

 assay

 v0.3.0

 Table of contents

 	Assay

 	
 Modules

 	Assay

 	Assay.Config

 	Assay.Daemon

 	Assay.DialyzerFlags

 	Assay.Formatter

 	Assay.Formatter.Helpers

 	Assay.Formatter.Suggestions

 	Assay.Formatter.Warning

 	Assay.Ignore

 	Assay.MCP

 	Assay.Runner

 	Assay.Watch

 	
 Mix Tasks

 	mix assay

 	mix assay.daemon

 	mix assay.install

 	mix assay.mcp

 	mix assay.watch

 Assay

[image: Hex.pm]
[image: HexDocs]
[image: GitHub Actions]
Incremental Dialyzer for modern Elixir tooling. Assay reads Dialyzer settings
directly from your host app's mix.exs, runs the incremental engine, filters
warnings via dialyzer_ignore.exs, and emits multiple output formats suited
for humans, CI, editors, and LLM-driven tools.
Features
	Incremental Dialyzer runs via mix assay
	Watch mode (mix assay.watch) with debounced re-analysis
	JSON/CLI formatters (text, github, sarif, lsp, ndjson, llm)
	dialyzer_ignore.exs filtering with per-warning decorations
	Igniter-powered installer (mix assay.install) that configures apps/
warning_apps in the host project
	JSON-RPC daemon (mix assay.daemon) plus an MCP server (mix assay.mcp)
for editor/LSP/agent integrations

Installation
Using Igniter (Recommended)
The easiest way to install Assay is using the Igniter-powered installer. First, add both Assay and Igniter to your dependencies:
def deps do
 [
 {:assay, "~> 0.3", runtime: false, only: [:dev, :test]},
 {:igniter, "~> 0.6", optional: false}
]
end
Important: Igniter must be in your mix.exs dependencies (not optional) for the installer to work.
Then run the installer:
mix deps.get
mix assay.install --yes

The installer will:
	Detect project and dependency apps
	Configure apps and warning_apps in your mix.exs
	Create a .gitignore entry for _build/assay
	Create a dialyzer_ignore.exs file
	Optionally generate CI workflow files (GitHub Actions or GitLab CI)

Manual Installation
If you prefer not to use Igniter, you can configure Assay manually:
	Add Assay to your dependencies:

def deps do
 [
 {:assay, "~> 0.3", runtime: false, only: [:dev, :test]}
]
end
	Add configuration to your mix.exs:

def project do
 [
 # ... other config ...
 assay: [
 dialyzer: [
 apps: :project_plus_deps, # or explicit list
 warning_apps: :project # or explicit list
]
]
]
end
	Create a dialyzer_ignore.exs file (optional):

dialyzer_ignore.exs
[]
	Add _build/assay to your .gitignore (optional but recommended).

Configuration
Symbolic Selectors
Assay supports symbolic selectors for apps and warning_apps:
	:project - All project applications (umbrella: all apps from Mix.Project.apps_paths(), single-app: Mix.Project.config()[:app])
	:project_plus_deps - Project apps + dependencies + base OTP libraries
	:current - Current Mix project app only (useful for umbrella projects)
	:current_plus_deps - Current app + dependencies + base OTP libraries

Example Configuration
In mix.exs
def project do
 [
 app: :my_app,
 assay: [
 dialyzer: [
 # Analyze project apps + dependencies
 apps: :project_plus_deps,
 # Only show warnings for project apps
 warning_apps: :project
]
]
]
end
You can also mix symbolic selectors with explicit app names:
assay: [
 dialyzer: [
 apps: [:project_plus_deps, :custom_app],
 warning_apps: [:project, :another_app]
]
]
Usage
One-off analysis
mix assay
mix assay --print-config
mix assay --format github --format sarif

Exit codes: 0 (clean), 1 (warnings), 2 (error).
Watch mode
mix assay.watch

Re-runs incremental Dialyzer on file changes and streams formatted output.
JSON-RPC daemon
mix assay.daemon

Speaks JSON-RPC over stdio. Supported methods:
	assay/analyze – run incremental Dialyzer
	assay/getStatus, assay/getConfig, assay/setConfig
	assay/shutdown

