123", // Identity as separate parameter
 input: {
 title: "Updated: Learn AshTypescript",
 priority: "urgent"
 }
});

if (updatedTodo.success) {
 console.log("Updated todo:", updatedTodo.data);
 console.log("New title:", updatedTodo.data.title);
 console.log("Updated at:", updatedTodo.data.updatedAt);
} else {
 console.error("Failed to update:", updatedTodo.errors);
}
Important: The identity parameter is separate from the input object. This ensures that the identity fields cannot be accidentally modified.
Update with Named Identities
You can configure update actions to use named identities instead of (or in addition to) the primary key:
Elixir configuration
rpc_action :update_user_by_email, :update, identities: [:email]
// Update by email identity (must be wrapped in object)
const updated = await updateUserByEmail({
 identity: { email: "user@example.com" },
 input: { name: "New Name" },
 fields: ["id", "name"]
});
See Identity Lookups for detailed documentation on identity configuration.
Delete Operations
Delete records using the identity parameter:
import { destroyTodo } from './ash_rpc';

// Delete todo by primary key (default)
const deletedTodo = await destroyTodo({
 identity: "todo-123"
});

if (deletedTodo.success) {
 console.log("Todo deleted successfully");
} else {
 console.error("Failed to delete:", deletedTodo.errors);
}
Delete with Named Identities
Like update actions, destroy actions can use named identities:
Elixir configuration
rpc_action :destroy_user_by_email, :destroy, identities: [:email]
// Delete by email identity
await destroyUserByEmail({
 identity: { email: "user@example.com" }
});
Error Handling
All generated RPC functions return a {success: true/false} structure instead of throwing exceptions:
const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 }
});

if (result.success) {
 // Access the created todo
 console.log("Created todo:", result.data);
 const todoId: string = result.data.id;
 const todoTitle: string = result.data.title;
} else {
 // Handle validation errors, network errors, etc.
 result.errors.forEach(error => {
 console.error(`Error: ${error.message}`);
 if (error.fields.length > 0) {
 console.error(`Fields: ${error.fields.join(', ')}`);
 }
 });
}
Common Error Scenarios
// Validation errors (e.g., missing required fields)
const result = await createTodo({
 fields: ["id", "title"],
 input: {} // Missing required title and userId
});

if (!result.success) {
 result.errors.forEach(error => {
 const field = error.fields[0] || 'unknown';
 console.error(`${field}: ${error.message}`);
 // Output: "title: is required"
 });
}

// Not found errors
const result = await getTodo({
 fields: ["id", "title"],
 input: { id: "nonexistent-id" }
});

if (!result.success) {
 console.error("Todo not found");
}
Custom Headers and Authentication
All RPC functions accept optional headers for authentication and other purposes:
import { listTodos, buildCSRFHeaders } from './ash_rpc';

// With CSRF protection
const todos = await listTodos({
 fields: ["id", "title"],
 headers: buildCSRFHeaders()
});

// With custom authentication
const todos = await listTodos({
 fields: ["id", "title"],
 headers: {
 "Authorization": "Bearer your-token-here",
 "X-Custom-Header": "value"
 }
});

// Combining headers
const todos = await listTodos({
 fields: ["id", "title"],
 headers: {
 ...buildCSRFHeaders(),
 "Authorization": "Bearer your-token-here"
 }
});
Custom Fetch Functions and Request Options
Using fetchOptions for Request Customization
All generated RPC functions accept an optional fetchOptions parameter that allows you to customize the underlying fetch request:
import { createTodo, listTodos } from './ash_rpc';

// Add request timeout and custom cache settings
const todo = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 },
 fetchOptions: {
 signal: AbortSignal.timeout(5000), // 5 second timeout
 cache: 'no-cache',
 credentials: 'include'
 }
});

// Use with abort controller for cancellable requests
const controller = new AbortController();

const todos = await listTodos({
 fields: ["id", "title"],
 fetchOptions: {
 signal: controller.signal
 }
});

// Cancel the request if needed
controller.abort();
Custom Fetch Functions
You can replace the native fetch function entirely by providing a customFetch parameter. This is useful for:
	Adding global authentication
	Using alternative HTTP clients like axios
	Adding request/response interceptors
	Custom error handling

// Custom fetch with user preferences and tracking
const enhancedFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 // Get user preferences from localStorage (safe, non-sensitive data)
 const userLanguage = localStorage.getItem('userLanguage') || 'en';
 const userTimezone = localStorage.getItem('userTimezone') || 'UTC';
 const apiVersion = localStorage.getItem('preferredApiVersion') || 'v1';

 // Generate correlation ID for request tracking
 const correlationId = `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;

 const customHeaders = {
 'Accept-Language': userLanguage,
 'X-User-Timezone': userTimezone,
 'X-API-Version': apiVersion,
 'X-Correlation-ID': correlationId,
 };

 return fetch(url, {
 ...init,
 headers: {
 ...init?.headers,
 ...customHeaders
 }
 });
};

// Use custom fetch function
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: enhancedFetch
});
Using Axios with AshTypescript
While AshTypescript uses the fetch API by default, you can create an adapter to use axios or other HTTP clients:
import axios from 'axios';

// Create axios adapter that matches fetch API
const axiosAdapter = async (input: RequestInfo | URL, init?: RequestInit): Promise<Response> => {
 try {
 const url = typeof input === 'string' ? input : input.toString();

 const axiosResponse = await axios({
 url,
 method: init?.method || 'GET',
 headers: init?.headers,
 data: init?.body,
 timeout: 10000,
 // Add other axios-specific options
 validateStatus: () => true // Don't throw on HTTP errors
 });

 // Convert axios response to fetch Response
 return new Response(JSON.stringify(axiosResponse.data), {
 status: axiosResponse.status,
 statusText: axiosResponse.statusText,
 headers: new Headers(axiosResponse.headers as any)
 });
 } catch (error) {
 if (error.response) {
 // HTTP error status
 return new Response(JSON.stringify(error.response.data), {
 status: error.response.status,
 statusText: error.response.statusText
 });
 }
 throw error; // Network error
 }
};

// Use axios for all requests
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: axiosAdapter
});
Complete CRUD Example
Here's a complete example demonstrating all CRUD operations:
import {
 listTodos,
 getTodo,
 createTodo,
 updateTodo,
 destroyTodo,
 buildCSRFHeaders
} from './ash_rpc';

const headers = buildCSRFHeaders();

// 1. Create a new todo
const createResult = await createTodo({
 fields: ["id", "title", "createdAt"],
 input: {
 title: "Learn AshTypescript CRUD",
 priority: "high",
 userId: "user-id-123"
 },
 headers
});

if (!createResult.success) {
 console.error("Failed to create:", createResult.errors);
 return;
}

const todoId = createResult.data.id;
console.log("Created:", createResult.data);

// 2. Read the todo
const getResult = await getTodo({
 fields: ["id", "title", "priority", { user: ["name"] }],
 input: { id: todoId },
 headers
});

if (getResult.success) {
 console.log("Retrieved:", getResult.data);
}

// 3. Update the todo
const updateResult = await updateTodo({
 fields: ["id", "title", "priority", "updatedAt"],
 identity: todoId,
 input: {
 title: "Mastered AshTypescript CRUD",
 priority: "completed"
 },
 headers
});

if (updateResult.success) {
 console.log("Updated:", updateResult.data);
}

// 4. List all completed todos
const listResult = await listTodos({
 fields: ["id", "title", "priority"],
 filter: { completed: { eq: true } },
 headers
});

if (listResult.success) {
 console.log("Completed todos:", listResult.data.length);
}

// 5. Delete the todo
const deleteResult = await destroyTodo({
 identity: todoId,
 headers
});

if (deleteResult.success) {
 console.log("Deleted successfully");
}
Next Steps
	Learn about Identity Lookups for flexible record identification
	Learn about Phoenix Channel-based RPC actions for real-time communication
	Explore field selection patterns for complex queries
	Review error handling strategies for production applications
	Learn about custom fetch functions for adding authentication and request customization

 Advanced Field Selection

This guide covers advanced patterns for field selection in AshTypescript RPC functions, including nested relationships, calculations, and performance optimization.
Overview
Field selection in AshTypescript allows you to precisely specify which data you need from your Ash resources. This approach:
	Reduces payload size: Only requested fields are returned
	Improves performance: Ash only loads and processes requested data
	Provides type safety: TypeScript infers exact return types based on selected fields
	Supports nesting: Select fields from related resources and calculations

Basic Field Selection
Simple Fields
Select specific attribute fields:
import { getTodo } from './ash_rpc';

const todo = await getTodo({
 fields: ["id", "title", "completed", "priority"],
 input: { id: "todo-123" }
});

if (todo.success) {
 // TypeScript knows exact shape:
 // { id: string, title: string, completed: boolean, priority: string }
 console.log(todo.data.title);
 console.log(todo.data.priority);
}
Selecting All Basic Fields
You can select all non-relationship fields:
// Select multiple fields explicitly
const todo = await getTodo({
 fields: [
 "id",
 "title",
 "description",
 "completed",
 "priority",
 "dueDate",
 "createdAt",
 "updatedAt"
],
 input: { id: "todo-123" }
});
Note: There is no "select all" option. This is intentional to prevent over-fetching and ensure you're explicit about data requirements, which is needed for full type-safety.
Nested Field Selection
Simple Relationships
Select fields from related resources:
import { getTodo } from './ash_rpc';

// Get todo with user information
const todo = await getTodo({
 fields: [
 "id",
 "title",
 { user: ["name", "email", "avatarUrl"] }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Todo:", todo.data.title);
 console.log("Created by:", todo.data.user.name);
 console.log("Email:", todo.data.user.email);
}
Multiple Relationships
Select from multiple related resources in one request:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 "description",
 {
 user: ["name", "email"],
 assignee: ["name", "email"],
 tags: ["name", "color"]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Created by:", todo.data.user.name);
 console.log("Assigned to:", todo.data.assignee.name);
 console.log("Tags:", todo.data.tags.map(t => t.name).join(", "));
}
Deep Nesting
Select fields from nested relationships:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 comments: [
 "id",
 "text",
 "createdAt",
 {
 author: [
 "name",
 "email",
 {
 profile: ["bio", "avatarUrl"]
 }
]
 }
]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 todo.data.comments.forEach(comment => {
 console.log(`${comment.author.name}: ${comment.text}`);
 console.log(`Bio: ${comment.author.profile.bio}`);
 });
}
Many-to-Many Relationships
Handle many-to-many relationships with join resources:
// Todo has many tags through todo_tags
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 tags: [
 "id",
 "name",
 "color"
]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 // Tags array is automatically flattened
 console.log("Tags:", todo.data.tags);
}
Calculations
Basic Calculations
Request calculated fields that are computed by your Ash resource:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 "completionPercentage", // Calculated field
 "timeRemaining" // Calculated field
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Progress:", todo.data.completionPercentage);
 console.log("Time remaining:", todo.data.timeRemaining);
}
Calculations Returning Complex Types
For calculations that return complex types (unions, embedded resources, etc.) but don't accept arguments, use the simple nested syntax - the same as relationships:
// Calculation returning a union type (no args required)
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 // Simple nested syntax - just like a relationship
 relatedItem: ["article", { article: ["id", "title"] }]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 if (todo.data.relatedItem?.article) {
 console.log("Article:", todo.data.relatedItem.article.title);
 }
}
Note: The { args: {...}, fields: [...] } syntax is only required when the calculation accepts arguments. If the calculation has no arguments, use the simpler nested syntax shown above.
Calculations with Arguments
Pass arguments to calculation fields:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 priorityScore: {
 args: { multiplier: 2.5, includeSubtasks: true },
 fields: ["score", "rank", "category"]
 }
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Priority score:", todo.data.priorityScore.score);
 console.log("Rank:", todo.data.priorityScore.rank);
 console.log("Category:", todo.data.priorityScore.category);
}
Nested Calculations
Combine calculations with relationships:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 user: [
 "name",
 "email",
 {
 activityScore: {
 args: { days: 30 },
 fields: ["score", "trend"]
 }
 }
]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("User:", todo.data.user.name);
 console.log("Activity:", todo.data.user.activityScore.score);
 console.log("Trend:", todo.data.user.activityScore.trend);
}
Embedded Resources
Basic Embedded Resources
Select fields from embedded resources:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 settings: ["theme", "notifications", "timezone"]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 console.log("Theme:", todo.data.settings.theme);
 console.log("Notifications:", todo.data.settings.notifications);
}
Embedded Arrays
Handle arrays of embedded resources:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 attachments: [
 "filename",
 "size",
 "url",
 "mimeType"
]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 todo.data.attachments.forEach(attachment => {
 console.log(`${attachment.filename} (${attachment.size} bytes)`);
 });
}
Nested Embedded Resources
Embedded resources can contain other embedded resources:
const user = await getUser({
 fields: [
 "id",
 "name",
 {
 preferences: [
 "language",
 "timezone",
 {
 notifications: [
 "email",
 "push",
 "sms"
]
 }
]
 }
],
 input: { id: "user-123" }
});

if (user.success) {
 console.log("Language:", user.data.preferences.language);
 console.log("Email notifications:", user.data.preferences.notifications.email);
}
Union Types
Selecting Union Fields
For union type fields, you can select fields from specific union members:
const todo = await getTodo({
 fields: [
 "id",
 "title",
 {
 content: [
 "text", // Common field across union members
 {
 textContent: ["text", "formatting"], // Text-specific fields
 imageContent: ["url", "caption"], // Image-specific fields
 videoContent: ["url", "thumbnail"] // Video-specific fields
 }
]
 }
],
 input: { id: "todo-123" }
});

if (todo.success) {
 // TypeScript understands the union type
 const content = todo.data.content;

 if (content.textContext) {
 console.log("Text:", content.text);
 console.log("Formatting:", content.formatting);
 } else if (content.imageContent) {
 console.log("Image URL:", content.url);
 console.log("Caption:", content.caption);
 }
}
Union with Relationships
Union members can have relationships:
const notification = await getNotification({
 fields: [
 "id",
 "timestamp",
 {
 payload: [
 {
 commentNotification: [
 "message",
 { comment: ["text", { author: ["name"] }] }
],
 mentionNotification: [
 "message",
 { mentionedBy: ["name", "avatarUrl"] }
]
 }
]
 }
],
 input: { id: "notif-123" }
});
Lazy Load Details
Request minimal fields initially, then fetch details when needed:
// List view: minimal fields
const todosList = await listTodos({
 fields: ["id", "title", "completed"]
});

// Detail view: full fields when user selects a todo
async function showTodoDetails(todoId: string) {
 const todoDetail = await getTodo({
 fields: [
 "id",
 "title",
 "description",
 "completed",
 "priority",
 "dueDate",
 {
 user: ["name", "email", "avatarUrl"],
 comments: ["id", "text", "createdAt", { author: ["name"] }],
 tags: ["name", "color"]
 }
],
 input: { id: todoId }
 });

 if (todoDetail.success) {
 displayDetailView(todoDetail.data);
 }
}
Conditional Field Selection
Select different fields based on context:
type ViewMode = "list" | "grid" | "detail";

function getTodoFields(mode: ViewMode): any[] {
 const baseFields = ["id", "title", "completed"];

 switch (mode) {
 case "list":
 return [
 ...baseFields,
 { user: ["name"] }
];

 case "grid":
 return [
 ...baseFields,
 "priority",
 { tags: ["color"] }
];

 case "detail":
 return [
 ...baseFields,
 "description",
 "priority",
 "dueDate",
 "createdAt",
 {
 user: ["name", "email", "avatarUrl"],
 comments: ["id", "text", { author: ["name"] }],
 tags: ["name", "color"]
 }
];
 }
}

// Use based on context
const todos = await listTodos({
 fields: getTodoFields("list")
});
Advanced Patterns
Field Selection Builders
Create reusable field selection builders:
const TodoFields = {
 basic: ["id", "title", "completed"] as const,

 withUser: [
 "id", "title", "completed",
 { user: ["name", "email"] }
] as const,

 withDetails: [
 "id", "title", "description", "completed", "priority",
 { user: ["name", "email", "avatarUrl"] },
 { tags: ["name", "color"] }
] as const,

 full: [
 "id", "title", "description", "completed", "priority",
 "dueDate", "createdAt", "updatedAt",
 {
 user: ["name", "email", "avatarUrl"],
 assignee: ["name", "email"],
 comments: ["id", "text", "createdAt", { author: ["name"] }],
 tags: ["name", "color", "description"]
 }
] as const
};

// Usage
const todos = await listTodos({
 fields: TodoFields.withUser
});
Type-Safe Field Selection
Use TypeScript to ensure field selection correctness:
// Define available fields
type TodoField =
 | "id"
 | "title"
 | "description"
 | "completed"
 | "priority"
 | "dueDate";

type TodoRelation = "user" | "assignee" | "tags" | "comments";

// Type-safe field selector
function selectTodoFields<F extends TodoField, R extends TodoRelation>(
 fields: F[],
 relations?: Record<R, string[]>
) {
 const selection: any[] = [...fields];

 if (relations) {
 const relationSelection = Object.entries(relations).reduce((acc, [key, value]) => {
 acc[key] = value;
 return acc;
 }, {} as Record<string, string[]>);

 selection.push(relationSelection);
 }

 return selection;
}

// Usage with type safety
const fields = selectTodoFields(
 ["id", "title", "completed"],
 {
 user: ["name", "email"],
 tags: ["name", "color"]
 }
);

const todos = await listTodos({ fields });
Pagination with Consistent Fields
Use consistent field selection across paginated requests:
const fields = ["id", "title", "completed", { user: ["name"] }];

// First page
const page1 = await listTodos({
 fields,
 page: { limit: 20, offset: 0 }
});

// Next page
const page2 = await listTodos({
 fields,
 page: { limit: 20, offset: 20 }
});

// Consistent field selection ensures predictable data structure
Common Patterns
List + Detail Pattern
Minimal fields for lists, full fields for details:
// List view
async function fetchTodoList() {
 return await listTodos({
 fields: ["id", "title", "completed", "priority"]
 });
}

// Detail view
async function fetchTodoDetail(id: string) {
 return await getTodo({
 fields: [
 "id", "title", "description", "completed", "priority",
 "dueDate", "createdAt", "updatedAt",
 {
 user: ["name", "email", "avatarUrl"],
 comments: ["id", "text", "createdAt", { author: ["name"] }],
 tags: ["name", "color"]
 }
],
 input: { id }
 });
}
Search Results Pattern
Include fields relevant to displaying search results:
async function fetchTodosForDisplay() {
 return await listTodos({
 fields: [
 "id",
 "title",
 "description",
 "completed",
 { user: ["name"] },
 { tags: ["name"] }
]
 });
}
Related Documentation
	Basic CRUD Operations - Learn about basic field selection in CRUD operations
	Error Handling - Handle errors in field selection
	Phoenix Channels - Field selection with channel-based actions
	Configuration - Configure field name mapping

 Error Handling

This guide covers comprehensive error handling patterns when working with AshTypescript-generated RPC functions.
Overview
All generated RPC functions return a {success: true/false} structure instead of throwing exceptions. This approach provides:
	Explicit error handling: Forces you to handle both success and error cases
	Type safety: TypeScript knows the exact shape of success and error responses
	Predictable control flow: No unexpected thrown exceptions
	Rich error information: Detailed error messages with field paths and metadata

Basic Error Handling Pattern
The fundamental pattern for handling RPC responses:
import { createTodo } from './ash_rpc';

const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 }
});

if (result.success) {
 // Success case: access the data
 console.log("Created todo:", result.data);
 const todoId: string = result.data.id;
 const todoTitle: string = result.data.title;
} else {
 // Error case: handle the errors
 result.errors.forEach(error => {
 console.error(`Error: ${error.message}`);
 if (error.fields.length > 0) {
 console.error(`Fields: ${error.fields.join(', ')}`);
 }
 });
}
Error Structure
Each error in the errors array is an AshRpcError:
export type AshRpcError = {
 /** Machine-readable error type (e.g., "invalid_changes", "not_found") */
 type: string;
 /** Full error message (may contain template variables like %{key}) */
 message: string;
 /** Concise version of the message */
 shortMessage: string;
 /** Variables to interpolate into the message template */
 vars: Record<string, any>;
 /** List of affected field names (for field-level errors) */
 fields: string[];
 /** Path to the error location in the data structure */
 path: string[];
 /** Optional map with extra details (e.g., suggestions, hints) */
 details?: Record<string, any>;
}
Common Error Scenarios
Validation Errors
Validation errors occur when input data doesn't meet resource requirements:
import { createTodo } from './ash_rpc';

// Missing required field
const result = await createTodo({
 fields: ["id", "title"],
 input: {} // Missing required 'title' and 'userId' fields
});

if (!result.success) {
 result.errors.forEach(error => {
 const field = error.fields[0] || 'unknown';
 console.error(`${field}: ${error.message}`);
 // Output: "title: is required"
 });
}

// Invalid field value
const result2 = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "", // Empty string when non-empty required
 priority: "invalid-priority", // Invalid enum value
 userId: "user-id-123"
 }
});

if (!result2.success) {
 result2.errors.forEach(error => {
 if (error.fields.includes("title")) {
 console.error("Title cannot be empty");
 }
 if (error.fields.includes("priority")) {
 console.error("Invalid priority value");
 }
 });
}
Not Found Errors
Handle cases where requested resources don't exist:
import { getTodo } from './ash_rpc';

const result = await getTodo({
 fields: ["id", "title"],
 input: { id: "nonexistent-id" }
});

if (!result.success) {
 // Check if it's a not-found error
 const notFoundError = result.errors.find(e =>
 e.message.toLowerCase().includes("not found") ||
 e.type === "not_found"
);

 if (notFoundError) {
 console.error("Todo not found");
 // Show user-friendly message or redirect
 } else {
 console.error("Other error occurred:", result.errors);
 }
}
Authorization Errors
Handle permission and authentication errors:
import { updateTodo, buildCSRFHeaders } from './ash_rpc';

const result = await updateTodo({
 fields: ["id", "title"],
 identity: "todo-123",
 input: { title: "Updated Title" },
 headers: buildCSRFHeaders()
});

if (!result.success) {
 const authError = result.errors.find(e =>
 e.type === "unauthorized" ||
 e.type === "forbidden" ||
 e.message.toLowerCase().includes("permission")
);

 if (authError) {
 console.error("You don't have permission to update this todo");
 // Redirect to login or show permission error
 }
}
Network Errors
Handle network connectivity issues:
import { listTodos } from './ash_rpc';

try {
 const result = await listTodos({
 fields: ["id", "title"],
 fetchOptions: {
 signal: AbortSignal.timeout(5000) // 5 second timeout
 }
 });

 if (!result.success) {
 // Check for network-related errors
 const networkError = result.errors.find(e =>
 e.message.toLowerCase().includes("network") ||
 e.message.toLowerCase().includes("timeout") ||
 e.message.toLowerCase().includes("fetch")
);

 if (networkError) {
 console.error("Network error:", networkError.message);
 // Show retry button or offline message
 }
 }
} catch (error) {
 // Handle catastrophic failures (e.g., network completely down)
 console.error("Request failed completely:", error);
 // Show offline mode or error boundary
}
Advanced Error Handling Patterns
Typed Error Handling
Create type-safe error handling utilities:
type ErrorCategory =
 | "validation_error"
 | "not_found"
 | "unauthorized"
 | "forbidden"
 | "network_error";

interface CategorizedError {
 category: ErrorCategory;
 message: string;
 fields: string[];
}

function categorizeError(error: { message: string; type: string; fields: string[] }): CategorizedError {
 const msg = error.message.toLowerCase();

 if (error.type === "unauthorized" || msg.includes("unauthorized")) {
 return { category: "unauthorized", message: error.message, fields: error.fields };
 }
 if (error.type === "forbidden" || msg.includes("permission")) {
 return { category: "forbidden", message: error.message, fields: error.fields };
 }
 if (error.type === "not_found" || msg.includes("not found")) {
 return { category: "not_found", message: error.message, fields: error.fields };
 }
 if (msg.includes("network") || msg.includes("timeout")) {
 return { category: "network_error", message: error.message, fields: error.fields };
 }

 return { category: "validation_error", message: error.message, fields: error.fields };
}

// Usage
const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "",
 userId: "user-id-123"
 }
});

if (!result.success) {
 result.errors.forEach(error => {
 const categorized = categorizeError(error);
 switch (categorized.category) {
 case "validation_error":
 const field = categorized.fields[0] || 'unknown';
 console.error(`Validation error on ${field}: ${categorized.message}`);
 break;
 case "unauthorized":
 console.error("Please log in to continue");
 break;
 case "network_error":
 console.error("Network error - please check your connection");
 break;
 // ... handle other cases
 }
 });
}
Field-Specific Error Handling
Extract and handle errors for specific fields:
function getFieldError(errors: Array<{message: string; fields: string[]}>, fieldName: string) {
 return errors.find(e => e.fields.includes(fieldName));
}

const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "",
 dueDate: "invalid-date",
 userId: "user-id-123"
 }
});

if (!result.success) {
 const titleError = getFieldError(result.errors, "title");
 const dueDateError = getFieldError(result.errors, "dueDate");

 if (titleError) {
 // Show error next to title input field
 console.error("Title error:", titleError.message);
 }

 if (dueDateError) {
 // Show error next to due date input field
 console.error("Due date error:", dueDateError.message);
 }
}
Error Recovery and Retry
Implement retry logic for transient failures:
async function withRetry<T>(
 fn: () => Promise<{success: boolean; data?: T; errors?: any[]}>,
 maxRetries = 3,
 delayMs = 1000
): Promise<{success: boolean; data?: T; errors?: any[]}> {
 for (let attempt = 0; attempt <= maxRetries; attempt++) {
 const result = await fn();

 if (result.success) {
 return result;
 }

 // Check if error is retryable
 const isRetryable = result.errors?.some(e =>
 e.message.toLowerCase().includes("network") ||
 e.message.toLowerCase().includes("timeout") ||
 e.code === "service_unavailable"
);

 if (!isRetryable || attempt === maxRetries) {
 return result;
 }

 // Exponential backoff
 await new Promise(resolve => setTimeout(resolve, delayMs * Math.pow(2, attempt)));
 }

 return { success: false, errors: [{ message: "Max retries exceeded" }] };
}

// Usage
const result = await withRetry(() =>
 listTodos({
 fields: ["id", "title"],
 headers: buildCSRFHeaders()
 })
);

if (result.success) {
 console.log("Todos:", result.data);
} else {
 console.error("Failed after retries:", result.errors);
}
Global Error Handler
Create a global error handler for consistent error management:
type ErrorHandler = (errors: Array<{message: string; type: string; fields: string[]}>) => void;

let globalErrorHandler: ErrorHandler | null = null;

export function setGlobalErrorHandler(handler: ErrorHandler) {
 globalErrorHandler = handler;
}

export async function rpcCall<T>(
 fn: () => Promise<{success: boolean; data?: T; errors?: any[]}>
): Promise<{success: boolean; data?: T; errors?: any[]}> {
 const result = await fn();

 if (!result.success && globalErrorHandler) {
 globalErrorHandler(result.errors || []);
 }

 return result;
}

// Set up global handler
setGlobalErrorHandler((errors) => {
 errors.forEach(error => {
 // Log to error tracking service
 console.error("API Error:", error);

 // Show toast notification for certain errors
 if (error.type === "unauthorized") {
 showToast("Please log in to continue");
 } else if (error.type === "forbidden") {
 showToast("You don't have permission for this action");
 }
 });
});

// Usage
const result = await rpcCall(() =>
 createTodo({
 fields: ["id", "title"],
 input: { title: "New Todo" }
 })
);
Error Handling with Phoenix Channels
Channel-based RPC actions use callback handlers instead of return values:
import { Channel } from "phoenix";
import { createTodoChannel } from './ash_rpc';

createTodoChannel({
 channel: myChannel,
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 },
 resultHandler: (result) => {
 if (result.success) {
 console.log("Created:", result.data);
 } else {
 // Handle errors in result handler
 result.errors.forEach(error => {
 console.error(`Error: ${error.message}`);
 if (error.fields.length > 0) {
 console.error(`Fields: ${error.fields.join(', ')}`);
 }
 });
 }
 },
 errorHandler: (error) => {
 // Handle channel-level errors (connection issues, etc.)
 console.error("Channel error:", error);
 // Show reconnection UI or error message
 },
 timeoutHandler: () => {
 // Handle request timeout
 console.error("Request timed out");
 // Show timeout message and retry option
 }
});
Best Practices
Always Handle Both Cases
Never assume success - always handle both success and error cases:
// Bad: Assumes success
const result = await createTodo({ fields: ["id"], input: { title: "Todo", userId: "user-id-123" } });
console.log(result.data.id); // Runtime error if not successful!

// Good: Explicit handling
const result = await createTodo({ fields: ["id"], input: { title: "Todo", userId: "user-id-123" } });
if (result.success) {
 console.log(result.data.id);
} else {
 console.error("Failed:", result.errors);
}
Provide User-Friendly Error Messages
Transform technical errors into user-friendly messages:
function getUserFriendlyMessage(error: {message: string; type: string}): string {
 if (error.type === "required" || error.message.includes("required")) {
 return "Please check that all required fields are filled out correctly.";
 }
 if (error.type === "not_found") {
 return "The requested item could not be found.";
 }
 if (error.type === "unauthorized") {
 return "Please log in to continue.";
 }
 if (error.type === "forbidden") {
 return "You don't have permission to perform this action.";
 }
 if (error.message.includes("network") || error.message.includes("timeout")) {
 return "Network error. Please check your connection and try again.";
 }

 return "An unexpected error occurred. Please try again.";
}

const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "",
 userId: "user-id-123"
 }
});

if (!result.success) {
 const userMessage = result.errors.map(getUserFriendlyMessage).join(" ");
 showToast(userMessage);
}
Log Errors for Debugging
Always log detailed errors for debugging while showing user-friendly messages:
const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 }
});

if (!result.success) {
 // Log detailed error for debugging
 console.error("Create todo failed:", {
 errors: result.errors,
 timestamp: new Date().toISOString(),
 userAction: "create_todo"
 });

 // Show user-friendly message
 showToast("Failed to create todo. Please try again.");
}
Use TypeScript Type Guards
Leverage TypeScript's type system for safer error handling:
function isSuccessResult<T>(
 result: {success: true; data: T} | {success: false; errors: any[]}
): result is {success: true; data: T} {
 return result.success === true;
}

const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 }
});

if (isSuccessResult(result)) {
 // TypeScript knows result.data exists
 console.log(result.data.id);
 console.log(result.data.title);
} else {
 // TypeScript knows result.errors exists
 console.error(result.errors);
}
Related Documentation
	Basic CRUD Operations - Learn about basic RPC operations
	Phoenix Channels - Error handling with channel-based actions
	Lifecycle Hooks - Error handling in lifecycle hooks
	Troubleshooting - Common issues and solutions

 Custom Fetch Functions and Request Options

This guide covers how to customize HTTP requests made by AshTypescript-generated RPC functions using fetch options and custom fetch implementations.
Overview
AshTypescript provides two ways to customize HTTP requests:
	fetchOptions: Customize individual requests using standard Fetch API options
	customFetch: Replace the fetch implementation entirely for advanced use cases

These features enable:
	Request timeouts and cancellation
	Custom authentication and headers
	Request/response interceptors
	Alternative HTTP clients (axios, etc.)
	Request tracking and monitoring
	Cache control
	Credential management

💡 Global Configuration Alternative: The customFetch and fetchOptions parameters shown in this guide are ideal for per-request customization. However, if you need to apply the same custom fetch function or fetch options to all RPC calls globally, use Lifecycle Hooks instead. Configure them once in your application settings rather than passing them to every RPC call. You can still override these global defaults on a per-action basis by passing customFetch or fetchOptions to individual RPC calls. Lifecycle hooks also support other global concerns like authentication, request/response logging, and error tracking.

