

 Axon

 v0.6.0

 [image: Logo]

 Table of contents

 	Axon Guides

 	Guides: Model Creation

 	Your first Axon model

 	Sequential models

 	Complex models

 	Multi-input / multi-output models

 	Custom layers

 	Model hooks

 	Guides: Model Execution

 	Accelerating Axon

 	Training and inference mode

 	Guides: Training and Evalutaion

 	Your first training loop

 	Instrumenting loops with metrics

 	Your first evaluation loop

 	Using loop event handlers

 	Custom models, loss functions, and optimizers

 	Writing custom metrics

 	Writing custom event handlers

 	Guides: Serialization

 	Converting ONNX models to Axon

 	Examples: Basics

 	Modeling XOR with a neural network

 	Examples: Vision

 	Classifying handwritten digits

 	Classifying horses and humans

 	Examples: Text

 	Generating text with LSTM

 	Examples: Structured

 	Classifying fraudulent transactions

 	Examples: Generative

 	MNIST Denoising Autoencoder using Kino for visualization

 	Training an Autoencoder on Fashion MNIST

 	A Variational Autoencoder for MNIST

 	Modules

 	Axon

 	Axon.MixedPrecision

 	Axon.None

 	Axon.StatefulOutput

 	Axon.Display

 	Axon.Activations

 	Axon.Initializers

 	Axon.Layers

 	Axon.LossScale

 	Axon.Losses

 	Axon.Metrics

 	Axon.Loop

 	Axon.Loop.State

 	Axon.CompileError

Axon Guides

Axon is a library for creating and training neural networks in Elixir. The Axon guides are a collection of Livebooks designed to introduce Axon's APIs and design decisions from the bottom-up. After working through the guides, you will feel comfortable and confident working with Axon and using Axon for your next deep learning problem.
Model Creation
	Your first Axon model
	Sequential models
	Complex models
	Multi-input / multi-output models
	Custom layers
	Model hooks

Model Execution
	Accelerating Axon
	Training and inference mode

Training and Evaluation
	Your first training loop
	Instrumenting loops with metrics
	Your first evalutaion loop
	Using loop event handlers
	Custom models, loss functions, and optimizers
	Writing custom metrics
	Writing custom event handlers

Serialization
	Converting ONNX models to Axon

Your first Axon model

Mix.install([
 {:axon, ">= 0.5.0"},
 {:kino, ">= 0.9.0"}
])
:ok
Your first model
Axon is a library for creating and training neural networks in Elixir. Everything in Axon centers around the %Axon{} struct which represents an instance of an Axon model.
Models are just graphs which represent the transformation and flow of input data to a desired output. Really, you can think of models as representing a single computation or function. An Axon model, when executed, takes data as input and returns transformed data as output.
All Axon models start with a declaration of input nodes. These are the root nodes of your computation graph, and correspond to the actual input data you want to send to Axon:
input = Axon.input("data")
#Axon<
 inputs: %{"data" => nil}
 outputs: "data"
 nodes: 1
>
Technically speaking, input is now a valid Axon model which you can inspect, execute, and initialize. You can visualize how data flows through the graph using Axon.Display.as_graph/2:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(input, template)
graph TD;
3[/"data (:input) {2, 8}"/];
;
Notice the execution flow is just a single node, because your graph only consists of an input node! You pass data in and the model spits the same data back out, without any intermediate transformations.
You can see this in action by actually executing your model. You can build the %Axon{} struct into it's initialization and forward functions by calling Axon.build/2. This pattern of "lowering" or transforming the %Axon{} data structure into other functions or representations is very common in Axon. By simply traversing the data structure, you can create useful functions, execution visualizations, and more!
{init_fn, predict_fn} = Axon.build(input)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
Notice that Axon.build/2 returns a tuple of {init_fn, predict_fn}. init_fn has the signature:
init_fn.(template :: map(tensor) | tensor, initial_params :: map) :: map(tensor)
while predict_fn has the signature:
predict_fn.(params :: map(tensor), input :: map(tensor) | tensor)
init_fn returns all of your model's trainable parameters and state. You need to pass a template of the expected inputs because the shape of certain model parameters often depend on the shape of model inputs. You also need to pass any initial parameters you want your model to start with. This is useful for things like transfer learning, which you can read about in another guide.
predict_fn returns transformed inputs from your model's trainable parameters and the given inputs.
params = init_fn.(Nx.template({1, 8}, :f32), %{})
%{}
In this example, you use Nx.template/2 to create a template tensor, which is a placeholder that does not actually consume any memory. Templates are useful for initialization because you don't actually need to know anything about your inputs other than their shape and type.
Notice init_fn returned an empty map because your model does not have any trainable parameters. This should make sense because it's just an input layer.
Now you can pass these trainable parameters to predict_fn along with some input to actually execute your model:
predict_fn.(params, Nx.iota({1, 8}, type: :f32))
#Nx.Tensor<
 f32[1][8]
 [
 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
]
>
And your model just returned the given input, as expected!

Sequential models

Mix.install([
 {:axon, ">= 0.5.0"},
 {:kino, ">= 0.9.0"}
])
:ok
Creating a sequential model
In the last guide, you created a simple identity model which just returned the input. Of course, you would never actually use Axon for such purposes. You want to create real neural networks!
In equivalent frameworks in the Python ecosystem such as Keras and PyTorch, there is a concept of sequential models. Sequential models are named after the sequential nature in which data flows through them. Sequential models transform the input with sequential, successive transformations.
If you're an experienced Elixir programmer, this paradigm of sequential transformations might sound a lot like what happens when using the pipe (|>) operator. In Elixir, it's common to see code blocks like:
list
|> Enum.map(fn x -> x + 1 end)
|> Enum.filter(&rem(&1, 2) == 0)
|> Enum.count()
The snippet above passes list through a sequence of transformations. You can apply this same paradigm in Axon to create sequential models. In fact, creating sequential models is so natural with Elixir's pipe operator, that Axon does not need a distinct sequential construct. To create a sequential model, you just pass Axon models through successive transformations in the Axon API:
model =
 Axon.input("data")
 |> Axon.dense(32)
 |> Axon.activation(:relu)
 |> Axon.dropout(rate: 0.5)
 |> Axon.dense(1)
 |> Axon.activation(:softmax)
#Axon<
 inputs: %{"data" => nil}
 outputs: "softmax_0"
 nodes: 6
>
If you visualize this model, it's easy to see how data flows sequentially through it:
template = Nx.template({2, 16}, :f32)
Axon.Display.as_graph(model, template)
graph TD;
3[/"data (:input) {2, 16}"/];
4["dense_0 (:dense) {2, 32}"];
5["relu_0 (:relu) {2, 32}"];
6["dropout_0 (:dropout) {2, 32}"];
7["dense_1 (:dense) {2, 1}"];
8["softmax_0 (:softmax) {2, 1}"];
7 --> 8;
6 --> 7;
5 --> 6;
4 --> 5;
3 --> 4;
Your model is more involved and as a result so is the execution graph! Now, using the same constructs from the last section, you can build and run your model:
{init_fn, predict_fn} = Axon.build(model)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
params = init_fn.(template, %{})
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[32]
 [0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[16][32]
 [
 [0.21433714032173157, -0.04525795578956604, 0.32405969500541687, -0.06933712959289551, -0.24735209345817566, 0.1957167088985443, -0.2714379131793976, -0.34026962518692017, 0.03781759738922119, -0.16317953169345856, -0.1272507756948471, -0.08459293842315674, 0.20401403307914734, 0.26613888144493103, -0.3234696388244629, 0.295791357755661, 0.29850414395332336, -0.22220905125141144, -0.33034151792526245, 0.32582345604896545, -0.19104702770709991, -0.3434463143348694, 0.031930625438690186, 0.32875487208366394, 0.17335721850395203, -0.0336279571056366, -0.02203202247619629, -0.30805233120918274, 0.01472097635269165, 0.293319970369339, 0.17995354533195496, 0.09916016459465027],
 [-0.33202630281448364, -0.09507006406784058, -0.12178492546081543, -0.005500674247741699, -0.24997547268867493, 0.31693217158317566, 0.31857630610466003, 0.13662374019622803, 0.11216515302658081, -0.2711845338344574, -0.18932600319385529, -0.10278302431106567, -0.1910824328660965, -0.15239068865776062, 0.2373746931552887, ...],
 ...
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[32][1]
 [
 [-0.22355356812477112],
 [0.09599864482879639],
 [0.06676572561264038],
 [-0.06866732239723206],
 [0.1822824478149414],
 [0.1860904097557068],
 [-0.3795042335987091],
 [-0.18182222545146942],
 [0.4170041084289551],
 [0.1812545657157898],
 [0.18777817487716675],
 [-0.15454193949699402],
 [0.16937363147735596],
 [-0.007449895143508911],
 [0.421792209148407],
 [-0.3314356803894043],
 [-0.29834187030792236],
 [0.3285354971885681],
 [0.034806013107299805],
 [0.1091541051864624],
 [-0.385672390460968],
 [0.004853636026382446],
 [0.3387643098831177],
 [0.03320261836051941],
 [0.3905656933784485],
 [-0.3835979700088501],
 [-0.06302008032798767],
 [0.03648516535758972],
 [0.24170255661010742],
 [0.01687285304069519],
 [-0.017035305500030518],
 [-0.2674438953399658]
]
 >
 }
}
Wow! Notice that this model actually has trainable parameters. You can see that the parameter map is just a regular Elixir map. Each top-level entry maps to a layer with a key corresponding to that layer's name and a value corresponding to that layer's trainable parameters. Each layer's individual trainable parameters are given layer-specific names and map directly to Nx tensors.
Now you can use these params with your predict_fn:
predict_fn.(params, Nx.iota({2, 16}, type: :f32))
#Nx.Tensor<
 f32[2][1]
 [
 [1.0],
 [1.0]
]
>
And voila! You've successfully created and used a sequential model in Axon!

Complex models

Mix.install([
 {:axon, ">= 0.5.0"},
 {:kino, ">= 0.9.0"}
])
:ok
Creating more complex models
Not all models you'd want to create fit cleanly in the sequential paradigm. Some models require a more flexible API. Fortunately, because Axon models are just Elixir data structures, you can manipulate them and decompose architectures as you would any other Elixir program:
input = Axon.input("data")

x1 = input |> Axon.dense(32)
x2 = input |> Axon.dense(64) |> Axon.relu() |> Axon.dense(32)

out = Axon.add(x1, x2)
#Axon<
 inputs: %{"data" => nil}
 outputs: "add_0"
 nodes: 7
>
In the snippet above, your model branches input into x1 and x2. Each branch performs a different set of transformations; however, at the end the branches are merged with an Axon.add/3. You might sometimes see layers like Axon.add/3 called combinators. Really they're just layers that operate on multiple Axon models at once - typically to merge some branches together.
out represents your final Axon model.
If you visualize this model, you can see the full effect of the branching in this model:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
4["dense_0 (:dense) {2, 32}"];
5["dense_1 (:dense) {2, 64}"];
6["relu_0 (:relu) {2, 64}"];
7["dense_2 (:dense) {2, 32}"];
8["container_0 (:container) {{2, 32}, {2, 32}}"];
9["add_0 (:add) {2, 32}"];
8 --> 9;
7 --> 8;
4 --> 8;
6 --> 7;
5 --> 6;
3 --> 5;
3 --> 4;
And you can use Axon.build/2 on out as you would any other Axon model:
{init_fn, predict_fn} = Axon.build(out)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
#Nx.Tensor<
 f32[2][32]
 [
 [-4.283246040344238, 1.8983498811721802, 3.697357654571533, -4.720174789428711, 4.1636152267456055, 1.001131534576416, -0.7027540802955627, -3.7821826934814453, 0.027841567993164062, 9.267499923706055, 3.33616304397583, -1.5465859174728394, 8.983413696289062, 3.7445120811462402, 2.2405576705932617, -3.61336350440979, -1.7320983409881592, 0.5740477442741394, -0.22006472945213318, -0.1806044578552246, 1.1092393398284912, -0.29313594102859497, -0.41948509216308594, 3.526411533355713, -0.9127179384231567, 1.8373844623565674, 1.1746022701263428, -0.6885149478912354, -1.4326229095458984, -1.3498257398605347, -5.803186416625977, 1.5204020738601685],
 [-15.615742683410645, 6.555544853210449, 7.033155918121338, -12.33556842803955, 14.105436325073242, -4.230871200561523, 5.985136032104492, -8.445676803588867, 5.383096694946289, 23.413570404052734, 0.8907639980316162, -1.400709629058838, 19.19326400756836, 13.784171104431152, 9.641424179077148, -8.407038688659668, -5.688483238220215, 4.383636474609375, ...]
]
>
As your architectures grow in complexity, you might find yourself reaching for better abstractions to organize your model creation code. For example, PyTorch models are often organized into nn.Module. The equivalent of an nn.Module in Axon is a regular Elixir function. If you're translating models from PyTorch to Axon, it's natural to create one Elixir function per nn.Module.
You should write your models as you would write any other Elixir code - you don't need to worry about any framework specific constructs:
defmodule MyModel do
 def model() do
 Axon.input("data")
 |> conv_block()
 |> Axon.flatten()
 |> dense_block()
 |> dense_block()
 |> Axon.dense(1)
 end

 defp conv_block(input) do
 residual = input

 x = input |> Axon.conv(3, padding: :same) |> Axon.mish()

 x
 |> Axon.add(residual)
 |> Axon.max_pool(kernel_size: {2, 2})
 end

 defp dense_block(input) do
 input |> Axon.dense(32) |> Axon.relu()
 end
end
{:module, MyModel, <<70, 79, 82, 49, 0, 0, 8, ...>>, {:dense_block, 1}}
model = MyModel.model()
#Axon<
 inputs: %{"data" => nil}
 outputs: "dense_2"
 nodes: 12
>
template = Nx.template({1, 28, 28, 3}, :f32)
Axon.Display.as_graph(model, template)
graph TD;
10[/"data (:input) {1, 28, 28, 3}"/];
11["conv_0 (:conv) {1, 28, 28, 3}"];
12["mish_0 (:mish) {1, 28, 28, 3}"];
13["container_0 (:container) {{1, 28, 28, 3}, {1, 28, 28, 3}}"];
14["add_0 (:add) {1, 28, 28, 3}"];
15["max_pool_0 (:max_pool) {1, 14, 14, 3}"];
16["flatten_0 (:flatten) {1, 588}"];
17["dense_0 (:dense) {1, 32}"];
18["relu_0 (:relu) {1, 32}"];
19["dense_1 (:dense) {1, 32}"];
20["relu_1 (:relu) {1, 32}"];
21["dense_2 (:dense) {1, 1}"];
20 --> 21;
19 --> 20;
18 --> 19;
17 --> 18;
16 --> 17;
15 --> 16;
14 --> 15;
13 --> 14;
10 --> 13;
12 --> 13;
11 --> 12;
10 --> 11;

Multi-input / multi-output models

Mix.install([
 {:axon, ">= 0.5.0"},
 {:kino, ">= 0.9.0"}
])
:ok
Creating multi-input models
Sometimes your application necessitates the use of multiple inputs. To use multiple inputs in an Axon model, you just need to declare multiple inputs in your graph:
input_1 = Axon.input("input_1")
input_2 = Axon.input("input_2")

out = Axon.add(input_1, input_2)
#Axon<
 inputs: %{"input_1" => nil, "input_2" => nil}
 outputs: "add_0"
 nodes: 4
>
Notice when you inspect the model, it tells you what your models inputs are up front. You can also get metadata about your model inputs programmatically with Axon.get_inputs/1:
Axon.get_inputs(out)
%{"input_1" => nil, "input_2" => nil}
Each input is uniquely named, so you can pass inputs by-name into inspection and execution functions with a map:
inputs = %{
 "input_1" => Nx.template({2, 8}, :f32),
 "input_2" => Nx.template({2, 8}, :f32)
}

Axon.Display.as_graph(out, inputs)
graph TD;
3[/"input_1 (:input) {2, 8}"/];
4[/"input_2 (:input) {2, 8}"/];
5["container_0 (:container) {{2, 8}, {2, 8}}"];
6["add_0 (:add) {2, 8}"];
5 --> 6;
4 --> 5;
3 --> 5;
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(inputs, %{})
%{}
inputs = %{
 "input_1" => Nx.iota({2, 8}, type: :f32),
 "input_2" => Nx.iota({2, 8}, type: :f32)
}

predict_fn.(params, inputs)
#Nx.Tensor<
 f32[2][8]
 [
 [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0],
 [16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0, 30.0]
]
>
If you forget a required input, Axon will raise:
predict_fn.(params, %{"input_1" => Nx.iota({2, 8}, type: :f32)})
Creating multi-output models
Depending on your application, you might also want your model to have multiple outputs. You can achieve this by using Axon.container/2 to wrap multiple nodes into any supported Nx container:
inp = Axon.input("data")

x1 = inp |> Axon.dense(32) |> Axon.relu()
x2 = inp |> Axon.dense(64) |> Axon.relu()

out = Axon.container({x1, x2})
#Axon<
 inputs: %{"data" => nil}
 outputs: "container_0"
 nodes: 6
>
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
7[/"data (:input) {2, 8}"/];
8["dense_0 (:dense) {2, 32}"];
9["relu_0 (:relu) {2, 32}"];
10["dense_1 (:dense) {2, 64}"];
11["relu_1 (:relu) {2, 64}"];
12["container_0 (:container) {{2, 32}, {2, 64}}"];
11 --> 12;
9 --> 12;
10 --> 11;
7 --> 10;
8 --> 9;
7 --> 8;
When executed, containers will return a data structure which matches their input structure:
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
{#Nx.Tensor<
 f32[2][32]
 [
 [0.4453479051589966, 1.7394963502883911, 0.8509911298751831, 0.35142624378204346, 0.0, 0.0, 0.0, 3.942654609680176, 0.0, 0.0, 0.0, 0.6140655279159546, 0.0, 5.719906330108643, 1.1410939693450928, 0.0, 2.6871578693389893, 3.373258352279663, 0.0, 0.0, 0.0, 0.3058185875415802, 0.0, 0.0, 1.3737146854400635, 2.2648088932037354, 1.3570061922073364, 0.0, 0.05746358633041382, 0.0, 2.046199321746826, 4.884631156921387],
 [0.0, 2.0598671436309814, 2.4343056678771973, 3.2341041564941406, 0.0, 1.905256748199463, 0.0, 12.712749481201172, 0.0, 0.0, 0.0, 4.559232711791992, 0.0, 12.027459144592285, 0.8423471450805664, 0.0, 8.888325691223145, ...]
]
 >,
 #Nx.Tensor<
 f32[2][64]
 [
 [2.211906909942627, 0.937014639377594, 0.017132893204689026, 0.0, 3.617021083831787, 1.3125507831573486, 1.1870051622390747, 0.0, 0.0, 1.245000958442688, 1.5268664360046387, 0.0, 2.16796612739563, 0.8091188669204712, 0.45314761996269226, 0.0, 0.05176612734794617, 0.0, 5.982738018035889, 1.58057701587677, 0.0, 0.0, 1.2986125946044922, 0.8577098250389099, 0.0, 1.1064631938934326, 1.1242716312408447, 1.8777625560760498, 3.4422712326049805, 0.13321448862552643, 2.753225088119507, 0.0, 0.45021766424179077, 0.5664225816726685, 0.0, 0.0, 0.0, 1.5448659658432007, 0.0, 0.7237715721130371, 0.1693495213985443, 0.0, 0.719341516494751, 0.0, 0.0, 4.644839763641357, 0.0, 3.597681760787964, ...],
 ...
]
 >}
You can output maps as well:
out = Axon.container(%{x1: x1, x2: x2})
#Axon<
 inputs: %{"data" => nil}
 outputs: "container_0"
 nodes: 6
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
%{
 x1: #Nx.Tensor<
 f32[2][32]
 [
 [1.4180752038955688, 1.8710994720458984, 0.0, 1.1198676824569702, 1.1357430219650269, 0.0, 0.0, 0.0, 2.907017469406128, 0.0, 0.3814663589000702, 0.0, 0.6225995421409607, 1.1952786445617676, 0.0, 3.6701409816741943, 3.581918716430664, 1.4750021696090698, 0.910987377166748, 0.0, 0.0, 0.0, 2.317782402038574, 0.8362345695495605, 0.0, 1.9256348609924316, 0.0, 0.0, 0.0, 1.8028252124786377, 1.448373556137085, 1.743951678276062],
 [3.7401936054229736, 2.494429349899292, 0.0, 0.9745509624481201, 8.416919708251953, 0.0, 0.6044515371322632, 0.0, 2.5829238891601562, 0.0, 3.592892646789551, 0.0, 0.0, 4.004939079284668, 0.0, 9.755555152893066, 5.3506879806518555, ...]
]
 >,
 x2: #Nx.Tensor<
 f32[2][64]
 [
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.5240116119384766, 0.0, 1.6478428840637207, 0.0, 0.0, 0.0, 0.0, 2.1685361862182617, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5010783672332764, 0.36673399806022644, 0.0, 0.0, 0.5610344409942627, 1.9324723482131958, 0.39768826961517334, 0.0, 0.0, 0.0, 0.0, 0.0, 0.054594263434410095, 0.6123883128166199, 0.15942004323005676, 0.7058550715446472, 0.0, 1.860019326210022, 0.2499483972787857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03381317853927612, ...],
 ...
]
 >
}
Containers even support arbitrary nesting:
out = Axon.container({%{x1: {x1, x2}, x2: %{x1: x1, x2: {x2}}}})
#Axon<
 inputs: %{"data" => nil}
 outputs: "container_0"
 nodes: 6
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
{%{
 x1: {#Nx.Tensor<
 f32[2][32]
 [
 [1.7373675107955933, 0.0, 5.150482177734375, 0.544252336025238, 0.275376558303833, 0.0, 0.0, 0.0, 0.0, 1.7849855422973633, 0.7857151031494141, 0.2273893654346466, 0.2701767086982727, 2.321484327316284, 2.685051441192627, 0.0, 2.547382116317749, 0.0, 0.0, 0.0, 0.722919225692749, 2.3600289821624756, 1.4695687294006348, 0.0, 0.0, 0.0, 1.0015852451324463, 1.2762010097503662, 0.0, 0.07927703857421875, 0.0, 0.6216219663619995],
 [4.996878623962402, 0.0, 14.212154388427734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.517582356929779, 0.0, 2.036062479019165, 2.907236337661743, 8.515787124633789, 7.998186111450195, ...]
]
 >,
 #Nx.Tensor<
 f32[2][64]
 [
 [1.2057430744171143, 0.0, 0.0, 0.8717040419578552, 1.7653638124465942, 0.0, 0.0, 0.0, 0.0, 0.9921279549598694, 0.0, 1.0860291719436646, 2.3648557662963867, 0.0, 0.0, 2.0518181324005127, 1.6323723793029785, 0.9113610982894897, 1.6805293560028076, 0.8101096749305725, 0.0, 0.0, 0.0, 2.2150073051452637, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2320713996887207, 0.0, 2.553570508956909, 0.28632092475891113, 0.0, 0.0, 0.020383253693580627, 0.0, 0.2926883101463318, 1.3561311960220337, 0.8884503245353699, 3.1455295085906982, 0.0, 0.0, 1.237722635269165, 0.0, 2.149625539779663, ...],
 ...
]
 >},
 x2: %{
 x1: #Nx.Tensor<
 f32[2][32]
 [
 [1.7373675107955933, 0.0, 5.150482177734375, 0.544252336025238, 0.275376558303833, 0.0, 0.0, 0.0, 0.0, 1.7849855422973633, 0.7857151031494141, 0.2273893654346466, 0.2701767086982727, 2.321484327316284, 2.685051441192627, 0.0, 2.547382116317749, 0.0, 0.0, 0.0, 0.722919225692749, 2.3600289821624756, 1.4695687294006348, 0.0, 0.0, 0.0, 1.0015852451324463, 1.2762010097503662, 0.0, 0.07927703857421875, 0.0, 0.6216219663619995],
 [4.996878623962402, 0.0, 14.212154388427734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.517582356929779, 0.0, 2.036062479019165, 2.907236337661743, 8.515787124633789, ...]
]
 >,
 x2: {#Nx.Tensor<
 f32[2][64]
 [
 [1.2057430744171143, 0.0, 0.0, 0.8717040419578552, 1.7653638124465942, 0.0, 0.0, 0.0, 0.0, 0.9921279549598694, 0.0, 1.0860291719436646, 2.3648557662963867, 0.0, 0.0, 2.0518181324005127, 1.6323723793029785, 0.9113610982894897, 1.6805293560028076, 0.8101096749305725, 0.0, 0.0, 0.0, 2.2150073051452637, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2320713996887207, 0.0, 2.553570508956909, 0.28632092475891113, 0.0, 0.0, 0.020383253693580627, 0.0, 0.2926883101463318, 1.3561311960220337, 0.8884503245353699, 3.1455295085906982, 0.0, 0.0, 1.237722635269165, ...],
 ...
]
 >}
 }
 }}

Custom layers

Mix.install([
 {:axon, ">= 0.5.0"},
 {:kino, ">= 0.9.0"}
])
:ok
Creating custom layers
While Axon has a plethora of built-in layers, more than likely you'll run into a case where you need something not provided by the framework. In these instances, you can use custom layers.
To Axon, layers are really just defn implementations with special Axon inputs. Every layer in Axon (including the built-in layers), are implemented with the Axon.layer/3 function. The API of Axon.layer/3 intentionally mirrors the API of Kernel.apply/2. To declare a custom layer you need 2 things:
	A defn implementation
	Inputs

The defn implementation looks like any other defn you'd write; however, it must always account for additional opts as an argument:
defmodule CustomLayers0 do
 import Nx.Defn

 defn my_layer(input, opts \\ []) do
 opts = keyword!(opts, mode: :train, alpha: 1.0)

 input
 |> Nx.sin()
 |> Nx.multiply(opts[:alpha])
 end
end
{:module, CustomLayers0, <<70, 79, 82, 49, 0, 0, 10, ...>>, true}
Regardless of the options you configure your layer to accept, the defn implementation will always receive a :mode option indicating whether or not the model is running in training or inference mode. You can customize the behavior of your layer depending on the mode.
With an implementation defined, you need only to call Axon.layer/3 to apply our custom layer to an Axon input:
input = Axon.input("data")

out = Axon.layer(&CustomLayers0.my_layer/2, [input])
#Axon<
 inputs: %{"data" => nil}
 outputs: "custom_0"
 nodes: 2
>
Now you can inspect and execute your model as normal:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
4["custom_0 (:custom) {2, 8}"];
3 --> 4;
Notice that by default custom layers render with a default operation marked as :custom. This can make it difficult to determine which layer is which during inspection. You can control the rendering by passing :op_name to Axon.layer/3:
out = Axon.layer(&CustomLayers0.my_layer/2, [input], op_name: :my_layer)

Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
5["my_layer_0 (:my_layer) {2, 8}"];
3 --> 5;
You can also control the name of your layer via the :name option. All other options are forwarded to the layer implementation function:
out =
 Axon.layer(&CustomLayers0.my_layer/2, [input],
 name: "layer",
 op_name: :my_layer,
 alpha: 2.0
)

Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
6["layer (:my_layer) {2, 8}"];
3 --> 6;
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
%{}
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
#Nx.Tensor<
 f32[2][8]
 [
 [0.0, 1.6829419136047363, 1.8185948133468628, 0.28224000334739685, -1.513604998588562, -1.9178485870361328, -0.558830976486206, 1.3139731884002686],
 [1.978716492652893, 0.8242369890213013, -1.0880422592163086, -1.9999804496765137, -1.073145866394043, 0.8403340578079224, 1.9812147617340088, 1.3005757331848145]
]
>
Notice that this model does not have any trainable parameters because none of the layers have trainable parameters. You can introduce trainable parameters by passing inputs created with Axon.param/3 to Axon.layer/3. For example, you can modify your original custom layer to take an additional trainable parameter:
defmodule CustomLayers1 do
 import Nx.Defn

 defn my_layer(input, alpha, _opts \\ []) do
 input
 |> Nx.sin()
 |> Nx.multiply(alpha)
 end
end
{:module, CustomLayers1, <<70, 79, 82, 49, 0, 0, 10, ...>>, true}
And then construct the layer with a regular Axon input and a trainable parameter:
alpha = Axon.param("alpha", fn _ -> {} end)

out = Axon.layer(&CustomLayers1.my_layer/3, [input, alpha], op_name: :my_layer)
#Axon<
 inputs: %{"data" => nil}
 outputs: "my_layer_0"
 nodes: 2
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
%{
 "my_layer_0" => %{
 "alpha" => #Nx.Tensor<
 f32
 -1.2601861953735352
 >
 }
}
Notice how your model now initializes with a trainable parameter "alpha" for your custom layer. Each parameter requires a unique (per-layer) string name and a function which determines the parameter's shape from the layer's input shapes.
If you plan on re-using custom layers in many locations, it's recommended that you wrap them in an Elixir function as an interface:
defmodule CustomLayers2 do
 import Nx.Defn

 def my_layer(%Axon{} = input, opts \\ []) do
 opts = Keyword.validate!(opts, [:name])
 alpha = Axon.param("alpha", fn _ -> {} end)

 Axon.layer(&my_layer_impl/3, [input, alpha], name: opts[:name], op_name: :my_layer)
 end

 defnp my_layer_impl(input, alpha, _opts \\ []) do
 input
 |> Nx.sin()
 |> Nx.multiply(alpha)
 end
end
{:module, CustomLayers2, <<70, 79, 82, 49, 0, 0, 12, ...>>, true}
out =
 input
 |> CustomLayers2.my_layer()
 |> CustomLayers2.my_layer()
 |> Axon.dense(1)
#Axon<
 inputs: %{"data" => nil}
 outputs: "dense_0"
 nodes: 4
>
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
8["my_layer_0 (:my_layer) {2, 8}"];
9["my_layer_1 (:my_layer) {2, 8}"];
10["dense_0 (:dense) {2, 1}"];
9 --> 10;
8 --> 9;
3 --> 8;

Model hooks

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Creating models with hooks
Sometimes it's useful to inspect or visualize the values of intermediate layers in your model during the forward or backward pass. For example, it's common to visualize the gradients of activation functions to ensure your model is learning in a stable manner. Axon supports this functionality via model hooks.
Model hooks are a means of unidirectional communication with an executing model. Hooks are unidirectional in the sense that you can only receive information from your model, and not send information back.
Hooks are attached per-layer and can execute at 4 different points in model execution: on the pre-forward, forward, or backward pass of the model or during model initialization. You can also configure the same hook to execute on all 3 events. You can attach hooks to models using Axon.attach_hook/3:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.attach_hook(fn val -> IO.inspect(val, label: :dense_forward) end, on: :forward)
 |> Axon.attach_hook(fn val -> IO.inspect(val, label: :dense_init) end, on: :initialize)
 |> Axon.relu()
 |> Axon.attach_hook(fn val -> IO.inspect(val, label: :relu) end, on: :forward)

{init_fn, predict_fn} = Axon.build(model)

input = Nx.iota({2, 4}, type: :f32)
params = init_fn.(input, %{})
dense_init: %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [0.6067318320274353, 0.5483129620552063, -0.05663269758224487, -0.48249542713165283, -0.18357598781585693, 0.6496620774269104, 0.4919115900993347, -0.08380156755447388],
 [-0.19745409488677979, 0.10483592748641968, -0.43387970328330994, -0.1041460633277893, -0.4129607081413269, -0.6482449769973755, 0.6696910262107849, 0.4690167307853699],
 [-0.18194729089736938, -0.4856645464897156, 0.39400774240493774, -0.28496378660202026, 0.32120805978775024, -0.41854584217071533, 0.5671316981315613, -0.21937215328216553],
 [0.4516749978065491, -0.23585206270217896, -0.6682141423225403, 0.4286096692085266, -0.14930623769760132, -0.3825327157974243, 0.2700549364089966, -0.3888852596282959]
]
 >
}
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [0.6067318320274353, 0.5483129620552063, -0.05663269758224487, -0.48249542713165283, -0.18357598781585693, 0.6496620774269104, 0.4919115900993347, -0.08380156755447388],
 [-0.19745409488677979, 0.10483592748641968, -0.43387970328330994, -0.1041460633277893, -0.4129607081413269, -0.6482449769973755, 0.6696910262107849, 0.4690167307853699],
 [-0.18194729089736938, -0.4856645464897156, 0.39400774240493774, -0.28496378660202026, 0.32120805978775024, -0.41854584217071533, 0.5671316981315613, -0.21937215328216553],
 [0.4516749978065491, -0.23585206270217896, -0.6682141423225403, 0.4286096692085266, -0.14930623769760132, -0.3825327157974243, 0.2700549364089966, -0.3888852596282959]
]
 >
 }
}
Notice how during initialization the :dense_init hook fired and inspected the layer's parameters. Now when executing, you'll see outputs for :dense and :relu:
predict_fn.(params, input)
relu: #Nx.Tensor<
 f32[2][8]
 [
 [0.7936763167381287, 0.0, 0.0, 0.61175537109375, 0.0, 0.0, 2.614119291305542, 0.0],
 [3.5096981525421143, 0.0, 0.0, 0.0, 0.0, 0.0, 10.609275817871094, 0.0]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [0.7936763167381287, 0.0, 0.0, 0.61175537109375, 0.0, 0.0, 2.614119291305542, 0.0],
 [3.5096981525421143, 0.0, 0.0, 0.0, 0.0, 0.0, 10.609275817871094, 0.0]
]
>
It's important to note that hooks execute in the order they were attached to a layer. If you attach 2 hooks to the same layer which execute different functions on the same event, they will run in order:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.attach_hook(fn val -> IO.inspect(val, label: :hook1) end, on: :forward)
 |> Axon.attach_hook(fn val -> IO.inspect(val, label: :hook2) end, on: :forward)
 |> Axon.relu()

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(input, %{})

predict_fn.(params, input)
hook2: #Nx.Tensor<
 f32[2][8]
 [
 [-0.6567458510398865, 2.2303993701934814, -1.540865421295166, -1.873536229133606, -2.386439085006714, -1.248870849609375, -2.9092607498168945, -0.1976098120212555],
 [2.4088101387023926, 5.939034461975098, -2.024522066116333, -7.58249568939209, -10.193460464477539, 0.33839887380599976, -10.836882591247559, 1.8173918724060059]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [0.0, 2.2303993701934814, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 [2.4088101387023926, 5.939034461975098, 0.0, 0.0, 0.0, 0.33839887380599976, 0.0, 1.8173918724060059]
]
>
Notice that :hook1 fires before :hook2.
You can also specify a hook to fire on all events:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.attach_hook(&IO.inspect/1, on: :all)
 |> Axon.relu()
 |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
On initialization:
params = init_fn.(input, %{})
%{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [0.2199305295944214, -0.05434012413024902, -0.07989239692687988, -0.4456246793270111, -0.2792319655418396, -0.1601254940032959, -0.6115692853927612, 0.37740427255630493],
 [-0.3606935739517212, 0.6091846823692322, -0.3203054368495941, -0.6252920031547546, -0.41500264406204224, -0.20729252696037292, -0.6763507127761841, -0.6776859164237976],
 [0.659041702747345, -0.615885317325592, -0.45865312218666077, 0.18774819374084473, 0.31994110345840454, -0.3055777847766876, -0.3537192642688751, 0.4297131896018982],
 [0.06112170219421387, 0.13321959972381592, 0.5566524863243103, -0.1115691065788269, -0.3557875156402588, -0.03118818998336792, -0.5788122415542603, -0.6988758444786072]
]
 >
}
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [0.2199305295944214, -0.05434012413024902, -0.07989239692687988, -0.4456246793270111, -0.2792319655418396, -0.1601254940032959, -0.6115692853927612, 0.37740427255630493],
 [-0.3606935739517212, 0.6091846823692322, -0.3203054368495941, -0.6252920031547546, -0.41500264406204224, -0.20729252696037292, -0.6763507127761841, -0.6776859164237976],
 [0.659041702747345, -0.615885317325592, -0.45865312218666077, 0.18774819374084473, 0.31994110345840454, -0.3055777847766876, -0.3537192642688751, 0.4297131896018982],
 [0.06112170219421387, 0.13321959972381592, 0.5566524863243103, -0.1115691065788269, -0.3557875156402588, -0.03118818998336792, -0.5788122415542603, -0.6988758444786072]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][1]
 [
 [0.3259686231613159],
 [0.4874255657196045],
 [0.6338149309158325],
 [0.4437469244003296],
 [-0.22870665788650513],
 [0.8108665943145752],
 [7.919073104858398e-4],
 [0.4469025135040283]
]
 >
 }
}
On pre-forward and forward:
predict_fn.(params, input)
#Nx.Tensor<
 f32[2][4]
 [
 [0.0, 1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0, 7.0]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
 [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
 [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
]
>
#Nx.Tensor<
 f32[2][1]
 [
 [0.6458775401115417],
 [1.1593825817108154]
]
>
And on backwards:
Nx.Defn.grad(fn params -> predict_fn.(params, input) end).(params)
#Nx.Tensor<
 f32[2][4]
 [
 [0.0, 1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0, 7.0]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
 [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
]
>
#Nx.Tensor<
 f32[2][8]
 [
 [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
 [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
]
>
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.6519372463226318, 0.4874255657196045, 0.6338149309158325, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [1.3038744926452637, 1.949702262878418, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 [1.9558117389678955, 2.4371278285980225, 0.6338149309158325, 0.0, 0.0, 0.0, 0.0, 0.0],
 [2.6077489852905273, 2.924553394317627, 1.267629861831665, 0.0, 0.0, 0.0, 0.0, 0.0],
 [3.259686231613159, 3.4119789600372314, 1.9014447927474976, 0.0, 0.0, 0.0, 0.0, 0.0]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [2.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][1]
 [
 [4.599111557006836],
 [0.06578820943832397],
 [0.43234577775001526],
 [0.0],
 [0.0],
 [0.0],
 [0.0],
 [0.0]
]
 >
 }
}
Finally, you can specify hooks to only run when the model is built in a certain mode such as training and inference mode. You can read more about training and inference mode in Training and inference mode:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.attach_hook(&IO.inspect/1, on: :forward, mode: :train)
 |> Axon.relu()

{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(input, %{})
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [-0.13241732120513916, 0.6946331858634949, -0.6328000426292419, -0.684409499168396, -0.39569517970085144, -0.10005003213882446, 0.2501150965690613, 0.14561182260513306],
 [-0.5495109558105469, 0.459137499332428, -0.4059434235095978, -0.4489462077617645, -0.6331832408905029, 0.05011630058288574, -0.35836488008499146, -0.2661571800708771],
 [0.29260867834091187, 0.42186349630355835, 0.32596689462661743, -0.12340176105499268, 0.6767188906669617, 0.2658537030220032, 0.5745270848274231, 6.475448608398438e-4],
 [0.16781508922576904, 0.23747843503952026, -0.5311254858970642, 0.22617805004119873, -0.5153165459632874, 0.19729173183441162, -0.5706893801689148, -0.5531126260757446]
]
 >
 }
}
The model was built in training mode so the hook will run:
predict_fn.(params, input)
#Nx.Tensor<
 f32[2][8]
 [
 [0.539151668548584, 2.0152997970581055, -1.347386121749878, -0.017215579748153687, -0.8256950974464417, 1.173698902130127, -0.9213788509368896, -1.9241999387741089],
 [-0.3468663692474365, 9.267749786376953, -6.322994232177734, -4.139533042907715, -4.295599460601807, 2.8265457153320312, -1.3390271663665771, -4.616241931915283]
]
>
%{
 prediction: #Nx.Tensor<
 f32[2][8]
 [
 [0.539151668548584, 2.0152997970581055, 0.0, 0.0, 0.0, 1.173698902130127, 0.0, 0.0],
 [0.0, 9.267749786376953, 0.0, 0.0, 0.0, 2.8265457153320312, 0.0, 0.0]
]
 >,
 state: %{}
}
{init_fn, predict_fn} = Axon.build(model, mode: :inference)
params = init_fn.(input, %{})
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][8]
 [
 [0.02683490514755249, -0.28041765093803406, 0.15839070081710815, 0.16674137115478516, -0.5444575548171997, -0.34951671957969666, 0.08247309923171997, 0.6700448393821716],
 [0.6001952290534973, -0.26907777786254883, 0.4580194354057312, -0.060002803802490234, -0.5385662317276001, -0.46773862838745117, 0.25804388523101807, -0.6824946999549866],
 [0.13328874111175537, -0.46421635150909424, -0.5192649960517883, -0.0429919958114624, 0.0771912932395935, -0.447194904088974, 0.30910569429397583, -0.6105270981788635],
 [0.5253992676734924, 0.41786473989486694, 0.6903378367424011, 0.6038702130317688, 0.06673228740692139, 0.4242702126502991, -0.6737087368965149, -0.6956207156181335]
]
 >
 }
}
The model was built in inference mode so the hook will not run:
predict_fn.(params, input)
#Nx.Tensor<
 f32[2][8]
 [
 [2.4429705142974854, 0.056083738803863525, 1.490502953529358, 1.6656239032745361, 0.0, 0.0, 0.0, 0.0],
 [7.585843086242676, 0.0, 4.640434741973877, 4.336091041564941, 0.0, 0.0, 0.0, 0.0]
]
>

Accelerating Axon

Mix.install([
 {:axon, ">= 0.5.0"},
 {:exla, ">= 0.5.0"},
 {:torchx, ">= 0.5.0"},
 {:benchee, "~> 1.1"},
 {:kino, ">= 0.9.0", override: true}
])
:ok
Using Nx Backends in Axon
Nx provides two mechanisms for accelerating your neural networks: backends and compilers. Before we learn how to effectively use them, first let's create a simple model for benchmarking purposes:
model =
 Axon.input("data")
 |> Axon.dense(32)
 |> Axon.relu()
 |> Axon.dense(1)
 |> Axon.softmax()
#Axon<
 inputs: %{"data" => nil}
 outputs: "softmax_0"
 nodes: 5
>
Backends are where your tensors (your neural network inputs and parameters) are located. By default, Nx and Axon run all computations using the Nx.BinaryBackend which is a pure Elixir implementation of various numerical routines. The Nx.BinaryBackend is guaranteed to run wherever an Elixir installation runs; however, it is very slow. Due to the computational expense of neural networks, you should basically never use the Nx.BinaryBackend and instead opt for one of the available accelerated libraries. At the time of writing, Nx officially supports two of them:
	EXLA - Acceleration via Google's XLA project
	TorchX - Bindings to LibTorch

Axon will respect the global and process-level Nx backend configuration. Compilers are covered more in-depth in the second half of this example. You can set the default backend using the following APIs:
Sets the global compilation options (for all Elixir processes)
Nx.global_default_backend(Torchx.Backend)
OR
Nx.global_default_backend(EXLA.Backend)

Sets the process-level compilation options (current process only)
Nx.default_backend(Torchx.Backend)
OR
Nx.default_backend(EXLA.Backend)
Now all tensors and operations on them will run on the configured backend:
{inputs, _next_key} =
 Nx.Random.key(9999)
 |> Nx.Random.uniform(shape: {2, 128})

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
 EXLA.Backend<cuda:0, 0.3278685746.4275961901.179470>
 f32[2][1]
 [
 [1.0],
 [1.0]
]
>
As you swap backends above, you will get tensors allocated on different backends as results. You should be careful using multiple backends in the same project as attempting to mix tensors between backends may result in strange performance bugs or errors, as Nx will require you to explicitly convert between backends.
With most larger models, using a compiler will bring more performance benefits in addition to the backend.
Using Nx Compilers in Axon
Axon is built entirely on top of Nx's numerical definitions defn. Functions declared with defn tell Nx to use just-in-time compilation to compile and execute the given numerical definition with an available Nx compiler. Numerical definitions enable acceleration on CPU/GPU/TPU via pluggable compilers. At the time of this writing, only EXLA supports a compiler in addition to its backend.
When you call Axon.build/2, Axon can automatically mark your initialization and forward functions as JIT compiled functions. First let's make sure we are using the EXLA backend:
Nx.default_backend(EXLA.Backend)
And now let's build another model, this time passing the EXLA compiler as an option:
{inputs, _next_key} =
 Nx.Random.key(9999)
 |> Nx.Random.uniform(shape: {2, 128})

{init_fn, predict_fn} = Axon.build(model, compiler: EXLA)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)

15:39:26.463 [info] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

15:39:26.473 [info] XLA service 0x7f3488329030 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:

15:39:26.473 [info] StreamExecutor device (0): NVIDIA GeForce RTX 3050 Ti Laptop GPU, Compute Capability 8.6

15:39:26.473 [info] Using BFC allocator.