MCP server
mix assay.mcp

Implements the Model Context Protocol (initialize, tools/list, tools/call)
and exposes a single tool, assay.analyze, which returns the same structured
diagnostics as the daemon. Requests/responses use the standard MCP/LSP framing:
each JSON payload must be prefixed with Content-Length: <bytes>\r\n\r\n.
Pretty-printing Dialyzer terms
Add erlex to your host project's deps (e.g.
{:erlex, "~> 0.2", optional: true}) and pass --format elixir to mix assay
to render Dialyzer's Erlang detail blocks as Elixir-looking maps/structs (e.g.
%Ecto.Changeset{}) while keeping plain output available when the default
text format is used.
Troubleshooting
macOS: "Too many open files" error
On macOS, Dialyzer's incremental mode opens many files in parallel, which can exceed
the default open file limit. If you encounter errors related to file limits on larger
projects, increase the limit before running Assay:
ulimit -n 4096 # or higher for very large projects
mix assay

To make this permanent, add it to your shell configuration file (e.g., ~/.zshrc):
ulimit -n 4096

Development
	mix test – unit tests (including daemon + MCP simulations)
	mix credo – linting/style checks
	mix format – formatter
	mix assay.watch – dogfooding watch mode on the library itself

Status
Assay currently focuses on incremental Dialyzer runs, watch mode, the Igniter
installer, and daemon/MCP integrations. Future milestones include richer
pass-through Dialyzer flag support, additional output formats, and expanded
editor tooling.

Assay

Public entrypoints for running incremental Dialyzer via Assay.

 Summary

 Functions

 run(opts \\ [])

 Runs incremental Dialyzer using configuration sourced from the host project.

 Functions

 run(opts \\ [])

 @spec run(keyword()) :: Assay.Runner.run_result()

Runs incremental Dialyzer using configuration sourced from the host project.
Returns :ok when Dialyzer finishes cleanly, :warnings when incremental
Dialyzer exits with code 1, and raises on any other exit.
When used via mix assay, exit codes are:
	0 - Clean (no warnings after ignores)
	1 - Warnings detected
	2 - Error occurred

Assay.Config

Minimal configuration loader backed directly by Mix.Project.config/0.
The first milestone keeps all user-facing knobs inside the host project's
mix.exs. This module extracts that data and normalizes derived paths so the
runner can work with a single struct.
Example Configuration
In mix.exs
def project do
 [
 app: :my_app,
 assay: [
 dialyzer: [
 apps: [:my_app, :my_dep],
 warning_apps: [:my_app],
 ignore_file: "dialyzer_ignore.exs",
 dialyzer_flags: ["--statistics"]
]
]
]
end
The apps list determines which applications are included in the PLT analysis.
The warning_apps list determines which applications generate warnings (typically
just your project apps, not dependencies).
Use mix assay.install to automatically configure these settings.

 Summary

 Types

 t()

 Functions

 from_mix_project(opts \\ [])

 Reads the host project's :assay configuration and returns a struct that the
rest of the system can consume.

 Types

 t()

 @type t() :: %Assay.Config{
 app_sources: list(),
 apps: [atom()],
 build_lib_path: binary(),
 cache_dir: binary(),
 dialyzer_flag_options: keyword(),
 dialyzer_flags: term(),
 dialyzer_init_plt: binary() | nil,
 dialyzer_output_plt: binary() | nil,
 discovery_info: map(),
 elixir_lib_path: binary(),
 ignore_file: binary() | nil,
 plt_path: binary(),
 project_root: binary(),
 warning_app_sources: list(),
 warning_apps: [atom()],
 warnings: [atom()]
}

 Functions

 from_mix_project(opts \\ [])

 @spec from_mix_project(keyword()) :: t()

Reads the host project's :assay configuration and returns a struct that the
rest of the system can consume.
Options allow tests or future callers to override derived paths (e.g. when the
runner eventually supports daemons or alternate cache directories).
Options
	:project_root - Override project root (defaults to File.cwd!())
	:cache_dir - Override cache directory
	:plt_path - Override PLT path
	:build_lib_path - Override build lib path
	:dependency_apps - Override dependency apps list

Examples
Load from mix.exs
config = Assay.Config.from_mix_project()
config.apps
=> [:my_app, :my_dep, ...]
config.warning_apps
=> [:my_app]

Override project root for testing
config = Assay.Config.from_mix_project(project_root: "/tmp/test_project")
config.project_root
=> "/tmp/test_project"

Override cache directory
config = Assay.Config.from_mix_project(cache_dir: "/tmp/assay_cache")
config.cache_dir
=> "/tmp/assay_cache"