Using fetchOptions
All generated RPC functions accept an optional fetchOptions parameter that passes standard Fetch API options to customize the underlying request.
Example: Request with Fetch Options
import { createTodo, listTodos } from './ash_rpc';

// Example: Add timeout and cache control
const todo = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-id-123"
 },
 fetchOptions: {
 signal: AbortSignal.timeout(5000), // 5 second timeout
 cache: 'no-cache',
 credentials: 'include'
 }
});

// Example: Cancellable request
const controller = new AbortController();
const todosPromise = listTodos({
 fields: ["id", "title"],
 fetchOptions: {
 signal: controller.signal
 }
});

// Cancel the request
controller.abort();
Any valid Fetch API option can be passed, including signal, cache, credentials, mode, redirect, referrerPolicy, and more. See the MDN Fetch API documentation for the complete list of available options.
Custom Fetch Functions
For advanced use cases, you can replace the fetch implementation entirely by providing a customFetch parameter.
Basic Custom Fetch
Create a simple custom fetch wrapper:
import { listTodos } from './ash_rpc';

const loggingFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 console.log("Request:", url, init);
 const response = await fetch(url, init);
 console.log("Response:", response.status);
 return response;
};

const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: loggingFetch
});
Request Tracking and Monitoring
Add correlation IDs and request tracking:
import { createTodo, listTodos } from './ash_rpc';

const enhancedFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 // Get user preferences from localStorage (safe, non-sensitive data)
 const userLanguage = localStorage.getItem('userLanguage') || 'en';
 const userTimezone = localStorage.getItem('userTimezone') || 'UTC';
 const apiVersion = localStorage.getItem('preferredApiVersion') || 'v1';

 // Generate correlation ID for request tracking
 const correlationId = `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;

 const customHeaders = {
 'Accept-Language': userLanguage,
 'X-User-Timezone': userTimezone,
 'X-API-Version': apiVersion,
 'X-Correlation-ID': correlationId,
 };

 // Log request start
 console.log(`[${correlationId}] Request started:`, url);

 const startTime = performance.now();

 const response = await fetch(url, {
 ...init,
 headers: {
 ...init?.headers,
 ...customHeaders
 }
 });

 const duration = performance.now() - startTime;

 // Log request completion
 console.log(`[${correlationId}] Request completed in ${duration}ms:`, response.status);

 return response;
};

// Use custom fetch function
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: enhancedFetch
});
Global Authentication
Add authentication tokens to all requests:
async function getAuthToken(): Promise<string> {
 // Get token from storage, refresh if needed
 const token = localStorage.getItem('authToken');
 if (!token) {
 throw new Error('Not authenticated');
 }
 return token;
}

const authenticatedFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 const token = await getAuthToken();

 return fetch(url, {
 ...init,
 headers: {
 ...init?.headers,
 'Authorization': `Bearer ${token}`
 }
 });
};

// All requests now include authentication
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: authenticatedFetch
});
Request/Response Interceptors
Implement middleware-style interceptors:
type FetchInterceptor = {
 request?: (url: RequestInfo | URL, init?: RequestInit) => Promise<RequestInit | undefined>;
 response?: (response: Response) => Promise<Response>;
};

function createInterceptedFetch(interceptors: FetchInterceptor[]) {
 return async (url: RequestInfo | URL, init?: RequestInit) => {
 let modifiedInit = init;

 // Request interceptors
 for (const interceptor of interceptors) {
 if (interceptor.request) {
 modifiedInit = await interceptor.request(url, modifiedInit);
 }
 }

 let response = await fetch(url, modifiedInit);

 // Response interceptors
 for (const interceptor of interceptors) {
 if (interceptor.response) {
 response = await interceptor.response(response);
 }
 }

 return response;
 };
}

// Define interceptors
const loggingInterceptor: FetchInterceptor = {
 request: async (url, init) => {
 console.log("Request:", url);
 return init;
 },
 response: async (response) => {
 console.log("Response:", response.status);
 return response;
 }
};

const authInterceptor: FetchInterceptor = {
 request: async (url, init) => {
 const token = await getAuthToken();
 return {
 ...init,
 headers: {
 ...init?.headers,
 'Authorization': `Bearer ${token}`
 }
 };
 }
};

// Create fetch with interceptors
const interceptedFetch = createInterceptedFetch([
 loggingInterceptor,
 authInterceptor
]);

// Use in requests
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: interceptedFetch
});
Error Retry Logic
Implement automatic retry on failure:
function createRetryFetch(maxRetries = 3, delayMs = 1000) {
 return async (url: RequestInfo | URL, init?: RequestInit): Promise<Response> => {
 for (let attempt = 0; attempt <= maxRetries; attempt++) {
 try {
 const response = await fetch(url, init);

 // Retry on server errors (5xx)
 if (response.status >= 500 && attempt < maxRetries) {
 console.log(`Retry attempt ${attempt + 1}/${maxRetries}`);
 await new Promise(resolve => setTimeout(resolve, delayMs * Math.pow(2, attempt)));
 continue;
 }

 return response;
 } catch (error) {
 // Retry on network errors
 if (attempt < maxRetries) {
 console.log(`Retry attempt ${attempt + 1}/${maxRetries} after error:`, error);
 await new Promise(resolve => setTimeout(resolve, delayMs * Math.pow(2, attempt)));
 continue;
 }
 throw error;
 }
 }

 throw new Error("Max retries exceeded");
 };
}

const retryFetch = createRetryFetch(3, 1000);

const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: retryFetch
});
Response Validation
Validate responses before returning:
const validatingFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 const response = await fetch(url, init);

 // Validate response
 if (!response.ok) {
 const errorBody = await response.text();
 console.error("Request failed:", response.status, errorBody);
 }

 // Check content type
 const contentType = response.headers.get('content-type');
 if (contentType && !contentType.includes('application/json')) {
 console.warn("Unexpected content type:", contentType);
 }

 return response;
};

const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: validatingFetch
});
Using Axios with AshTypescript
While AshTypescript uses the Fetch API by default, you can create an adapter to use axios or other HTTP clients.
Basic Axios Adapter
Create an adapter that converts axios to fetch:
import axios from 'axios';

const axiosAdapter = async (input: RequestInfo | URL, init?: RequestInit): Promise<Response> => {
 try {
 const url = typeof input === 'string' ? input : input.toString();

 const axiosResponse = await axios({
 url,
 method: init?.method || 'GET',
 headers: init?.headers,
 data: init?.body,
 timeout: 10000,
 validateStatus: () => true // Don't throw on HTTP errors
 });

 // Convert axios response to fetch Response
 return new Response(JSON.stringify(axiosResponse.data), {
 status: axiosResponse.status,
 statusText: axiosResponse.statusText,
 headers: new Headers(axiosResponse.headers as any)
 });
 } catch (error) {
 if (error.response) {
 // HTTP error status
 return new Response(JSON.stringify(error.response.data), {
 status: error.response.status,
 statusText: error.response.statusText
 });
 }
 throw error; // Network error
 }
};

// Use axios for all requests
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: axiosAdapter
});
Axios with Interceptors
Leverage axios interceptors:
import axios, { AxiosInstance } from 'axios';

const axiosInstance: AxiosInstance = axios.create({
 timeout: 10000,
 headers: {
 'Content-Type': 'application/json'
 }
});

// Add request interceptor
axiosInstance.interceptors.request.use(
 (config) => {
 const token = localStorage.getItem('authToken');
 if (token) {
 config.headers.Authorization = `Bearer ${token}`;
 }
 console.log("Request:", config.url);
 return config;
 },
 (error) => {
 return Promise.reject(error);
 }
);

// Add response interceptor
axiosInstance.interceptors.response.use(
 (response) => {
 console.log("Response:", response.status);
 return response;
 },
 (error) => {
 if (error.response?.status === 401) {
 // Handle unauthorized
 console.error("Unauthorized - redirecting to login");
 }
 return Promise.reject(error);
 }
);

// Create adapter using the configured instance
const axiosInstanceAdapter = async (input: RequestInfo | URL, init?: RequestInit): Promise<Response> => {
 try {
 const url = typeof input === 'string' ? input : input.toString();

 const axiosResponse = await axiosInstance({
 url,
 method: init?.method || 'GET',
 headers: init?.headers,
 data: init?.body,
 validateStatus: () => true
 });

 return new Response(JSON.stringify(axiosResponse.data), {
 status: axiosResponse.status,
 statusText: axiosResponse.statusText,
 headers: new Headers(axiosResponse.headers as any)
 });
 } catch (error) {
 if (error.response) {
 return new Response(JSON.stringify(error.response.data), {
 status: error.response.status,
 statusText: error.response.statusText
 });
 }
 throw error;
 }
};

// Use in requests
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: axiosInstanceAdapter
});
Advanced Patterns
Global Fetch Configuration
Create a configured fetch function for your application:
import { buildCSRFHeaders } from './ash_rpc';

interface AppFetchOptions {
 includeAuth?: boolean;
 includeCsrf?: boolean;
 timeout?: number;
 retries?: number;
}

function createAppFetch(options: AppFetchOptions = {}) {
 const {
 includeAuth = true,
 includeCsrf = true,
 timeout = 10000,
 retries = 3
 } = options;

 return async (url: RequestInfo | URL, init?: RequestInit): Promise<Response> => {
 const headers: Record<string, string> = {
 ...(init?.headers as Record<string, string> || {})
 };

 // Add authentication
 if (includeAuth) {
 const token = localStorage.getItem('authToken');
 if (token) {
 headers['Authorization'] = `Bearer ${token}`;
 }
 }

 // Add CSRF headers
 if (includeCsrf) {
 const csrfHeaders = buildCSRFHeaders();
 Object.assign(headers, csrfHeaders);
 }

 // Add timeout
 const controller = new AbortController();
 const timeoutId = setTimeout(() => controller.abort(), timeout);

 try {
 // Implement retry logic
 for (let attempt = 0; attempt <= retries; attempt++) {
 try {
 const response = await fetch(url, {
 ...init,
 headers,
 signal: controller.signal
 });

 if (response.status >= 500 && attempt < retries) {
 await new Promise(resolve => setTimeout(resolve, 1000 * Math.pow(2, attempt)));
 continue;
 }

 return response;
 } catch (error) {
 if (attempt < retries && error.name !== 'AbortError') {
 await new Promise(resolve => setTimeout(resolve, 1000 * Math.pow(2, attempt)));
 continue;
 }
 throw error;
 }
 }

 throw new Error("Max retries exceeded");
 } finally {
 clearTimeout(timeoutId);
 }
 };
}

// Create configured fetch
const appFetch = createAppFetch({
 includeAuth: true,
 includeCsrf: true,
 timeout: 10000,
 retries: 3
});

// Use in all requests
const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: appFetch
});
Per-Request Custom Fetch
Combine global configuration with per-request customization:
// Default fetch for most requests
const defaultFetch = createAppFetch({
 includeAuth: true,
 includeCsrf: true
});

// Public fetch without authentication
const publicFetch = createAppFetch({
 includeAuth: false,
 includeCsrf: false
});

// Admin fetch with longer timeout
const adminFetch = createAppFetch({
 includeAuth: true,
 includeCsrf: true,
 timeout: 30000
});

// Use different fetch functions based on context
const publicTodos = await listTodos({
 fields: ["id", "title"],
 customFetch: publicFetch
});

const adminUsers = await listUsers({
 fields: ["id", "name", "role"],
 customFetch: adminFetch
});
Conditional Fetch Configuration
Choose fetch configuration based on environment:
function getFetchForEnvironment() {
 if (process.env.NODE_ENV === 'development') {
 // Development: verbose logging
 return async (url: RequestInfo | URL, init?: RequestInit) => {
 console.log("DEV Request:", url, init);
 const response = await fetch(url, init);
 console.log("DEV Response:", response.status, await response.clone().text());
 return response;
 };
 } else if (process.env.NODE_ENV === 'production') {
 // Production: error tracking
 return async (url: RequestInfo | URL, init?: RequestInit) => {
 try {
 return await fetch(url, init);
 } catch (error) {
 // Send to error tracking service
 trackError(error);
 throw error;
 }
 };
 }

 return fetch; // Default
}

const environmentFetch = getFetchForEnvironment();

const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: environmentFetch
});
Best Practices
1. Use fetchOptions for Simple Customization
For simple timeout or cache control, use fetchOptions:
// Good: Simple and clear
const todos = await listTodos({
 fields: ["id", "title"],
 fetchOptions: {
 signal: AbortSignal.timeout(5000),
 cache: 'no-cache'
 }
});

// Overkill: Don't use customFetch for simple cases
const customFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 return fetch(url, {
 ...init,
 signal: AbortSignal.timeout(5000)
 });
};
2. Create Reusable Fetch Functions
Extract custom fetch logic into reusable functions:
// Good: Reusable
const authenticatedFetch = createAuthenticatedFetch();

const todos = await listTodos({
 fields: ["id", "title"],
 customFetch: authenticatedFetch
});

const users = await listUsers({
 fields: ["id", "name"],
 customFetch: authenticatedFetch
});
3. Handle Errors Appropriately
Don't swallow errors in custom fetch:
// Bad: Swallowing errors
const badFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 try {
 return await fetch(url, init);
 } catch (error) {
 console.error("Error:", error);
 return new Response("Error", { status: 500 }); // Masks the real error
 }
};

// Good: Let errors propagate
const goodFetch = async (url: RequestInfo | URL, init?: RequestInit) => {
 try {
 return await fetch(url, init);
 } catch (error) {
 console.error("Error:", error);
 throw error; // Let caller handle
 }
};
4. Document Custom Fetch Behavior
Document what your custom fetch does:
/**
 * Authenticated fetch function that:
 * - Adds Bearer token from localStorage
 * - Includes CSRF headers
 * - Retries on 5xx errors
 * - Times out after 10 seconds
 */
const authenticatedFetch = createAuthenticatedFetch();
5. Test Custom Fetch Functions
Test your custom fetch implementations:
// Test that custom fetch adds authentication
test('authenticatedFetch adds auth header', async () => {
 const mockFetch = jest.fn().mockResolvedValue(new Response('{}'));
 global.fetch = mockFetch;

 localStorage.setItem('authToken', 'test-token');

 const customFetch = createAuthenticatedFetch();
 await customFetch('http://example.com', {});

 expect(mockFetch).toHaveBeenCalledWith(
 'http://example.com',
 expect.objectContaining({
 headers: expect.objectContaining({
 'Authorization': 'Bearer test-token'
 })
 })
);
});
Related Documentation
	Basic CRUD Operations - Learn about basic RPC operations
	Error Handling - Handle errors from custom fetch functions
	Phoenix Channels - Alternative to HTTP-based requests
	Configuration - Configure RPC settings

 Lifecycle Hooks

AshTypescript provides comprehensive lifecycle hooks for both HTTP and Phoenix Channel-based RPC actions. These hooks enable cross-cutting concerns like logging, telemetry, performance tracking, and error monitoring. HTTP hooks additionally support authentication header injection.
Table of Contents
	HTTP Lifecycle Hooks	Why Use HTTP Lifecycle Hooks?
	HTTP Configuration
	Hook Types: Actions vs Validations
	Hook Function Signatures
	beforeRequest Hook
	afterRequest Hook
	Config Precedence Rules
	Exception Handling
	Complete Working Example

	Channel Lifecycle Hooks	Why Use Channel Lifecycle Hooks?
	Key Differences from HTTP Hooks
	Channel Configuration
	Channel Hook Function Signatures
	beforeChannelPush Hook
	afterChannelResponse Hook
	Channel Config Precedence Rules
	Complete Channel Working Example

	Troubleshooting

HTTP Lifecycle Hooks
AshTypescript provides lifecycle hooks that let you inject custom logic before and after HTTP requests. These hooks enable cross-cutting concerns like authentication, logging, telemetry, performance tracking, and error monitoring.
Why Use HTTP Lifecycle Hooks?
Lifecycle hooks provide a centralized way to:
	Add authentication tokens - Automatically inject auth headers from localStorage
	Log requests and responses - Track API calls for debugging
	Measure performance - Time API calls and track latency
	Send telemetry - Report metrics to monitoring services
	Handle errors globally - Track errors in Sentry, Datadog, etc.
	Add correlation IDs - Track requests across distributed systems
	Add default headers - Set client version, request IDs, etc.
	Transform requests - Modify config before sending

HTTP Configuration
Configure lifecycle hooks in your application config:
config/config.exs
config :ash_typescript,
 # Hook functions for RPC actions
 rpc_action_before_request_hook: "RpcHooks.beforeRequest",
 rpc_action_after_request_hook: "RpcHooks.afterRequest",

 # Hook functions for validation actions
 rpc_validation_before_request_hook: "RpcHooks.beforeValidationRequest",
 rpc_validation_after_request_hook: "RpcHooks.afterValidationRequest",

 # TypeScript types for hook context (optional)
 rpc_action_hook_context_type: "RpcHooks.ActionHookContext",
 rpc_validation_hook_context_type: "RpcHooks.ValidationHookContext",

 # Import the module containing your hook functions
 import_into_generated: [
 %{
 import_name: "RpcHooks",
 file: "./rpcHooks"
 }
]
Configuration Options:
	Config	Purpose	Default
	rpc_action_before_request_hook	Function called before RPC action requests	nil (disabled)
	rpc_action_after_request_hook	Function called after RPC action requests	nil (disabled)
	rpc_validation_before_request_hook	Function called before validation requests	nil (disabled)
	rpc_validation_after_request_hook	Function called after validation requests	nil (disabled)
	rpc_action_hook_context_type	TypeScript type for action hook context	"Record<string, any>"
	rpc_validation_hook_context_type	TypeScript type for validation hook context	"Record<string, any>"

Hook Types: Actions vs Validations
AshTypescript provides separate hooks for actions and validations because they serve different purposes:
	Action Hooks - Execute when calling RPC actions (create, read, update, delete, custom actions)
	Validation Hooks - Execute when calling validation functions (client-side form validation)

This separation allows you to:
	Use different logging levels (validations are typically more frequent)
	Track different metrics (validation performance vs action performance)

Action hooks are for actual API calls, validation hooks are for form validation.
Hook Function Signatures
Both beforeRequest and afterRequest hooks receive the full config object and can access the optional hookCtx from it.
Important: AshTypescript exports ActionConfig and ValidationConfig types from the generated file. These types automatically include your custom hookCtx types based on your configuration settings.
Configuring Custom Hook Context Types
When you configure context type settings in your Elixir config, the generated TypeScript interfaces will automatically include these types:
config/config.exs
config :ash_typescript,
 # TypeScript types for hook context
 rpc_action_hook_context_type: "RpcHooks.ActionHookContext",
 rpc_validation_hook_context_type: "RpcHooks.ValidationHookContext"
With this configuration, the generated ActionConfig and ValidationConfig types will have properly typed hookCtx fields:
// Generated types (in your generated file)
export interface ActionConfig {
 // ... other fields ...
 hookCtx?: RpcHooks.ActionHookContext; // ← Your custom type
}

export interface ValidationConfig {
 // ... other fields ...
 hookCtx?: RpcHooks.ValidationHookContext; // ← Your custom type
}
Implementing Hook Functions
Simply import and use the generated config types directly - no generics needed!
// rpcHooks.ts - Define your custom hook context interfaces
export interface ActionHookContext {
 enableLogging?: boolean;
 enableTiming?: boolean;
 customHeaders?: Record<string, string>;
 startTime?: number;
}

export interface ValidationHookContext {
 enableLogging?: boolean;
 validationLevel?: "strict" | "normal";
}

// Import the generated config types
import type { ActionConfig, ValidationConfig } from './generated';

// Implement your hook functions - the hookCtx is already properly typed!
export async function beforeActionRequest(
 actionName: string,
 config: ActionConfig
): Promise<ActionConfig> {
 const ctx = config.hookCtx;

 // ctx is automatically typed as ActionHookContext | undefined
 if (ctx?.enableLogging) {
 console.log(`[Action] ${actionName} started`);
 }

 // Modify hookCtx if needed
 const modifiedCtx = ctx ? { ...ctx, startTime: Date.now() } : undefined;

 return {
 ...config,
 ...(modifiedCtx && { hookCtx: modifiedCtx })
 };
}

export async function afterActionRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): Promise<void> {
 const ctx = config.hookCtx;

 // ctx.startTime is properly typed (no type assertion needed!)
 if (ctx?.enableTiming && ctx.startTime) {
 const duration = Date.now() - ctx.startTime;
 console.log(`Request took ${duration}ms`);
 }
}

// Similarly for validation hooks
export async function beforeValidationRequest(
 actionName: string,
 config: ValidationConfig
): Promise<ValidationConfig> {
 const ctx = config.hookCtx;

 if (ctx?.validationLevel === "strict") {
 console.log(`[Validation] Running in strict mode`);
 }

 return config;
}
Key Benefits:
	Type safety - Your custom context fields are properly typed automatically
	IntelliSense - IDE autocomplete works for your custom fields
	No generics needed - The generated types already include your context types
	Simpler code - Direct usage without complex generic constraints

The exported ActionConfig interface includes all available configuration fields:
// This type is exported from your generated file
export interface ActionConfig {
 // Request data
 input?: Record<string, any>;
 identity?: any;
 fields?: Array<string | Record<string, any>>; // Field selection
 filter?: Record<string, any>; // Filter options (for reads)
 sort?: string; // Sort options
 page?:
 | {
 // Offset-based pagination
 limit?: number;
 offset?: number;
 count?: boolean;
 }
 | {
 // Keyset pagination
 limit?: number;
 after?: string;
 before?: string;
 };

 // Metadata
 metadataFields?: Record<string, any>; // Metadata field selection

 // HTTP customization
 headers?: Record<string, string>; // Custom headers
 fetchOptions?: RequestInit; // Fetch options (signal, cache, etc.)
 customFetch?: (
 input: RequestInfo | URL,
 init?: RequestInit,
) => Promise<Response>;

 // Multitenancy
 tenant?: string; // Tenant parameter

 // Hook context
 hookCtx?: Record<string, any>;
}

// This type is also exported from your generated file
export interface ValidationConfig {
 // Request data
 input?: Record<string, any>;

 // HTTP customization
 headers?: Record<string, string>;
 fetchOptions?: RequestInit;
 customFetch?: (
 input: RequestInfo | URL,
 init?: RequestInit,
) => Promise<Response>;

 // Hook context
 hookCtx?: Record<string, any>;
}
Key Points:
	Hooks receive the entire config object as a parameter
	Hook context is accessed via config.hookCtx (optional)
	beforeRequest returns a modified config object
	afterRequest returns nothing (void) - it's for side effects only
	Hooks run unconditionally when configured (not gated by hookCtx presence)

beforeRequest Hook
The beforeRequest hook runs before the HTTP request and can modify the request configuration. Common use cases:
Adding Authentication Tokens
// rpcHooks.ts
import type { ActionConfig } from './generated';

export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 // Fetch auth token from localStorage (if it exists)
 const authToken = localStorage.getItem('authToken');

 // Add authentication header if token is present
 if (authToken) {
 return {
 ...config,
 headers: {
 ...config.headers,
 'Authorization': `Bearer ${authToken}`
 }
 };
 }

 return config;
}
This pattern automatically adds authentication to all RPC requests without needing to pass tokens through every call. The hook centralizes auth header logic in one place.
// Usage: Auth headers are added automatically
const todos = await listTodos({
 fields: ["id", "title"]
 // No need to pass auth tokens - hook handles it!
});
Adding Correlation IDs for Request Tracking
// rpcHooks.ts
import type { ActionConfig } from './generated';

export interface ActionHookContext {
 correlationId?: string;
}

export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx;

 // Use provided correlation ID or generate one
 const correlationId = ctx?.correlationId || generateRequestId();

 return {
 ...config,
 headers: {
 'X-Client-Version': '1.0.0',
 'X-Correlation-ID': correlationId,
 'X-Request-ID': correlationId,
 ...config.headers // Original headers take precedence
 }
 };
}

function generateRequestId(): string {
 return `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
// Usage: Pass correlation ID for distributed tracing
const todos = await listTodos({
 fields: ["id", "title"],
 hookCtx: {
 correlationId: 'user-dashboard-load-456'
 }
});
Request Timing Setup
export interface ActionHookContext {
 startTime?: number;
}

export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx;

 // Store request start time in context for afterRequest hook
 if (ctx) {
 ctx.startTime = Date.now();
 }

 return config;
}
Logging Outgoing Requests
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx;

 console.log('Outgoing RPC request:', {
 action: actionName,
 domain: config.domain,
 hasInput: !!config.input,
 timestamp: new Date().toISOString(),
 correlationId: ctx?.correlationId
 });

 return config;
}
afterRequest Hook
The afterRequest hook runs after the HTTP request completes (both success and error) and is used for side effects. It receives three parameters:
	response: Response - The raw HTTP response object
	result: any | null - Parsed JSON result (null when response.ok is false)

	config: ActionConfig - The config used for the request

Important: Null Result Handling
The afterRequest hook receives null as the result parameter when the response is not OK:
export function afterRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): void {
 if (result === null) {
 // Response failed (response.ok === false)
 console.error('Request failed:', {
 status: response.status,
 statusText: response.statusText,
 url: response.url
 });
 } else {
 // Response succeeded (response.ok === true)
 console.log('Request succeeded:', {
 hasData: !!result.data,
 success: result.success
 });
 }
}
Logging All Responses
export function afterRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): void {
 const ctx = config.hookCtx;

 console.log('RPC response received:', {
 action: actionName,
 domain: config.domain,
 status: response.status,
 ok: response.ok,
 hasResult: result !== null,
 correlationId: ctx?.correlationId,
 timestamp: new Date().toISOString()
 });
}
Performance Timing
export interface ActionHookContext {
 startTime?: number;
 trackPerformance?: boolean;
}

export function afterRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): void {
 const ctx = config.hookCtx;

 if (ctx?.trackPerformance && ctx.startTime) {
 const duration = Date.now() - ctx.startTime;

 console.log('Performance metrics:', {
 action: actionName,
 duration: `${duration}ms`,
 status: response.status,
 success: result !== null && result.success
 });

 // Send to analytics service
 trackMetric('rpc.duration', duration, {
 action: actionName,
 status: response.status
 });
 }
}
Telemetry Tracking
export function afterRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): void {
 // Send telemetry to monitoring service
 sendTelemetry({
 event: 'rpc.request.completed',
 action: actionName,
 domain: config.domain,
 status: response.status,
 success: response.ok && result?.success,
 timestamp: Date.now()
 });
}
Error Monitoring
export function afterRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): void {
 // Track errors in error monitoring service
 if (result === null || !result.success) {
 Sentry.captureMessage('RPC request failed', {
 level: 'error',
 extra: {
 action: actionName,
 status: response.status,
 errors: result?.errors,
 url: response.url
 }
 });
 }
}
Config Precedence Rules
When using beforeRequest hooks, the original config passed to the action always takes precedence over the modified config:
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 return {
 ...config,
 headers: {
 'X-Default-Header': 'value',
 ...config.headers // ← Original headers override defaults
 },
 customFetch: config.customFetch || myDefaultFetch // ← Original takes precedence
 };
}
Precedence order:
	Original config values used in action (highest priority)
	Modified config from beforeRequest hook
	Default fetch implementation (lowest priority)

This ensures that per-request customizations always override hook defaults.
Exception Handling
Hooks do not catch exceptions - any errors thrown by hooks will propagate to the caller:
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 if (!isValidConfig(config)) {
 // This exception propagates to the caller
 throw new Error('Invalid RPC configuration');
 }
 return config;
}
Use Cases for Exception Propagation:
	Error Boundaries - Let framework error boundaries catch and display errors
	Global Error Handlers - Centralized error handling in your app
	Fail-Fast Validation - Stop execution on critical errors

// React component with error boundary
function MyComponent() {
 const handleSubmit = async () => {
 try {
 const result = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "123e4567-e89b-12d3-a456-426614174000"
 },
 hookCtx: {
 correlationId: 'user-submit-action',
 trackPerformance: true
 }
 });
 // Handle success
 } catch (error) {
 // Hook threw an exception
 console.error('RPC call failed:', error);
 }
 };
}
Complete Working Example
Here's a complete example showing all hook features with the simplified pattern:
// rpcHooks.ts
import type { ActionConfig, ValidationConfig } from './generated';

// Define your custom hook context interfaces
export interface ActionHookContext {
 trackPerformance?: boolean;
 startTime?: number;
 correlationId?: string;
}

export interface ValidationHookContext {
 formId?: string;
}

// Action hooks - directly use ActionConfig (no generics needed!)
export async function beforeActionRequest(
 actionName: string,
 config: ActionConfig
): Promise<ActionConfig> {
 const ctx = config.hookCtx;

 // Add correlation ID and client version headers
 const headers: Record<string, string> = {
 'X-Client-Version': '1.0.0',
 'X-Correlation-ID': ctx?.correlationId || generateRequestId(),
 ...config.headers
 };

 // Setup timing for performance tracking
 const modifiedCtx = ctx?.trackPerformance
 ? { ...ctx, startTime: Date.now() }
 : ctx;

 console.log(`[RPC] ${actionName} started`, {
 correlationId: ctx?.correlationId
 });

 return {
 ...config,
 headers,
 ...(modifiedCtx && { hookCtx: modifiedCtx })
 };
}

function generateRequestId(): string {
 return `req_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}

export async function afterActionRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ActionConfig
): Promise<void> {
 const ctx = config.hookCtx;

 // Track timing (ctx.startTime is automatically properly typed!)
 const duration = ctx?.startTime ? Date.now() - ctx.startTime : 0;

 // Log result
 if (result === null) {
 console.error(`[RPC] ${actionName} failed:`, {
 status: response.status,
 duration: `${duration}ms`
 });
 } else {
 console.log(`[RPC] ${actionName} completed:`, {
 success: result.success,
 duration: `${duration}ms`
 });
 }
}

// Validation hooks - directly use ValidationConfig (no generics needed!)
export async function beforeValidationRequest(
 actionName: string,
 config: ValidationConfig
): Promise<ValidationConfig> {
 const ctx = config.hookCtx;
 console.log(`[Validation] ${actionName} started`, { formId: ctx?.formId });
 return config;
}

export async function afterValidationRequest(
 actionName: string,
 response: Response,
 result: any | null,
 config: ValidationConfig
): Promise<void> {
 const ctx = config.hookCtx;
 console.log(`[Validation] ${actionName} completed`, {
 formId: ctx?.formId,
 hasErrors: result && !result.success
 });
}
// Usage in your application
import { createTodo, validateCreateTodo } from './ash_rpc';

// Action with hooks
const result = await createTodo({
 fields: ["id", "title", "createdAt"],
 input: {
 title: "Learn AshTypescript Hooks",
 userId: getCurrentUserId()
 },
 hookCtx: {
 trackPerformance: true,
 correlationId: 'user-create-todo-123'
 }
});

// Validation with hooks
const validationResult = await validateCreateTodo({
 input: {
 title: "Test Todo",
 userId: "123e4567-e89b-12d3-a456-426614174000"
 },
 hookCtx: {
 formId: 'create-todo-form'
 }
});
Channel Lifecycle Hooks
AshTypescript provides lifecycle hooks for Phoenix Channel-based RPC actions, mirroring the HTTP hooks functionality but adapted for real-time channel communication. These hooks enable the same cross-cutting concerns (logging, telemetry, performance tracking, error monitoring) but for WebSocket-based communication instead of HTTP requests.
Why Use Channel Lifecycle Hooks?
Channel lifecycle hooks provide a centralized way to:
	Log channel messages - Track channel communication for debugging
	Measure performance - Time channel operations and track latency
	Send telemetry - Report metrics to monitoring services
	Handle errors globally - Track channel errors in Sentry, Datadog, etc.
	Add default configuration - Set default timeouts or other options
	Transform messages - Modify config before pushing to channel

Key Differences from HTTP Hooks
Channel hooks differ from HTTP hooks because they work with Phoenix Channel's message-based communication:
	Aspect	HTTP Hooks	Channel Hooks
	Communication	Request/Response (HTTP)	Message-based (WebSocket)
	API Style	Promise-based	Callback-based
	Response Types	Success or Error	ok, error, or timeout
	Hook Names	beforeRequest, afterRequest	beforeChannelPush, afterChannelResponse

Channel Configuration
Configure channel lifecycle hooks in your application config:
config/config.exs
config :ash_typescript,
 # Channel-based hooks for RPC actions
 rpc_action_before_channel_push_hook: "ChannelHooks.beforeChannelPush",
 rpc_action_after_channel_response_hook: "ChannelHooks.afterChannelResponse",

 # Channel-based hooks for validation actions
 rpc_validation_before_channel_push_hook: "ChannelHooks.beforeValidationChannelPush",
 rpc_validation_after_channel_response_hook: "ChannelHooks.afterValidationChannelResponse",

 # TypeScript types for channel hook context (optional)
 rpc_action_channel_hook_context_type: "ChannelHooks.ActionChannelHookContext",
 rpc_validation_channel_hook_context_type: "ChannelHooks.ValidationChannelHookContext",

 # Import the module containing your channel hook functions
 import_into_generated: [
 %{
 import_name: "ChannelHooks",
 file: "./channelHooks"
 }
]
Configuration Options:
	Config	Purpose	Default
	rpc_action_before_channel_push_hook	Function called before channel push for RPC actions	nil (disabled)
	rpc_action_after_channel_response_hook	Function called after channel response for RPC actions	nil (disabled)
	rpc_validation_before_channel_push_hook	Function called before channel push for validations	nil (disabled)
	rpc_validation_after_channel_response_hook	Function called after channel response for validations	nil (disabled)
	rpc_action_channel_hook_context_type	TypeScript type for action channel hook context	"Record<string, any>"
	rpc_validation_channel_hook_context_type	TypeScript type for validation channel hook context	"Record<string, any>"

Channel Hook Function Signatures
Channel hooks receive the full config object and can access the optional hookCtx from it.
Important: AshTypescript exports ActionChannelConfig and ValidationChannelConfig types from the generated file. These types automatically include your custom hookCtx types based on your configuration settings.
Configuring Custom Channel Hook Context Types
When you configure channel context type settings in your Elixir config, the generated TypeScript interfaces will automatically include these types:
config/config.exs
config :ash_typescript,
 # TypeScript types for channel hook context
 rpc_action_channel_hook_context_type: "ChannelHooks.ActionChannelHookContext",
 rpc_validation_channel_hook_context_type: "ChannelHooks.ValidationChannelHookContext"
With this configuration, the generated ActionChannelConfig and ValidationChannelConfig types will have properly typed hookCtx fields:
// Generated types (in your generated file)
export interface ActionChannelConfig {
 // ... other fields ...
 hookCtx?: ChannelHooks.ActionChannelHookContext; // ← Your custom type
}

export interface ValidationChannelConfig {
 // ... other fields ...
 hookCtx?: ChannelHooks.ValidationChannelHookContext; // ← Your custom type
}
Implementing Channel Hook Functions
Simply import and use the generated config types directly - no generics needed!
// channelHooks.ts - Define your custom hook context interfaces
export interface ActionChannelHookContext {
 correlationId?: string;
 trackPerformance?: boolean;
 startTime?: number;
}

export interface ValidationChannelHookContext {
 formId?: string;
 validationLevel?: "strict" | "normal";
}

// Import the generated config types
import type { ActionChannelConfig, ValidationChannelConfig } from './generated';

// Implement your channel hook functions - the hookCtx is already properly typed!
export async function beforeChannelPush(
 actionName: string,
 config: ActionChannelConfig
): Promise<ActionChannelConfig> {
 const ctx = config.hookCtx;

 // ctx is automatically typed as ActionChannelHookContext | undefined
 if (ctx?.trackPerformance) {
 const modifiedCtx = { ...ctx, startTime: Date.now() };
 return { ...config, hookCtx: modifiedCtx };
 }

 return config;
}

export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any, // result (for ok), error (for error), or null (for timeout)
 config: ActionChannelConfig
): Promise<void> {
 const ctx = config.hookCtx;

 // ctx.startTime is properly typed (no type assertion needed!)
 if (ctx?.trackPerformance && ctx.startTime) {
 const duration = Date.now() - ctx.startTime;
 console.log(`[Channel] ${actionName} took ${duration}ms`);
 }
}

// Similarly for validation channel hooks
export async function beforeValidationChannelPush(
 actionName: string,
 config: ValidationChannelConfig
): Promise<ValidationChannelConfig> {
 const ctx = config.hookCtx;

 if (ctx?.validationLevel === "strict") {
 console.log(`[Channel Validation] Strict mode enabled`);
 }

 return config;
}
Key Benefits:
	Type safety - Your custom context fields are properly typed automatically
	IntelliSense - IDE autocomplete works for your custom fields
	No generics needed - The generated types already include your context types
	Simpler code - Direct usage without complex generic constraints

Channel Config Structure
The generated ActionChannelConfig and ValidationChannelConfig interfaces include all available configuration fields:
// Generated ActionChannelConfig interface (in your generated file)
export interface ActionChannelConfig {
 // Channel connection (required)
 channel: Channel;

 // Request parameters (varies by action)
 input?: Record<string, any>;
 identity?: any;
 fields?: Array<string | Record<string, any>>;
 filter?: Record<string, any>;
 sort?: string;
 page?: { limit?: number; offset?: number; count?: boolean };

 // Metadata
 metadataFields?: Record<string, any>;

 // Channel options
 timeout?: number;

 // Handlers (required for channel operations)
 resultHandler: (result: any) => void;
 errorHandler?: (error: any) => void;
 timeoutHandler?: () => void;

 // Multitenancy
 tenant?: string;

 // Hook context (automatically typed based on your config)
 hookCtx?: YourActionChannelHookContext;
}
Key Points:
	Channel hooks support async operations (Promise-based)
	beforeChannelPush receives action name and config, returns modified config
	afterChannelResponse receives action name, response type, data, and config
	Response type distinguishes between three channel outcomes: "ok", "error", "timeout"
	Original config takes precedence over modified config
	Your custom hookCtx type is automatically included when you configure context type settings

beforeChannelPush Hook
The beforeChannelPush hook runs before the channel.push() call and can modify the channel message configuration. Common use cases:
Setting Default Timeout
// channelHooks.ts
export interface ActionChannelHookContext {
 useDefaultTimeout?: boolean;
 customTimeout?: number;
}

export async function beforeChannelPush(
 actionName: string,
 config: ChannelActionConfig
): Promise<ChannelActionConfig> {
 const ctx = config.hookCtx;

 // Set default timeout if not specified
 if (ctx?.useDefaultTimeout && !config.timeout) {
 return {
 ...config,
 timeout: ctx.customTimeout || 10000 // 10 second default
 };
 }

 return config;
}
// Usage: Pass timeout preferences via hook context
listTodosChannel({
 channel: myChannel,
 fields: ["id", "title"],
 hookCtx: {
 useDefaultTimeout: true,
 customTimeout: 15000
 },
 resultHandler: (result) => console.log(result)
});
Logging Channel Messages
export interface ActionChannelHookContext {
 correlationId?: string;
 trackPerformance?: boolean;
 startTime?: number;
}

export async function beforeChannelPush(
 actionName: string,
 config: ChannelActionConfig
): Promise<ChannelActionConfig> {
 const ctx = config.hookCtx;