15:39:26.473 [info] XLA backend allocating 3605004288 bytes on device 0 for BFCAllocator.

15:39:28.272 [info] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.

#Nx.Tensor<
 f32[2][1]
 EXLA.Backend<cuda:0, 0.3278685746.4275699756.253533>
 [
 [1.0],
 [1.0]
]
>
You can also instead JIT compile functions explicitly via the Nx.Defn.jit or compiler-specific JIT APIs. This is useful when running benchmarks against various backends:
{init_fn, predict_fn} = Axon.build(model)

These will both JIT compile with EXLA
exla_init_fn = Nx.Defn.jit(init_fn, compiler: EXLA)
exla_predict_fn = EXLA.jit(predict_fn)
#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>
Benchee.run(
 %{
 "elixir init" => fn -> init_fn.(inputs, %{}) end,
 "exla init" => fn -> exla_init_fn.(inputs, %{}) end
 },
 time: 10,
 memory_time: 5,
 warmup: 2
)
Warning: the benchmark elixir init is using an evaluated function.
 Evaluated functions perform slower than compiled functions.
 You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
 Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Warning: the benchmark exla init is using an evaluated function.
 Evaluated functions perform slower than compiled functions.
 You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
 Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Operating System: Linux
CPU Information: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Number of Available Cores: 4
Available memory: 24.95 GB
Elixir 1.13.4
Erlang 25.0.4

Benchmark suite executing with the following configuration:
warmup: 2 s
time: 10 s
memory time: 5 s
reduction time: 0 ns
parallel: 1
inputs: none specified
Estimated total run time: 34 s

Benchmarking elixir init ...
Benchmarking exla init ...

Name ips average deviation median 99th %
exla init 3.79 K 0.26 ms ±100.40% 0.24 ms 0.97 ms
elixir init 0.52 K 1.91 ms ±35.03% 1.72 ms 3.72 ms

Comparison:
exla init 3.79 K
elixir init 0.52 K - 7.25x slower +1.65 ms

Memory usage statistics:

Name Memory usage
exla init 9.80 KB
elixir init 644.63 KB - 65.80x memory usage +634.83 KB

All measurements for memory usage were the same
Benchee.run(
 %{
 "elixir predict" => fn -> predict_fn.(params, inputs) end,
 "exla predict" => fn -> exla_predict_fn.(params, inputs) end
 },
 time: 10,
 memory_time: 5,
 warmup: 2
)
Warning: the benchmark elixir predict is using an evaluated function.
 Evaluated functions perform slower than compiled functions.
 You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
 Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Warning: the benchmark exla predict is using an evaluated function.
 Evaluated functions perform slower than compiled functions.
 You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
 Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Operating System: Linux
CPU Information: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Number of Available Cores: 4
Available memory: 24.95 GB
Elixir 1.13.4
Erlang 25.0.4

Benchmark suite executing with the following configuration:
warmup: 2 s
time: 10 s
memory time: 5 s
reduction time: 0 ns
parallel: 1
inputs: none specified
Estimated total run time: 34 s

Benchmarking elixir predict ...
Benchmarking exla predict ...

Name ips average deviation median 99th %
exla predict 2.32 K 0.43 ms ±147.05% 0.34 ms 1.61 ms
elixir predict 0.28 K 3.53 ms ±42.21% 3.11 ms 7.26 ms

Comparison:
exla predict 2.32 K
elixir predict 0.28 K - 8.20x slower +3.10 ms

Memory usage statistics:

Name Memory usage
exla predict 10.95 KB
elixir predict 91.09 KB - 8.32x memory usage +80.14 KB

All measurements for memory usage were the same
Notice how calls to EXLA variants are significantly faster. These speedups become more pronounced with more complex models and workflows.
It's important to note that in order to use a given library as an Nx compiler, it must implement the Nx compilation behaviour. For example, you cannot invoke Torchx as an Nx compiler because it does not support JIT compilation at this time.
A Note on CPUs/GPUs/TPUs
While Nx mostly tries to standardize behavior across compilers and backends, some behaviors are backend-specific. For example, the API for choosing an acceleration platform (e.g. CUDA/ROCm/TPU) is backend-specific. You should refer to your chosen compiler or backend's documentation for information on targeting various accelerators. Typically, you only need to change a few configuration options and your code will run as-is on a chosen accelerator.

Training and inference mode

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Executing models in inference mode
Some layers have different considerations and behavior when running during model training versus model inference. For example dropout layers are intended only to be used during training as a form of model regularization. Certain stateful layers like batch normalization keep a running-internal state which changes during training mode but remains fixed during inference mode. Axon supports mode-dependent execution behavior via the :mode option passed to all building, compilation, and execution methods. By default, all models build in inference mode. You can see this behavior by adding a dropout layer with a dropout rate of 1. In inference mode this layer will have no affect:
inputs = Nx.iota({2, 8}, type: :f32)

model =
 Axon.input("data")
 |> Axon.dense(4)
 |> Axon.sigmoid()
 |> Axon.dropout(rate: 0.99)
 |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
 f32[2][1]
 [
 [0.6900148391723633],
 [1.1159517765045166]
]
>
You can also explicitly specify the mode:
{init_fn, predict_fn} = Axon.build(model, mode: :inference)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
 f32[2][1]
 [
 [-1.1250841617584229],
 [-1.161189317703247]
]
>
It's important that you know which mode your model's were compiled for, as running a model built in :inference mode will behave drastically different than a model built in :train mode.
Executing models in training mode
By specifying mode: :train, you tell your models to execute in training mode. You can see the effects of this behavior here:
{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
%{
 prediction: #Nx.Tensor<
 f32[2][1]
 [
 [0.0],
 [0.0]
]
 >,
 state: %{
 "dropout_0" => %{
 "key" => #Nx.Tensor<
 u32[2]
 [309162766, 2699730300]
 >
 }
 }
}
First, notice that your model now returns a map with keys :prediction and :state. :prediction contains the actual model prediction, while :state contains the updated state for any stateful layers such as batch norm. When writing custom training loops, you should extract :state and use it in conjunction with the updates API to ensure your stateful layers are updated correctly. If your model has stateful layers, :state will look similar to your model's parameter map:
model =
 Axon.input("data")
 |> Axon.dense(4)
 |> Axon.sigmoid()
 |> Axon.batch_norm()
 |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
%{
 prediction: #Nx.Tensor<
 f32[2][1]
 [
 [0.4891311526298523],
 [-0.4891311228275299]
]
 >,
 state: %{
 "batch_norm_0" => %{
 "mean" => #Nx.Tensor<
 f32[4]
 [0.525083601474762, 0.8689039349555969, 0.03931800276041031, 0.0021854371298104525]
 >,
 "var" => #Nx.Tensor<
 f32[4]
 [0.13831248879432678, 0.10107331722974777, 0.10170891880989075, 0.10000484436750412]
 >
 }
 }
}

Your first training loop

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Creating an Axon training loop
Axon generalizes the concept of training, evaluation, hyperparameter optimization, and more into the Axon.Loop API. Axon loops are a instrumented reductions over Elixir Streams - that basically means you can accumulate some state over an Elixir Stream and control different points in the loop execution.
With Axon, you'll most commonly implement and work with supervised training loops. Because supervised training loops are so common in deep learning, Axon has a loop factory function which takes care of most of the boilerplate of creating a supervised training loop for you. In the beginning of your deep learning journey, you'll almost exclusively use Axon's loop factories to create and run loops.
Axon's supervised training loop assumes you have an input stream of data with entries that look like:
{batch_inputs, batch_labels}
Each entry is a batch of input data with a corresponding batch of labels. You can simulate some real training data by constructing an Elixir stream:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)
#Function<51.6935098/2 in Stream.repeatedly/1>
The most basic supervised training loop in Axon requires 3 things:
	An Axon model
	A loss function
	An optimizer

You can construct an Axon model using the knowledge you've gained from going through the model creation guides:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)
#Axon<
 inputs: %{"data" => nil}
 outputs: "dense_2"
 nodes: 6
>
Axon comes with built-in loss functions and optimizers which you can use directly when constructing your training loop. To construct your training loop, you use Axon.Loop.trainer/3:
loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
You'll notice that Axon.Loop.trainer/3 returns an %Axon.Loop{} data structure. This data structure contains information which Axon uses to control the execution of the loop. In order to run the loop, you need to explicitly pass it to Axon.Loop.run/4:
Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0563023
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.038592107594013214, 0.19925688207149506, -0.08018972724676132, -0.11267539858818054, 0.35166260600090027, -0.0794963389635086, 0.20298318564891815, 0.3049686849117279]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.06691190600395203, -0.32860732078552246, 0.22386932373046875, 0.16137443482875824, 0.23626506328582764, 0.2438151240348816, 0.2662005126476288, 0.32266947627067566]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.03138260543346405, 0.2621246576309204, 0.021843062713742256, -0.07498764991760254]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.541576087474823, 0.4923045039176941, 0.5933979749679565, -0.5083895921707153],
 [0.5120893120765686, -0.6925638318061829, 0.36635661125183105, -0.05748361349105835],
 [0.26158788800239563, -0.1788359135389328, -0.14064575731754303, -0.08323567360639572],
 [0.6685130596160889, -0.4880330264568329, 0.5104460120201111, -0.3399733006954193],
 [-0.6356683969497681, 0.770803689956665, -0.3876360058784485, -0.5178110599517822],
 [0.4476216733455658, -0.21042484045028687, -0.4300518333911896, -0.2693784534931183],
 [0.08789066225290298, 0.47043612599372864, 0.02871485985815525, 0.6908602714538574],
 [0.45776790380477905, 0.6735268235206604, 0.40828803181648254, 0.19558420777320862]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.748963475227356]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.22219088673591614],
 [1.1391150951385498],
 [-0.13221295177936554],
 [-0.27904900908470154]
]
 >
 }
}
Axon.Loop.run/4 expects a loop to execute, some data to loop over, and any initial state you explicitly want your loop to start with. Axon.Loop.run/4 will then iterate over your data, executing a step function on each batch, and accumulating some generic loop state. In the case of a supervised training loop, this generic loop state actually represents training state including your model's trained parameters.
Axon.Loop.run/4 also accepts options which control the loops execution. This includes :iterations which controls the number of iterations per epoch a loop should execute for, and :epochs which controls the number of epochs a loop should execute for:
Axon.Loop.run(loop, train_data, %{}, epochs: 3, iterations: 500)
Epoch: 0, Batch: 450, loss: 0.0935063
Epoch: 1, Batch: 450, loss: 0.0576384
Epoch: 2, Batch: 450, loss: 0.0428323
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.035534460097551346, 0.2604885697364807, -0.10573504120111465, -0.16461455821990967, 0.3610309064388275, -0.10921606421470642, 0.2061888873577118, 0.3162775933742523]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.05344606190919876, -0.3463115096092224, 0.23782028257846832, 0.20592278242111206, 0.2195105254650116, 0.2618684470653534, 0.2559347450733185, 0.3006669282913208]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.03086121939122677, 0.28601887822151184, 0.02634759061038494, -0.08197703212499619]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.5404174327850342, 0.49248307943344116, 0.5927202701568604, -0.5083895921707153],
 [0.5133915543556213, -0.7197086811065674, 0.3669036030769348, -0.057483553886413574],
 [0.26609811186790466, -0.20234307646751404, -0.14102067053318024, -0.08141336590051651],
 [0.673393964767456, -0.512398362159729, 0.5106634497642517, -0.3384905159473419],
 [-0.6347945928573608, 0.7695014476776123, -0.3877493143081665, -0.5186421275138855],
 [0.45236992835998535, -0.2351287305355072, -0.4305106997489929, -0.2674770951271057],
 [0.08871842920780182, 0.46521952748298645, 0.02729635499417782, 0.691332221031189],
 [0.4584391117095947, 0.6687410473823547, 0.4068295657634735, 0.19576647877693176]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.7425869703292847]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.24965399503707886],
 [1.1746525764465332],
 [-0.12984804809093475],
 [-0.2796761095523834]
]
 >
 }
}
You may have noticed that by default Axon.Loop.trainer/3 configures your loop to log information about training progress every 50 iterations. You can control this when constructing your supervised training loop with the :log option:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd, log: 100)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 900, loss: 0.1492715
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.09267199039459229, 0.5775123834609985, -0.07691138982772827, 0.04283804073929787, -0.015639742836356163, -0.0725373700261116, -0.10598818212747574, 0.021243896335363388]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.07886508852243423, 0.826379120349884, 0.1022031158208847, -0.5164816975593567, 0.390212744474411, 0.2709604799747467, -0.05409134551882744, -0.6204537749290466]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.09577611088752747, 0.3303026556968689, -0.25102874636650085, -0.3312375247478485]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.5508446097373962, -0.03904113546013832, 0.382876992225647, -0.6273598670959473],
 [0.13289013504981995, 0.947068452835083, -0.27359727025032043, 0.4073275923728943],
 [-0.10011858493089676, -0.32976964116096497, -0.3160743713378906, -0.3586210012435913],
 [-0.628970205783844, -0.19567319750785828, -0.07241304218769073, -0.43270331621170044],
 [-0.6155693531036377, -0.020595157518982887, -0.3254905045032501, 0.18614870309829712],
 [-0.07561944425106049, -0.34477049112319946, -0.30149057507514954, -0.6603768467903137],
 [-0.17559891939163208, -0.2768605649471283, 0.5830116868019104, 0.11386138200759888],
 [-0.6376093626022339, -0.31125709414482117, 0.2749727964401245, -0.6777774691581726]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.767456591129303]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.3530634641647339],
 [0.9497018456459045],
 [0.31334763765335083],
 [-0.624195396900177]
]
 >
 }
}

Instrumenting loops with metrics

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Adding metrics to training loops
Often times when executing a loop you want to keep track of various metrics such as accuracy or precision. For training loops, Axon by default only tracks loss; however, you can instrument the loop with additional built-in metrics. For example, you might want to track mean-absolute error on top of a mean-squared error loss:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.metric(:mean_absolute_error)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>},
 "mean_absolute_error" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 :mean_absolute_error}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
When specifying a metric, you can specify an atom which maps to any of the metrics defined in Axon.Metrics. You can also define custom metrics. For more information on custom metrics, see Writing custom metrics.
When you run a loop with metrics, Axon will aggregate that metric over the course of the loop execution. For training loops, Axon will also report the aggregate metric in the training logs:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0590630 mean_absolute_error: 0.1463431
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.015203186310827732, 0.1997198462486267, 0.09740892797708511, -0.007404750678688288, 0.11397464573383331, 0.3608400523662567, 0.07219560444355011, -0.06638865917921066]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.07889414578676224, 0.30445051193237305, 0.1377921849489212, 0.015571207739412785, 0.7115736603736877, -0.6404237151145935, 0.25553327798843384, 0.057831913232803345]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.10809992998838425, 0.0, 0.47775307297706604, -0.1641010195016861]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.040330830961465836, -0.36995524168014526, 0.001599793671630323, 0.6012424826622009],
 [0.21044284105300903, -0.39482879638671875, -0.5866784453392029, 0.15573620796203613],
 [-0.09234675765037537, 0.27758270502090454, -0.6663768291473389, 0.6017312407493591],
 [-0.4454570412635803, 0.1304328441619873, -0.31381309032440186, 0.1906844824552536],
 [0.3460652530193329, -0.3017694056034088, -0.1680794507265091, -0.47811293601989746],
 [0.28633055090904236, -0.34003201127052307, 0.6202688813209534, 0.18027405440807343],
 [0.5729941129684448, 0.32222074270248413, 0.20647864043712616, 0.02462891861796379],
 [-0.13146185874938965, -0.06700503826141357, 0.6600251793861389, -0.06442582607269287]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.4863035976886749]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.41491562128067017],
 [-0.948100209236145],
 [-1.2559744119644165],
 [1.0097774267196655]
]
 >
 }
}
By default, the metric will have a name which matches the string form of the given metric. You can give metrics semantic meaning by providing an explicit name:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error, "model error")
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0607362 model error: 0.1516546
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.2577069401741028, 0.16761353611946106, 0.11587327718734741, 0.28539595007896423, -0.2071152776479721, -0.02039412036538124, -0.11152249574661255, 0.2389308214187622]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.1265750676393509, 0.6902633309364319, -0.10233660787343979, -0.2544037103652954, -0.26677289605140686, -0.31035077571868896, 0.3845033347606659, -0.33032187819480896]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.0, 0.16427761316299438, 0.02123815007507801, 0.22260485589504242]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.3859425485134125, 0.49959924817085266, -0.34108400344848633, 0.6222119331359863],
 [-0.43326857686042786, -0.42272067070007324, 0.04245679825544357, -0.4357914626598358],
 [-0.3065953850746155, 0.587925374507904, 0.2960704267024994, -0.31594154238700867],
 [-0.35595524311065674, 0.6649497747421265, 0.4832736849784851, 0.3025558590888977],
 [0.048333823680877686, -0.17023107409477234, 0.09139639884233475, -0.6511918902397156],
 [-0.12099027633666992, -0.02014642395079136, 0.025831595063209534, -0.09945832937955856],
 [0.3415437340736389, 0.41694650053977966, 0.24677544832229614, 0.06690020114183426],
 [-0.1977071762084961, 0.39345067739486694, 0.26068705320358276, 0.35502269864082336]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.8329466581344604]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.23763614892959595],
 [-1.031561255455017],
 [0.1092313677072525],
 [-0.7191486358642578]
]
 >
 }
}
Axon's default aggregation behavior is to aggregate metrics with a running average; however, you can customize this behavior by specifying an explicit accumulation function. Built-in accumulation functions are :running_average and :running_sum:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error, "total error", :running_sum)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0688004 total error: 151.4876404
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.34921368956565857, 0.2217460423707962, 0.274880051612854, 0.016405446454882622, -0.11720903217792511, -0.20693546533584595, 0.14232252538204193, -0.07956698536872864]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.37851807475090027, -0.17135880887508392, -0.3878959119319916, 0.19248774647712708, 0.12453905493021011, -0.2750281095504761, 0.5614567995071411, 0.6186240315437317]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.28566694259643555, 0.27262070775032043, -0.2875851094722748, 0.0]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.23161421716213226, 0.8222984671592712, 0.09437259286642075, -0.4825701117515564],
 [-0.38828352093696594, 0.6247998476028442, 0.5035035610198975, 0.0026152729988098145],
 [0.5202338099479675, 0.7906754612922668, 0.08624745905399323, -0.5285568833351135],
 [0.47950035333633423, -0.07571044564247131, 0.32921522855758667, -0.7011756896972656],
 [-0.3601212203502655, 0.44817543029785156, 0.13981425762176514, -0.01014477014541626],
 [-0.3157005310058594, -0.6309216618537903, 0.5622371435165405, 0.27447545528411865],
 [-0.5749425292015076, -0.5073797702789307, -0.3527824282646179, 0.08027392625808716],
 [-0.5331286191940308, 0.15432128310203552, -0.015716910362243652, -0.5225256681442261]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.8275660872459412]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.45810666680336],
 [-1.0092405080795288],
 [0.5322748422622681],
 [-0.5989866852760315]
]
 >
 }
}

Your first evaluation loop

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Creating an Axon evaluation loop
Once you have a trained model, it's necessary to test the trained model on some test data. Axon's loop abstraction is general enough to work for both training and evaluating models. Just as Axon implements a canned Axon.Loop.trainer/3 factory, it also implements a canned Axon.Loop.evaluator/1 factory.
Axon.Loop.evaluator/1 creates an evaluation loop which you can instrument with metrics to measure the performance of a trained model on test data. First, you need a trained model:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

train_loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)

data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

trained_model_state = Axon.Loop.run(train_loop, data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.1285532
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.06848274916410446, 0.037988610565662384, -0.199247345328331, 0.18008524179458618, 0.10976515710353851, -0.10479626059532166, 0.562850832939148, -0.030415315181016922]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.2839881181716919, 0.11133058369159698, -0.5213645100593567, -0.14406965672969818, 0.37532612681388855, -0.28965434432029724, -0.9048429131507874, -5.540614947676659e-4]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.2961483597755432, 0.3721822202205658, -0.1726730614900589, -0.20648165047168732]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.602420449256897, 0.46551579236984253, 0.3295630216598511, 0.484800785779953],
 [0.05755739286541939, -0.2412092238664627, 0.27874955534935, 0.13457047939300537],
 [-0.26997247338294983, -0.4479314386844635, 0.4976465106010437, -0.05715075880289078],
 [-0.7245721220970154, 0.1187945082783699, 0.14330074191093445, 0.3257679343223572],
 [-0.032964885234832764, -0.625235915184021, -0.05669135972857475, -0.7016372680664062],
 [-0.08433973789215088, -0.07334757596254349, 0.08273869007825851, 0.46893611550331116],
 [0.4123252332210541, 0.9876810312271118, -0.3525731563568115, 0.030163511633872986],
 [0.6962482333183289, 0.5394620299339294, 0.6907036304473877, -0.5448697209358215]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.7519291043281555]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.7839917540550232],
 [-0.8586246967315674],
 [0.8599083423614502],
 [0.29766184091567993]
]
 >
 }
}
Running loops with Axon.Loop.trainer/3 returns a trained model state which you can use to evaluate your model. To construct an evaluation loop, you just call Axon.Loop.evaluator/1 with your pre-trained model:
test_loop = Axon.Loop.evaluator(model)
#Axon.Loop<
 metrics: %{},
 handlers: %{
 completed: [],
 epoch_completed: [],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Next, you'll need to instrument your test loop with the metrics you'd like to aggregate:
test_loop = test_loop |> Axon.Loop.metric(:mean_absolute_error)
#Axon.Loop<
 metrics: %{
 "mean_absolute_error" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 :mean_absolute_error}
 },
 handlers: %{
 completed: [],
 epoch_completed: [],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Finally, you can run your loop on test data. Because you want to test your trained model, you need to provide your model's initial state to the test loop:
Axon.Loop.run(test_loop, data, trained_model_state, iterations: 1000)
Batch: 999, mean_absolute_error: 0.0856894
%{
 0 => %{
 "mean_absolute_error" => #Nx.Tensor<
 f32
 0.08568935841321945
 >
 }
}

Using loop event handlers

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Adding event handlers to training loops
Often times you want more fine-grained control over things that happen during loop execution. For example, you might want to save loop state to a file every 500 iterations, or log some output to :stdout at the end of every epoch. Axon loops allow more fine-grained control via events and event handlers.
Axon fires a number of events during loop execution which allow you to instrument various points in the loop execution cycle. You can attach event handlers to any of these events:
events = [
 :started, # After loop state initialization
 :epoch_started, # On epoch start
 :iteration_started, # On iteration start
 :iteration_completed, # On iteration complete
 :epoch_completed, # On epoch complete
 :epoch_halted, # On epoch halt, if early halted
 :halted, # On loop halt, if early halted
 :completed # On loop completion
]
Axon packages a number of common loop event handlers for you out of the box. These handlers should cover most of the common event handlers you would need to write in practice. Axon also allows for custom event handlers. See Writing custom event handlers for more information.
An event handler will take the current loop state at the time of the fired event, and alter or use it in someway before returning control back to the main loop execution. You can attach any of Axon's pre-packaged event handlers to a loop by using the function directly. For example, if you want to checkpoint loop state at the end of every epoch, you can use Axon.Loop.checkpoint/2:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.checkpoint(event: :epoch_completed)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<17.37390314/1 in Axon.Loop.checkpoint/2>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>},
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Now when you execute your loop, it will save a checkpoint at the end of every epoch:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.5345965
Epoch: 1, Batch: 50, loss: 0.4578816
Epoch: 2, Batch: 50, loss: 0.4527244
Epoch: 3, Batch: 50, loss: 0.4466343
Epoch: 4, Batch: 50, loss: 0.4401709
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.1074252650141716, -0.0033432210329920053, -0.08044778555631638, 0.0016452680574730039, -0.01557128969579935, -0.061440952122211456, 0.061030879616737366, 0.012781506404280663]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.3504936695098877, 0.6722151041030884, -0.5550820231437683, 0.05254736915230751, 0.7404129505157471, -0.24307608604431152, -0.7073894739151001, 0.6447222828865051]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.19830459356307983, 0.0, 0.0, -0.04925372824072838]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.4873020648956299, -0.3363800644874573, -0.6058675050735474, -0.47888076305389404],
 [-0.18936580419540405, -0.5579301714897156, -0.49217337369918823, 0.04828363656997681],
 [0.3202762305736542, -0.033479928970336914, 0.11928367614746094, -0.5225698351860046],
 [0.3883931040763855, 0.07413274049758911, 0.548823893070221, -0.03494540974497795],
 [-0.2598196268081665, -0.4546756446361542, 0.5866180062294006, 0.2946240305900574],
 [0.2722054719924927, -0.5802338123321533, 0.4854300618171692, -0.5049118399620056],
 [-0.415179044008255, -0.5426293611526489, -0.1631108522415161, -0.6544353365898132],
 [-0.3079695403575897, 0.09391731023788452, -0.40262123942375183, -0.27837851643562317]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.016238097101449966]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.3102125823497772],
 [-1.078292727470398],
 [0.7910841703414917],
 [0.014510140754282475]
]
 >
 }
}
You can also use event handlers for things as simple as implementing custom logging with the pre-packaged Axon.Loop.log/4 event handler:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.log(fn _state -> "epoch is over\n" end, event: :epoch_completed, device: :stdio)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.3220241
epoch is over
Epoch: 1, Batch: 50, loss: 0.2309804
epoch is over
Epoch: 2, Batch: 50, loss: 0.1759415
epoch is over
Epoch: 3, Batch: 50, loss: 0.1457551
epoch is over
Epoch: 4, Batch: 50, loss: 0.1247821
epoch is over
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.01846296526491642, -0.0016654117498546839, 0.39859917759895325, 0.21187178790569305, 0.08815062046051025, -0.11071830987930298, 0.06280634552240372, -0.11682439595460892]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.08840499818325043, 0.44253841042518616, -0.6063749194145203, -0.1487167924642563, 0.24857401847839355, 0.1697462797164917, -0.5370600819587708, 0.1658734828233719]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.08111556619405746, 0.32310858368873596, -0.059386227279901505, -0.09515857696533203]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.6057762503623962, -0.2633209824562073, 0.23028653860092163, -0.2710704505443573],
 [0.03961030766367912, -0.335278183221817, 0.16016681492328644, 0.10653878003358841],
 [0.36239713430404663, 0.8330743312835693, 0.4745633602142334, -0.29585230350494385],
 [-0.04394621402025223, 0.45401355624198914, 0.5953336954116821, -0.6513576507568359],
 [-0.6447072625160217, -0.6225455403327942, -0.4814218580722809, 0.6882413625717163],
 [-0.44460421800613403, -0.04251839220523834, 0.4619944095611572, 0.24515877664089203],
 [-0.49396005272865295, -0.08895684778690338, 0.5212237238883972, 0.24301064014434814],
 [0.3074108958244324, 0.2640342712402344, 0.4197620749473572, -0.05698487162590027]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.6520459651947021]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.45083022117614746],
 [-0.8733288049697876],
 [-0.1894296556711197],
 [0.030911535024642944]
]
 >
 }
}
For even more fine-grained control over when event handlers fire, you can add filters. For example, if you only want to checkpoint loop state every 2 epochs, you can use a filter:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.checkpoint(event: :epoch_completed, filter: [every: 2])
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.3180207
Epoch: 1, Batch: 50, loss: 0.1975918
Epoch: 2, Batch: 50, loss: 0.1353940
Epoch: 3, Batch: 50, loss: 0.1055405
Epoch: 4, Batch: 50, loss: 0.0890203
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.047411054372787476, 0.1582564115524292, -0.027924394235014915, 0.1774083375930786, 0.09764095395803452, 0.1040089949965477, 0.006841400172561407, -0.11682236939668655]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.20366023480892181, 0.7318703532218933, -0.028611917048692703, -0.5324040055274963, -0.6856501698493958, 0.21694214642047882, 0.3281741738319397, -0.13051153719425201]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.1859581470489502, 0.3360026180744171, 0.24061667919158936, -0.016354668885469437]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.07366377860307693, -0.3261552155017853, -0.6951385140419006, -0.4232194125652313],
 [0.7334840893745422, -0.17827139794826508, -0.6411628127098083, -0.41898131370544434],
 [0.4770638346672058, -0.4738321304321289, 0.5755389332771301, 0.30976954102516174],
 [-0.498087614774704, 0.10546410828828812, 0.690037190914154, -0.5016340613365173],
 [0.17509347200393677, 0.4518563449382782, -0.10358063131570816, 0.2223401516675949],
 [0.6422480344772339, 0.19363932311534882, 0.2870054543018341, -0.1483648419380188],
 [-0.10362248122692108, -0.7047968506813049, 0.02847556211054325, -0.18464618921279907],
 [-0.6756409406661987, -0.42686882615089417, -0.5484509468078613, 0.596512496471405]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.23296000063419342]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.48827823996543884],
 [-0.7908728122711182],
 [-0.5326805114746094],
 [0.3789232671260834]
]
 >
 }
}
Axon event handlers support both keyword and function filters. Keyword filters include keywords such as :every, :once, and :always. Function filters are arity-1 functions which accept the current loop state and return a boolean.

Custom models, loss functions, and optimizers

Mix.install([
 {:axon, github: "elixir-nx/axon"},
 {:nx, "~> 0.3.0", github: "elixir-nx/nx", sparse: "nx", override: true}
])
:ok
Using custom models in training loops
In the Your first training loop, you learned how to declare a supervised training loop using Axon.Loop.trainer/3 with a model, loss function, and optimizer. Your overall model and loop declaration looked something like this:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)
This example uses an %Axon{} struct to represent your model to train, and atoms to represent your loss function and optimizer. Some of your problems will require a bit more flexibility than this example affords. Fortunately, Axon.Loop.trainer/3 is designed for flexibility.
For example, if your model cannot be cleanly represented as an %Axon{} model, you can instead opt instead to define custom initialization and forward functions to pass to Axon.Loop.trainer/3. Actually, Axon.Loop.trainer/3 is doing this for you under the hood - the ability to pass an %Axon{} struct directly is just a convenience:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

lowered_model = {init_fn, predict_fn} = Axon.build(model)

loop = Axon.Loop.trainer(lowered_model, :mean_squared_error, :sgd)
#Axon.Loop<
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<23.20267452/1 in Axon.Loop.log/5>,
 #Function<5.20267452/1 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<23.20267452/1 in Axon.Loop.log/5>,
 #Function<3.20267452/1 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 metrics: %{
 "loss" => {#Function<12.6031754/3 in Axon.Metrics.running_average/1>,
 #Function<6.20267452/2 in Axon.Loop.build_loss_fn/1>}
 },
 ...
>
Notice that Axon.Loop.trainer/3 handles the "lowered" form of an Axon model without issue. When you pass an %Axon{} struct, the trainer factory converts it to a lowered representation for you. With this construct, you can build custom models entirely with Nx defn, or readily mix your Axon models into custom workflows without worrying about compatibility with the Axon.Loop API:
defmodule CustomModel do
 import Nx.Defn

 defn custom_predict_fn(model_predict_fn, params, input) do
 %{prediction: preds} = out = model_predict_fn.(params, input)
 %{out | prediction: Nx.cos(preds)}
 end
end
{:module, CustomModel, <<70, 79, 82, 49, 0, 0, 9, ...>>, {:custom_predict_fn, 3}}
train_data =
 Stream.repeatedly(fn ->
 xs = Nx.random_normal({8, 1})
 ys = Nx.sin(xs)
 {xs, ys}
 end)

{init_fn, predict_fn} = Axon.build(model, mode: :train)
custom_predict_fn = &CustomModel.custom_predict_fn(predict_fn, &1, &2)

loop = Axon.Loop.trainer({init_fn, custom_predict_fn}, :mean_squared_error, :sgd)

Axon.Loop.run(loop, train_data, %{}, iterations: 500)
Epoch: 0, Batch: 500, loss: 0.3053460
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.06573846191167831, 0.37533989548683167, -0.014221129938960075, -0.0056641618721187115, -0.013241665437817574, -0.04930500313639641, 0.03238297998905182, 0.019304191693663597]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.3132522702217102, -0.9284062385559082, 0.5041953921318054, 0.09051526337862015, 0.003381401300430298, -0.22686156630516052, 0.506594181060791, 0.46744370460510254]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.008441010490059853, 0.0, 0.5370790958404541, 0.03584281727671623]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.3442431688308716, -0.33131587505340576, -0.03751888871192932, -0.5497395396232605],
 [-0.4568001925945282, -0.5024663805961609, 0.8712142109870911, -0.13484779000282288],
 [0.7310590744018555, -0.34318023920059204, 0.3977772295475006, -0.6045383214950562],
 [-0.5255699157714844, -0.2829623818397522, -0.45367464423179626, -0.157784566283226],
 [-0.47948920726776123, 0.2930692136287689, -0.3784458339214325, -0.69244384765625],
 [0.7052943706512451, 0.015830136835575104, -0.02979498915374279, 0.6160839796066284],
 [0.3201732933521271, -0.1367085874080658, -0.17100055515766144, 0.7335636019706726],
 [-0.2825513482093811, -0.424674928188324, -0.3110836148262024, 0.46001508831977844]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.6889857649803162]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.7191283106803894],
 [-0.4222411513328552],
 [1.122635006904602],
 [-0.7385509014129639]
]
 >
 }
}
Using custom loss functions in training loops
Just as Axon.Loop.trainer/3 allows more flexibility with models, it also supports more flexible loss functions. In most cases, you can get away with using one of Axon's built-in loss functions by specifying an atom. Atoms map directly to a loss-function defined in Axon.Losses. Under the hood, Axon.Loop.trainer/3 is doing something like:
loss_fn = &apply(Axon.Losses, loss_atom, [&1, &2])
Rather than pass an atom, you can pass your own custom arity-2 function to Axon.Loop.trainer/3. This arises most often in cases where you want to control some parameters of the loss function, such as the batch-level reduction:
loss_fn = &Axon.Losses.mean_squared_error(&1, &2, reduction: :sum)

loop = Axon.Loop.trainer(model, loss_fn, :sgd)
#Axon.Loop<
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<23.20267452/1 in Axon.Loop.log/5>,
 #Function<5.20267452/1 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<23.20267452/1 in Axon.Loop.log/5>,
 #Function<3.20267452/1 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 metrics: %{
 "loss" => {#Function<12.6031754/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 ...
>
You can also define your own custom loss functions, so long as they match the following spec:
loss(
 y_true :: tensor[batch, ...] | container(tensor),
 y_preds :: tensor[batch, ...] | container(tensor)
) :: scalar
This is useful for constructing loss functions when dealing with multi-output scenarios. For example, it's very easy to construct a custom loss function which is a weighted average of several loss functions on multiple inputs:
train_data =
 Stream.repeatedly(fn ->
 xs = Nx.random_normal({8, 1})
 y1 = Nx.sin(xs)
 y2 = Nx.cos(xs)
 {xs, {y1, y2}}
 end)

shared =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()

y1 = Axon.dense(shared, 1)
y2 = Axon.dense(shared, 1)

model = Axon.container({y1, y2})

custom_loss_fn = fn {y_true1, y_true2}, {y_pred1, y_pred2} ->
 loss1 = Axon.Losses.mean_squared_error(y_true1, y_pred1, reduction: :mean)
 loss2 = Axon.Losses.mean_squared_error(y_true2, y_pred2, reduction: :mean)

 loss1
 |> Nx.multiply(0.4)
 |> Nx.add(Nx.multiply(loss2, 0.6))
end

model
|> Axon.Loop.trainer(custom_loss_fn, :sgd)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 1000, loss: 0.1098235
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.07738334685564041, 0.04548311233520508, 0.049238916486501694, 0.38714033365249634, -0.030310271307826042, -0.07575170695781708, 0.02918776497244835, 0.15639683604240417]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.5250527858734131, 0.9252119660377502, -0.7720071077346802, 0.3685735762119293, -0.15688209235668182, -0.41163918375968933, 0.7827479839324951, 0.07295594364404678]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.012770675122737885, 0.6008449792861938, 0.29370757937431335, -0.05354489013552666]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.08783119916915894, 0.4296257495880127, 0.07153885811567307, -0.6921477317810059],
 [0.15848888456821442, -0.4663836658000946, 0.7126847505569458, 0.0693722814321518],
 [-0.24852830171585083, -0.7588720321655273, -0.5033655166625977, 0.6524038314819336],
 [0.2933746874332428, 0.6656989455223083, -0.046741705387830734, 0.44998466968536377],
 [0.17215801775455475, -0.3072860836982727, 0.2046997845172882, -0.7001357078552246],
 [0.6354788541793823, -0.12706635892391205, -0.18666459619998932, -0.26693975925445557],
 [-0.3737913966178894, -0.07344938814640045, 0.22658668458461761, -0.37110695242881775],
 [0.01989569514989853, 0.39410898089408875, -0.30496707558631897, -0.4945743680000305]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.5888826251029968]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [1.0239059925079346],
 [0.25252565741539],
 [0.8877795338630676],
 [-0.13882321119308472]
]
 >
 },
 "dense_3" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.2557465434074402]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.6269392371177673],
 [1.1281259059906006],
 [-0.503214418888092],
 [-0.5435869693756104]
]
 >
 }
}
Using custom optimizers in training loops
As you might expect, it's also possible to customize the optimizer passed to Axon.Loop.trainer/3. If you read the Polaris.Updates documentation, you'll learn that optimizers are actually represented as the tuple {init_fn, update_fn} where init_fn initializes optimizer state from model state and update_fn scales gradients from optimizer state, gradients, and model state.
You likely won't have to implement a custom optimizer; however, you should know how to construct optimizers with different hyperparameters and how to apply different modifiers to different optimizers to customize the optimization process.
When you specify an optimizer as an atom in Axon.Loop.trainer/3, it maps directly to an optimizer declared in Polaris.Optimizers. You can instead opt to declare your optimizer directly. This is most useful for controlling things like the learning rate and various optimizer hyperparameters:
train_data =
 Stream.repeatedly(fn ->
 xs = Nx.random_normal({8, 1})
 ys = Nx.sin(xs)
 {xs, ys}
 end)

model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

optimizer = {_init_optimizer_fn, _update_fn} = Polaris.Optimizers.sgd(learning_rate: 1.0e-3)

model
|> Axon.Loop.trainer(:mean_squared_error, optimizer)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 1000, loss: 0.0992607
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.06136200204491615, -0.08278193324804306, -0.07280997931957245, 0.08740464597940445, 0.08663233369588852, -0.06915996968746185, 0.03753892332315445, 0.06512840837240219]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.622833251953125, 0.24778570234775543, 0.4959430694580078, -0.604946494102478, -0.31578049063682556, 0.09977878630161285, 0.776294469833374, 0.5804685950279236]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.012786266393959522, 0.01057625561952591, 0.10597240924835205, 0.13692162930965424]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.46233609318733215, -0.7435348033905029, -0.10738609731197357, 0.09911829978227615],
 [0.5295257568359375, 0.48769527673721313, -0.23950818181037903, -0.26084062457084656],
 [-0.5117107033729553, 0.2039143443107605, -0.12630638480186462, -0.41089773178100586],
 [-0.6043668985366821, 0.3961969316005707, 0.5120400190353394, -0.6773409247398376],
 [0.22123000025749207, 0.7197521924972534, 0.2679356038570404, -0.12402179092168808],
 [0.4830038249492645, 0.3629038631916046, 0.49994897842407227, -0.25865232944488525],
 [0.29824453592300415, 0.29333528876304626, -0.05371938645839691, 0.5230391621589661],
 [0.5483304262161255, 0.08283360302448273, -0.6959219574928284, 0.6471460461616516]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.07759959995746613]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.036170706152915955],
 [-0.5362256765365601],
 [-0.6853286027908325],
 [0.6693617701530457]
]
 >
 }
}

Writing custom metrics

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Writing custom metrics
When passing an atom to Axon.Loop.metric/5, Axon dispatches the function to a built-in function in Axon.Metrics. If you find you'd like to use a metric that does not exist in Axon.Metrics, you can define a custom function:
defmodule CustomMetric do
 import Nx.Defn

 defn my_weird_metric(y_true, y_pred) do
 Nx.atan2(y_true, y_pred) |> Nx.sum()
 end
end
{:module, CustomMetric, <<70, 79, 82, 49, 0, 0, 8, ...>>, true}
Then you can pass that directly to Axon.Loop.metric/5. You must provide a name for your custom metric:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.metric(&CustomMetric.my_weird_metric/2, "my weird metric")
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>},
 "my weird metric" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 &CustomMetric.my_weird_metric/2}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Then when running, Axon will invoke your custom metric function and accumulate it with the given aggregator:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0681635 my weird metric: -5.2842808
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.0866982489824295, 0.4234408140182495, 0.18205422163009644, 0.34029239416122437, -0.25770726799964905, -0.07117943465709686, 0.11470477283000946, -0.027526771649718285]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.7088809013366699, 0.4486531913280487, 0.4666421115398407, 0.4163222312927246, 0.5076444149017334, 0.10119977593421936, 0.6628422141075134, -0.024421442300081253]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.2924745976924896, 0.0065560233779251575, 0.0, -0.21106423437595367]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.3407173752784729, -0.6905813217163086, -0.5984221696853638, -0.23955762386322021],
 [0.42608022689819336, 0.5949274301528931, -0.24687853455543518, -0.4948572516441345],
 [0.27617380023002625, -0.44326621294021606, -0.5848686099052429, 0.31592807173728943],
 [0.5401414632797241, -0.1041281446814537, -0.4072037935256958, 0.4387882947921753],
 [-0.5410752892494202, 0.4544697403907776, -0.6238576173782349, -0.2077195793390274],
 [-0.41753143072128296, -0.11599045991897583, -0.22447934746742249, -0.5805748701095581],
 [0.1651047021150589, -0.526184618473053, 0.34729963541030884, 0.3307822048664093],
 [0.6879482865333557, 0.27184563875198364, -0.4907835125923157, -0.3555335998535156]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.8146252036094666]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [1.2187021970748901],
 [0.13001228868961334],
 [0.2703772783279419],
 [-0.3591017723083496]
]
 >
 }
}
While the metric defaults are designed with supervised training loops in mind, they can be used for much more flexible purposes. By default, metrics look for the fields :y_true and :y_pred in the given loop's step state. They then apply the given metric function on those inputs. You can also define metrics which work on other fields. For example you can track the running average of a given parameter with a metric just by defining a custom output transform:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

output_transform = fn %{model_state: model_state} ->
 [model_state["dense_0"]["kernel"]]
end