Assay.Daemon

JSON-RPC daemon that exposes incremental Dialyzer runs to tooling (e.g. MCP).
The daemon speaks line-delimited JSON-RPC over stdio. Each request must be a
single JSON object terminated by a newline. Responses are emitted in the same
format. Only a handful of methods are implemented:
	assay/analyze — triggers an incremental run and returns diagnostics
	assay/getStatus — reports the daemon status and last run result
	assay/getConfig — returns the current config (including overrides)
	assay/setConfig — applies config overrides (apps, warning apps, etc)
	assay/shutdown — cleanly stops the daemon

 Summary

 Types

 t()

 Functions

 handle_rpc(request, state)

 Handles a decoded JSON-RPC request map and returns {reply | nil, state, action}.

 new(opts \\ [])

 Initializes daemon state. Accepts :config and :runner overrides for tests.

 serve(opts \\ [])

 Starts the daemon and blocks, reading JSON-RPC requests from stdio.

 Types

 t()

 @type t() :: %Assay.Daemon{
 base_config: Assay.Config.t(),
 config: Assay.Config.t(),
 last_result: map() | nil,
 overrides: map(),
 runner: module(),
 status: :idle | :running
}

 Functions

 handle_rpc(request, state)

 @spec handle_rpc(map(), t()) :: {map() | nil, t(), :continue | :stop}

Handles a decoded JSON-RPC request map and returns {reply | nil, state, action}.
Useful for tests; action is either :continue or :stop.
Examples
Analyze request
request = %{
 "jsonrpc" => "2.0",
 "id" => 1,
 "method" => "assay/analyze",
 "params" => %{"formats" => ["json"]}
}
state = Assay.Daemon.new()
{reply, new_state, action} = Assay.Daemon.handle_rpc(request, state)
reply contains JSON-RPC response with diagnostics
action is :continue

Get status request
request = %{
 "jsonrpc" => "2.0",
 "id" => 2,
 "method" => "assay/getStatus"
}
{reply, new_state, action} = Assay.Daemon.handle_rpc(request, state)
reply contains status information
action is :continue

Shutdown request
request = %{
 "jsonrpc" => "2.0",
 "id" => 3,
 "method" => "assay/shutdown"
}
{reply, new_state, action} = Assay.Daemon.handle_rpc(request, state)
action is :stop

 new(opts \\ [])

 @spec new(keyword()) :: t()

Initializes daemon state. Accepts :config and :runner overrides for tests.

 serve(opts \\ [])

 @spec serve(keyword()) :: no_return()

Starts the daemon and blocks, reading JSON-RPC requests from stdio.

Assay.DialyzerFlags

Parses and normalizes Dialyzer command-line flags.
This module converts raw flag inputs (from config or CLI) into the option tuples
that :dialyzer.run/1 expects. It validates flags, prevents conflicting options,
and handles PLT path overrides.
Supported Flags
Common flags like --statistics, --fullpath, --no_spec are supported.
Flags that conflict with incremental mode (e.g., --build_plt, --incremental)
are disallowed.
See parse/3 for details on flag parsing and validation.

 Summary

 Types

 parse_result()

 source()

 Functions

 parse(raw_flags, source, project_root)

 Normalizes config or CLI provided Dialyzer flag inputs into the dial_option
tuples that :dialyzer.run/1 expects. Returns the derived options as well as
a PLT override path (if any).

 Types

 parse_result()

 @type parse_result() :: %{
 options: keyword(),
 init_plt: binary() | nil,
 output_plt: binary() | nil
}

 source()

 @type source() :: :config | :cli

 Functions

 parse(raw_flags, source, project_root)

 @spec parse(term(), source(), binary()) :: parse_result()

Normalizes config or CLI provided Dialyzer flag inputs into the dial_option
tuples that :dialyzer.run/1 expects. Returns the derived options as well as
a PLT override path (if any).

Assay.Formatter

Formats Dialyzer warnings into various output formats.
This module converts decorated Dialyzer warning entries into formatted strings
suitable for different consumers: humans (text), CI systems (github, sarif),
editors (lsp), and LLM/agent tools (json, llm).
Supports multiple formats: :text, :elixir, :github, :json, :sarif, :llm.
See format/3 for details on each format.

 Summary

 Functions

 format(entries, atom, opts)

 Formats decorated Dialyzer warnings into strings for the requested output format.