 // Setup timing
 if (ctx?.trackPerformance && ctx) {
 ctx.startTime = Date.now();
 }

 console.log(`[Channel] Pushing to channel:`, {
 action: actionName,
 correlationId: ctx?.correlationId,
 timestamp: new Date().toISOString()
 });

 return config;
}
afterChannelResponse Hook
The afterChannelResponse hook runs after the channel response is received (ok, error, or timeout) and is used for side effects. It receives four parameters:
	actionName: string - The name of the action being executed
	responseType: "ok" | "error" | "timeout" - The type of channel response

	data: any - Response data (result for "ok", error for "error", null for "timeout")
	config: ChannelActionConfig - The config used for the request

Logging All Channel Responses
export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ChannelActionConfig
): Promise<void> {
 const ctx = config.hookCtx;

 console.log(`[Channel] Response received:`, {
 action: actionName,
 responseType,
 hasData: data !== null,
 correlationId: ctx?.correlationId,
 timestamp: new Date().toISOString()
 });

 // Log specific details based on response type
 if (responseType === "error") {
 console.error(`[Channel] Error in ${actionName}:`, data);
 } else if (responseType === "timeout") {
 console.warn(`[Channel] Timeout in ${actionName}`);
 }
}
Performance Timing
export interface ActionChannelHookContext {
 startTime?: number;
 trackPerformance?: boolean;
 correlationId?: string;
}

export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ChannelActionConfig
): Promise<void> {
 const ctx = config.hookCtx;

 if (ctx?.trackPerformance && ctx.startTime) {
 const duration = Date.now() - ctx.startTime;

 console.log(`[Channel] Performance metrics:`, {
 action: actionName,
 duration: `${duration}ms`,
 responseType,
 success: responseType === "ok" && data?.success,
 correlationId: ctx?.correlationId
 });

 // Send to analytics service
 trackMetric('channel.rpc.duration', duration, {
 action: actionName,
 responseType,
 success: responseType === "ok"
 });
 }
}
Telemetry Tracking
export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ChannelActionConfig
): Promise<void> {
 // Send telemetry to monitoring service
 sendTelemetry({
 event: 'channel.rpc.completed',
 action: actionName,
 domain: config.domain,
 responseType,
 success: responseType === "ok" && data?.success,
 timestamp: Date.now()
 });

 // Track specific response types
 if (responseType === "timeout") {
 sendTelemetry({
 event: 'channel.rpc.timeout',
 action: actionName,
 timestamp: Date.now()
 });
 }
}
Error Monitoring
export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ChannelActionConfig
): Promise<void> {
 // Track errors in error monitoring service
 if (responseType === "error" || responseType === "timeout") {
 Sentry.captureMessage('Channel RPC failed', {
 level: 'error',
 extra: {
 action: actionName,
 responseType,
 data: responseType === "error" ? data : null,
 domain: config.domain
 }
 });
 } else if (data && !data.success) {
 // Track validation errors from successful channel responses
 Sentry.captureMessage('Channel RPC validation error', {
 level: 'warning',
 extra: {
 action: actionName,
 errors: data.errors
 }
 });
 }
}
Channel Config Precedence Rules
When using beforeChannelPush hooks, the original config always takes precedence over the modified config:
export async function beforeChannelPush(
 actionName: string,
 config: ChannelActionConfig
): Promise<ChannelActionConfig> {
 return {
 ...config,
 timeout: config.timeout ?? 10000 // ← Original timeout takes precedence
 };
}
Precedence order:
	Original config values (highest priority)
	Modified config from beforeChannelPush hook
	No default timeout (lowest priority)

This ensures that per-request customizations always override hook defaults.
Complete Channel Working Example
Here's a complete example showing all channel hook features with the simplified pattern:
// channelHooks.ts
import type { ActionChannelConfig, ValidationChannelConfig } from './generated';

// Define custom hook context interfaces
export interface ActionChannelHookContext {
 trackPerformance?: boolean;
 startTime?: number;
 correlationId?: string;
}

export interface ValidationChannelHookContext {
 formId?: string;
 validationLevel?: "strict" | "normal";
}

// Action hooks - directly use ActionChannelConfig (no generics needed!)
export async function beforeChannelPush(
 actionName: string,
 config: ActionChannelConfig
): Promise<ActionChannelConfig> {
 const ctx = config.hookCtx;

 // Setup timing - properly update context immutably
 const modifiedCtx = ctx?.trackPerformance
 ? { ...ctx, startTime: Date.now() }
 : ctx;

 console.log(`[Channel] ${actionName} starting`, {
 correlationId: ctx?.correlationId
 });

 return {
 ...config,
 ...(modifiedCtx && { hookCtx: modifiedCtx })
 };
}

export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ActionChannelConfig
): Promise<void> {
 const ctx = config.hookCtx;

 // Track timing - ctx.startTime is automatically properly typed!
 const duration = ctx?.startTime ? Date.now() - ctx.startTime : 0;

 // Log result
 console.log(`[Channel] ${actionName} completed:`, {
 responseType,
 duration: `${duration}ms`,
 correlationId: ctx?.correlationId
 });

 // Track errors
 if (responseType !== "ok") {
 console.error(`[Channel] ${actionName} failed:`, { responseType, data });
 }
}

// Validation hooks - directly use ValidationChannelConfig (no generics needed!)
export async function beforeValidationChannelPush(
 actionName: string,
 config: ValidationChannelConfig
): Promise<ValidationChannelConfig> {
 const ctx = config.hookCtx;
 console.log(`[Channel Validation] ${actionName} started`, {
 formId: ctx?.formId,
 validationLevel: ctx?.validationLevel
 });
 return config;
}

export async function afterValidationChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ValidationChannelConfig
): Promise<void> {
 const ctx = config.hookCtx;
 console.log(`[Channel Validation] ${actionName} completed`, {
 formId: ctx?.formId,
 responseType,
 hasErrors: responseType === "ok" && data && !data.success
 });
}
// Usage in your application
import { listTodosChannel, createTodoChannel, validateCreateTodoChannel } from './ash_rpc';
import { Channel } from "phoenix";

// Action with channel hooks
listTodosChannel({
 channel: myChannel,
 fields: ["id", "title", { user: ["name"] }],
 hookCtx: {
 trackPerformance: true,
 correlationId: 'list-todos-123'
 },
 resultHandler: (result) => {
 if (result.success) {
 console.log("Todos loaded:", result.data);
 }
 }
});

// Validation with channel hooks
validateCreateTodoChannel({
 channel: myChannel,
 input: {
 title: "Test Todo",
 userId: "123e4567-e89b-12d3-a456-426614174000"
 },
 hookCtx: {
 formId: 'create-todo-form',
 validationLevel: 'strict'
 },
 resultHandler: (result) => {
 if (!result.success) {
 console.log("Validation errors:", result.errors);
 }
 }
});
Troubleshooting
HTTP Hooks
Config precedence not working:
// ❌ Wrong: Original config gets overridden
return {
 headers: { ...config.headers, 'X-Custom': 'value' },
 ...config
};

// ✅ Correct: Original config takes precedence
return {
 ...config,
 headers: { 'X-Custom': 'value', ...config.headers }
};
Performance timing not working:
// ❌ Wrong: Context is read-only, modifications lost
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx;
 ctx.startTime = Date.now(); // Lost!
 return config;
}

// ✅ Correct: Return modified context
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx || {};
 return {
 ...config,
 hookCtx: { ...ctx, startTime: Date.now() }
 };
}
Hook not executing:
	Verify hook functions are exported from the configured module
	Check that import_into_generated includes the hooks module
	Regenerate types with mix ash.codegen --dev
	Ensure hook function names match the configuration exactly

TypeScript errors with hook context:
// ❌ Wrong: Type assertion on config
const ctx = config.hookCtx as ActionHookContext;
ctx.trackPerformance; // Error if hookCtx is undefined

// ✅ Correct: Optional chaining or type guard
const ctx = config.hookCtx as ActionHookContext | undefined;
if (ctx?.trackPerformance) {
 // Safe to use
}
Channel Hooks
Config precedence not working:
// ❌ Wrong: Original config gets overridden
return {
 timeout: 10000,
 ...config
};

// ✅ Correct: Original config takes precedence
return {
 ...config,
 timeout: config.timeout ?? 10000
};
Hook not executing:
	Verify channel hook functions are exported from the configured module
	Check that import_into_generated includes the channel hooks module
	Regenerate types with mix ash.codegen --dev
	Ensure hook function names match the configuration exactly
	Verify that generate_phx_channel_rpc_actions: true is set in config

TypeScript errors with channel hook context:
// ❌ Wrong: Type assertion without null check
const ctx = config.hookCtx as ActionChannelHookContext;
ctx.trackPerformance; // Error if hookCtx is undefined

// ✅ Correct: Optional chaining or type guard
const ctx = config.hookCtx as ActionChannelHookContext | undefined;
if (ctx?.trackPerformance) {
 // Safe to use
}
Response type not being handled:
// ✅ Handle all three response types
export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: any
): Promise<void> {
 switch (responseType) {
 case "ok":
 // Handle successful response
 break;
 case "error":
 // Handle error response
 break;
 case "timeout":
 // Handle timeout response
 break;
 }
}

 Error Handling

AshTypescript provides a comprehensive error handling system that transforms Ash framework errors into TypeScript-friendly JSON responses. Errors are returned with structured information that can be easily consumed by TypeScript clients.
Error Response Format
All errors from RPC actions are returned in a standardized format:
export type AshRpcError = {
 /** Machine-readable error type (e.g., "invalid_changes", "not_found") */
 type: string;
 /** Full error message (may contain template variables like %{key}) */
 message: string;
 /** Concise version of the message */
 shortMessage: string;
 /** Variables to interpolate into the message template */
 vars: Record<string, any>;
 /** List of affected field names (for field-level errors) */
 fields: string[];
 /** Path to the error location in the data structure */
 path: string[];
 /** Optional map with extra details (e.g., suggestions, hints) */
 details?: Record<string, any>;
}
Client-Side Variable Interpolation
Unlike server-side rendering, AshTypescript returns error messages as templates with separate variables. This allows clients to handle localization and formatting according to their needs:
// Server returns:
{
 type: "required",
 message: "Field %{field} is required",
 vars: { field: "email" },
 fields: ["email"]
}

// Client can interpolate:
function interpolateMessage(error: AshRpcError): string {
 let message = error.message;
 if (error.vars) {
 Object.entries(error.vars).forEach(([key, value]) => {
 message = message.replace(`%{${key}}`, String(value));
 });
 }
 return message;
}
Error Types
AshTypescript implements protocol-based error handling for common Ash error types:
	not_found - Resource or record not found
	required - Required field missing
	invalid_attribute - Invalid attribute value
	invalid_argument - Invalid action argument
	forbidden - Authorization failure
	forbidden_field - Field-level authorization failure
	invalid_changes - Invalid changeset
	invalid_query - Invalid query parameters
	invalid_page - Invalid pagination parameters
	invalid_keyset - Invalid keyset for pagination
	invalid_primary_key - Invalid primary key value
	unknown_field - Unknown or inaccessible field
	unknown_error - Unexpected error

Configuring Error Handlers
Domain-Level Error Handler
Configure a custom error handler for all resources in a domain:
defmodule MyApp.Domain do
 use Ash.Domain,
 extensions: [AshTypescript.Rpc]

 rpc do
 error_handler {MyApp.RpcErrorHandler, :handle_error, []}
 end
end
Resource-Level Error Handler
Configure error handling for specific resources:
defmodule MyApp.Resource do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 rpc do
 error_handler {MyApp.ResourceErrorHandler, :handle_error, []}
 end
end
When both domain and resource error handlers are defined, they are applied in sequence:
	Resource error handler (if defined)
	Domain error handler (if defined)
	Default error handler

Writing Custom Error Handlers
Error handlers receive the error and context, allowing for custom transformations:
defmodule MyApp.RpcErrorHandler do
 def handle_error(error, context) do
 # Context includes:
 # - domain: The domain module
 # - resource: The resource module (if applicable)
 # - action: The action being performed
 # - actor: The current actor/user

 case error.type do
 "forbidden" ->
 # Customize forbidden errors
 %{error | message: "Access denied to this resource"}

 "not_found" ->
 # Add custom details for not found errors
 %{error | details: Map.put(error.details || %{}, :support_url, "https://example.com/help")}

 _ ->
 # Pass through other errors unchanged
 error
 end
 end
end
Action-Specific Error Handling
You can customize errors based on the specific action that triggered them:
defmodule MyApp.ResourceErrorHandler do
 def handle_error(error, %{action: action} = context) do
 case action.name do
 :create ->
 # Special handling for create actions
 customize_create_error(error)

 :update ->
 # Special handling for update actions
 customize_update_error(error)

 _ ->
 # Default handling
 error
 end
 end

 defp customize_create_error(%{type: "required"} = error) do
 %{error | message: "This field is required when creating a new record"}
 end

 defp customize_create_error(error), do: error

 defp customize_update_error(error), do: error
end
Custom Error Types
To add support for custom Ash errors, implement the AshTypescript.Rpc.Error protocol:
defmodule MyApp.CustomError do
 use Splode.Error, fields: [:field, :reason], class: :invalid

 def message(error) do
 "Custom validation failed for #{error.field}: #{error.reason}"
 end
end

defimpl AshTypescript.Rpc.Error, for: MyApp.CustomError do
 def to_error(error) do
 %{
 message: "Field %{field} failed validation: %{reason}",
 short_message: "Validation failed",
 type: "custom_validation_error",
 vars: %{
 field: error.field,
 reason: error.reason
 },
 fields: [error.field],
 path: []
 }
 end
end
Field Path Tracking
Errors include fields and path arrays that track the location of errors in data structures:
// Error in nested relationship field
{
 type: "unknown_field",
 message: "Unknown field 'user.invalid_field'",
 fields: ["invalid_field"],
 path: ["user"]
}

// Error in array element
{
 type: "invalid_attribute",
 message: "Invalid value at position %{index}",
 vars: { index: 2 },
 path: ["items", 2, "quantity"]
}
Handling Multiple Errors
When multiple errors occur, they are returned as an array in the errors field:
interface RpcErrorResponse {
 success: false;
 errors: AshRpcError[];
}

// Client handling
async function handleRpcCall(response: any) {
 if (!response.success) {
 response.errors.forEach((error: AshRpcError) => {
 console.error(`${error.type}: ${interpolateMessage(error)}`);

 // Handle specific error types
 if (error.type === "forbidden") {
 redirectToLogin();
 } else if (error.type === "validation_error") {
 highlightFields(error.fields);
 }
 });
 }
}
TypeScript Integration
The generated TypeScript client includes full type definitions for error handling:
// Using generated RPC functions
import { createTodo } from './generated';

try {
 const result = await createTodo({
 title: "New Todo",
 userId: "123"
 });

 if (result.success) {
 console.log("Created:", result.data);
 } else {
 // TypeScript knows result.errors is AshRpcError[]
 result.errors.forEach(error => {
 if (error.type === "required") {
 console.error(`Missing required field: ${error.fields?.[0]}`);
 }
 });
 }
} catch (e) {
 // Network or other errors
 console.error("Request failed:", e);
}
Best Practices
	Let the client handle interpolation: Return message templates and variables separately for better localization support.

	Use specific error types: Choose the most specific error type that matches the condition.

	Include field information: Always populate the fields array for field-specific errors.

	Provide actionable messages: Error messages should guide users on how to fix the issue.

	Track error paths: Use the path field to indicate where in nested structures errors occurred.

	Add debugging context: Use the details field to include additional debugging information (but be careful not to expose sensitive data).

	Handle errors gracefully in TypeScript: Always check the success field before accessing data in responses.

Differences from GraphQL Error Handling
Unlike AshGraphql which can interpolate variables server-side, AshTypescript intentionally returns templates and variables separately. This design choice provides:
	Better support for client-side localization
	Flexibility in message formatting
	Ability to use different messages for the same error type based on client context
	Reduced server-side processing

The error structure is also flattened compared to GraphQL's nested error format, making it easier to work with in TypeScript applications.

 Phoenix Channel-based RPC Actions

AshTypescript can generate Phoenix channel-based RPC functions alongside the standard HTTP-based functions. This is useful for real-time applications that need to communicate over WebSocket connections.
Configuration
Enable channel function generation in your configuration:
config/config.exs
config :ash_typescript,
 generate_phx_channel_rpc_actions: true,
 phoenix_import_path: "phoenix" # customize if needed
Generated Channel Functions
When enabled, AshTypescript generates channel functions with the suffix Channel for each RPC action:
import { Channel } from "phoenix";
import { createTodo, createTodoChannel } from './ash_rpc';

// Standard HTTP-based function (always available)
const httpResult = await createTodo({
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-123"
 }
});

// Channel-based function (generated when enabled)
createTodoChannel({
 channel: myChannel,
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-123"
 },
 resultHandler: (result) => {
 if (result.success) {
 console.log("Todo created:", result.data);
 } else {
 console.error("Creation failed:", result.errors);
 }
 },
 errorHandler: (error) => {
 console.error("Channel error:", error);
 },
 timeoutHandler: () => {
 console.error("Request timed out");
 }
});
Setting up Phoenix Channels
Frontend Setup
First, establish a Phoenix channel connection:
import { Socket } from "phoenix";

const socket = new Socket("/socket", {
 params: { authToken: "your-auth-token" }
});

socket.connect();

const ashTypeScriptRpcChannel = socket.channel("ash_typescript_rpc:<user-id or something else unique>", {});
ashTypeScriptRpcChannel.join()
 .receive("ok", () => console.log("Connected to channel"))
 .receive("error", resp => console.error("Unable to join", resp));
Backend Channel Setup
To enable Phoenix Channel support for AshTypescript RPC actions, configure your Phoenix socket and channel handlers:
In your my_app_web/channels/user_socket.ex or equivalent
defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket

 channel "ash_typescript_rpc:*", MyAppWeb.AshTypescriptRpcChannel

 @impl true
 def connect(params, socket, _connect_info) do
 # AshTypescript assumes that socket.assigns.ash_actor & socket.assigns.ash_tenant are correctly set if needed.
 # This should be done during the socket connection setup, usually by decrypting the auth token sent by the client.
 # See https://hexdocs.pm/phoenix/channels.html#using-token-authentication for more information.
 {:ok, socket}
 end

 @impl true
 def id(_socket), do: nil # Return a unique identifier if you need presence tracking
end

In your my_app_web/channels/ash_typescript_rpc_channel.ex
defmodule MyAppWeb.AshTypescriptRpcChannel do
 use Phoenix.Channel

 @impl true
 def join("ash_typescript_rpc:" <> _user_id, _payload, socket) do
 {:ok, socket}
 end

 def handle_in("run", params, socket) do
 result =
 AshTypescript.Rpc.run_action(
 :my_app,
 socket,
 params
)

 {:reply, {:ok, result}, socket}
 end

 def handle_in("validate", params, socket) do
 result =
 AshTypescript.Rpc.validate_action(
 :my_app,
 socket,
 params
)

 {:reply, {:ok, result}, socket}
 end

 # Catch-all for unhandled messages
 @impl true
 def handle_in(event, payload, socket) do
 {:reply, {:error, %{reason: "Unknown event: #{event}", payload: payload}}, socket}
 end
end
Important Notes:
	Replace :my_app with your actual app's OTP application name (the atom used in AshTypescript.Rpc.run_action/3)
	The socket connection should set socket.assigns.ash_actor and socket.assigns.ash_tenant if your app uses authentication or multitenancy

Channel Function Features
Channel functions support all the same features as HTTP functions:
// Pagination with channels
listTodosChannel({
 channel: ashTypeScriptRpcChannel,
 fields: ["id", "title", { user: ["name"] }],
 filter: { completed: { eq: false } },
 page: { limit: 10, offset: 0 },
 resultHandler: (result) => {
 if (result.success) {
 console.log("Todos:", result.data.results);
 console.log("Has more:", result.data.hasMore);
 }
 }
});

// Complex field selection
getTodoChannel({
 channel: ashTypeScriptRpcChannel,
 input: { id: "todo-123" },
 fields: [
 "id", "title", "description",
 {
 user: ["name", "email"],
 comments: ["text", { author: ["name"] }]
 }
],
 resultHandler: (result) => {
 // Fully type-safe result handling
 }
});
Error Handling
Channel functions provide the same error structure as HTTP functions:
createTodoChannel({
 channel: myChannel,
 fields: ["id", "title"],
 input: {
 title: "New Todo",
 userId: "user-123"
 },
 resultHandler: (result) => {
 if (result.success) {
 // result.data is fully typed based on selected fields
 console.log("Created:", result.data.title);
 } else {
 // Handle validation errors, etc.
 result.errors.forEach(error => {
 console.error(`Error: ${error.message}`);
 if (error.fields.length > 0) {
 console.error(`Fields: ${error.fields.join(', ')}`);
 }
 });
 }
 },
 errorHandler: (error) => {
 // Handle channel-level errors
 console.error("Channel communication error:", error);
 },
 timeoutHandler: () => {
 // Handle timeouts
 console.error("Request timed out");
 }
});

 Embedded Resources

AshTypescript provides full support for embedded resources with complete type safety. Embedded resources are treated similarly to relationships, allowing you to select nested fields with the same field selection syntax.
Basic Usage
Define an embedded resource attribute in your Ash resource:
In your resource
attribute :metadata, MyApp.TodoMetadata do
 public? true
end
Use field selection to request embedded resource fields:
// TypeScript usage
const todo = await getTodo({
 fields: [
 "id", "title",
 { metadata: ["category", "priorityScore", "tags", "customFields"] }
],
 input: { id: "todo-123" }
});
Type Safety
Embedded resources receive full type inference:
// Generated types include embedded resource fields
type Todo = {
 id: string;
 title: string;
 metadata?: {
 category: string;
 priorityScore: number;
 tags: string[];
 customFields: Record<string, any>;
 } | null;
};
See Also
	Field Selection - Understand field selection syntax
	Ash Embedded Resources - Learn about Ash embedded resources in depth

 Union Types

AshTypescript provides comprehensive support for Ash union types with selective field access. Union types allow a single field to hold values of different types, and AshTypescript lets you selectively request fields from specific union members.
For information on defining union types in your Ash resources, see the Ash union type documentation.
Selective Field Access
Use the unified field selection syntax to request fields from specific union members:
// TypeScript usage with union field selection
const todo = await getTodo({
 fields: [
 "id", "title",
 { content: ["text", { checklist: ["items", "completedCount"] }] }
],
 input: { id: "todo-123" }
});
In this example:
	"text" requests the text union member (a simple string)
	{ checklist: ["items", "completedCount"] } requests specific fields from the checklist union member

Type Safety
Union types receive full type inference with discriminated unions:
// Generated types preserve union structure
type TodoContent =
 | { text: string }
 | { checklist: { items: string[]; completedCount: number } };

type Todo = {
 id: string;
 title: string;
 content?: TodoContent | null;
};

// TypeScript discriminates based on which member is present
if (todo.content?.checklist) {
 console.log(todo.content.checklist.items); // TypeScript knows this is available
 console.log(todo.content.checklist.completedCount);
} else if (todo.content?.text) {
 console.log(todo.content.text); // String value
}
Nested Union Members
Union members can be embedded resources with their own fields:
attribute :content, :union do
 constraints types: [
 text: [type: :string],
 checklist: [type: MyApp.ChecklistContent],
 attachment: [type: MyApp.AttachmentContent]
]
end
// Request specific fields from different union members
const todo = await getTodo({
 fields: [
 "id",
 {
 content: [
 "text",
 { checklist: ["items", "completedCount"] },
 { attachment: ["url", "mimeType", "size"] }
]
 }
],
 input: { id: "todo-123" }
});
See Also
	Embedded Resources - Understand embedded resource handling
	Field Selection - Master field selection syntax
	Ash Union Types - Learn about defining union types in Ash

 Multitenancy Support

AshTypescript provides automatic tenant parameter handling for multitenant resources. This is commonly used in SaaS applications where each customer or organization needs isolated data access.
Overview
When a resource is configured with Ash multitenancy (using either :attribute or :context strategy), AshTypescript can automatically add tenant parameters to generated TypeScript function signatures, ensuring type-safe tenant isolation at compile time.
Configuration
The require_tenant_parameters setting controls how tenants are provided:
config/config.exs
config :ash_typescript, require_tenant_parameters: true
When true (explicit tenants):
	Tenant must be provided as a parameter in every RPC call
	TypeScript enforces tenant parameter at compile time
	Best for frontend applications that manage tenant context in state

When false (default - implicit tenants):
	Tenant is extracted from the Phoenix connection (e.g., from session, JWT claims, or custom plug)
	No tenant parameter in TypeScript function signatures

Explicit Tenant Parameters
With require_tenant_parameters: true, tenant parameters are automatically added to all RPC function signatures:
// Tenant parameter required in function signature
const projects = await listProjects({
 fields: ["id", "name", "status"],
 tenant: "acme-corp" // Organization identifier
});

const invoice = await createInvoice({
 input: {
 customerId: "cust-456",
 amount: 1500
 },
 fields: ["id", "invoiceNumber"],
 tenant: "acme-corp"
});
Type Safety
When enabled, the tenant parameter is enforced at the TypeScript level:
// TypeScript enforces tenant parameter
const projects = await listProjects({
 fields: ["id", "name"]
 // ❌ TypeScript Error: Property 'tenant' is missing
});

const projects = await listProjects({
 fields: ["id", "name"],
 tenant: "acme-corp" // ✅ Correct
});
How It Works
When you configure a resource with multitenancy in Ash (see the Ash Multitenancy Guide), AshTypescript automatically detects this and handles tenant parameters appropriately based on your configuration.
When calling RPC actions with require_tenant_parameters: true, the tenant value is passed to Ash and applied according to your resource's multitenancy strategy (:attribute or :context):
// Tenant is automatically applied by Ash based on your resource configuration
const projects = await listProjects({
 fields: ["id", "name"],
 tenant: "acme-corp"
});
Channel-based RPC
When using Phoenix channels, tenant parameters work identically to HTTP-based RPC:
import { listProjectsChannel } from './ash_rpc';
import { Channel } from "phoenix";

listProjectsChannel({
 channel: myChannel,
 fields: ["id", "name", "status"],
 tenant: "acme-corp", // Tenant parameter required
 resultHandler: (result) => {
 if (result.success) {
 console.log("Projects:", result.data);
 }
 }
});
The tenant is included in the channel message payload and enforced server-side.
See Also
	Phoenix Channels - Learn about channel-based RPC
	Configuration Reference - View all configuration options
	Ash Multitenancy Guide - Understand Ash multitenancy strategies in depth

 Action Metadata Support

AshTypescript provides full support for Ash action metadata. Action metadata allows you to expose additional computed information alongside action results, such as processing times, cache status, API versions, or any other contextual information.
Configuring Metadata Exposure
Control which metadata fields are exposed through RPC using the show_metadata option in your domain configuration:
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Task do
 # Expose all metadata fields (default behavior)
 rpc_action :read_with_all_metadata, :read_with_metadata, show_metadata: nil

 # Disable metadata entirely
 rpc_action :read_no_metadata, :read_with_metadata, show_metadata: false

 # Expose specific metadata fields only
 rpc_action :read_selected_metadata, :read_with_metadata,
 show_metadata: [:processing_time_ms, :cache_status]

 # Empty list also disables metadata
 rpc_action :read_empty_metadata, :read_with_metadata, show_metadata: []
 end
 end
end
Configuration Options
	show_metadata: nil (default) - All metadata fields from the action are exposed
	show_metadata: false or [] - Metadata is completely disabled
	show_metadata: [:field1, :field2] - Only specified fields are exposed

TypeScript Usage
Read Actions (Metadata Merged into Records)
For read actions, metadata fields are merged directly into each record:
import { readWithAllMetadata } from './ash_rpc';

// Select which metadata fields to include
const tasks = await readWithAllMetadata({
 fields: ["id", "title"],
 metadataFields: ["processingTimeMs", "cacheStatus", "apiVersion"]
});

if (tasks.success) {
 tasks.data.forEach(task => {
 console.log(task.id); // Standard field
 console.log(task.title); // Standard field
 console.log(task.processingTimeMs); // Metadata field (merged in)
 console.log(task.cacheStatus); // Metadata field (merged in)
 console.log(task.apiVersion); // Metadata field (merged in)
 });
}

// Select subset of metadata fields
const tasksSubset = await readWithAllMetadata({
 fields: ["id", "title"],
 metadataFields: ["cacheStatus"] // Only request specific metadata
});

// Omit metadataFields to not include any metadata
const tasksNoMetadata = await readWithAllMetadata({
 fields: ["id", "title"]
 // No metadataFields = no metadata included
});
Mutation Actions (Metadata as Separate Field)
For create, update, and destroy actions, metadata is returned as a separate metadata field:
import { createTask } from './ash_rpc';

const result = await createTask({
 fields: ["id", "title"],
 input: { title: "New Task" }
});

if (result.success) {
 // Access the created task
 console.log(result.data.id);
 console.log(result.data.title);

 // Access metadata separately
 console.log(result.metadata.operationId); // Metadata field
 console.log(result.metadata.createdAtServer); // Metadata field
}
Selective Metadata Field Selection
When show_metadata exposes specific fields, only those fields can be selected:
Only :processing_time_ms and :cache_status are exposed
rpc_action :read_limited, :read_with_metadata,
 show_metadata: [:processing_time_ms, :cache_status]
// ✅ Allowed: Request exposed fields
const tasks = await readLimited({
 fields: ["id", "title"],
 metadataFields: ["processingTimeMs", "cacheStatus"]
});

// ✅ Allowed: Request subset of exposed fields
const tasksPartial = await readLimited({
 fields: ["id", "title"],
 metadataFields: ["processingTimeMs"]
});

// ⚠️ Silently filtered: Non-exposed fields are ignored
const tasksFiltered = await readLimited({
 fields: ["id", "title"],
 metadataFields: ["processingTimeMs", "apiVersion"] // apiVersion not exposed
});
// Result will only include processingTimeMs, apiVersion is filtered out
Field Name Formatting
Metadata field names follow the same formatting rules as regular fields:
Elixir: snake_case
metadata :processing_time_ms, :integer
metadata :cache_status, :string
// TypeScript: camelCase (with default formatter)
result.metadata.processingTimeMs // Formatted
result.metadata.cacheStatus // Formatted
Type Safety
Generated TypeScript types include metadata fields with full type inference:
// For read actions with metadata merged in
type TaskWithMetadata = {
 id: string;
 title: string;
 processingTimeMs?: number | null; // Metadata field
 cacheStatus?: string | null; // Metadata field
 apiVersion?: string | null; // Metadata field
}

// For mutations with separate metadata
type CreateTaskResult = {
 success: true;
 data: {
 id: string;
 title: string;
 };
 metadata: {
 operationId: string;
 createdAtServer: string;
 }
} | {
 success: false;
 errors: Array<ErrorType>;
}
Metadata Field Name Mapping
TypeScript has stricter identifier rules than Elixir. If your action's metadata fields use invalid TypeScript names, use the metadata_field_names option to map them to valid identifiers.
Invalid Metadata Field Name Patterns
	Underscores before digits: field_1, metric_2, item__3
	Question marks: is_cached?, valid?