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.metric(&Nx.mean/1, "dense_0_kernel_mean", :running_average, output_transform)
 |> Axon.Loop.metric(&Nx.variance/1, "dense_0_kernel_var", :running_average, output_transform)
#Axon.Loop<
 metrics: %{
 "dense_0_kernel_mean" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 &Nx.mean/1},
 "dense_0_kernel_var" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 &Nx.variance/1},
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Axon will apply your custom output transform to the loop's step state and forward the result to your custom metric function:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, dense_0_kernel_mean: -0.1978206 dense_0_kernel_var: 0.2699870 loss: 0.0605523
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.371105819940567, 0.26451945304870605, -0.048297226428985596, 0.14616385102272034, -0.19356133043766022, -0.2924956679344177, 0.08295489847660065, 0.25213995575904846]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.3888320028781891, -0.39463144540786743, 0.5427617430686951, -0.776488721370697, -0.2402891218662262, -0.6489362716674805, 0.772796094417572, -0.3739306926727295]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.0, -0.006653765682131052, 0.0, 0.3086839020252228]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.5556576251983643, 0.5547546148300171, -0.2708005905151367, 0.7341570258140564],
 [-0.01800161600112915, 0.19749529659748077, -0.09523773193359375, 0.4989740252494812],
 [-0.19737857580184937, -0.2741832435131073, -0.3699955344200134, 0.21036939322948456],
 [-0.09787613153457642, -0.5631319284439087, 0.007957160472869873, 0.23681949079036713],
 [-0.469108909368515, 0.24062377214431763, -0.012939095497131348, -0.5055088400840759],
 [0.11229842901229858, -0.5476430058479309, 0.013744592666625977, -0.631401538848877],
 [-0.5834296941757202, -0.42305096983909607, 0.1393480896949768, -0.4647532105445862],
 [-0.3684111535549164, -0.5147689580917358, -0.3725535273551941, 0.46682292222976685]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.8305950164794922]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.7111979722976685],
 [-0.49341335892677307],
 [-0.32701319456100464],
 [-1.0638068914413452]
]
 >
 }
}
You can also define custom accumulation functions. Axon has definitions for computing running averages and running sums; however, you might find you need something like an exponential moving average:
defmodule CustomAccumulator do
 import Nx.Defn

 defn running_ema(acc, obs, _i, opts \\ []) do
 opts = keyword!(opts, alpha: 0.9)
 obs * opts[:alpha] + acc * (1 - opts[:alpha])
 end
end
{:module, CustomAccumulator, <<70, 79, 82, 49, 0, 0, 11, ...>>, true}
Your accumulator must be an arity-3 function which accepts the current accumulated value, the current observation, and the current iteration and returns the aggregated metric. You can pass a function direct as an accumulator in your metric:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

output_transform = fn %{model_state: model_state} ->
 [model_state["dense_0"]["kernel"]]
end

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.metric(
 &Nx.mean/1,
 "dense_0_kernel_ema_mean",
 &CustomAccumulator.running_ema/3,
 output_transform
)
#Axon.Loop<
 metrics: %{
 "dense_0_kernel_ema_mean" => {#Function<15.37390314/3 in Axon.Loop.build_metric_fn/3>,
 &Nx.mean/1},
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Then when you run the loop, Axon will use your custom accumulator:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, dense_0_kernel_ema_mean: -0.0139760 loss: 0.0682910
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [-0.3344854414463043, -0.14519920945167542, 0.1061621680855751, 0.36911827325820923, 0.014146199449896812, 0.46089673042297363, -0.1707312911748886, -0.054649338126182556]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [0.6524605751037598, -0.3795280158519745, -0.2069108486175537, 0.6815686821937561, -0.5734748840332031, 0.5515486001968384, -0.13509605824947357, -0.711794912815094]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.3078235387802124, -0.24773009121418, -0.027328377589583397, 0.0769796073436737]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.785156786441803, 0.07306647300720215, 0.339533269405365, -0.2188076674938202],
 [0.29139244556427, 0.15977036952972412, 0.6193944215774536, -0.4305708408355713],
 [-0.21063144505023956, -0.3738138973712921, -0.27965712547302246, 0.051842525601387024],
 [0.7297297716140747, -0.08164620399475098, 0.07651054859161377, -0.43577027320861816],
 [0.07917583733797073, -0.27750709652900696, 0.21028375625610352, -0.6430750489234924],
 [0.7177602648735046, -0.2743614912033081, -0.5894488096237183, 0.634209156036377],
 [0.4251592457294464, 0.6134526133537292, -0.35339266061782837, 0.4966743588447571],
 [-0.49672019481658936, 0.46769094467163086, -0.44432300329208374, -0.3249942660331726]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.8245151042938232]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.9500011205673218],
 [0.9115968942642212],
 [0.39282673597335815],
 [0.19936752319335938]
]
 >
 }
}

Writing custom event handlers

Mix.install([
 {:axon, ">= 0.5.0"}
])
:ok
Writing custom event handlers
If you require functionality not offered by any of Axon's built-in event handlers, then you'll need to write a custom event handler. Custom event handlers are functions which accept loop state, perform some action, and then defer execution back to the main loop. For example, you can write custom loop handlers which visualize model outputs, communicate with an external Kino process, or simply halt the loop based on some criteria.
All event handlers must accept an %Axon.Loop.State{} struct and return a tuple of {control_term, state} where control_term is one of :continue, :halt_epoch, or :halt_loop and state is the updated loop state:
defmodule CustomEventHandler0 do
 alias Axon.Loop.State

 def my_weird_handler(%State{} = state) do
 IO.puts("My weird handler: fired")
 {:continue, state}
 end
end
{:module, CustomEventHandler0, <<70, 79, 82, 49, 0, 0, 6, ...>>, {:my_weird_handler, 1}}
To register event handlers, you use Axon.Loop.handle/4:
model =
 Axon.input("data")
 |> Axon.dense(8)
 |> Axon.relu()
 |> Axon.dense(4)
 |> Axon.relu()
 |> Axon.dense(1)

loop =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :sgd)
 |> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler0.my_weird_handler/1)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
 #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {&CustomEventHandler0.my_weird_handler/1,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>},
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.37390314/1 in Axon.Loop.log/3>,
 #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
Axon will trigger your custom handler to run on the attached event:
train_data =
 Stream.repeatedly(fn ->
 {xs, _next_key} =
 :random.uniform(9999)
 |> Nx.Random.key()
 |> Nx.Random.normal(shape: {8, 1})

 ys = Nx.sin(xs)
 {xs, ys}
 end)

Axon.Loop.run(loop, train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.0990703
My weird handler: fired
Epoch: 1, Batch: 50, loss: 0.0567622
My weird handler: fired
Epoch: 2, Batch: 50, loss: 0.0492784
My weird handler: fired
Epoch: 3, Batch: 50, loss: 0.0462587
My weird handler: fired
Epoch: 4, Batch: 50, loss: 0.0452806
My weird handler: fired
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.10819189250469208, 0.008151392452418804, -0.0318693183362484, 0.010302421636879444, 0.15788722038269043, 0.05119801685214043, 0.14268818497657776, -0.11528034508228302]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.4275593161582947, 0.40442031621932983, 0.7287659645080566, -0.7832129597663879, 0.3329123258590698, -0.5598123073577881, 0.8389336466789246, 0.3197469413280487]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.0671013742685318, 0.13561469316482544, 0.06218714639544487, 0.2104845941066742]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.4444102942943573, 0.4518184959888458, 0.45315614342689514, 0.35392478108406067],
 [0.008407601155340672, -0.6081852912902832, -0.05863206833600998, 0.14386630058288574],
 [-0.010219200514256954, -0.5528244376182556, 0.3754919469356537, -0.6242967247962952],
 [0.3531058132648468, -0.18348301947116852, -0.0019897441379725933, 0.41002658009529114],
 [0.676723062992096, -0.09349705278873444, 0.1101854145526886, 0.06494166702032089],
 [0.1534113883972168, 0.6402403116226196, 0.23490086197853088, -0.2196572870016098],
 [0.5835862755775452, -0.6581316590309143, -0.3047991394996643, -0.07485166192054749],
 [-0.6115342378616333, 0.3316897749900818, -0.3606548309326172, 0.3397740423679352]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.10111129283905029]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.7433153390884399],
 [-0.8213723301887512],
 [-0.44361063838005066],
 [-1.049617052078247]
]
 >
 }
}
You can use event handlers to early-stop a loop or loop epoch by returning a :halt_* control term. Halt control terms can be one of :halt_epoch or :halt_loop. :halt_epoch halts the current epoch and continues to the next. :halt_loop halts the loop altogether.
defmodule CustomEventHandler1 do
 alias Axon.Loop.State

 def always_halts(%State{} = state) do
 IO.puts("stopping loop")
 {:halt_loop, state}
 end
end
{:module, CustomEventHandler1, <<70, 79, 82, 49, 0, 0, 6, ...>>, {:always_halts, 1}}
The loop will immediately stop executing and return the current state at the time it was halted:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler1.always_halts/1)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.2201974
stopping loop
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.07676638662815094, -0.18689222633838654, 0.10066182911396027, -0.021994125097990036, 0.12006694823503494, -0.014219668693840504, 0.13600556552410126, -0.017512166872620583]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.5354958772659302, -0.216745987534523, -0.5694359540939331, 0.023495405912399292, 0.17701618373394012, 0.011712944135069847, 0.5289720892906189, 0.07360327988862991]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [0.0012482400052249432, 0.09300543367862701, 0.08570009469985962, -0.018982920795679092]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [0.3016211688518524, 0.31998082995414734, -0.3300730884075165, 0.24982869625091553],
 [0.03864569962024689, -0.44071364402770996, 0.6553062200546265, -0.5294798612594604],
 [0.25020459294319153, 0.7249991297721863, 0.15611837804317474, -0.5045580863952637],
 [-0.5500670075416565, 0.15677094459533691, -0.6531851291656494, -0.09289993345737457],
 [0.1618722379207611, 0.4479053020477295, 0.705923318862915, -0.3853490352630615],
 [-0.6752215623855591, 0.577272891998291, -0.1268012821674347, 0.6133111715316772],
 [0.5361366271972656, -0.2996085286140442, 0.28480708599090576, 0.47739118337631226],
 [-0.6443014144897461, -0.2866927981376648, 0.023463081568479538, -0.1491370052099228]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [0.0047520860098302364]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [0.3796459138393402],
 [-0.9757304191589355],
 [0.9530885815620422],
 [-0.05134368687868118]
]
 >
 }
}
Note that halting an epoch will fire a different event than completing an epoch. So if you implement a custom handler to halt the loop when an epoch completes, it will never fire if the epoch always halts prematurely:
defmodule CustomEventHandler2 do
 alias Axon.Loop.State

 def always_halts_epoch(%State{} = state) do
 IO.puts("\nstopping epoch")
 {:halt_epoch, state}
 end

 def always_halts_loop(%State{} = state) do
 IO.puts("stopping loop\n")
 {:halt_loop, state}
 end
end
{:module, CustomEventHandler2, <<70, 79, 82, 49, 0, 0, 8, ...>>, {:always_halts_loop, 1}}
If you run these handlers in conjunction, the loop will not terminate prematurely:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.handle_event(:iteration_completed, &CustomEventHandler2.always_halts_epoch/1)
|> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler2.always_halts_loop/1)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 0, loss: 0.0000000
stopping epoch

stopping epoch

stopping epoch

stopping epoch

stopping epoch
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[8]
 [0.009215549565851688, -0.005282022058963776, -0.0023747326340526342, 0.002623362001031637, 0.003890525083988905, 6.010813522152603e-4, -0.0024882694706320763, 0.0029246946796774864]
 >,
 "kernel" => #Nx.Tensor<
 f32[1][8]
 [
 [-0.3484582304954529, -0.39938971400260925, 0.03963512182235718, -0.3549930155277252, 0.09539157152175903, 0.5987873077392578, -0.23635399341583252, 0.01850329153239727]
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[4]
 [-0.00194685033056885, 0.007812315598130226, 0.01710106059908867, 0.0080711729824543]
 >,
 "kernel" => #Nx.Tensor<
 f32[8][4]
 [
 [-0.6497661471366882, -0.3379145562648773, 0.3343344032764435, 0.4334254860877991],
 [-0.37884217500686646, -0.41724908351898193, -0.19513007998466492, -0.22494879364967346],
 [-0.42438197135925293, -0.40400123596191406, 0.5355109572410583, 0.4295356869697571],
 [0.15086597204208374, 0.30529624223709106, 0.002222923096269369, 0.32834741473197937],
 [-0.09336567670106888, 0.471781849861145, -0.06567475199699402, -0.4361487627029419],
 [0.23664812743663788, 0.13572633266448975, -0.13837064802646637, -0.09471122920513153],
 [0.6461064219474792, -0.2435072958469391, -0.04861235246062279, -0.1969985067844391],
 [0.17856749892234802, 0.41614532470703125, -0.06008348613977432, -0.3271574079990387]
]
 >
 },
 "dense_2" => %{
 "bias" => #Nx.Tensor<
 f32[1]
 [-0.005317525006830692]
 >,
 "kernel" => #Nx.Tensor<
 f32[4][1]
 [
 [-0.07891849428415298],
 [0.32653072476387024],
 [-0.5885495543479919],
 [-0.2781771719455719]
]
 >
 }
}
You may access and update any portion of the loop state. Keep in mind that event handlers are not JIT-compiled, so you should be certain to manually JIT-compile any long-running or expensive operations.

Converting ONNX models to Axon

Mix.install(
 [
 {:axon, ">= 0.5.0"},
 {:exla, ">= 0.5.0"},
 {:axon_onnx, ">= 0.4.0"},
 {:stb_image, ">= 0.6.0"},
 {:kino, ">= 0.9.0"},
 {:req, ">= 0.3.8"}
]
 # for Nvidia GPU change to "cuda111" for CUDA 11.1+ or "cuda118" for CUDA 11.8
 # CUDA 12.x not supported by XLA
 # or you can put this value in ENV variables in Livebook settings
 # XLA_TARGET=cuda111
 # system_env: %{"XLA_TARGET" => xla_target}
)
Converting an ONNX model into Axon
Axon is a new machine learning capability, specific to Elixir. We would like to take
advantage of a large amount of models that have been written in other languages and
machine learning frameworks. Let's take a look at how we could use a model developed
in another language.
Converting models developed by data scientists into a production capable implementation is a
challenge for all languages and frameworks. ONNX is an interchange
format that allows models written in one language or framework to be converted into
another language and framework.
The source model must use constructs mapped into ONNX. Also, the destination framework must
support the model's ONNX constructs. From an Elixir focus, we are interested in ONNX models
that axon_onnx can convert into Axon models.
Why is ONNX important to Axon?
Elixir can get access to thousands of public models and your organization may have private models
written in other languages and frameworks. Axon will be hard pressed to quickly repeat the
countless person-hours spent on developing models in other languages like Tensorflow and PyTorch.
However, if the model can be converted into ONNX and then into Axon, we can directly run the model
in Elixir.
Setting up our environment
Axon runs on top of Nx (Numerical Elixir). Nx has backends for
both Google's XLA (via EXLA) and PyTorch (via Torchx). In this guide, we will use EXLA.
We'll also convert from an ONNX model into an Axon model using
axon_onnx.
You can find all dependencies in the installation cell at the top of the notebook.
In there, you will also find the XLA_TARGET environment variable which you can set
to "cuda111" or "rocm" if you have any of those GPUs available. Let's also configure
Nx to store tensors in EXLA by default:
Nx.default_backend(EXLA.Backend)
We'll also need local access to ONNX files. For this notebook, the models/onnx folder
contains the ONNX model file. This notebook assumes the output file location will be
in models axon. Copy your ONNX model files into the models/onnx folder.
This opinionated module presents a simple API for loading in an ONNX file and saving
the converted Axon model in the provided directory. This API will allow us to
save multiple models pretty quickly.
defmodule OnnxToAxon do
 @moduledoc """
 Helper module from ONNX to Axon.
 """

 @doc """
 Loads an ONNX model into Axon and saves the model

 ## Examples

 OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)

 """
 def onnx_axon(path_to_onnx_file, path_to_axon_dir) do
 axon_name = axon_name_from_onnx_path(path_to_onnx_file)
 path_to_axon = Path.join(path_to_axon_dir, axon_name)

 {model, parameters} = AxonOnnx.import(path_to_onnx_file)
 model_bytes = Axon.serialize(model, parameters)
 File.write!(path_to_axon, model_bytes)
 end

 defp axon_name_from_onnx_path(onnx_path) do
 model_root = onnx_path |> Path.basename() |> Path.rootname()
 "#{model_root}.axon"
 end
end
ONNX model
For this example, we'll use a couple ONNX models that have been saved in the Huggingface Hub.
The ONNX models were trained in Fast.ai (PyTorch) using the following notebooks:
	https://github.com/meanderingstream/fastai_course22/blob/main/saving-a-basic-fastai-model-in-onnx.ipynb
	https://github.com/meanderingstream/fastai_course22/blob/main/saving-cat-dog-breed-fastai-model-in-onnx.ipynb

To repeat this notebook, the onnx files for this notebook can be found on huggingface hub. Download the onnx models from:
	https://huggingface.co/ScottMueller/Cats_v_Dogs.ONNX
	https://huggingface.co/ScottMueller/Cat_Dog_Breeds.ONNX

Download the files and place them in a directory of your choice. By default, we will assume you downloaded them to the same directory as the notebook:
File.cd!(__DIR__)
Now let's convert an ONNX model into Axon
path_to_onnx_file = "cats_v_dogs.onnx"
path_to_axon_dir = "."
OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)
path_to_onnx_file = "cat_dog_breeds.onnx"
path_to_axon_dir = "."
OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)
Inference on ONNX derived models
To run inference on the model, you'll need 10 images focused on cats or dogs. You can download the images used in training the model at:
"https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet.tgz"
Or you can find or use your own images. In this notebook, we are going to use the local copies of the Oxford Pets dataset that was used in training the model.
Let's load the Axon model.
cats_v_dogs = File.read!("cats_v_dogs.axon")
{cats_v_dogs_model, cats_v_dogs_params} = Axon.deserialize(cats_v_dogs)
We need a tensor representation of an image. Let's start by looking at samples of
our data.
File.read!("oxford-iiit-pet/images/havanese_71.jpg")
|> Kino.Image.new(:jpeg)
To manipulate the images, we will use the StbImage library:
{:ok, img} = StbImage.read_file("oxford-iiit-pet/images/havanese_71.jpg")
%StbImage{data: binary, shape: shape, type: type} = StbImage.resize(img, 224, 224)
Now let's work on a batch of images and convert them to tensors. Here are the images we will work with:
file_names = [
 "havanese_71.jpg",
 "yorkshire_terrier_9.jpg",
 "Sphynx_206.jpg",
 "Siamese_95.jpg",
 "Egyptian_Mau_63.jpg",
 "keeshond_175.jpg",
 "samoyed_88.jpg",
 "British_Shorthair_122.jpg",
 "Russian_Blue_20.jpg",
 "boxer_99.jpg"
]
Next we resize the images:
resized_images =
 Enum.map(file_names, fn file_name ->
 ("oxford-iiit-pet/images/" <> file_name)
 |> IO.inspect(label: file_name)
 |> StbImage.read_file!()
 |> StbImage.resize(224, 224)
 end)
And finally convert them into tensors by using StbImage.to_nx/1. The created tensor will have three axes, named :height, :width, and :channel respectively. Our goal is to stack the tensors, then normalize and transpose their axes to the order expected by the neural network:
img_tensors =
 resized_images
 |> Enum.map(&StbImage.to_nx/1)
 |> Nx.stack(name: :index)
 |> Nx.divide(255.0)
 |> Nx.transpose(axes: [:index, :channels, :height, :width])
With our input data, it is finally time to work on predictions. First let's define a helper module:
defmodule Predictions do
 @doc """
 When provided a Tensor of single label predictions, returns the best vocabulary match for
 each row in the prediction tensor.

 ## Examples

 # iex> Predictions.sindle_label_prediction(path_to_onnx_file, path_to_axon_dir)
 # ["dog", "cat", "dog"]

 """
 def single_label_classification(predictions_batch, vocabulary) do
 IO.inspect(Nx.shape(predictions_batch), label: "predictions batch shape")

 for prediction_tensor <- Nx.to_batched(predictions_batch, 1) do
 {_prediction_value, prediction_label} =
 prediction_tensor
 |> Nx.to_flat_list()
 |> Enum.zip(vocabulary)
 |> Enum.max()

 prediction_label
 end
 end
end
Now we deserialize the model
{cats_v_dogs_model, cats_v_dogs_params} = Axon.deserialize(cats_v_dogs)
run a prediction using the EXLA compiler for performance
tensor_of_predictions =
 Axon.predict(cats_v_dogs_model, cats_v_dogs_params, img_tensors, compiler: EXLA)
and finally retrieve the predicted label
dog_cat_vocabulary = [
 "dog",
 "cat"
]

Predictions.single_label_classification(tensor_of_predictions, dog_cat_vocabulary)
Let's repeat the above process for the dog and cat breed model.
cat_dog_vocabulary = [
 "abyssinian",
 "american_bulldog",
 "american_pit_bull_terrier",
 "basset_hound",
 "beagle",
 "bengal",
 "birman",
 "bombay",
 "boxer",
 "british_shorthair",
 "chihuahua",
 "egyptian_mau",
 "english_cocker_spaniel",
 "english_setter",
 "german_shorthaired",
 "great_pyrenees",
 "havanese",
 "japanese_chin",
 "keeshond",
 "leonberger",
 "maine_coon",
 "miniature_pinscher",
 "newfoundland",
 "persian",
 "pomeranian",
 "pug",
 "ragdoll",
 "russian_blue",
 "saint_bernard",
 "samoyed",
 "scottish_terrier",
 "shiba_inu",
 "siamese",
 "sphynx",
 "staffordshire_bull_terrier",
 "wheaten_terrier",
 "yorkshire_terrier"
]
cat_dog_breeds = File.read!("cat_dog_breeds.axon")
{cat_dog_breeds_model, cat_dog_breeds_params} = Axon.deserialize(cat_dog_breeds)
Axon.predict(cat_dog_breeds_model, cat_dog_breeds_params, img_tensors)
|> Predictions.single_label_classification(cat_dog_vocabulary)
For cat and dog breeds, the model performed pretty well, but it was not perfect.

Modeling XOR with a neural network

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", override: true},
 {:exla, "~> 0.4.0"},
 {:kino_vega_lite, "~> 0.1.6"}
])

Nx.Defn.default_options(compiler: EXLA)

alias VegaLite, as: Vl
Introduction
In this notebook we try to create a model and learn it the logical XOR.
Even though XOR seems like a trivial operation, it cannot be modeled using a single dense layer (single-layer perceptron). The underlying reason is that the classes in XOR are not linearly separable. We cannot draw a straight line to separate the points $(0,0)$, $(1,1)$ from the points $(0,1)$, $(1,0)$. To model this properly, we need to turn to deep learning methods. Deep learning is capable of learning non-linear relationships like XOR.
The model
Let's start with the model. We need two inputs, since XOR has two operands. We then concatenate them into a single input vector with Axon.concatenate/3. Then we have one hidden layer and one output layer, both of them dense.
Note: the model is a sequential neural network. In Axon, we can conveniently create such a model by using the pipe operator (|>) to add layers one by one.
x1_input = Axon.input("x1", shape: {nil, 1})
x2_input = Axon.input("x2", shape: {nil, 1})

model =
 x1_input
 |> Axon.concatenate(x2_input)
 |> Axon.dense(8, activation: :tanh)
 |> Axon.dense(1, activation: :sigmoid)
Training data
The next step is to prepare training data. Since we are modeling a well-defined operation, we can just generate random operands and compute the expected XOR result for them.
The training works with batches of examples, so we repeatedly generate a whole batch of inputs and the expected result.
batch_size = 32

data =
 Stream.repeatedly(fn ->
 x1 = Nx.random_uniform({batch_size, 1}, 0, 2)
 x2 = Nx.random_uniform({batch_size, 1}, 0, 2)
 y = Nx.logical_xor(x1, x2)

 {%{"x1" => x1, "x2" => x2}, y}
 end)
Here's how a sample batch looks:
Enum.at(data, 0)
Training
It's time to train our model. In this case we use binary cross entropy for the loss and stochastic gradient descent as the optimizer. We use binary cross entropy because we can consider the task of computing XOR the same as a binary classification problem. We want our output to have a binary label 0 or 1, and binary cross entropy is typically used in these cases. Having defined our training loop, we run it with Axon.Loop.run/4.
epochs = 10

params =
 model
 |> Axon.Loop.trainer(:binary_cross_entropy, :sgd)
 |> Axon.Loop.run(data, %{}, epochs: epochs, iterations: 1000)
Trying the model
Finally, we can test our model on sample data.
Axon.predict(model, params, %{
 "x1" => Nx.tensor([[0]]),
 "x2" => Nx.tensor([[1]])
})
Try other combinations of x_1 and x_2 and see what the output is. To improve the model performance, you can increase the number of training epochs.
Visualizing the model predictions
The original XOR we modeled only works with binary values 0 and 1, however our model operates in continuous space. This means that we can give it $x1 = 0.5$, $x_2 = 0.5$ as input and we expect _some output. We can use this to visualize the non-linear relationship between inputs x_1, x_2 and outputs that our model has learned.
The number of points per axis, determines the resolution
n = 50

We generate coordinates of in the (n x n) grid
x1 = Nx.iota({n, n}, axis: 0) |> Nx.divide(n) |> Nx.reshape({:auto, 1})
x2 = Nx.iota({n, n}, axis: 1) |> Nx.divide(n) |> Nx.reshape({:auto, 1})

The output is also a real number, but we round it into one of the two classes
y = Axon.predict(model, params, %{"x1" => x1, "x2" => x2}) |> Nx.round()

Vl.new(width: 300, height: 300)
|> Vl.data_from_values(
 x1: Nx.to_flat_list(x1),
 x2: Nx.to_flat_list(x2),
 y: Nx.to_flat_list(y)
)
|> Vl.mark(:circle)
|> Vl.encode_field(:x, "x1", type: :quantitative)
|> Vl.encode_field(:y, "x2", type: :quantitative)
|> Vl.encode_field(:color, "y", type: :nominal)
From the plot we can clearly see that during training our model learnt two clean boundaries to separate $(0,0)$, $(1,1)$ from $(0,1)$, $(1,0)$.

Classifying handwritten digits

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", override: true},
 {:exla, "~> 0.4.0"},
 {:req, "~> 0.3.1"}
])
Introduction
This livebook will walk you through training a basic neural network using Axon, accelerated by the EXLA compiler. We'll be working on the MNIST dataset which is a dataset of handwritten digits with corresponding labels. The goal is to train a model that correctly classifies these handwritten digits with a single label [0-9].
Retrieving and exploring the dataset
The MNIST dataset is available for free online. Using Req we'll download both training images and training labels. Both train_images and train_labels are compressed binary data. Fortunately, Req takes care of the decompression for us.
You can read more about the format of the ubyte files here. Each file starts with a magic number and some metadata. We can use binary pattern matching to extract the information we want. In this case we extract the raw binary images and labels.
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
%{body: train_images} = Req.get!(base_url <> "train-images-idx3-ubyte.gz")
%{body: train_labels} = Req.get!(base_url <> "train-labels-idx1-ubyte.gz")

<<_::32, n_images::32, n_rows::32, n_cols::32, images::binary>> = train_images
<<_::32, n_labels::32, labels::binary>> = train_labels
We can easily read that binary data into a tensor using Nx.from_binary/2. Nx.from_binary/2 expects a raw binary and a data type. In this case, both images and labels are stored as unsigned 8-bit integers. We can start by parsing our images:
images =
 images
 |> Nx.from_binary({:u, 8})
 |> Nx.reshape({n_images, 1, n_rows, n_cols}, names: [:images, :channels, :height, :width])
 |> Nx.divide(255)
Nx.from_binary/2 returns a flat tensor. Using Nx.reshape/3 we can manipulate this flat tensor into meaningful dimensions. Notice we also normalized the tensor by dividing the input data by 255. This squeezes the data between 0 and 1 which often leads to better behavior when training models. Now, let's see what these images look like:
images[[images: 0..4]] |> Nx.to_heatmap()
In the reshape operation above, we give each dimension of the tensor a name. This makes it much easier to do things like slicing, and helps make your code easier to understand. Here we slice the images dimension of the images tensor to obtain the first 5 training images. Then, we convert them to a heatmap for easy visualization.
It's common to train neural networks in batches (actually correctly called minibatches, but you'll see batch and minibatch used interchangeably). We can "batch" our images into batches of 32 like this:
images = Nx.to_batched(images, 32)
Now, we'll need to get our labels into batches as well, but first we need to one-hot encode the labels. One-hot encoding converts input data from labels such as 3, 5, 7, etc. into vectors of 0's and a single 1 at the correct labels index. As an example, a label of: 3 gets converted to: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0].
targets =
 labels
 |> Nx.from_binary({:u, 8})
 |> Nx.new_axis(-1)
 |> Nx.equal(Nx.tensor(Enum.to_list(0..9)))
 |> Nx.to_batched(32)
Defining the model
Let's start by defining a simple model:
model =
 Axon.input("input", shape: {nil, 1, 28, 28})
 |> Axon.flatten()
 |> Axon.dense(128, activation: :relu)
 |> Axon.dense(10, activation: :softmax)
All Axon models start with an input layer to tell subsequent layers what shapes to expect. We then use Axon.flatten/2 which flattens the previous layer by squeezing all dimensions but the first dimension into a single dimension. Our model consists of 2 fully connected layers with 128 and 10 units respectively. The first layer uses :relu activation which returns max(0, input) element-wise. The final layer uses :softmax activation to return a probability distribution over the 10 labels [0 - 9].
Training
In Axon we express the task of training using a declarative loop API. First, we need to specify a loss function and optimizer, there are many built-in variants to choose from. In this example, we'll use categorical cross-entropy and the Adam optimizer. We will also keep track of the accuracy metric. Finally, we run training loop passing our batched images and labels. We'll train for 10 epochs using the EXLA compiler.
params =
 model
 |> Axon.Loop.trainer(:categorical_cross_entropy, :adam)
 |> Axon.Loop.metric(:accuracy, "Accuracy")
 |> Axon.Loop.run(Stream.zip(images, targets), %{}, epochs: 10, compiler: EXLA)
Prediction
Now that we have the parameters from the training step, we can use them for predictions.
For this the Axon.predict can be used.
first_batch = Enum.at(images, 0)

output = Axon.predict(model, params, first_batch)
For each image, the model outputs probability distribution. This informs us how certain the model is about its prediction. Let's see the most probable digit for each image:
Nx.argmax(output, axis: 1)
If you look at the original images and you will see the predictions match the data!

Classifying horses and humans

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", sparse: "nx", override: true},
 {:exla, "~> 0.4.0", sparse: "exla", override: true},
 {:stb_image, "~> 0.5.2"},
 {:req, "~> 0.3.1"},
 {:kino, "~> 0.7.0"}
])

Nx.global_default_backend(EXLA.Backend)
Nx.Defn.global_default_options(compiler: EXLA)
Introduction
In this notebook, we want to predict whether an image presents a horse or a human. To do this efficiently, we will build a Convolutional Neural Network (CNN) and compare the learning process with and without gradient centralization.
Loading the data
We will be using the Horses or Humans Dataset. The dataset is available as a ZIP with image files, we will download it using req. Conveniently, req will unzip the files for us, we just need to convert the filenames from strings.
%{body: files} =
 Req.get!("https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip")

files = for {name, binary} <- files, do: {List.to_string(name), binary}
Note on batching
We need to know how many images to include in a batch. A batch is a group of images to load into the GPU at a time. If the batch size is too big for your GPU, it will run out of memory, in such case you can reduce the batch size. It is generally optimal to utilize almost all of the GPU memory during training. It will take more time to train with a lower batch size.
batch_size = 32
batches_per_epoch = div(length(files), batch_size)
A look at the data
We'll have a really quick look at our data. Let's see what we are dealing with:
{name, binary} = Enum.random(files)
Kino.Markdown.new(name) |> Kino.render()
Kino.Image.new(binary, :png)
Reevaluate the cell a couple times to view different images. Note that the file names are either horse[N]-[M].png or human[N]-[M].png, so we can derive the expected class from that.
While we are at it, look at this beautiful animation:
names_to_animate = ["horse01", "horse05", "human01", "human05"]

images_to_animate =
 for {name, binary} <- files, Enum.any?(names_to_animate, &String.contains?(name, &1)) do
 Kino.Image.new(binary, :png)
 end

Kino.animate(50, images_to_animate, fn
 _i, [image | images] -> {:cont, image, images}
 _i, [] -> :halt
end)
How many images are there?
length(files)
How many images will not be used for training? The remainder of the integer division will be ignored.
files
|> length()
|> rem(batch_size)
Data processing
First, we need to preprocess the data for our CNN. At the beginning of the process, we chunk images into batches. Then, we use the parse_file/1 function to load images and label them accurately. Finally, we "augment" the input, which means that we normalize data and flip the images along one of the axes. The last procedure helps a neural network to make predictions regardless of the orientation of the image.
defmodule HorsesHumans.DataProcessing do
 import Nx.Defn

 def data_stream(files, batch_size) do
 files
 |> Enum.shuffle()
 |> Stream.chunk_every(batch_size, batch_size, :discard)
 |> Task.async_stream(
 fn batch ->
 {images, labels} = batch |> Enum.map(&parse_file/1) |> Enum.unzip()
 {Nx.stack(images), Nx.stack(labels)}
 end,
 timeout: :infinity
)
 |> Stream.map(fn {:ok, {images, labels}} -> {augment(images), labels} end)
 |> Stream.cycle()
 end

 defp parse_file({filename, binary}) do
 label =
 if String.starts_with?(filename, "horses/"),
 do: Nx.tensor([1, 0], type: {:u, 8}),
 else: Nx.tensor([0, 1], type: {:u, 8})

 image = binary |> StbImage.read_binary!() |> StbImage.to_nx()

 {image, label}
 end

 defnp augment(images) do
 # Normalize
 images = images / 255.0

 # Optional vertical/horizontal flip
 u = Nx.random_uniform({})

 cond do
 u < 0.25 -> images
 u < 0.5 -> Nx.reverse(images, axes: [2])
 u < 0.75 -> Nx.reverse(images, axes: [3])
 true -> Nx.reverse(images, axes: [2, 3])
 end
 end
end
Building the model
The next step is creating our model. In this notebook, we choose the classic Convolutional Neural Network architecture. Let's dive in to the core components of a CNN.
Axon.conv/3 adds a convolutional layer, which is at the core of a CNN. A convolutional layer applies a filter function throughout the image, sliding a window with shape :kernel_size. As opposed to dense layers, a convolutional layer exploits weight sharing to better model data where locality matters. This feature is a natural fit for images.
	[image:]
	Figure 1: A step-by-step visualization of a convolution layer for kernel_size: {3, 3}

Axon.max_pool/2 adds a downscaling operation that takes the maximum value from a subtensor according to :kernel_size.
	[image:]
	Figure 2: Max pooling operation for kernel_size: {2, 2}

Axon.dropout/2 and Axon.spatial_dropout/2 add dropout layers which prevent a neural network from overfitting. Standard dropout drops a given rate of randomly chosen neurons during the training process. On the other hand, spatial dropout gets rid of whole feature maps. The graphical difference between dropout and spatial dropout is presented in a picture below.
	[image:]
	Figure 3: The difference between standard dropout and spatial dropout

Knowing the relevant building blocks, let's build our network! It will have a convolutional part, composed of convolutional and pooling layers, this part should capture the spatial features of an image. Then at the end, we will add a dense layer with 512 neurons fed with all the spatial features, and a final two-neuron layer for as our classification output.
model =
 Axon.input("input", shape: {nil, 300, 300, 4})
 |> Axon.conv(16, kernel_size: {3, 3}, activation: :relu)
 |> Axon.max_pool(kernel_size: {2, 2})
 |> Axon.conv(32, kernel_size: {3, 3}, activation: :relu)
 |> Axon.spatial_dropout(rate: 0.5)
 |> Axon.max_pool(kernel_size: {2, 2})
 |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
 |> Axon.spatial_dropout(rate: 0.5)
 |> Axon.max_pool(kernel_size: {2, 2})
 |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
 |> Axon.max_pool(kernel_size: {2, 2})
 |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
 |> Axon.max_pool(kernel_size: {2, 2})
 |> Axon.flatten()
 |> Axon.dropout(rate: 0.5)
 |> Axon.dense(512, activation: :relu)
 |> Axon.dense(2, activation: :softmax)
Training the model
It's time to train our model. We specify the loss, optimizer and choose accuracy as our metric. We also set log: 1 to frequently update the training progress. We manually specify the number of iterations, such that each epoch goes through all of the baches once.
data = HorsesHumans.DataProcessing.data_stream(files, batch_size)

optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-4)

params =
 model
 |> Axon.Loop.trainer(:categorical_cross_entropy, optimizer, :identity, log: 1)
 |> Axon.Loop.metric(:accuracy)
 |> Axon.Loop.run(data, %{}, epochs: 10, iterations: batches_per_epoch)
Extra: gradient centralization
We can improve the training by applying gradient centralization. It is a technique with a similar purpose to batch normalization. For each loss gradient, we subtract a mean value to have a gradient with mean equal to zero. This process prevents gradients from exploding.
centralized_optimizer = Polaris.Updates.compose(Polaris.Updates.centralize(), optimizer)

model
|> Axon.Loop.trainer(:categorical_cross_entropy, centralized_optimizer, :identity, log: 1)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, %{}, epochs: 10, iterations: batches_per_epoch)
Inference
We can now use our trained model, let's try a couple examples.
{name, binary} = Enum.random(files)
Kino.Markdown.new(name) |> Kino.render()
Kino.Image.new(binary, :png) |> Kino.render()

input =
 binary
 |> StbImage.read_binary!()
 |> StbImage.to_nx()
 |> Nx.new_axis(0)
 |> Nx.divide(255.0)

Axon.predict(model, params, input)
Note: the model output refers to the probability that the image presents a horse and a human respectively.
The website from where we loaded the dataset also includes a validation set, in case you want to experiment further!

Generating text with LSTM

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", override: true},
 {:exla, "~> 0.4.0"},
 {:req, "~> 0.3.1"}
])

Nx.Defn.default_options(compiler: EXLA)
Nx.global_default_backend(EXLA.Backend)
Introduction
Recurrent Neural Networks (RNNs) can be used as generative models. This means that in addition to being used for predictive models (making predictions) they can learn the sequences of a problem and then generate entirely new plausible sequences for the problem domain.
Generative models like this are useful not only to study how well a model has learned a problem, but to learn more about the problem domain itself.
In this example, we will discover how to create a generative model for text, character-by-character using Long Short-Term Memory (LSTM) recurrent neural networks in Elixir with Axon.
Preparation
Using Project Gutenburg we can download a text books that are no longer protected under copywrite, so we can experiment with them.
The one that we will use for this experiment is Alice's Adventures in Wonderland by Lewis Carroll. You can choose any other text or book that you like for this experiment.
Change the URL if you'd like to experiment with other books
download_url = "https://www.gutenberg.org/files/11/11-0.txt"

book_text = Req.get!(download_url).body
First of all, we need to normalize the content of the book. We are only interested in the sequence of English characters, periods and new lines. Also currently we don't care about the capitalization and things like apostrophe so we can remove all other unknown characters and downcase everything. We can use a regular expression for that.
We can also convert the string into a list of characters so we can handle them easier. You will understand exactly why a bit further.
normalized_book_text =
 book_text
 |> String.downcase()
 |> String.replace(~r/[^a-z \.\n]/, "")
 |> String.to_charlist()
We converted the text to a list of characters, where each character is a number (specifically, a Unicode code point). Lowercase English characters are represented with numbers between 97 = a and 122 = z, a space is 32 = [], a new line is 10 = \n and the period is 46 = ..
So we should have 26 + 3 (= 29) characters in total. Let's see if that's true.
normalized_book_text |> Enum.uniq() |> Enum.count()
Since we want to use this 29 characters as possible values for each input in our neural network, we can re-map them to values between 0 and 28. So each specific neuron will indicate a specific character.
Extract all then unique characters we have and sort them for clarity
characters = normalized_book_text |> Enum.uniq() |> Enum.sort()
characters_count = Enum.count(characters)

Create a mapping for every character
char_to_idx = characters |> Enum.with_index() |> Map.new()
And a reverse mapping to convert back to characters
idx_to_char = characters |> Enum.with_index(&{&2, &1}) |> Map.new()

IO.puts("Total book characters: #{Enum.count(normalized_book_text)}")
IO.puts("Total unique characters: #{characters_count}")
Now we need to create our training and testing data sets. But how?
Our goal is to teach the machine what comes after a sequence of characters (usually). For example given the following sequence "Hello, My name i" the computer should be able to guess that the next character is probably "s".
graph LR;
 A[Input: Hello my name i]-->NN[Neural Network]-->B[Output: s];
Let's choose an arbitrary sequence length and create a data set from the book text. All we need to do is read X amount of characters from the book as the input and then read 1 more as the designated output.
After doing all that, we also want to convert every character to it's index using the char_to_idx mapping that we have created before.
Neural networks work best if you scale your inputs and outputs. In this case we are going to scale everything between 0 and 1 by dividing them by the number of unique characters that we have.
And for the final step we will reshape it so we can use the data in our LSTM model.
sequence_length = 100

train_data =
 normalized_book_text
 |> Enum.map(&Map.fetch!(char_to_idx, &1))
 |> Enum.chunk_every(sequence_length, 1, :discard)
 # We don't want the last chunk since we don't have a prediction for it.
 |> Enum.drop(-1)
 |> Nx.tensor()
 |> Nx.divide(characters_count)
 |> Nx.reshape({:auto, sequence_length, 1})
For our train results, We will do the same. Drop the first sequence_length characters and then convert them to the mapping. Additionally, we will do one-hot encoding.
The reason we want to use one-hot encoding is that in our model we don't want to only return a character as the output. We want it to return the probability of each character for the output. This way we can decide if certain probability is good or not or even we can decide between multiple possible outputs or even discard everything if the network is not confident enough.
In Nx, you can achieve this encoding by using this snippet
Nx.tensor([
 [0],
 [1],
 [2]
])
|> Nx.equal(Nx.iota({1, 3}))
To sum it up, Here is how we generate the train results.
train_results =
 normalized_book_text
 |> Enum.drop(sequence_length)
 |> Enum.map(&Map.fetch!(char_to_idx, &1))
 |> Nx.tensor()
 |> Nx.reshape({:auto, 1})
 |> Nx.equal(Nx.iota({1, characters_count}))
Defining the Model
As the input, we expect the sequence_length characters

model =
 Axon.input("input_chars", shape: {nil, sequence_length, 1})
 # The LSTM layer of our network
 |> Axon.lstm(256)
 # Selecting only the output from the LSTM Layer
 |> then(fn {out, _} -> out end)
 # Since we only want the last sequence in LSTM we will slice it and
 # select the last one
 |> Axon.nx(fn t -> t[[0..-1//1, -1]] end)
 # 20% dropout so we will not become too dependent on specific neurons
 |> Axon.dropout(rate: 0.2)
 # The output layer. One neuron for each character and using softmax,
 # as activation so every node represents a probability
 |> Axon.dense(characters_count, activation: :softmax)
Training the network
To train the network, we will use Axon's Loop API. It is pretty straightforward.
For the loss function we can use categorical cross-entropy since we are dealing with categories (each character) in our output. For the optimizer we can use Adam.
We will train our network for 20 epochs. Note that we are working with a fair amount data, so it may take a long time unless you run it on a GPU.
batch_size = 128
train_batches = Nx.to_batched(train_data, batch_size)
result_batches = Nx.to_batched(train_results, batch_size)

IO.puts("Total batches: #{Enum.count(train_batches)}")

params =
 model
 |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.001))
 |> Axon.Loop.run(Stream.zip(train_batches, result_batches), %{}, epochs: 20, compiler: EXLA)

:ok
Generating text
Now we have a trained neural network, so we can start generating text with it! We just need to pass the initial sequence as the input to the network and select the most probable output. Axon.predict/3 will give us the output layer and then using Nx.argmax/1 we get the most confident neuron index, then simply convert that index back to its Unicode representation.
generate_fn = fn model, params, init_seq ->
 # The initial sequence that we want the network to complete for us.
 init_seq =
 init_seq
 |> String.trim()
 |> String.downcase()
 |> String.to_charlist()
 |> Enum.map(&Map.fetch!(char_to_idx, &1))

 Enum.reduce(1..100, init_seq, fn _, seq ->
 init_seq =
 seq
 |> Enum.take(-sequence_length)
 |> Nx.tensor()
 |> Nx.divide(characters_count)
 |> Nx.reshape({1, sequence_length, 1})

 char =
 Axon.predict(model, params, init_seq)
 |> Nx.argmax()
 |> Nx.to_number()

 seq ++ [char]
 end)
 |> Enum.map(&Map.fetch!(idx_to_char, &1))
end

The initial sequence that we want the network to complete for us.
init_seq = """
not like to drop the jar for fear
of killing somebody underneath so managed to put it into one of the
cupboards as she fell past it.
"""

generate_fn.(model, params, init_seq) |> IO.puts()
Multi LSTM layers
We can improve our network by stacking multiple LSTM layers together. We just need to change our model and re-train our network.
new_model =
 Axon.input("input_chars", shape: {nil, sequence_length, 1})
 |> Axon.lstm(256)
 |> then(fn {out, _} -> out end)
 |> Axon.dropout(rate: 0.2)
 # This time we will pass all of the `out` to the next lstm layer.
 # We just need to slice the last one.
 |> Axon.lstm(256)
 |> then(fn {out, _} -> out end)
 |> Axon.nx(fn x -> x[[0..-1//1, -1]] end)
 |> Axon.dropout(rate: 0.2)
 |> Axon.dense(characters_count, activation: :softmax)
Then we can train the network using the exact same code as before
Using a smaller batch size in this case will give the network more opportunity to learn
batch_size = 64
train_batches = Nx.to_batched(train_data, batch_size)
result_batches = Nx.to_batched(train_results, batch_size)

IO.puts("Total batches: #{Enum.count(train_batches)}")

new_params =
 new_model
 |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.001))
 |> Axon.Loop.run(Stream.zip(train_batches, result_batches), %{}, epochs: 50, compiler: EXLA)

:ok
Generate text with the new network
generate_fn.(new_model, new_params, init_seq) |> IO.puts()
As you may see, it improved a lot with this new model and the extensive training. This time it knows about rules like adding a space after period.
References
The above example was written heavily inspired by this article by Jason Brownlee.