 Functions

 format(entries, atom, opts)

 @spec format([map()], atom(), keyword()) :: [String.t()]

Formats decorated Dialyzer warnings into strings for the requested output format.
Formats
	:text - Human-readable text format with code snippets and location information
	:elixir - Same as :text but with pretty-printed Erlang terms (requires erlex dependency)
	:github - GitHub Actions workflow annotations (::warning file=...::message)
	:json - JSON objects for machine/RPC consumers (one JSON object per warning)
	:sarif - SARIF 2.1.0 log (entire log emitted as a single JSON string)
	:llm - JSON format optimized for LLM consumption (single-line messages, structured data)

Options
	:project_root (required) - The root directory of the project for resolving relative paths

Examples
iex> entry = %{
...> text: "Function will never return",
...> match_text: "Function will never return",
...> path: "lib/bar.ex",
...> relative_path: "lib/bar.ex",
...> line: 5,
...> code: :warn_not_called
...> }
iex> [result] = Assay.Formatter.format([entry], :github, project_root: "/project")
iex> result
"::warning file=lib/bar.ex,line=5::Function will never return"

iex> entry = %{
...> text: "Type mismatch",
...> match_text: "Type mismatch",
...> path: "lib/baz.ex",
...> relative_path: "lib/baz.ex",
...> line: 10,
...> column: 5,
...> code: :warn_matching
...> }
iex> [result] = Assay.Formatter.format([entry], :llm, project_root: "/project")
iex> {:ok, json} = JSON.decode(result)
iex> json["code"]
"warn_matching"
iex> json["line"]
10
iex> json["severity"]
"warning"

Assay.Formatter.Helpers

Formatter-agnostic helpers used across warning renderers to normalize Erlang
terms and render rich diffs.

 Summary

 Functions

 colorize(text, color, arg3)

 Wraps text with ANSI color codes when enabled? is true.

 diff_lines(expected_lines, actual_lines, opts)

 Computes a +/- diff between two lists of strings, highlighting only the differing
segments while keeping delimiters balanced.

 format_term_lines(value)

 Converts Erlang-ish term output into Elixir-friendly string lines.

 Functions

 colorize(text, color, arg3)

Wraps text with ANSI color codes when enabled? is true.

 diff_lines(expected_lines, actual_lines, opts)

Computes a +/- diff between two lists of strings, highlighting only the differing
segments while keeping delimiters balanced.
Returns a flat list of formatted lines (already prefixed with - or +).
Examples
iex> result = Assay.Formatter.Helpers.diff_lines(["(atom())"], ["(binary())"], color?: false)
iex> List.flatten(result)
["- (atom())", "+ (binary())"]

 format_term_lines(value)

Converts Erlang-ish term output into Elixir-friendly string lines.
Printable binaries are stringified.
Examples
iex> Assay.Formatter.Helpers.format_term_lines("%{title => <<116,105,116,108,101>>}")
["%{title => \"title\"}"]

Assay.Formatter.Suggestions

Provides actionable, context-aware suggestions for fixing Dialyzer warnings.
Extracts information from multiple sources in the warning entry to provide
specific, helpful guidance.
Data sources:
	entry.code: Warning type
	entry.raw: Structured Dialyzer data (types, positions, etc.)
	entry.text: Formatted reason text
	entry.path: Source file (for code analysis)

 Summary

 Functions

 for_warning(code, entry)

 Generates actionable suggestions for a Dialyzer warning.

 Functions

 for_warning(code, entry)

 @spec for_warning(atom(), map()) :: [String.t()]

Generates actionable suggestions for a Dialyzer warning.
Combines base suggestions, context-aware suggestions, type-aware suggestions,
reason-aware suggestions, and code-aware suggestions to provide comprehensive
guidance for fixing warnings.
Examples
Get suggestions for a warning
entry = %{
 code: :warn_not_called,
 raw: {:warn_not_called, {"/path/to/file.ex", {10, 5}}, {:my_app, :unused_fun, 1}},
 text: "Function MyApp.unused_fun/1 is never called",
 path: "/path/to/file.ex",
 line: 10
}
suggestions = Assay.Formatter.Suggestions.for_warning(:warn_not_called, entry)
Returns a list of suggestion strings
Enum.any?(suggestions, &String.contains?(&1, "never called"))
=> true