Mapping Invalid Names
Map invalid metadata field names using the metadata_field_names option:
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Task do
 rpc_action :read_with_metadata, :read_with_metadata,
 show_metadata: [:field_1, :is_cached?, :metric_2],
 metadata_field_names: [
 field_1: "field1",
 is_cached?: "isCached",
 metric_2: "metric2"
]
 end
 end
end
Generated TypeScript with Mapped Names
// Read actions - metadata merged into records
const tasks = await readWithMetadata({
 fields: ["id", "title"],
 metadataFields: ["field1", "isCached", "metric2"] // Mapped names
});

if (tasks.success) {
 tasks.data.forEach(task => {
 console.log(task.id); // Standard field
 console.log(task.title); // Standard field
 console.log(task.field1); // Mapped metadata field
 console.log(task.isCached); // Mapped metadata field
 console.log(task.metric2); // Mapped metadata field
 });
}

// Create/Update/Destroy actions - metadata as separate field
const result = await createTask({
 fields: ["id", "title"],
 input: { title: "New Task" }
});

if (result.success) {
 console.log(result.data.id);
 console.log(result.metadata.field1); // Mapped metadata field
 console.log(result.metadata.isCached); // Mapped metadata field
}
Compile-time Verification
AshTypescript includes compile-time verification that detects invalid metadata field names:
Invalid metadata field name found in action :read_with_metadata on resource MyApp.Task

Metadata field 'field_1' contains invalid pattern (underscore before digit).
Suggested mapping: field_1 → field1

Metadata field 'is_cached?' contains invalid pattern (question mark).
Suggested mapping: is_cached? → isCached

Use the metadata_field_names option to provide valid TypeScript identifiers.
See Also
	Troubleshooting Guide - Learn about field and argument name mapping
	Ash Action Metadata - Learn about Ash metadata in depth

 Form Validation Functions

AshTypescript generates dedicated validation functions for client-side form validation. These functions perform server-side validation without executing the actual action, allowing you to validate user input before submission.
Configuration
Enable validation function generation in your configuration:
config/config.exs
config :ash_typescript,
 generate_validation_functions: true
Basic Usage
Use the generated validation functions to validate form input before submission:
import { validateCreateTodo } from './ash_rpc';

// Validate form input before submission
const validationResult = await validateCreateTodo({
 input: {
 title: "New Todo",
 priority: "high",
 userId: "123e4567-e89b-12d3-a456-426614174000"
 }
});

if (!validationResult.success) {
 // Handle validation errors
 validationResult.errors.forEach(error => {
 const field = error.fields[0] || 'unknown';
 console.log(`Field ${field}: ${error.message}`);
 });
}
Validation Response
Validation functions return a result object with validation errors:
type ValidationResult =
 | { success: true }
 | {
 success: false;
 errors: Array<{
 type: string;
 message: string;
 shortMessage: string;
 vars: Record<string, any>;
 fields: string[];
 path: string[];
 details?: Record<string, any>;
 }>;
 };
Form Integration
Integrate validation functions with your form handling:
import { validateCreateTodo, createTodo } from './ash_rpc';

async function handleSubmit(formData) {
 // Validate first
 const validation = await validateCreateTodo({
 input: formData
 });

 if (!validation.success) {
 // Show validation errors to user
 validation.errors.forEach(error => {
 const field = error.fields[0] || 'unknown';
 showFieldError(field, error.message);
 });
 return;
 }

 // Validation passed, submit the form
 const result = await createTodo({
 fields: ["id", "title"],
 input: formData
 });

 if (result.success) {
 console.log("Todo created:", result.data);
 }
}
Channel-Based Validation
When both generate_validation_functions and generate_phx_channel_rpc_actions are enabled, AshTypescript also generates channel-based validation functions:
import { validateCreateTodoChannel } from './ash_rpc';
import { Channel } from "phoenix";

// Validate over Phoenix channels
validateCreateTodoChannel({
 channel: myChannel,
 input: {
 title: "New Todo",
 priority: "high",
 userId: "123e4567-e89b-12d3-a456-426614174000"
 },
 resultHandler: (result) => {
 if (result.success) {
 console.log("Validation passed");
 } else {
 result.errors.forEach(error => {
 const field = error.fields[0] || 'unknown';
 console.log(`Field ${field}: ${error.message}`);
 });
 }
 },
 errorHandler: (error) => console.error("Channel error:", error),
 timeoutHandler: () => console.error("Validation timeout")
});
Real-time Validation
Use channel-based validation for real-time form feedback:
import { validateCreateTodoChannel } from './ash_rpc';

// Debounced validation on input change
let validationTimeout;

function onInputChange(field, value, channel) {
 clearTimeout(validationTimeout);

 validationTimeout = setTimeout(() => {
 validateCreateTodoChannel({
 channel,
 input: getCurrentFormData(),
 resultHandler: (result) => {
 if (!result.success) {
 showValidationErrors(result.errors);
 } else {
 clearValidationErrors();
 }
 }
 });
 }, 300);
}
Recommended Approach: Combine Zod Schemas and Validation Functions
Best Practice: Use Zod schemas for client-side validation first, then call validation functions only when schema validation passes. This provides instant user feedback while reducing network traffic and server load.
Two-Layer Validation Strategy
AshTypescript provides two complementary validation mechanisms:
1. Client-side Validation (Zod Schemas)
	Purpose: Instant feedback for type errors and basic constraints
	When: Always run first, before server validation
	Benefits:	Instant feedback (no network delay)
	Reduces unnecessary server calls
	Works offline
	Catches most common input errors

import { createTodoZodSchema } from './ash_rpc';

const zodResult = createTodoZodSchema.safeParse(formData);
if (!zodResult.success) {
 // Show errors immediately without server call
 return { success: false, errors: zodResult.error.issues };
}
2. Server-side Validation (Validation Functions)
	Purpose: Business logic, database constraints, complex validations
	When: Only after Zod validation passes
	Benefits:	Always up-to-date with server rules
	Validates complex business logic
	Checks database constraints (uniqueness, etc.)
	No client-side code duplication

import { validateCreateTodo } from './ash_rpc';

// Only call after Zod validation passes
const result = await validateCreateTodo({
 input: formData
});
Complete Validation Pattern
Implement both layers for optimal user experience:
import { createTodoZodSchema, validateCreateTodo } from './ash_rpc';

async function validateForm(formData) {
 // Layer 1: Client-side validation with Zod (instant feedback)
 const zodResult = createTodoZodSchema.safeParse(formData);

 if (!zodResult.success) {
 // Return immediately - no server call needed
 return { success: false, errors: zodResult.error.issues };
 }

 // Layer 2: Server-side validation (only if Zod passes)
 // This reduces network traffic and server load
 const serverResult = await validateCreateTodo({ input: formData });

 return serverResult;
}
Why This Matters: By validating with Zod first, you catch most errors instantly without making a server request. This means:
	Users get immediate feedback for common mistakes
	Your server handles fewer validation requests
	Network traffic is reduced
	Better user experience with no validation delays

See Also
	Zod Schemas - Learn about client-side Zod validation
	Phoenix Channels - Understand channel-based communication

 Zod Runtime Validation

AshTypescript can generate Zod schemas for all your actions, enabling runtime type checking and form validation. Zod is a TypeScript-first schema validation library that provides runtime type safety.
Configuration
Enable Zod schema generation in your configuration:
config/config.exs
config :ash_typescript,
 generate_zod_schemas: true,
 zod_import_path: "zod", # or "@hookform/resolvers/zod" etc.
 zod_schema_suffix: "ZodSchema"
Configuration Options
	generate_zod_schemas - Enable or disable Zod schema generation (default: false)
	zod_import_path - The import path for the Zod library (default: "zod")
	zod_schema_suffix - Suffix for generated schema names (default: "ZodSchema")

Generated Zod Schemas
For each action, AshTypescript generates validation schemas based on the action's arguments:
// Generated schema for creating a todo
export const createTodoZodSchema = z.object({
 title: z.string().min(1),
 description: z.string().optional(),
 priority: z.enum(["low", "medium", "high", "urgent"]).optional(),
 dueDate: z.date().optional(),
 tags: z.array(z.string()).optional()
});
Using Zod Schemas
Direct Validation
Use the generated schemas directly for validation:
import { createTodoZodSchema } from './ash_rpc';

const input = {
 title: "New Todo",
 userId: "user-123",
 priority: "high"
};

const result = createTodoZodSchema.safeParse(input);

if (result.success) {
 console.log("Valid input:", result.data);
} else {
 console.error("Validation errors:", result.error.issues);
}
Form Integration
Integrate with popular form libraries:
import { createTodoZodSchema } from './ash_rpc';
import { useForm } from 'react-hook-form';
import { zodResolver } from '@hookform/resolvers/zod';

function TodoForm() {
 const { register, handleSubmit, formState: { errors } } = useForm({
 resolver: zodResolver(createTodoZodSchema)
 });

 const onSubmit = async (data) => {
 const result = await createTodo({
 fields: ["id", "title"],
 input: {
 ...data,
 userId: "user-123" // Add userId (not in form, from auth context)
 }
 });

 if (result.success) {
 console.log("Todo created:", result.data);
 }
 };

 return (
 <form onSubmit={handleSubmit(onSubmit)}>
 <input {...register("title")} />
 {errors.title && {errors.title.message}}
 {/* ... other form fields ... */}
 </form>
);
}
Type Inference
Zod schemas are fully type-safe and can be used for type inference:
import { z } from 'zod';
import { createTodoZodSchema } from './ash_rpc';

// Infer TypeScript type from Zod schema
type CreateTodoInput = z.infer<typeof createTodoZodSchema>;

const input: CreateTodoInput = {
 title: "New Todo",
 priority: "high"
 // TypeScript enforces the schema structure
};
Schema Customization
The generated Zod schemas automatically respect Ash attribute constraints (min/max length, allowed values, etc.). When you define constraints in your Ash resources, AshTypescript translates them into the appropriate Zod validators:
// Generated Zod schema with constraints
export const createTodoZodSchema = z.object({
 title: z.string().min(1).max(100), // Reflects Ash min_length/max_length constraints
 priority: z.enum(["low", "medium", "high", "urgent"]).optional() // Reflects Ash one_of constraint
});
For more information on defining attribute constraints, see the Ash attributes documentation.
Important: Zod Schemas are Complementary
Zod schemas cannot represent all Ash validations. Complex validations, action-specific logic, database constraints, and business rules may exist on the server that cannot be expressed in a Zod schema.
Best Practice: Always use Zod schemas in combination with server-side validation:
	Client-side (Zod): Provides instant feedback for basic constraints like required fields, string lengths, and enum values
	Server-side (Ash): Enforces all validation rules, business logic, and database constraints

This layered approach provides the best user experience while maintaining data integrity.
See Also
	Form Validation - Learn about server-side validation functions
	Configuration Reference - View all Zod-related configuration options
	Zod Documentation - Official Zod documentation

 Configuration Reference

This document provides a comprehensive reference for all AshTypescript configuration options.
Application Configuration
Configure AshTypescript in your config/config.exs file:
config/config.exs
config :ash_typescript,
 # File generation
 output_file: "assets/js/ash_rpc.ts",

 # RPC endpoints
 run_endpoint: "/rpc/run",
 validate_endpoint: "/rpc/validate",

 # Dynamic endpoints (for separate frontend projects)
 # run_endpoint: {:runtime_expr, "CustomTypes.getRunEndpoint()"},
 # validate_endpoint: {:runtime_expr, "process.env.RPC_VALIDATE_ENDPOINT"},

 # Field formatting
 input_field_formatter: :camel_case,
 output_field_formatter: :camel_case,

 # Multitenancy
 require_tenant_parameters: false,

 # Lifecycle hooks (optional)
 # rpc_action_before_request_hook: "RpcHooks.beforeActionRequest",
 # rpc_action_after_request_hook: "RpcHooks.afterActionRequest",
 # rpc_validation_before_request_hook: "RpcHooks.beforeValidationRequest",
 # rpc_validation_after_request_hook: "RpcHooks.afterValidationRequest",

 # Zod schema generation
 generate_zod_schemas: true,
 zod_import_path: "zod",
 zod_schema_suffix: "ZodSchema",

 # Validation functions
 generate_validation_functions: true,

 # Phoenix channel-based RPC actions
 generate_phx_channel_rpc_actions: false,
 phoenix_import_path: "phoenix",

 # Phoenix channel lifecycle hooks (optional, requires generate_phx_channel_rpc_actions: true)
 # rpc_action_before_channel_push_hook: "ChannelHooks.beforeChannelPush",
 # rpc_action_after_channel_response_hook: "ChannelHooks.afterChannelResponse",
 # rpc_validation_before_channel_push_hook: "ChannelHooks.beforeValidationChannelPush",
 # rpc_validation_after_channel_response_hook: "ChannelHooks.afterValidationChannelResponse",

 # Custom type imports
 import_into_generated: [
 %{
 import_name: "CustomTypes",
 file: "./customTypes"
 }
],

 # Type mapping overrides for dependency types
 type_mapping_overrides: [
 {AshUUID.UUID, "string"},
 {SomeComplex.Custom.Type, "CustomTypes.MyCustomType"}
],

 # TypeScript type for untyped maps
 # untyped_map_type: "Record<string, any>" # Default - allows any value type
 # untyped_map_type: "Record<string, unknown>" # Stricter - requires type checking

 # RPC resource warnings
 warn_on_missing_rpc_config: true,
 warn_on_non_rpc_references: true,

 # Get action behavior
 not_found_error?: true # Default: true (return error). Set false to return null.
Configuration Options
	Option	Type	Default	Description
	output_file	string	"assets/js/ash_rpc.ts"	Path where generated TypeScript code will be written
	run_endpoint	string | {:runtime_expr, string}	"/rpc/run"	Endpoint for executing RPC actions
	validate_endpoint	string | {:runtime_expr, string}	"/rpc/validate"	Endpoint for validating RPC requests
	input_field_formatter	:camel_case | :snake_case	:camel_case	How to format field names in request inputs
	output_field_formatter	:camel_case | :snake_case	:camel_case	How to format field names in response outputs
	require_tenant_parameters	boolean	false	Whether to require tenant parameters in RPC calls
	rpc_action_before_request_hook	string | nil	nil	Function called before RPC action requests
	rpc_action_after_request_hook	string | nil	nil	Function called after RPC action requests
	rpc_validation_before_request_hook	string | nil	nil	Function called before validation requests
	rpc_validation_after_request_hook	string | nil	nil	Function called after validation requests
	rpc_action_hook_context_type	string	"Record<string, any>"	TypeScript type for action hook context
	rpc_validation_hook_context_type	string	"Record<string, any>"	TypeScript type for validation hook context
	generate_zod_schemas	boolean	true	Whether to generate Zod validation schemas
	zod_import_path	string	"zod"	Import path for Zod library
	zod_schema_suffix	string	"ZodSchema"	Suffix for generated Zod schema names
	generate_validation_functions	boolean	true	Whether to generate form validation functions
	generate_phx_channel_rpc_actions	boolean	false	Whether to generate Phoenix channel-based RPC functions
	phoenix_import_path	string	"phoenix"	Import path for Phoenix library
	rpc_action_before_channel_push_hook	string | nil	nil	Function called before channel push for actions
	rpc_action_after_channel_response_hook	string | nil	nil	Function called after channel response for actions
	rpc_validation_before_channel_push_hook	string | nil	nil	Function called before channel push for validations
	rpc_validation_after_channel_response_hook	string | nil	nil	Function called after channel response for validations
	rpc_action_channel_hook_context_type	string	"Record<string, any>"	TypeScript type for channel action hook context
	rpc_validation_channel_hook_context_type	string	"Record<string, any>"	TypeScript type for channel validation hook context
	import_into_generated	list	[]	List of custom modules to import
	type_mapping_overrides	list	[]	Override TypeScript types for Ash types
	untyped_map_type	string	"Record<string, any>"	TypeScript type for untyped maps
	warn_on_missing_rpc_config	boolean	true	Warn about resources with AshTypescript.Resource extension not in RPC config
	warn_on_non_rpc_references	boolean	true	Warn about non-RPC resources referenced by RPC resources
	not_found_error?	boolean	true	Global default for get actions: true returns error on not found, false returns null

Domain Configuration
Configure RPC actions and typed queries in your domain modules:
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Todo do
 # Standard CRUD actions
 rpc_action :list_todos, :read
 rpc_action :get_todo, :get
 rpc_action :create_todo, :create
 rpc_action :update_todo, :update
 rpc_action :destroy_todo, :destroy

 # Custom actions
 rpc_action :complete_todo, :complete
 rpc_action :archive_todo, :archive

 # Typed queries for SSR and optimized data fetching
 typed_query :dashboard_todos, :read do
 ts_result_type_name "DashboardTodosResult"
 ts_fields_const_name "dashboardTodosFields"

 fields [
 :id, :title, :priority, :status,
 %{
 user: [:name, :email],
 comments: [:id, :content]
 },
]
 end
 end

 resource MyApp.User do
 rpc_action :list_users, :read
 rpc_action :get_user, :get
 end
 end
end
RPC Action Configuration
Each rpc_action can be configured with:
	First argument - Name of the generated TypeScript function (e.g., :list_todos)
	Second argument - Name of the Ash action to execute (e.g., :read)

RPC Action Options
	Option	Type	Default	Description
	get?	boolean	false	Constrain read action to return single record (uses Ash.read_one)
	get_by	list(atom)	[]	Lookup single record by specified fields (passed via getBy config)
	not_found_error?	boolean	nil	Override global not_found_error? for this action. true = error, false = null

typescript_rpc do
 resource MyApp.User do
 # Standard read returns list
 rpc_action :list_users, :read

 # get? returns single record or error/null
 rpc_action :get_single_user, :read, get?: true

 # get_by looks up by specific fields
 rpc_action :get_user_by_email, :read, get_by: [:email]

 # not_found_error?: false returns null instead of error
 rpc_action :find_user, :read, get_by: [:email], not_found_error?: false
 end
end
Typed Query Configuration
Typed queries allow you to define pre-configured field selections with generated TypeScript types:
typed_query :dashboard_todos, :read do
 ts_result_type_name "DashboardTodosResult"
 ts_fields_const_name "dashboardTodosFields"

 fields [
 :id, :title, :priority, :status,
 %{
 user: [:name, :email],
 comments: [:id, :content]
 },
]
end
Options:
	ts_result_type_name - Name for the generated result type
	ts_fields_const_name - Name for the generated fields constant
	fields - Pre-configured field selection array

Field Formatting
AshTypescript automatically converts field names between Elixir's snake_case convention and TypeScript's camelCase convention.
Default Behavior
Default: snake_case → camelCase
user_name → userName
created_at → createdAt
Configuration Options
config :ash_typescript,
 input_field_formatter: :camel_case, # How inputs are formatted
 output_field_formatter: :camel_case # How outputs are formatted
Available formatters:
	:camel_case - Converts to camelCase (e.g., user_name → userName)
	:snake_case - Keeps snake_case (e.g., user_name → user_name)

Dynamic RPC Endpoints
For separate frontend projects or different deployment environments, AshTypescript supports dynamic endpoint configuration through runtime TypeScript expressions.
Why Use Dynamic Endpoints?
When building a separate frontend project (not embedded in your Phoenix app), you may need different backend endpoint URLs for:
	Development: http://localhost:4000/rpc/run
	Staging: https://staging-api.myapp.com/rpc/run
	Production: https://api.myapp.com/rpc/run

Instead of hardcoding the endpoint in your Elixir config, you can use runtime expressions that will be evaluated at runtime in your TypeScript code.
Configuration Options
You can use various runtime expressions depending on your needs:
config/config.exs
config :ash_typescript,
 # Option 1: Use environment variables directly (Node.js)
 run_endpoint: {:runtime_expr, "process.env.RPC_RUN_ENDPOINT || '/rpc/run'"},
 validate_endpoint: {:runtime_expr, "process.env.RPC_VALIDATE_ENDPOINT || '/rpc/validate'"},

 # Option 2: Use Vite environment variables
 # run_endpoint: {:runtime_expr, "import.meta.env.VITE_RPC_RUN_ENDPOINT || '/rpc/run'"},
 # validate_endpoint: {:runtime_expr, "import.meta.env.VITE_RPC_VALIDATE_ENDPOINT || '/rpc/validate'"},

 # Option 3: Use custom functions from imported modules
 # run_endpoint: {:runtime_expr, "MyAppConfig.getRunEndpoint()"},
 # validate_endpoint: {:runtime_expr, "MyAppConfig.getValidateEndpoint()"},

 # Option 4: Use complex expressions with conditionals
 # run_endpoint: {:runtime_expr, "window.location.hostname === 'localhost' ? 'http://localhost:4000/rpc/run' : '/rpc/run'"},

 # Import modules if needed for custom functions (Option 3)
 # import_into_generated: [
 # %{
 # import_name: "MyAppConfig",
 # file: "./myAppConfig"
 # }
 #]
Usage Examples
Option 1: Environment Variables (Node.js/Next.js)
.env.local
RPC_RUN_ENDPOINT=http://localhost:4000/rpc/run
RPC_VALIDATE_ENDPOINT=http://localhost:4000/rpc/validate

.env.production
RPC_RUN_ENDPOINT=https://api.myapp.com/rpc/run
RPC_VALIDATE_ENDPOINT=https://api.myapp.com/rpc/validate

Generated TypeScript will use the environment variables directly:
const response = await fetchFunction(process.env.RPC_RUN_ENDPOINT || '/rpc/run', fetchOptions);
Option 2: Vite Environment Variables
.env.development
VITE_RPC_RUN_ENDPOINT=http://localhost:4000/rpc/run

.env.production
VITE_RPC_RUN_ENDPOINT=https://api.myapp.com/rpc/run

Generated TypeScript:
const response = await fetchFunction(import.meta.env.VITE_RPC_RUN_ENDPOINT || '/rpc/run', fetchOptions);
Option 3: Custom Functions
Create a TypeScript file with functions that return the appropriate endpoints:
// myAppConfig.ts
export function getRunEndpoint(): string {
 // Use environment variables from your frontend build system
 const baseUrl = import.meta.env.VITE_API_URL || "http://localhost:4000";
 return `${baseUrl}/rpc/run`;
}

export function getValidateEndpoint(): string {
 const baseUrl = import.meta.env.VITE_API_URL || "http://localhost:4000";
 return `${baseUrl}/rpc/validate`;
}

// For different environments:
// Development: VITE_API_URL=http://localhost:4000
// Staging: VITE_API_URL=https://staging-api.myapp.com
// Production: VITE_API_URL=https://api.myapp.com
Option 4: Complex Conditional Expressions
For browser-based applications that need different endpoints based on hostname:
config :ash_typescript,
 run_endpoint: {:runtime_expr, """
 (window.location.hostname === 'localhost'
 ? 'http://localhost:4000/rpc/run'
 : `https://${window.location.hostname}/rpc/run`)
 """}
This allows dynamic endpoint resolution based on the current page's hostname.
Generated Code
The generated RPC functions will use your runtime expressions directly in the code:
// Example 1: With environment variables
// config: run_endpoint: {:runtime_expr, "process.env.RPC_RUN_ENDPOINT || '/rpc/run'"}

export async function createTodo<Fields extends CreateTodoFields>(
 config: CreateTodoConfig<Fields>
): Promise<CreateTodoResult<Fields>> {
 // Runtime expression is embedded directly
 const response = await fetchFunction(
 process.env.RPC_RUN_ENDPOINT || '/rpc/run',
 fetchOptions
);
 // ... rest of implementation
}
// Example 2: With custom function
// config: run_endpoint: {:runtime_expr, "MyAppConfig.getRunEndpoint()"}

import * as MyAppConfig from "./myAppConfig";

export async function createTodo<Fields extends CreateTodoFields>(
 config: CreateTodoConfig<Fields>
): Promise<CreateTodoResult<Fields>> {
 // Custom function is called at runtime
 const response = await fetchFunction(
 MyAppConfig.getRunEndpoint(),
 fetchOptions
);
 // ... rest of implementation
}
Lifecycle Hooks Configuration
AshTypescript provides lifecycle hooks that allow you to inject custom logic before and after HTTP requests and Phoenix Channel pushes. These hooks enable cross-cutting concerns like authentication, logging, telemetry, performance tracking, and error monitoring.
Why Use Lifecycle Hooks?
Lifecycle hooks provide a centralized way to:
	Add authentication tokens - Inject auth headers for all requests
	Log requests and responses - Track API calls for debugging
	Measure performance - Time API calls and track latency
	Send telemetry - Report metrics to monitoring services
	Handle errors globally - Track errors in Sentry, Datadog, etc.
	Transform requests - Modify config before sending

Configuration
Configure lifecycle hooks for HTTP-based RPC actions:
config/config.exs
config :ash_typescript,
 # HTTP lifecycle hooks for RPC actions
 rpc_action_before_request_hook: "RpcHooks.beforeActionRequest",
 rpc_action_after_request_hook: "RpcHooks.afterActionRequest",

 # HTTP lifecycle hooks for validation actions
 rpc_validation_before_request_hook: "RpcHooks.beforeValidationRequest",
 rpc_validation_after_request_hook: "RpcHooks.afterValidationRequest",

 # TypeScript types for hook context (optional)
 rpc_action_hook_context_type: "RpcHooks.ActionHookContext",
 rpc_validation_hook_context_type: "RpcHooks.ValidationHookContext",

 # Import the module containing your hook functions
 import_into_generated: [
 %{
 import_name: "RpcHooks",
 file: "./rpcHooks"
 }
]
Configuration Options
	Option	Type	Default	Description
	rpc_action_before_request_hook	string | nil	nil	Function called before RPC action requests
	rpc_action_after_request_hook	string | nil	nil	Function called after RPC action requests
	rpc_validation_before_request_hook	string | nil	nil	Function called before validation requests
	rpc_validation_after_request_hook	string | nil	nil	Function called after validation requests
	rpc_action_hook_context_type	string	"Record<string, any>"	TypeScript type for action hook context
	rpc_validation_hook_context_type	string	"Record<string, any>"	TypeScript type for validation hook context

Phoenix Channel Lifecycle Hooks
For Phoenix Channel-based RPC actions, configure channel-specific hooks. Like HTTP hooks, channel hooks are separated between actions and validations:
config :ash_typescript,
 # Enable channel RPC generation
 generate_phx_channel_rpc_actions: true,

 # Channel lifecycle hooks for RPC actions
 rpc_action_before_channel_push_hook: "ChannelHooks.beforeChannelPush",
 rpc_action_after_channel_response_hook: "ChannelHooks.afterChannelResponse",

 # Channel lifecycle hooks for validation actions
 rpc_validation_before_channel_push_hook: "ChannelHooks.beforeValidationChannelPush",
 rpc_validation_after_channel_response_hook: "ChannelHooks.afterValidationChannelResponse",

 # Channel hook context types (optional)
 rpc_action_channel_hook_context_type: "ChannelHooks.ChannelActionHookContext",
 rpc_validation_channel_hook_context_type: "ChannelHooks.ChannelValidationHookContext",

 # Import the module containing channel hooks
 import_into_generated: [
 %{
 import_name: "ChannelHooks",
 file: "./channelHooks"
 }
]
Channel Hook Options
	Option	Type	Default	Description
	rpc_action_before_channel_push_hook	string | nil	nil	Function called before channel push for actions
	rpc_action_after_channel_response_hook	string | nil	nil	Function called after channel response for actions
	rpc_validation_before_channel_push_hook	string | nil	nil	Function called before channel push for validations
	rpc_validation_after_channel_response_hook	string | nil	nil	Function called after channel response for validations
	rpc_action_channel_hook_context_type	string	"Record<string, any>"	TypeScript type for channel action hook context
	rpc_validation_channel_hook_context_type	string	"Record<string, any>"	TypeScript type for channel validation hook context

Example Hook Implementation
// rpcHooks.ts
export interface ActionHookContext {
 enableLogging?: boolean;
 enableTiming?: boolean;
 customHeaders?: Record<string, string>;
}

export async function beforeActionRequest<T>(
 action: string,
 config: T & { hookCtx?: ActionHookContext }
): Promise<T & { hookCtx?: ActionHookContext }> {
 const startTime = performance.now();

 if (config.hookCtx?.enableLogging) {
 console.log(`[${action}] Request started`, config);
 }

 // Add auth token
 const token = localStorage.getItem('authToken');
 const headers = {
 ...config.headers,
 ...config.hookCtx?.customHeaders,
 ...(token && { 'Authorization': `Bearer ${token}` })
 };

 return {
 ...config,
 headers,
 hookCtx: {
 ...config.hookCtx,
 startTime
 }
 };
}

export async function afterActionRequest<T>(
 action: string,
 config: T & { hookCtx?: ActionHookContext },
 result: any
): Promise<any> {
 if (config.hookCtx?.enableTiming) {
 const duration = performance.now() - (config.hookCtx as any).startTime;
 console.log(`[${action}] Completed in ${duration}ms`);
 }

 return result;
}
For complete details and examples, see the Lifecycle Hooks documentation.
Field and Argument Name Mapping
TypeScript has stricter identifier rules than Elixir. AshTypescript provides built-in verification and mapping for invalid field and argument names.
Invalid Name Patterns
AshTypescript detects and requires mapping for these patterns:
	Underscores before digits: field_1, address_line_2, item__3
	Question marks: is_active?, enabled?

Resource Field Mapping
Map invalid field names using the field_names option in your resource's typescript block:
defmodule MyApp.User do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 typescript do
 type_name "User"
 # Map invalid field names to valid TypeScript identifiers
 field_names [
 address_line_1: "addressLine1",
 address_line_2: "addressLine2",
 is_active?: "isActive"
]
 end

 attributes do
 attribute :name, :string, public?: true
 attribute :address_line_1, :string, public?: true
 attribute :address_line_2, :string, public?: true
 attribute :is_active?, :boolean, public?: true
 end
end
Generated TypeScript:
// Input (create/update)
const user = await createUser({
 input: {
 name: "John",
 addressLine1: "123 Main St", // Mapped from address_line_1
 addressLine2: "Apt 4B", // Mapped from address_line_2
 isActive: true // Mapped from is_active?
 },
 fields: ["id", "name", "addressLine1", "addressLine2", "isActive"]
});

// Output - same mapped names
if (result.success) {
 console.log(result.data.addressLine1); // "123 Main St"
 console.log(result.data.isActive); // true
}
Action Argument Mapping
Map invalid action argument names using the argument_names option:
typescript do
 type_name "Todo"
 argument_names [
 search: [query_string_1: "queryString1"],
 filter_todos: [is_completed?: "isCompleted"]
]
end

actions do
 read :search do
 argument :query_string_1, :string
 end

 read :filter_todos do
 argument :is_completed?, :boolean
 end
end
Generated TypeScript:
// Arguments use mapped names
const results = await searchTodos({
 input: { queryString1: "urgent tasks" }, // Mapped from query_string_1
 fields: ["id", "title"]
});

const filtered = await filterTodos({
 input: { isCompleted: false }, // Mapped from is_completed?
 fields: ["id", "title"]
});
Map Type Field Mapping
For invalid field names in map/keyword/tuple type constraints, create a custom Ash.Type.NewType with the typescript_field_names/0 callback:
Define custom type with field mapping
defmodule MyApp.CustomMetadata do
 use Ash.Type.NewType,
 subtype_of: :map,
 constraints: [
 fields: [
 field_1: [type: :string],
 is_active?: [type: :boolean],
 line_2: [type: :string]
]
]

 def typescript_field_names do
 [
 field_1: "field1",
 is_active?: "isActive",
 line_2: "line2"
]
 end
end

Use custom type in resource
defmodule MyApp.Resource do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 typescript do
 type_name "Resource"
 end

 attributes do
 attribute :metadata, MyApp.CustomMetadata, public?: true
 end
end
Generated TypeScript:
type Resource = {
 metadata: {
 field1: string; // Mapped from field_1
 isActive: boolean; // Mapped from is_active?
 line2: string; // Mapped from line_2
 }
}
Verification and Error Messages
AshTypescript includes three verifiers that check for invalid names at compile time:
Resource field verification error:
Invalid field names found that contain question marks, or numbers preceded by underscores.

Invalid field names in resource MyApp.User:
 - attribute address_line_1 → address_line1
 - attribute is_active? → is_active

You can use field_names in the typescript section to provide valid alternatives.
Map constraint verification error:
Invalid field names found in map/keyword/tuple type constraints.

Invalid constraint field names in attribute :metadata on resource MyApp.Resource:
 - field_1 → field1
 - is_active? → is_active

To fix this, create a custom Ash.Type.NewType using map/keyword/tuple as a subtype,
and define the `typescript_field_names/0` callback to map invalid field names to valid ones.
Custom Types
Create custom Ash types with TypeScript integration:
Basic Custom Type
1. Create custom type in Elixir
defmodule MyApp.PriorityScore do
 use Ash.Type

 def storage_type(_), do: :integer
 def cast_input(value, _) when is_integer(value) and value >= 1 and value <= 100, do: {:ok, value}
 def cast_input(_, _), do: {:error, "must be integer 1-100"}
 def cast_stored(value, _), do: {:ok, value}
 def dump_to_native(value, _), do: {:ok, value}
 def apply_constraints(value, _), do: {:ok, value}

 # AshTypescript integration
 def typescript_type_name, do: "CustomTypes.PriorityScore"
end
// 2. Create TypeScript type definitions in customTypes.ts
export type PriorityScore = number;

export type ColorPalette = {
 primary: string;
 secondary: string;
 accent: string;
};
3. Use in your resources
defmodule MyApp.Todo do
 use Ash.Resource, domain: MyApp.Domain

 attributes do
 uuid_primary_key :id
 attribute :title, :string, public?: true
 attribute :priority_score, MyApp.PriorityScore, public?: true
 end
end
The generated TypeScript will automatically include your custom types:
// Generated TypeScript includes imports
import * as CustomTypes from "./customTypes";

// Your resource types use the custom types
interface TodoFieldsSchema {
 id: string;
 title: string;
 priorityScore?: CustomTypes.PriorityScore | null;
}
Type Mapping Overrides
When using custom Ash types from dependencies (where you can't add the typescript_type_name/0 callback), use the type_mapping_overrides configuration to map them to TypeScript types.
Configuration
config/config.exs
config :ash_typescript,
 type_mapping_overrides: [
 {AshUUID.UUID, "string"},
 {SomeComplex.Custom.Type, "CustomTypes.MyCustomType"}
]
Example: Mapping Dependency Types
Suppose you're using a third-party library with a custom type
defmodule MyApp.Product do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 typescript do
 type_name "Product"
 end

 attributes do
 uuid_primary_key :id
 attribute :name, :string, public?: true

 # Type from a dependency - can't modify it to add typescript_type_name
 attribute :uuid, AshUUID.UUID, public?: true
 attribute :some_value, SomeComplex.Custom.Type, public?: true
 end
end
Configure the type mappings
config :ash_typescript,
 type_mapping_overrides: [
 # Map to built-in TypeScript type
 {AshUUID.UUID, "string"},

 # Map to custom type (requires defining the type in customTypes.ts)
 {SomeComplex.Custom.Type, "CustomTypes.MyCustomType"}
],

 # Import your custom types
 import_into_generated: [
 %{
 import_name: "CustomTypes",
 file: "./customTypes"
 }
]
// customTypes.ts - Define the MyCustomType type
export type MyCustomType = {
 someField: string;
 anotherField: number;
};
Generated TypeScript:
import * as CustomTypes from "./customTypes";

interface ProductResourceSchema {
 id: string;
 name: string;
 uuid: string; // Mapped to built-in string type
 someValue: CustomTypes.MyCustomType; // Mapped to custom type
}
When to Use Type Mapping Overrides
	✅ Third-party Ash types from dependencies you don't control
	✅ Library types like AshUUID.UUID, etc.
	❌ Your own types - prefer using typescript_type_name/0 callback instead

Custom Type Imports
Import custom TypeScript modules into the generated code:
config :ash_typescript,
 import_into_generated: [
 %{
 import_name: "CustomTypes",
 file: "./customTypes"
 },
 %{
 import_name: "MyAppConfig",
 file: "./myAppConfig"
 }
]
This generates:
import * as CustomTypes from "./customTypes";
import * as MyAppConfig from "./myAppConfig";
Import Configuration Options
	Option	Type	Description
	import_name	string	Name to use for the import (e.g., CustomTypes)
	file	string	Relative path to the module file (e.g., ./customTypes)

Untyped Map Type Configuration
By default, AshTypescript generates Record<string, any> for map-like types without field constraints. You can configure this to use stricter types like Record<string, unknown> for better type safety.
Configuration
config/config.exs
config :ash_typescript,
 # Default - allows any value type (more permissive)
 untyped_map_type: "Record<string, any>"

 # Stricter - requires type checking before use (recommended for new projects)
 # untyped_map_type: "Record<string, unknown>"

 # Custom - use your own type definition
 # untyped_map_type: "MyCustomMapType"
What Gets Affected
This configuration applies to all map-like types without field constraints:
	Ash.Type.Map without fields constraint
	Ash.Type.Keyword without fields constraint
	Ash.Type.Tuple without fields constraint
	Ash.Type.Struct without instance_of or fields constraint

Maps with field constraints are NOT affected and will still generate typed objects.
Type Safety Comparison
With Record<string, any> (default):
// More permissive - values can be used directly
const todo = await getTodo({ fields: ["id", "customData"] });
if (todo.success && todo.data.customData) {
 const value = todo.data.customData.someField; // OK - no error
 console.log(value.toUpperCase()); // Runtime error if not a string!
}
With Record<string, unknown> (stricter):
// Stricter - requires type checking before use
const todo = await getTodo({ fields: ["id", "customData"] });
if (todo.success && todo.data.customData) {
 const value = todo.data.customData.someField; // Type: unknown
 console.log(value.toUpperCase()); // ❌ TypeScript error!

 // Must check type first
 if (typeof value === 'string') {
 console.log(value.toUpperCase()); // ✅ OK
 }
}
Example Resources
defmodule MyApp.Todo do
 use Ash.Resource,
 domain: MyApp.Domain,
 extensions: [AshTypescript.Resource]

 attributes do
 # Untyped map - uses configured untyped_map_type
 attribute :custom_data, :map, public?: true

 # Typed map - always generates typed object (not affected by config)
 attribute :metadata, :map, public?: true, constraints: [
 fields: [
 priority: [type: :string],
 tags: [type: {:array, :string}]
]
]
 end
end
Generated TypeScript:
// With untyped_map_type: "Record<string, unknown>"
type TodoResourceSchema = {
 customData: Record<string, unknown> | null; // Uses configured type
 metadata: { // Typed object (not affected)
 priority: string;
 tags: Array<string>;
 } | null;
}
When to Use Each Option
Use Record<string, any> when:
	You need maximum flexibility
	You're working with truly dynamic data structures
	You trust your backend data and want faster development
	Backward compatibility with existing code is important

Use Record<string, unknown> when:
	You want maximum type safety
	You're starting a new project
	You want to catch potential runtime errors at compile time
	You prefer explicit type checking over implicit assumptions

Zod Schema Configuration
AshTypescript can generate Zod validation schemas for runtime type validation.
Configuration
config :ash_typescript,
 # Enable/disable Zod schema generation
 generate_zod_schemas: true,

 # Import path for Zod library
 zod_import_path: "zod",

 # Suffix for generated schema names
 zod_schema_suffix: "ZodSchema"
Configuration Options
	Option	Type	Default	Description
	generate_zod_schemas	boolean	true	Whether to generate Zod validation schemas
	zod_import_path	string	"zod"	Import path for Zod library
	zod_schema_suffix	string	"ZodSchema"	Suffix appended to schema names

Generated Output
When enabled, generates schemas like:
import { z } from "zod";

export const TodoZodSchema = z.object({
 id: z.string(),
 title: z.string(),
 completed: z.boolean().nullable()
});
Phoenix Channel Configuration
AshTypescript can generate Phoenix channel-based RPC functions alongside HTTP-based functions.
Configuration
config :ash_typescript,
 # Enable Phoenix channel RPC action generation
 generate_phx_channel_rpc_actions: true,

 # Import path for Phoenix library
 phoenix_import_path: "phoenix"
Configuration Options
	Option	Type	Default	Description
	generate_phx_channel_rpc_actions	boolean	false	Whether to generate channel-based RPC functions
	phoenix_import_path	string	"phoenix"	Import path for Phoenix library

Generated Output
When enabled, generates both HTTP and channel-based functions:
import { Channel } from "phoenix";

// HTTP-based (always available)
export async function listTodos<Fields extends ListTodosFields>(
 config: ListTodosConfig<Fields>
): Promise<ListTodosResult<Fields>> {
 // ... HTTP implementation
}

// Channel-based (when enabled)
export function listTodosChannel<Fields extends ListTodosFields>(
 config: ListTodosChannelConfig<Fields>
): void {
 // ... Channel implementation
}
For more details on using Phoenix channels, see the Phoenix Channels topic documentation.
RPC Resource Warnings
AshTypescript provides compile-time warnings to help you identify potential configuration issues with your RPC resources. These warnings appear during mix compile or when running mix test.codegen.
Warning Types
Missing RPC Configuration Warning
This warning appears when you have resources with the AshTypescript.Resource extension that are not configured in any domain's typescript_rpc block.
Example warning:
⚠️ Found resources with AshTypescript.Resource extension
 but not listed in any domain's typescript_rpc block:

 • MyApp.ForgottenResource
 • MyApp.AnotherResource

 These resources will not have TypeScript types generated.
 To fix this, add them to a domain's typescript_rpc block:

 defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.ForgottenResource do
 rpc_action :list, :read
 end
 end
 end
When this appears:
	You added extensions: [AshTypescript.Resource] to a resource
	The resource is not listed in any typescript_rpc block in your domains
	The resource is not an embedded resource (embedded resources are automatically discovered)

To fix:
	Add the resource to a domain's typescript_rpc block, OR
	Remove AshTypescript.Resource extension if the resource doesn't need TypeScript types, OR
	Disable the warning (see configuration below)

Non-RPC References Warning
This warning appears when RPC resources reference other resources that are not themselves configured as RPC resources.
Example warning:
⚠️ Found non-RPC resources referenced by RPC resources:

 • MyApp.InternalResource
 Referenced from:
 - Todo -> metadata -> TodoMetadata -> internal
 - User -> profile_data

 • MyApp.Helper
 Referenced from:
 - Todo -> helper_data

 These resources are referenced in attributes, calculations, or aggregates
 of RPC resources, but are not themselves configured as RPC resources.
 They will NOT have TypeScript types or RPC functions generated.