Classifying fraudulent transactions

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", override: true},
 {:exla, "~> 0.4.0"},
 {:explorer, "~> 0.3.1"},
 {:kino, "~> 0.7.0"}
])

Nx.Defn.default_options(compiler: EXLA)
Nx.global_default_backend(EXLA.Backend)

alias Explorer.{DataFrame, Series}
Introduction
This time we will examine the Credit Card Fraud Dataset. Due to confidentiality, the original data were preprocessed by principal component analysis (PCA), and then 31 principal components were selected for the final data set. The dataset is highly imbalanced. The positive class (frauds) account for 0.172% of all transactions. Eventually, we will create a classifier which has not only great accuracy but, what is even more important, a high recall and precision - two metrics that are much more indicative of performance with imbalanced classification problems.
Data processing
The first step is to prepare the data for training and evaluation. Please download the dataset in the CSV format from https://www.kaggle.com/mlg-ulb/creditcardfraud (this requires a Kaggla account). Once done, put the file path in the input below.
data_path_input = Kino.Input.text("Data path (CSV)")
Now, let's read the data into an Explorer.Dataframe:
data_path = Kino.Input.read(data_path_input)

df = DataFrame.from_csv!(data_path, dtypes: [{"Time", :float}])
For further processing, we will need a couple helper functions. We will group them in a module for convenience.
defmodule CredidCard.Data do
 import Nx.Defn

 def split_train_test(df, portion) do
 num_examples = DataFrame.n_rows(df)
 num_train = ceil(portion * num_examples)
 num_test = num_examples - num_train

 train = DataFrame.slice(df, 0, num_train)
 test = DataFrame.slice(df, num_train, num_test)
 {train, test}
 end

 def split_features_targets(df) do
 features = DataFrame.select(df, &(&1 == "Class"), :drop)
 targets = DataFrame.select(df, &(&1 == "Class"), :keep)
 {features, targets}
 end

 def df_to_tensor(df) do
 df
 |> DataFrame.names()
 |> Enum.map(&Series.to_tensor(df[&1]))
 |> Nx.stack(axis: 1)
 end

 defn normalize_features(tensor) do
 max =
 tensor
 |> Nx.abs()
 |> Nx.reduce_max(axes: [0], keep_axes: true)

 tensor / max
 end
end
With that, we can start converting the data into the desired format. First, we split the data into training and test data (in proportion 80% into a training set and 20% into a test set).
{train_df, test_df} = CredidCard.Data.split_train_test(df, 0.8)
{DataFrame.n_rows(train_df), DataFrame.n_rows(test_df)}
Next, we separate features from labels and convert both to tensors. In case of features we additionally normalize each of them, dividing by the maximum absolute value of that feature.
{train_features, train_targets} = CredidCard.Data.split_features_targets(train_df)
{test_features, test_targets} = CredidCard.Data.split_features_targets(test_df)

train_inputs =
 train_features
 |> CredidCard.Data.df_to_tensor()
 |> CredidCard.Data.normalize_features()

test_inputs =
 test_features
 |> CredidCard.Data.df_to_tensor()
 |> CredidCard.Data.normalize_features()

train_targets = CredidCard.Data.df_to_tensor(train_targets)
test_targets = CredidCard.Data.df_to_tensor(test_targets)

:ok
Building the model
Our model for predicting whether a transaction was fraudulent or not is a dense neural network. It consists of two dense layers with 256 neurons, ReLU activation functions, one dropout layer, and a dense layer with one neuron (since the problem is a binary prediction) followed by a sigmoid activation function.
model =
 Axon.input("input")
 |> Axon.dense(256)
 |> Axon.relu()
 |> Axon.dense(256)
 |> Axon.relu()
 |> Axon.dropout(rate: 0.3)
 |> Axon.dense(1)
 |> Axon.sigmoid()
Training our model
Now we have both data and model architecture prepared, it's time to train!
Note the disproportion in the data samples:
fraud = Nx.sum(train_targets) |> Nx.to_number()
legit = Nx.size(train_targets) - fraud

batched_train_inputs = Nx.to_batched(train_inputs, 2048)
batched_train_targets = Nx.to_batched(train_targets, 2048)
batched_train = Stream.zip(batched_train_inputs, batched_train_targets)

IO.puts("# of legit transactions (train): #{legit}")
IO.puts("# of fraudulent transactions (train): #{fraud}")
IO.puts("% fraudlent transactions (train): #{100 * (fraud / (legit + fraud))}%")
As always, we define our train loop. We are using binary cross-entropy as our loss function and Adam as the optimizer with a learning rate of 0.01. Then we immediately start the training passing our train portion of the dataset.
loss =
 &Axon.Losses.binary_cross_entropy(
 &1,
 &2,
 negative_weight: 1 / legit,
 positive_weight: 1 / fraud,
 reduction: :mean
)

optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-2)

params =
 model
 |> Axon.Loop.trainer(loss, optimizer)
 |> Axon.Loop.run(batched_train, %{}, epochs: 30, compiler: EXLA)

:ok
Model evaluation
After the training, there is only one thing left: testing. Here, we will focus on the number of true positive, true negative, false positive, and false negative values, but also on the likelihood of denying legit and fraudulent transactions.
batched_test_inputs = Nx.to_batched(test_inputs, 2048)
batched_test_targets = Nx.to_batched(test_targets, 2048)
batched_test = Stream.zip(batched_test_inputs, batched_test_targets)

summarize = fn %Axon.Loop.State{metrics: metrics} = state ->
 legit_transactions_declined = Nx.to_number(metrics["fp"])
 legit_transactions_accepted = Nx.to_number(metrics["tn"])
 fraud_transactions_accepted = Nx.to_number(metrics["fn"])
 fraud_transactions_declined = Nx.to_number(metrics["tp"])
 total_fraud = fraud_transactions_declined + fraud_transactions_accepted
 total_legit = legit_transactions_declined + legit_transactions_accepted

 fraud_denial_percent = 100 * (fraud_transactions_declined / total_fraud)
 legit_denial_percent = 100 * (legit_transactions_declined / total_legit)

 IO.write("\n")
 IO.puts("Legit Transactions Declined: #{legit_transactions_declined}")
 IO.puts("Fraudulent Transactions Caught: #{fraud_transactions_declined}")
 IO.puts("Fraudulent Transactions Missed: #{fraud_transactions_accepted}")
 IO.puts("Likelihood of catching fraud: #{fraud_denial_percent}%")
 IO.puts("Likelihood of denying legit transaction: #{legit_denial_percent}%")

 {:continue, state}
end

model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:true_positives, "tp", :running_sum)
|> Axon.Loop.metric(:true_negatives, "tn", :running_sum)
|> Axon.Loop.metric(:false_positives, "fp", :running_sum)
|> Axon.Loop.metric(:false_negatives, "fn", :running_sum)
|> Axon.Loop.handle(:epoch_completed, summarize)
|> Axon.Loop.run(batched_test, params, compiler: EXLA)

:ok

MNIST Denoising Autoencoder using Kino for visualization

Mix.install([
 {:exla, "~> 0.4.0"},
 {:nx, "~> 0.4.0", override: true},
 {:axon, "~> 0.3.0"},
 {:req, "~> 0.3.1"},
 {:kino, "~> 0.7.0"},
 {:scidata, "~> 0.1.9"},
 {:stb_image, "~> 0.5.2"},
 {:table_rex, "~> 3.1.1"}
])
Introduction
The goal of this notebook is to build a Denoising Autoencoder from scratch using Livebook. This notebook is based on Training an Autoencoder on Fashion MNIST, but includes some tips on using Livebook to train the model and using Kino (Livebook's interactive widget library) to play with and visualize our results.
Data loading
An autoencoder learns to recreate data it's seen in the dataset. For this notebook, we're going to try something simple: generating images of digits using the MNIST digit recognition dataset.
Following along with the Fashion MNIST Autoencoder example, we'll use Scidata to download the MNIST dataset and then preprocess the data.
We're not going to use the labels so we'll ignore them
{train_images, _train_labels} = Scidata.MNIST.download()
{train_images_binary, type, shape} = train_images
The shape tells us we have 60,000 images with a single channel of size 28x28.
According to the MNIST website:
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

Let's preprocess and normalize the data accordingly.
train_images =
 train_images_binary
 |> Nx.from_binary(type)
 # Since pixels are organized row-wise, reshape into rows x columns
 |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
 # Normalize the pixel values to be between 0 and 1
 |> Nx.divide(255)
Make sure they look like numbers
train_images[[images: 0..2]] |> Nx.to_heatmap()
That looks right! Let's repeat the process for the test set.
{test_images, _train_labels} = Scidata.MNIST.download_test()
{test_images_binary, type, shape} = test_images

test_images =
 test_images_binary
 |> Nx.from_binary(type)
 # Since pixels are organized row-wise, reshape into rows x columns
 |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
 # Normalize the pixel values to be between 0 and 1
 |> Nx.divide(255)

test_images[[images: 0..2]] |> Nx.to_heatmap()
Building the model
An autoencoder is a a network that has the same sized input as output, with a "bottleneck" layer in the middle with far fewer parameters than the input. Its goal is to force the output to reconstruct the input. The bottleneck layer forces the network to learn a compressed representation of the input space.
A denoising autoencoder is a small tweak on an autoencoder that takes a corrupted input (often corrupted by adding noise or zeroing out pixels) and reconstructs the original input, removing the noise in the process.
The part of the autoencoder that takes the input and compresses it into the bottleneck layer is called the encoder and the part that takes the compressed representation and reconstructs the input is called the decoder. Usually the decoder mirrors the encoder.
MNIST is a pretty easy dataset, so we're going to try a fairly small autoencoder.
The input image has size 784 (28 rows 28 cols 1 pixel). We'll set up the encoder to turn that into 256 features, then 128, 64, and then 10 features for the bottleneck layer. The decoder will do the reverse, take the 10 features and go to 64, 128, 256 and 784. I'll use fully-connected (dense) layers.
The model
model =
 Axon.input("image", shape: {nil, 1, 28, 28})
 # This is now 28*28*1 = 784
 |> Axon.flatten()
 # The encoder
 |> Axon.dense(256, activation: :relu)
 |> Axon.dense(128, activation: :relu)
 |> Axon.dense(64, activation: :relu)
 # Bottleneck layer
 |> Axon.dense(10, activation: :relu)
 # The decoder
 |> Axon.dense(64, activation: :relu)
 |> Axon.dense(128, activation: :relu)
 |> Axon.dense(256, activation: :relu)
 |> Axon.dense(784, activation: :sigmoid)
 # Turn it back into a 28x28 single channel image
 |> Axon.reshape({:auto, 1, 28, 28})

We can use Axon.Display to show us what each of the layers would look like
assuming we send in a batch of 4 images
Axon.Display.as_table(model, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
Checking our understanding, since the layers are all dense layers, the number of parameters should be input_features * output_features parameters for the weights + output_features parameters for the biases for each layer.
This should match the Total Parameters output from Axon.Display (486298 parameters)
encoder
encoder_parameters = 784 * 256 + 256 + (256 * 128 + 128) + (128 * 64 + 64) + (64 * 10 + 10)
decoder_parameters = 10 * 64 + 64 + (64 * 128 + 128) + (128 * 256 + 256) + (256 * 784 + 784)
total_parameters = encoder_parameters + decoder_parameters
Training
With the model set up, we can now try to train the model. We'll use MSE loss to compare our reconstruction with the original
We'll create the training input by turning our image list into batches of size 128 and then using the same image as both the input and the target. However, the input image will have noise added to it that the autoencoder will have to remove.
For validation data, we'll use the test set and look at how the autoencoder does at reconstructing the test set to make sure we're not overfitting
The function below adds some noise to the image by adding the image with gaussian noise scaled by a noise factor. We then have to make sure the pixel values are still within the 0..1.0 range.
We have to define this function using defn so that Nx can optimize it. If we don't do this, adding noise will take a really long time, making our training loop very slow. See Nx.defn for more details. defn can only be used in a module so we'll define a little module to contain it.
defmodule Noiser do
 import Nx.Defn

 @noise_factor 0.4

 defn add_noise(images) do
 @noise_factor
 |> Nx.multiply(Nx.random_normal(images))
 |> Nx.add(images)
 |> Nx.clip(0.0, 1.0)
 end
end

add_noise = Nx.Defn.jit(&Noiser.add_noise/1, compiler: EXLA)
batch_size = 128

The original image which is the target the network will trying to match
batched_train_images =
 train_images
 |> Nx.to_batched(batch_size)

batched_noisy_train_images =
 train_images
 |> Nx.to_batched(batch_size)
 # goes after to_batched so the noise is different every time
 |> Stream.map(add_noise)

The noisy image is the input to the network
and the original image is the target it's trying to match
train_data = Stream.zip(batched_noisy_train_images, batched_train_images)

batched_test_images =
 test_images
 |> Nx.to_batched(batch_size)

batched_noisy_test_images =
 test_images
 |> Nx.to_batched(batch_size)
 |> Stream.map(add_noise)

test_data = Stream.zip(batched_noisy_test_images, batched_test_images)
Let's see what an element of the input and target look like
{input_batch, target_batch} = Enum.at(train_data, 0)
{Nx.to_heatmap(input_batch[images: 0]), Nx.to_heatmap(target_batch[images: 0])}
Looks right (and tricky). Let's see how the model does.
params =
 model
 |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
 |> Axon.Loop.validate(model, test_data)
 |> Axon.Loop.run(train_data, %{}, epochs: 20, compiler: EXLA)

:ok
Now that we have a model that theoretically has learned something, we'll see what it's learned by running it on some images from the test set. We'll use Kino to allow us to select the image from the test set to run the model against. To avoid losing the params that took a while to train, we'll create another branch so we can experiment with the params and stop execution when needed without having to retrain.
Evaluation
A note on branching
By default, everything in Livebook runs sequentially in a single process. Stopping a running cell aborts that process and consequently all its state is lost. A branching section copies everything from its parent and runs in a separate process. Thanks to this isolation, when we stop a cell in a branching section, only the state within that section is gone.
Since we just spent a bunch of time training the model and don't want to lose that memory state as we continue to experiment, we create a branching section. This does add some memory overhead, but it's worth it so we can experiment without fear!
To use Kino to give us an interactive tool to evaluate the model, we'll create a Kino.Frame that we can dynamically update. We'll also create a form using Kino.Control to allow the user to select which image from the test set they'd like to evaluate the model on. Finally Kino.Control.stream enables us to respond to changes in the user's selection when the user clicks the "Render" button.
We can use Nx.concatenate to stack the images side by side for a prettier output.
form =
 Kino.Control.form(
 [
 test_image_index: Kino.Input.number("Test Image Index", default: 0)
],
 submit: "Render"
)

Kino.render(form)

form
|> Kino.Control.stream()
|> Kino.animate(fn %{data: %{test_image_index: image_index}} ->
 test_image = test_images[[images: image_index]] |> add_noise.()

 reconstructed_image =
 model
 |> Axon.predict(params, test_image)
 # Get rid of the batch dimension
 |> Nx.squeeze(axes: [0])

 combined_image = Nx.concatenate([test_image, reconstructed_image], axis: :width)
 Nx.to_heatmap(combined_image)
end)
That looks pretty good!
Note we used Kino.animate/2 which runs asynchronously so we don't block execution of the rest of the notebook.
A better training loop
Note that we branch from the "Building a model" section since we only need the model definition for this section and not the previously trained model.
It'd be nice to see how the model improves as it trains. In this section (also a branch since I plan to experiment and don't want to lose the execution state) we'll improve the training loop to use Kino to show us how it's doing.
Axon.Loop.handle gives us a hook into various points of the training loop. We'll can use it with the :iteration_completed event to get a copy of the state of the params after some number of completed iterations of the training loop. By using those params to render an image in the test set, we can get a live view of the autoencoder learning to reconstruct its inputs.
A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
 test_image = test_images[[images: image_index]] |> add_noise.()
 reconstructed_image = Axon.predict(model, params, test_image) |> Nx.squeeze(axes: [0])
 Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

Nx.to_heatmap(combined_input_output.(params, 0))
It'd also be nice to have a prettier version of the output. Let's convert the heatmap to a png to make that happen.
image_to_kino = fn image ->
 image
 |> Nx.multiply(255)
 |> Nx.as_type(:u8)
 |> Nx.transpose(axes: [:height, :width, :channels])
 |> StbImage.from_nx()
 |> StbImage.resize(200, 400)
 |> StbImage.to_binary(:png)
 |> Kino.Image.new(:png)
end

image_to_kino.(combined_input_output.(params, 0))
Much nicer!
Once again we'll use Kino.Frame for dynamically updating output:
frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
 Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
 # state.step_state[:model_state] contains the model params when this event is fired
 params = state.step_state[:model_state]
 image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
 image = combined_input_output.(params, image_index) |> image_to_kino.()
 Kino.Frame.append(frame, image)
 {:continue, state}
end

params =
 model
 |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
 |> Axon.Loop.handle(:iteration_completed, render_example_handler, every: 450)
 |> Axon.Loop.validate(model, test_data)
 |> Axon.Loop.run(train_data, %{}, epochs: 20, compiler: EXLA)

:ok
Awesome! We have a working denoising autoencoder that we can visualize getting better in 20 epochs!

Training an Autoencoder on Fashion MNIST

Mix.install([
 {:axon, "~> 0.3.0"},
 {:nx, "~> 0.4.0", override: true},
 {:exla, "~> 0.4.0"},
 {:scidata, "~> 0.1.9"}
])

Nx.Defn.default_options(compiler: EXLA)
Introduction
An autoencoder is a deep learning model which consists of two parts: encoder and decoder. The encoder compresses high dimensional data into a low dimensional representation and feeds it to the decoder. The decoder tries to recreate the original data from the low dimensional representation.
Autoencoders can be used in the following problems:
	Dimensionality reduction
	Noise reduction
	Generative models
	Data augmentation

Let's walk through a basic autoencoder implementation in Axon to get a better understanding of how they work in practice.
Downloading the data
To train and test how our model works, we use one of the most popular data sets: Fashion MNIST. It consists of small black and white images of clothes. Loading this data set is very simple with the help of Scidata.
{image_data, _label_data} = Scidata.FashionMNIST.download()
{bin, type, shape} = image_data
We get the data in a raw format, but this is exactly the information we need to build an Nx tensor.
train_images =
 bin
 |> Nx.from_binary(type)
 |> Nx.reshape(shape)
 |> Nx.divide(255.0)
We also normalize pixel values into the range $[0, 1]$.
We can visualize one of the images by looking at the tensor heatmap:
Nx.to_heatmap(train_images[1])
Encoder and decoder
First we need to define the encoder and decoder. Both are one-layer neural networks.
In the encoder, we start by flattening the input, so we get from shape {batch_size, 1, 28, 28} to {batch_size, 784} and we pass the input into a dense layer. Our dense layer has only latent_dim number of neurons. The latent_dim (or the latent space) is a compressed representation of data. Remember, we want our encoder to compress the input data into a lower-dimensional representation, so we choose a latent_dim which is less than the dimensionality of the input.
encoder = fn x, latent_dim ->
 x
 |> Axon.flatten()
 |> Axon.dense(latent_dim, activation: :relu)
end
Next, we pass the output of the encoder to the decoder and try to reconstruct the compressed data into its original form. Since our original input had a dimensionality of 784, we use a dense layer with 784 neurons. Because our original data was normalized to have pixel values between 0 and 1, we use a :sigmoid activation in our dense layer to squeeze output values between 0 and 1. Our original input shape was 28x28, so we use Axon.reshape to convert the flattened representation of the outputs into an image with correct the width and height.
decoder = fn x ->
 x
 |> Axon.dense(784, activation: :sigmoid)
 |> Axon.reshape({:batch, 1, 28, 28})
end
If we just bind the encoder and decoder sequentially, we'll get the desired model. This was pretty smooth, wasn't it?
model =
 Axon.input("input", shape: {nil, 1, 28, 28})
 |> encoder.(64)
 |> decoder.()
Training the model
Finally, we can train the model. We'll use the :adam and :mean_squared_error loss with Axon.Loop.trainer. Our loss function will measure the aggregate error between pixels of original images and the model's reconstructed images. We'll also :mean_absolute_error using Axon.Loop.metric. Axon.Loop.run trains the model with the given training data.
batch_size = 32
epochs = 5

batched_images = Nx.to_batched(train_images, batch_size)
train_batches = Stream.zip(batched_images, batched_images)

params =
 model
 |> Axon.Loop.trainer(:mean_squared_error, :adam)
 |> Axon.Loop.metric(:mean_absolute_error, "Error")
 |> Axon.Loop.run(train_batches, %{}, epochs: epochs, compiler: EXLA)
Extra: losses
To better understand what is mean absolute error (MAE) and mean square error (MSE) let's go through an example.
Error definitions for a single sample

mean_square_error = fn y_pred, y ->
 y_pred
 |> Nx.subtract(y)
 |> Nx.power(2)
 |> Nx.mean()
end

mean_absolute_error = fn y_pred, y ->
 y_pred
 |> Nx.subtract(y)
 |> Nx.abs()
 |> Nx.mean()
end
We will work with a sample image of a shoe, a slightly noised version of that image, and also an entirely different image from the dataset.
shoe_image = train_images[0]
noised_shoe_image = Nx.add(shoe_image, Nx.random_normal(shoe_image, 0.0, 0.05))
other_image = train_images[1]
:ok
For the same image both errors should be 0, because when we have two exact copies, there is no pixel difference.
{
 mean_square_error.(shoe_image, shoe_image),
 mean_absolute_error.(shoe_image, shoe_image)
}
Now the noised image:
{
 mean_square_error.(shoe_image, noised_shoe_image),
 mean_absolute_error.(shoe_image, noised_shoe_image)
}
And a different image:
{
 mean_square_error.(shoe_image, other_image),
 mean_absolute_error.(shoe_image, other_image)
}
As we can see, the noised image has a non-zero MSE and MAE but is much smaller than the error of two completely different pictures. In other words, both of these error types measure the level of similarity between images. A small error implies decent prediction values. On the other hand, a large error value suggests poor quality of predictions.
If you look at our implementation of MAE and MSE, you will notice that they are very similar. MAE and MSE can also be called the L_1 and L_2 loss respectively for the L_1 and L_2 norm. The L_2 loss (MSE) is typically preferred because it's a smoother function whereas L_1 is often difficult to optimize with stochastic gradient descent (SGD).
Inference
Now, let's see how our model is doing! We will compare a sample image before and after compression.
sample_image = train_images[0..0//1]
compressed_image = Axon.predict(model, params, sample_image, compiler: EXLA)

sample_image
|> Nx.to_heatmap()
|> IO.inspect(label: "Original")

compressed_image
|> Nx.to_heatmap()
|> IO.inspect(label: "Compressed")

:ok
As we can see, the generated image is similar to the input image. The only difference between them is the absence of a sign in the middle of the second shoe. The model treated the sign as noise and bled this into the plain shoe.

A Variational Autoencoder for MNIST

Mix.install([
 {:exla, "~> 0.4.0"},
 {:nx, "~> 0.4.0", override: true},
 {:axon, "~> 0.3.0"},
 {:req, "~> 0.3.1"},
 {:kino, "~> 0.7.0"},
 {:scidata, "~> 0.1.9"},
 {:stb_image, "~> 0.5.2"},
 {:kino_vega_lite, "~> 0.1.6"},
 {:vega_lite, "~> 0.1.6"},
 {:table_rex, "~> 3.1.1"}
])

alias VegaLite, as: Vl

This speeds up all our `Nx` operations without having to use `defn`
Nx.global_default_backend(EXLA.Backend)

:ok
Introduction
In this notebook, we'll be building a variational autoencoder (VAE). This will help demonstrate splitting up models, defining custom layers and loss functions, using multiple outputs, and a few additional Kino tricks for training models.
This notebook builds on the denoising autoencoder example and turns the simple autoencoder into a variational one for the same dataset.
Training a simple autoencoder
This section will proceed without much explanation as most of it is extracted from denoising autoencoder example. If anything here doesn't make sense, take a look at that notebook for an explanation.
defmodule Data do
 @moduledoc """
 A module to hold useful data processing utilities,
 mostly extracted from the previous notebook
 """

 @doc """
 Converts the given image into a `Kino.Image`.

 `image` must be a single channel `Nx` tensor with pixel values between 0 and 1.
 `height` and `width` are the output size in pixels
 """
 def image_to_kino(image, height \\ 200, width \\ 200) do
 image
 |> Nx.multiply(255)
 |> Nx.as_type(:u8)
 |> Nx.transpose(axes: [:height, :width, :channels])
 |> StbImage.from_nx()
 |> StbImage.resize(height, width)
 |> StbImage.to_binary(:png)
 |> Kino.Image.new(:png)
 end

 @doc """
 Converts image data from `Scidata.MNIST` into an `Nx` tensor and normalizes it.
 """
 def preprocess_data(data) do
 {image_data, _labels} = data
 {images_binary, type, shape} = image_data

 images_binary
 |> Nx.from_binary(type)
 # Since pixels are organized row-wise, reshape into rows x columns
 |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
 # Normalize the pixel values to be between 0 and 1
 |> Nx.divide(255)
 end

 @doc """
 Converts a tensor of images into random batches of paired images for model training
 """
 def prepare_training_data(images, batch_size) do
 Stream.flat_map([nil], fn nil ->
 images |> Nx.shuffle(axis: :images) |> Nx.to_batched(batch_size)
 end)
 |> Stream.map(fn batch -> {batch, batch} end)
 end
end
train_images = Data.preprocess_data(Scidata.FashionMNIST.download())
test_images = Data.preprocess_data(Scidata.FashionMNIST.download_test())

Kino.render(train_images[[images: 0]] |> Data.image_to_kino())
Kino.render(test_images[[images: 0]] |> Data.image_to_kino())

:ok
Now for our simple autoencoder model. We won't be using a denoising autoencoder here.
Note that we're giving each of the layers a name - the reason for this will be apparent later.
I'm also using a small custom layer to shift and scale the output of the sigmoid layer slightly so it can hit the 0 and 1 targets. I noticed the gradients tend to explode without this.
defmodule CustomLayer do
 import Nx.Defn

 def scaling_layer(%Axon{} = input, _opts \\ []) do
 Axon.layer(&scaling_layer_impl/2, [input])
 end

 defnp scaling_layer_impl(x, _opts \\ []) do
 x
 |> Nx.subtract(0.05)
 |> Nx.multiply(1.2)
 end
end
model =
 Axon.input("image", shape: {nil, 1, 28, 28})
 # This is now 28*28*1 = 784
 |> Axon.flatten()
 # The encoder
 |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
 |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
 # Bottleneck layer
 |> Axon.dense(10, activation: :relu, name: "bottleneck_layer")
 # The decoder
 |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
 |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
 |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
 |> CustomLayer.scaling_layer()
 # Turn it back into a 28x28 single channel image
 |> Axon.reshape({:auto, 1, 28, 28})

We can use Axon.Display to show us what each of the layers would look like
assuming we send in a batch of 4 images
Axon.Display.as_table(model, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
batch_size = 128

train_data = Data.prepare_training_data(train_images, 128)
test_data = Data.prepare_training_data(test_images, 128)

{input_batch, target_batch} = Enum.at(train_data, 0)
Kino.render(input_batch[[images: 0]] |> Data.image_to_kino())
Kino.render(target_batch[[images: 0]] |> Data.image_to_kino())

:ok
When training, it can be useful to stop execution early - either when you see it's failing and you don't want to waste time waiting for the remaining epochs to finish, or if it's good enough and you want to start experimenting with it.
The kino_early_stop/1 function below is a handy handler to give us a Kino.Control.button that will stop the training loop when clicked.
We also have plot_losses/1 function to visualize our train and validation losses using VegaLite.
defmodule KinoAxon do
 @doc """
 Adds handler function which adds a frame with a "stop" button
 to the cell with the training loop.

 Clicking "stop" will halt the training loop.
 """
 def kino_early_stop(loop) do
 frame = Kino.Frame.new() |> Kino.render()
 stop_button = Kino.Control.button("stop")
 Kino.Frame.render(frame, stop_button)

 {:ok, button_agent} = Agent.start_link(fn -> nil end)

 stop_button
 |> Kino.Control.stream()
 |> Kino.listen(fn _event ->
 Agent.update(button_agent, fn _ -> :stop end)
 end)

 handler = fn state ->
 stop_state = Agent.get(button_agent, & &1)

 if stop_state == :stop do
 Agent.stop(button_agent)
 Kino.Frame.render(frame, "stopped")
 {:halt_loop, state}
 else
 {:continue, state}
 end
 end

 Axon.Loop.handle(loop, :iteration_completed, handler)
 end

 @doc """
 Plots the training and validation losses using Kino and VegaLite.

 This *must* come after `Axon.Loop.validate`.
 """
 def plot_losses(loop) do
 vl_widget =
 Vl.new(width: 600, height: 400)
 |> Vl.mark(:point, tooltip: true)
 |> Vl.encode_field(:x, "epoch", type: :ordinal)
 |> Vl.encode_field(:y, "loss", type: :quantitative)
 |> Vl.encode_field(:color, "dataset", type: :nominal)
 |> Kino.VegaLite.new()
 |> Kino.render()

 handler = fn state ->
 %Axon.Loop.State{metrics: metrics, epoch: epoch} = state
 loss = metrics["loss"] |> Nx.to_number()
 val_loss = metrics["validation_loss"] |> Nx.to_number()

 points = [
 %{epoch: epoch, loss: loss, dataset: "train"},
 %{epoch: epoch, loss: val_loss, dataset: "validation"}
]

 Kino.VegaLite.push_many(vl_widget, points)
 {:continue, state}
 end

 Axon.Loop.handle(loop, :epoch_completed, handler)
 end
end
A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
 test_image = test_images[[images: image_index]]
 reconstructed_image = Axon.predict(model, params, test_image) |> Nx.squeeze(axes: [0])
 Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
 # state.step_state[:model_state] contains the model params when this event is fired
 params = state.step_state[:model_state]
 image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
 image = combined_input_output.(params, image_index) |> Data.image_to_kino(200, 400)
 Kino.Frame.render(frame, image)
 Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
 {:continue, state}
end

params =
 model
 |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
 |> KinoAxon.kino_early_stop()
 |> Axon.Loop.handle(:iteration_completed, render_example_handler, every: 450)
 |> Axon.Loop.validate(model, test_data)
 |> KinoAxon.plot_losses()
 |> Axon.Loop.run(train_data, %{}, epochs: 40, compiler: EXLA)

:ok
Splitting up the model
Cool! We now have the parameters for a trained, simple autoencoder. Our next step is to split up the model so we can use the encoder and decoder separately. By doing that, we'll be able to take an image and encode it to get the model's compressed image representation (the latent vector). We can then manipulate the latent vector and run the manipulated latent vector through the decoder to get a new image.
Let's start by defining the encoder and decoder separately as two different models.
encoder =
 Axon.input("image", shape: {nil, 1, 28, 28})
 # This is now 28*28*1 = 784
 |> Axon.flatten()
 # The encoder
 |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
 |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
 # Bottleneck layer
 |> Axon.dense(10, activation: :relu, name: "bottleneck_layer")

The output from the encoder
decoder =
 Axon.input("latent", shape: {nil, 10})
 # The decoder
 |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
 |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
 |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
 |> CustomLayer.scaling_layer()
 # Turn it back into a 28x28 single channel image
 |> Axon.reshape({:auto, 1, 28, 28})

Axon.Display.as_table(encoder, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
Axon.Display.as_table(decoder, Nx.template({4, 10}, :f32)) |> IO.puts()
We have the two models, but the problem is these are untrained models so we don't have the corresponding set of parameters. We'd like to use the parameters from the autoencoder we just trained and apply them to our split up models.
Let's first take a look at what params actually are:
params
Params are just a Map with the layer name as the key identifying which parameters to use. We can easily match up the layer names with the output from the Axon.Display.as_table/2 call for the autoencoder model.
So all we need to do is create a new Map that plucks out the right layers from our autoencoder params for each model and use that to run inference on our split up models.
Fortunately, since we gave each of the layers names, this requires no work at all - we can use the Map as it is since the layer names match up! Axon will ignore any extra keys so those won't be a problem.
Note that naming the layers wasn't required, if the layers didn't have names we would have some renaming to do to get the names to match between the models. But giving them names made it very convenient :)
Let's try encoding an image, printing the latent and then decoding the latent using our split up model to make sure it's working.
image = test_images[[images: 0]]

Encode the image
latent = Axon.predict(encoder, params, image)
IO.inspect(latent, label: "Latent")
Decode the image
reconstructed_image = Axon.predict(decoder, params, latent) |> Nx.squeeze(axes: [0])

combined_image = Nx.concatenate([image, reconstructed_image], axis: :width)
Data.image_to_kino(combined_image, 200, 400)
Perfect! Seems like the split up models are working as expected. Now let's try to generate some new images using our autoencoder. To do this, we'll manipulate the latent so it's slightly different from what the encoder gave us. Specifically, we'll try to interpolate between two images, showing 100 steps from our starting image to our final image.
num_steps = 100

Get our latents, image at index 0 is our starting point
index 1 is where we'll end
latents = Axon.predict(encoder, params, test_images[[images: 0..1]])
Latents is a {2, 10} tensor
The step we'll add to our latent to move it towards image[1]
step = Nx.subtract(latents[1], latents[0]) |> Nx.divide(num_steps)
We can make a batch of all our new latents
new_latents = Nx.multiply(Nx.iota({num_steps + 1, 1}), step) |> Nx.add(latents[0])

reconstructed_images = Axon.predict(decoder, params, new_latents)

reconstructed_images =
 Nx.reshape(
 reconstructed_images,
 Nx.shape(reconstructed_images),
 names: [:images, :channels, :height, :width]
)

Stream.interval(div(5000, num_steps))
|> Stream.take(num_steps + 1)
|> Kino.animate(fn i ->
 Data.image_to_kino(reconstructed_images[i])
end)
Cool! We have interpolation! But did you notice that some of the intermediate frames don't look fashionable at all? Autoencoders don't generally return good results for random vectors in their latent space. That's where a VAE can help.
Making it variational
In a VAE, instead of outputting a latent vector, our encoder will output a distribution. Essentially this means instead of 10 outputs we'll have 20. 10 of them will represent the mean and 10 will represent the log of the variance of the latent. We'll have to sample from this distribution to get our latent vector. Finally, we'll have to modify our loss function to also compute the KL Divergence between the latent distribution and a standard normal distribution (this acts as a regularizer of the latent space).
We'll start by defining our model:
defmodule Vae do
 import Nx.Defn

 @latent_features 10

 defp sampling_layer(%Axon{} = input, _opts \\ []) do
 Axon.layer(&sampling_layer_impl/2, [input], name: "sampling_layer", op_name: :sample)
 end

 defnp sampling_layer_impl(x, _opts \\ []) do
 mu = x[[0..-1//1, 0, 0..-1//1]]
 log_var = x[[0..-1//1, 1, 0..-1//1]]
 std_dev = Nx.exp(0.5 * log_var)
 eps = Nx.random_normal(std_dev)
 sample = mu + std_dev * eps
 Nx.stack([sample, mu, std_dev], axis: 1)
 end

 defp encoder_partial() do
 Axon.input("image", shape: {nil, 1, 28, 28})
 # This is now 28*28*1 = 784
 |> Axon.flatten()
 # The encoder
 |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
 |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
 # Bottleneck layer
 |> Axon.dense(@latent_features * 2, name: "bottleneck_layer")
 # Split up the mu and logvar
 |> Axon.reshape({:auto, 2, @latent_features})
 |> sampling_layer()
 end

 def encoder() do
 encoder_partial()
 # Grab only the sample (ie. the sampled latent)
 |> Axon.nx(fn x -> x[[0..-1//1, 0]] end)
 end

 def decoder(input_latent) do
 input_latent
 |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
 |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
 |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
 |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
 |> CustomLayer.scaling_layer()
 # Turn it back into a 28x28 single channel image
 |> Axon.reshape({:auto, 1, 28, 28})
 end

 def autoencoder() do
 encoder_partial = encoder_partial()
 encoder = encoder()
 autoencoder = decoder(encoder)
 Axon.container(%{mu_sigma: encoder_partial, reconstruction: autoencoder})
 end
end
There's a few interesting things going on here. First, since our model has become more complex, we've used a module to keep it organized. We also built a custom layer to do the sampling and output the sampled latent vector as well as the distribution parameters (mu and sigma).
Finally, we need the distribution itself so we can calculate the KL Divergence in our loss function. To make the model output the distribution parameters (mu and sigma), we use Axon.container/1 to produce two outputs from our model instead of one. Now, instead of getting a tensor as an output, we'll get a map with the two tensors we need for our loss function.
Our loss function also has to be modified so be the sum of the KL divergence and MSE. Here's our custom loss function:
defmodule CustomLoss do
 import Nx.Defn

 defn loss(y_true, %{reconstruction: reconstruction, mu_sigma: mu_sigma}) do
 mu = mu_sigma[[0..-1//1, 1, 0..-1//1]]
 sigma = mu_sigma[[0..-1//1, 2, 0..-1//1]]
 kld = Nx.sum(-Nx.log(sigma) - 0.5 + Nx.multiply(sigma, sigma) + Nx.multiply(mu, mu))
 kld * 0.1 + Axon.Losses.mean_squared_error(y_true, reconstruction, reduction: :sum)
 end
end
With all our pieces ready, we can pretty much use the same training loop as we did earlier. The only modifications needed are to account for the fact that the model outputs a map with two values instead of a single tensor and telling the trainer to use our custom loss.
model = Vae.autoencoder()

A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
 test_image = test_images[[images: image_index]]
 %{reconstruction: reconstructed_image} = Axon.predict(model, params, test_image)
 reconstructed_image = reconstructed_image |> Nx.squeeze(axes: [0])
 Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
 # state.step_state[:model_state] contains the model params when this event is fired
 params = state.step_state[:model_state]
 image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
 image = combined_input_output.(params, image_index) |> Data.image_to_kino(200, 400)
 Kino.Frame.render(frame, image)
 Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
 {:continue, state}
end

params =
 model
 |> Axon.Loop.trainer(&CustomLoss.loss/2, Polaris.Optimizers.adam(learning_rate: 0.001))
 |> KinoAxon.kino_early_stop()
 |> Axon.Loop.handle(:epoch_completed, render_example_handler)
 |> Axon.Loop.validate(model, test_data)
 |> KinoAxon.plot_losses()
 |> Axon.Loop.run(train_data, %{}, epochs: 40, compiler: EXLA)

:ok
Finally, we can try our interpolation again:
num_steps = 100

Get our latents, image at index 0 is our starting point
index 1 is where we'll end
latents = Axon.predict(Vae.encoder(), params, test_images[[images: 0..1]])
Latents is a {2, 10} tensor
The step we'll add to our latent to move it towards image[1]
step = Nx.subtract(latents[1], latents[0]) |> Nx.divide(num_steps)
We can make a batch of all our new latents
new_latents = Nx.multiply(Nx.iota({num_steps + 1, 1}), step) |> Nx.add(latents[0])

decoder = Axon.input("latent", shape: {nil, 10}) |> Vae.decoder()

reconstructed_images = Axon.predict(decoder, params, new_latents)

reconstructed_images =
 Nx.reshape(
 reconstructed_images,
 Nx.shape(reconstructed_images),
 names: [:images, :channels, :height, :width]
)

Stream.interval(div(5000, num_steps))
|> Stream.take(num_steps + 1)
|> Kino.animate(fn i ->
 Data.image_to_kino(reconstructed_images[i])
end)
Did you notice the difference? Every step in our interpolation looks similar to items in our dataset! This is the benefit of the VAE: we can generate new items by using random latents. In contrast, in the simple autoencoder, for the most part only latents we got from our encoder were likely to produce sensible outputs.