Suggestions include context when available
entry = %{
 code: :warn_return_no_exit,
 raw: {:warn_return_no_exit, {"/path/to/file.ex", {5, 3}}, "Function will never return"},
 text: "Function MyApp.infinite_loop/0 has no local return",
 path: "/path/to/file.ex",
 line: 5
}
suggestions = Assay.Formatter.Suggestions.for_warning(:warn_return_no_exit, entry)
Enum.any?(suggestions, &String.contains?(&1, "will never return normally"))
=> true

Assay.Formatter.Warning

Shared helpers for turning Dialyzer warning payloads into friendly, Elixir-style
text sections. A handler can take an entry (as delivered by the formatter),
produce a %Result{headline, details}, and lean on these utilities for consistent
indentation, diff highlighting, and term rendering.
Example: using the diff helpers
Given two one-line specs, render a +/- diff with balanced parens and color.
opts = [color?: true]
expected = ["([integer()]) :: integer() | nil"]
actual = ["(maybe_improper_list()) :: any()"]

Assay.Formatter.Helpers.diff_lines(expected, actual, opts)
=> [
IO.ANSI.red() <> "- ([integer()]) :: integer() | nil" <>
IO.ANSI.reset(),
IO.ANSI.green() <> "+ (maybe_improper_list()) :: any()" <>
IO.ANSI.reset()
]
Example: rendering Erlang terms as Elixir-friendly text
Assay.Formatter.Helpers.format_term_lines("%{title => <<116,105,116,108,101>>}")
=> ["%{:title => "title"}"]
Handlers that need more control (maps, specs, nested structs) can combine
diff_segments/3, diff_map_entries/3, and format_term_lines/1 to build
domain-specific sections while preserving the same visual language used by
other warnings.

 Summary

 Functions

 clean_reason(line)

 Trims Dialyzer prefixes from a reason line.

 diff_lines(expected_lines, actual_lines, opts)

 Convenience wrapper around Assay.Formatter.Helpers.diff_lines/3.

 diff_section(lines, opts)

 Renders a diff section header plus indented lines.

 extract_reason_line(entry)

 Extracts the will never return reason line from a Dialyzer entry, if present.

 format_call(module, fun)

 Formats a module/function into Module.fun.

 format_term_lines(value)

 Convenience wrapper around Assay.Formatter.Helpers.format_term_lines/1.

 reason_block(line)

 Builds a simple reason block for warning output.

 render(entry, opts \\ [])

 Builds a Result for a raw Dialyzer entry, delegating to handlers when available.

 value_block(label, lines, opts)

 Renders a labeled value block with optional color.

 Functions

 clean_reason(line)

Trims Dialyzer prefixes from a reason line.
Examples
iex> Assay.Formatter.Warning.clean_reason("-> will never return since types differ")
"will never return since types differ"

 diff_lines(expected_lines, actual_lines, opts)

Convenience wrapper around Assay.Formatter.Helpers.diff_lines/3.
Examples
iex> result = Assay.Formatter.Warning.diff_lines(["(atom())"], ["(binary())"], color?: false)
iex> List.flatten(result)
["- (atom())", "+ (binary())"]

 diff_section(lines, opts)

Renders a diff section header plus indented lines.
Examples
iex> Assay.Formatter.Warning.diff_section(["- (atom())", "+ (binary())"], color?: false)
["", "Diff (expected -, actual +):", " - (atom())", " + (binary())"]

 extract_reason_line(entry)

Extracts the will never return reason line from a Dialyzer entry, if present.
Examples
iex> entry = %{text: "lib/foo.ex:1: -> will never return since types differ"}
iex> Assay.Formatter.Warning.extract_reason_line(entry)
"will never return since types differ"

 format_call(module, fun)

Formats a module/function into Module.fun.
Examples
iex> Assay.Formatter.Warning.format_call(Foo.Bar, :run)
"Foo.Bar.run"

 format_term_lines(value)

Convenience wrapper around Assay.Formatter.Helpers.format_term_lines/1.
Examples
iex> Assay.Formatter.Warning.format_term_lines("%{title => <<116,105,116,108,101>>}")
["%{title => \"title\"}"]

iex> Assay.Formatter.Warning.format_term_lines("(atom())")
["(atom())"]

 reason_block(line)

Builds a simple reason block for warning output.
Examples
iex> Assay.Formatter.Warning.reason_block("will never return")
["", "Reason:", " will never return"]

 render(entry, opts \\ [])