 If these resources should be accessible via RPC, add them to a domain's
 typescript_rpc block. Otherwise, you can ignore this warning.
When this appears:
	An RPC resource has an attribute, calculation, or aggregate whose type references another resource
	The referenced resource is not configured in any typescript_rpc block
	The referenced resource is not an embedded resource

To fix:
	Add the referenced resource to a domain's typescript_rpc block if it should be accessible, OR
	Leave it as-is if the resource is intentionally internal-only, OR
	Disable the warning (see configuration below)

Configuration
Both warnings can be independently disabled in your configuration:
config/config.exs
config :ash_typescript,
 # Disable warning about resources with extension but not in RPC config
 warn_on_missing_rpc_config: false,

 # Disable warning about non-RPC resources referenced by RPC resources
 warn_on_non_rpc_references: false
Configuration Options
	Option	Type	Default	Description
	warn_on_missing_rpc_config	boolean	true	Warn about resources with AshTypescript.Resource extension that are not configured in any typescript_rpc block
	warn_on_non_rpc_references	boolean	true	Warn about non-RPC resources that are referenced by RPC resources (in attributes, calculations, or aggregates)

When to Disable Warnings
Disable warn_on_missing_rpc_config when:
	You intentionally have resources with the extension that you don't want in the RPC config yet
	You're gradually migrating resources to RPC and don't want warnings during the transition
	You use the extension for other purposes besides RPC generation

Disable warn_on_non_rpc_references when:
	You have many internal resources that are referenced but intentionally not exposed via RPC
	The warning noise outweighs the benefits for your use case
	You have a clear convention for which resources should be RPC-accessible

Best practice: Keep warnings enabled during development and only disable them if you have a specific reason. They help catch configuration mistakes early.
See Also
	Getting Started Tutorial - Initial setup and basic usage
	Mix Tasks Reference - Code generation commands
	Phoenix Channels - Channel-based RPC actions
	Troubleshooting Reference - Common problems and solutions

 Mix Tasks Reference

This document provides a comprehensive reference for all AshTypescript Mix tasks.
Installation Commands
mix igniter.install ash_typescript
Automated installer that sets up everything you need to get started with AshTypescript.
Usage
Basic installation (RPC setup only)
mix igniter.install ash_typescript

Full-stack React + TypeScript setup
mix igniter.install ash_typescript --framework react

What It Does
The installer performs the following tasks:
	Dependency Setup
	Adds AshTypescript to your mix.exs dependencies
	Runs mix deps.get to install the package

	Configuration
	Configures AshTypescript settings in config/config.exs
	Sets default output paths and RPC endpoints

	RPC Controller
	Creates RPC controller at lib/*_web/controllers/ash_typescript_rpc_controller.ex
	Implements handlers for run and validate endpoints

	Phoenix Router
	Adds RPC routes to your Phoenix router
	Configures /rpc/run and /rpc/validate endpoints

	React Setup (with --framework react)
	Sets up complete React + TypeScript environment
	Configures esbuild or vite for frontend builds
	Creates welcome page with getting started guide
	Installs necessary npm packages

Options
	Option	Description
	--framework react	Set up React + TypeScript environment

When to Use
	✅ New projects starting with AshTypescript
	✅ Adding AshTypescript to existing Phoenix projects
	✅ Setting up frontend with React integration
	❌ Projects that already have AshTypescript installed

This is the recommended approach for initial setup.
Code Generation Commands
mix ash.codegen
Recommended approach for most projects. This command runs code generation for all Ash extensions in your project, including AshTypescript.
Generate types for all Ash extensions including AshTypescript
mix ash.codegen --dev

For detailed information about mix ash.codegen, see the Ash documentation.
mix ash_typescript.codegen
Generate TypeScript types, RPC clients, Zod schemas, and validation functions only for AshTypescript.
Usage
Basic generation (AshTypescript only)
mix ash_typescript.codegen

Custom output location
mix ash_typescript.codegen --output "frontend/src/api/ash.ts"

Custom RPC endpoints
mix ash_typescript.codegen \
 --run_endpoint "/api/rpc/run" \
 --validate_endpoint "/api/rpc/validate"

Check if generated code is up to date (CI usage)
mix ash_typescript.codegen --check

Preview generated code without writing to file
mix ash_typescript.codegen --dry_run

Options
	Option	Type	Default	Description
	--output FILE	string	assets/js/ash_rpc.ts	Output file path for generated TypeScript
	--run_endpoint PATH	string	/rpc/run	RPC run endpoint path
	--validate_endpoint PATH	string	/rpc/validate	RPC validate endpoint path
	--check	boolean	false	Check if generated code is up to date (exit 1 if not)
	--dry_run	boolean	false	Print generated code to stdout without writing file

Generated Content
When run, this task generates:
	TypeScript Interfaces
	Resource types with field metadata
	Schema types for field selection
	Result types for each action

	RPC Client Functions
	HTTP-based RPC functions for each action
	Channel-based RPC functions (if enabled)
	Type-safe configuration objects

	Filter Input Types
	Comprehensive filter operators
	Type-safe query building
	Nested relationship filtering

	Zod Validation Schemas (if enabled)
	Runtime type validation
	Schema for each resource
	Nested validation support

	Form Validation Functions
	Client-side validation helpers
	Error message handling
	Field-level validation

	Typed Query Constants
	Pre-configured field selections
	SSR-optimized types
	Type-safe result extraction

	Custom Type Imports
	Imports for custom types
	Integration with external types
	Type mapping support

Examples
Basic Generation:
mix ash_typescript.codegen

Custom Output Location:
mix ash_typescript.codegen --output "frontend/src/api/ash.ts"

Custom RPC Endpoints:
mix ash_typescript.codegen \
 --run_endpoint "/api/rpc/run" \
 --validate_endpoint "/api/rpc/validate"

CI Check:
In CI pipeline - fails if generated code is out of date
mix ash_typescript.codegen --check

Preview Without Writing:
See what would be generated
mix ash_typescript.codegen --dry_run | less

When to Use
	✅ Want to run codegen specifically for AshTypescript
	✅ Need custom output paths or endpoints
	✅ Debugging generated TypeScript code
	✅ CI/CD pipelines with --check flag
	❌ Have other Ash extensions that need codegen (use mix ash.codegen)

Test Environment Code Generation
For projects using test-only resources (common in library development), use the test environment:
Generate types in test environment
MIX_ENV=test mix ash_typescript.codegen

Or use the test.codegen alias (if defined)
mix test.codegen

Setting Up Test Codegen Alias
Add to your mix.exs:
defp aliases do
 [
 "test.codegen": ["cmd MIX_ENV=test mix ash_typescript.codegen"],
 # ... other aliases
]
end
Workflow Integration
Development Workflow
1. Make changes to resources or domain configuration
vim lib/my_app/resources/todo.ex

2. Generate TypeScript types
mix ash.codegen --dev

3. Verify TypeScript compilation (in frontend directory)
cd assets && npm run typecheck

4. Run tests
mix test

CI/CD Workflow
In your CI pipeline (.github/workflows/ci.yml, etc.)

Check generated code is up to date
mix ash_typescript.codegen --check

If out of date, CI fails with:
"Generated TypeScript code is out of date. Run: mix ash_typescript.codegen"

Example GitHub Actions:
- name: Check TypeScript codegen
 run: mix ash_typescript.codegen --check

- name: Type check generated code
 run: |
 cd assets
 npm run typecheck
Pre-commit Hook
Add to .git/hooks/pre-commit:
#!/bin/bash
Regenerate TypeScript on commit
mix ash_typescript.codegen --check || {
 echo "TypeScript code out of date. Regenerating..."
 mix ash_typescript.codegen
 git add assets/js/ash_rpc.ts
}

Troubleshooting
Common Issues
"No domains found"
Problem: Command runs but generates empty output or reports no domains.
Solution: Ensure you're in the correct MIX_ENV:
Wrong - uses dev environment
mix ash_typescript.codegen

Correct - uses test environment for test resources
MIX_ENV=test mix ash_typescript.codegen

Generated code doesn't compile
Problem: TypeScript compilation fails after generation.
Solution: Check for:
	Invalid field names (use field name mapping)
	Custom types not defined in imported modules
	Missing type mapping overrides for dependency types

See Configuration Reference for field name mapping and type overrides.
Changes not reflected
Problem: Made changes to resources but generated TypeScript unchanged.
Solution:
	Recompile Elixir code: mix compile --force
	Regenerate TypeScript: mix ash_typescript.codegen
	Verify output file path matches configuration

Permission errors
Problem: Cannot write to output file.
Solution: Check file permissions and directory structure:
Ensure directory exists
mkdir -p assets/js

Check permissions
ls -la assets/js

Fix if needed
chmod 755 assets/js

See Also
	Configuration Reference - Configure code generation
	Getting Started Tutorial - Initial setup guide
	Troubleshooting Reference - Common problems and solutions

 Troubleshooting

This guide covers common issues you may encounter when using AshTypescript and how to resolve them.
Common Issues
TypeScript Compilation Errors
Symptoms:
	Generated types don't compile
	TypeScript compiler errors in generated files
	Missing type definitions

Solutions:
	Ensure generated types are up to date: mix ash_typescript.codegen
	Check that all referenced resources are properly configured
	Verify that all attributes are marked as public? true
	Check that relationships are properly defined
	Validate TypeScript compilation: cd assets/js && npx tsc --noEmit

RPC Endpoint Errors
Symptoms:
	404 errors when calling RPC endpoints
	Actions not found
	Endpoint routing issues

Solutions:
	Verify AshPhoenix RPC endpoints are configured in your router:scope "/api" do
 pipe_through :api
 ash_phoenix_rpc "/ash_rpc", :ash_typescript
end

	Check that actions are properly exposed in domain RPC configuration
	Ensure the domain is properly configured with AshTypescript.Rpc extension
	Verify action names match between domain configuration and TypeScript calls

Type Inference Issues
Symptoms:
	Types show as unknown or any
	Field selection not properly typed
	Missing fields in type definitions

Solutions:
	Ensure all attributes are marked as public? true
	Check that relationships are properly defined
	Verify schema key generation and field classification
	Check __type metadata in generated schemas
	Ensure resource schema structure matches expected format

Invalid Field Name Errors
AshTypescript validates that all field names are valid TypeScript identifiers.
Error: "Invalid field names found"
Cause: Resource attributes or action arguments use invalid TypeScript patterns:
	Underscore before digit: field_1, address_line_2
	Question mark suffix: is_active?, verified?

Solution: Add field_names or argument_names mapping in your resource's typescript block:
defmodule MyApp.Task do
 use Ash.Resource

 typescript do
 field_names [
 field_1: "field1",
 is_active?: "isActive"
]

 argument_names [
 some_action: [field_2: "field2"]
]
 end
end
Error: "Invalid field names in map/keyword/tuple"
Cause: Map constraints or tuple type definitions contain invalid TypeScript field names.
Solution: Create a custom Ash.Type.NewType with typescript_field_names/0 callback:
defmodule MyApp.Types.CustomMap do
 use Ash.Type.NewType,
 subtype_of: :map,
 constraints: [
 fields: [
 field_1: [type: :string],
 is_valid?: [type: :boolean]
]
]

 def typescript_field_names do
 [
 field_1: "field1",
 is_valid?: "isValid"
]
 end
end
Metadata Field Errors
Error: "Invalid metadata field name"
Cause: Action metadata fields use invalid TypeScript patterns.
Solution: Use metadata_field_names DSL option in rpc_action:
defmodule MyApp.Domain do
 use Ash.Domain, extensions: [AshTypescript.Rpc]

 typescript_rpc do
 resource MyApp.Task do
 rpc_action :read_tasks, :read do
 metadata_field_names [
 field_1: "field1",
 is_cached?: "isCached"
]
 end
 end
 end
end
Error: "Metadata field conflicts with resource field"
Cause: A metadata field has the same name as a resource attribute or calculation.
Solution: Either:
	Rename the metadata field in the action
	Use metadata_field_names to map to a different TypeScript name
	Use show_metadata to exclude the conflicting field

Environment and Configuration Errors
Error: "No domains found"
Cause: Running codegen in wrong environment (dev instead of test).
Solution: Always use test environment for development:
✅ Correct
mix test.codegen

❌ Wrong
mix ash_typescript.codegen # Runs in dev environment

Why: Test resources (AshTypescript.Test.*) only compile in :test environment.
Error: "Module not loaded"
Cause: Test resources not compiled in current environment.
Solution: Ensure you're using test environment:
mix test.codegen
mix test

Field Selection Issues
Symptoms:
	Field selection not working as expected
	Missing fields in results
	Type errors with field selection

Solutions:
	Use unified field format: ["field", {"relation": ["field"]}]
	Verify calculation is properly configured and public
	Debug with RequestedFieldsProcessor if needed
	Check for invalid field format or pipeline issues

Embedded Resources
Error: "should not be listed in domain"
Cause: Embedded resource incorrectly added to domain resources list.
Solution: Remove embedded resource from domain - embedded resources should not be listed in domain resources.
Type Detection Failure
Cause: Embedded resource not properly defined.
Solution: Ensure embedded resource uses Ash.Resource with proper attributes and the embedded?: true option.
Union Types
Symptoms:
	Field selection failing for union types
	Type inference problems
	Unknown types for union members

Solutions:
	Use proper union member selection format: {content: ["field1", {"nested": ["field2"]}]}
	Check union storage mode configuration
	Verify all union member resources are properly defined

Lifecycle Hooks
Config Precedence Not Working
Wrong:
// ❌ Original config gets overridden
return {
 headers: { ...config.headers, 'X-Custom': 'value' },
 ...config
};
Correct:
// ✅ Original config takes precedence
return {
 ...config,
 headers: { 'X-Custom': 'value', ...config.headers }
};
Performance Timing Not Working
Wrong:
// ❌ Context is read-only, modifications lost
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx;
 ctx.startTime = Date.now(); // Lost!
 return config;
}
Correct:
// ✅ Return modified context
export function beforeRequest(actionName: string, config: ActionConfig): ActionConfig {
 const ctx = config.hookCtx || {};
 return {
 ...config,
 hookCtx: { ...ctx, startTime: Date.now() }
 };
}
Hook Not Executing
Checklist:
	Verify hook functions are exported from the configured module
	Check that import_into_generated includes the hooks module
	Regenerate types with mix ash.codegen --dev
	Ensure hook function names match the configuration exactly
	For channel hooks: Verify that generate_phx_channel_rpc_actions: true is set in config

TypeScript Errors with Hook Context
Wrong:
// ❌ Type assertion without null check
const ctx = config.hookCtx as ActionHookContext;
ctx.trackPerformance; // Error if hookCtx is undefined
Correct:
// ✅ Optional chaining or type guard
const ctx = config.hookCtx as ActionHookContext | undefined;
if (ctx?.trackPerformance) {
 // Safe to use
}
Channel Hook Issues
Config Precedence Not Working
Wrong:
// ❌ Original config gets overridden
return {
 timeout: 10000,
 ...config
};
Correct:
// ✅ Original config takes precedence
return {
 ...config,
 timeout: config.timeout ?? 10000
};
Response Type Not Being Handled
Solution: Handle all three response types:
export async function afterChannelResponse(
 actionName: string,
 responseType: "ok" | "error" | "timeout",
 data: any,
 config: ActionChannelConfig
): Promise<void> {
 switch (responseType) {
 case "ok":
 // Handle success
 break;
 case "error":
 // Handle error
 break;
 case "timeout":
 // Handle timeout
 break;
 }
}
Debug Commands
Check Generated Output Without Writing
mix ash_typescript.codegen --dry_run

Validate TypeScript Compilation
cd assets/js && npx tsc --noEmit

Check for Updates
mix ash_typescript.codegen --check

Clean Rebuild
If you're experiencing persistent issues:
mix clean
mix deps.compile
mix compile
mix test.codegen

Validate Generated Types (Development)
When working on AshTypescript itself:
Generate test types
mix test.codegen

Validate TypeScript compilation
cd test/ts && npm run compileGenerated

Test valid patterns compile
npm run compileShouldPass

Test invalid patterns fail (must fail!)
npm run compileShouldFail

Run Elixir tests
mix test

Getting Help
If you're still experiencing issues:
	Check the documentation: hexdocs.pm/ash_typescript
	Review the demo app: AshTypescript Demo
	Search existing issues: GitHub Issues
	Ask for help: GitHub Discussions
	Join the community: Ash Framework Discord

When reporting issues, please include:
	AshTypescript version
	Ash version
	Elixir version
	Error messages and stack traces
	Minimal reproduction example if possible

 AshTypescript.Rpc

typescript_rpc
Define available RPC-actions for resources in this domain.
The error handler will be called with (error, context) and should return a modified error map.
If a module is provided, it must export a handle_error/2 function.
Default error handler: {AshTypescript.Rpc.DefaultErrorHandler, :handle_error, []}
Example:
error_handler {MyApp.CustomErrorHandler, :handle_error, []}
or
error_handler MyApp.CustomErrorHandler

show_raised_errors?:
Set to true in development to see full error details.
Keep false in production for security.
Nested DSLs
	resource	rpc_action
	typed_query

Options
	Name	Type	Default	Docs
	error_handler	mfa | module	{AshTypescript.Rpc.DefaultErrorHandler, :handle_error, []}	An MFA or module that implements error handling for RPC operations.
	show_raised_errors?	boolean	false	Whether to show detailed information for raised exceptions.

typescript_rpc.resource
resource resource
Define available RPC-actions for a resource
Nested DSLs
	rpc_action
	typed_query

Arguments
	Name	Type	Default	Docs
	resource	module		The resource being configured

typescript_rpc.resource.rpc_action
rpc_action name, action
Define an RPC action that exposes a resource action to TypeScript clients.
Metadata fields: Action metadata can be exposed via show_metadata option.
Set to nil (default) to expose all metadata fields, false or [] to disable,
or provide a list of atoms to expose specific fields.
Metadata field naming: Use metadata_field_names to map invalid metadata field names
(e.g., field_1, is_valid?) to valid TypeScript identifiers.
Example: metadata_field_names [field_1: "field1", is_valid?: "isValid"]
Get options:
	get? - When true, retrieves a single resource by primary key. Requires primary key
in the RPC call and returns a single result or null.
	get_by - Retrieves a single resource by the specified fields. The fields must be
valid resource attributes. Returns a single result or null.

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the RPC-action
	action	atom		The resource action to expose

Options
	Name	Type	Default	Docs
	read_action	atom		The read action to use for update and destroy operations when finding records
	show_metadata	nil | boolean | list(atom)		Which metadata fields to expose (nil=all, false/[]=none, list=specific fields)
	metadata_field_names	list({atom, String.t})	[]	Map metadata field names to valid TypeScript identifiers (string values)
	get?	boolean	false	When true, retrieves a single resource by primary key. Returns single result or null.
	get_by	list(atom)	[]	Retrieves a single resource by the specified fields (must be resource attributes). Returns single result or null.
	not_found_error?	true | false | nil		When true (default from global config), returns an error if no record is found. When false, returns null. Only applies to get actions (get?, get_by, or action.get?). If not specified, uses the global config config :ash_typescript, not_found_error?: true.
	identities	list(atom)	[:_primary_key]	List of identities that can be used to look up records for update/destroy actions. Use :_primary_key for the primary key, or identity names like :email. Defaults to [:_primary_key]. Use [] for actor-scoped actions that don't need a lookup key.

Introspection
Target: AshTypescript.Rpc.RpcAction
typescript_rpc.resource.typed_query
typed_query name, action
Arguments
	Name	Type	Default	Docs
	name	atom		The name of the RPC-action
	action	atom		The read action on the resource to query

Options
	Name	Type	Default	Docs
	ts_result_type_name	String.t		The name of the TypeScript type for the query result
	ts_fields_const_name	String.t		The name of the constant for the fields, that can be reused by the client to re-run the query
	fields	list(any)		The fields to query

Introspection
Target: AshTypescript.Rpc.TypedQuery
Introspection
Target: AshTypescript.Rpc.Resource

 AshTypescript.Resource

Spark DSL extension for configuring TypeScript generation on Ash resources.
This extension allows resources to define TypeScript-specific settings,
such as custom type names for the generated TypeScript interfaces.
typescript
Define TypeScript settings for this resource
Options
	Name	Type	Default	Docs
	type_name	String.t		The name of the TypeScript type for the resource
	field_names	keyword	[]	A keyword list mapping Elixir field names to TypeScript client names. Use strings for the client names - no additional formatting is applied. (e.g., [is_active?: "isActive", address_line_1: "addressLine1"])
	argument_names	keyword	[]	A keyword list mapping Elixir argument names to TypeScript client names per action. Use strings for the client names - no additional formatting is applied. (e.g., [read_action: [is_active?: "isActive"]])

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.11.0 (2025-12-09)
Breaking changes:
	All field mapping dsls and callbacks now require strings instead of atoms.
	Fields requested from calculations without arguments no longer need to be wrapped in {fields: [...]}

Features:
	add VerifyActionTypes and VerifyUniqueInputFieldNames verifiers by @Torkan

	add ResourceFields helper and extend Introspection by @Torkan

	add FieldSelector for unified type-driven field selection by @Torkan

	add ValueFormatter for unified type-aware value formatting by @Torkan

Bug Fixes:
	remove underscore in Zod schema name generation by @Torkan

	cast struct inputs fully using Ash.Type by @zachdaniel

	handle private arguments in action_inputs lookup by @Torkan

	don't include private arguments in typescript codegen by @zachdaniel

v0.10.2 (2025-12-05)
Bug Fixes:
	codegen: use field formatters for generated TypeScript config interfaces & rename hardcoded primaryKey fields to identity @Torkan

v0.10.1 (2025-12-04)
Bug Fixes:
	rpc: consolidate field formatting and format error field names for by @Torkan

	rpc: flatten multiple error responses by removing nested wrapper by @Torkan

	test: generate TypeScript inline instead of reading from file by @Torkan

v0.10.0 (2025-12-04)
Breaking Changes:
primaryKey input field for update & destroy rpc actions are now replaced by the more flexible identities-field
Features:
	identities: add compile-time identity verification by @Torkan

	identities: add identity-based record lookup for update/destroy actions by @Torkan

Bug Fixes:
	codegen: raise error instead of System.halt on generation failure by @Torkan

v0.9.1 (2025-12-01)
Bug Fixes:
	struct-args: support Ash resources as struct action arguments by @Torkan

v0.9.0 (2025-11-30)
Features:
	codegen: generate TypeScript types for get? and get_by actions by @Torkan

	rpc: add compile-time verification for get options by @Torkan

	rpc: implement get? and get_by runtime execution by @Torkan

	rpc: add get?, get_by, and not_found_error? DSL options by @Torkan

v0.9.0 (2025-11-30)
Features:
	codegen: generate TypeScript types for get? and get_by actions by @Torkan

	rpc: add compile-time verification for get options by @Torkan

	rpc: implement get? and get_by runtime execution by @Torkan

	rpc: add get?, get_by, and not_found_error? DSL options by @Torkan

v0.8.4 (2025-11-25)
Bug Fixes:
	codegen: support calculation fields in aggregates across all modules by @Torkan

	rpc: respect allow_nil_input and require_attributes for input type optionality by @Torkan

	support sum aggregates over calculations and discover calculation argument types by Oliver Severin Mulelid-Tynes (#23)

v0.8.3 (2025-11-24)
Bug Fixes:
	improved error message for missing AshTypescript.Resource extension or missing typescript dsl-block
	add closing backticks on the code example for composite type field selection by Jacob Bahn (#21)

v0.8.2 (2025-11-20)
Bug Fixes:
	codegen: export Infer*Result types from generated TypeScript by @Torkan

v0.8.1 (2025-11-20)
Bug Fixes:
	test: remove URLs from argsWithFieldConstraints to fix parser issue by @Torkan

	codegen: make nullable fields optional and fix spacing in input types by @Torkan

	codegen: use get_ts_input_type for argument types in input schemas by @Torkan

	Add default boolean values to config getters by zeadhani (#20)

v0.8.0 (2025-11-19)
Features:
	add FieldExtractor module for unified tuple/keyword/map extraction by @Torkan

Bug Fixes:
	exclude struct union members with instance_of from primitiveFields by @Torkan

	require wrapped format for union inputs with proper validation by @Torkan

	add is_primitive_struct? check in result_processor by @Torkan (#17)

Improvements:
	preserve TypedStruct instance_of for field name mappings by @Torkan

	standardize RPC error structure with vars, path, fields, details by @Torkan

	use bulk actions for update/destroy by @zachdaniel (#17)

	support read_action configuration by @zachdaniel (#17)

	better error handling & struct field selection in RPC by @zachdaniel (#17)

v0.7.1 (2025-11-08)
Bug Fixes:
	add missing resources to typescript_rpc in test setup to fix compile warnings by @Torkan

v0.7.0 (2025-11-08)
Features:
	add configurable warnings for RPC resource discovery and references by @Torkan

	add resource scanner for embedded resource discovery by @Torkan

v0.6.4 (2025-11-03)
Bug Fixes:
	add reusable action/validation helpers, improve lifecycle hook types by @Torkan

v0.6.3 (2025-11-01)
Bug Fixes:
	use type constraints in zod schema generation by @Torkan

v0.6.2 (2025-10-28)
Bug Fixes:
	rpc: make fields parameter optional with proper type inference by @Torkan

	rpc: improve type inference for optional fields parameter by @Torkan

	rpc: generate optional fields parameter for create/update in TypeScript by @Torkan

	rpc: make fields parameter optional for create and update actions by @Torkan

v0.6.1 (2025-10-27)
Bug Fixes:
	codegen: deduplicate resources when exposed in multiple domains by @Torkan

	codegen: fix mapped field names usage in typed queries by @Torkan

v0.6.0 (2025-10-21)
Features:
	rpc: implement lifecycle hooks in TypeScript codegen by @Torkan

	rpc: add lifecycle hooks configuration API by @Torkan

	codegen: add configurable untyped map type by @Torkan

	rpc: add custom error response handler support by @Torkan

	rpc: add support for dynamic endpoint configuration via imported TypeScript functions by @Torkan

	rpc: add typed query field verification at compile time by @Torkan

	add type_mapping_overrides config setting by @Torkan

	codegen: warn when resources have extension but missing from domain by @Torkan

Bug Fixes:
	add support for generic actions returning typed struct(s) by @Torkan

v0.5.0 (2025-10-13)
Features:
	add action metadata support with field name mapping by @Torkan

	add precise pagination type constraints to prevent misuse by @Torkan

	add VerifierChecker utility for Spark verifier validation by @Torkan

	support typescript_field_names callback in codegen by @Torkan

	add map field name validation for custom types by @Torkan

	add field_names & argument_names for mapping invalid typescript names to valid ones by @Torkan

Bug Fixes:
	apply field name mappings to Zod schemas for all field types by @Torkan

	apply field name mappings in RPC request/result processing by @Torkan

	apply field name mappings in TypeScript codegen by @Torkan

	use mapped field names & argument names in codegen by @Torkan

v0.4.0 (2025-09-29)
Features:
	Properly handle map without constraints, both as input and output. by @Torkan

Bug Fixes:
	Add verifier that checks that resources with rpc actions use by @Torkan

	reject loading of relationships for resources without AshTypescript.Resource extension. by @Torkan

	use __array: true for union types on resource schema by @Torkan

	generate correct types for array union attributes. by @Torkan

	For generic actions that return an untyped map, remove fields-arg by @Torkan

Improvements:
	add unique type_name verifier for AshTypescript.Resource by @Torkan

	remove redundant path-tracking & cleanup of code in formatters. by @Torkan

	remove redundant cast_input in color_palette.ex by @Torkan

v0.3.3 (2025-09-20)
Improvements:
	run npm install automatically on installation by Zach Daniel

v0.3.2 (2025-09-20)
Bug Fixes:
	change installer config: --react -> --framework react by Torkild Kjevik

v0.3.1 (2025-09-20)
Improvements:
	add igniter install notices. by Torkild Kjevik

v0.3.0 (2025-09-20)
Features:
	add igniter installer by Torkild Kjevik

Improvements:
	add rpc routes & basic react setup in installer by Torkild Kjevik

	use String.contains? for checking if rpc routes already exist by Torkild Kjevik

	Set default config in config.exs by Torkild Kjevik

v0.2.0 (2025-09-17)
Features:
	Add Phoenix Channel support & generation of channel functions. by Torkild Kjevik

Bug Fixes:
	Only send relevant data to the backend. by Torkild Kjevik

Improvements:
	prefix socket assigns with ash_ by Torkild Kjevik

	Add timeout parameter to channel rpc actions. by Torkild Kjevik

v0.1.2 (2025-09-15)
Improvements:
	Use correct casing in dsl docs filenames. by Torkild Kjevik

v0.1.1 (2025-09-15)
Bug Fixes:
	Add codegen-callback for ash.codegen. by Torkild Kjevik

	update typespec for run_typed_query/4 by Torkild Kjevik

	Use correct name for entities in rpc verifier. by Torkild Kjevik

Improvements:
	add support for AshPostgres.Ltree type. by Torkild Kjevik

	add custom http client support. by Torkild Kjevik

	build related issues, update ash by Zach Daniel

v0.1.0 (2025-09-13)
Features:
	Initial feature set

AshTypescript.Codegen

Main code generation module for TypeScript types and schemas from Ash resources.
This module serves as the primary entry point for code generation. It delegates
to specialized submodules in AshTypescript.Codegen.* for specific tasks:
	TypeDiscovery - Discovers all types needing TypeScript definitions
	TypeAliases - Generates TypeScript type aliases for Ash types
	ResourceSchemas - Generates resource schemas (output and input)
	TypeMapper - Maps Ash types to TypeScript types
	Helpers - Shared utility functions

 Summary

 Functions

 build_map_type(fields, select \\ nil, field_name_mappings \\ nil)

 See AshTypescript.Codegen.TypeMapper.build_map_type/3.

 build_resource_type(resource, select_and_loads \\ nil)

 See AshTypescript.Codegen.TypeMapper.build_resource_type/2.

 build_resource_type_name(resource_module)

 See AshTypescript.Codegen.Helpers.build_resource_type_name/1.

 build_union_input_type(types)

 See AshTypescript.Codegen.TypeMapper.build_union_input_type/1.

 build_union_type(types)

 See AshTypescript.Codegen.TypeMapper.build_union_type/1.

 find_embedded_resources(otp_app)

 See AshTypescript.Codegen.TypeDiscovery.find_embedded_resources/1.

 find_field_constrained_types(resources)

 See AshTypescript.Codegen.TypeDiscovery.find_field_constrained_types/1.

 generate_all_schemas_for_resource(resource, allowed_resources, input_schema_resources \\ [])

 See AshTypescript.Codegen.ResourceSchemas.generate_all_schemas_for_resource/3.

 generate_all_schemas_for_resources(resources, allowed_resources, resources_needing_input_schema \\ nil)

 See AshTypescript.Codegen.ResourceSchemas.generate_all_schemas_for_resources/3.

 generate_ash_type_aliases(resources, actions, otp_app)

 See AshTypescript.Codegen.TypeAliases.generate_ash_type_aliases/3.

 generate_input_schema(resource)

 See AshTypescript.Codegen.ResourceSchemas.generate_input_schema/1.

 generate_unified_resource_schema(resource, allowed_resources)

 See AshTypescript.Codegen.ResourceSchemas.generate_unified_resource_schema/2.

 get_resource_field_spec(field, resource)

 See AshTypescript.Codegen.TypeMapper.get_resource_field_spec/2.

 get_ts_input_type(attr)

 See AshTypescript.Codegen.TypeMapper.get_ts_input_type/1.

 get_ts_type(type_and_constraints, select_and_loads \\ nil)

 See AshTypescript.Codegen.TypeMapper.get_ts_type/2.

 is_complex_return_type(type, constraints)

 See AshTypescript.Codegen.Helpers.is_complex_return_type/2.

 is_embedded_resource?(module)

 See AshTypescript.TypeSystem.Introspection.is_embedded_resource?/1.

 is_simple_calculation(calc)

 See AshTypescript.Codegen.Helpers.is_simple_calculation/1.

 lookup_aggregate_type(resource, relationship_path, field)

 See AshTypescript.Codegen.Helpers.lookup_aggregate_type/3.

 unwrap_new_type(type, constraints)

 See AshTypescript.TypeSystem.Introspection.unwrap_new_type/2.