Axon

A high-level interface for creating neural network models.
Axon is built entirely on top of Nx numerical definitions,
so every neural network can be JIT or AOT compiled using
any Nx compiler, or even transformed into high-level neural
network formats like TensorFlow Lite and
ONNX.
For a more in-depth overview of Axon, refer to the Guides.
Model Creation
All Axon models start with an input layer, optionally specifying
the expected shape of the input data:
input = Axon.input("input", shape: {nil, 784})
Notice you can specify some dimensions as nil, indicating
that the dimension size will be filled in at model runtime.
You can then compose inputs with other layers:
model =
 input
 |> Axon.dense(128, activation: :relu)
 |> Axon.batch_norm()
 |> Axon.dropout(rate: 0.8)
 |> Axon.dense(64)
 |> Axon.tanh()
 |> Axon.dense(10)
 |> Axon.activation(:softmax)
You can inspect the model for a nice summary:
IO.inspect(model)

#Axon<
 inputs: %{"input" => {nil, 784}}
 outputs: "softmax_0"
 nodes: 9
>
Or use the Axon.Display module to see more in-depth summaries:
Axon.Display.as_table(model, Nx.template({1, 784}, :f32)) |> IO.puts

+--+
| Model |
+=======================================+=============+==============+===================+=======================+
| Layer | Input Shape | Output Shape | Options | Parameters |
+=======================================+=============+==============+===================+=======================+
| input (input) | [] | {1, 784} | shape: {nil, 784} | |
| | | | optional: false | |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| dense_0 (dense["input"]) | [{1, 784}] | {1, 128} | | kernel: f32[784][128] |
| | | | | bias: f32[128] |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| relu_0 (relu["dense_0"]) | [{1, 128}] | {1, 128} | | |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
batch_norm_0 (batch_norm["relu_0"])	[{1, 128}]	{1, 128}	epsilon: 1.0e-5	gamma: f32[128]
			channel_index: 1	beta: f32[128]
			momentum: 0.1	mean: f32[128]
				var: f32[128]
+---------------------------------------+-------------+--------------+-------------------+-----------------------+				
dropout_0 (dropout["batch_norm_0"])	[{1, 128}]	{1, 128}	rate: 0.8	
+---------------------------------------+-------------+--------------+-------------------+-----------------------+				
dense_1 (dense["dropout_0"])	[{1, 128}]	{1, 64}		kernel: f32[128][64]
				bias: f32[64]
+---------------------------------------+-------------+--------------+-------------------+-----------------------+				
tanh_0 (tanh["dense_1"])	[{1, 64}]	{1, 64}		
+---------------------------------------+-------------+--------------+-------------------+-----------------------+				
dense_2 (dense["tanh_0"])	[{1, 64}]	{1, 10}		kernel: f32[64][10]
				bias: f32[10]
+---------------------------------------+-------------+--------------+-------------------+-----------------------+				
softmax_0 (softmax["dense_2"])	[{1, 10}]	{1, 10}		
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
Multiple Inputs
Creating a model with multiple inputs is as easy as declaring an
additional input in your Axon graph. Every input layer present in
the final Axon graph will be required to be passed as input at the
time of model execution.
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})

Both inputs will be used
model1 = Axon.add(inp1, inp2)

Only inp2 will be used
model2 = Axon.add(inp2, inp2)
Axon graphs are immutable, which means composing and manipulating
an Axon graph creates an entirely new graph. Additionally, layer
names are lazily generated at model execution time. To avoid
non-deterministic input orderings and names, Axon requires each
input to have a unique binary identifier. You can then reference
inputs by name when passing to models at execution time:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})

model1 = Axon.add(inp1, inp2)

{init_fn, predict_fn} = Axon.build(model1)

params1 = init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
Inputs are referenced by name
predict_fn.(params1, %{"input_0" => x, "input_1" => y})
Multiple Outputs
Nx offers robust container support
which is extended to Axon. Axon allows you to wrap any valid Nx container
in a layer. Containers are most commonly used to structure outputs:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container(%{foo: inp1, bar: inp2})
Containers can be arbitrarily nested:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container({%{foo: {inp1, %{bar: inp2}}}})
You can even use custom structs which implement the container protocol:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container(%MyStruct{foo: inp1, bar: inp2})
Custom Layers
If you find that Axon's built-in layers are insufficient for your needs,
you can create your own using the custom layer API. All of Axon's built-in
layers (aside from special ones such as input, constant, and container)
make use of this same API.
Axon layers are really just placeholders for Nx computations with trainable
parameters and possibly state. To define a custom layer, you just need to
define a defn implementation:
defn my_layer(x, weight, _opts \ []) do
 Nx.atan2(x, weight)
end
Notice the only stipulation is that your custom layer implementation must
accept at least 1 input and a list of options. At execution time, every
layer will be passed a :mode option which can be used to control behavior
at training and inference time.
Inputs to your custom layer can be either Axon graph inputs or trainable
parameters. You can pass Axon graph inputs as-is to a custom layer. To
declare trainable parameters, use Axon.param/3:
weight = Axon.param("weight", param_shape)
To create a custom layer, you "wrap" your implementation and inputs into
a layer using Axon.layer. You'll notice the API mirrors Elixir's apply:
def atan2_layer(%Axon{} = input) do
 weight = Axon.param("weight", param_shape)
 Axon.layer(&my_layer/3, [input, weight])
end
Model Execution
Under the hood, Axon models are represented as Elixir structs. You
can initialize and apply models by building or compiling them with
Axon.build/2 or Axon.compile/4 and then calling the produced
initialization and predict functions:
{init_fn, predict_fn} = Axon.build(model)

init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
predict_fn.(params, inputs)
You may either set the default JIT compiler or backend globally, or
pass a specific compiler to Axon.build/2:
EXLA.set_as_nx_default([:tpu, :cuda, :rocm, :host])

{init_fn, predict_fn} = Axon.build(model, compiler: EXLA, mode: :train)

params = init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
predict_fn.(params, inputs)
predict_fn by default runs in inference mode, which performs certain
optimizations and removes layers such as dropout layers. If constructing
a training step using Axon.predict/4 or Axon.build/2, be sure to specify
mode: :train.
Model Training
Combining the Axon model creation API with the optimization and training
APIs, you can create and train neural networks with ease:
model =
 Axon.input("input_0", shape: {nil, 784})
 |> Axon.dense(128, activation: :relu)
 |> Axon.layer_norm()
 |> Axon.dropout()
 |> Axon.dense(10, activation: :softmax)

IO.inspect model

model_state =
 model
 |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adamw(learning_rate: 0.005))
 |> Axon.Loop.run(train_data, epochs: 10, compiler: EXLA)
See Polaris.Updates and Axon.Loop for a more in-depth treatment of
model optimization and model training.
Using with Nx.Serving
When deploying an Axon model to production, you usually want to batch
multiple prediction requests and run the inference for all of them at
once. Conveniently, Nx already has an abstraction for this task in the
form of Nx.Serving. Here's how you could define a serving for an Axon
model:
def build_serving() do
 # Configuration
 batch_size = 4
 defn_options = [compiler: EXLA]

 Nx.Serving.new(
 # This function runs on the serving startup
 fn ->
 # Build the Axon model and load params (usually from file)
 model = build_model()
 params = load_params()

 # Build the prediction defn function
 {_init_fun, predict_fun} = Axon.build(model)

 inputs_template = %{"pixel_values" => Nx.template({batch_size, 224, 224, 3}, :f32)}
 template_args = [Nx.to_template(params), inputs_template]

 # Compile the prediction function upfront for the configured batch_size
 predict_fun = Nx.Defn.compile(predict_fun, template_args, defn_options)

 # The returned function is called for every accumulated batch
 fn inputs ->
 inputs = Nx.Batch.pad(inputs, batch_size - inputs.size)
 predict_fun.(params, inputs)
 end
 end,
 batch_size: batch_size
)
end
Then you would start the serving server as part of your application's
supervision tree:
children = [
 ...,
 {Nx.Serving, serving: build_serving(), name: MyApp.Serving, batch_timeout: 100}
]
With that in place, you can now ask serving for predictions all across
your application (controllers, live views, async jobs, etc.). Having a
tensor input you would do:
inputs = %{"pixel_values" => ...}
batch = Nx.Batch.concatenate([inputs])
result = Nx.Serving.batched_run(MyApp.Serving, batch)
Usually you also want to do pre/post-processing of the model input/output.
You could make those preparations directly before/after Nx.Serving.batched_run/2,
however you can also make use of Nx.Serving.client_preprocessing/2 and
Nx.Serving.client_postprocessing/2 to encapsulate that logic as part of
the serving.

 Anchor for this section

 Summary

 Types

 t()

 Layers: Special

 constant(tensor, opts \\ [])

 Adds a constant layer to the network.

 container(container, opts \\ [])

 Adds a container layer to the network.

 input(name, opts \\ [])

 Adds an input layer to the network.

 layer(op, inputs, opts \\ [])

 Custom Axon layer with given inputs.

 namespace(axon, name)

 Wraps an Axon model into a namespace.

 nx(input, fun, opts \\ [])

 Applies the given Nx expression to the input.

 optional(x, opts \\ [])

 Wraps an Axon model in an optional node.

 param(name, shape, opts \\ [])

 Trainable Axon parameter used to create custom layers.

 stack_columns(x, opts \\ [])

 Adds a stack columns layer to the network.

 Layers: Activation

 activation(x, activation, opts \\ [])

 Adds an activation layer to the network.

 celu(x, opts \\ [])

 Adds a Continuously-differentiable exponential linear unit activation layer to the network.

 elu(x, opts \\ [])

 Adds an Exponential linear unit activation layer to the network.

 exp(x, opts \\ [])

 Adds an Exponential activation layer to the network.

 gelu(x, opts \\ [])

 Adds a Gaussian error linear unit activation layer to the network.

 hard_sigmoid(x, opts \\ [])

 Adds a Hard sigmoid activation layer to the network.

 hard_silu(x, opts \\ [])

 Adds a Hard sigmoid weighted linear unit activation layer to the network.

 hard_tanh(x, opts \\ [])

 Adds a Hard hyperbolic tangent activation layer to the network.

 leaky_relu(x, opts \\ [])

 Adds a Leaky rectified linear unit activation layer to the network.

 linear(x, opts \\ [])

 Adds a Linear activation layer to the network.

 log_sigmoid(x, opts \\ [])

 Adds a Log-sigmoid activation layer to the network.

 log_softmax(x, opts \\ [])

 Adds a Log-softmax activation layer to the network.

 log_sumexp(x, opts \\ [])

 Adds a Log-sumexp activation layer to the network.

 mish(x, opts \\ [])

 Adds a Mish activation layer to the network.

 relu6(x, opts \\ [])

 Adds a Rectified linear unit 6 activation layer to the network.

 relu(x, opts \\ [])

 Adds a Rectified linear unit activation layer to the network.

 selu(x, opts \\ [])

 Adds a Scaled exponential linear unit activation layer to the network.

 sigmoid(x, opts \\ [])

 Adds a Sigmoid activation layer to the network.

 silu(x, opts \\ [])

 Adds a Sigmoid weighted linear unit activation layer to the network.

 softmax(x, opts \\ [])

 Adds a Softmax activation layer to the network.

 softplus(x, opts \\ [])

 Adds a Softplus activation layer to the network.

 softsign(x, opts \\ [])

 Adds a Softsign activation layer to the network.

 tanh(x, opts \\ [])

 Adds a Hyperbolic tangent activation layer to the network.

 Layers: Linear

 bias(x, opts \\ [])

 Adds a bias layer to the network.

 bilinear(input1, input2, units, opts \\ [])

 Adds a bilinear layer to the network.

 dense(x, units, opts \\ [])

 Adds a dense layer to the network.

 embedding(x, vocab_size, embedding_size, opts \\ [])

 Adds an embedding layer to the network.

 Layers: Convolution

 conv(x, units, opts \\ [])

 Adds a convolution layer to the network.

 conv_transpose(x, units, opts \\ [])

 Adds a transposed convolution layer to the network.

 depthwise_conv(x, channel_multiplier, opts \\ [])

 Adds a depthwise convolution layer to the network.

 separable_conv2d(x, channel_multiplier, opts \\ [])

 Adds a depthwise separable 2-dimensional convolution to the
network.

 separable_conv3d(x, channel_multiplier, opts \\ [])

 Adds a depthwise separable 3-dimensional convolution to the
network.

 Layers: Dropout

 alpha_dropout(x, opts \\ [])

 Adds an Alpha dropout layer to the network.

 dropout(x, opts \\ [])

 Adds a Dropout layer to the network.

 feature_alpha_dropout(x, opts \\ [])

 Adds a Feature alpha dropout layer to the network.

 spatial_dropout(x, opts \\ [])

 Adds a Spatial dropout layer to the network.

 Layers: Pooling

 adaptive_avg_pool(x, opts \\ [])

 Adds an Adaptive average pool layer to the network.

 adaptive_lp_pool(x, opts \\ [])

 Adds an Adaptive power average pool layer to the network.

 adaptive_max_pool(x, opts \\ [])

 Adds an Adaptive max pool layer to the network.

 avg_pool(x, opts \\ [])

 Adds an Average pool layer to the network.

 global_avg_pool(x, opts \\ [])

 Adds a Global average pool layer to the network.

 global_lp_pool(x, opts \\ [])

 Adds a Global LP pool layer to the network.

 global_max_pool(x, opts \\ [])

 Adds a Global max pool layer to the network.

 lp_pool(x, opts \\ [])

 Adds a Power average pool layer to the network.

 max_pool(x, opts \\ [])

 Adds a Max pool layer to the network.

 Layers: Normalization

 batch_norm(x, opts \\ [])

 Adds a Batch normalization layer to the network.

 group_norm(x, num_groups, opts \\ [])

 Adds a group normalization layer to the network.

 instance_norm(x, opts \\ [])

 Adds an Instance normalization layer to the network.

 layer_norm(x, opts \\ [])

 Adds a Layer normalization layer to the network.

 Layers: Recurrent

 conv_lstm(x, units)

 See conv_lstm/3.

 conv_lstm(x, units, opts)

 Adds a convolutional long short-term memory (LSTM) layer to the network
with a random initial hidden state.

 conv_lstm(x, hidden_state, units, opts)

 Adds a convolutional long short-term memory (LSTM) layer to the network
with the given initial hidden state..

 gru(x, units)

 See gru/3.

 gru(x, units, opts)

 Adds a gated recurrent unit (GRU) layer to the network with
a random initial hidden state.

 gru(x, hidden_state, units, opts)

 Adds a gated recurrent unit (GRU) layer to the network with
the given initial hidden state.

 lstm(x, units)

 See lstm/3.

 lstm(x, units, opts)

 Adds a long short-term memory (LSTM) layer to the network
with a random initial hidden state.

 lstm(x, hidden_state, units, opts \\ [])

 Adds a long short-term memory (LSTM) layer to the network
with the given initial hidden state.

 mask(input, eos_token, opts \\ [])

 Computes a sequence mask according to the given EOS token.

 Layers: Combinators

 add(x, y, opts)

 Adds a add layer to the network.

 concatenate(x, y, opts)

 Adds a concatenate layer to the network.

 cond(parent, cond_fn, true_graph, false_graph, opts \\ [])

 Adds a conditional layer which conditionally executes
true_graph or false_graph based on the condition cond_fn
at runtime.

 multiply(x, y, opts)

 Adds a multiply layer to the network.

 split(parent, splits, opts \\ [])

 Splits input graph into a container of n input graphs
along the given axis.

 subtract(x, y, opts)

 Adds a subtract layer to the network.

 Layers: Shape

 flatten(x, opts \\ [])

 Adds a flatten layer to the network.

 pad(x, config, value \\ 0.0, opts \\ [])

 Adds a pad layer to the network.

 reshape(x, new_shape, opts \\ [])

 Adds a reshape layer to the network.

 resize(x, resize_shape, opts \\ [])

 Adds a resize layer to the network.

 transpose(x, permutation \\ nil, opts \\ [])

 Adds a transpose layer to the network.

 Model

 build(model, opts \\ [])

 Builds the given model to {init_fn, predict_fn}.

 compile(model, template, init_params \\ %{}, opts \\ [])

 Compiles the given model to {init_fn, predict_fn}.

 deserialize(serialized, opts \\ [])

 Deserializes serialized model and parameters into a {model, params}
tuple.

 freeze(model, fun_or_predicate \\ :all)

 Freezes parameters returned from the given function or predicate.

 predict(model, params, input, opts \\ [])

 Builds and runs the given Axon model with params and input.

 serialize(axon, params, opts \\ [])

 Serializes a model and its parameters for persisting
models to disk or elsewhere.

 unfreeze(model, fun_or_predicate \\ :all)

 Unfreezes parameters returned from the given function or predicate.

 Model: Manipulation

 get_inputs(axon)

 Returns information about a model's inputs.

 get_op_counts(axon)

 Returns a map of model op counts for each unique operation
in a model by their given :op_name.

 get_options(axon)

 Returns a node's immediate input options.

 get_output_shape(axon, inputs, opts \\ [])

 Returns a model's output shape from the given input
template.

 get_parameters(axon)

 Returns a node's immediate parameters.

 map_nodes(axon, fun)

 Traverses graph nodes in order, applying fun to each
node exactly once to return a transformed node in its
place(s) in the graph.

 pop_node(axon)

 Pops the top node off of the graph.

 reduce_nodes(axon, acc, fun)

 Traverses graph nodes in order, applying fun to each
node exactly once to return a transformed node in its
place(s) in the graph.

 set_options(axon, new_opts)

 Sets a node's immediate options to the given input
options.

 set_parameters(axon, new_params)

 Sets a node's immediate parameters to the given
parameters.

 Model: Debugging

 attach_hook(x, fun, opts \\ [])

 Attaches a hook to the given Axon model.

 trace_backward(model, inputs, params, loss, opts \\ [])

 Compiles and returns the given model's backward function
expression with respect to the given loss function.

 trace_forward(model, inputs, params, opts \\ [])

 Compiles and returns the given model's forward function
expression with the given options.

 trace_init(model, template, params \\ %{}, opts \\ [])

 Compiles and returns the given model's init function
expression with the given options.

 Functions

 bidirectional(input, forward_fun, merge_fun, opts \\ [])

 Applies the given forward function bidirectionally and merges
the results with the given merge function.

 blur_pool(x, opts \\ [])

 Adds a blur pooling layer to the network.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Axon{nodes: term(), output: term()}

 Anchor for this section

Layers: Special

 Link to this function

 constant(tensor, opts \\ [])

 View Source

Adds a constant layer to the network.
Constant layers encapsulate Nx tensors in an Axon layer for ease
of use with other Axon layers. They can be used interchangeably
with other Axon layers:
inp = Axon.input("input", shape: {nil, 32})
my_constant = Axon.constant(Nx.iota({1, 32}))
model = Axon.add(inp, my_constant)
Constant layers will be cast according to the mixed precision policy.
If it's important for your constant to retain it's type during
the computation, you will need to set the mixed precision policy to
ignore constant layers.

 options

 Options

	:name - layer name.

 Link to this function

 container(container, opts \\ [])

 View Source

Adds a container layer to the network.
In certain cases you may want your model to have multiple
outputs. In order to make this work, you must "join" the
outputs into an Axon layer using this function for use in
initialization and inference later on.
The given container can be any valid Axon Nx container.

 options

 Options

	:name - layer name.

 examples

 Examples

iex> inp1 = Axon.input("input_0", shape: {nil, 1})
iex> inp2 = Axon.input("input_1", shape: {nil, 2})
iex> model = Axon.container(%{a: inp1, b: inp2})
iex> %{a: a, b: b} = Axon.predict(model, %{}, %{
...> "input_0" => Nx.tensor([[1.0]]),
...> "input_1" => Nx.tensor([[1.0, 2.0]])
...> })
iex> a
#Nx.Tensor<
 f32[1][1]
 [
 [1.0]
]
>
iex> b
#Nx.Tensor<
 f32[1][2]
 [
 [1.0, 2.0]
]
>

 Link to this function

 input(name, opts \\ [])

 View Source

Adds an input layer to the network.
Input layers specify a model's inputs. Input layers are
always the root layers of the neural network.
You must specify the input layers name, which will be used
to uniquely identify it in the case of multiple inputs.

 options

 Options

	:shape - the expected input shape, use nil for dimensions
of a dynamic size.

	:optional - if true, the input may be omitted when using
the model. This needs to be handled in one of the subsequent
layers. See optional/2 for more details.

 Link to this function

 layer(op, inputs, opts \\ [])

 View Source

Custom Axon layer with given inputs.
Inputs may be other Axon layers or trainable parameters created
with Axon.param. At inference time, op will be applied with
inputs in specified order and an additional opts parameter which
specifies inference options. All options passed to layer are forwarded
to inference function except:
	:name - layer name.
	:op_name - layer operation for inspection and building parameter map.
	:mode - if the layer should run only on :inference or :train. Defaults to :both

Note this means your layer should not use these as input options,
as they will always be dropped during inference compilation.
Axon's compiler will additionally forward the following options to
every layer at inference time:
	:mode - :inference or :train. To control layer behavior
based on inference or train time.

op is a function of the form:
fun = fn input, weight, bias, _opts ->
 input * weight + bias
end

 Link to this function

 namespace(axon, name)

 View Source

Wraps an Axon model into a namespace.
A namespace is a part of an Axon model which is meant to
be a self-contained collection of Axon layers. Namespaces
are guaranteed to always generate with the same internal
layer names and can be re-used universally across models.
Namespaces are most useful for containing large collections
of layers and offering a straightforward means for accessing
the parameters of individual model components. A common application
of namespaces is to use them in with a pre-trained model for
fine-tuning:
{base, resnet_params} = resnet()
base = base |> Axon.namespace("resnet")

model = base |> Axon.dense(1)
{init_fn, predict_fn} = Axon.build(model)

init_fn.(Nx.template({1, 3, 224, 224}, {:f, 32}), %{"resnset" => resnet_params})
Notice you can use init_fn in conjunction with namespaces
to specify which portion of a model you'd like to initialize
from a fixed starting point.
Namespaces have fixed names, which means it's easy to run into namespace
collisions. Re-using namespaces, re-using inner parts of a namespace,
and attempting to share layers between namespaces are still sharp
edges in namespace usage.

 Link to this function

 nx(input, fun, opts \\ [])

 View Source

Applies the given Nx expression to the input.
Nx layers are meant for quick applications of functions without
trainable parameters. For example, they are useful for applying
functions which apply accessors to containers:
model = Axon.container({foo, bar})
Axon.nx(model, &elem(&1, 0))

 options

 Options

	:name - layer name.

 Link to this function

 optional(x, opts \\ [])

 View Source

Wraps an Axon model in an optional node.
By default, when an optional input is missing, all subsequent layers
are nullified. For example, consider this model:
values = Axon.input("values")
mask = Axon.input("mask", optional: true)

model =
 values
 |> Axon.dense(10)
 |> Axon.multiply(mask)
 |> Axon.dense(1)
 |> Axon.sigmoid()
In case the mask is not provided, the input node will resolve to
%Axon.None{} and so will all the layers that depend on it. By
using optional/2 a layer may opt-in to receive %Axon.None{}.
To fix our example, we could define a custom layer to apply the
mask only when present
def apply_optional_mask(%Axon{} = x, %Axon{} = mask) do
 Axon.layer(
 fn x, mask, _opts ->
 case mask do
 %Axon.None{} -> x
 mask -> Nx.multiply(x, mask)
 end
 end,
 [x, Axon.optional(mask)]
)
end

...

model =
 values
 |> Axon.dense(10)
 |> apply_optional_mask(mask)
 |> Axon.dense(1)
 |> Axon.sigmoid()

 options

 Options

	:name - layer name.

 Link to this function

 param(name, shape, opts \\ [])

 View Source

Trainable Axon parameter used to create custom layers.
Parameters are specified in usages of Axon.layer and will
be automatically initialized and used in subsequent applications
of Axon models.
Parameters must be specified in order of their usage.

 options

 Options

	:initializer - parameter initializer. Defaults to :glorot_uniform.

 Link to this function

 stack_columns(x, opts \\ [])

 View Source

Adds a stack columns layer to the network.
A stack columns layer is designed to be used with Nx.LazyContainer
data structures like Explorer DataFrames. Given an input which is a
DataFrame, stack_columns/2 will stack the columns in each row to
create a single vector.
You may optionally specify :ignore to ignore certain columns in
the container.

 options

 Options

	:name - layer name.

	:ignore - keys to ignore when stacking.

 Anchor for this section

Layers: Activation

 Link to this function

 activation(x, activation, opts \\ [])

 View Source

Adds an activation layer to the network.
Activation layers are element-wise functions typically called
after the output of another layer.

 options

 Options

	:name - layer name.

 Link to this function

 celu(x, opts \\ [])

 View Source

Adds a Continuously-differentiable exponential linear unit activation layer to the network.
See Axon.Activations.celu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 elu(x, opts \\ [])

 View Source

Adds an Exponential linear unit activation layer to the network.
See Axon.Activations.elu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 exp(x, opts \\ [])

 View Source

Adds an Exponential activation layer to the network.
See Axon.Activations.exp/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 gelu(x, opts \\ [])

 View Source

Adds a Gaussian error linear unit activation layer to the network.
See Axon.Activations.gelu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 hard_sigmoid(x, opts \\ [])

 View Source

Adds a Hard sigmoid activation layer to the network.
See Axon.Activations.hard_sigmoid/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 hard_silu(x, opts \\ [])

 View Source

Adds a Hard sigmoid weighted linear unit activation layer to the network.
See Axon.Activations.hard_silu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 hard_tanh(x, opts \\ [])

 View Source

Adds a Hard hyperbolic tangent activation layer to the network.
See Axon.Activations.hard_tanh/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 leaky_relu(x, opts \\ [])

 View Source

Adds a Leaky rectified linear unit activation layer to the network.
See Axon.Activations.leaky_relu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 linear(x, opts \\ [])

 View Source

Adds a Linear activation layer to the network.
See Axon.Activations.linear/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 log_sigmoid(x, opts \\ [])

 View Source

Adds a Log-sigmoid activation layer to the network.
See Axon.Activations.log_sigmoid/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 log_softmax(x, opts \\ [])

 View Source

Adds a Log-softmax activation layer to the network.
See Axon.Activations.log_softmax/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 log_sumexp(x, opts \\ [])

 View Source

Adds a Log-sumexp activation layer to the network.
See Axon.Activations.log_sumexp/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 mish(x, opts \\ [])

 View Source

Adds a Mish activation layer to the network.
See Axon.Activations.mish/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 relu6(x, opts \\ [])

 View Source

Adds a Rectified linear unit 6 activation layer to the network.
See Axon.Activations.relu6/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 relu(x, opts \\ [])

 View Source

Adds a Rectified linear unit activation layer to the network.
See Axon.Activations.relu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 selu(x, opts \\ [])

 View Source

Adds a Scaled exponential linear unit activation layer to the network.
See Axon.Activations.selu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 sigmoid(x, opts \\ [])

 View Source

Adds a Sigmoid activation layer to the network.
See Axon.Activations.sigmoid/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 silu(x, opts \\ [])

 View Source

Adds a Sigmoid weighted linear unit activation layer to the network.
See Axon.Activations.silu/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 softmax(x, opts \\ [])

 View Source

Adds a Softmax activation layer to the network.
See Axon.Activations.softmax/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 softplus(x, opts \\ [])

 View Source

Adds a Softplus activation layer to the network.
See Axon.Activations.softplus/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 softsign(x, opts \\ [])

 View Source

Adds a Softsign activation layer to the network.
See Axon.Activations.softsign/1 for more details.

 options

 Options

	:name - layer name.

 Link to this function

 tanh(x, opts \\ [])

 View Source

Adds a Hyperbolic tangent activation layer to the network.
See Axon.Activations.tanh/1 for more details.

 options

 Options

	:name - layer name.

 Anchor for this section

Layers: Linear

 Link to this function

 bias(x, opts \\ [])

 View Source

Adds a bias layer to the network.
A bias layer simply adds a trainable bias to an input.

 options

 Options

	:name - layer name.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros.

 Link to this function

 bilinear(input1, input2, units, opts \\ [])

 View Source

Adds a bilinear layer to the network.
The bilinear layer implements:
output = activation(dot(dot(input1, kernel), input2) + bias)
where activation is given by the :activation option and both
kernel and bias are layer parameters. units specifies the
number of output units.
All dimensions but the last of input1 and input2 must match. The
batch sizes of both inputs must also match or at least one must be nil.
Inferred output batch size coerces to the strictest input batch size.
Compiles to Axon.Layers.bilinear/5.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros.

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true.

 Link to this function

 dense(x, units, opts \\ [])

 View Source

Adds a dense layer to the network.
The dense layer implements:
output = activation(dot(input, kernel) + bias)
where activation is given by the :activation option and both
kernel and bias are layer parameters. units specifies the
number of output units.
Compiles to Axon.Layers.dense/4.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros.

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true.

 Link to this function

 embedding(x, vocab_size, embedding_size, opts \\ [])

 View Source

Adds an embedding layer to the network.
An embedding layer initializes a kernel of shape {vocab_size, embedding_size}
which acts as a lookup table for sequences of discrete tokens (e.g. sentences).
Embeddings are typically used to obtain a dense representation of a sparse input
space.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights. Defaults
to :uniform.

 Anchor for this section

Layers: Convolution

 Link to this function

 conv(x, units, opts \\ [])

 View Source

Adds a convolution layer to the network.
The convolution layer implements a general dimensional
convolutional layer - which convolves a kernel over the input
to produce an output.
Compiles to Axon.Layers.conv/4.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to 1.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:input_dilation - dilation to apply to input. Defaults to 1.

	:kernel_dilation - dilation to apply to kernel. Defaults to 1.

	:feature_group_size - feature group size for convolution. Defaults
to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 conv_transpose(x, units, opts \\ [])

 View Source

Adds a transposed convolution layer to the network.
The transposed convolution layer is sometimes referred to as a
fractionally strided convolution or (incorrectly) as a deconvolution.
Compiles to Axon.Layers.conv_transpose/4.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to 1.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:kernel_dilation - dilation to apply to kernel. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 depthwise_conv(x, channel_multiplier, opts \\ [])

 View Source

Adds a depthwise convolution layer to the network.
The depthwise convolution layer implements a general
dimensional depthwise convolution - which is a convolution
where the feature group size is equal to the number of
input channels.
Channel multiplier grows the input channels by the given
factor. An input factor of 1 means the output channels
are the same as the input channels.
Compiles to Axon.Layers.depthwise_conv/4.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to 1.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:input_dilation - dilation to apply to input. Defaults to 1.

	:kernel_dilation - dilation to apply to kernel. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 separable_conv2d(x, channel_multiplier, opts \\ [])

 View Source

Adds a depthwise separable 2-dimensional convolution to the
network.
Depthwise separable convolutions break the kernel into kernels
for each dimension of the input and perform a depthwise conv
over the input with each kernel.
Compiles to Axon.Layers.separable_conv2d/6.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to 1.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:input_dilation - dilation to apply to input. Defaults to 1.

	:kernel_dilation - dilation to apply to kernel. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 separable_conv3d(x, channel_multiplier, opts \\ [])

 View Source

Adds a depthwise separable 3-dimensional convolution to the
network.
Depthwise separable convolutions break the kernel into kernels
for each dimension of the input and perform a depthwise conv
over the input with each kernel.
Compiles to Axon.Layers.separable_conv3d/8.

 options

 Options

	:name - layer name.

	:kernel_initializer - initializer for kernel weights.
Defaults to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults
to :zeros

	:activation - element-wise activation function.

	:use_bias - whether the layer should add bias to the output.
Defaults to true

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to 1.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:input_dilation - dilation to apply to input. Defaults to 1.

	:kernel_dilation - dilation to apply to kernel. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Anchor for this section

Layers: Dropout

 Link to this function

 alpha_dropout(x, opts \\ [])

 View Source

Adds an Alpha dropout layer to the network.
See Axon.Layers.alpha_dropout/2 for more details.

 options

 Options

	:name - layer name.

	:rate - dropout rate. Defaults to 0.5.
Needs to be equal or greater than zero and less than one.

 Link to this function

 dropout(x, opts \\ [])

 View Source

Adds a Dropout layer to the network.
See Axon.Layers.dropout/2 for more details.

 options

 Options

	:name - layer name.

	:rate - dropout rate. Defaults to 0.5.
Needs to be equal or greater than zero and less than one.

 Link to this function

 feature_alpha_dropout(x, opts \\ [])

 View Source

Adds a Feature alpha dropout layer to the network.
See Axon.Layers.feature_alpha_dropout/2 for more details.

 options

 Options

	:name - layer name.

	:rate - dropout rate. Defaults to 0.5.
Needs to be equal or greater than zero and less than one.

 Link to this function

 spatial_dropout(x, opts \\ [])

 View Source

Adds a Spatial dropout layer to the network.
See Axon.Layers.spatial_dropout/2 for more details.

 options

 Options

	:name - layer name.

	:rate - dropout rate. Defaults to 0.5.
Needs to be equal or greater than zero and less than one.

 Anchor for this section

Layers: Pooling

 Link to this function

 adaptive_avg_pool(x, opts \\ [])

 View Source

Adds an Adaptive average pool layer to the network.
See Axon.Layers.adaptive_avg_pool/2 for more details.

 options

 Options

	:name - layer name.

	:output_size - layer output size.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 adaptive_lp_pool(x, opts \\ [])

 View Source

Adds an Adaptive power average pool layer to the network.
See Axon.Layers.adaptive_lp_pool/2 for more details.

 options

 Options

	:name - layer name.

	:output_size - layer output size.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 adaptive_max_pool(x, opts \\ [])

 View Source

Adds an Adaptive max pool layer to the network.
See Axon.Layers.adaptive_max_pool/2 for more details.

 options

 Options

	:name - layer name.

	:output_size - layer output size.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 avg_pool(x, opts \\ [])

 View Source

Adds an Average pool layer to the network.
See Axon.Layers.avg_pool/2 for more details.

 options

 Options

	:name - layer name.

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to size of kernel.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:dilations - window dilations. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 global_avg_pool(x, opts \\ [])

 View Source

Adds a Global average pool layer to the network.
See Axon.Layers.global_avg_pool/2 for more details.
Typically used to connect feature extractors such as those in convolutional
neural networks to fully-connected models by reducing inputs along spatial
dimensions to only feature and batch dimensions.

 options

 Options

	:name - layer name.

	:keep_axes - option to keep reduced axes. If true, keeps reduced axes
with a dimension size of 1.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 global_lp_pool(x, opts \\ [])

 View Source

Adds a Global LP pool layer to the network.
See Axon.Layers.global_lp_pool/2 for more details.
Typically used to connect feature extractors such as those in convolutional
neural networks to fully-connected models by reducing inputs along spatial
dimensions to only feature and batch dimensions.

 options

 Options

	:name - layer name.

	:keep_axes - option to keep reduced axes. If true, keeps reduced axes
with a dimension size of 1.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 global_max_pool(x, opts \\ [])

 View Source

Adds a Global max pool layer to the network.
See Axon.Layers.global_max_pool/2 for more details.
Typically used to connect feature extractors such as those in convolutional
neural networks to fully-connected models by reducing inputs along spatial
dimensions to only feature and batch dimensions.

 options

 Options

	:name - layer name.

	:keep_axes - option to keep reduced axes. If true, keeps reduced axes
with a dimension size of 1.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 lp_pool(x, opts \\ [])

 View Source

Adds a Power average pool layer to the network.
See Axon.Layers.lp_pool/2 for more details.

 options

 Options

	:name - layer name.

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to size of kernel.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:dilations - window dilations. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Link to this function

 max_pool(x, opts \\ [])

 View Source

Adds a Max pool layer to the network.
See Axon.Layers.max_pool/2 for more details.

 options

 Options

	:name - layer name.

	:kernel_size - size of the kernel spatial dimensions. Defaults
to 1.

	:strides - stride during convolution. Defaults to size of kernel.

	:padding - padding to the spatial dimensions of the input.
Defaults to :valid.

	:dilations - window dilations. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

 Anchor for this section

Layers: Normalization

 Link to this function

 batch_norm(x, opts \\ [])

 View Source

Adds a Batch normalization layer to the network.
See Axon.Layers.batch_norm/6 for more details.

 options

 Options

	:name - layer name.

	:gamma_initializer - gamma parameter initializer. Defaults
to :glorot_uniform.

	:beta_initializer - beta parameter initializer. Defaults to
:zeros.

	:channel_index - input feature index used for calculating
mean and variance. Defaults to -1.

	:epsilon - numerical stability term. Defaults to 1.0e-5.

 Link to this function

 group_norm(x, num_groups, opts \\ [])

 View Source

Adds a group normalization layer to the network.
See Axon.Layers.group_norm/4 for more details.

 options

 Options

	:name - layer name.

	:gamma_initializer - gamma parameter initializer. Defaults
to :glorot_uniform.

	:beta_initializer - beta parameter initializer. Defaults to
:zeros.

	:channel_index - input feature index used for calculating
mean and variance. Defaults to -1.

	:epsilon - numerical stability term.

 Link to this function

 instance_norm(x, opts \\ [])

 View Source

Adds an Instance normalization layer to the network.
See Axon.Layers.instance_norm/6 for more details.

 options

 Options

	:name - layer name.

	:gamma_initializer - gamma parameter initializer. Defaults
to :glorot_uniform.

	:beta_initializer - beta parameter initializer. Defaults to
:zeros.

	:channel_index - input feature index used for calculating
mean and variance. Defaults to -1.

	:epsilon - numerical stability term. Defaults to 1.0e-5.

 Link to this function

 layer_norm(x, opts \\ [])

 View Source

Adds a Layer normalization layer to the network.
See Axon.Layers.layer_norm/4 for more details.

 options

 Options

	:name - layer name.

	:gamma_initializer - gamma parameter initializer. Defaults
to :glorot_uniform.

	:beta_initializer - beta parameter initializer. Defaults to
:zeros.

	:channel_index - input feature index used for calculating
mean and variance. Defaults to -1.

	:epsilon - numerical stability term.

 Anchor for this section

Layers: Recurrent

 Link to this function

 conv_lstm(x, units)

 View Source

See conv_lstm/3.

 Link to this function

 conv_lstm(x, units, opts)

 View Source

Adds a convolutional long short-term memory (LSTM) layer to the network
with a random initial hidden state.
See conv_lstm/4 for more details.

 additional-options

 Additional options

	:recurrent_initializer - initializer for hidden state. Defaults
to :orthogonal.

 Link to this function

 conv_lstm(x, hidden_state, units, opts)

 View Source

Adds a convolutional long short-term memory (LSTM) layer to the network
with the given initial hidden state..
ConvLSTMs apply Axon.Layers.conv_lstm_cell/5 over an entire input
sequence and return:
{{new_cell, new_hidden}, output_sequence}
You can use the output state as the hidden state of another
ConvLSTM layer.

 options

 Options

	:name - layer name.

	:padding - convolutional padding. Defaults to :same.

	:kernel_size - convolutional kernel size. Defaults to 1.

	:strides - convolutional strides. Defaults to 1.

	:unroll - :dynamic (loop preserving) or :static (compiled)
unrolling of RNN.

	:kernel_initializer - initializer for kernel weights. Defaults
to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults to
:zeros.

	:use_bias - whether the layer should add bias to the output.
Defaults to true.

 Link to this function

 gru(x, units)

 View Source

See gru/3.

 Link to this function

 gru(x, units, opts)

 View Source

Adds a gated recurrent unit (GRU) layer to the network with
a random initial hidden state.
See gru/4 for more details.

 additional-options

 Additional options

	:recurrent_initializer - initializer for hidden state.
Defaults to :orthogonal.

 Link to this function

 gru(x, hidden_state, units, opts)

 View Source

Adds a gated recurrent unit (GRU) layer to the network with
the given initial hidden state.
GRUs apply Axon.Layers.gru_cell/7 over an entire input
sequence and return:
{{new_hidden}, output_sequence}
You can use the output state as the hidden state of another
GRU layer.

 options

 Options

	:name - layer name.

	:activation - recurrent activation. Defaults to :tanh.

	:gate - recurrent gate function. Defaults to :sigmoid.

	:unroll - :dynamic (loop preserving) or :static (compiled)
unrolling of RNN.

	:kernel_initializer - initializer for kernel weights. Defaults
to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults to
:zeros.

	:use_bias - whether the layer should add bias to the output.
Defaults to true.

 Link to this function

 lstm(x, units)

 View Source

See lstm/3.

 Link to this function

 lstm(x, units, opts)

 View Source

Adds a long short-term memory (LSTM) layer to the network
with a random initial hidden state.
See lstm/4 for more details.

 additional-options

 Additional options

	:recurrent_initializer - initializer for hidden state.
Defaults to :orthogonal.

 Link to this function

 lstm(x, hidden_state, units, opts \\ [])

 View Source

Adds a long short-term memory (LSTM) layer to the network
with the given initial hidden state.
LSTMs apply Axon.Layers.lstm_cell/7 over an entire input
sequence and return:
{output_sequence, {new_cell, new_hidden}}
You can use the output state as the hidden state of another
LSTM layer.

 options

 Options

	:name - layer name.

	:activation - recurrent activation. Defaults to :tanh.

	:gate - recurrent gate function. Defaults to :sigmoid.

	:unroll - :dynamic (loop preserving) or :static (compiled)
unrolling of RNN.

	:kernel_initializer - initializer for kernel weights. Defaults
to :glorot_uniform.

	:bias_initializer - initializer for bias weights. Defaults to
:zeros.

	:use_bias - whether the layer should add bias to the output.
Defaults to true.

 Link to this function

 mask(input, eos_token, opts \\ [])

 View Source

Computes a sequence mask according to the given EOS token.
Masks can be propagated to recurrent layers or custom layers to
indicate that a given token should be ignored in processing. This
is useful when you have sequences of variable length.
Most commonly, eos_token is 0.

 options

 Options

	:name - layer name.

 Anchor for this section

Layers: Combinators

 Link to this function

 add(x, y, opts)

 View Source

Adds a add layer to the network.
This layer performs an element-wise add operation
on input layers. All input layers must be capable of being
broadcast together.
If one shape has a static batch size, all other shapes must have a
static batch size as well.

 options

 Options

	:name - layer name.

 Link to this function

 concatenate(x, y, opts)

 View Source

Adds a concatenate layer to the network.
This layer will concatenate inputs along the last
dimension unless specified otherwise.

 options

 Options

	:name - layer name.

	:axis - concatenate axis. Defaults to -1.

 Link to this function

 cond(parent, cond_fn, true_graph, false_graph, opts \\ [])

 View Source

Adds a conditional layer which conditionally executes
true_graph or false_graph based on the condition cond_fn
at runtime.
cond_fn is an arity-1 function executed on the output of the
parent graph. It must return a boolean scalar tensor (e.g. 1 or 0).
The shapes of true_graph and false_graph must be equal.

 Link to this function

 multiply(x, y, opts)

 View Source

Adds a multiply layer to the network.
This layer performs an element-wise multiply operation
on input layers. All input layers must be capable of being
broadcast together.
If one shape has a static batch size, all other shapes must have a
static batch size as well.

 options

 Options

	:name - layer name.

 Link to this function

 split(parent, splits, opts \\ [])

 View Source

Splits input graph into a container of n input graphs
along the given axis.

 options

 Options

	:name - layer name.

	:axis - concatenate axis. Defaults to -1.

 Link to this function

 subtract(x, y, opts)

 View Source

Adds a subtract layer to the network.
This layer performs an element-wise subtract operation
on input layers. All input layers must be capable of being
broadcast together.
If one shape has a static batch size, all other shapes must have a
static batch size as well.

 options

 Options

	:name - layer name.