 @spec render(
 map(),
 keyword()
) :: Assay.Formatter.Warning.Result.t()

Builds a Result for a raw Dialyzer entry, delegating to handlers when available.
Examples
iex> entry = %{text: "warning text", match_text: "warning text", path: nil, line: nil, column: nil, code: nil}
iex> Assay.Formatter.Warning.render(entry).headline
"warning text"

 value_block(label, lines, opts)

Renders a labeled value block with optional color.
Examples
iex> Assay.Formatter.Warning.value_block("Expected", ["(atom())"], color?: false)
["Expected:", " (atom())"]

Assay.Ignore

Warning decoration and ignore rule filtering.
This module wraps raw Dialyzer warnings with metadata (file paths, line numbers,
warning codes) and applies ignore rules from dialyzer_ignore.exs files.
Ignore File Format
The ignore file (dialyzer_ignore.exs by default) should return a list of rules.
Each rule can be:
	A string - matches if the warning text contains the string
	A regex - matches if the warning text matches the regex
	A map with keys:	:file or :relative - file path pattern (string or regex)
	:message - message text pattern (string or regex)
	:line - exact line number (integer)
	:code or :tag - warning code atom (e.g., :warn_failing_call)

Example
dialyzer_ignore.exs
[
 "Function will never return", # Simple string match
 ~r/unknown function/, # Regex match
 %{file: "lib/legacy.ex"}, # Match all warnings in a file
 %{code: :warn_not_called, line: 42} # Match specific warning
]

 Summary

 Types

 entry()

 Functions

 decorate(warnings, project_root)

 Wraps raw Dialyzer warnings with useful metadata for formatting and ignore
matching.

 filter(entries, ignore_file, opts \\ [])

 Applies ignore rules (if any) and returns {kept, ignored, file_path} where
the file_path is the ignore file that was loaded or nil when no file was
used.

 Types

 entry()

 @type entry() :: %{
 raw: term(),
 text: String.t(),
 match_text: String.t(),
 path: String.t() | nil,
 relative_path: String.t() | nil,
 line: integer() | nil,
 column: integer() | nil,
 code: atom()
}

 Functions

 decorate(warnings, project_root)

 @spec decorate([term()], binary()) :: [entry()]

Wraps raw Dialyzer warnings with useful metadata for formatting and ignore
matching.
Examples
Decorate a single warning
warning = {:warn_not_called, {"/project/lib/foo.ex", {10, 5}}, {:MyApp, :unused, 1}}
entries = Assay.Ignore.decorate([warning], "/project")
[entry] = entries
entry.code
=> :warn_not_called
entry.path
=> "/project/lib/foo.ex"
entry.relative_path
=> "lib/foo.ex"
entry.line
=> 10
entry.column
=> 5

 filter(entries, ignore_file, opts \\ [])

 @spec filter([entry()], binary() | nil, keyword()) ::
 {[entry()], [entry()], binary() | nil}

Applies ignore rules (if any) and returns {kept, ignored, file_path} where
the file_path is the ignore file that was loaded or nil when no file was
used.
When explain?: true is passed in opts, the ignored entries will include
a :matched_rules field containing the list of rules that matched.
Examples
Filter with string rule
entry = %{
 code: :warn_not_called,
 match_text: "Function MyApp.unused/1 is never called",
 path: "/project/lib/foo.ex",
 relative_path: "lib/foo.ex",
 line: 10
}
rules = ["never called"]
In real usage, rules come from dialyzer_ignore.exs
This is a simplified example
{kept, ignored, _path} = Assay.Ignore.filter([entry], nil)
kept is empty, ignored contains the entry (if rules matched)

Filter with file pattern
entry = %{
 code: :warn_failing_call,
 match_text: "Call will fail",
 path: "/project/lib/legacy.ex",
 relative_path: "lib/legacy.ex",
 line: 5
}
With ignore file containing: [%{file: "lib/legacy.ex"}]
{kept, ignored, path} = Assay.Ignore.filter([entry], "dialyzer_ignore.exs")
If ignore file exists and matches, entry is in ignored list

Assay.MCP

Minimal Model Context Protocol (MCP) server built on top of the Assay daemon.
The server speaks JSON-RPC over stdio and exposes a single tool:
	assay.analyze — runs incremental Dialyzer and returns structured diagnostics.

MCP clients (e.g. IDE agents) can initialize, list tools, and invoke the tool
using tools/call.