 Functions

 build_map_type(fields, select \\ nil, field_name_mappings \\ nil)

See AshTypescript.Codegen.TypeMapper.build_map_type/3.

 build_resource_type(resource, select_and_loads \\ nil)

See AshTypescript.Codegen.TypeMapper.build_resource_type/2.

 build_resource_type_name(resource_module)

See AshTypescript.Codegen.Helpers.build_resource_type_name/1.

 build_union_input_type(types)

See AshTypescript.Codegen.TypeMapper.build_union_input_type/1.

 build_union_type(types)

See AshTypescript.Codegen.TypeMapper.build_union_type/1.

 find_embedded_resources(otp_app)

See AshTypescript.Codegen.TypeDiscovery.find_embedded_resources/1.

 find_field_constrained_types(resources)

See AshTypescript.Codegen.TypeDiscovery.find_field_constrained_types/1.

 generate_all_schemas_for_resource(resource, allowed_resources, input_schema_resources \\ [])

See AshTypescript.Codegen.ResourceSchemas.generate_all_schemas_for_resource/3.

 generate_all_schemas_for_resources(resources, allowed_resources, resources_needing_input_schema \\ nil)

See AshTypescript.Codegen.ResourceSchemas.generate_all_schemas_for_resources/3.

 generate_ash_type_aliases(resources, actions, otp_app)

See AshTypescript.Codegen.TypeAliases.generate_ash_type_aliases/3.

 generate_input_schema(resource)

See AshTypescript.Codegen.ResourceSchemas.generate_input_schema/1.

 generate_unified_resource_schema(resource, allowed_resources)

See AshTypescript.Codegen.ResourceSchemas.generate_unified_resource_schema/2.

 get_resource_field_spec(field, resource)

See AshTypescript.Codegen.TypeMapper.get_resource_field_spec/2.

 get_ts_input_type(attr)

See AshTypescript.Codegen.TypeMapper.get_ts_input_type/1.

 get_ts_type(type_and_constraints, select_and_loads \\ nil)

See AshTypescript.Codegen.TypeMapper.get_ts_type/2.

 is_complex_return_type(type, constraints)

See AshTypescript.Codegen.Helpers.is_complex_return_type/2.

 is_embedded_resource?(module)

See AshTypescript.TypeSystem.Introspection.is_embedded_resource?/1.

 is_simple_calculation(calc)

See AshTypescript.Codegen.Helpers.is_simple_calculation/1.

 lookup_aggregate_type(resource, relationship_path, field)

See AshTypescript.Codegen.Helpers.lookup_aggregate_type/3.

 unwrap_new_type(type, constraints)

See AshTypescript.TypeSystem.Introspection.unwrap_new_type/2.

AshTypescript.Codegen.FilterTypes

Generates TypeScript filter types for Ash resources.

 Summary

 Functions

 generate_all_filter_types(otp_app)

 generate_filter_type(resource)

 generate_filter_type(resource, allowed_resources)

 generate_filter_types(resources)

 generate_filter_types(resources, allowed_resources)

 Functions

 generate_all_filter_types(otp_app)

 generate_filter_type(resource)

 generate_filter_type(resource, allowed_resources)

 generate_filter_types(resources)

 generate_filter_types(resources, allowed_resources)

AshTypescript.Codegen.Helpers

Shared helper functions for code generation.

 Summary

 Functions

 build_resource_type_name(resource_module)

 Builds a TypeScript type name from a resource module.
Uses the custom typescript_type_name if defined, otherwise derives from module name.

 is_complex_return_type(arg1, constraints)

 Determines if a return type is complex (requires special metadata handling).

 is_simple_calculation(calc)

 Determines if a calculation is simple (no arguments, no complex return type).
Simple calculations are treated like regular fields in the schema.

 lookup_aggregate_type(current_resource, relationship_path, field)

 Looks up the type of an aggregate field by traversing relationship paths.

 Functions

 build_resource_type_name(resource_module)

Builds a TypeScript type name from a resource module.
Uses the custom typescript_type_name if defined, otherwise derives from module name.

 is_complex_return_type(arg1, constraints)

Determines if a return type is complex (requires special metadata handling).

 is_simple_calculation(calc)

Determines if a calculation is simple (no arguments, no complex return type).
Simple calculations are treated like regular fields in the schema.

 lookup_aggregate_type(current_resource, relationship_path, field)

Looks up the type of an aggregate field by traversing relationship paths.

AshTypescript.Codegen.ResourceSchemas

Generates TypeScript schemas for Ash resources.
Uses a unified field classification pattern for determining how to generate
TypeScript definitions. The classify_field/1 function categorizes fields
into types like :primitive, :relationship, :embedded, :union, etc.

 Summary

 Types

 field_category()

 Field categories for schema generation.

 Functions

 classify_by_type(field)

 Classifies a field by its type, handling NewType unwrapping and array wrappers.

 classify_field(field)

 Classifies an Ash field into a category for schema generation.

 generate_all_schemas_for_resource(resource, allowed_resources, input_schema_resources \\ [])

 Generates all schemas for a single resource.
Includes the unified resource schema and optionally an input schema for resources
that need it (embedded resources or struct argument resources).

 generate_all_schemas_for_resources(resources, allowed_resources, resources_needing_input_schema \\ [])

 Generates all schemas (unified + input) for a list of resources.

 generate_input_schema(resource)

 Generates an input schema for embedded resources.

 generate_unified_resource_schema(resource, allowed_resources)

 Generates a unified resource schema with metadata fields and direct field access.
This replaces the multiple separate schemas with a single, metadata-driven schema.

 Types

 field_category()

 @type field_category() ::
 :primitive
 | :relationship
 | :embedded
 | :union
 | :typed_map
 | :typed_struct
 | :calculation

Field categories for schema generation.
	:primitive - Simple types mapped directly to TypeScript
	:relationship - Ash relationships (has_many, belongs_to, etc.)
	:embedded - Embedded resources
	:union - Ash.Type.Union types
	:typed_map - Map/Keyword/Tuple with field constraints
	:typed_struct - Struct with fields and instance_of constraints
	:calculation - Complex calculations with arguments

 Functions

 classify_by_type(field)

 @spec classify_by_type(map()) :: field_category()

Classifies a field by its type, handling NewType unwrapping and array wrappers.

 classify_field(field)

 @spec classify_field(map()) :: field_category()

Classifies an Ash field into a category for schema generation.
Handles relationships, calculations, and attribute types. Returns the field
category which determines how to generate its TypeScript definition.

 generate_all_schemas_for_resource(resource, allowed_resources, input_schema_resources \\ [])

Generates all schemas for a single resource.
Includes the unified resource schema and optionally an input schema for resources
that need it (embedded resources or struct argument resources).

 generate_all_schemas_for_resources(resources, allowed_resources, resources_needing_input_schema \\ [])

Generates all schemas (unified + input) for a list of resources.
Parameters
	resources - List of resources to generate schemas for
	allowed_resources - List of resources allowed for schema generation (used for filtering)
	resources_needing_input_schema - Optional list of resources that need InputSchema generated
(defaults to embedded resources)

 generate_input_schema(resource)

Generates an input schema for embedded resources.

 generate_unified_resource_schema(resource, allowed_resources)

Generates a unified resource schema with metadata fields and direct field access.
This replaces the multiple separate schemas with a single, metadata-driven schema.

AshTypescript.Codegen.TypeAliases

Generates TypeScript type aliases for Ash types (e.g., UUID, Decimal, DateTime, etc.).

 Summary

 Functions

 generate_ash_type_aliases(resources, actions, otp_app)

 Generates TypeScript type aliases for all Ash types used in resources, actions, and calculations.

 Functions

 generate_ash_type_aliases(resources, actions, otp_app)

Generates TypeScript type aliases for all Ash types used in resources, actions, and calculations.

AshTypescript.Codegen.TypeDiscovery

Discovers all types that need TypeScript definitions generated.
This module serves as the central type discovery system for the code generator.
It recursively traverses the type dependency tree starting from RPC-configured
resources to find all Ash resources and TypedStruct modules that need TypeScript
type definitions.
Type Discovery
The discovery process handles:
	Ash resources (both embedded and non-embedded)
	TypedStruct modules
	Complex nested types (unions, maps, arrays, etc.)
	Recursive type references with cycle detection
	Path tracking for diagnostic purposes

Main Functions
	scan_rpc_resources/1 - Finds all Ash resources referenced by RPC resources
	find_embedded_resources/1 - Filters for embedded resources only
	find_field_constrained_types/1 - Finds all field-constrained types in resources
	get_rpc_resources/1 - Gets RPC-configured resources from domains

Validation & Warnings
	find_non_rpc_referenced_resources/1 - Finds non-RPC resources referenced by RPC resources
	find_non_rpc_referenced_resources_with_paths/1 - Same as above but includes reference paths
	find_resources_missing_from_rpc_config/1 - Finds resources with extension but not configured
	build_rpc_warnings/1 - Builds formatted warning message for misconfigured resources

Path Tracking
During traversal, paths are tracked as lists of segments like:
	{:root, ResourceModule} - Starting point
	{:attribute, :field_name} - Attribute field
	{:calculation, :calc_name} - Calculation
	{:aggregate, :agg_name} - Aggregate
	{:union_member, :type_name} - Union member
	{:array_items} - Array items
	{:map_field, :field_name} - Map field

Examples
Get all types that need TypeScript definitions
all_resources = TypeDiscovery.scan_rpc_resources(:my_app)
field_constrained_types = TypeDiscovery.find_field_constrained_types(all_resources)

Get non-RPC resources with paths showing where they're referenced
TypeDiscovery.find_non_rpc_referenced_resources_with_paths(:my_app)
=> %{
MyApp.InternalResource => [
"Todo -> metadata -> TodoMetadata -> internal",
"User -> profile_data"
]
}

Build and output warnings for misconfigured resources
case TypeDiscovery.build_rpc_warnings(:my_app) do
 nil -> :ok
 message -> IO.warn(message)
end

 Summary

 Functions

 build_rpc_warnings(otp_app)

 Builds a formatted warning message for resources that may be misconfigured.

 find_embedded_resources(otp_app)

 Discovers embedded resources from RPC resources by scanning and filtering.

 find_field_constrained_types(resources)

 Discovers all types with field constraints referenced by the given resources.

 find_non_rpc_referenced_resources(otp_app)

 Finds all non-RPC resources that are referenced by RPC resources.

 find_non_rpc_referenced_resources_with_paths(otp_app)

 Finds all non-RPC resources referenced by RPC resources, with paths showing where they're referenced.

 find_referenced_embedded_resources(resource)

 Finds all embedded resources referenced by a single resource.

 find_referenced_non_embedded_resources(resource)

 Finds all non-embedded resources referenced by a single resource.

 find_referenced_resources(resource)

 Finds all Ash resources referenced by a single resource's public attributes,
calculations, and aggregates.

 find_resources_missing_from_rpc_config(otp_app)

 Finds resources with the AshTypescript.Resource extension that are not configured
in any typescript_rpc block.

 find_struct_argument_resources(otp_app)

 Finds all Ash resources used as struct arguments in RPC actions.

 format_path(path)

 Formats a path (list of path segments) into a human-readable string.

 get_rpc_resources(otp_app)

 Gets all RPC resources configured in the given OTP application.

 scan_rpc_resource(resource, visited \\ MapSet.new())

 Scans a single RPC resource to find all referenced resources.

 scan_rpc_resources(otp_app)

 Finds all Ash resources referenced by RPC resources.

 traverse_fields(fields)

 Traverses a fields keyword list (from Map/Keyword/Tuple/custom type constraints)
to find any Ash resource references in the nested field types.

 traverse_type(type, constraints)

 Recursively traverses a type and its constraints to find all Ash resource references.

 Functions

 build_rpc_warnings(otp_app)

Builds a formatted warning message for resources that may be misconfigured.
Returns a formatted warning string if any issues are found based on configuration settings,
or nil if everything is configured correctly.
Checks (based on configuration):
	Resources with AshTypescript.Resource extension but not in any typescript_rpc block
(if AshTypescript.warn_on_missing_rpc_config?() is true)
	Non-RPC resources that are referenced by RPC resources
(if AshTypescript.warn_on_non_rpc_references?() is true)

Parameters
	otp_app - The OTP application name

Returns
A formatted warning string, or nil if no warnings are needed.
Examples
iex> case TypeDiscovery.build_rpc_warnings(:my_app) do
...> nil -> :ok
...> message -> IO.warn(message)
...> end

 find_embedded_resources(otp_app)

Discovers embedded resources from RPC resources by scanning and filtering.
Returns a list of unique embedded resource modules referenced by RPC resources.
Parameters
	otp_app - The OTP application name

Returns
A list of embedded resource modules.
Examples
iex> TypeDiscovery.find_embedded_resources(:my_app)
[MyApp.TodoMetadata, MyApp.TodoContent]

 find_field_constrained_types(resources)

Discovers all types with field constraints referenced by the given resources.
Scans public attributes of resources to find types with field constraints
(Map with fields, Keyword with fields, Tuple with fields, Struct with fields, TypedStruct)
in direct types, arrays, and union types.
Parameters
	resources - A list of Ash resource modules to scan

Returns
A list of unique type info maps containing:
	:instance_of - The module (if available)
	:constraints - The type constraints
	:field_name_mappings - Field name mappings (if available)

Examples
iex> resources = TypeDiscovery.scan_rpc_resources(:my_app)
iex> TypeDiscovery.find_field_constrained_types(resources)
[%{instance_of: MyApp.TaskStats, constraints: [...], field_name_mappings: [...]}]

 find_non_rpc_referenced_resources(otp_app)

Finds all non-RPC resources that are referenced by RPC resources.
These are resources that appear in attributes, calculations, or aggregates
of RPC resources but are not themselves configured as RPC resources.
Parameters
	otp_app - The OTP application name

Returns
A list of non-RPC resource modules that are referenced by RPC resources.
Examples
iex> TypeDiscovery.find_non_rpc_referenced_resources(:my_app)
[MyApp.InternalResource, MyApp.Helper]

 find_non_rpc_referenced_resources_with_paths(otp_app)

Finds all non-RPC resources referenced by RPC resources, with paths showing where they're referenced.
Parameters
	otp_app - The OTP application name

Returns
A map where keys are non-RPC resource modules and values are lists of formatted path strings
showing where each resource is referenced.
Examples
iex> TypeDiscovery.find_non_rpc_referenced_resources_with_paths(:my_app)
%{
 MyApp.InternalResource => [
 "Todo -> metadata -> TodoMetadata -> internal",
 "User -> profile_data"
]
}

 find_referenced_embedded_resources(resource)

Finds all embedded resources referenced by a single resource.
Parameters
	resource - An Ash resource module to scan

Returns
A list of embedded resource modules.

 find_referenced_non_embedded_resources(resource)

Finds all non-embedded resources referenced by a single resource.
Parameters
	resource - An Ash resource module to scan

Returns
A list of non-embedded resource modules.

 find_referenced_resources(resource)

Finds all Ash resources referenced by a single resource's public attributes,
calculations, and aggregates.
Parameters
	resource - An Ash resource module to scan

Returns
A list of Ash resource modules referenced by the given resource.

 find_resources_missing_from_rpc_config(otp_app)

Finds resources with the AshTypescript.Resource extension that are not configured
in any typescript_rpc block.
Parameters
	otp_app - The OTP application name

Returns
A list of non-embedded resource modules with the extension but not configured for RPC.
Examples
iex> TypeDiscovery.find_resources_missing_from_rpc_config(:my_app)
[MyApp.ForgottenResource]

 find_struct_argument_resources(otp_app)

Finds all Ash resources used as struct arguments in RPC actions.
Scans all RPC actions for arguments with type :struct or Ash.Type.Struct
that have an instance_of constraint pointing to an Ash resource.
Parameters
	otp_app - The OTP application name

Returns
A list of unique Ash resource modules used as struct arguments in RPC actions.
Examples
iex> TypeDiscovery.find_struct_argument_resources(:my_app)
[MyApp.TimeSlot, MyApp.Appointment]

 format_path(path)

Formats a path (list of path segments) into a human-readable string.
Parameters
	path - A list of path segments

Returns
A formatted string representing the path.
Examples
iex> path = [{:root, MyApp.Todo}, {:attribute, :metadata}, {:union_member, :text}]
iex> TypeDiscovery.format_path(path)
"Todo -> metadata -> (union: text)"

 get_rpc_resources(otp_app)

Gets all RPC resources configured in the given OTP application.
Parameters
	otp_app - The OTP application name

Returns
A list of unique resource modules that are configured as RPC resources in any domain.

 scan_rpc_resource(resource, visited \\ MapSet.new())

Scans a single RPC resource to find all referenced resources.
Parameters
	resource - An Ash resource module
	visited - A MapSet of already-visited resources (defaults to empty)

Returns
A tuple of {found_resources, updated_visited} where:
	found_resources - List of {resource, path} tuples
	updated_visited - Updated MapSet of visited resources

 scan_rpc_resources(otp_app)

Finds all Ash resources referenced by RPC resources.
Recursively scans all public attributes, calculations, and aggregates of RPC resources,
traversing complex types like maps with fields, unions, typed structs, etc., to find
any Ash resource references.
Parameters
	otp_app - The OTP application name to scan for domains and RPC resources

Returns
A list of unique Ash resource modules that are referenced by RPC resources.
This includes both embedded and non-embedded resources, as well as the RPC resources
themselves if they self-reference. The caller can filter this list based on their needs.
Examples
iex> all_resources = AshTypescript.Codegen.TypeDiscovery.scan_rpc_resources(:my_app)
[MyApp.Todo, MyApp.User, MyApp.Organization, MyApp.TodoMetadata]

iex> # Filter for non-RPC resources
iex> rpc_resources = AshTypescript.Codegen.TypeDiscovery.get_rpc_resources(:my_app)
iex> non_rpc = Enum.reject(all_resources, &(&1 in rpc_resources))

iex> # Filter for embedded resources only
iex> embedded = Enum.filter(all_resources, &Ash.Resource.Info.embedded?/1)

 traverse_fields(fields)

Traverses a fields keyword list (from Map/Keyword/Tuple/custom type constraints)
to find any Ash resource references in the nested field types.
Parameters
	fields - A keyword list where keys are field names and values are field configs

Returns
A list of Ash resource modules found in the field definitions.

 traverse_type(type, constraints)

Recursively traverses a type and its constraints to find all Ash resource references.
This function handles:
	Direct Ash resource module references
	Ash.Type.Struct with instance_of constraint
	Ash.Type.Union with multiple type members
	Ash.Type.Map, Ash.Type.Keyword, Ash.Type.Tuple with fields constraints
	Custom types with fields constraints
	Arrays of any of the above

Parameters
	type - The type to traverse (module or type atom)
	constraints - The constraints keyword list for the type

Returns
A list of Ash resource modules found in the type tree.

AshTypescript.Codegen.TypeMapper

Maps Ash types to TypeScript types using unified type-driven dispatch.
This module provides a unified approach to type mapping with a single core
dispatcher (map_type/3) that handles both input and output directions.

 Summary

 Types

 direction()

 Functions

 build_map_type(fields, select \\ nil, field_name_mappings \\ nil)

 Builds a TypeScript map type with optional field filtering and name mapping.

 build_resource_type(resource, select_and_loads \\ nil)

 Builds a resource type for non-Ash resources.

 build_union_input_type(types)

 Builds an input type for unions (discriminated union syntax).

 build_union_type(types)

 Builds a union type with metadata for field selection.

 get_resource_field_spec(field, resource)

 Gets the TypeScript field specification for a resource field.

 get_ts_input_type(map)

 Maps an Ash type to a TypeScript type for input schemas.
Backward compatible wrapper around map_type/3.

 get_ts_type(type_and_constraints, select_and_loads \\ nil)

 Maps an Ash type to a TypeScript type for output schemas.
Backward compatible wrapper around map_type/3.

 is_primitive_union_member?(type, constraints)

 Determines if a union member is a "primitive" (no selectable fields).

 map_type(type, constraints, direction)

 Maps an Ash type to a TypeScript type string.

 Types

 direction()

 @type direction() :: :input | :output

 Functions

 build_map_type(fields, select \\ nil, field_name_mappings \\ nil)

Builds a TypeScript map type with optional field filtering and name mapping.

 build_resource_type(resource, select_and_loads \\ nil)

Builds a resource type for non-Ash resources.

 build_union_input_type(types)

Builds an input type for unions (discriminated union syntax).

 build_union_type(types)

Builds a union type with metadata for field selection.

 get_resource_field_spec(field, resource)

Gets the TypeScript field specification for a resource field.

 get_ts_input_type(map)

Maps an Ash type to a TypeScript type for input schemas.
Backward compatible wrapper around map_type/3.

 get_ts_type(type_and_constraints, select_and_loads \\ nil)

Maps an Ash type to a TypeScript type for output schemas.
Backward compatible wrapper around map_type/3.

 is_primitive_union_member?(type, constraints)

Determines if a union member is a "primitive" (no selectable fields).

 map_type(type, constraints, direction)

 @spec map_type(atom() | tuple(), keyword(), direction()) :: String.t()

Maps an Ash type to a TypeScript type string.
Parameters
	type - The Ash type (atom, tuple, or map with :type/:constraints)
	constraints - Type constraints
	direction - :input or :output

Returns
A TypeScript type string.

AshTypescript.FieldFormatter

Handles field name formatting for input parameters, output fields, and TypeScript generation.
Supports built-in formatters and custom formatter functions.

 Summary

 Functions

 convert_to_field_atom(field_name, formatter)

 Converts a field name to an atom, applying the formatter for case conversion.

 format_field_for_client(field, resource_or_type_module \\ nil, formatter)

 Formats a field name for client output, optionally applying resource/type-level
field_names mapping.

 format_field_name(field_name, formatter)

 Formats a field name using the configured formatter.

 format_fields(fields, formatter)

 Formats a map of fields, converting all keys using the specified formatter.

 parse_input_field(field_name, formatter)

 Parses input field names from client format to internal format.

 parse_input_fields(fields, formatter)

 Parses a map of input fields, converting all keys from client format to internal format.

 parse_input_value(value, formatter)

 Recursively parses input values, handling nested structures.

 Functions

 convert_to_field_atom(field_name, formatter)

Converts a field name to an atom, applying the formatter for case conversion.
Unlike parse_input_field/2 which tries to use existing atoms, this function
always creates an atom (using String.to_atom/1 for strings that aren't existing atoms).
Use this when you need guaranteed atom output for field selection.
Examples
iex> AshTypescript.FieldFormatter.convert_to_field_atom("userName", :camel_case)
:user_name

iex> AshTypescript.FieldFormatter.convert_to_field_atom(:user_name, :camel_case)
:user_name

 format_field_for_client(field, resource_or_type_module \\ nil, formatter)

Formats a field name for client output, optionally applying resource/type-level
field_names mapping.
Use this when formatting field names for client consumption where the field
might have a custom TypeScript name via the field_names DSL option or the
typescript_field_names callback function.
Examples
iex> AshTypescript.FieldFormatter.format_field_for_client(:user_name, nil, :camel_case)
"userName"

iex> AshTypescript.FieldFormatter.format_field_for_client("already_string", nil, :camel_case)
"alreadyString"
When a resource or type module is provided with field_names/typescript_field_names mappings
(e.g., :is_active? → "isActive"), the mapped string value is used directly WITHOUT
additional formatting.

 format_field_name(field_name, formatter)

Formats a field name using the configured formatter.
Examples
iex> AshTypescript.FieldFormatter.format_field_name(:user_name, :camel_case)
"userName"

iex> AshTypescript.FieldFormatter.format_field_name(:user_name, :snake_case)
"user_name"

iex> AshTypescript.FieldFormatter.format_field_name("user_name", :pascal_case)
"UserName"

 format_fields(fields, formatter)

Formats a map of fields, converting all keys using the specified formatter.
Examples
iex> AshTypescript.FieldFormatter.format_fields(%{user_name: "John", user_email: "john@example.com"}, :camel_case)
%{"userName" => "John", "userEmail" => "john@example.com"}

 parse_input_field(field_name, formatter)

Parses input field names from client format to internal format.
This is used for converting incoming client field names to the internal
Elixir atom keys that Ash expects.
Examples
iex> AshTypescript.FieldFormatter.parse_input_field("userName", :camel_case)
:user_name

 parse_input_fields(fields, formatter)

Parses a map of input fields, converting all keys from client format to internal format.
Recursively processes nested maps and arrays to ensure all field names are properly formatted.
This is essential for union types and embedded resources that contain nested field structures.
Examples
iex> AshTypescript.FieldFormatter.parse_input_fields(%{"userName" => "John", "userEmail" => "john@example.com"}, :camel_case)
%{user_name: "John", user_email: "john@example.com"}

iex> AshTypescript.FieldFormatter.parse_input_fields(%{"attachments" => [%{"mimeType" => "pdf", "attachmentType" => "file"}]}, :camel_case)
%{attachments: [%{mime_type: "pdf", attachment_type: "file"}]}

 parse_input_value(value, formatter)

Recursively parses input values, handling nested structures.
This function ensures that all nested maps and arrays containing maps
have their field names properly formatted according to the formatter.
Only handles JSON-decoded data (maps, lists, primitives) - no structs.

AshTypescript.Helpers

Utility functions for string manipulation and transformations.

 Summary

 Functions

 camel_to_snake_case(camel)

 format_output_field(field_name)

 Formats a field name using the configured output field formatter for RPC.

 formatted_after_field()

 formatted_args_field()

 Helper functions for commonly used calculation and field selection field names.
These ensure consistency across all args/fields-related type generation.

 formatted_before_field()

 formatted_channel_field()

 formatted_count_field()

 formatted_custom_fetch_field()

 formatted_data_field()

 formatted_error_details_field()

 formatted_error_fields_field()

 formatted_error_handler_field()

 formatted_error_message_field()

 formatted_error_path_field()

 formatted_error_short_message_field()

 formatted_error_type_field()

 Helper functions for commonly used error field names.
These ensure consistency across all error-related type generation.

 formatted_error_vars_field()

 formatted_errors_field()

 formatted_fetch_options_field()

 formatted_fields_field()

 formatted_filter_field()

 formatted_has_more_field()

 formatted_headers_field()

 formatted_hook_ctx_field()

 formatted_identity_field()

 formatted_input_field()

 Helper functions for commonly used config interface field names.
These ensure consistency across all RPC config-related type generation.

 formatted_limit_field()

 formatted_metadata_fields_field()

 formatted_next_page_field()

 formatted_offset_field()

 formatted_page_field()

 Helper function for pagination page field name.

 formatted_previous_page_field()

 formatted_result_handler_field()

 formatted_results_field()

 Helper functions for commonly used pagination field names.
These ensure consistency across all pagination-related type generation.

 formatted_sort_field()

 formatted_success_field()

 formatted_tenant_field()

 formatted_timeout_field()

 formatted_timeout_handler_field()

 pascal_to_snake_case(pascal)

 snake_to_camel_case(snake)

 snake_to_pascal_case(snake)

 Functions

 camel_to_snake_case(camel)

 format_output_field(field_name)

Formats a field name using the configured output field formatter for RPC.

 formatted_after_field()

 formatted_args_field()

Helper functions for commonly used calculation and field selection field names.
These ensure consistency across all args/fields-related type generation.

 formatted_before_field()

 formatted_channel_field()

 formatted_count_field()

 formatted_custom_fetch_field()

 formatted_data_field()

 formatted_error_details_field()

 formatted_error_fields_field()

 formatted_error_handler_field()

 formatted_error_message_field()

 formatted_error_path_field()

 formatted_error_short_message_field()

 formatted_error_type_field()

Helper functions for commonly used error field names.
These ensure consistency across all error-related type generation.
Matches the error structure defined in AshTypescript.Rpc.Error protocol.

 formatted_error_vars_field()

 formatted_errors_field()

 formatted_fetch_options_field()

 formatted_fields_field()

 formatted_filter_field()

 formatted_has_more_field()

 formatted_headers_field()

 formatted_hook_ctx_field()

 formatted_identity_field()

 formatted_input_field()

Helper functions for commonly used config interface field names.
These ensure consistency across all RPC config-related type generation.

 formatted_limit_field()

 formatted_metadata_fields_field()

 formatted_next_page_field()

 formatted_offset_field()

 formatted_page_field()

Helper function for pagination page field name.

 formatted_previous_page_field()

 formatted_result_handler_field()

 formatted_results_field()

Helper functions for commonly used pagination field names.
These ensure consistency across all pagination-related type generation.

 formatted_sort_field()

 formatted_success_field()

 formatted_tenant_field()

 formatted_timeout_field()

 formatted_timeout_handler_field()

 pascal_to_snake_case(pascal)

 snake_to_camel_case(snake)

 snake_to_pascal_case(snake)

AshTypescript.Resource

Spark DSL extension for configuring TypeScript generation on Ash resources.
This extension allows resources to define TypeScript-specific settings,
such as custom type names for the generated TypeScript interfaces.

 Summary

 Functions

 typescript(body)

 Functions

 typescript(body)

 (macro)

AshTypescript.Resource.Info

Provides introspection functions for AshTypescript.Resource configuration.
This module generates helper functions to access TypeScript configuration
defined on resources using the AshTypescript.Resource DSL extension.

 Summary

 Functions

 get_mapped_argument_name(resource, action_name, argument_name)

 Gets the mapped name for an argument, or returns the original name if no mapping exists.

 get_mapped_field_name(resource, field_name)

 Gets the mapped TypeScript client name for a field, or returns nil if no mapping exists.

 get_original_argument_name(resource, action_name, mapped_argument_name)

 Gets the original invalid argument name for a mapped argument name.
Returns the argument name that was mapped to the given valid name, or the same name if no mapping exists.

 get_original_field_name(resource, client_field_name)

 Gets the original Elixir field name for a TypeScript client field name.

 typescript_argument_names(dsl_or_extended)

 A keyword list mapping Elixir argument names to TypeScript client names per action. Use strings for the client names - no additional formatting is applied. (e.g., [read_action: [is_active?: "isActive"]])

 typescript_argument_names!(dsl_or_extended)

 A keyword list mapping Elixir argument names to TypeScript client names per action. Use strings for the client names - no additional formatting is applied. (e.g., [read_action: [is_active?: "isActive"]])

 typescript_field_names(dsl_or_extended)

 A keyword list mapping Elixir field names to TypeScript client names. Use strings for the client names - no additional formatting is applied. (e.g., [is_active?: "isActive", address_line_1: "addressLine1"])

 typescript_field_names!(dsl_or_extended)

 A keyword list mapping Elixir field names to TypeScript client names. Use strings for the client names - no additional formatting is applied. (e.g., [is_active?: "isActive", address_line_1: "addressLine1"])

 typescript_options(dsl_or_extended)

 typescript DSL options

 typescript_resource?(module)

 Whether or not a given module is a resource module using the AshTypescript.Resource extension

 typescript_type_name(dsl_or_extended)

 The name of the TypeScript type for the resource

 typescript_type_name!(dsl_or_extended)

 The name of the TypeScript type for the resource

 Functions

 get_mapped_argument_name(resource, action_name, argument_name)

Gets the mapped name for an argument, or returns the original name if no mapping exists.
Examples
iex> AshTypescript.Resource.Info.get_mapped_argument_name(MyApp.User, :read_with_invalid_arg, :is_active?)
:is_active

 get_mapped_field_name(resource, field_name)

Gets the mapped TypeScript client name for a field, or returns nil if no mapping exists.
The mapped value is always a string representing the exact TypeScript client name.
Examples
iex> AshTypescript.Resource.Info.get_mapped_field_name(MyApp.User, :is_active?)
"isActive"

iex> AshTypescript.Resource.Info.get_mapped_field_name(MyApp.User, :normal_field)
nil

 get_original_argument_name(resource, action_name, mapped_argument_name)

Gets the original invalid argument name for a mapped argument name.
Returns the argument name that was mapped to the given valid name, or the same name if no mapping exists.
Examples
iex> AshTypescript.Resource.Info.get_original_argument_name(MyApp.User, :read_with_invalid_arg, :is_active)
:is_active?

 get_original_field_name(resource, client_field_name)

Gets the original Elixir field name for a TypeScript client field name.
The client_field_name should be a string like "isActive".
Returns the original Elixir atom like :is_active?, or the input if no mapping exists.
Examples
iex> AshTypescript.Resource.Info.get_original_field_name(MyApp.User, "isActive")
:is_active?

iex> AshTypescript.Resource.Info.get_original_field_name(MyApp.User, "normalField")
"normalField"

 typescript_argument_names(dsl_or_extended)

 @spec typescript_argument_names(dsl_or_extended :: module() | map()) ::
 {:ok, keyword()} | :error

A keyword list mapping Elixir argument names to TypeScript client names per action. Use strings for the client names - no additional formatting is applied. (e.g., [read_action: [is_active?: "isActive"]])

 typescript_argument_names!(dsl_or_extended)

 @spec typescript_argument_names!(dsl_or_extended :: module() | map()) ::
 keyword() | no_return()

A keyword list mapping Elixir argument names to TypeScript client names per action. Use strings for the client names - no additional formatting is applied. (e.g., [read_action: [is_active?: "isActive"]])

 typescript_field_names(dsl_or_extended)

 @spec typescript_field_names(dsl_or_extended :: module() | map()) ::
 {:ok, keyword()} | :error

A keyword list mapping Elixir field names to TypeScript client names. Use strings for the client names - no additional formatting is applied. (e.g., [is_active?: "isActive", address_line_1: "addressLine1"])

 typescript_field_names!(dsl_or_extended)

 @spec typescript_field_names!(dsl_or_extended :: module() | map()) ::
 keyword() | no_return()

A keyword list mapping Elixir field names to TypeScript client names. Use strings for the client names - no additional formatting is applied. (e.g., [is_active?: "isActive", address_line_1: "addressLine1"])

 typescript_options(dsl_or_extended)

 @spec typescript_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

typescript DSL options
Returns a map containing the and any configured or default values.

 typescript_resource?(module)

 @spec typescript_resource?(module()) :: boolean()

Whether or not a given module is a resource module using the AshTypescript.Resource extension

 typescript_type_name(dsl_or_extended)

 @spec typescript_type_name(dsl_or_extended :: module() | map()) ::
 {:ok, String.t()} | :error

The name of the TypeScript type for the resource

 typescript_type_name!(dsl_or_extended)

 @spec typescript_type_name!(dsl_or_extended :: module() | map()) ::
 String.t() | no_return()

The name of the TypeScript type for the resource

AshTypescript.Resource.Verifiers.VerifyFieldNames

Verifies that resource field names are valid for TypeScript generation.
Checks public attributes, relationships, calculations, and aggregates to ensure
they don't contain invalid patterns like question marks or numbers preceded by underscores.

AshTypescript.Resource.Verifiers.VerifyMapFieldNames

Verifies that field names in map, keyword, and tuple type constraints are valid for TypeScript.
Checks all attributes (including nested types in unions) to ensure that any fields defined
in map/keyword/tuple constraints don't contain invalid patterns like question marks or
numbers preceded by underscores.

AshTypescript.Resource.Verifiers.VerifyMappedFieldNames

Verifies that field_names configuration is valid.
Ensures that:
	All keys in field_names reference existing fields on the resource
	All keys in fieldnames are invalid names (contain +\d or ?)
	All values in field_names are strings (the exact client name to use)
	All values are valid TypeScript identifiers

AshTypescript.Resource.Verifiers.VerifyUniqueTypeNames

Checks that all resources using AshTypescript.Resource have unique type_name values.

AshTypescript.Rpc.Codegen

Generates TypeScript code for interacting with Ash resources via Rpc.

 Summary

 Functions

 format_endpoint_for_typescript(endpoint)

 Formats an endpoint configuration for TypeScript code generation.

 generate_typescript_types(otp_app, opts \\ [])

 Functions

 format_endpoint_for_typescript(endpoint)

Formats an endpoint configuration for TypeScript code generation.
Accepts either:
	A string: Returns the string as a quoted literal for direct embedding
	A tuple {:runtime_expr, "expression"}: Returns the expression as-is for runtime evaluation

Examples
iex> format_endpoint_for_typescript("/rpc/run")
""/rpc/run""

iex> format_endpoint_for_typescript({:runtime_expr, "CustomTypes.getRunEndpoint()"})
"CustomTypes.getRunEndpoint()"

 generate_typescript_types(otp_app, opts \\ [])

AshTypescript.Rpc.Codegen.FunctionGenerators.ChannelRenderer

Renders Channel-specific TypeScript functions (handler-based, Phoenix channels).
Takes the function "shape" from FunctionCore and renders it as a
Channel function using executeActionChannelPush.

 Summary

 Functions

 render_execution_function(resource, action, rpc_action, rpc_action_name)

 Renders a Channel execution function (handler-based).

 render_validation_function(resource, action, rpc_action, rpc_action_name)

 Renders a Channel validation function.

