

 aws_signature

 v0.4.0

 Table of contents

 	Changelog

 	LICENSE

 	Modules

 	aws_signature

 	aws_sigv4_internal

 	aws_sigv4_utils

 	aws_sigv4a

 	aws_sigv4a_credentials

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog.
v0.3.2 (2024-02-16)
Added
	Add support for signing AWS event stream messages (#23)
	Add body_digest option to sign_v4/10 (#25)

v0.3.1 (2022-04-27)
Fixed
	Signature for URLs with explicit port component (#18)

v0.3.0 (2022-04-12)
This release changes the default behaviour of sign_v4_query_params. Instead of
setting the body digest to "UNSIGNED-PAYLOAD" it now computes the digest of an
empty string. To retain the current behaviour you need to pass an option:
-sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, []).
+sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, [{body_digest, <<"UNSIGNED-PAYLOAD">>}]).
Added
	Support for body signing in presigned requests (#15)

Changed
	Default body digest in sign_v4_query_params signature (#15)

v0.2.0 (2021-09-27)
Changed
	Changed sign_v4_query_params signatures to also accept HTTP method (#11)

v0.1.1 (2021-08-28)
Added
	Support for query string signature (#7)

v0.1.0 (2021-08-17)
Initial release

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2021, Jonatan Kłosko <jonatanklosko@gmail.com>.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

aws_signature

This module contains functions for signing requests to AWS services.

 Summary

 Types

 header/0

 headers/0

 query_param/0

 query_params/0

 Functions

 sign_v4(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Headers, Body)

 Same as sign_v4/10 with no options.

 sign_v4(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Headers, Body, Options)

 Implements the Signature Version 4 (SigV4) algorithm.

 sign_v4_event(SecretAccessKey, Region, Service, DateTime, PriorSignature, HeaderString, Body)

 Signs an AWS Event Stream message and returns the headers and signature used for next event signing.

 sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL)

 Same as sign_v4_query_params/7 with no options.

 sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Options)

 Implements the Signature Version 4 (SigV4) algorithm for query parameters.

 sign_v4a(AccessKeyID, SecretAccessKey, SessionToken, Regions, Service, Method, URL, Headers, Body, Options)

 Implements the Asymmetric Signature Version 4 (SigV4a) algorithm.

Types

 Link to this type

 header/0

 View Source

 -type header() :: {binary(), binary()}.

 Link to this type

 headers/0

 View Source

 -type headers() :: [header()].

 Link to this type

 query_param/0

 View Source

 -type query_param() :: {binary(), binary()}.

 Link to this type

 query_params/0

 View Source

 -type query_params() :: [query_param()].

Functions

 Link to this function

 sign_v4(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Headers, Body)

 View Source

Same as sign_v4/10 with no options.

 Link to this function

 sign_v4(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Headers, Body, Options)

 View Source

 -spec sign_v4(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Headers, Body,
 Options) ->
 FinalHeaders
 when
 AccessKeyID :: binary(),
 SecretAccessKey :: binary(),
 Region :: binary(),
 Service :: binary(),
 DateTime :: calendar:datetime(),
 Method :: binary(),
 URL :: binary(),
 Headers :: headers(),
 Body :: binary(),
 Options :: [Option],
 Option :: {uri_encode_path, boolean()} | {body_digest, binary()},
 FinalHeaders :: headers().

Implements the Signature Version 4 (SigV4) algorithm.
This function takes AWS client credentials and request details, based on which it computes the signature and returns headers extended with the authorization entries.
DateTime is a datetime tuple used as the request date. You most likely want to set it to the value of calendar:universal_time/0 when making the request.
URL must be valid, with all components properly escaped. For example, "https://example.com/path%20to" is valid, whereas "https://example.com/path to" is not.
It is essential that the provided request details are final and the returned headers are used to make the request. All custom headers need to be assembled before the signature is calculated.
The signature is computed by normalizing request details into a well defined format and combining it with the credentials using a number of cryptographic functions. Upon receiving a request, the server calculates the signature using the same algorithm and compares it with the value received in headers. For more details check out the AWS documentation.
The following options are supported:
	uri_encode_path
	When true, the request URI path is URI-encoded during request canonicalization, which is required for every service except S3. Note that the given URL should already be properly encoded, so this results in each segment being URI-encoded twice, as expected by AWS. Defaults to true.
	body_digest
	Optional SHA256 digest of the request body. This option can be used to provide a fixed digest value, such as "UNSIGNED-PAYLOAD", when sending requests without signing the body.