 Summary

 Types

 t()

 Functions

 handle_rpc(request, state)

 Handles a JSON-RPC request map and returns {reply | nil, state, action}.

 new(opts \\ [])

 Initializes MCP state. Accepts :daemon (for tests) or :config overrides.

 serve(opts \\ [])

 Starts the MCP server and blocks, reading JSON-RPC over stdio.

 Types

 t()

 @type t() :: %Assay.MCP{
 client_info: map(),
 daemon: Assay.Daemon.t(),
 halt_on_stop?: boolean(),
 initialized?: boolean(),
 server_info: map()
}

 Functions

 handle_rpc(request, state)

 @spec handle_rpc(map(), t()) :: {map() | nil, t(), :continue | :stop}

Handles a JSON-RPC request map and returns {reply | nil, state, action}.
action is either :continue or :stop. Primarily used in tests.
Examples
Initialize request
request = %{
 "jsonrpc" => "2.0",
 "id" => 1,
 "method" => "initialize",
 "params" => %{"clientInfo" => %{"name" => "test-client"}}
}
state = Assay.MCP.new()
{reply, new_state, action} = Assay.MCP.handle_rpc(request, state)
reply contains protocol version and server info
new_state.initialized? is true
action is :continue

List tools request
request = %{
 "jsonrpc" => "2.0",
 "id" => 2,
 "method" => "tools/list"
}
{reply, new_state, action} = Assay.MCP.handle_rpc(request, initialized_state)
reply contains list of available tools (assay.analyze)
action is :continue

Call tool request
request = %{
 "jsonrpc" => "2.0",
 "id" => 3,
 "method" => "tools/call",
 "params" => %{
 "name" => "assay.analyze",
 "arguments" => %{"formats" => ["json"]}
 }
}
{reply, new_state, action} = Assay.MCP.handle_rpc(request, initialized_state)
reply contains tool result with diagnostics
action is :continue

 new(opts \\ [])

 @spec new(keyword()) :: t()

Initializes MCP state. Accepts :daemon (for tests) or :config overrides.

 serve(opts \\ [])

 @spec serve(keyword()) :: no_return()

Starts the MCP server and blocks, reading JSON-RPC over stdio.

Assay.Runner

Executes incremental Dialyzer runs directly via :dialyzer.run/1.

 Summary

 Types

 run_result()

 Functions

 analyze(config, opts \\ [])

 Runs incremental Dialyzer and returns structured diagnostics without printing.

 run(config, opts \\ [])

 Types

 run_result()

 @type run_result() :: :ok | :warnings

 Functions

 analyze(config, opts \\ [])

 @spec analyze(
 Assay.Config.t(),
 keyword()
) :: %{
 status: run_result(),
 warnings: [Assay.Ignore.entry()],
 ignored: [Assay.Ignore.entry()],
 ignore_path: binary() | nil,
 options: keyword(),
 timings: map()
}

Runs incremental Dialyzer and returns structured diagnostics without printing.
This function is useful when you need programmatic access to Dialyzer results
without formatted output. It compiles the project, runs Dialyzer, decorates
warnings with metadata, and applies ignore rules.
Return Value
Returns a map with:
	:status - :ok if no warnings, :warnings if warnings found
	:warnings - List of visible (non-ignored) warning entries
	:ignored - List of ignored warning entries
	:ignore_path - Path to the ignore file used, or nil
	:options - Dialyzer options that were used

Examples
Analyze with default options
config = Assay.Config.from_mix_project()
result = Assay.Runner.analyze(config)
result.status
=> :ok or :warnings
length(result.warnings)
=> number of visible warnings

Analyze quietly (no output)
result = Assay.Runner.analyze(config, quiet: true)
Returns same structure but without printing

Analyze with specific formats (for structured output)
result = Assay.Runner.analyze(config, formats: [:json])
Then format warnings yourself
json_warnings = Enum.map(result.warnings, fn warning ->
 Assay.Formatter.format([warning], :json, project_root: config.project_root)
end)

 run(config, opts \\ [])

 @spec run(
 Assay.Config.t(),
 keyword()
) :: run_result()

Assay.Watch

File watching and incremental Dialyzer re-execution.
This module watches project files and re-runs Dialyzer when changes are detected.
Used by mix assay.watch for continuous feedback during development.
Features
	Watches common project directories (lib, apps, config, test)
	Debounces file changes to avoid excessive runs
	Cancels in-flight analysis tasks when new changes are detected
	Automatically ignores build artifacts (_build/, deps/, .git/)

Options
	:project_root - Root directory to watch (defaults to current working directory)
	:debounce - Debounce delay in milliseconds (default: 300)
	:latency - File system watcher latency (default: 500)
	:run_once - Run once and exit instead of watching continuously

 Summary

 Functions

 run(opts \\ [])

 Runs incremental Dialyzer once and then re-runs it whenever watched files
change. Intended for local developer use (mix assay.watch).

