

 atomic_bucket

 v0.1.0

 [image: Logo]

 Table of contents

 	Atomic Bucket

 	Changelog

 	
 Modules

 	AtomicBucket

AtomicBucket

Fast single node rate limiter implementing Token Bucket algorithm.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 request(bucket, window, window_requests, burst_requests, opts \\ [])

 Checks if the request is allowed according to desired request rate.

 start_link(opts)

 Starts the process that manages ETS table for bucket data and
periodically deletes idle buckets.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 request(bucket, window, window_requests, burst_requests, opts \\ [])

 (macro)

 @spec request(
 bucket :: any(),
 window :: pos_integer(),
 window_requests :: pos_integer(),
 burst_requests :: pos_integer(),
 opts :: keyword()
) ::
 {:allow, bucket_requests :: pos_integer(), :atomics.atomics_ref()}
 | {:deny, timeout :: timeout(), :atomics.atomics_ref()}

Checks if the request is allowed according to desired request rate.
The bucket is initialized in full state. Every request will refill
the bucket if needed and check if the new token amount is enough
to make the request. On success the request tokens are removed from
the bucket and the function returns {:allow, requests, bucket_ref}
where requests is the number of possible additional requests based
on the remaining tokens in the bucket. Otherwise, the bucket is left
untouched and the function returns {:deny, timeout, bucket_ref}
where timeout is estimated period in ms after which the request may
be allowed, according to the bucket state and the refill rate.
bucket_ref is a reference to the bucket atomic.
Arguments:
	bucket bucket id, unique within its table
	window defines window in seconds
	window_requests number of allowed requests in the window,
according to the target rate. Together with window defines
refill rate of the bucket.
	burst_requests number of burst requests. Defines bucket
capacity. Bursts ignore target request rate, and thus may
significantly alter effective rate.

Supported options:
	persistent if true, the bucket reference is also cached in
:persistent_term. Default is false.

	ref bucket atomic reference. If provided, the call will try
to use it instead of refetching.

	table ETS table name atom. Default is AtomicBucket.

 start_link(opts)

Starts the process that manages ETS table for bucket data and
periodically deletes idle buckets.
In addition to standard GenServer options, accepts the following:
	:cleanup_interval interval in ms defining how often the server will try
to delete idle buckets. Default is 1 hour.

	:max_idle_period max period in ms since last allowed request before
the bucket is deleted. Default is 24 hours.

	table ETS table name atom. Default is AtomicBucket.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