 Anchor for this section

Layers: Shape

 Link to this function

 flatten(x, opts \\ [])

 View Source

Adds a flatten layer to the network.
This layer will flatten all but the batch dimensions
of the input into a single layer. Typically called to flatten
the output of a convolution for use with a dense layer.

 options

 Options

	:name - layer name.

 Link to this function

 pad(x, config, value \\ 0.0, opts \\ [])

 View Source

Adds a pad layer to the network.
This layer will pad the spatial dimensions of the input.
Padding configuration is a list of tuples for each spatial
dimension.

 options

 Options

	:name - layer name.

	:channels - channel configuration. One of :first or
:last. Defaults to :last.

 Link to this function

 reshape(x, new_shape, opts \\ [])

 View Source

Adds a reshape layer to the network.
This layer implements a special case of Nx.reshape which accounts
for possible batch dimensions in the input tensor. You may pass the
magic dimension :batch as a placeholder for dynamic batch sizes.
You can use :batch seamlessly with :auto dimension sizes.
If the input is an Axon constant, the reshape behavior matches that of
Nx.reshape/2.

 options

 Options

	:name - layer name.

 Link to this function

 resize(x, resize_shape, opts \\ [])

 View Source

Adds a resize layer to the network.
Resizing can be used for interpolation or upsampling input
values in a neural network. For example, you can use this
layer as an upsampling layer within a GAN.
Resize shape must be a tuple representing the resized spatial
dimensions of the input tensor.
Compiles to Axon.Layers.resize/2.

 options

 Options

	:name - layer name.

	:method - resize method. Defaults to :nearest.

	:channels - channel configuration. One of :first or
:last. Defaults to :last.

 Link to this function

 transpose(x, permutation \\ nil, opts \\ [])

 View Source

Adds a transpose layer to the network.

 options

 Options

	:name - layer name.

 Anchor for this section

Model

 Link to this function

 build(model, opts \\ [])

 View Source

Builds the given model to {init_fn, predict_fn}.
The given functions can be either given as arguments to Nx.Defn
functions or be invoked directly, to perform just-in-time compilation
and execution. If you want to compile the model (instead of just-in-time)
based on a predefined initialization shape, see compile/4.

 init_fn

 init_fn

The init_fn receives two arguments, the input template and
an optional map with initial parameters for layers or namespaces:
{init_fn, predict_fn} = Axon.build(model)
init_fn.(Nx.template({1, 1}, {:f, 32}), %{"dense_0" => dense_params})

 predict_fn

 predict_fn

The predict_fn receives two arguments, the trained parameters
and the actual inputs:
{_init_fn, predict_fn} = Axon.build(model, opts)
predict_fn.(params, input)

 options

 Options

	:compiler - the underlying Nx.Defn compiler to perform
JIT compilation when the functions are invoked. If none is
passed, it uses the default compiler configured in Nx.Defn;

	:debug - if true, will log graph traversal and generation
metrics. Also forwarded to JIT if debug mode is available
for your chosen compiler or backend. Defaults to false

	:mode - one of :inference or :train. Forwarded to layers
to control differences in compilation at training or inference time.
Defaults to :inference

All other options are forwarded to the underlying JIT compiler.

 Link to this function

 compile(model, template, init_params \\ %{}, opts \\ [])

 View Source

Compiles the given model to {init_fn, predict_fn}.
This function will compile a model specialized to the given
input shapes and types. This is useful for avoiding the overhead
of long compilations at program runtime. You must provide template
inputs which match the expected shapes and types of inputs at
execution time.
This function makes use of the built-in Nx.Defn.compile/3. Note
that passing inputs which differ in shape or type from the templates
provided to this function will result in a crash.

 options

 Options

It accepts the same options as build/2.

 Link to this function

 deserialize(serialized, opts \\ [])

 View Source

Deserializes serialized model and parameters into a {model, params}
tuple.
It is the opposite of Axon.serialize/3.

 examples

 Examples

iex> model = Axon.input("input", shape: {nil, 2}) |> Axon.dense(1, kernel_initializer: :zeros, activation: :relu)
iex> {init_fn, _} = Axon.build(model)
iex> params = init_fn.(Nx.template({1, 2}, :f32), %{})
iex> serialized = Axon.serialize(model, params)
iex> {saved_model, saved_params} = Axon.deserialize(serialized)
iex> {_, predict_fn} = Axon.build(saved_model)
iex> predict_fn.(saved_params, Nx.tensor([[1.0, 1.0]]))
#Nx.Tensor<
 f32[1][1]
 [
 [0.0]
]
>

 Link to this function

 freeze(model, fun_or_predicate \\ :all)

 View Source

Freezes parameters returned from the given function or predicate.
fun can be a predicate :all, up: n, or down: n. :all
freezes all parameters in the model, up: n freezes the first n
layers up (starting from output), and down: n freezes the first n
layers down (starting from input).
fun may also be a predicate function which takes a parameter and
returns true if a parameter should be frozen or false otherwise.
Freezing parameters is useful when performing transfer learning
to leverage features learned from another problem in a new problem.
For example, it's common to combine the convolutional base from
larger models trained on ImageNet with fresh fully-connected classifiers.
The combined model is then trained on fresh data, with the convolutional
base frozen so as not to lose information. You can see this example
in code here:
cnn_base = get_pretrained_cnn_base()
model =
 cnn_base
 |> Axon.freeze()
 |> Axon.flatten()
 |> Axon.dense(1024, activation: :relu)
 |> Axon.dropout()
 |> Axon.dense(1000, activation: :softmax)

model
|> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.005))
|> Axon.Loop.run(data, epochs: 10)
When compiled, frozen parameters are wrapped in Nx.Defn.Kernel.stop_grad/1,
which zeros out the gradient with respect to the frozen parameter. Gradients
of frozen parameters will return 0.0, meaning they won't be changed during
the update process.

 Link to this function

 predict(model, params, input, opts \\ [])

 View Source

Builds and runs the given Axon model with params and input.
This is equivalent to calling build/2 and then invoking the
predict function.

 options

 Options

	:mode - one of :inference or :train. Forwarded to layers
to control differences in compilation at training or inference time.
Defaults to :inference

	:debug - if true, will log graph traversal and generation
metrics. Also forwarded to JIT if debug mode is available
for your chosen compiler or backend. Defaults to false

All other options are forwarded to the default JIT compiler
or backend.

 Link to this function

 serialize(axon, params, opts \\ [])

 View Source

Serializes a model and its parameters for persisting
models to disk or elsewhere.
Model and parameters are serialized as a tuple, where the
model is converted to a recursive map to ensure compatibility
with future Axon versions and the parameters are serialized
using Nx.serialize/2. There is some additional metadata included
such as current serialization version for compatibility.
Serialization opts are forwarded to Nx.serialize/2 and
:erlang.term_to_binary/2 for controlling compression options.

 examples

 Examples

iex> model = Axon.input("input", shape: {nil, 2}) |> Axon.dense(1, kernel_initializer: :zeros, activation: :relu)
iex> {init_fn, _} = Axon.build(model)
iex> params = init_fn.(Nx.template({1, 2}, :f32), %{})
iex> serialized = Axon.serialize(model, params)
iex> {saved_model, saved_params} = Axon.deserialize(serialized)
iex> {_, predict_fn} = Axon.build(saved_model)
iex> predict_fn.(saved_params, Nx.tensor([[1.0, 1.0]]))
#Nx.Tensor<
 f32[1][1]
 [
 [0.0]
]
>

 Link to this function

 unfreeze(model, fun_or_predicate \\ :all)

 View Source

Unfreezes parameters returned from the given function or predicate.
fun can be a predicate :all, up: n, or down: n. :all
freezes all parameters in the model, up: n unfreezes the first n
layers up (starting from output), and down: n freezes the first n
layers down (starting from input).
fun may also be a predicate function which takes a parameter and
returns true if a parameter should be unfrozen or false otherwise.
Unfreezing parameters is useful when fine tuning a model which you
have previously frozen and performed transfer learning on. You may
want to unfreeze some of the later frozen layers in a model and
fine tune them specifically for your application:
cnn_base = get_pretrained_cnn_base()
model =
 frozen_model
 |> Axon.unfreeze(up: 25)

model
|> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.0005))
|> Axon.Loop.run(data, epochs: 10)
When compiled, frozen parameters are wrapped in Nx.Defn.Kernel.stop_grad/1,
which zeros out the gradient with respect to the frozen parameter. Gradients
of frozen parameters will return 0.0, meaning they won't be changed during
the update process.

 Anchor for this section

Model: Manipulation

 Link to this function

 get_inputs(axon)

 View Source

Returns information about a model's inputs.

 Link to this function

 get_op_counts(axon)

 View Source

Returns a map of model op counts for each unique operation
in a model by their given :op_name.

 examples

 Examples

iex> model = Axon.input("input", shape: {nil, 1}) |> Axon.dense(2)
iex> Axon.get_op_counts(model)
%{input: 1, dense: 1}

iex> model = Axon.input("input", shape: {nil, 1}) |> Axon.tanh() |> Axon.tanh()
iex> Axon.get_op_counts(model)
%{input: 1, tanh: 2}

 Link to this function

 get_options(axon)

 View Source

Returns a node's immediate input options.
Note that this does not take into account options of
parent layers, only the option which belong to the
immediate layer.

 Link to this function

 get_output_shape(axon, inputs, opts \\ [])

 View Source

Returns a model's output shape from the given input
template.

 Link to this function

 get_parameters(axon)

 View Source

Returns a node's immediate parameters.
Note this does not take into account parameters of
parent layers - only the parameters which belong to
the immediate layer.

 Link to this function

 map_nodes(axon, fun)

 View Source

Traverses graph nodes in order, applying fun to each
node exactly once to return a transformed node in its
place(s) in the graph.
This function maintains an internal cache which ensures
each node is only visited and transformed exactly once.
fun must accept an Axon node and return an Axon node.
Please note that modifying node lineage (e.g. altering
a node's parent) will result in disconnected graphs.

 examples

 Examples

One common use of this function is to implement common
instrumentation between layers without needing to build
a new explicitly instrumented version of a model. For example,
you can use this function to visualize intermediate activations
of all convolutional layers in a model:
instrumented_model = Axon.map_nodes(model, fn
 %Axon.Node{op: :conv} = axon_node ->
 Axon.attach_hook(axon_node, &visualize_activations/1)

 axon_node ->
 axon_node
end)
Another use case is to replace entire classes of layers
with another. For example, you may want to replace all
relu layers with tanh layers:
new_model = Axon.map_nodes(model, fn
 %Axon{op: :relu} = graph ->
 # Get nodes immediate parent
 parent = Axon.get_parent(graph)
 # Replace node with a tanh
 Axon.tanh(parent)

 graph ->
 graph
end)

 Link to this function

 pop_node(axon)

 View Source

Pops the top node off of the graph.
This returns the popped node and the updated graph:
{_node, model} = Axon.pop_node(model)

 Link to this function

 reduce_nodes(axon, acc, fun)

 View Source

Traverses graph nodes in order, applying fun to each
node exactly once to return a transformed node in its
place(s) in the graph.
This function maintains an internal cache which ensures
each node is only visited and transformed exactly once.
fun must accept an Axon node and accumulator and return
an updated accumulator.

 examples

 Examples

Internally this function is used in several places to accumulate
graph metadata. For example, you can use it to count the number
of a certain type of operation in the graph:
Axon.reduce_nodes(model, 0, fn
 %Axon.Nodes{op: :relu}, acc -> acc + 1
 _, acc -> acc
end)

 Link to this function

 set_options(axon, new_opts)

 View Source

Sets a node's immediate options to the given input
options.
Note that this does not take into account options of
parent layers, only the option which belong to the
immediate layer.
New options must be compatible with the given layer
op. Adding unsupported options to an Axon layer will
result in an error at graph execution time.

 Link to this function

 set_parameters(axon, new_params)

 View Source

Sets a node's immediate parameters to the given
parameters.
Note this does not take into account parameters of
parent layers - only the parameters which belong to
the immediate layer.
The new parameters must be compatible with the layer's
old parameters.

 Anchor for this section

Model: Debugging

 Link to this function

 attach_hook(x, fun, opts \\ [])

 View Source

Attaches a hook to the given Axon model.
Hooks compile down to Nx.Defn.Kernel.hook/3 and provide the same
functionality for adding side-effecting operations to a compiled
model. For example, you can use hooks to inspect intermediate activations,
send data to an external service, and more.
Hooks can be configured to be invoked on the following events:
	:initialize - on model initialization.
	:pre_forward - before layer forward pass is invoked.
	:forward - after layer forward pass is invoked.
	:backward - after layer backward pass is invoked.

To invoke a hook on every single event, you may pass :all to on:.
Axon.input("input", shape: {nil, 1}) |> Axon.attach_hook(&IO.inspect/1, on: :all)
The default event is :forward, assuming you want a hook invoked
on the layers forward pass.
You may configure hooks to run in one of only training or inference
mode using the :mode option. The default mode is :both to be invoked
during both train and inference mode.
Axon.input("input", shape: {nil, 1}) |> Axon.attach_hook(&IO.inspect/1, on: :forward, mode: :train)
You can also attach multiple hooks to a single layer. Hooks are invoked in
the order in which they are declared. If order is important, you should attach
hooks in the order you want them to be executed:
Axon.input("input", shape: {nil, 1})
I will be executed first
|> Axon.attach_hook(&IO.inspect/1)
I will be executed second
|> Axon.attach_hook(fn _ -> IO.write("HERE") end)
Hooks are executed at their point of attachment. You must insert hooks at each point
you want a hook to execute during model execution.
Axon.input("input", shape: {nil, 1})
|> Axon.attach_hook(&IO.inspect/1)
|> Axon.relu()
|> Axon.attach_hook(&IO.inspect/1)

 Link to this function

 trace_backward(model, inputs, params, loss, opts \\ [])

 View Source

Compiles and returns the given model's backward function
expression with respect to the given loss function.
The returned expression is an Nx expression which can be
traversed and lowered to an IR or inspected for debugging
purposes.
The given loss function must be a scalar loss function which
expects inputs and targets with the same shapes as the model's
output shapes as determined by the model's signature.

 options

 Options

	:debug - if true, will log graph traversal and generation
metrics. Also forwarded to JIT if debug mode is available
for your chosen compiler or backend. Defaults to false

 Link to this function

 trace_forward(model, inputs, params, opts \\ [])

 View Source

Compiles and returns the given model's forward function
expression with the given options.
The returned expression is an Nx expression which can be
traversed and lowered to an IR or inspected for debugging
purposes.

 options

 Options

	:mode - one of :inference or :train. Forwarded to layers
to control differences in compilation at training or inference time.
Defaults to :inference

	:debug - if true, will log graph traversal and generation
metrics. Also forwarded to JIT if debug mode is available
for your chosen compiler or backend. Defaults to false

 Link to this function

 trace_init(model, template, params \\ %{}, opts \\ [])

 View Source

Compiles and returns the given model's init function
expression with the given options.
The returned expression is an Nx expression which can be
traversed and lowered to an IR or inspected for debugging
purposes.
You may optionally specify initial parameters for some layers or
namespaces by passing a partial parameter map:
Axon.trace_init(model, %{"dense_0" => dense_params})
The parameter map will be merged with the initialized model
parameters.

 options

 Options

	:debug - if true, will log graph traversal and generation
metrics. Also forwarded to JIT if debug mode is available
for your chosen compiler or backend. Defaults to false

 Anchor for this section

Functions

 Link to this function

 bidirectional(input, forward_fun, merge_fun, opts \\ [])

 View Source

Applies the given forward function bidirectionally and merges
the results with the given merge function.
This is most commonly used with RNNs to capture the dependencies
of a sequence in both directions.

 options

 Options

	axis - Axis to reverse.

 Link to this function

 blur_pool(x, opts \\ [])

 View Source

Adds a blur pooling layer to the network.
See Axon.Layers.blur_pool/2 for more details.

 options

 Options

	:name - layer name.

	:strides - stride during convolution. Defaults to 1.

	:channels - channels location. One of :first or :last.
Defaults to :last.

Axon.MixedPrecision

Utilities for creating mixed precision policies.
Mixed precision is useful for increasing model throughput at the possible
price of a small dip in accuracy. When creating a mixed precision policy,
you define the policy for params, compute, and output.
The params policy dictates what type parameters should be stored as
during training. The compute policy dictates what type should be used
during intermediate computations in the model's forward pass. The output
policy dictates what type the model should output.
Here's an example of creating a mixed precision policy and applying it
to a model:
model =
 Axon.input("input", shape: {nil, 784})
 |> Axon.dense(128, activation: :relu)
 |> Axon.batch_norm()
 |> Axon.dropout(rate: 0.5)
 |> Axon.dense(64, activation: :relu)
 |> Axon.batch_norm()
 |> Axon.dropout(rate: 0.5)
 |> Axon.dense(10, activation: :softmax)

policy = Axon.MixedPrecision.create_policy(
 params: {:f, 32},
 compute: {:f, 16},
 output: {:f, 32}
)

mp_model =
 model
 |> Axon.MixedPrecision.apply_policy(policy, except: [:batch_norm])
The example above applies the mixed precision policy to every layer in
the model except Batch Normalization layers. The policy will cast parameters
and inputs to {:f, 16} for intermediate computations in the model's forward
pass before casting the output back to {:f, 32}.

 Anchor for this section

 Summary

 Functions

 cast(policy, tensor_or_container, variable_type)

 Casts the given container according to the given policy
and type.

 create_policy(opts \\ [])

 Creates a mixed precision policy with the given options.

 Anchor for this section

Functions

 Link to this function

 cast(policy, tensor_or_container, variable_type)

 View Source

Casts the given container according to the given policy
and type.

 examples

 Examples

iex> policy = Axon.MixedPrecision.create_policy(params: {:f, 16})
iex> params = %{"dense" => %{"kernel" => Nx.tensor([1.0, 2.0, 3.0])}}
iex> params = Axon.MixedPrecision.cast(policy, params, :params)
iex> Nx.type(params["dense"]["kernel"])
{:f, 16}

iex> policy = Axon.MixedPrecision.create_policy(compute: {:bf, 16})
iex> value = Nx.tensor([1.0, 2.0, 3.0])
iex> value = Axon.MixedPrecision.cast(policy, value, :compute)
iex> Nx.type(value)
{:bf, 16}

iex> policy = Axon.MixedPrecision.create_policy(output: {:bf, 16})
iex> value = Nx.tensor([1.0, 2.0, 3.0])
iex> value = Axon.MixedPrecision.cast(policy, value, :output)
iex> Nx.type(value)
{:bf, 16}

 Link to this function

 create_policy(opts \\ [])

 View Source

Creates a mixed precision policy with the given options.

 options

 Options

	params - parameter precision policy. Defaults to {:f, 32}
	compute - compute precision policy. Defaults to {:f, 32}
	output - output precision policy. Defaults to {:f, 32}

 examples

 Examples

iex> Axon.MixedPrecision.create_policy(params: {:f, 16}, output: {:f, 16})
#Axon.MixedPrecision.Policy<p=f16 c=f32 o=f16>

iex> Axon.MixedPrecision.create_policy(compute: {:bf, 16})
#Axon.MixedPrecision.Policy<p=f32 c=bf16 o=f32>

Axon.None

Represents a missing value of an optional node.
See Axon.input/2 and Axon.optional/2 for more details.

Axon.StatefulOutput

Container for returning stateful outputs from Axon layers.
Some layers, such as Axon.batch_norm/2, keep a running internal
state which is updated continuously at train time and used statically
at inference time. In order for the Axon compiler to differentiate
ordinary layer outputs from internal state, you must mark output
as stateful.
Stateful Outputs consist of two fields:
:output - Actual layer output to be forwarded to next layer
:state - Internal layer state to be tracked and updated
:output is simply forwarded to the next layer. :state is aggregated
with other stateful outputs, and then is treated specially by internal
Axon training functions such that update state parameters reflect returned
values from stateful outputs.
:state must be a map with keys that map directly to layer internal
state names. For example, Axon.Layers.batch_norm returns StatefulOutput
with :state keys of "mean" and "var".

Axon.Display

Module for rendering various visual representations of Axon models.

 Anchor for this section

 Summary

 Functions

 as_graph(axon, input_templates, opts \\ [])

 Traces execution of the given Axon model with the given
inputs, rendering the execution flow as a mermaid flowchart.

 as_table(axon, input_templates)

 Traces execution of the given Axon model with the given
inputs, rendering the execution flow as a table.

 Anchor for this section

Functions

 Link to this function

 as_graph(axon, input_templates, opts \\ [])

 View Source

Traces execution of the given Axon model with the given
inputs, rendering the execution flow as a mermaid flowchart.
You must include kino as
a dependency in your project to make use of this function.

 options

 Options

	:direction - defines the direction of the graph visual. The
value can either be :top_down or :left_right. Defaults to :top_down.

 examples

 Examples

Given an Axon model:
model = Axon.input("input") |> Axon.dense(32)
You can define input templates for each input:
input = Nx.template({1, 16}, :f32)
And then display the execution flow of the model:
Axon.Display.as_graph(model, input, direction: :top_down)

 Link to this function

 as_table(axon, input_templates)

 View Source

Traces execution of the given Axon model with the given
inputs, rendering the execution flow as a table.
You must include table_rex as
a dependency in your project to make use of this function.

 examples

 Examples

Given an Axon model:
model = Axon.input("input") |> Axon.dense(32)
You can define input templates for each input:
input = Nx.template({1, 16}, :f32)
And then display the execution flow of the model:
Axon.Display.as_table(model, input)

Axon.Activations

Activation functions.
Activation functions are element-wise, (typically) non-linear
functions called on the output of another layer, such as
a dense layer:
x
|> dense(weight, bias)
|> relu()
Activation functions output the "activation" or how active
a given layer's neurons are in learning a representation
of the data-generating distribution.
Some activations are commonly used as output activations. For
example softmax is often used as the output in multiclass
classification problems because it returns a categorical
probability distribution:
iex> Axon.Activations.softmax(Nx.tensor([[1, 2, 3]], type: {:f, 32}))
#Nx.Tensor<
 f32[1][3]
 [
 [0.09003057330846786, 0.2447284758090973, 0.6652409434318542]
]
>
Other activations such as tanh or sigmoid are used because
they have desirable properties, such as keeping the output
tensor constrained within a certain range.
Generally, the choice of activation function is arbitrary;
although some activations work better than others in certain
problem domains. For example ReLU (rectified linear unit)
activation is a widely-accepted default. You can see
a list of activation functions and implementations
here.
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.

 Anchor for this section

 Summary

 Functions

 celu(x, opts \\ [])

 Continuously-differentiable exponential linear unit activation.

 elu(x, opts \\ [])

 Exponential linear unit activation.

 exp(x)

 Exponential activation.

 gelu(x)

 Gaussian error linear unit activation.

 hard_sigmoid(x, opts \\ [])

 Hard sigmoid activation.

 hard_silu(x, opts \\ [])

 Hard sigmoid weighted linear unit activation.

 hard_tanh(x)

 Hard hyperbolic tangent activation.

 leaky_relu(x, opts \\ [])

 Leaky rectified linear unit activation.

 linear(x)

 Linear activation.

 log_sigmoid(x)

 Log-sigmoid activation.

 log_softmax(x, opts \\ [])

 Log-softmax activation.

 log_sumexp(x, opts \\ [])

 Logsumexp activation.

 mish(x)

 Mish activation.

 relu6(x)

 Rectified linear unit 6 activation.

 relu(x)

 Rectified linear unit activation.

 selu(x, opts \\ [])

 Scaled exponential linear unit activation.

 sigmoid(x)

 Sigmoid activation.

 silu(x)

 Sigmoid weighted linear unit activation.

 softmax(x, opts \\ [])

 Softmax activation along an axis.

 softplus(x)

 Softplus activation.

 softsign(x)

 Softsign activation.

 tanh(x)

 Hyperbolic tangent activation.

 Anchor for this section

Functions

 Link to this function

 celu(x, opts \\ [])

 View Source

Continuously-differentiable exponential linear unit activation.
$$f(x_i) = \max(0, x_i) + \min(0, \alpha * e^{\frac{x_i}{\alpha}} - 1)$$

 options

 Options

	alpha - α in CELU formulation. Must be non-zero.
Defaults to 1.0

 examples

 Examples

iex> Axon.Activations.celu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0]))
#Nx.Tensor<
 f32[7]
 [-0.9502129554748535, -0.8646647334098816, -0.6321205496788025, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.celu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}))
#Nx.Tensor<
 bf16[2][3]
 [
 [-0.62890625, -0.86328125, -0.94921875],
 [1.0, 2.0, 3.0]
]
>

 error-cases

 Error cases

iex> Axon.Activations.celu(Nx.tensor([0.0, 1.0, 2.0], type: {:f, 32}), alpha: 0.0)
** (ArgumentError) :alpha must be non-zero in CELU activation

 references

 References

	Continuously Differentiable Exponential Linear Units

 Link to this function

 elu(x, opts \\ [])

 View Source

Exponential linear unit activation.
Equivalent to celu for $\alpha = 1$
$$f(x_i) = \begin{cases}x_i & x _i > 0 \newline \alpha * (e^{x_i} - 1) & x_i \leq 0 \ \end{cases}$$

 options

 Options

	alpha - α in ELU formulation. Defaults to 1.0

 examples

 Examples

iex> Axon.Activations.elu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0]))
#Nx.Tensor<
 f32[7]
 [-0.9502129554748535, -0.8646647334098816, -0.6321205496788025, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.elu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}))
#Nx.Tensor<
 bf16[2][3]
 [
 [-0.62890625, -0.86328125, -0.94921875],
 [1.0, 2.0, 3.0]
]
>

 references

 References

	Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)

 Link to this function

 exp(x)

 View Source

Exponential activation.
$$f(x_i) = e^{x_i}$$

 examples

 Examples

iex> Axon.Activations.exp(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [0.049787066876888275, 0.1353352814912796, 0.3678794503211975, 1.0, 2.7182817459106445, 7.389056205749512, 20.08553695678711]
>

iex> Axon.Activations.exp(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.3671875, 0.134765625, 0.049560546875],
 [2.703125, 7.375, 20.0]
]
>

 Link to this function

 gelu(x)

 View Source

Gaussian error linear unit activation.
$$f(x_i) = \frac{x_i}{2}(1 + {erf}(\frac{x_i}{\sqrt{2}}))$$

 examples

 Examples

iex> Axon.Activations.gelu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.0040496885776519775, -0.04550027847290039, -0.15865525603294373, 0.0, 0.8413447141647339, 1.9544997215270996, 2.995950222015381]
>

iex> Axon.Activations.gelu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.16015625, -0.046875, -0.005859375],
 [0.83984375, 1.953125, 2.984375]
]
>

 references

 References

	Gaussian Error Linear Units (GELUs)

 Link to this function

 hard_sigmoid(x, opts \\ [])

 View Source

Hard sigmoid activation.

 examples

 Examples

iex> Axon.Activations.hard_sigmoid(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [0.0, 0.0, 0.0, 0.20000000298023224, 0.4000000059604645, 0.6000000238418579, 0.800000011920929]
>

iex> Axon.Activations.hard_sigmoid(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [7.781982421875e-4, 0.0, 0.0],
 [0.3984375, 0.59765625, 0.796875]
]
>

 Link to this function

 hard_silu(x, opts \\ [])

 View Source

Hard sigmoid weighted linear unit activation.
$$f(x_i) = \begin{cases} 0 & x_i \leq -3 \newline
x & x_i \geq 3 \newline
\frac{x_i^2}{6} + \frac{x_i}{2} & otherwise \end{cases}$$

 examples

 Examples

iex> Axon.Activations.hard_silu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.0, -0.0, -0.0, 0.0, 0.4000000059604645, 1.2000000476837158, 2.4000000953674316]
>

iex> Axon.Activations.hard_silu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-7.781982421875e-4, -0.0, -0.0],
 [0.3984375, 1.1953125, 2.390625]
]
>

 Link to this function

 hard_tanh(x)

 View Source

Hard hyperbolic tangent activation.
$$f(x_i) = \begin{cases} 1 & x > 1 \newline -1 & x < -1 \newline x & otherwise \end{cases}$$

 examples

 Examples

iex> Axon.Activations.hard_tanh(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0]
>

iex> Axon.Activations.hard_tanh(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-1.0, -1.0, -1.0],
 [1.0, 1.0, 1.0]
]
>

 Link to this function

 leaky_relu(x, opts \\ [])

 View Source

Leaky rectified linear unit activation.
$$f(x_i) = \begin{cases} x & x \geq 0 \newline \alpha * x & otherwise \end{cases}$$

 options

 Options

	:alpha - α in Leaky ReLU formulation. Defaults to 1.0e-2

 examples

 Examples

iex> Axon.Activations.leaky_relu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]), alpha: 0.5)
#Nx.Tensor<
 f32[data: 7]
 [-1.5, -1.0, -0.5, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.leaky_relu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], names: [:batch, :data]), alpha: 0.5)
#Nx.Tensor<
 f32[batch: 2][data: 3]
 [
 [-0.5, -1.0, -1.5],
 [1.0, 2.0, 3.0]
]
>

 Link to this function

 linear(x)

 View Source

Linear activation.
$$f(x_i) = x_i$$

 examples

 Examples

iex> Axon.Activations.linear(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.linear(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-1.0, -2.0, -3.0],
 [1.0, 2.0, 3.0]
]
>

 Link to this function

 log_sigmoid(x)

 View Source

Log-sigmoid activation.
$$f(x_i) = \log(sigmoid(x))$$

 examples

 Examples

iex> Axon.Activations.log_sigmoid(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], type: {:f, 32}, names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-3.0485873222351074, -2.1269280910491943, -1.3132617473602295, -0.6931471824645996, -0.3132616877555847, -0.12692801654338837, -0.04858734831213951]
>

iex> Axon.Activations.log_sigmoid(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-1.3125, -2.125, -3.046875],
 [-0.3125, -0.1259765625, -0.04833984375]
]
>

 Link to this function

 log_softmax(x, opts \\ [])

 View Source

Log-softmax activation.
$$f(x_i) = -log(um{e^x_i})$$

 examples

 Examples

iex> Axon.Activations.log_softmax(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], type: {:f, 32}, names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-6.457762718200684, -5.457762718200684, -4.457762718200684, -3.4577627182006836, -2.4577627182006836, -1.4577628374099731, -0.45776283740997314]
>

iex> Axon.Activations.log_softmax(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.404296875, -1.3984375, -2.390625],
 [-2.390625, -1.3984375, -0.404296875]
]
>

 Link to this function

 log_sumexp(x, opts \\ [])

 View Source

Logsumexp activation.
$$\log(sum e^x_i)$$

 examples

 Examples

iex> Axon.Activations.log_sumexp(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 1]
 [0.45776283740997314]
>

iex> Axon.Activations.log_sumexp(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 1]
 [
 [0.404296875],
 [0.404296875]
]
>

 Link to this function

 mish(x)

 View Source

Mish activation.
$$f(x_i) = x_i* \tanh(\log(1 + e^x_i))$$

 examples

 Examples

iex> Axon.Activations.mish(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], type: {:f, 32}, names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.14564745128154755, -0.2525014877319336, -0.30340147018432617, 0.0, 0.8650984168052673, 1.9439589977264404, 2.98653507232666]
>

iex> Axon.Activations.mish(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.30078125, -0.25, -0.1435546875],
 [0.86328125, 1.9375, 2.96875]
]
>

 Link to this function

 relu6(x)

 View Source

Rectified linear unit 6 activation.
$$f(x_i) = \min_i(\max_i(x, 0), 6)$$

 examples

 Examples

iex> Axon.Activations.relu6(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0]))
#Nx.Tensor<
 f32[7]
 [0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.relu6(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.0, 0.0, 0.0],
 [1.0, 2.0, 3.0]
]
>

 references

 References

	MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

 Link to this function

 relu(x)

 View Source

Rectified linear unit activation.
$$f(x_i) = \max_i(x, 0)$$

 examples

 Examples

iex> Axon.Activations.relu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0]
>

iex> Axon.Activations.relu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.0, 0.0, 0.0],
 [1.0, 2.0, 3.0]
]
>

 Link to this function

 selu(x, opts \\ [])

 View Source

Scaled exponential linear unit activation.
$$f(x_i) = \begin{cases} \lambda x & x \geq 0 \newline
\lambda \alpha(e^{x} - 1) & x < 0 \end{cases}$$
$$\alpha \approx 1.6733$$
$$\lambda \approx 1.0507$$

 examples

 Examples

iex> Axon.Activations.selu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-1.670568823814392, -1.5201665163040161, -1.1113307476043701, 0.0, 1.0507010221481323, 2.1014020442962646, 3.1521029472351074]
>

iex> Axon.Activations.selu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-1.09375, -1.5078125, -1.6640625],
 [1.046875, 2.09375, 3.140625]
]
>

 references

 References

	Self-Normalizing Neural Networks

 Link to this function

 sigmoid(x)

 View Source

Sigmoid activation.
$$f(x_i) = \frac{1}{1 + e^{-x_i}}$$
Implementation Note: Sigmoid logits are cached as metadata
in the expression and can be used in calculations later on.
For example, they are used in cross-entropy calculations for
better stability.

 examples

 Examples

iex> Axon.Activations.sigmoid(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [0.04742587357759476, 0.11920291930437088, 0.2689414322376251, 0.5, 0.7310585975646973, 0.8807970881462097, 0.9525741338729858]
>

iex> Axon.Activations.sigmoid(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.267578125, 0.119140625, 0.04736328125],
 [0.73046875, 0.87890625, 0.94921875]
]
>

 Link to this function

 silu(x)

 View Source

Sigmoid weighted linear unit activation.
$$f(x_i) = x * sigmoid(x)$$

 examples

 Examples

iex> Axon.Activations.silu(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.14227762818336487, -0.23840583860874176, -0.2689414322376251, 0.0, 0.7310585975646973, 1.7615941762924194, 2.857722282409668]
>

iex> Axon.Activations.silu(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.267578125, -0.23828125, -0.1416015625],
 [0.73046875, 1.7578125, 2.84375]
]
>

 references

 References

	Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning

 Link to this function

 softmax(x, opts \\ [])

 View Source

Softmax activation along an axis.
$$\frac{e^{x_i}}{\sum_i e^{x_i}}$$
Implementation Note: Softmax logits are cached as metadata
in the expression and can be used in calculations later on.
For example, they are used in cross-entropy calculations for
better stability.

 options

 Options

	:axis - softmax axis along which to calculate distribution.
Defaults to 1.

 examples

 Examples

iex> Axon.Activations.softmax(Nx.tensor([[-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0]], names: [:batch, :data]))
#Nx.Tensor<
 f32[batch: 1][data: 7]
 [
 [0.0015683004166930914, 0.004263082519173622, 0.011588259600102901, 0.03150015324354172, 0.08562629669904709, 0.23275642096996307, 0.6326975226402283]
]
>

iex> Axon.Activations.softmax(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.6640625, 0.2431640625, 0.08935546875],
 [0.08935546875, 0.2431640625, 0.6640625]
]
>

 Link to this function

 softplus(x)

 View Source

Softplus activation.
$$\log(1 + e^x_i)$$

 examples

 Examples

iex> Axon.Activations.softplus(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [0.04858734831213951, 0.12692801654338837, 0.3132616877555847, 0.6931471824645996, 1.3132617473602295, 2.1269280910491943, 3.0485873222351074]
>

iex> Axon.Activations.softplus(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [0.3125, 0.1259765625, 0.04833984375],
 [1.3125, 2.125, 3.046875]
]
>

 Link to this function

 softsign(x)

 View Source

Softsign activation.
$$f(x_i) = \frac{x_i}{|x_i| + 1}$$

 examples

 Examples

iex> Axon.Activations.softsign(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.75, -0.6666666865348816, -0.5, 0.0, 0.5, 0.6666666865348816, 0.75]
>

iex> Axon.Activations.softsign(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.5, -0.6640625, -0.75],
 [0.5, 0.6640625, 0.75]
]
>

 Link to this function

 tanh(x)

 View Source

Hyperbolic tangent activation.
$$f(x_i) = \tanh(x_i)$$

 examples

 Examples

iex> Axon.Activations.tanh(Nx.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
 f32[data: 7]
 [-0.9950547814369202, -0.9640275835990906, -0.7615941762924194, 0.0, 0.7615941762924194, 0.9640275835990906, 0.9950547814369202]
>

iex> Axon.Activations.tanh(Nx.tensor([[-1.0, -2.0, -3.0], [1.0, 2.0, 3.0]], type: {:bf, 16}, names: [:batch, :data]))
#Nx.Tensor<
 bf16[batch: 2][data: 3]
 [
 [-0.7578125, -0.9609375, -0.9921875],
 [0.7578125, 0.9609375, 0.9921875]
]
>

Axon.Initializers

Parameter initializers.
Parameter initializers are used to initialize the weights
and biases of a neural network. Because most deep learning
optimization algorithms are iterative, they require an initial
point to iterate from.
Sometimes the initialization of a model can determine whether
or not a model converges. In some cases, the initial point is
unstable, and therefore the model has no chance of converging
using common first-order optimization methods. In cases where
the model will converge, initialization can have a significant
impact on how quickly the model converges.
Most initialization strategies are built from intuition and
heuristics rather than theory. It's commonly accepted that
the parameters of different layers should be different -
motivating the use of random initialization for each layer's
parameters. Usually, only the weights of a layer are initialized
using a random distribution - while the biases are initialized
to a uniform constant (like 0).
Most initializers use Gaussian (normal) or uniform distributions
with variations on scale. The output scale of an initializer
should generally be large enough to avoid information loss but
small enough to avoid exploding values. The initializers in
this module have a default scale known to work well with
the initialization strategy.
The functions in this module return initialization functions which
take shapes and types and return tensors:
init_fn = Axon.Initializers.zeros()
init_fn.({1, 2}, {:f, 32})
You may use these functions from within defn or outside.

 Anchor for this section

 Summary

 Functions

 full(value)

 Initializes parameters to value.

 glorot_normal(opts \\ [])

 Initializes parameters with the Glorot normal initializer.

 glorot_uniform(opts \\ [])

 Initializes parameters with the Glorot uniform initializer.

 he_normal(opts \\ [])

 Initializes parameters with the He normal initializer.

 he_uniform(opts \\ [])

 Initializes parameters with the He uniform initializer.

 identity()

 Initializes parameters to an identity matrix.

 lecun_normal(opts \\ [])

 Initializes parameters with the Lecun normal initializer.

 lecun_uniform(opts \\ [])

 Initializes parameters with the Lecun uniform initializer.

 normal(opts \\ [])

 Initializes parameters with a random normal distribution.

 ones()

 Initializes parameters to 1.

 orthogonal(opts \\ [])

 Initializes a tensor with an orthogonal distribution.

 uniform(opts \\ [])

 Initializes parameters with a random uniform distribution.

 variance_scaling(opts \\ [])

 Initializes parameters with variance scaling according to
the given distribution and mode.

 zeros()

 Initializes parameters to 0.

 Anchor for this section

Functions

 Link to this function

 full(value)

 View Source

Initializes parameters to value.

 examples

 Examples

iex> init_fn = Axon.Initializers.full(1.00)
iex> out = init_fn.({2, 2}, {:f, 32})
iex> out
#Nx.Tensor<
 f32[2][2]
 [
 [1.0, 1.0],
 [1.0, 1.0]
]
>

 Link to this function

 glorot_normal(opts \\ [])

 View Source

Initializes parameters with the Glorot normal initializer.
The Glorot normal initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_avg
and distribution: :truncated_normal.
The Glorot normal initializer is also called the Xavier
normal initializer.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0

 examples

 Examples

iex> init_fn = Axon.Initializers.glorot_normal()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.glorot_normal(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Understanding the difficulty of training deep feedforward neural networks

 Link to this function

 glorot_uniform(opts \\ [])

 View Source

Initializes parameters with the Glorot uniform initializer.
The Glorot uniform initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_avg
and distribution: :uniform.
The Glorot uniform initializer is also called the Xavier
uniform initializer.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0

 examples

 Examples

iex> init_fn = Axon.Initializers.glorot_uniform()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.glorot_uniform(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Understanding the difficulty of training deep feedforward neural networks

 Link to this function

 he_normal(opts \\ [])

 View Source

Initializes parameters with the He normal initializer.
The He normal initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_in
and distribution: :truncated_normal.

 options

 Options

	:scale - scale of the output distribution. Defaults to 2.0

 examples

 Examples

iex> init_fn = Axon.Initializers.he_normal()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.he_normal(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

 Link to this function

 he_uniform(opts \\ [])

 View Source

Initializes parameters with the He uniform initializer.
The He uniform initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_ni
and distribution: :uniform.

 options

 Options

	:scale - scale of the output distribution. Defaults to 2.0

 examples

 Examples

iex> init_fn = Axon.Initializers.he_uniform()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.he_uniform(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

 Link to this function

 identity()

 View Source

Initializes parameters to an identity matrix.

 examples

 Examples

iex> init_fn = Axon.Initializers.identity()
iex> out = init_fn.({2, 2}, {:f, 32})
iex> out
#Nx.Tensor<
 f32[2][2]
 [
 [1.0, 0.0],
 [0.0, 1.0]
]
>

 Link to this function

 lecun_normal(opts \\ [])

 View Source

Initializes parameters with the Lecun normal initializer.
The Lecun normal initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_in
and distribution: :truncated_normal.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0

 examples

 Examples

iex> init_fn = Axon.Initializers.lecun_normal()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.lecun_normal(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Efficient BackProp

 Link to this function

 lecun_uniform(opts \\ [])

 View Source

Initializes parameters with the Lecun uniform initializer.
The Lecun uniform initializer is equivalent to calling
Axon.Initializers.variance_scaling with mode: :fan_in
and distribution: :uniform.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0

 examples

 Examples

iex> init_fn = Axon.Initializers.lecun_uniform()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.lecun_uniform(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 references

 References

	Efficient BackProp

 Link to this function

 normal(opts \\ [])

 View Source

Initializes parameters with a random normal distribution.

 options

 Options

	:mean - mean of the output distribution. Defaults to 0.0
	:scale - scale of the output distribution. Defaults to 1.0e-2

 examples

 Examples

iex> init_fn = Axon.Initializers.normal()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.normal(mean: 1.0, scale: 1.0)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 Link to this function

 ones()

 View Source

Initializes parameters to 1.

 examples

 Examples

iex> init_fn = Axon.Initializers.ones()
iex> out = init_fn.({2, 2}, {:f, 32})
iex> out
#Nx.Tensor<
 f32[2][2]
 [
 [1.0, 1.0],
 [1.0, 1.0]
]
>

 Link to this function

 orthogonal(opts \\ [])

 View Source

Initializes a tensor with an orthogonal distribution.
For 2-D tensors, the initialization is generated through the QR decomposition of a random distribution
For tensors with more than 2 dimensions, a 2-D tensor with shape {shape[0] * shape[1] * ... * shape[n-2], shape[n-1]}
is initialized and then reshaped accordingly.

 options

 Options

	:distribution - output distribution. One of [:normal, :uniform].
Defaults to :normal

 examples

 Examples

iex> init_fn = Axon.Initializers.orthogonal()
iex> t = init_fn.({3, 3}, {:f, 32}, Nx.Random.key(1))
iex> Nx.type(t)
{:f, 32}
iex> Nx.shape(t)
{3, 3}

iex> init_fn = Axon.Initializers.orthogonal()
iex> t = init_fn.({1, 2, 3, 4}, {:f, 64}, Nx.Random.key(1))
iex> Nx.type(t)
{:f, 64}
iex> Nx.shape(t)
{1, 2, 3, 4}

 Link to this function

 uniform(opts \\ [])

 View Source

Initializes parameters with a random uniform distribution.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0e-2

 examples

 Examples

iex> init_fn = Axon.Initializers.uniform()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.uniform(scale: 1.0e-3)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

 Link to this function

 variance_scaling(opts \\ [])

 View Source

Initializes parameters with variance scaling according to
the given distribution and mode.
Variance scaling adapts scale to the weights of the output
tensor.

 options

 Options

	:scale - scale of the output distribution. Defaults to 1.0e-2
	:mode - compute fan mode. One of :fan_in, :fan_out, or :fan_avg.
Defaults to :fan_in
	:distribution - output distribution. One of :normal, :truncated_normal,
or :uniform. Defaults to :normal

 examples

 Examples

iex> init_fn = Axon.Initializers.variance_scaling()
iex> t = init_fn.({2, 2}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}

iex> init_fn = Axon.Initializers.variance_scaling(mode: :fan_out, distribution: :truncated_normal)
iex> t = init_fn.({2, 2}, {:bf, 16}, Nx.Random.key(1))
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:bf, 16}

iex> init_fn = Axon.Initializers.variance_scaling(mode: :fan_out, distribution: :normal)
iex> t = init_fn.({64, 3, 32, 32}, {:f, 32}, Nx.Random.key(1))
iex> Nx.shape(t)
{64, 3, 32, 32}
iex> Nx.type(t)
{:f, 32}

 Link to this function

 zeros()

 View Source

Initializes parameters to 0.

 examples

 Examples

iex> init_fn = Axon.Initializers.zeros()
iex> out = init_fn.({2, 2}, {:f, 32})
iex> out
#Nx.Tensor<
 f32[2][2]
 [
 [0.0, 0.0],
 [0.0, 0.0]
]
>

Axon.Layers

Functional implementations of common neural network layer
operations.
Layers are the building blocks of neural networks. These
functional implementations can be used to express higher-level
constructs using fundamental building blocks. Neural network
layers are stateful with respect to their parameters.
These implementations do not assume the responsibility of
managing state - instead opting to delegate this responsibility
to the caller.
Basic neural networks can be seen as a composition of functions:
input
|> dense(w1, b1)
|> relu()
|> dense(w2, b2)
|> softmax()
These kinds of models are often referred to as deep feedforward networks
or multilayer perceptrons (MLPs) because information flows forward
through the network with no feedback connections. Mathematically,
a feedforward network can be represented as:
 $$f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$$
You can see a similar pattern emerge if we condense the call stack
in the previous example:
softmax(dense(relu(dense(input, w1, b1)), w2, b2))
The chain structure shown here is the most common structure used
in neural networks. You can consider each function $f^{(n)}$ as a
layer in the neural network - for example $f^{(2)} is the 2nd
layer in the network. The number of function calls in the
structure is the depth of the network. This is where the term
deep learning comes from.
Neural networks are often written as the mapping:
 $$y = f(x; \theta)$$
Where x is the input to the neural network and θ are the
set of learned parameters. In Elixir, you would write this:
y = model(input, params)
From the previous example, params would represent the collection:
{w1, b1, w2, b2}
where w1 and w2 are layer kernels, and b1 and b2 are layer
biases.