 Functions

 run(opts \\ [])

 @spec run(keyword()) :: :ok | no_return()

Runs incremental Dialyzer once and then re-runs it whenever watched files
change. Intended for local developer use (mix assay.watch).
Returns :ok when run_once: true, otherwise never returns (runs indefinitely).

mix assay

Run incremental Dialyzer using the host project's mix.exs config.
Options
	--print-config - Print the effective Dialyzer configuration
	--format FORMAT / -f FORMAT - Output format (text, elixir, github, json, sarif, llm)	Can be specified multiple times to output multiple formats

	--apps APP1,APP2 - Override apps list (comma-separated)
	--warning-apps APP1,APP2 - Override warning_apps list (comma-separated)
	--dialyzer-flag FLAG - Pass additional Dialyzer flags
	--ignore-file PATH - Override ignore file path (default: dialyzer_ignore.exs)
	--explain-ignores - Show detailed information about which warnings were ignored and which rules matched them

Exit Codes
	0 - Clean (no warnings after ignores)
	1 - Warnings detected
	2 - Error occurred

Examples
mix assay
mix assay --print-config
mix assay --format github --format sarif
mix assay --apps my_app,my_dep
mix assay --dialyzer-flag="--statistics"
mix assay --ignore-file="custom_ignore.exs"
mix assay --explain-ignores

mix assay.daemon

Run Assay as a JSON-RPC daemon over stdio.
The daemon speaks line-delimited JSON-RPC. Each request must be a single JSON
object terminated by a newline. Responses are emitted in the same format.
Supported Methods
	assay/analyze - Triggers an incremental Dialyzer run and returns structured diagnostics
	assay/getStatus - Reports daemon status and last run result
	assay/getConfig - Returns current configuration (including overrides)
	assay/setConfig - Applies configuration overrides (apps, warning apps, etc.)
	assay/shutdown - Cleanly stops the daemon

Usage
mix assay.daemon
The daemon reads JSON-RPC requests from stdin and writes responses to stdout.
See Assay.Daemon for implementation details.

mix assay.install

Installs and configures Assay in the current project.
This task uses Igniter to automatically configure Assay in your project. It:
	Adds Assay as a dev/test dependency
	Configures apps and warning_apps in mix.exs
	Creates a .gitignore entry for _build/assay
	Creates a dialyzer_ignore.exs file
	Optionally generates CI workflow files

Options
	--yes - Skip all prompts and use defaults
	--all-apps / -A - Include all detected apps in analysis (not just project apps)
	--ci=PROVIDER - Generate CI workflow (github, gitlab, or none)

Examples
mix assay.install
mix assay.install --yes --all-apps
mix assay.install --ci=github
mix assay.install --ci=gitlab
mix assay.install --ci=none

mix assay.mcp

Run Assay as an MCP (Model Context Protocol) server over stdio.
The server implements the Model Context Protocol and exposes a single tool:
assay.analyze, which runs incremental Dialyzer and returns structured diagnostics.
MCP clients (e.g., IDE agents) can:
	initialize - Initialize the MCP connection
	tools/list - List available tools
	tools/call - Invoke the assay.analyze tool

Requests/responses use the standard MCP/LSP framing: each JSON payload must be
prefixed with Content-Length: <bytes>\r\n\r\n.
Usage
mix assay.mcp
The server reads MCP requests from stdin and writes responses to stdout.
See Assay.MCP for implementation details.

mix assay.watch

Watch project files and rerun incremental Dialyzer on change.
This task watches common project directories (lib, apps, config, test)
and automatically re-runs Dialyzer when files change. Changes are debounced
to avoid excessive runs, and in-flight analysis tasks are cancelled when new
changes are detected.
The watcher automatically ignores build artifacts (_build/, deps/, .git/).
Press Ctrl+C to stop watching.
Usage
mix assay.watch

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