 Functions

 render_execution_function(resource, action, rpc_action, rpc_action_name)

Renders a Channel execution function (handler-based).

 render_validation_function(resource, action, rpc_action, rpc_action_name)

Renders a Channel validation function.

AshTypescript.Rpc.Codegen.FunctionGenerators.FunctionCore

Builds the common "shape" of RPC functions, independent of transport.
This module extracts all the shared logic between HTTP and Channel function generation,
returning a structured map that renderers use to emit transport-specific TypeScript.
The core philosophy is: "What to generate" (business logic) is separate from
"How to format it" (presentation/transport-specific rendering).

 Summary

 Functions

 build_execution_function_shape(resource, action, rpc_action, rpc_action_name, opts \\ [])

 Builds the execution function shape for both HTTP and Channel transports.

 build_validation_function_shape(resource, action, rpc_action, rpc_action_name, opts \\ [])

 Builds the validation function shape for both HTTP and Channel transports.

 Functions

 build_execution_function_shape(resource, action, rpc_action, rpc_action_name, opts \\ [])

Builds the execution function shape for both HTTP and Channel transports.
Returns a map containing:
	Basic metadata (resource, action, names, context)
	Field selection info (has_fields, fields_generic)
	Config fields (common to both transports)
	Pagination info
	Metadata info

The renderer can then add transport-specific fields and formatting.

 build_validation_function_shape(resource, action, rpc_action, rpc_action_name, opts \\ [])

Builds the validation function shape for both HTTP and Channel transports.
Validation functions are simpler - they don't have field selection, pagination, etc.
They just validate input and return validation errors.

AshTypescript.Rpc.Codegen.FunctionGenerators.HttpRenderer

Renders HTTP-specific TypeScript functions (Promise-based, fetch).
Takes the function "shape" from FunctionCore and renders it as an
HTTP function using executeActionRpcRequest.

 Summary

 Functions

 render_execution_function(resource, action, rpc_action, rpc_action_name)

 Renders an HTTP execution function (Promise-based).

 render_validation_function(resource, action, rpc_action, rpc_action_name)

 Renders an HTTP validation function.

 Functions

 render_execution_function(resource, action, rpc_action, rpc_action_name)

Renders an HTTP execution function (Promise-based).

 render_validation_function(resource, action, rpc_action, rpc_action_name)

Renders an HTTP validation function.

AshTypescript.Rpc.Codegen.FunctionGenerators.TypeBuilders

Builds TypeScript type definitions for RPC function results and configurations.
This module generates the complex result types that include:
	Success/error union types
	Generic parameters for field selection
	Metadata field types
	Pagination types

 Summary

 Functions

 build_optional_pagination_config(shape, config_fields)

 Builds the optional pagination config type export (for HTTP functions with optional pagination).

 build_result_type(shape, config_type_ref)

 Builds the result type definition for an execution function.

 Functions

 build_optional_pagination_config(shape, config_fields)

Builds the optional pagination config type export (for HTTP functions with optional pagination).
Returns: {config_type_export, config_type_ref}

 build_result_type(shape, config_type_ref)

Builds the result type definition for an execution function.
Returns a tuple: {result_type_def, return_type_def, generic_param, function_signature}
Parameters:
	shape: The function shape from FunctionCore
	config_type_ref: The config type reference (varies by transport)

AshTypescript.Rpc.Codegen.FunctionGenerators.TypedQueries

Generates TypeScript typed query types and field constants.
Typed queries provide compile-time type safety for server-side rendered data
and allow the same field selections to be used for client-side refetching.

 Summary

 Functions

 generate_typed_queries_section(typed_queries, all_resources)

 Generates the typed queries section for TypeScript output.

 generate_typed_query_type_and_const(resource, action, typed_query, all_resources)

 Generates a single typed query type and const declaration.

 Functions

 generate_typed_queries_section(typed_queries, all_resources)

Generates the typed queries section for TypeScript output.
Returns an empty string if no typed queries are defined.

 generate_typed_query_type_and_const(resource, action, typed_query, all_resources)

Generates a single typed query type and const declaration.

AshTypescript.Rpc.Codegen.Helpers.ActionIntrospection

Provides helper functions for analyzing Ash actions.
This module contains utilities for determining action characteristics like:
	Pagination support (offset, keyset, required, countable)
	Input requirements
	Return type field selectability

The return type analysis uses a type-driven classification pattern with
classify_return_type/2 for consistent handling of all type variants.

 Summary

 Functions

 action_has_default_limit?(action)

 Returns true if the action has a default limit configured.

 action_input_type(resource, action)

 Returns :required | :optional | :none

 action_requires_pagination?(action)

 Returns true if the action requires pagination.

 action_returns_field_selectable_type?(action)

 Checks if a generic action returns a field-selectable type.

 action_supports_countable?(action)

 Returns true if the action supports countable pagination.

 action_supports_keyset_pagination?(action)

 Returns true if the action supports keyset-based pagination.

 action_supports_offset_pagination?(action)

 Returns true if the action supports offset-based pagination.

 action_supports_pagination?(action)

 Returns true if the action supports pagination.

 get_pagination_config(action)

 Gets the pagination configuration for an action.

 has_pagination_config?(action)

 Returns true if the action has pagination configuration.

 Functions

 action_has_default_limit?(action)

Returns true if the action has a default limit configured.

 action_input_type(resource, action)

Returns :required | :optional | :none
Determines whether an action requires input, has optional input, or has no input.
This is based on the action's public arguments and accepted attributes.

 action_requires_pagination?(action)

Returns true if the action requires pagination.

 action_returns_field_selectable_type?(action)

Checks if a generic action returns a field-selectable type.
Returns:
	{:ok, :resource, resource_module} - Single resource
	{:ok, :array_of_resource, resource_module} - Array of resources
	{:ok, :typed_map, fields} - Typed map with constraints
	{:ok, :array_of_typed_map, fields} - Array of typed maps
	{:ok, :typed_struct, {module, fields}} - Type with field constraints (TypedStruct or similar)
	{:ok, :array_of_typed_struct, {module, fields}} - Array of types with field constraints
	{:ok, :unconstrained_map, nil} - Map without field constraints
	{:error, :not_generic_action} - Not a generic action
	{:error, reason} - Other errors

 action_supports_countable?(action)

Returns true if the action supports countable pagination.

 action_supports_keyset_pagination?(action)

Returns true if the action supports keyset-based pagination.

 action_supports_offset_pagination?(action)

Returns true if the action supports offset-based pagination.

 action_supports_pagination?(action)

Returns true if the action supports pagination.
Examples
iex> action_supports_pagination?(%{type: :read, get?: false, pagination: %{offset?: true}})
true

iex> action_supports_pagination?(%{type: :read, get?: true})
false

 get_pagination_config(action)

Gets the pagination configuration for an action.

 has_pagination_config?(action)

Returns true if the action has pagination configuration.

AshTypescript.Rpc.Codegen.Helpers.ConfigBuilder

Builds TypeScript configuration field definitions for RPC functions.
Configuration fields define the parameters that can be passed to RPC functions,
including tenant, primary key, input, pagination, filters, and metadata fields.

 Summary

 Functions

 build_common_config_fields(resource, action, context, opts)

 Builds common configuration fields shared across all RPC functions.

 build_get_by_config_field(resource, rpc_action)

 Builds the getBy configuration field for the TypeScript config type.

 build_identity_config_field(resource, identities, opts)

 Builds the identity configuration field for the TypeScript config type.

 generate_pagination_config_fields(action)

 Generates pagination configuration fields for the TypeScript config type.

 get_action_context(resource, action, rpc_action)

 Gets the action context - a map of values indicating what features the action supports.

 Functions

 build_common_config_fields(resource, action, context, opts)

Builds common configuration fields shared across all RPC functions.
This includes tenant, primary key, input, and hook context fields.
Parameters
	resource - The Ash resource
	_action - The Ash action (currently unused but kept for consistency)
	context - The action context from get_action_context/2
	opts - Options keyword list:	:rpc_action_name - The snake_case name of the RPC action
	:validation_function? - If true, identity types accept Type | string

	:is_validation - If true, this is for a validation function
	:is_channel - If true, this is for a channel function

Returns
A list of TypeScript field definition strings.
Examples
[" tenant: string;", " input: CreateTodoInput;", " hookCtx?: ActionHookContext;"]

 build_get_by_config_field(resource, rpc_action)

Builds the getBy configuration field for the TypeScript config type.
This is used for get_by RPC actions where records are looked up by specific fields.
Parameters
	resource - The Ash resource
	rpc_action - The RPC action configuration

Returns
A list of TypeScript field definition strings, or an empty list if no get_by fields.
Examples
Single get_by field
[" getBy: {", " email: string;", " };"]

Multiple get_by fields
[" getBy: {", " userId: UUID;", " status: Status;", " };"]

 build_identity_config_field(resource, identities, opts)

Builds the identity configuration field for the TypeScript config type.
Generates a union type for all supported identities (primary key and/or named identities).
Parameters
	resource - The Ash resource
	identities - List of identity atoms (e.g., [:_primary_key, :email])
	opts - Options keyword list:	:validation_function? - If true, each field type becomes Type | string to accept
either the typed value or a string representation (for validation functions)

Returns
A list containing one TypeScript field definition string for the identity.
Examples
Single primary key (non-composite)
[" identity: UUID;"]

Single primary key for validation function
[" identity: UUID | string;"]

Primary key and email identity (identity uses email field)
[" identity: UUID | { email: string };"]

Composite primary key
[" identity: { id: UUID; tenantId: string };"]

Composite primary key for validation function
[" identity: { id: UUID | string; tenantId: string };"]

 generate_pagination_config_fields(action)

Generates pagination configuration fields for the TypeScript config type.
Returns a list of TypeScript field strings that define the page parameter
for pagination. The structure varies based on what pagination types are supported.
Parameters
	action - The Ash action

Returns
A list of TypeScript field definition strings, or an empty list if pagination is not supported.
Examples
Offset pagination only
[" page?: {", " limit?: number;", " offset?: number;", " };"]

Keyset pagination only
[" page?: {", " limit?: number;", " after?: string;", " before?: string;", " };"]

Mixed pagination (both offset and keyset)
[" page?: (", " {", " limit?: number;", " offset?: number;", " } | {", ...]

 get_action_context(resource, action, rpc_action)

Gets the action context - a map of values indicating what features the action supports.
Note: The action should be augmented with RPC settings (get?, get_by) before calling this.
This is done in the codegen module via augment_action_with_rpc_settings/3.
Parameters
	resource - The Ash resource
	action - The Ash action (possibly augmented with RPC settings)
	rpc_action - The RPC action configuration

Returns
A map with the following keys:
	:requires_tenant - Whether the action requires a tenant parameter
	:identities - List of identity atoms for record lookup (update/destroy actions)
	:supports_pagination - Whether the action supports pagination (list reads)
	:supports_filtering - Whether the action supports filtering (list reads)
	:action_input_type - Whether the input is :none, :required, or :optional
	:is_get_action - Whether this is a get action (returns single or null)

Examples
iex> get_action_context(MyResource, read_action, rpc_action)
%{
 requires_tenant: true,
 identities: [],
 supports_pagination: true,
 supports_filtering: true,
 action_input_type: :required,
 is_get_action: false
}

AshTypescript.Rpc.Codegen.Helpers.PayloadBuilder

Builds TypeScript payload field definitions for RPC function implementations.
Payload fields are the actual JavaScript object properties that get sent to the
server when an RPC function is called. They map configuration values to the
expected server payload format.

 Summary

 Functions

 build_payload_fields(rpc_action_name, context, opts)

 Builds payload field definitions for an RPC function.

 Functions

 build_payload_fields(rpc_action_name, context, opts)

Builds payload field definitions for an RPC function.
Generates an array of TypeScript object property strings that construct the
payload object sent to the server. Each field maps a config value to a payload key.
Parameters
	rpc_action_name - The snake_case name of the RPC action
	context - The action context from ConfigBuilder.get_action_context/2
	opts - Options keyword list:	:include_fields - If true, include optional fields parameter
	:include_filtering_pagination - If true, include filter/sort/page parameters (default: true)
	:include_metadata_fields - If true, include optional metadata_fields parameter
	:rpc_action - The RPC action struct (needed for get_by field detection)

Returns
A list of strings representing TypeScript object properties for the payload.
Examples
Simple action with just action name
["action: \"create_todo\""]

Action with tenant and input
["action: \"create_todo\"", "tenant: config.tenant", "input: config.input"]

Read action with fields and filters
["action: \"list_todos\"", "...(config.fields !== undefined && { fields: config.fields })",
 "...(config.filter && { filter: config.filter })"]

AshTypescript.Rpc.Codegen.RpcConfigCollector

Collects RPC configuration from domains including resources, actions, and typed queries.

 Summary

 Functions

 get_rpc_resources_and_actions(otp_app)

 Gets all RPC resources and their actions from an OTP application.

 get_typed_queries(otp_app)

 Gets all typed queries from an OTP application.

 Functions

 get_rpc_resources_and_actions(otp_app)

Gets all RPC resources and their actions from an OTP application.
Returns a list of tuples: {resource, action, rpc_action}

 get_typed_queries(otp_app)

Gets all typed queries from an OTP application.
Returns a list of tuples: {resource, action, typed_query}

AshTypescript.Rpc.Codegen.TypeGenerators.InputTypes

Generates TypeScript input types for RPC actions.
Input types define the shape of data that can be passed to RPC actions,
including accepted fields for creates/updates and arguments for all action types.

 Summary

 Functions

 generate_input_type(resource, action, rpc_action_name)

 Generates the TypeScript input type for an RPC action.

 Functions

 generate_input_type(resource, action, rpc_action_name)

Generates the TypeScript input type for an RPC action.
Returns an empty string if the action has no input (no arguments or accepts).
Parameters
	resource - The Ash resource
	action - The Ash action
	rpc_action_name - The snake_case name of the RPC action

Returns
A string containing the TypeScript input type definition, or an empty string if no input is required.

AshTypescript.Rpc.Codegen.TypeGenerators.MetadataTypes

Generates TypeScript metadata types for RPC actions.
Metadata types define the shape of metadata that can be returned from RPC actions.
Actions can expose specific metadata fields via the show_metadata option.

 Summary

 Functions

 generate_action_metadata_type(action, rpc_action, rpc_action_name_pascal)

 Generates the TypeScript metadata type for an RPC action.

 get_exposed_metadata_fields(rpc_action, ash_action)

 Gets the list of metadata fields that should be exposed for an RPC action.

 metadata_enabled?(exposed_fields)

 Checks if metadata is enabled for an action based on exposed fields.

 Functions

 generate_action_metadata_type(action, rpc_action, rpc_action_name_pascal)

Generates the TypeScript metadata type for an RPC action.
Returns an empty string if no metadata fields are exposed.
Parameters
	action - The Ash action
	rpc_action - The RPC action configuration
	rpc_action_name_pascal - The PascalCase name of the RPC action

Returns
A string containing the TypeScript metadata type definition, or an empty string if no metadata is exposed.

 get_exposed_metadata_fields(rpc_action, ash_action)

Gets the list of metadata fields that should be exposed for an RPC action.
Parameters
	rpc_action - The RPC action configuration
	ash_action - The underlying Ash action

Returns
A list of metadata field names (atoms) that should be exposed.
Examples
No metadata override - expose all metadata fields
iex> get_exposed_metadata_fields(%{}, %{metadata: [%{name: :total_count}]})
[:total_count]

Empty list - expose no metadata fields
iex> get_exposed_metadata_fields(%{show_metadata: []}, %{metadata: [%{name: :total_count}]})
[]

Specific fields - expose only listed fields
iex> get_exposed_metadata_fields(%{show_metadata: [:total_count]}, %{metadata: [...]})
[:total_count]

 metadata_enabled?(exposed_fields)

Checks if metadata is enabled for an action based on exposed fields.
Parameters
	exposed_fields - List of metadata fields that are exposed

Returns
Boolean indicating if metadata is enabled (has at least one exposed field).

AshTypescript.Rpc.Codegen.TypeGenerators.PaginationTypes

Generates TypeScript pagination result types for RPC actions.
Supports:
	Offset pagination (limit/offset)
	Keyset pagination (limit/after/before)
	Mixed pagination (both offset and keyset)
	Conditional pagination (optional pagination)

 Summary

 Functions

 generate_conditional_pagination_result_type(resource, action, rpc_action_name_pascal, resource_name, has_metadata)

 Generates a conditional pagination result type (pagination is optional).

 generate_keyset_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

 Generates a keyset pagination result type.

 generate_keyset_pagination_type_inline(resource_name, rpc_action_name_pascal, has_metadata)

 Generates an inline keyset pagination type (without the wrapper Result type).

 generate_mixed_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

 Generates a mixed pagination result type (supports both offset and keyset).

 generate_offset_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

 Generates an offset pagination result type.

 generate_offset_pagination_type_inline(resource_name, rpc_action_name_pascal, has_metadata)

 Generates an inline offset pagination type (without the wrapper Result type).

 generate_pagination_result_type(resource, action, rpc_action_name_pascal, resource_name, has_metadata)

 Generates the pagination result type based on the action's pagination support.

 Functions

 generate_conditional_pagination_result_type(resource, action, rpc_action_name_pascal, resource_name, has_metadata)

Generates a conditional pagination result type (pagination is optional).
Uses TypeScript conditional types to return either a plain array (no pagination)
or a paginated result based on the presence of the page config parameter.
Parameters
	_resource - The Ash resource (unused but kept for consistency)
	action - The Ash action
	rpc_action_name_pascal - The PascalCase name of the RPC action
	resource_name - The TypeScript resource type name
	has_metadata - Boolean indicating if metadata is enabled

Returns
A string containing the TypeScript conditional result type definition.

 generate_keyset_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

Generates a keyset pagination result type.
The result includes:
	results: Array of items
	hasMore: Boolean indicating if more results exist
	limit: Number of items per page
	after: Cursor for next page (or null)
	before: Cursor for previous page (or null)
	previousPage: Cursor string for previous page
	nextPage: Cursor string for next page

 generate_keyset_pagination_type_inline(resource_name, rpc_action_name_pascal, has_metadata)

Generates an inline keyset pagination type (without the wrapper Result type).
Used within conditional pagination types.

 generate_mixed_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

Generates a mixed pagination result type (supports both offset and keyset).
The result is a union type with a discriminant type field that indicates
whether offset or keyset pagination was used.

 generate_offset_pagination_result_type(rpc_action_name_pascal, resource_name, has_metadata)

Generates an offset pagination result type.
The result includes:
	results: Array of items
	hasMore: Boolean indicating if more results exist
	limit: Number of items per page
	offset: Current offset

 generate_offset_pagination_type_inline(resource_name, rpc_action_name_pascal, has_metadata)

Generates an inline offset pagination type (without the wrapper Result type).
Used within conditional pagination types.

 generate_pagination_result_type(resource, action, rpc_action_name_pascal, resource_name, has_metadata)

Generates the pagination result type based on the action's pagination support.
This function is used when pagination is required (not optional).
Parameters
	_resource - The Ash resource (unused but kept for consistency)
	action - The Ash action
	rpc_action_name_pascal - The PascalCase name of the RPC action
	resource_name - The TypeScript resource type name
	has_metadata - Boolean indicating if metadata is enabled

Returns
A string containing the TypeScript result type definition for the appropriate pagination type.

AshTypescript.Rpc.Codegen.TypeGenerators.ResultTypes

Generates TypeScript result types for RPC actions.
Result types define the shape of data returned from RPC actions, including:
	Field selection types (which fields can be selected)
	Inferred result types (what the result looks like given a field selection)
	Pagination wrapper types (for paginated results)
	Metadata integration (for actions that return metadata)

 Summary

 Functions

 generate_result_type(resource, action, rpc_action, rpc_action_name)

 Generates the TypeScript result type for an RPC action.

 Functions

 generate_result_type(resource, action, rpc_action, rpc_action_name)

Generates the TypeScript result type for an RPC action.
The generated type includes:
	A Fields type (what fields can be selected)
	An InferResult type (what the result will be given a field selection)
	Optional metadata types (if metadata is enabled)
	Optional pagination types (if the action supports pagination)

Parameters
	resource - The Ash resource
	action - The Ash action
	rpc_action - The RPC action configuration
	rpc_action_name - The snake_case name of the RPC action

Returns
A string containing the TypeScript type definitions for this action's result.

AshTypescript.Rpc.Codegen.TypescriptStatic

Generates static TypeScript code that doesn't depend on specific resources.
This includes:
	Import statements (Zod, Phoenix Channel, custom imports)
	Hook context type definitions
	Utility types (TypedSchema, InferResult, pagination helpers, etc.)
	Helper functions (CSRF token, RPC request executors)

 Summary

 Functions

 generate_helper_functions(hook_config, endpoint_process, endpoint_validate)

 Generates TypeScript helper functions and configuration interfaces.

 generate_hook_context_types(hook_config)

 Generates TypeScript type definitions for hook context types.

 generate_imports()

 Generates TypeScript import statements based on configuration.

 generate_utility_types()

 Generates TypeScript utility types for field selection and type inference.

 Functions

 generate_helper_functions(hook_config, endpoint_process, endpoint_validate)

Generates TypeScript helper functions and configuration interfaces.
Includes:
	Configuration interfaces (ActionConfig, ValidationConfig, etc.)
	CSRF token helpers
	RPC request execution functions
	Channel push execution functions

 generate_hook_context_types(hook_config)

Generates TypeScript type definitions for hook context types.
Hook context types are conditionally generated based on:
	Whether hooks are enabled for each category
	Whether a context type is configured

 generate_imports()

Generates TypeScript import statements based on configuration.
Includes:
	Zod import (if zod schemas enabled)
	Phoenix Channel import (if channel RPC actions enabled)
	Custom imports from application config

 generate_utility_types()

Generates TypeScript utility types for field selection and type inference.
Includes:
	TypedSchema constraint
	UnionToIntersection helper
	InferUnionFieldValue helper
	Field selection types
	InferResult type
	Pagination conditional types
	SuccessDataFunc and ErrorData helpers
	AshRpcError type

AshTypescript.Rpc.DefaultErrorHandler

Default error handler for RPC operations.
This handler returns errors as-is without any transformation.
Variable interpolation is left to the client for better flexibility.
This module is called as the last step in the error processing pipeline.

 Summary

 Functions

 handle_error(error, context)

 Default error handler that returns errors as-is.

 Functions

 handle_error(error, context)

 @spec handle_error(map(), map()) :: map()

Default error handler that returns errors as-is.
Previously this handler would interpolate variables into messages,
but now we let the client handle that for better flexibility.
The error is returned with the message template and vars separate,
allowing the client to handle interpolation as needed.
Examples
iex> error = %{
...> message: "Field %{field} is required",
...> short_message: "Required field",
...> vars: %{field: "email"},
...> code: "required",
...> fields: ["email"]
...> }
iex> handle_error(error, %{})
%{
 message: "Field %{field} is required",
 short_message: "Required field",
 vars: %{field: "email"},
 code: "required",
 fields: ["email"]
}

AshTypescript.Rpc.Error protocol

Protocol for extracting minimal information from exceptions for RPC responses.
Similar to AshGraphql.Error, this protocol transforms various error types into
a standardized format with only the essential information needed by TypeScript clients.
Error Format
Each implementation should return a map with these fields:
	:message - The full error message (may contain template variables like %{key})
	:short_message - A concise version of the message
	:type - A machine-readable error type (e.g., "invalid_changes", "not_found")
	:vars - A map of variables to interpolate into messages
	:fields - A list of affected field names (for field-level errors)
	:path - The path to the error location in the data structure
	:details - An optional map with extra details

Example Implementation
defimpl AshTypescript.Rpc.Error, for: MyApp.CustomError do
 def to_error(error) do
 %{
 message: error.message,
 short_message: "Custom error occurred",
 type: "custom_error",
 vars: %{detail: error.detail},
 fields: [],
 path: error.path || []
 }
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_error(exception)

 Transforms an exception into a minimal error representation for RPC responses.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_error(exception)

 @spec to_error(Exception.t()) :: map()

Transforms an exception into a minimal error representation for RPC responses.

AshTypescript.Rpc.ErrorBuilder

Comprehensive error handling and message generation for the new RPC pipeline.
Provides clear, actionable error messages for all failure modes with
detailed context for debugging and client consumption.

 Summary

 Functions

 build_error_response(error)

 Builds a detailed error response from various error types.

 Functions

 build_error_response(error)

 @spec build_error_response(term()) :: map() | [map()]

Builds a detailed error response from various error types.
Converts internal error tuples into structured error responses
with clear messages and debugging context.
For Ash framework errors, uses the new Error protocol for standardized extraction.
Returns either a single error map or a list of error maps (for Ash errors with multiple sub-errors).

AshTypescript.Rpc.ErrorHandler behaviour

Behaviour for custom RPC error handlers.
Error handlers allow you to customize how errors are transformed
and presented to TypeScript clients. They are called after the
Error protocol transformation but before the final response.
Context
The context map passed to handle_error/2 may contain:
	:domain - The domain module
	:resource - The resource module
	:action - The action being performed
	:actor - The actor performing the action
	Additional application-specific context

Example Implementation
defmodule MyApp.CustomErrorHandler do
 @behaviour AshTypescript.Rpc.ErrorHandler

 def handle_error(error, context) do
 # Add custom error tracking
 Logger.error("RPC Error: #{inspect(error)}")

 # Customize error format
 error
 |> Map.put(:timestamp, DateTime.utc_now())
 |> Map.update(:message, "Error", &translate_message/1)
 end

 defp translate_message(message) do
 # Custom translation logic
 message
 end
end

 Summary

 Callbacks

 handle_error(error, context)

 Handles an error by transforming it before sending to the client.

 Callbacks

 handle_error(error, context)

 @callback handle_error(error :: map(), context :: map()) :: map() | nil

Handles an error by transforming it before sending to the client.
Receives an error map that has already been processed by the Error protocol,
and a context map with additional information.
Should return a modified error map or nil to filter out the error.

AshTypescript.Rpc.Errors

Central error processing module for RPC operations.
Handles error transformation, unwrapping, and formatting for TypeScript clients.
Uses the AshTypescript.Rpc.Error protocol to extract minimal information from exceptions.

 Summary

 Functions

 to_errors(errors, domain \\ nil, resource \\ nil, action \\ nil, context \\ %{})

 Transforms errors into standardized RPC error responses.

 unwrap_errors(errors)

 Unwraps nested error structures from Ash error classes.

 Functions

 to_errors(errors, domain \\ nil, resource \\ nil, action \\ nil, context \\ %{})

 @spec to_errors(term(), atom() | nil, atom() | nil, atom() | nil, map()) :: [map()]

Transforms errors into standardized RPC error responses.
Processes errors through the following pipeline:
	Convert to Ash error class using Ash.Error.to_error_class
	Unwrap nested error structures
	Transform via Error protocol
	Apply resource-level error handler (if configured)
	Apply domain-level error handler (if configured)
	Interpolate variables into messages

 unwrap_errors(errors)

 @spec unwrap_errors(term()) :: [term()]

Unwraps nested error structures from Ash error classes.

AshTypescript.Rpc.FieldExtractor

Unified field extraction for different data structures.
This module provides a consistent interface for extracting field values from
different Elixir data structures (maps, keyword lists, tuples, structs).
Strategy
All data structures are normalized to maps before extraction, providing a single
code path for field access. This eliminates type-specific extraction logic and
makes the code easier to understand and maintain.
Supported Types
	Maps: Used as-is
	Structs: Converted to maps via Map.from_struct/1
	Keyword lists: Converted to maps
	Tuples: Converted to maps using extraction template indices

 Summary

 Functions

 extract_field(normalized_data, field_atom)

 Extracts a field value from normalized data.

 normalize_for_extraction(data, extraction_template)

 Normalizes a data structure for field extraction.

 Functions

 extract_field(normalized_data, field_atom)

Extracts a field value from normalized data.
Parameters
	normalized_data - Map representation of data (from normalize_for_extraction/2)
	field_atom - The field name to extract

Returns
The field value, or nil if the field doesn't exist.
Examples
iex> data = %{foo: 1, bar: 2}
iex> extract_field(data, :foo)
1

iex> data = %{foo: 1, bar: 2}
iex> extract_field(data, :baz)
nil

 normalize_for_extraction(data, extraction_template)

Normalizes a data structure for field extraction.
Converts all supported data types to maps, using the extraction template
when needed (e.g., for tuple index mapping).
Parameters
	data - The data structure to normalize (map, struct, keyword list, or tuple)
	extraction_template - Template containing field metadata (used for tuples)

Returns
A map representation of the data suitable for field extraction.
Examples
Map - returned as-is
iex> normalize_for_extraction(%{foo: 1, bar: 2}, [])
%{foo: 1, bar: 2}

Keyword list - converted to map
iex> normalize_for_extraction([foo: 1, bar: 2], [])
%{foo: 1, bar: 2}

Tuple - converted using template indices
iex> template = [%{field_name: :foo, index: 0}, %{field_name: :bar, index: 1}]
iex> normalize_for_extraction({1, 2}, template)
%{foo: 1, bar: 2}

AshTypescript.Rpc.FieldProcessing.Atomizer

Handles preprocessing of requested fields, converting map keys to atoms
while preserving field name strings for later reverse mapping lookup.
Field name strings are preserved so that downstream processors can perform
proper reverse mapping lookups using the original client field names.
The actual conversion to atoms happens in the field processor after
the correct internal field name has been resolved.

 Summary

 Functions

 atomize_field(field, formatter, resource)

 atomize_field_value(value, formatter, resource, atomize_strings)

 atomize_requested_fields(requested_fields, resource \\ nil)

 Processes requested fields, converting map keys to atoms for navigation
while preserving field name strings for reverse mapping.

 process_field(field, formatter, resource \\ nil)

 Processes a single field, which can be a string, atom, or map structure.

 process_field_value(value, formatter, resource \\ nil, atomize_strings \\ true)

 Processes field values, handling lists and nested maps.

 Functions

 atomize_field(field, formatter, resource)

 atomize_field_value(value, formatter, resource, atomize_strings)

 atomize_requested_fields(requested_fields, resource \\ nil)

Processes requested fields, converting map keys to atoms for navigation
while preserving field name strings for reverse mapping.
For resources with field_names DSL mappings, those are applied to convert
client names to internal names. For other types (TypedStructs, NewTypes),
strings are preserved for the field processor to handle.
Parameters
	requested_fields - List of strings/atoms or maps for relationships
	resource - Optional resource module for field_names DSL lookup

Examples
iex> atomize_requested_fields(["id", "title", %{"user" => ["id", "name"]}])
[:id, :title, %{user: ["id", "name"]}]

iex> atomize_requested_fields([%{"self" => %{"args" => %{"prefix" => "test"}}}])
[%{self: %{args: %{prefix: "test"}}}]

 process_field(field, formatter, resource \\ nil)

Processes a single field, which can be a string, atom, or map structure.
For string field names:
	If resource has a field_names mapping for this client name, returns the mapped atom
	Otherwise, preserves the string for downstream reverse mapping lookup

For map structures:
	Converts map keys to atoms (for relationship/calculation navigation)
	Preserves nested field name strings

 process_field_value(value, formatter, resource \\ nil, atomize_strings \\ true)

Processes field values, handling lists and nested maps.
For calculation args (maps with args/fields keys), converts all strings.
For field selection lists, preserves strings for type-aware reverse mapping.

AshTypescript.Rpc.FieldProcessing.FieldSelector

Unified field selection processor using type-driven recursive dispatch.
This module mirrors the architecture of ValueFormatter, using the same
{type, constraints} pattern for type-driven dispatch. Each type is
self-describing - no separate classification step is needed.
Design Principle
The key insight is that field selection and value formatting are parallel
operations - both traverse composite types recursively based on type information.
By using the same dispatch pattern, we achieve consistency and simplicity.
Type Categories
	Category	Detection	Handler
	Ash Resource	Ash.Resource.Info.resource?(type)	select_resource_fields/3
	TypedStruct/NewType/CustomType	typescript_field_names/0 callback	select_typed_struct_fields/3
	Typed Map/Struct	Has fields constraints	select_typed_map_fields/3
	Tuple	Ash.Type.Tuple	select_tuple_fields/3
	Union	Ash.Type.Union	select_union_fields/3
	Array	{:array, inner_type}	Recurse with inner type
	Primitive	Default	Validate no fields requested

 Summary

 Types

 select_result()

 Functions

 action_to_type_spec(resource, action)

 Converts an action to its type specification.

 process(resource, action_name, requested_fields)

 Processes requested fields for a given resource and action.

 select_fields(type, constraints, requested_fields, path)

 Main recursive dispatch function for field selection.

 select_resource_fields(resource, requested_fields, path)

 Selects fields from an Ash resource.

 select_tuple_fields(constraints, requested_fields, path)

 Selects fields from a tuple type using named fields.

 select_typed_map_fields(constraints, requested_fields, path, error_type \\ "field_constrained_type")

 Selects fields from a typed map (Ash.Type.Map/Keyword with field constraints).

 select_typed_struct_fields(constraints, requested_fields, path)

 Selects fields from a TypedStruct or NewType with typescript_field_names callback.

 select_union_fields(constraints, requested_fields, path, error_type \\ "union_type")

 Selects fields from a union type.

 Types

 select_result()

 @type select_result() :: {select :: [atom()], load :: [term()], template :: [term()]}

 Functions

 action_to_type_spec(resource, action)

 @spec action_to_type_spec(module(), Ash.Resource.Actions.action()) ::
 {atom() | tuple(), keyword()}

Converts an action to its type specification.
Returns {type, constraints} tuple representing the action's return type.

 process(resource, action_name, requested_fields)

 @spec process(module(), atom(), list()) :: {:ok, select_result()} | {:error, term()}

Processes requested fields for a given resource and action.
Returns {:ok, {select_fields, load_fields, extraction_template}} or {:error, error}.
Parameters
	resource - The Ash resource module
	action_name - The action name (atom)
	requested_fields - List of field selections (atoms, strings, or maps)

Examples
iex> process(MyApp.Todo, :read, [:id, :title, %{user: [:id, :name]}])
{:ok, {[:id, :title], [{:user, [:id, :name]}], [:id, :title, {:user, [:id, :name]}]}}

 select_fields(type, constraints, requested_fields, path)

 @spec select_fields(atom() | tuple(), keyword(), list(), list()) :: select_result()

Main recursive dispatch function for field selection.
Mirrors ValueFormatter.format/5 - uses the same type detection and dispatch pattern.
Each type category has its own handler that may recurse back into this function.

 select_resource_fields(resource, requested_fields, path)

Selects fields from an Ash resource.
Handles attributes, calculations, relationships, and aggregates.

 select_tuple_fields(constraints, requested_fields, path)

Selects fields from a tuple type using named fields.
Tuples in Ash have named positions (like :latitude, :longitude) and the
template stores both the field_name and its index for result processing.
When no fields are requested, all fields are returned.

 select_typed_map_fields(constraints, requested_fields, path, error_type \\ "field_constrained_type")

Selects fields from a typed map (Ash.Type.Map/Keyword with field constraints).
The error_type parameter allows distinguishing between different type categories
for better error messages.

 select_typed_struct_fields(constraints, requested_fields, path)

Selects fields from a TypedStruct or NewType with typescript_field_names callback.

 select_union_fields(constraints, requested_fields, path, error_type \\ "union_type")

Selects fields from a union type.
Supports:
	Simple member selection: [:member_name]
	Member with nested fields: [%{member_name: fields}]
	Multiple members in a single map: %{member1: fields1, member2: fields2}

AshTypescript.Rpc.FieldProcessing.FieldSelector.Validation

Field validation helpers for the FieldSelector module.
Provides validation functions for checking field selections are valid
and properly structured.