 Link to this function

 sign_v4_event(SecretAccessKey, Region, Service, DateTime, PriorSignature, HeaderString, Body)

 View Source

 -spec sign_v4_event(SecretAccessKey, Region, Service, DateTime, PriorSignature, HeaderString, Body) ->
 {Headers, Signature}
 when
 SecretAccessKey :: binary(),
 Region :: binary(),
 Service :: binary(),
 DateTime :: calendar:datetime(),
 PriorSignature :: binary(),
 HeaderString :: binary(),
 Body :: binary(),
 Headers :: [{binary(), binary(), atom()}],
 Signature :: binary().

Signs an AWS Event Stream message and returns the headers and signature used for next event signing.
Headers of a sigv4 signed event message only contains 2 headers	:chunk-signature
	computed signature of the event, binary string, bytes type
	:date
	millisecond since epoch, timestamp type

PriorSignature for the first message is the base16 encoded signv4 of the request used to open a connection with the target service.
HeadersString are the headers of the inner packet, encoded using the EventStream format.

 Link to this function

 sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL)

 View Source

Same as sign_v4_query_params/7 with no options.

 Link to this function

 sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL, Options)

 View Source

 -spec sign_v4_query_params(AccessKeyID, SecretAccessKey, Region, Service, DateTime, Method, URL,
 Options) ->
 FinalURL
 when
 AccessKeyID :: binary(),
 SecretAccessKey :: binary(),
 Region :: binary(),
 Service :: binary(),
 DateTime :: calendar:datetime(),
 Method :: binary(),
 URL :: binary(),
 Options :: [Option],
 Option ::
 {uri_encode_path, boolean()} |
 {session_token, binary()} |
 {ttl, non_neg_integer()} |
 {body, binary()} |
 {body_digest, binary()} |
 {tags, binary()},
 FinalURL :: binary().

Implements the Signature Version 4 (SigV4) algorithm for query parameters.
This function takes AWS client credentials and request details, based on which it computes the signature and returns the URL extended with the signature entries. Note that anchors are ignored in the resulting URL.
DateTime is a datetime tuple used as the request date. You most likely want to set it to the value of calendar:universal_time/0 when making the request.
URL must be valid, with all components properly escaped. For example, "https://example.com/path%20to" is valid, whereas "https://example.com/path to" is not.
It is essential that the provided request details are final and the returned query params are used to make the request with the provided URL.
The signature is computed by normalizing request details into a well defined format and combining it with the credentials using a number of cryptographic functions. Upon receiving a request, the server calculates the signature using the same algorithm and compares it with the value received in headers. For more details check out the AWS documentation.
The following options are supported:
	ttl
	Time-to-live value that tells how long this URL is valid in seconds. Defaults to 86400, which means one day.
	uri_encode_path
	When true, the request URI path is URI-encoded during request canonicalization, which is required for every service except S3. Note that the given URL should already be properly encoded, so this results in each segment being URI-encoded twice, as expected by AWS. Defaults to true.
	session_token
	Optional credential parameter if using credentials sourced from the STS service.
	body
	Request body to compute SHA256 digest for. Defaults to an empty binary. Note that body_digest always takes precedence when set.
	body_digest
	Optional SHA256 digest of the request body. This option can be used to provide a fixed digest value, such as "UNSIGNED-PAYLOAD", when sending requests without signing the body, which is expected for S3.
	tags
	Optional tagging of the object when generating a pre-signed URL. The value of tags is a binary() in the format, for example: <<"key1=value1&key2=value2">>. The actual request to put or get the object must use the exact tags value to ensure the signature is calculated correctly.