 Anchor for this section

 Summary

 Layers: Linear

 bilinear(input1, input2, kernel, bias \\ 0, opts \\ [])

 Functional implementation of a bilinear layer.

 dense(input, kernel, bias \\ 0, opts \\ [])

 Functional implementation of a dense layer.

 embedding(input, kernel, arg3 \\ [])

 Computes embedding by treating kernel matrix as a lookup table
for discrete tokens.

 Layers: Dropout

 alpha_dropout(input, key, opts \\ [])

 Functional implementation of an alpha dropout layer.

 dropout(input, key, opts \\ [])

 Functional implementation of a dropout layer.

 feature_alpha_dropout(input, key, opts \\ [])

 Functional implementation of a feature alpha dropout layer.

 spatial_dropout(input, key, opts \\ [])

 Functional implementation of an n-dimensional spatial
dropout layer.

 Layers: Pooling

 adaptive_avg_pool(input, opts \\ [])

 Functional implementation of general dimensional adaptive average
pooling.

 adaptive_lp_pool(input, opts \\ [])

 Functional implementation of general dimensional adaptive power
average pooling.

 adaptive_max_pool(input, opts \\ [])

 Functional implementation of general dimensional adaptive max
pooling.

 avg_pool(input, opts \\ [])

 A general dimensional functional average pooling layer.

 blur_pool(input, opts \\ [])

 Functional implementation of a 2-dimensional blur pooling layer.

 global_avg_pool(input, opts \\ [])

 Functional implementation of global average pooling which averages across
the spatial dimensions of the input such that the only remaining dimensions
are the batch and feature dimensions.

 global_lp_pool(input, opts \\ [])

 Functional implementation of global LP pooling which computes the following
function across spatial dimensions of the input

 global_max_pool(input, opts \\ [])

 Functional implementation of global max pooling which computes maximums across
the spatial dimensions of the input such that the only remaining dimensions are
the batch and feature dimensions.

 lp_pool(input, opts \\ [])

 Functional implementation of a general dimensional power average
pooling layer.

 max_pool(input, opts \\ [])

 Functional implementation of a general dimensional max pooling layer.

 Layers: Normalization

 batch_norm(input, gamma, beta, ra_mean, ra_var, opts \\ [])

 Functional implementation of batch normalization.

 group_norm(input, gamma, beta, opts \\ [])

 Functional implementation of group normalization.

 instance_norm(input, gamma, beta, ra_mean, ra_var, opts \\ [])

 Functional implementation of instance normalization.

 layer_norm(input, gamma, beta, opts \\ [])

 Functional implementation of layer normalization.

 Layers: Shape

 flatten(input, opts \\ [])

 Flattens input to shape of {batch, units} by folding outer
dimensions.

 resize(input, opts \\ [])

 Resizes a batch of tensors to the given shape using one of a
number of sampling methods.

 Functions: Convolutional

 conv(input, kernel, bias \\ 0, opts \\ [])

 Functional implementation of a general dimensional convolutional
layer.

 conv_transpose(input, kernel, bias \\ 0, opts \\ [])

 Functional implementation of a general dimensional transposed
convolutional layer.

 depthwise_conv(inputs, kernel, bias \\ 0, opts \\ [])

 Functional implementation of a general dimensional depthwise
convolution.

 separable_conv2d(input, k1, b1, k2, b2, opts \\ [])

 Functional implementation of a 2-dimensional separable depthwise
convolution.

 separable_conv3d(input, k1, b1, k2, b2, k3, b3, opts \\ [])

 Functional implementation of a 3-dimensional separable depthwise
convolution.

 Functions

 celu(input, opts \\ [])

 conv_lstm(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 conv_lstm_cell(input, carry, arg3, input_kernel, hidden_kernel, bias, opts \\ [])

 ConvLSTM Cell.

 dynamic_unroll(cell_fn, input_sequence, carry, mask, input_kernel, recurrent_kernel, bias)

 Dynamically unrolls an RNN.

 elu(input, opts \\ [])

 gru(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 gru_cell(input, carry, mask, input_kernel, hidden_kernel, bias, gate_fn \\ &Axon.Activations.sigmoid/1, activation_fn \\ &Axon.Activations.tanh/1)

 GRU Cell.

 hard_sigmoid(input, opts \\ [])

 hard_silu(input, opts \\ [])

 leaky_relu(input, opts \\ [])

 log_softmax(input, opts \\ [])

 log_sumexp(input, opts \\ [])

 lstm(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 lstm_cell(input, carry, mask, input_kernel, hidden_kernel, bias, gate_fn \\ &Axon.Activations.sigmoid/1, activation_fn \\ &Axon.Activations.tanh/1)

 LSTM Cell.

 multiply(inputs, opts \\ [])

 padding_config_transform(config, channels)

 selu(input, opts \\ [])

 softmax(input, opts \\ [])

 static_unroll(cell_fn, input_sequence, carry, mask, input_kernel, recurrent_kernel, bias)

 Statically unrolls an RNN.

 subtract(inputs, opts \\ [])

 Anchor for this section

Layers: Linear

 Link to this function

 bilinear(input1, input2, kernel, bias \\ 0, opts \\ [])

 View Source

Functional implementation of a bilinear layer.
Bilinear transformation of the input such that:
$$y = x_1^{T}Ax_2 + b$$

 parameter-shapes

 Parameter Shapes

	input1 - {batch_size, ..., input1_features}
	input2 - {batch_size, ..., input2_features}
	kernel - {out_features, input1_features, input2_features}

 output-shape

 Output Shape

 {batch_size, ..., output_features}

 examples

 Examples

iex> inp1 = Nx.iota({3, 2}, type: {:f, 32})
iex> inp2 = Nx.iota({3, 4}, type: {:f, 32})
iex> kernel = Nx.iota({1, 2, 4}, type: {:f, 32})
iex> bias = Nx.tensor(1.0)
iex> Axon.Layers.bilinear(inp1, inp2, kernel, bias)
#Nx.Tensor<
 f32[3][1]
 [
 [39.0],
 [455.0],
 [1319.0]
]
>

 Link to this function

 dense(input, kernel, bias \\ 0, opts \\ [])

 View Source

Functional implementation of a dense layer.
Linear transformation of the input such that:
$$y = xW^T + b$$
A dense layer or fully connected layer transforms
the input using the given kernel matrix and bias
to compute:
Nx.dot(input, kernel) + bias
Typically, both kernel and bias are learnable
parameters trained using gradient-based optimization.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, * input_features}
	kernel - {input_features, output_features}
	bias - {} or {output_features}

 output-shape

 Output Shape

 {batch_size, *, output_features}

 examples

 Examples

iex> input = Nx.tensor([[1.0, 0.5, 1.0, 0.5], [0.0, 0.0, 0.0, 0.0]], type: {:f, 32})
iex> kernel = Nx.tensor([[0.2], [0.3], [0.5], [0.8]], type: {:f, 32})
iex> bias = Nx.tensor([1.0], type: {:f, 32})
iex> Axon.Layers.dense(input, kernel, bias)
#Nx.Tensor<
 f32[2][1]
 [
 [2.25],
 [1.0]
]
>

 Link to this function

 embedding(input, kernel, arg3 \\ [])

 View Source

Computes embedding by treating kernel matrix as a lookup table
for discrete tokens.
input is a vector of discrete values, typically representing tokens
(e.g. words, characters, etc.) from a vocabulary. kernel is a kernel
matrix of shape {vocab_size, embedding_size} from which the dense
embeddings will be drawn.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, ..., seq_len}
	kernel - {vocab_size, embedding_size}

 examples

 Examples

iex> input = Nx.tensor([[1, 2, 4, 5], [4, 3, 2, 9]])
iex> kernels = Nx.tensor([
...> [0.46299999952316284, 0.5562999844551086, 0.18170000612735748],
...> [0.9801999926567078, 0.09780000150203705, 0.5333999991416931],
...> [0.6980000138282776, 0.9240999817848206, 0.23479999601840973],
...> [0.31929999589920044, 0.42250001430511475, 0.7865999937057495],
...> [0.5519000291824341, 0.5662999749183655, 0.20559999346733093],
...> [0.1898999959230423, 0.9311000108718872, 0.8356000185012817],
...> [0.6383000016212463, 0.8794000148773193, 0.5282999873161316],
...> [0.9523000121116638, 0.7597000002861023, 0.08250000327825546],
...> [0.6622999906539917, 0.02329999953508377, 0.8205999732017517],
...> [0.9855999946594238, 0.36419999599456787, 0.5372999906539917]
...>])
iex> Axon.Layers.embedding(input, kernels)
#Nx.Tensor<
 f32[2][4][3]
 [
 [
 [0.9801999926567078, 0.09780000150203705, 0.5333999991416931],
 [0.6980000138282776, 0.9240999817848206, 0.23479999601840973],
 [0.5519000291824341, 0.5662999749183655, 0.20559999346733093],
 [0.1898999959230423, 0.9311000108718872, 0.8356000185012817]
],
 [
 [0.5519000291824341, 0.5662999749183655, 0.20559999346733093],
 [0.31929999589920044, 0.42250001430511475, 0.7865999937057495],
 [0.6980000138282776, 0.9240999817848206, 0.23479999601840973],
 [0.9855999946594238, 0.36419999599456787, 0.5372999906539917]
]
]
>

 Anchor for this section

Layers: Dropout

 Link to this function

 alpha_dropout(input, key, opts \\ [])

 View Source

Functional implementation of an alpha dropout layer.
Alpha dropout is a type of dropout that forces the input
to have zero mean and unit standard deviation. Randomly
masks some elements and scales to enforce self-normalization.

 options

 Options

	:rate - dropout rate. Used to determine probability a connection
will be dropped. Required.

 # :noise_shape - input noise shape. Shape of mask which can be useful
for broadcasting `mask` across feature channels or other dimensions.
Defaults to shape of input tensor.

 references

 References

	Self-Normalizing Neural Networks

 Link to this function

 dropout(input, key, opts \\ [])

 View Source

Functional implementation of a dropout layer.
Applies a mask to some elements of the input tensor with probability
rate and scales the input tensor by a factor of $\frac{1}{1 - rate}$.
Dropout is a form of regularization that helps prevent overfitting
by preventing models from becoming too reliant on certain connections.
Dropout can somewhat be thought of as learning an ensemble of models
with random connections masked.

 options

 Options

	:rate - dropout rate. Used to determine probability a connection
will be dropped. Required.

	:noise_shape - input noise shape. Shape of mask which can be useful
for broadcasting mask across feature channels or other dimensions.
Defaults to shape of input tensor.

 references

 References

	Dropout: A Simple Way to Prevent Neural Networks from Overfitting

 Link to this function

 feature_alpha_dropout(input, key, opts \\ [])

 View Source

Functional implementation of a feature alpha dropout layer.
Feature alpha dropout applies dropout in the same manner as
spatial dropout; however, it also enforces self-normalization
by masking inputs with the SELU activation function and scaling
unmasked inputs.

 options

 Options

	:rate - dropout rate. Used to determine probability a connection
will be dropped. Required.

 # :noise_shape - input noise shape. Shape of mask which can be useful
for broadcasting `mask` across feature channels or other dimensions.
Defaults to shape of input tensor.

 Link to this function

 spatial_dropout(input, key, opts \\ [])

 View Source

Functional implementation of an n-dimensional spatial
dropout layer.
Applies a mask to entire feature maps instead of individual
elements. This is done by calculating a mask shape equal to
the spatial dimensions of the input tensor with 1 channel,
and then broadcasting the mask across the feature dimension
of the input tensor.

 options

 Options

	:rate - dropout rate. Used to determine probability a connection
will be dropped. Required.

 # :noise_shape - input noise shape. Shape of mask which can be useful
for broadcasting `mask` across feature channels or other dimensions.
Defaults to shape of input tensor.

 references

 References

	Efficient Object Localization Using Convolutional Networks

 Anchor for this section

Layers: Pooling

 Link to this function

 adaptive_avg_pool(input, opts \\ [])

 View Source

Functional implementation of general dimensional adaptive average
pooling.
Adaptive pooling allows you to specify the desired output size
of the transformed input. This will automatically adapt the
window size and strides to obtain the desired output size. It
will then perform average pooling using the calculated window
size and strides.
Adaptive pooling can be useful when working on multiple inputs with
different spatial input shapes. You can guarantee the output of
an adaptive pooling operation is always the same size regardless
of input shape.

 options

 Options

	:output_size - spatial output size. Must be a tuple with
size equal to the spatial dimensions in the input tensor.
Required.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 adaptive_lp_pool(input, opts \\ [])

 View Source

Functional implementation of general dimensional adaptive power
average pooling.
Computes:
 $$f(X) = qrt[p]{ um_{x in X} x^{p}}$$
Adaptive pooling allows you to specify the desired output size
of the transformed input. This will automatically adapt the
window size and strides to obtain the desired output size. It
will then perform max pooling using the calculated window
size and strides.
Adaptive pooling can be useful when working on multiple inputs with
different spatial input shapes. You can guarantee the output of
an adaptive pooling operation is always the same size regardless
of input shape.

 options

 Options

	:norm - p from above equation. Defaults to 2.

	:output_size - spatial output size. Must be a tuple with
size equal to the spatial dimensions in the input tensor.
Required.

 Link to this function

 adaptive_max_pool(input, opts \\ [])

 View Source

Functional implementation of general dimensional adaptive max
pooling.
Adaptive pooling allows you to specify the desired output size
of the transformed input. This will automatically adapt the
window size and strides to obtain the desired output size. It
will then perform max pooling using the calculated window
size and strides.
Adaptive pooling can be useful when working on multiple inputs with
different spatial input shapes. You can guarantee the output of
an adaptive pooling operation is always the same size regardless
of input shape.

 options

 Options

	:output_size - spatial output size. Must be a tuple with
size equal to the spatial dimensions in the input tensor.
Required.

 Link to this function

 avg_pool(input, opts \\ [])

 View Source

A general dimensional functional average pooling layer.
Pooling is applied to the spatial dimension of the input tensor.
Average pooling returns the average of all elements in valid
windows in the input tensor. It is often used after convolutional
layers to downsample the input even further.

 options

 Options

	kernel_size - window size. Rank must match spatial dimension
of the input tensor. Required.

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:window_dilations - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Can be scalar or list who's length matches the number of
spatial dimensions in the input tensor. Defaults to 1 or no
dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 blur_pool(input, opts \\ [])

 View Source

Functional implementation of a 2-dimensional blur pooling layer.
Blur pooling applies a spatial low-pass filter to the input. It is
often applied before pooling and convolutional layers as a way to
increase model accuracy without much additional computation cost.
The blur pooling implementation follows from MosaicML.

 Link to this function

 global_avg_pool(input, opts \\ [])

 View Source

Functional implementation of global average pooling which averages across
the spatial dimensions of the input such that the only remaining dimensions
are the batch and feature dimensions.
Assumes data is configured in a channels-first like format.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, features, s1, ..., sN}

 options

 Options

	:keep_axes - option to keep reduced axes with size 1 for each reduced
dimensions. Defaults to false

 examples

 Examples

iex> Axon.Layers.global_avg_pool(Nx.iota({3, 2, 3}, type: {:f, 32}), channels: :first)
#Nx.Tensor<
 f32[3][2]
 [
 [1.0, 4.0],
 [7.0, 10.0],
 [13.0, 16.0]
]
>

iex> Axon.Layers.global_avg_pool(Nx.iota({1, 3, 2, 2}, type: {:f, 32}), channels: :first, keep_axes: true)
#Nx.Tensor<
 f32[1][3][1][1]
 [
 [
 [
 [1.5]
],
 [
 [5.5]
],
 [
 [9.5]
]
]
]
>

 Link to this function

 global_lp_pool(input, opts \\ [])

 View Source

Functional implementation of global LP pooling which computes the following
function across spatial dimensions of the input:
 $$f(X) = qrt[p]{ um_{x in X} x^{p}}$$
Where p is given by the keyword argument :norm. As p approaches
infinity, it becomes equivalent to max pooling.
Assumes data is configured in a channels-first like format.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, s1, ..., sN, features}

 options

 Options

	:keep_axes - option to keep reduced axes with size 1 for each reduced
dimensions. Defaults to false
	:norm - p in above function. Defaults to 2

 examples

 Examples

iex> Axon.Layers.global_lp_pool(Nx.iota({3, 2, 3}, type: {:f, 32}), norm: 1, channels: :first)
#Nx.Tensor<
 f32[3][2]
 [
 [3.0, 12.0],
 [21.0, 30.0],
 [39.0, 48.0]
]
>

iex> Axon.Layers.global_lp_pool(Nx.iota({1, 3, 2, 2}, type: {:f, 16}), keep_axes: true, channels: :first)
#Nx.Tensor<
 f16[1][3][1][1]
 [
 [
 [
 [3.7421875]
],
 [
 [11.2265625]
],
 [
 [19.125]
]
]
]
>

 Link to this function

 global_max_pool(input, opts \\ [])

 View Source

Functional implementation of global max pooling which computes maximums across
the spatial dimensions of the input such that the only remaining dimensions are
the batch and feature dimensions.
Assumes data is configured in a channels-first like format.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, s1, ..., sN, features}

 options

 Options

	:keep_axes - option to keep reduced axes with size 1 for each reduced
dimensions. Defaults to false

 examples

 Examples

iex> Axon.Layers.global_max_pool(Nx.iota({3, 2, 3}, type: {:f, 32}), channels: :first)
#Nx.Tensor<
 f32[3][2]
 [
 [2.0, 5.0],
 [8.0, 11.0],
 [14.0, 17.0]
]
>

iex> Axon.Layers.global_max_pool(Nx.iota({1, 3, 2, 2}, type: {:f, 32}), keep_axes: true, channels: :first)
#Nx.Tensor<
 f32[1][3][1][1]
 [
 [
 [
 [3.0]
],
 [
 [7.0]
],
 [
 [11.0]
]
]
]
>

 Link to this function

 lp_pool(input, opts \\ [])

 View Source

Functional implementation of a general dimensional power average
pooling layer.
Pooling is applied to the spatial dimension of the input tensor.
Power average pooling computes the following function on each
valid window of the input tensor:
$$f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}$$
Where p is given by the keyword argument :norm. As p approaches
infinity, it becomes equivalent to max pooling.

 options

 Options

	:norm - p from above equation. Defaults to 2.

	:kernel_size - window size. Rank must match spatial dimension
of the input tensor. Required.

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to size of kernel.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:window_dilations - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Can be scalar or list who's length matches the number of
spatial dimensions in the input tensor. Defaults to 1 or no
dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 examples

 Examples

iex> t = Nx.tensor([[[0.9450, 0.4684, 1.8146], [1.2663, 0.4354, -0.0781], [-0.4759, 0.3251, 0.8742]]], type: {:f, 32})
iex> Axon.Layers.lp_pool(t, kernel_size: 2, norm: 2, channels: :first)
#Nx.Tensor<
 f32[1][3][1]
 [
 [
 [1.0547149181365967],
 [1.3390626907348633],
 [0.5763426423072815]
]
]
>

 Link to this function

 max_pool(input, opts \\ [])

 View Source

Functional implementation of a general dimensional max pooling layer.
Pooling is applied to the spatial dimension of the input tensor.
Max pooling returns the maximum element in each valid window of
the input tensor. It is often used after convolutional layers
to downsample the input even further.

 options

 Options

	kernel_size - window size. Rank must match spatial dimension
of the input tensor. Required.

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to size of kernel.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:window_dilations - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Can be scalar or list who's length matches the number of
spatial dimensions in the input tensor. Defaults to 1 or no
dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 examples

 Examples

iex> t = Nx.tensor([[
...> [0.051500000059604645, -0.7042999863624573, -0.32899999618530273],
...> [-0.37130001187324524, 1.6191999912261963, -0.11829999834299088],
...> [0.7099999785423279, 0.7282999753952026, -0.18639999628067017]]], type: {:f, 32})
iex> Axon.Layers.max_pool(t, kernel_size: 2, channels: :first)
#Nx.Tensor<
 f32[1][3][1]
 [
 [
 [0.051500000059604645],
 [1.6191999912261963],
 [0.7282999753952026]
]
]
>

 Anchor for this section

Layers: Normalization

 Link to this function

 batch_norm(input, gamma, beta, ra_mean, ra_var, opts \\ [])

 View Source

Functional implementation of batch normalization.
Normalizes the input by calculating mean and variance of the
input tensor along every dimension but the given :channel_index,
and then scaling according to:
$$y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$$
gamma and beta are often trainable parameters. If training? is
true, this method will compute a new mean and variance, and return
the updated ra_mean and ra_var. Otherwise, it will just compute
batch norm from the given ra_mean and ra_var.

 options

 Options

	:epsilon - numerical stability term. $epsilon$ in the above
formulation.

	:channel_index - channel index used to determine reduction
axes for mean and variance calculation.

	:momentum - momentum to use for EMA update.

	:mode - if :train, uses training mode batch norm. Defaults to :inference.

 references

 References

	Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

 Link to this function

 group_norm(input, gamma, beta, opts \\ [])

 View Source

Functional implementation of group normalization.
Normalizes the input by reshaping input into :num_groups
groups and then calculating the mean and variance along
every dimension but the input batch dimension.
$$y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$$
gamma and beta are often trainable parameters. This method does
not maintain an EMA of mean and variance.

 options

 Options

	:num_groups - Number of groups.

	:epsilon - numerical stability term. $epsilon$ in the above
formulation.

	:channel_index - channel index used to determine reduction
axes and group shape for mean and variance calculation.

 references

 References

	Group Normalization

 Link to this function

 instance_norm(input, gamma, beta, ra_mean, ra_var, opts \\ [])

 View Source

Functional implementation of instance normalization.
Normalizes the input by calculating mean and variance of the
input tensor along the spatial dimensions of the input.
$$y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$$
gamma and beta are often trainable parameters. If training? is
true, this method will compute a new mean and variance, and return
the updated ra_mean and ra_var. Otherwise, it will just compute
batch norm from the given ra_mean and ra_var.

 options

 Options

	:epsilon - numerical stability term. $epsilon$ in the above
formulation.

	:channel_index - channel index used to determine reduction
axes for mean and variance calculation.

	:momentum - momentum to use for EMA update.

	:training? - if true, uses training mode batch norm. Defaults to false.

 references

 References

	Instance Normalization: The Missing Ingredient for Fast Stylization

 Link to this function

 layer_norm(input, gamma, beta, opts \\ [])

 View Source

Functional implementation of layer normalization.
Normalizes the input by calculating mean and variance of the
input tensor along the given feature dimension :channel_index.
$$y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$$
gamma and beta are often trainable parameters. This method does
not maintain an EMA of mean and variance.

 options

 Options

	:epsilon - numerical stability term. $epsilon$ in the above
formulation.

	:channel_index - channel index used to determine reduction
axes for mean and variance calculation.

 Anchor for this section

Layers: Shape

 Link to this function

 flatten(input, opts \\ [])

 View Source

Flattens input to shape of {batch, units} by folding outer
dimensions.

 examples

 Examples

iex> Axon.Layers.flatten(Nx.iota({1, 2, 2}, type: {:f, 32}))
#Nx.Tensor<
 f32[1][4]
 [
 [0.0, 1.0, 2.0, 3.0]
]
>

 Link to this function

 resize(input, opts \\ [])

 View Source

Resizes a batch of tensors to the given shape using one of a
number of sampling methods.
Requires input option :size which should be a tuple specifying
the resized spatial dimensions of the input tensor. Input tensor
must be at least rank 3, with fixed batch and channel dimensions.
Resizing will upsample or downsample using the given resize method.
Supported resize methods are :nearest, :linear, :bilinear, :trilinear, :cubic, :bicubic, :tricubic.

 examples

 Examples

iex> img = Nx.iota({1, 1, 3, 3}, type: {:f, 32})
iex> Axon.Layers.resize(img, size: {4, 4}, channels: :first)
#Nx.Tensor<
 f32[1][1][4][4]
 [
 [
 [
 [0.0, 1.0, 1.0, 2.0],
 [3.0, 4.0, 4.0, 5.0],
 [3.0, 4.0, 4.0, 5.0],
 [6.0, 7.0, 7.0, 8.0]
]
]
]
>

 error-cases

 Error cases

iex> img = Nx.iota({1, 1, 3, 3}, type: {:f, 32})
iex> Axon.Layers.resize(img, size: {4, 4}, method: :foo)
** (ArgumentError) expected :method to be either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5, got: :foo

 Anchor for this section

Functions: Convolutional

 Link to this function

 conv(input, kernel, bias \\ 0, opts \\ [])

 View Source

Functional implementation of a general dimensional convolutional
layer.
Convolutional layers can be described as applying a convolution
over an input signal composed of several input planes. Intuitively,
the input kernel slides output_channels number of filters over
the input tensor to extract features from the input tensor.
Convolutional layers are most commonly used in computer vision,
but can also be useful when working with sequences and other input signals.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, input_channels, input_spatial0, ..., input_spatialN}
	kernel - {output_channels, input_channels, kernel_spatial0, ..., kernel_spatialN}
	bias - {} or {output_channels}

 options

 Options

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:input_dilation - input dilation factor. Equivalent
to applying interior padding on the input. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:kernel_dilation - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 examples

 Examples

 one-dimensional-convolution

 One-dimensional convolution

iex> input = Nx.tensor([[[0.1294, -0.6638, 1.0251]], [[0.9182, 1.1512, -1.6149]]], type: {:f, 32})
iex> kernel = Nx.tensor([[[-1.5475, 1.2425]], [[0.1871, 0.5458]], [[-0.4488, 0.8879]]], type: {:f, 32})
iex> bias = Nx.tensor([0.7791, 0.1676, 1.5971], type: {:f, 32})
iex> Axon.Layers.conv(input, kernel, bias, channels: :first)
#Nx.Tensor<
 f32[2][3][2]
 [
 [
 [-0.24591797590255737, 3.08001708984375],
 [-0.1704912781715393, 0.6029025316238403],
 [0.9496372938156128, 2.80519962310791]
],
 [
 [0.7885514497756958, -3.0088953971862793],
 [0.9677201509475708, -0.4984228312969208],
 [2.207162380218506, -0.3534282445907593]
]
]
>

 two-dimensional-convolution

 Two-dimensional convolution

iex> input = Nx.tensor([[[[-1.0476, -0.5041], [-0.9336, 1.5907]]]], type: {:f, 32})
iex> kernel = Nx.tensor([
...> [[[0.7514, 0.7356], [1.3909, 0.6800]]],
...> [[[-0.3450, 0.4551], [-0.6275, -0.9875]]],
...> [[[1.8587, 0.4722], [0.6058, -1.0301]]]
...>], type: {:f, 32})
iex> bias = Nx.tensor([1.9564, 0.2822, -0.5385], type: {:f, 32})
iex> Axon.Layers.conv(input, kernel, bias, channels: :first)
#Nx.Tensor<
 f32[1][3][1][1]
 [
 [
 [
 [0.5815491676330566]
],
 [
 [-0.5707762241363525]
],
 [
 [-4.927865028381348]
]
]
]
>

 three-dimensional-convolution

 Three-dimensional convolution

iex> input = Nx.tensor([[[[[-0.6497], [1.0939]], [[-2.5465], [0.7801]]]]], type: {:f, 32})
iex> kernel = Nx.tensor([
...> [[[[0.7390], [-0.0927]], [[-0.8675], [-0.9209]]]],
...> [[[[-0.6638], [0.4341]], [[0.6368], [1.1846]]]]
...>], type: {:f, 32})
iex> bias = Nx.tensor([-0.4101, 0.1776], type: {:f, 32})
iex> Axon.Layers.conv(input, kernel, bias, channels: :first)
#Nx.Tensor<
 f32[1][2][1][1][1]
 [
 [
 [
 [
 [0.49906185269355774]
]
],
 [
 [
 [0.38622811436653137]
]
]
]
]
>

 Link to this function

 conv_transpose(input, kernel, bias \\ 0, opts \\ [])

 View Source

Functional implementation of a general dimensional transposed
convolutional layer.
Note: This layer is currently implemented as a fractionally strided
convolution by padding the input tensor. Please open an issue if you'd
like this behavior changed.
Transposed convolutions are sometimes (incorrectly) referred to as
deconvolutions because it "reverses" the spatial dimensions
of a normal convolution. Transposed convolutions are a form of upsampling -
they produce larger spatial dimensions than the input tensor. They
can be thought of as a convolution in reverse - and are sometimes
implemented as the backward pass of a normal convolution.

 options

 Options

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:input_dilation - input dilation factor. Equivalent
to applying interior padding on the input. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:kernel_dilation - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 examples

 Examples

iex> input = Nx.iota({1, 3, 3}, type: {:f, 32})
iex> kernel = Nx.iota({6, 3, 2}, type: {:f, 32})
iex> bias = Nx.tensor(1.0, type: {:f, 32})
iex> Axon.Layers.conv_transpose(input, kernel, bias, channels: :first)
#Nx.Tensor<
 f32[1][6][4]
 [
 [
 [40.0, 79.0, 94.0, 43.0],
 [94.0, 205.0, 256.0, 133.0],
 [148.0, 331.0, 418.0, 223.0],
 [202.0, 457.0, 580.0, 313.0],
 [256.0, 583.0, 742.0, 403.0],
 [310.0, 709.0, 904.0, 493.0]
]
]
>

 references

 References

	A guide to convolution arithmetic for deep learning
	Deconvolutional Networks

 Link to this function

 depthwise_conv(inputs, kernel, bias \\ 0, opts \\ [])

 View Source

Functional implementation of a general dimensional depthwise
convolution.
Depthwise convolutions apply a single convolutional filter to
each input channel. This is done by setting feature_group_size
equal to the number of input channels. This will split the
output_channels into input_channels number of groups and
convolve the grouped kernel channels over the corresponding input
channel.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, input_channels, input_spatial0, ..., input_spatialN}
	kernel - {output_channels, 1, kernel_spatial0, ..., kernel_spatialN}
	bias - {output_channels} or {}

 output_channels must be a multiple of the input channels.

 options

 Options

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:input_dilation - input dilation factor. Equivalent
to applying interior padding on the input. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:kernel_dilation - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 Link to this function

 separable_conv2d(input, k1, b1, k2, b2, opts \\ [])

 View Source

Functional implementation of a 2-dimensional separable depthwise
convolution.
The 2-d depthwise separable convolution performs 2 depthwise convolutions
each over 1 spatial dimension of the input.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, input_channels, input_spatial0, ..., input_spatialN}
	k1 - {output_channels, 1, kernel_spatial0, 1}
	b1 - {output_channels} or {}
	k2 - {output_channels, 1, 1, kernel_spatial1}
	b2 - {output_channels} or {}

 output_channels must be a multiple of the input channels.

 options

 Options

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:input_dilation - input dilation factor. Equivalent
to applying interior padding on the input. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:kernel_dilation - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 references

 References

	Xception: Deep Learning with Depthwise Separable Convolutions

 Link to this function

 separable_conv3d(input, k1, b1, k2, b2, k3, b3, opts \\ [])

 View Source

Functional implementation of a 3-dimensional separable depthwise
convolution.
The 3-d depthwise separable convolution performs 3 depthwise convolutions
each over 1 spatial dimension of the input.

 parameter-shapes

 Parameter Shapes

	input - {batch_size, input_channels, input_spatial0, input_spatial1, input_spatial2}
	k1 - {output_channels, 1, kernel_spatial0, 1, 1}
	b1 - {output_channels} or {}
	k2 - {output_channels, 1, 1, kernel_spatial1, 1}
	b2 - {output_channels} or {}
	k3 - {output_channels, 1, 1, 1, 1, kernel_spatial2}
	b3 - {output_channels} or {}

 output_channels must be a multiple of the input channels.

 options

 Options

	:strides - kernel strides. Can be a scalar or a list
who's length matches the number of spatial dimensions in
the input tensor. Defaults to 1.

	:padding - zero padding on the input. Can be one of
:valid, :same or a general padding configuration
without interior padding for each spatial dimension
of the input.

	:input_dilation - input dilation factor. Equivalent
to applying interior padding on the input. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:kernel_dilation - kernel dilation factor. Equivalent
to applying interior padding on the kernel. The amount
of interior padding applied is given by kernel_dilation - 1.
Defaults to 1 or no dilation.

	:channels - channel configuration. One of :first or :last.
Defaults to :last.

 references

 References

	Xception: Deep Learning with Depthwise Separable Convolutions

 Anchor for this section

Functions

 Link to this function

 celu(input, opts \\ [])

 View Source

 Link to this function

 conv_lstm(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 View Source

 Link to this function

 conv_lstm_cell(input, carry, arg3, input_kernel, hidden_kernel, bias, opts \\ [])

 View Source

ConvLSTM Cell.
When combined with Axon.Layers.*_unroll, implements a
ConvLSTM-based RNN. More memory efficient than traditional LSTM.

 options

 Options

	:strides - convolution strides. Defaults to 1.

	:padding - convolution padding. Defaults to :same.

 references

 References

	Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

 Link to this function

 dynamic_unroll(cell_fn, input_sequence, carry, mask, input_kernel, recurrent_kernel, bias)

 View Source

Dynamically unrolls an RNN.
Unrolls implement a scan operation which applies a
transformation on the leading axis of input_sequence carrying
some state. In this instance cell_fn is an RNN cell function
such as lstm_cell or gru_cell.
This function will make use of an defn while-loop such and thus
may be more efficient for long sequences.

 Link to this function

 elu(input, opts \\ [])

 View Source

 Link to this function

 gru(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 View Source

 Link to this function

 gru_cell(input, carry, mask, input_kernel, hidden_kernel, bias, gate_fn \\ &Axon.Activations.sigmoid/1, activation_fn \\ &Axon.Activations.tanh/1)

 View Source

GRU Cell.
When combined with Axon.Layers.*_unroll, implements a
GRU-based RNN. More memory efficient than traditional LSTM.

 references

 References

	Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

 Link to this function

 hard_sigmoid(input, opts \\ [])

 View Source

 Link to this function

 hard_silu(input, opts \\ [])

 View Source

 Link to this function

 leaky_relu(input, opts \\ [])

 View Source

 Link to this function

 log_softmax(input, opts \\ [])

 View Source

 Link to this function

 log_sumexp(input, opts \\ [])

 View Source

 Link to this function

 lstm(input, hidden_state, mask, input_kernel, hidden_kernel, bias \\ [], opts \\ [])

 View Source

 Link to this function

 lstm_cell(input, carry, mask, input_kernel, hidden_kernel, bias, gate_fn \\ &Axon.Activations.sigmoid/1, activation_fn \\ &Axon.Activations.tanh/1)

 View Source

LSTM Cell.
When combined with Axon.Layers.*_unroll, implements a
LSTM-based RNN. More memory efficient than traditional LSTM.

 references

 References

	Long Short-Term Memory

 Link to this function

 multiply(inputs, opts \\ [])

 View Source

 Link to this function

 padding_config_transform(config, channels)

 View Source

 Link to this function

 selu(input, opts \\ [])

 View Source

 Link to this function

 softmax(input, opts \\ [])

 View Source

 Link to this function

 static_unroll(cell_fn, input_sequence, carry, mask, input_kernel, recurrent_kernel, bias)

 View Source

Statically unrolls an RNN.
Unrolls implement a scan operation which applies a
transformation on the leading axis of input_sequence carrying
some state. In this instance cell_fn is an RNN cell function
such as lstm_cell or gru_cell.
This function inlines the unrolling of the sequence such that
the entire operation appears as a part of the compilation graph.
This makes it suitable for shorter sequences.

 Link to this function

 subtract(inputs, opts \\ [])

 View Source

Axon.LossScale

Implementations of loss-scalers for use in mixed precision
training.
Loss scaling is used to prevent underflow when using mixed
precision during the model training process. Each loss-scale
implementation here returns a 3-tuple of the functions:
{init_fn, scale_fn, unscale_fn, adjust_fn} = Axon.LossScale.static(Nx.pow(2, 15))
You can use these to scale/unscale loss and gradients as well
as adjust the loss scale state.
Axon.Loop.trainer/3 builds loss-scaling in by default. You
can reference the Axon.Loop.train_step/3 implementation to
see how loss-scaling is applied in practice.

 Anchor for this section

 Summary

 Functions

 dynamic(opts \\ [])

 Implements dynamic loss-scale.

 identity(opts \\ [])

 Implements identity loss-scale.

 static(opts \\ [])

 Implements static loss-scale.

 Anchor for this section

Functions

 Link to this function

 dynamic(opts \\ [])

 View Source

Implements dynamic loss-scale.

 Link to this function

 identity(opts \\ [])

 View Source

Implements identity loss-scale.

 Link to this function

 static(opts \\ [])

 View Source

Implements static loss-scale.

Axon.Losses

Loss functions.
Loss functions evaluate predictions with respect to true
data, often to measure the divergence between a model's
representation of the data-generating distribution and the
true representation of the data-generating distribution.
Each loss function is implemented as an element-wise function
measuring the loss with respect to the input target y_true
and input prediction y_pred. As an example, the mean_squared_error/2
loss function produces a tensor whose values are the mean squared
error between targets and predictions:
iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.5, 0.5]
>
It's common to compute the loss across an entire minibatch.
You can easily do so by specifying a :reduction mode, or
by composing one of these with an Nx reduction method:
iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.5
>
You can even compose loss functions:
defn my_strange_loss(y_true, y_pred) do
 y_true
 |> Axon.Losses.mean_squared_error(y_pred)
 |> Axon.Losses.binary_cross_entropy(y_pred)
 |> Nx.sum()
end
Or, more commonly, you can combine loss functions with penalties for
regularization:
defn regularized_loss(params, y_true, y_pred) do
 loss = Axon.mean_squared_error(y_true, y_pred)
 penalty = l2_penalty(params)
 Nx.sum(loss) + penalty
end
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.

 Anchor for this section

 Summary

 Functions

 apply_label_smoothing(y_true, y_pred, opts \\ [])

 Applies label smoothing to the given labels.

 binary_cross_entropy(y_true, y_pred, opts \\ [])

 Binary cross-entropy loss function.

 categorical_cross_entropy(y_true, y_pred, opts \\ [])

 Categorical cross-entropy loss function.

 categorical_hinge(y_true, y_pred, opts \\ [])

 Categorical hinge loss function.

 connectionist_temporal_classification(arg1, y_pred, opts \\ [])

 Connectionist Temporal Classification loss.

 cosine_similarity(y_true, y_pred, opts \\ [])

 Cosine Similarity error loss function.

 hinge(y_true, y_pred, opts \\ [])

 Hinge loss function.

 huber(y_true, y_pred, opts \\ [])

 Huber loss.

 kl_divergence(y_true, y_pred, opts \\ [])

 Kullback-Leibler divergence loss function.

 label_smoothing(loss_fun, opts \\ [])

 Modifies the given loss function to smooth labels prior
to calculating loss.

 log_cosh(y_true, y_pred, opts \\ [])

 Logarithmic-Hyperbolic Cosine loss function.

 margin_ranking(y_true, arg2, opts \\ [])

 Margin ranking loss function.

 mean_absolute_error(y_true, y_pred, opts \\ [])

 Mean-absolute error loss function.

 mean_squared_error(y_true, y_pred, opts \\ [])

 Mean-squared error loss function.

 poisson(y_true, y_pred, opts \\ [])

 Poisson loss function.

 soft_margin(y_true, y_pred, opts \\ [])

 Soft margin loss function.

 Anchor for this section

Functions

 Link to this function

 apply_label_smoothing(y_true, y_pred, opts \\ [])

 View Source

Applies label smoothing to the given labels.
Label smoothing is a regularization technique which shrink targets
towards a uniform distribution. Label smoothing can improve model
generalization.

 options

 Options

	:smoothing - smoothing factor. Defaults to 0.1

 references

 References

	Rethinking the Inception Architecture for Computer Vision

 Link to this function

 binary_cross_entropy(y_true, y_pred, opts \\ [])

 View Source

Binary cross-entropy loss function.
$$l_i = -\frac{1}{2}(\hat{y_i} \cdot \log(y_i) + (1 - \hat{y_i}) \cdot \log(1 - y_i))$$
Binary cross-entropy loss is most often used in binary classification problems.
By default, it expects y_pred to encode probabilities from [0.0, 1.0], typically
as the output of the sigmoid function or another function which squeezes values
between 0 and 1. You may optionally set from_logits: true to specify that values
are being sent as non-normalized values (e.g. weights with possibly infinite range).
In this case, input values will be encoded as probabilities by applying the logistic
sigmoid function before computing loss.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

	:negative_weights - class weight for 0 class useful for scaling loss
by importance of class. Defaults to 1.0.