 Summary

 Functions

 check_for_duplicates(fields, path)

 Checks for duplicate field names in a field selection list.

 validate_field_exists!(field_name, field_specs, path, error_type \\ "field_constrained_type")

 Validates that a field exists in the given field specs.

 validate_non_empty(nested_fields, field_name, path, error_type \\ :relationship)

 Validates that nested fields are non-empty for fields that require selection.

 Functions

 check_for_duplicates(fields, path)

Checks for duplicate field names in a field selection list.
Normalizes field names using the input formatter before checking for duplicates.
Throws {:duplicate_field, field_name, path} if duplicates are found.

 validate_field_exists!(field_name, field_specs, path, error_type \\ "field_constrained_type")

Validates that a field exists in the given field specs.
Throws {:unknown_field, field_name, error_type, path} if not found.

 validate_non_empty(nested_fields, field_name, path, error_type \\ :relationship)

Validates that nested fields are non-empty for fields that require selection.
Throws appropriate errors if validation fails.

AshTypescript.Rpc.Info

Provides introspection functions for AshTypescript.Rpc configuration.
This module generates helper functions to access RPC configuration
defined in domains using the AshTypescript.Rpc DSL extension.

 Summary

 Functions

 get_mapped_metadata_field_name(arg1, field_name)

 Gets the mapped metadata field name for an RPC action.

 get_original_metadata_field_name(arg1, mapped_field_name)

 Gets the original metadata field name from a mapped name for an RPC action.

 typescript_rpc(dsl_or_extended)

 typescript_rpc DSL entities

 typescript_rpc_error_handler(dsl_or_extended)

 An MFA or module that implements error handling for RPC operations.

 typescript_rpc_error_handler!(dsl_or_extended)

 An MFA or module that implements error handling for RPC operations.

 typescript_rpc_options(dsl_or_extended)

 typescript_rpc DSL options

 typescript_rpc_show_raised_errors?(dsl_or_extended)

 Whether to show detailed information for raised exceptions.

 Functions

 get_mapped_metadata_field_name(arg1, field_name)

Gets the mapped metadata field name for an RPC action.
If a metadata_field_names mapping is defined for the field in the RPC action,
returns the mapped name. Otherwise returns the original field name.
Parameters
	rpc_action - The RpcAction struct
	field_name - The metadata field name (atom)

Returns
The mapped field name (atom) or the original field name if no mapping exists.

 get_original_metadata_field_name(arg1, mapped_field_name)

Gets the original metadata field name from a mapped name for an RPC action.
This is the reverse operation of get_mapped_metadata_field_name.
If a metadata_field_names mapping exists where the value matches the provided name,
returns the original key. Otherwise returns the provided name unchanged.
Parameters
	rpc_action - The RpcAction struct
	mapped_field_name - The mapped metadata field name (atom)

Returns
The original field name (atom) or the provided name if no reverse mapping exists.
Examples
With metadata_field_names: [is_valid?: :isValid, field_1: :field1]
get_original_metadata_field_name(rpc_action, :isValid) #=> :is_valid?
get_original_metadata_field_name(rpc_action, :field1) #=> :field_1
get_original_metadata_field_name(rpc_action, :other) #=> :other

 typescript_rpc(dsl_or_extended)

 @spec typescript_rpc(dsl_or_extended :: module() | map()) :: [struct()]

typescript_rpc DSL entities

 typescript_rpc_error_handler(dsl_or_extended)

 @spec typescript_rpc_error_handler(dsl_or_extended :: module() | map()) ::
 {:ok, mfa() | :module} | :error

An MFA or module that implements error handling for RPC operations.

 typescript_rpc_error_handler!(dsl_or_extended)

 @spec typescript_rpc_error_handler!(dsl_or_extended :: module() | map()) ::
 (mfa() | :module) | no_return()

An MFA or module that implements error handling for RPC operations.

 typescript_rpc_options(dsl_or_extended)

 @spec typescript_rpc_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

typescript_rpc DSL options
Returns a map containing the and any configured or default values.

 typescript_rpc_show_raised_errors?(dsl_or_extended)

 @spec typescript_rpc_show_raised_errors?(dsl_or_extended :: module() | map()) ::
 boolean()

Whether to show detailed information for raised exceptions.

AshTypescript.Rpc.InputFormatter

Formats input data from client format to internal format.
This module handles the conversion of client-provided field names and values
to the internal representation expected by Ash actions. It focuses specifically
on action arguments and accepted attributes, then delegates to ValueFormatter
for recursive type-aware formatting of nested values.
Key responsibilities:
	Convert client field names to internal atom keys (e.g., "userId" -> :user_id)
	Preserve untyped map keys exactly as received
	Handle nested structures within input data via ValueFormatter
	Work only with action arguments and accepted attributes (simplified scope)

 Summary

 Functions

 build_expected_keys_map(resource, action, input_formatter)

 Builds a map of expected client field names to internal Elixir field names.

 format(data, resource, action_name_or_action, formatter)

 Formats input data from client format to internal format.

 Functions

 build_expected_keys_map(resource, action, input_formatter)

Builds a map of expected client field names to internal Elixir field names.
This map is used to correctly parse incoming input data by looking up the
exact client name that codegen would have generated, rather than blindly
applying formatter transformations.
Parameters
	resource: The Ash resource module
	action: The action struct
	formatter: The field formatter configuration

Returns
A map where keys are client field names (strings) and values are internal
Elixir field names (atoms).
Example
%{
 "userName" => :user_name,
 "isActive" => :is_active?,
 "addressLine1" => :address_line_1
}

 format(data, resource, action_name_or_action, formatter)

Formats input data from client format to internal format.
Converts client field names to internal format while preserving untyped map keys.
Only processes action arguments and accepted attributes - no relationships,
calculations, or aggregates.
Parameters
	data: The input data from the client
	resource: The Ash resource module
	action_name_or_action: The name of the action or the action struct itself
	formatter: The field formatter to use for conversion

Returns
The formatted data with client field names converted to internal atom keys,
except for untyped map keys which are preserved exactly.

AshTypescript.Rpc.OutputFormatter

Formats output data from internal format to client format.
This module handles the conversion of Ash result data to client-expected format.
It works with the full resource schema including attributes, relationships,
calculations, and aggregates, then delegates to ValueFormatter for recursive
type-aware formatting of nested values.
Key responsibilities:
	Convert internal atom keys to client field names (e.g., :user_id -> "userId")
	Preserve untyped map keys exactly as stored
	Handle complex nested structures with relationships, calculations, aggregates
	Work with ResultProcessor extraction templates
	Handle pagination structures and result data

 Summary

 Functions

 format(data, resource, action_name, formatter)

 Formats output data from internal format to client format.

 Functions

 format(data, resource, action_name, formatter)

Formats output data from internal format to client format.
Converts internal field names to client format while preserving untyped map keys.
Handles the full resource schema including relationships, calculations, and aggregates.
Parameters
	data: The result data from Ash (internal format)
	resource: The Ash resource module
	action_name: The name of the action that was performed
	formatter: The field formatter to use for conversion

Returns
The formatted data with internal atom keys converted to client field names,
except for untyped map keys which are preserved exactly.

AshTypescript.Rpc.Pipeline

Implements the four-stage pipeline:
	parse_request/3 - Parse and validate input with fail-fast
	execute_ash_action/1 - Execute Ash operations
	filter_result_fields/2 - Apply field selection
	format_output/2 - Format for client consumption

 Summary

 Functions

 execute_ash_action(request)

 Stage 2: Execute Ash action using the parsed request.

 format_output(filtered_result)

 Stage 4: Format output for client consumption.

 format_output(filtered_result, request)

 Stage 4: Format output for client consumption with type awareness.

 format_sort_string(sort_string, formatter)

 Formats a sort string by converting field names from client format to internal format.

 parse_request(otp_app, conn_or_socket, params, opts \\ [])

 Stage 1: Parse and validate request.

 process_result(ash_result, request)

 Stage 3: Filter result fields using the extraction template.

 Functions

 execute_ash_action(request)

 @spec execute_ash_action(AshTypescript.Rpc.Request.t()) ::
 {:ok, term()} | {:error, term()}

Stage 2: Execute Ash action using the parsed request.
Builds the appropriate Ash query/changeset and executes it.
Returns the raw Ash result for further processing.

 format_output(filtered_result)

Stage 4: Format output for client consumption.
Applies output field formatting and final response structure.

 format_output(filtered_result, request)

Stage 4: Format output for client consumption with type awareness.
Applies type-aware output field formatting and final response structure.

 format_sort_string(sort_string, formatter)

Formats a sort string by converting field names from client format to internal format.
Handles Ash.Query.sort_input format:
	"name" or "+name" (ascending)
	"++name" (ascending with nils first)
	"-name" (descending)
	"--name" (descending with nils last)
	"-name,++title" (multiple fields with different modifiers)

Preserves sort modifiers while converting field names using the input formatter.
Examples
iex> format_sort_string("--startDate,++insertedAt", :camel_case)
"--start_date,++inserted_at"

iex> format_sort_string("-userName", :camel_case)
"-user_name"

iex> format_sort_string(nil, :camel_case)
nil

 parse_request(otp_app, conn_or_socket, params, opts \\ [])

 @spec parse_request(atom(), Plug.Conn.t() | Phoenix.Socket.t(), map(), keyword()) ::
 {:ok, AshTypescript.Rpc.Request.t()} | {:error, term()}

Stage 1: Parse and validate request.
Converts raw request parameters into a structured Request with validated fields.
Fails fast on any invalid input - no permissive modes.

 process_result(ash_result, request)

 @spec process_result(term(), AshTypescript.Rpc.Request.t()) ::
 {:ok, term()} | {:error, term()}

Stage 3: Filter result fields using the extraction template.
Applies field selection to the Ash result using the pre-computed template.
Performance-optimized single-pass filtering.
For unconstrained maps, returns the normalized result directly.
Handles metadata extraction for both read and mutation actions.
If the extraction template is empty for mutation actions (create/update), returns empty data.

AshTypescript.Rpc.Request

Request data structure for the new RPC pipeline.
Contains all parsed and validated request data needed for Ash execution.
Immutable structure that flows through the pipeline stages.

 Summary

 Types

 t()

 Functions

 new(params)

 Creates a new Request with validated parameters.

 Types

 t()

 @type t() :: %AshTypescript.Rpc.Request{
 action: map(),
 actor: term(),
 context: map(),
 domain: module(),
 extraction_template: map(),
 filter: map() | nil,
 get_by: map() | nil,
 identity: term(),
 input: map(),
 load: list(),
 pagination: map() | nil,
 resource: module(),
 rpc_action: map(),
 select: [atom()],
 show_metadata: [atom()],
 sort: list() | nil,
 tenant: term()
}

 Functions

 new(params)

 @spec new(map()) :: t()

Creates a new Request with validated parameters.

AshTypescript.Rpc.RequestedFieldsProcessor

Processes requested fields for Ash resources, determining which fields should be selected
vs loaded, and building extraction templates for result processing.
This module handles different action types:
	CRUD actions (:read, :create, :update, :destroy) return resource records
	Generic actions (:action) return arbitrary types as specified in their returns field

Architecture
This module serves as the main entry point and delegates to FieldSelector,
which uses a unified type-driven recursive dispatch pattern (similar to ValueFormatter).
The key insight is that each type is self-describing via {type, constraints},
so no separate classification step is needed.

 Summary

 Functions

 atomize_requested_fields(requested_fields, resource \\ nil)

 Atomizes requested fields by converting standalone strings to atoms and map keys to atoms.

 process(resource, action_name, requested_fields)

 Processes requested fields for a given resource and action.

 Functions

 atomize_requested_fields(requested_fields, resource \\ nil)

Atomizes requested fields by converting standalone strings to atoms and map keys to atoms.
Uses the configured input field formatter to properly parse field names from client format
to internal format before converting to atoms.
When a resource is provided, field_names DSL mappings are checked first to handle
custom client→internal field name mappings.
Parameters
	requested_fields - List of strings/atoms or maps for relationships
	resource - Optional resource module for field_names DSL lookup

Examples
iex> atomize_requested_fields(["id", "title", %{"user" => ["id", "name"]}])
[:id, :title, %{user: [:id, :name]}]

iex> atomize_requested_fields([%{"self" => %{"args" => %{"prefix" => "test"}}}])
[%{self: %{args: %{prefix: "test"}}}]

 process(resource, action_name, requested_fields)

Processes requested fields for a given resource and action.
Returns {:ok, {select_fields, load_fields, extraction_template}} or {:error, error}.
Parameters
	resource - The Ash resource module
	action - The action name (atom)
	requested_fields - List of field atoms or maps for relationships

Examples
iex> process(MyApp.Todo, :read, [:id, :title, %{user: [:id, :name]}])
{:ok, {[:id, :title], [{:user, [:id, :name]}], [:id, :title, [user: [:id, :name]]]}}

iex> process(MyApp.Todo, :read, [%{user: [:invalid_field]}])
{:error, %{type: :invalid_field, field: "user.invalidField"}}

AshTypescript.Rpc.Resource

Struct representing a resource's RPC configuration.
Contains the resource module and lists of configured RPC actions
and typed queries for that resource.

AshTypescript.Rpc.ResultProcessor

Extracts requested fields from RPC results using type-driven dispatch.
This module uses the same pattern as ValueFormatter and FieldSelector:
type-driven recursive dispatch where each type is self-describing.
Architecture
The core insight is that both ValueFormatter and ResultProcessor need to
understand type structure:
	ValueFormatter: Formats field names (internal ↔ client)
	ResultProcessor: Extracts requested fields (filtering)

They share the need for type-driven recursive dispatch but have different concerns.
Type-Driven Extraction
extract_value/4 (unified type-driven dispatch)
 │
 ├─> extract_resource_value/3 (Ash Resources)
 ├─> extract_typed_struct_value/3 (TypedStruct/NewType)
 ├─> extract_typed_map_value/3 (Map/Struct with fields)
 ├─> extract_union_value/3 (Ash.Type.Union)
 ├─> extract_array_value/4 (Arrays - recurse)
 └─> normalize_primitive/1 (Primitives)

 Summary

 Functions

 determine_data_type(data, resource)

 Determines the type and constraints for a given data value.

 extract_value(value, type, constraints, template)

 Extracts and normalizes a value based on its type and template.

 get_field_type_info(resource, field_name)

 Gets the type and constraints for a field, checking all field sources.

 normalize_primitive(value)

 Normalizes a value for JSON serialization.

 normalize_value_for_json(value)

 Alias for normalize_primitive/1 for backwards compatibility.
Normalizes a value for JSON serialization.

 process(result, extraction_template, resource \\ nil)

 Main entry point for processing Ash results.

 Functions

 determine_data_type(data, resource)

Determines the type and constraints for a given data value.
This function infers type information from:
	The struct type of the data itself (if it's a struct)
	The provided resource context
	Falls back to nil for unknown types

 extract_value(value, type, constraints, template)

 @spec extract_value(term(), atom() | tuple() | nil, keyword(), list()) :: term()

Extracts and normalizes a value based on its type and template.
This is the core recursive function that dispatches to type-specific
handlers based on the type's characteristics. Mirrors the pattern
used in ValueFormatter.format/5.
Parameters
	value - The value to extract from
	type - The Ash type (or nil for unknown)
	constraints - Type constraints
	template - The extraction template (list of field specs)

Returns
The extracted and normalized value.

 get_field_type_info(resource, field_name)

 @spec get_field_type_info(module() | nil, atom()) ::
 {atom() | tuple() | nil, keyword()}

Gets the type and constraints for a field, checking all field sources.
This consolidates all the previous resource lookup functions into one.
Parameters
	resource - The Ash resource module, TypedStruct module, or nil
	field_name - The field name (atom)

Returns
{type, constraints} or {nil, []} if not found.

 normalize_primitive(value)

Normalizes a value for JSON serialization.
Handles DateTime, Date, Time, Decimal, CiString, atoms, keyword lists, nested maps,
regular lists, and Ash.Union types. Recursively normalizes nested structures.

 normalize_value_for_json(value)

Alias for normalize_primitive/1 for backwards compatibility.
Normalizes a value for JSON serialization.

 process(result, extraction_template, resource \\ nil)

 @spec process(term(), map(), module() | nil) :: term()

Main entry point for processing Ash results.

AshTypescript.Rpc.RpcAction

Struct representing an RPC action configuration.
Defines the mapping between a named RPC endpoint and an Ash action.

AshTypescript.Rpc.TypedQuery

Struct representing a typed query configuration.
Defines a pre-configured query with specific fields and TypeScript types,
allowing for type-safe, reusable query patterns in the generated RPC client.

AshTypescript.Rpc.ValidationErrorSchemas

Generates validation error schemas for TypeScript RPC clients.
This module uses a unified type-driven dispatch pattern for mapping Ash types
to their corresponding validation error types. The core dispatcher map_error_type/2
handles NewType unwrapping at entry and delegates to type-specific handlers.

 Summary

 Functions

 build_union_error_type(union_types)

 Builds a union error type from a list of union type definitions.
Creates an object with optional error fields for each union variant.

 generate_input_validation_errors_schema(resource)

 Generates explicit validation error types for input schemas.

 generate_validation_error_schemas_for_embedded_resources(embedded_resources)

 Generates validation error schemas for embedded resources.

 generate_validation_error_schemas_for_typed_structs(type_infos)

 Generates validation error schemas for types with field constraints.

 generate_validation_error_type(resource, action, rpc_action_name)

 Generates validation error type for an RPC action.

 get_ts_error_type(map)

 Maps Ash types to their corresponding validation error types.
Backward compatible wrapper around map_error_type/2.

 map_error_type(type, constraints \\ [])

 Maps an Ash type to its corresponding validation error type.

 Functions

 build_union_error_type(union_types)

Builds a union error type from a list of union type definitions.
Creates an object with optional error fields for each union variant.
Example:
Input union: { text: TextInput } | { note: string }
Error type: { text?: TextValidationErrors; note?: string[]; }

 generate_input_validation_errors_schema(resource)

Generates explicit validation error types for input schemas.

 generate_validation_error_schemas_for_embedded_resources(embedded_resources)

Generates validation error schemas for embedded resources.

 generate_validation_error_schemas_for_typed_structs(type_infos)

Generates validation error schemas for types with field constraints.
Accepts either:
	A list of type info maps (new format): %{instance_of:, constraints:, field_name_mappings:}
	A list of modules (legacy format): for backward compatibility

Returns TypeScript validation error schema definitions.

 generate_validation_error_type(resource, action, rpc_action_name)

Generates validation error type for an RPC action.

 get_ts_error_type(map)

Maps Ash types to their corresponding validation error types.
Backward compatible wrapper around map_error_type/2.

 map_error_type(type, constraints \\ [])

 @spec map_error_type(
 atom() | tuple(),
 keyword()
) :: String.t()

Maps an Ash type to its corresponding validation error type.
This is the unified dispatcher that handles all type-to-error-type mappings.
NewTypes are unwrapped at entry for consistent handling.
Parameters
	type - The Ash type (atom, tuple, or module)
	constraints - Type constraints (keyword list)

Returns
A TypeScript error type string (e.g., "string[]", "FooValidationErrors")

AshTypescript.Rpc.ValueFormatter

Unified value formatting for RPC input/output.
Traverses composite values recursively, applying field name mappings
and type-aware formatting at each level.
The type and constraints parameters provide all context needed - no separate
"resource" context is required because each type is self-describing:
	For Ash resources: field types come from Ash.Resource.Info.attribute/2
	For TypedStructs: field types come from constraints[:fields]
	For typed maps: field types come from constraints[:fields]
	For unions: member type and constraints come from constraints[:types][member]

Key Design Principle
The "parent resource" is never needed because each type is self-describing.
When we recurse into a nested value, we pass the field's type and constraints,
which contain all the information needed to format that value correctly.

 Summary

 Types

 direction()

 Functions

 format(value, type, constraints, formatter, direction)

 Formats a value based on its type and constraints.

 Types

 direction()

 @type direction() :: :input | :output

 Functions

 format(value, type, constraints, formatter, direction)

 @spec format(term(), atom() | tuple() | nil, keyword(), atom(), direction()) :: term()

Formats a value based on its type and constraints.
Parameters
	value - The value to format
	type - The Ash type (e.g., MyApp.EmbeddedResource, Ash.Type.Map, {:array, X})
	constraints - Type constraints (e.g., [fields: [...]], [instance_of: Module])
	formatter - The field formatter configuration (:camel_case, :snake_case, etc.)
	direction - :input (client→internal) or :output (internal→client)

Returns
The formatted value with field names converted according to direction.

AshTypescript.Rpc.Verifiers.VerifyActionTypes

Verifies that field names in action return types and argument types are valid for TypeScript.
For each exposed RPC action, this verifier checks:
	Return type field names (for generic actions with :action type)
	Argument type field names (for all action types)

This ensures that map, keyword, tuple, struct, embedded resource, and union types
used in action signatures have valid TypeScript-compatible field names.

AshTypescript.Rpc.Verifiers.VerifyIdentities

Verifies that all identities listed in RPC actions actually exist on the resource.
This catches configuration errors at compile time where an RPC action references
an identity that doesn't exist on the resource.

AshTypescript.Rpc.Verifiers.VerifyMetadataFieldNames

Verifies that metadata field names in RPC actions are valid TypeScript identifiers
and don't conflict with existing resource field names.

AshTypescript.Rpc.Verifiers.VerifyTypedQueryFields

Verifies that all requested fields in typed queries reference valid, public fields
on the resource and that the field selections are structurally correct.
This verifier ensures that typed queries only request fields that actually exist
and are publicly accessible on the resource, preventing runtime errors when
executing typed queries.

AshTypescript.Rpc.Verifiers.VerifyUniqueInputFieldNames

Verifies that all input fields for each RPC action have unique client names.
This prevents ambiguous input parsing where two different Elixir fields
(arguments or accepted attributes) would map to the same client field name
after formatting.
Example
If a resource has:
attribute :user_name, :string
argument :userName, :string # Would map to same client name as user_name
This verifier would catch the conflict at compile time.

AshTypescript.Rpc.VerifyRpc

Checks that all RPC actions and typed queries reference existing resource actions,
and validates that names don't contain invalid patterns.

 Summary

 Functions

 verify_rpc_actions(resource, rpc_actions)

 verify_typed_queries(resource, typed_queries)

 verify_unique_rpc_action_and_typed_query_names(dsl)

 Functions

 verify_rpc_actions(resource, rpc_actions)

 verify_typed_queries(resource, typed_queries)

 verify_unique_rpc_action_and_typed_query_names(dsl)

AshTypescript.Rpc.VerifyRpcWarnings

Outputs warnings for potentially misconfigured RPC resources during compilation.
This verifier checks for:
	Resources with the AshTypescript.Resource extension that are not configured in any typescript_rpc block
	Non-RPC resources that are referenced by RPC resources but not configured as RPC resources

These are informational warnings only and do not halt compilation.

AshTypescript.Rpc.ZodSchemaGenerator

Generates Zod validation schemas for Ash resources and actions.
This module handles the generation of Zod schemas for TypeScript validation,
supporting all Ash types including embedded resources, union types, and custom types.

 Summary

 Functions

 generate_zod_schema(resource, action, rpc_action_name)

 Generates a Zod schema definition for action input validation.

 generate_zod_schema_for_resource(resource)

 Generates a Zod schema for a single resource.

 generate_zod_schemas_for_resources(resources)

 Generates Zod schemas for resources that need input validation.

 get_zod_type(type_and_constraints, context \\ nil)

 Maps Ash types to Zod schema constructors.
Backward compatible wrapper around map_zod_type/2.

 map_zod_type(type, constraints \\ [])

 Maps an Ash type to a Zod schema string using unified type-driven dispatch.

 Functions

 generate_zod_schema(resource, action, rpc_action_name)

Generates a Zod schema definition for action input validation.

 generate_zod_schema_for_resource(resource)

Generates a Zod schema for a single resource.

 generate_zod_schemas_for_resources(resources)

Generates Zod schemas for resources that need input validation.
This includes embedded resources and resources used as struct arguments in RPC actions.

 get_zod_type(type_and_constraints, context \\ nil)

Maps Ash types to Zod schema constructors.
Backward compatible wrapper around map_zod_type/2.

 map_zod_type(type, constraints \\ [])

 @spec map_zod_type(
 atom() | tuple(),
 keyword()
) :: String.t()

Maps an Ash type to a Zod schema string using unified type-driven dispatch.
Parameters
	type - The Ash type (atom, tuple, or module)
	constraints - Type constraints (keyword list)

Returns
A Zod schema string (e.g., "z.string().min(1)")

AshTypescript.TypeSystem.Introspection

Core type introspection and classification for Ash types.
This module provides a centralized set of functions for determining the nature
and characteristics of Ash types, including embedded resources, typed structs,
unions, and primitive types.
Used throughout the codebase for type checking, code generation, and runtime
processing.

 Summary

 Functions

 build_reverse_field_names_map(ts_field_names)

 Builds a reverse mapping from client names to internal names.

 classify_ash_type(type_module, attribute, is_array)

 Classifies an Ash type into a category for processing purposes.

 get_field_spec_type(field_specs, field_name)

 Gets the type and constraints for a field from field specs.

 get_inner_type(type)

 Extracts the inner type from an array type.

 get_typescript_field_names_map(module)

 Gets the typescript_field_names as a map, or empty map if not available.

 get_union_types(attribute)

 Extracts union types from an attribute's constraints.

 get_union_types_from_constraints(type, constraints)

 Extracts union types from type and constraints directly.

 has_field_constraints?(constraints)

 Checks if constraints include non-empty field definitions.

 has_typescript_field_names?(module)

 Checks if a module has a typescript_field_names/0 callback.

 is_ash_type?(module)

 Checks if a type is an Ash type module.

 is_custom_type?(type)

 Checks if a type is a custom Ash type with a typescript_type_name callback.

 is_embedded_resource?(module)

 Checks if a module is an embedded Ash resource.

 is_primitive_type?(type)

 Checks if a type is a primitive Ash type (not a complex or composite type).

 is_resource_instance_of?(constraints)

 Checks if constraints specify an instance_of that is an Ash resource.

 unwrap_new_type(type, constraints)

 Recursively unwraps Ash.Type.NewType to get the underlying type and constraints.

 Functions

 build_reverse_field_names_map(ts_field_names)

Builds a reverse mapping from client names to internal names.
Can take either a map of field names or a module with typescript_field_names/0.
Examples
iex> AshTypescript.TypeSystem.Introspection.build_reverse_field_names_map(%{is_active?: "isActive"})
%{"isActive" => :is_active?}

iex> AshTypescript.TypeSystem.Introspection.build_reverse_field_names_map(MyApp.TaskStats)
%{"isActive" => :is_active?, "meta1" => :meta_1}

 classify_ash_type(type_module, attribute, is_array)

Classifies an Ash type into a category for processing purposes.
Returns one of:
	:union_attribute - Union type
	:embedded_resource - Single embedded resource
	:embedded_resource_array - Array of embedded resources
	:tuple - Tuple type
	:attribute - Simple attribute (default)

Parameters
	type_module - The Ash type module (e.g., Ash.Type.String, Ash.Type.Union)
	attribute - The attribute struct containing type and constraints
	is_array - Whether this is inside an array type

Examples
iex> attr = %{type: MyApp.Address, constraints: []}
iex> AshTypescript.TypeSystem.Introspection.classify_ash_type(MyApp.Address, attr, false)
:embedded_resource

 get_field_spec_type(field_specs, field_name)

Gets the type and constraints for a field from field specs.
Examples
iex> specs = [name: [type: :string], age: [type: :integer]]
iex> AshTypescript.TypeSystem.Introspection.get_field_spec_type(specs, :name)
{:string, []}

iex> AshTypescript.TypeSystem.Introspection.get_field_spec_type(specs, :unknown)
{nil, []}

 get_inner_type(type)

Extracts the inner type from an array type.
Examples
iex> AshTypescript.TypeSystem.Introspection.get_inner_type({:array, Ash.Type.String})
Ash.Type.String

iex> AshTypescript.TypeSystem.Introspection.get_inner_type(Ash.Type.String)
Ash.Type.String

 get_typescript_field_names_map(module)

Gets the typescript_field_names as a map, or empty map if not available.
Examples
iex> AshTypescript.TypeSystem.Introspection.get_typescript_field_names_map(MyApp.TaskStats)
%{is_active?: "isActive", meta_1: "meta1"}

 get_union_types(attribute)

Extracts union types from an attribute's constraints.
Handles both direct union types and array union types.
Examples
iex> attr = %{type: Ash.Type.Union, constraints: [types: [note: [...], url: [...]]]}
iex> AshTypescript.TypeSystem.Introspection.get_union_types(attr)
[note: [...], url: [...]]

 get_union_types_from_constraints(type, constraints)

Extracts union types from type and constraints directly.
Useful when you have constraints but not the full attribute struct.
Handles both direct union types and array union types.
Examples
iex> constraints = [types: [note: [...], url: [...]]]
iex> AshTypescript.TypeSystem.Introspection.get_union_types_from_constraints(Ash.Type.Union, constraints)
[note: [...], url: [...]]

 has_field_constraints?(constraints)

Checks if constraints include non-empty field definitions.
Examples
iex> AshTypescript.TypeSystem.Introspection.has_field_constraints?([fields: [name: [type: :string]]])
true

iex> AshTypescript.TypeSystem.Introspection.has_field_constraints?([fields: []])
false

 has_typescript_field_names?(module)

Checks if a module has a typescript_field_names/0 callback.
Examples
iex> AshTypescript.TypeSystem.Introspection.has_typescript_field_names?(MyApp.TaskStats)
true

iex> AshTypescript.TypeSystem.Introspection.has_typescript_field_names?(Ash.Type.String)
false

 is_ash_type?(module)

Checks if a type is an Ash type module.
Examples
iex> AshTypescript.TypeSystem.Introspection.is_ash_type?(Ash.Type.String)
true

iex> AshTypescript.TypeSystem.Introspection.is_ash_type?(MyApp.CustomType)
true

iex> AshTypescript.TypeSystem.Introspection.is_ash_type?(:string)
false

 is_custom_type?(type)

Checks if a type is a custom Ash type with a typescript_type_name callback.
Custom types are Ash types that define a typescript_type_name/0 callback
to specify their TypeScript representation.
Examples
iex> AshTypescript.TypeSystem.Introspection.is_custom_type?(MyApp.MyCustomType)
true

iex> AshTypescript.TypeSystem.Introspection.is_custom_type?(Ash.Type.String)
false

 is_embedded_resource?(module)

Checks if a module is an embedded Ash resource.
Examples
iex> AshTypescript.TypeSystem.Introspection.is_embedded_resource?(MyApp.Accounts.Address)
true

iex> AshTypescript.TypeSystem.Introspection.is_embedded_resource?(MyApp.Accounts.User)
false

 is_primitive_type?(type)

Checks if a type is a primitive Ash type (not a complex or composite type).
Primitive types include basic types like String, Integer, Boolean, Date, UUID, etc.
Examples
iex> AshTypescript.TypeSystem.Introspection.is_primitive_type?(Ash.Type.String)
true

iex> AshTypescript.TypeSystem.Introspection.is_primitive_type?(Ash.Type.Union)
false

 is_resource_instance_of?(constraints)

Checks if constraints specify an instance_of that is an Ash resource.
Examples
iex> AshTypescript.TypeSystem.Introspection.is_resource_instance_of?([instance_of: MyApp.Todo])
true

iex> AshTypescript.TypeSystem.Introspection.is_resource_instance_of?([])
false

 unwrap_new_type(type, constraints)

Recursively unwraps Ash.Type.NewType to get the underlying type and constraints.
When a type is wrapped in one or more NewType wrappers, this function
recursively unwraps them until it reaches the base type. If the NewType
has a typescript_field_names/0 callback and the constraints don't already
have an instance_of key, it will add the NewType module as instance_of
to preserve the reference for field name mapping.
Parameters
	type - The type to unwrap (e.g., MyApp.CustomType)
	constraints - The constraints for the type

Returns
A tuple {unwrapped_type, unwrapped_constraints} where:
	unwrapped_type is the final underlying type after all NewType unwrapping
	unwrapped_constraints are the final constraints, potentially augmented with instance_of

Examples
iex> # Simple NewType with typescript_field_names
iex> unwrap_new_type(MyApp.TaskStats, [])
{Ash.Type.Struct, [fields: [...], instance_of: MyApp.TaskStats]}

iex> # Nested NewTypes (outermost with callback wins)
iex> unwrap_new_type(MyApp.Wrapper, [])
{Ash.Type.String, [max_length: 100, instance_of: MyApp.Wrapper]}

iex> # Non-NewType (returns unchanged)
iex> unwrap_new_type(Ash.Type.String, [max_length: 50])
{Ash.Type.String, [max_length: 50]}

AshTypescript.TypeSystem.ResourceFields

Provides unified resource field type lookup.
This module centralizes the logic for looking up field types from Ash resources,
supporting attributes, calculations, relationships, and aggregates.
Variants
	get_field_type_info/2 - Looks up any field (public or private)
	get_public_field_type_info/2 - Looks up only public fields

Both return {type, constraints} tuples, with {nil, []} for unknown fields.

 Summary

 Functions

 get_aggregate_type_info(resource, field_name)

 Gets the resolved type for an aggregate field.

 get_field_type_info(resource, field_name)

 Gets the type and constraints for any field on a resource.

 get_public_field_type_info(resource, field_name)

 Gets the type and constraints for public fields only.

 Functions

 get_aggregate_type_info(resource, field_name)

 @spec get_aggregate_type_info(module(), atom()) :: {atom() | nil, keyword()}

Gets the resolved type for an aggregate field.
Aggregates can have computed types based on the underlying field type.
This function returns the fully resolved aggregate type.
Examples
iex> get_aggregate_type_info(MyApp.User, :todo_count)
{Ash.Type.Integer, []}

 get_field_type_info(resource, field_name)

 @spec get_field_type_info(module(), atom()) :: {atom() | tuple() | nil, keyword()}

Gets the type and constraints for any field on a resource.
Checks attributes, calculations, relationships, and aggregates in order.
Uses non-public Ash.Resource.Info functions to access all fields.
Examples
iex> get_field_type_info(MyApp.User, :name)
{Ash.Type.String, []}

iex> get_field_type_info(MyApp.User, :todos)
{{:array, MyApp.Todo}, []}

iex> get_field_type_info(MyApp.User, :unknown)
{nil, []}

 get_public_field_type_info(resource, field_name)

 @spec get_public_field_type_info(module(), atom()) ::
 {atom() | tuple() | nil, keyword()}

Gets the type and constraints for public fields only.
Checks public attributes, calculations, aggregates, and relationships in order.
Used for output formatting where we only want publicly accessible fields.
Examples
iex> get_public_field_type_info(MyApp.User, :name)
{Ash.Type.String, []}

iex> get_public_field_type_info(MyApp.User, :private_field)
{nil, []}

AshTypescript.VerifierChecker

Checks if any verifiers have failed for resources and domains.
This is needed because Spark verifiers now emit warnings instead of errors,
so we need to re-run them during codegen to detect issues.

 Summary

 Functions

 check_all_verifiers(modules)

 Checks all verifiers for a list of modules (resources/domains).
Returns :ok or {:error, formatted_message}

 Functions

 check_all_verifiers(modules)

Checks all verifiers for a list of modules (resources/domains).
Returns :ok or {:error, formatted_message}

mix ash_typescript.codegen

Generates TypeScript types for Ash Rpc-calls.
Usage:
 mix ash_typescript.codegen --output "assets/js/ash_generated.ts"

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix ash_typescript.install

Installs AshTypescript into a project. Should be called with mix igniter.install ash_typescript

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