 Link to this function

 sign_v4a(AccessKeyID, SecretAccessKey, SessionToken, Regions, Service, Method, URL, Headers, Body, Options)

 View Source

 -spec sign_v4a(binary(),
 binary(),
 binary(),
 [binary()],
 binary(),
 binary(),
 binary(),
 headers(),
 binary(),
 map()) ->
 {ok, headers()} | {error, any()}.

Implements the Asymmetric Signature Version 4 (SigV4a) algorithm.
This function takes AWS client credentials and request details, based on which it computes the signature and returns headers extended with the authorization entries.
URL must be valid, with all components properly escaped. For example, "https://example.com/path%20to" is valid, whereas "https://example.com/path to" is not.
It is essential that the provided request details are final and the returned headers are used to make the request. All custom headers need to be assembled before the signature is calculated.
The following options are supported:
	add_payload_hash_header
	When true adds the X-Amz-Content-Sha256 header to signed requests. Amazon S3 is an example of a service that requires this setting. Defaults to false.
	disable_implicit_payload_hashing
	When true use the "UNSIGNED-PAYLOAD" sentinel instead of computing SHA256 digest of the payload. Defaults to false.

aws_sigv4_internal

 Summary

 Types

 credentials/0

 headers/0

 internal_signer/0

 request/0

 sign_string/0

 v4_signer_options/0

 Functions

 do(Signer)

 resolve_time(Time)

Types

 Link to this type

 credentials/0

 View Source

 -type credentials() :: #credentials{}.

 Link to this type

 headers/0

 View Source

 -type headers() :: [{binary(), binary()}].

 Link to this type

 internal_signer/0

 View Source

 -type internal_signer() :: #internal_signer{}.

 Link to this type

 request/0

 View Source

 -type request() :: #request{}.

 Link to this type

 sign_string/0

 View Source

 -type sign_string() :: fun((binary()) -> {ok, binary()} | {error, any()}).

 Link to this type

 v4_signer_options/0

 View Source

 -type v4_signer_options() :: #v4_signer_options{}.

Functions

 Link to this function

 do(Signer)

 View Source

 -spec do(internal_signer()) -> {ok, headers()} | {error, any()}.

 Link to this function

 resolve_time(Time)

 View Source

 -spec resolve_time(calendar:datetime() | undefined) -> calendar:datetime().

aws_sigv4_utils

 Summary

 Functions

 binaries_join(Separator, Binaries)

 format_time_long(_)

 format_time_short(_)

 sha256(Binary)

Functions

 Link to this function

 binaries_join(Separator, Binaries)

 View Source

 -spec binaries_join(binary(), [binary()]) -> binary().

 Link to this function

 format_time_long(_)

 View Source

 -spec format_time_long(calendar:datetime()) -> binary().

 Link to this function

 format_time_short(_)

 View Source

 -spec format_time_short(calendar:datetime()) -> binary().

 Link to this function

 sha256(Binary)

 View Source

 -spec sha256(binary()) -> binary().

aws_sigv4a

 Summary

 Types

 v4a_sign_request_input/0

 Functions

 sign_request(AccessKeyID, SecretAccessKey, SessionToken, Regions, Service, Method, URL, Headers, Body, Options)

Types

 Link to this type

 v4a_sign_request_input/0

 View Source

 -type v4a_sign_request_input() :: #v4a_sign_request_input{}.

Functions

 Link to this function

 sign_request(AccessKeyID, SecretAccessKey, SessionToken, Regions, Service, Method, URL, Headers, Body, Options)

 View Source

 -spec sign_request(binary(),
 binary(),
 binary(),
 [binary()],
 binary(),
 binary(),
 binary(),
 aws_sigv4_internal:headers(),
 binary(),
 map()) ->
 {ok, aws_sigv4_internal:headers()} | {error, any()}.

aws_sigv4a_credentials

 Summary

 Functions

 derive(Credentials)

Functions

 Link to this function

 derive(Credentials)

 View Source

 -spec derive(aws_sigv4_internal:credentials()) -> {ok, binary()} | {error, any()}.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