	:positive_weights - class weight for 1 class useful for scaling loss
by importance of class. Defaults to 1.0.

	:from_logits - whether y_pred is a logits tensor. Defaults to false.

 examples

 Examples

iex> y_true = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> y_pred = Nx.tensor([[0.6811, 0.5565], [0.6551, 0.4551], [0.5422, 0.2648]])
iex> Axon.Losses.binary_cross_entropy(y_true, y_pred)
#Nx.Tensor<
 f32[3]
 [0.8644826412200928, 0.5150600075721741, 0.45986634492874146]
>

iex> y_true = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> y_pred = Nx.tensor([[0.6811, 0.5565], [0.6551, 0.4551], [0.5422, 0.2648]])
iex> Axon.Losses.binary_cross_entropy(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.613136351108551
>

iex> y_true = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> y_pred = Nx.tensor([[0.6811, 0.5565], [0.6551, 0.4551], [0.5422, 0.2648]])
iex> Axon.Losses.binary_cross_entropy(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 1.8394089937210083
>

 Link to this function

 categorical_cross_entropy(y_true, y_pred, opts \\ [])

 View Source

Categorical cross-entropy loss function.
$$l_i = -\sum_i^C \hat{y_i} \cdot \log(y_i)$$
Categorical cross-entropy is typically used for multi-class classifcation problems.
By default, it expects y_pred to encode a probability distribution along the last
axis. You can specify from_logits: true to indicate y_pred is a logits tensor.
Batch size of 3 with 3 target classes
y_true = Nx.tensor([0, 2, 1])
y_pred = Nx.tensor([[0.2, 0.8, 0.0], [0.1, 0.2, 0.7], [0.1, 0.2, 0.7]])

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

	:class_weights - 1-D list corresponding to weight of each
class useful for scaling loss according to importance of class. Tensor
size must match number of classes in dataset. Defaults to 1.0 for all
classes.

	:from_logits - whether y_pred is a logits tensor. Defaults to false.

	:sparse - whether y_true encodes a "sparse" tensor. In this case the
inputs are integer values corresponding to the target class. Defaults to
false.

 examples

 Examples

iex> y_true = Nx.tensor([[0, 1, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
iex> Axon.Losses.categorical_cross_entropy(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.051293306052684784, 2.3025851249694824]
>

iex> y_true = Nx.tensor([[0, 1, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
iex> Axon.Losses.categorical_cross_entropy(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 1.1769392490386963
>

iex> y_true = Nx.tensor([[0, 1, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
iex> Axon.Losses.categorical_cross_entropy(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 2.3538784980773926
>

iex> y_true = Nx.tensor([1, 2], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
iex> Axon.Losses.categorical_cross_entropy(y_true, y_pred, reduction: :sum, sparse: true)
#Nx.Tensor<
 f32
 2.3538784980773926
>

 Link to this function

 categorical_hinge(y_true, y_pred, opts \\ [])

 View Source

Categorical hinge loss function.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[1, 0, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05300799, 0.21617081, 0.68642382], [0.3754382 , 0.08494169, 0.13442067]])
iex> Axon.Losses.categorical_hinge(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [1.6334158182144165, 1.2410175800323486]
>

iex> y_true = Nx.tensor([[1, 0, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05300799, 0.21617081, 0.68642382], [0.3754382 , 0.08494169, 0.13442067]])
iex> Axon.Losses.categorical_hinge(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 1.4372167587280273
>

iex> y_true = Nx.tensor([[1, 0, 0], [0, 0, 1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.05300799, 0.21617081, 0.68642382], [0.3754382 , 0.08494169, 0.13442067]])
iex> Axon.Losses.categorical_hinge(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 2.8744335174560547
>

 Link to this function

 connectionist_temporal_classification(arg1, y_pred, opts \\ [])

 View Source

Connectionist Temporal Classification loss.

 argument-shapes

 Argument Shapes

	l_true - (B)
	y_true - (B, S)
	y_pred - (B, T, D)

 options

 Options

	:reduction - reduction mode. One of :sum or :none.
Defaults to :none.

 description

 Description

 l_true contains lengths of target sequences. Nonzero positive values.
 y_true contains target sequences. Each value represents a class
 of element in range of available classes 0 <= y < D. Blank element
 class is included in this range, but shouldn't be presented among
 y_true values. Maximum target sequence length should be lower or equal
 to y_pred sequence length: S <= T.
 y_pred - log probabilities of classes D along the
 prediction sequence T.

 Link to this function

 cosine_similarity(y_true, y_pred, opts \\ [])

 View Source

Cosine Similarity error loss function.
$$l_i = \sum_i (\hat{y_i} - y_i)^2$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.
	:axes - Defaults to [1].
	:eps - Defaults to 1.0e-6.

 examples

 Examples

iex> y_pred = Nx.tensor([[1.0, 0.0], [1.0, 1.0]])
iex> y_true = Nx.tensor([[0.0, 1.0], [1.0, 1.0]])
iex> Axon.Losses.cosine_similarity(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.0, 1.0000001192092896]
>

 Link to this function

 hinge(y_true, y_pred, opts \\ [])

 View Source

Hinge loss function.
$$\frac{1}{C}\max_i(1 - \hat{y_i} * y_i, 0)$$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 examples

 Examples

iex> y_true = Nx.tensor([[1, 1, -1], [1, 1, -1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.45440044, 0.31470688, 0.67920924], [0.24311459, 0.93466766, 0.10914676]])
iex> Axon.Losses.hinge(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.9700339436531067, 0.6437881588935852]
>

iex> y_true = Nx.tensor([[1, 1, -1], [1, 1, -1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.45440044, 0.31470688, 0.67920924], [0.24311459, 0.93466766, 0.10914676]])
iex> Axon.Losses.hinge(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.806911051273346
>

iex> y_true = Nx.tensor([[1, 1, -1], [1, 1, -1]], type: {:s, 8})
iex> y_pred = Nx.tensor([[0.45440044, 0.31470688, 0.67920924], [0.24311459, 0.93466766, 0.10914676]])
iex> Axon.Losses.hinge(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 1.613822102546692
>

 Link to this function

 huber(y_true, y_pred, opts \\ [])

 View Source

Huber loss.

 argumet-shapes

 Argumet Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

	:delta - the point where the Huber loss function changes from a quadratic to linear.
Defaults to 1.0.

 examples

 Examples

iex> y_true = Nx.tensor([[1], [1.5], [2.0]])
iex> y_pred = Nx.tensor([[0.8], [1.8], [2.1]])
iex> Axon.Losses.huber(y_true, y_pred)
#Nx.Tensor<
 f32[3][1]
 [
 [0.019999997690320015],
 [0.04499998688697815],
 [0.004999990575015545]
]
>

iex> y_true = Nx.tensor([[1], [1.5], [2.0]])
iex> y_pred = Nx.tensor([[0.8], [1.8], [2.1]])
iex> Axon.Losses.huber(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.02333332598209381
>

 Link to this function

 kl_divergence(y_true, y_pred, opts \\ [])

 View Source

Kullback-Leibler divergence loss function.
$$l_i = \sum_i^C \hat{y_i} \cdot \log(\frac{\hat{y_i}}{y_i})$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[0, 1], [0, 0]], type: {:u, 8})
iex> y_pred = Nx.tensor([[0.6, 0.4], [0.4, 0.6]])
iex> Axon.Losses.kl_divergence(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.916289210319519, -3.080907390540233e-6]
>

iex> y_true = Nx.tensor([[0, 1], [0, 0]], type: {:u, 8})
iex> y_pred = Nx.tensor([[0.6, 0.4], [0.4, 0.6]])
iex> Axon.Losses.kl_divergence(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.45814305543899536
>

iex> y_true = Nx.tensor([[0, 1], [0, 0]], type: {:u, 8})
iex> y_pred = Nx.tensor([[0.6, 0.4], [0.4, 0.6]])
iex> Axon.Losses.kl_divergence(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 0.9162861108779907
>

 Link to this function

 label_smoothing(loss_fun, opts \\ [])

 View Source

Modifies the given loss function to smooth labels prior
to calculating loss.
See apply_label_smoothing/2 for details.

 options

 Options

	:smoothing - smoothing factor. Defaults to 0.1

 Link to this function

 log_cosh(y_true, y_pred, opts \\ [])

 View Source

Logarithmic-Hyperbolic Cosine loss function.
$$l_i = \frac{1}{C} \sum_i^C (\hat{y_i} - y_i) + \log(1 + e^{-2(\hat{y_i} - y_i)}) - \log(2)$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]])
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]])
iex> Axon.Losses.log_cosh(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.2168903946876526, 0.0]
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]])
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]])
iex> Axon.Losses.log_cosh(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.1084451973438263
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]])
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]])
iex> Axon.Losses.log_cosh(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 0.2168903946876526
>

 Link to this function

 margin_ranking(y_true, arg2, opts \\ [])

 View Source

Margin ranking loss function.
$$l_i = \max(0, -\hat{y_i} * (y^(1)_i - y^(2)_i) + \alpha)$$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([1.0, 1.0, 1.0], type: {:f, 32})
iex> y_pred1 = Nx.tensor([0.6934, -0.7239, 1.1954], type: {:f, 32})
iex> y_pred2 = Nx.tensor([-0.4691, 0.2670, -1.7452], type: {:f, 32})
iex> Axon.Losses.margin_ranking(y_true, {y_pred1, y_pred2})
#Nx.Tensor<
 f32[3]
 [0.0, 0.9909000396728516, 0.0]
>

iex> y_true = Nx.tensor([1.0, 1.0, 1.0], type: {:f, 32})
iex> y_pred1 = Nx.tensor([0.6934, -0.7239, 1.1954], type: {:f, 32})
iex> y_pred2 = Nx.tensor([-0.4691, 0.2670, -1.7452], type: {:f, 32})
iex> Axon.Losses.margin_ranking(y_true, {y_pred1, y_pred2}, reduction: :mean)
#Nx.Tensor<
 f32
 0.3303000032901764
>

iex> y_true = Nx.tensor([1.0, 1.0, 1.0], type: {:f, 32})
iex> y_pred1 = Nx.tensor([0.6934, -0.7239, 1.1954], type: {:f, 32})
iex> y_pred2 = Nx.tensor([-0.4691, 0.2670, -1.7452], type: {:f, 32})
iex> Axon.Losses.margin_ranking(y_true, {y_pred1, y_pred2}, reduction: :sum)
#Nx.Tensor<
 f32
 0.9909000396728516
>

 Link to this function

 mean_absolute_error(y_true, y_pred, opts \\ [])

 View Source

Mean-absolute error loss function.
$$l_i = \sum_i |\hat{y_i} - y_i|$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_absolute_error(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.5, 0.5]
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_absolute_error(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.5
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_absolute_error(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 1.0
>

 Link to this function

 mean_squared_error(y_true, y_pred, opts \\ [])

 View Source

Mean-squared error loss function.
$$l_i = \sum_i (\hat{y_i} - y_i)^2$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.5, 0.5]
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.5
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 1.0
>

 Link to this function

 poisson(y_true, y_pred, opts \\ [])

 View Source

Poisson loss function.
$$l_i = \frac{1}{C} \sum_i^C y_i - (\hat{y_i} \cdot \log(y_i))$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.poisson(y_true, y_pred)
#Nx.Tensor<
 f32[2]
 [0.9999999403953552, 0.0]
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.poisson(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.4999999701976776
>

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.poisson(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 0.9999999403953552
>

 Link to this function

 soft_margin(y_true, y_pred, opts \\ [])

 View Source

Soft margin loss function.
$$l_i = \sum_i \frac{\log(1 + e^{-\hat{y_i} * y_i})}{N}$$

 options

 Options

	:reduction - reduction mode. One of :mean, :sum, or :none.
Defaults to :none.

 examples

 Examples

iex> y_true = Nx.tensor([[-1.0, 1.0, 1.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[0.2953, -0.1709, 0.9486]], type: {:f, 32})
iex> Axon.Losses.soft_margin(y_true, y_pred)
#Nx.Tensor<
 f32[3]
 [0.851658046245575, 0.7822436094284058, 0.3273470401763916]
>

iex> y_true = Nx.tensor([[-1.0, 1.0, 1.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[0.2953, -0.1709, 0.9486]], type: {:f, 32})
iex> Axon.Losses.soft_margin(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
 f32
 0.6537495255470276
>

iex> y_true = Nx.tensor([[-1.0, 1.0, 1.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[0.2953, -0.1709, 0.9486]], type: {:f, 32})
iex> Axon.Losses.soft_margin(y_true, y_pred, reduction: :sum)
#Nx.Tensor<
 f32
 1.9612486362457275
>

Axon.Metrics

Metric functions.
Metrics are used to measure the performance and compare
performance of models in easy-to-understand terms. Often
times, neural networks use surrogate loss functions such
as negative log-likelihood to indirectly optimize a certain
performance metric. Metrics such as accuracy, also called
the 0-1 loss, do not have useful derivatives (e.g. they
are information sparse), and are often intractable even
with low input dimensions.
Despite not being able to train specifically for certain
metrics, it's still useful to track these metrics to
monitor the performance of a neural network during training.
Metrics such as accuracy provide useful feedback during
training, whereas loss can sometimes be difficult to interpret.
You can attach any of these functions as metrics within the
Axon.Loop API using Axon.Loop.metric/3.
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.

 Anchor for this section

 Summary

 Functions

 accuracy(y_true, y_pred, opts \\ [])

 Computes the accuracy of the given predictions.

 accuracy_transform(y_true, y_pred, from_logits, sparse)

 false_negatives(y_true, y_pred, opts \\ [])

 Computes the number of false negative predictions with respect
to given targets.

 false_positives(y_true, y_pred, opts \\ [])

 Computes the number of false positive predictions with respect
to given targets.

 mean_absolute_error(y_true, y_pred)

 Calculates the mean absolute error of predictions
with respect to targets.

 precision(y_true, y_pred, opts \\ [])

 Computes the precision of the given predictions with
respect to the given targets.

 recall(y_true, y_pred, opts \\ [])

 Computes the recall of the given predictions with
respect to the given targets.

 running_average(metric)

 Returns a function which computes a running average given current average,
new observation, and current iteration.

 running_sum(metric)

 Returns a function which computes a running sum given current sum,
new observation, and current iteration.

 sensitivity(y_true, y_pred, opts \\ [])

 Computes the sensitivity of the given predictions
with respect to the given targets.

 specificity(y_true, y_pred, opts \\ [])

 Computes the specificity of the given predictions
with respect to the given targets.

 top_k_categorical_accuracy(y_true, y_pred, opts \\ [])

 Computes the top-k categorical accuracy.

 true_negatives(y_true, y_pred, opts \\ [])

 Computes the number of true negative predictions with respect
to given targets.

 true_positives(y_true, y_pred, opts \\ [])

 Computes the number of true positive predictions with respect
to given targets.

 Anchor for this section

Functions

 Link to this function

 accuracy(y_true, y_pred, opts \\ [])

 View Source

Computes the accuracy of the given predictions.
If the size of the last axis is 1, it performs a binary
accuracy computation with a threshold of 0.5. Otherwise,
computes categorical accuracy.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 examples

 Examples

iex> Axon.Metrics.accuracy(Nx.tensor([[1], [0], [0]]), Nx.tensor([[1], [1], [1]]))
#Nx.Tensor<
 f32
 0.3333333432674408
>

iex> Axon.Metrics.accuracy(Nx.tensor([[0, 1], [1, 0], [1, 0]]), Nx.tensor([[0, 1], [1, 0], [0, 1]]))
#Nx.Tensor<
 f32
 0.6666666865348816
>

iex> Axon.Metrics.accuracy(Nx.tensor([[0, 1, 0], [1, 0, 0]]), Nx.tensor([[0, 1, 0], [0, 1, 0]]))
#Nx.Tensor<
 f32
 0.5
>

 Link to this function

 accuracy_transform(y_true, y_pred, from_logits, sparse)

 View Source

 Link to this function

 false_negatives(y_true, y_pred, opts \\ [])

 View Source

Computes the number of false negative predictions with respect
to given targets.

 options

 Options

	:threshold - threshold for truth value of predictions.
Defaults to 0.5.

 examples

 Examples

iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.false_negatives(y_true, y_pred)
#Nx.Tensor<
 u64
 3
>

 Link to this function

 false_positives(y_true, y_pred, opts \\ [])

 View Source

Computes the number of false positive predictions with respect
to given targets.

 options

 Options

	:threshold - threshold for truth value of predictions.
Defaults to 0.5.

 examples

 Examples

iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.false_positives(y_true, y_pred)
#Nx.Tensor<
 u64
 2
>

 Link to this function

 mean_absolute_error(y_true, y_pred)

 View Source

Calculates the mean absolute error of predictions
with respect to targets.
$$l_i = \sum_i |\hat{y_i} - y_i|$$

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 examples

 Examples

iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Metrics.mean_absolute_error(y_true, y_pred)
#Nx.Tensor<
 f32
 0.5
>

 Link to this function

 precision(y_true, y_pred, opts \\ [])

 View Source

Computes the precision of the given predictions with
respect to the given targets.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:threshold - threshold for truth value of the predictions.
Defaults to 0.5

 examples

 Examples

iex> Axon.Metrics.precision(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
 f32
 0.6666666865348816
>

 Link to this function

 recall(y_true, y_pred, opts \\ [])

 View Source

Computes the recall of the given predictions with
respect to the given targets.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:threshold - threshold for truth value of the predictions.
Defaults to 0.5

 examples

 Examples

iex> Axon.Metrics.recall(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
 f32
 0.6666666865348816
>

 Link to this function

 running_average(metric)

 View Source

Returns a function which computes a running average given current average,
new observation, and current iteration.

 examples

 Examples

iex> cur_avg = 0.5
iex> iteration = 1
iex> y_true = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> y_pred = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> avg_acc = Axon.Metrics.running_average(&Axon.Metrics.accuracy/2)
iex> avg_acc.(cur_avg, [y_true, y_pred], iteration)
#Nx.Tensor<
 f32
 0.75
>

 Link to this function

 running_sum(metric)

 View Source

Returns a function which computes a running sum given current sum,
new observation, and current iteration.

 examples

 Examples

iex> cur_sum = 12
iex> iteration = 2
iex> y_true = Nx.tensor([0, 1, 0, 1])
iex> y_pred = Nx.tensor([1, 1, 0, 1])
iex> fps = Axon.Metrics.running_sum(&Axon.Metrics.false_positives/2)
iex> fps.(cur_sum, [y_true, y_pred], iteration)
#Nx.Tensor<
 s64
 13
>

 Link to this function

 sensitivity(y_true, y_pred, opts \\ [])

 View Source

Computes the sensitivity of the given predictions
with respect to the given targets.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:threshold - threshold for truth value of the predictions.
Defaults to 0.5

 examples

 Examples

iex> Axon.Metrics.sensitivity(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
 f32
 0.6666666865348816
>

 Link to this function

 specificity(y_true, y_pred, opts \\ [])

 View Source

Computes the specificity of the given predictions
with respect to the given targets.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 options

 Options

	:threshold - threshold for truth value of the predictions.
Defaults to 0.5

 examples

 Examples

iex> Axon.Metrics.specificity(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
 f32
 0.0
>

 Link to this function

 top_k_categorical_accuracy(y_true, y_pred, opts \\ [])

 View Source

Computes the top-k categorical accuracy.

 options

 Options

	k - The k in "top-k". Defaults to 5.
	sparse - If y_true is a sparse tensor. Defaults to false.

 argument-shapes

 Argument Shapes

	y_true - $(d_0, d_1, ..., d_n)$
	y_pred - $(d_0, d_1, ..., d_n)$

 examples

 Examples

iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([0, 1, 0, 0, 0]), Nx.tensor([0.1, 0.4, 0.3, 0.7, 0.1]), k: 2)
#Nx.Tensor<
 f32
 1.0
>

iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([[0, 1, 0], [1, 0, 0]]), Nx.tensor([[0.1, 0.4, 0.7], [0.1, 0.4, 0.7]]), k: 2)
#Nx.Tensor<
 f32
 0.5
>

iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([[0], [2]]), Nx.tensor([[0.1, 0.4, 0.7], [0.1, 0.4, 0.7]]), k: 2, sparse: true)
#Nx.Tensor<
 f32
 0.5
>

 Link to this function

 true_negatives(y_true, y_pred, opts \\ [])

 View Source

Computes the number of true negative predictions with respect
to given targets.

 options

 Options

	:threshold - threshold for truth value of predictions.
Defaults to 0.5.

 examples

 Examples

iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.true_negatives(y_true, y_pred)
#Nx.Tensor<
 u64
 1
>

 Link to this function

 true_positives(y_true, y_pred, opts \\ [])

 View Source

Computes the number of true positive predictions with respect
to given targets.

 options

 Options

	:threshold - threshold for truth value of predictions.
Defaults to 0.5.

 examples

 Examples

iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.true_positives(y_true, y_pred)
#Nx.Tensor<
 u64
 1
>

Axon.Loop

Abstraction for modeling a reduction of a dataset with an accumulated
state for a number of epochs.
Inspired heavily by PyTorch Ignite.
The main abstraction is the %Axon.Loop{} struct, which controls a nested
reduction of the form:
Enum.reduce(1..max_epochs, state, fn epoch, state ->
 Enum.reduce(data, state, &batch_step/2)
end)
data is assumed to be an Enumerable or Stream of input data which is
handled by a processing function, batch_step. The purpose of the loop
abstraction is to take away much of the boilerplate code used in solving machine
learning tasks. Tasks such as normalizing a dataset, hyperparameter optimization,
or training machine learning models boil down to writing one function:
defn batch_step(batch, state) do
 # ...do something with batch...
 updated_state
end
For tasks such as training a neural network, state will encapsulate things
such as model and optimizer state. For supervised learning tasks, batch_step
might look something like:
defn batch_step({inputs, targets}, state) do
 %{parameters: params, optimizer_state: optim_state} = state

 gradients = grad(params, objective_fn.(&1, inputs, targets))
 {updates, new_optim_state} = optimizer.(optim_state, params, gradients)

 new_params = apply_updates(params, updates)

 %{parameters: new_params, optimizer_state: optim_state}
end
batch_step takes a batch of {input, target} pairs and the current state,
and updates the model parameters based on the gradients received from some arbitrary
objective function. This function will run in a nested loop, iterating over the entire
dataset for N epochs before finally returning the trained model state. By defining
1 function, we've created a training loop that works for most machine learning models.
In actuality, the loop abstraction accumulates a struct, %Axon.Loop.State{}, which looks
like (assuming container is a generic Elixir container of tensors, e.g. map, tuple, etc.):
%Axon.Loop.State{
 epoch: integer(),
 max_epoch: integer(),
 iteration: integer(),
 max_iteration: integer(),
 metrics: map(string(), container()),
 times: map(integer(), integer()),
 step_state: container()
}
batch_step takes in the batch and the step state field and returns a step_state,
which is a generic container of state accumulated at each iteration. The rest of the fields
in the state struct are updated automatically behind the scenes.
The loop must start from some initial step state, thus most tasks must also provide
an additional initialization function to provide some starting point for the step
state. For machine learning tasks, the initialization function will return things like
initial model parameters and optimizer state.
Typically, the final output of the loop is the accumulated final state; however, you
may optionally apply an output transform to extract specific values at the end of the
loop. For example, Axon.Loop.trainer/4 by default extracts trained model state:
output_transform = fn state ->
 state.step_state[:model_state]
end
Initialize and Step
The core of the Axon loop are the init and step functions. The initialization is an
arity-0 function which provides an initial step state:
init = fn ->
 %{params: Axon.init(model)}
end
While the step function is the batch_step function mentioned earlier:
step = fn data, state ->
 new_state = # ...do something...
 new_state
end
Note that any optimization and training anonymous functions that need to be used in the
batch_step function can be passed as extra arguments. For example:
step_with_training_arguments = fn data, state, optimizer_update_fn, state_update_fn ->
 # ...do something...
end

step = &(step_with_training_arguments.(&1, &2, actual_optimizer_update_fn, actual_state_update_fn))
Metrics
Often times you want to compute metrics associated with your training iterations.
To accomplish this, you can attach metrics to each Axon.Loop. Assuming a batch_step
function which looks like:
defn batch_step({inputs, targets}, state) do
 %{parameters: params, optimizer_state: optim_state} = state

 gradients = grad(params, objective_fn.(&1, inputs, targets))
 {updates, new_optim_state} = optimizer.(optim_state, params, gradients)

 new_params = apply_updates(params, updates)

 # Shown for simplicity, you can optimize this by calculating preds
 # along with the gradient calculation
 preds = model_fn.(params, inputs)

 %{
 y_true: targets,
 y_pred: preds,
 parameters: new_params,
 optimizer_state: optim_state
 }
end
You can attach metrics to this by using Axon.Loop.metric/4:
Axon.Loop.loop(&batch_step/2)
|> Axon.Loop.metric("Accuracy", :accuracy, fn %{y_true: y_, y_pred: y} -> [y_, y] end)
|> Axon.Loop.run(data)
Because metrics work directly on step_state, you typically need to provide an output
transform to indicate which values should be passed to your metric function. By default,
Axon assumes a supervised training task with the fields :y_true and :y_pred present
in the step state. See Axon.Loop.metric/4 for more information.
Metrics will be tracked in the loop state using the user-provided key. Metrics integrate
seamlessly with the supervised metrics defined in Axon.Metrics. You can also use metrics
to keep running averages of some values in the original dataset.
Events and Handlers
You can instrument several points in the loop using event handlers. By default, several events
are fired when running a loop:
events = [
 :started, # After loop state initialization
 :epoch_started, # On epoch start
 :iteration_started, # On iteration start
 :iteration_completed, # On iteration complete
 :epoch_completed, # On epoch complete
 :epoch_halted, # On epoch halt, if early halted
]
You can attach event handlers to events using Axon.Loop.handle_event/4:
loop
|> Axon.Loop.handle_event(:iteration_completed, &log_metrics/1, every: 100)
|> Axon.Loop.run(data)
The above will trigger log_metrics/1 every 100 times the :iteration_completed event
is fired. Event handlers must return a tuple {status, state}, where status is an
atom with one of the following values:
:continue # Continue epoch, continue looping
:halt_epoch # Halt the epoch, continue looping
:halt_loop # Halt looping
And state is an updated Axon.Loop.State struct. Handler functions take as input
the current loop state.
It's important to note that event handlers are triggered in the order they are attached
to the loop. If you have two handlers on the same event, they will trigger in order:
loop
|> Axon.Loop.handle_event(:epoch_completed, &normalize_state/1) # Runs first
|> Axon.Loop.handle_event(:epoch_completed, &log_state/1) # Runs second
You may provide filters to filter when event handlers trigger. See Axon.Loop.handle_event/4
for more details on valid filters.
Factories
Axon loops are typically created from one of the factory functions provided in this
module:
* `Axon.Loop.loop/3` - Creates a loop from step function and optional initialization
functions and output transform functions.

* `Axon.Loop.trainer/3` - Creates a supervised training loop from model, loss, and
optimizer.

* `Axon.Loop.evaluator/1` - Creates a supervised evaluator loop from model.
Running loops
In order to execute a loop, you should use Axon.Loop.run/3:
Axon.Loop.run(loop, data, epochs: 10)
Resuming loops
At times you may want to resume a loop from some previous state. You can accomplish this
with Axon.Loop.from_state/2:
loop
|> Axon.Loop.from_state(state)
|> Axon.Loop.run(data)

 Anchor for this section

 Summary

 Functions

 checkpoint(loop, opts \\ [])

 Adds a handler function which saves loop checkpoints on a given
event, optionally with metric-based criteria.

 deserialize_state(serialized, opts \\ [])

 Deserializes loop state from a binary.

 early_stop(loop, monitor, opts \\ [])

 Adds a handler function which halts a loop if the given
metric does not improve between events.

 eval_step(model)

 Creates a supervised evaluation step from a model and model state.

 evaluator(model)

 Creates a supervised evaluator from a model.

 from_state(loop, state)

 Attaches state to the given loop in order to resume looping
from a previous state.

 handle_event(loop, event, handler, filter \\ :always)

 Adds a handler function to the loop which will be triggered on event
with an optional filter.

 kino_vega_lite_plot(loop, plot, metric, opts \\ [])

 Adds a handler function which updates a Kino.VegaLite plot.

 log(loop, message_fn, opts \\ [])

 Adds a handler function which logs the given message produced
by message_fn to the given IO device every event satisfying
filter.

 loop(step_fn, init_fn \\ &default_init/2, output_transform \\ & &1)

 Creates a loop from step_fn, an optional init_fn, and an
optional output_transform.

 metric(loop, metric, name \\ nil, accumulate \\ :running_average, transform_or_fields \\ [:y_true, :y_pred])

 Adds a metric of the given name to the loop.

 monitor(loop, metric, fun, name, opts \\ [])

 Adds a handler function which monitors the given metric
and fires some action when the given metric meets some
criteria.

 reduce_lr_on_plateau(loop, monitor, opts \\ [])

 Adds a handler function which reduces the learning rate by
the given factor if the given metric does not improve between
events.

 run(loop, data, init_state \\ %{}, opts \\ [])

 Runs the given loop on data with the given options.

 serialize_state(state, opts \\ [])

 Serializes loop state to a binary for saving and loading
loop from previous states.

 train_step(model, loss, optimizer, opts \\ [])

 Creates a supervised train step from a model, loss function, and
optimizer.

 trainer(model, loss, optimizer, opts \\ [])

 Creates a supervised training loop from a model, loss function,
and optimizer.

 validate(loop, model, validation_data, opts \\ [])

 Adds a handler function which tests the performance of model
against the given validation set.

 Anchor for this section

Functions

 Link to this function

 checkpoint(loop, opts \\ [])

 View Source

Adds a handler function which saves loop checkpoints on a given
event, optionally with metric-based criteria.
By default, loop checkpoints will be saved at the end of every
epoch in the current working directory under the checkpoint/
path. Checkpoints are serialized representations of loop state
obtained from Axon.Loop.serialize_state/2. Serialization
options will be forwarded to Axon.Loop.serialize_state/2.
You can customize checkpoint events by passing :event and :filter
options:
loop
|> Axon.Loop.checkpoint(event: :iteration_completed, filter: [every: 50])
Checkpoints are saved under the checkpoint/ directory with a pattern
of checkpoint_{epoch}.ckpt. You can customize the path and pattern
with the :path and :file_pattern options:
my_file_pattern =
 fn %Axon.Loop.State{epoch: epoch, iteration: iter} ->
 "checkpoint_#{epoch}_#{iter}"
 end

loop
|> Axon.Loop.checkpoint(path: "my_checkpoints", file_pattern: my_file_pattern)
If you'd like to only save checkpoints based on some metric criteria,
you can specify the :criteria option. :criteria must be a valid key
in metrics:
loop
|> Axon.Loop.checkpoint(criteria: "validation_loss")
The default criteria mode is :min, meaning the min score metric will
be considered "best" when deciding to save on a given event. Valid modes
are :min and :max:
loop
|> Axon.Loop.checkpoint(criteria: "validation_accuracy", mode: :max)

 options

 Options

	:event - event to fire handler on. Defaults to :epoch_completed.

	:filter - event filter to attach to handler. Defaults to :always.

	:patience - number of given events to wait for improvement. Defaults
to 3.

	:mode - whether given metric is being minimized or maximized. One of
:min, :max or an arity-1 function which returns true or false.
Defaults to :min.

	:path - path to directory to save checkpoints. Defaults to checkpoint

	:file_pattern - arity-1 function which returns a string file pattern
based on the current loop state. Defaults to saving checkpoints to files
checkpoint_#{epoch}_#{iteration}.ckpt.

 Link to this function

 deserialize_state(serialized, opts \\ [])

 View Source

Deserializes loop state from a binary.
It is the opposite of Axon.Loop.serialize_state/2.
By default, the step state is deserialized using Nx.deserialize.2;
however, this behavior can be changed if step state is an application
specific container. For example, if you introduce your own data
structure into step_state and you customized the serialization logic,
Nx.deserialize/2 will not be sufficient for deserialization. - you
must pass custom logic with :deserialize_step_state.

 Link to this function

 early_stop(loop, monitor, opts \\ [])

 View Source

Adds a handler function which halts a loop if the given
metric does not improve between events.
By default, this will run after each epoch and track the
improvement of a given metric.
You must specify a metric to monitor and the metric must
be present in the loop state. Typically, this will be
a validation metric:
model
|> Axon.Loop.trainer(loss, optim)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(val_data)
|> Axon.Loop.early_stop("validation_accuracy")
It's important to remember that handlers are executed in the
order they are added to the loop. For example, if you'd like
to checkpoint a loop after every epoch and use early stopping,
most likely you want to add the checkpoint handler before
the early stopping handler:
model
|> Axon.Loop.trainer(loss, optim)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.checkpoint()
|> Axon.Loop.early_stop("accuracy")
That will ensure checkpoint is always fired, even if the loop
exited early.

 Link to this function

 eval_step(model)

 View Source

Creates a supervised evaluation step from a model and model state.
This function is intended for more fine-grained control over the loop
creation process. It returns a tuple of {init_fn, step_fn} where
init_fn returns an initial step state and step_fn performs a
single evaluation step.

 Link to this function

 evaluator(model)

 View Source

Creates a supervised evaluator from a model.
An evaluator can be used for things such as testing and validation of models
after or during training. It assumes model is an Axon struct, container of
structs, or a tuple of init / apply functions. model_state must be a
container usable from within model.
The evaluator returns a step state of the form:
%{
 y_true: labels,
 y_pred: predictions
}
Such that you can attach any number of supervised metrics to the evaluation
loop:
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric("Accuracy", :accuracy)
You must pass a compatible trained model state to Axon.Loop.run/4 when using
supervised evaluation loops. For example, if you've binded the result of a training
run to trained_model_state, you can run the trained model through an evaluation
run like this:
model
|> Axon.Loop.evaluator()
|> Axon.Loop.run(data, trained_model_state, compiler: EXLA)
This function applies an output transform which returns the map of metrics accumulated
over the given loop.

 Link to this function

 from_state(loop, state)

 View Source

Attaches state to the given loop in order to resume looping
from a previous state.
It's important to note that a loop's attached state takes precedence
over defined initialization functions. Given initialization function:
defn init_state(), do: %{foo: 1, bar: 2}
And an attached state:
state = %State{step_state: %{foo: 2, bar: 3}}
init_state/0 will never execute, and instead the initial step state
of %{foo: 2, bar: 3} will be used.

 Link to this function

 handle_event(loop, event, handler, filter \\ :always)

 View Source

Adds a handler function to the loop which will be triggered on event
with an optional filter.
Events take place at different points during loop execution. The default
events are:
events = [
 :started, # After loop state initialization
 :epoch_started, # On epoch start
 :iteration_started, # On iteration start
 :iteration_completed, # On iteration complete
 :epoch_completed, # On epoch complete
 :epoch_halted, # On epoch halt, if early halted
]
Generally, event handlers are side-effecting operations which provide some
sort of inspection into the loop's progress. It's important to note that
if you define multiple handlers to be triggered on the same event, they
will execute in order from when they were attached to the training
loop:
loop
|> Axon.Loop.handle_event(:epoch_started, &normalize_step_state/1) # executes first
|> Axon.Loop.handle_event(:epoch_started, &log_step_state/1) # executes second
Thus, if you have separate handlers which alter or depend on loop state,
you need to ensure they are ordered correctly, or combined into a single
event handler for maximum control over execution.
event must be an atom representing the event to trigger handler or a
list of atoms indicating handler should be triggered on multiple events.
event may be :all which indicates the handler should be triggered on
every event during loop processing.
handler must be an arity-1 function which takes as input loop state and
returns {status, state}, where status is an atom with one of the following
values:
:continue # Continue epoch, continue looping
:halt_epoch # Halt the epoch, continue looping
:halt_loop # Halt looping
filter is an atom representing a valid filter predicate, a keyword of
predicate-value pairs, or a function which takes loop state and returns
a true, indicating the handler should run, or false, indicating the
handler should not run. Valid predicates are:
:always # Always trigger event
:once # Trigger on first event firing
Valid predicate-value pairs are:
every: N # Trigger every `N` event
only: N # Trigger on `N` event
Warning: If you modify the step state in an event handler, it will trigger
potentially excessive recompilation and result in significant additinal overhead
during loop execution.

 Link to this function

 kino_vega_lite_plot(loop, plot, metric, opts \\ [])

 View Source

Adds a handler function which updates a Kino.VegaLite plot.
By default, this will run after every iteration.
You must specify a plot to push to and a metric to track. The :x axis will be the iteration count, labeled "step". The metric must match the name given to the :y axis in your VegaLite plot:
plot =
 Vl.new()
 |> Vl.mark(:line)
 |> Vl.encode_field(:x, "step", type: :quantitative)
 |> Vl.encode_field(:y, "loss", type: :quantitative)
 |> Kino.VegaLite.new()
 |> Kino.render()

model
|> Axon.Loop.trainer(loss, optim)
|> Axon.Loop.kino_vega_lite_plot(plot, "loss")

 options

 Options

	:event - event to fire handler on. Defaults to :iteration_completed.

	:filter - event filter to attach to handler. Defaults to :always.

 Link to this function

 log(loop, message_fn, opts \\ [])

 View Source

Adds a handler function which logs the given message produced
by message_fn to the given IO device every event satisfying
filter.
In most cases, this is useful for inspecting the contents of
the loop state at intermediate stages. For example, the default
trainer loop factory attaches IO logging of epoch, batch, loss
and metrics.
It's also possible to log loop state to files by changing the
given IO device. By default, the IO device is :stdio.
message_fn should take the loop state and return a binary
representing the message to be written to the IO device.

 Link to this function

 loop(step_fn, init_fn \\ &default_init/2, output_transform \\ & &1)

 View Source

Creates a loop from step_fn, an optional init_fn, and an
optional output_transform.
step_fn is an arity-2 function which takes a batch and state
and returns an updated step state:
defn batch_step(batch, step_state) do
 step_state + 1
end
init_fn by default is an identity function which forwards its
initial arguments as the model state. You should define a custom
initialization function if you require a different behavior:
defn init_step_state(state) do
 Map.merge(%{foo: 1}, state)
end
You may use state in conjunction with initialization functions in
init_fn. For example, train_step/3 uses initial state as initial
model parameters to allow initializing models from partial parameterizations.
step_batch/2 and init_step_state/1 are typically called from
within Nx.Defn.jit/3. While JIT-compilation will work with anonymous functions,
def, and defn, it is recommended that you use the stricter defn to define
both functions in order to avoid bugs or cryptic errors.
output_transform/1 applies a transformation on the final accumulated loop state.
This is useful for extracting specific fields from a loop and piping them into
additional functions.

 Link to this function

 metric(loop, metric, name \\ nil, accumulate \\ :running_average, transform_or_fields \\ [:y_true, :y_pred])

 View Source

Adds a metric of the given name to the loop.
A metric is a function which tracks or measures some value with respect
to values in the step state. For example, when training classification
models, it's common to track the model's accuracy during training:
loop
|> Axon.Loop.metric(:accuracy, "Accuracy")
By default, metrics assume a supervised learning task and extract the fields
[:y_true, :y_pred] from the step state. If you wish to work on a different
value, you can use an output transform. An output transform is a list of keys
to extract from the output state, or a function which returns a flattened list
of values to pass to the given metric function. Values received from output
transforms are passed to the given metric using:
value = output_transform.(step_state)
apply(metric, value)
Thus, even if you want your metric to work on a container, your output transform
must return a list.
metric must be an atom which matches the name of a metric in Axon.Metrics, or
an arbitrary function which returns a tensor or container.
name must be a string or atom used to store the computed metric in the loop
state. If names conflict, the last attached metric will take precedence:
loop
|> Axon.Loop.metric(:mean_squared_error, "Error") # Will be overwritten
|> Axon.Loop.metric(:mean_absolute_error, "Error") # Will be used
By default, metrics keep a running average of the metric calculation. You can
override this behavior by changing accumulate:
loop
|> Axon.Loop.metric(:true_negatives, "tn", :running_sum)
Accumulation function can be one of the accumulation combinators in Axon.Metrics
or an arity-3 function of the form: accumulate(acc, obs, i) :: new_acc.

 Link to this function

 monitor(loop, metric, fun, name, opts \\ [])

 View Source

Adds a handler function which monitors the given metric
and fires some action when the given metric meets some
criteria.
This function is a generalization of handlers such as
Axon.Loop.reduce_lr_on_plateau/3 and Axon.Loop.early_stop/3.
You must specify a metric to monitor that is present in
the state metrics. This handler will then monitor the value
of the metric at the specified intervals and fire the specified
function if the criteria is met.
You must also specify a name for the monitor attached to the
given metric. This will be used to store metadata associated
with the monitor.
The common case of monitor is to track improvement of metrics
and take action if metrics haven't improved after a certain number
of events. However, you can also set a monitor up to trigger if
a metric hits some criteria (such as a threshold) by passing a
custom monitoring mode.

 options

 Options

	:event - event to fire handler on. Defaults to :epoch_completed.

	:filter - event filter to attach to handler. Defaults to :always.

	:patience - number of given events to wait for improvement. Defaults
to 3.

	:mode - whether given metric is being minimized or maximized. One of
:min, :max or an arity-1 function which returns true or false.
Defaults to :min.

 Link to this function

 reduce_lr_on_plateau(loop, monitor, opts \\ [])

 View Source

Adds a handler function which reduces the learning rate by
the given factor if the given metric does not improve between
events.
By default, this will run after each epoch and track the
improvement of a given metric.
You must specify a metric to monitor and the metric must
be present in the loop state. Typically, this will be
a validation metric:
model
|> Axon.Loop.trainer(loss, optim)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(model, val_data)
|> Axon.Loop.reduce_lr_on_plateau("accuracy", mode: :max)

 options

 Options

	:event - event to fire handler on. Defaults to :epoch_completed.

	:filter - event filter to attach to handler. Defaults to :always.

	:patience - number of given events to wait for improvement. Defaults
to 3.

	:mode - whether given metric is being minimized or maximized. Defaults
to :min.

	:factor - factor to decrease learning rate by. Defaults to 0.1.

 Link to this function

 run(loop, data, init_state \\ %{}, opts \\ [])

 View Source

Runs the given loop on data with the given options.
loop must be a valid Axon.Loop struct built from one of the
loop factories provided in this module.
data must be an Enumerable or Stream which yields batches of
data on each iteration.

 options

 Options

	:epochs - max epochs to run loop for. Must be non-negative integer.
Defaults to 1.

	:iterations - max iterations to run each epoch. Must be non-negative
integer. Defaults to -1 or no max iterations.

	:jit_compile? - whether or not to JIT compile initialization and step
functions. JIT compilation must be used for gradient computations. Defaults
to true.

	:strict? - whether or not to compile step functions strictly. If this flag
is set, the loop will raise on any cache miss during the training loop. Defaults
to true.

	:debug - run loop in debug mode to trace loop progress. Defaults to
false.

 Additional options are forwarded to Nx.Defn.jit as JIT-options. If no JIT
 options are set, the default options set with Nx.Defn.default_options are
 used.

 Link to this function

 serialize_state(state, opts \\ [])

 View Source

Serializes loop state to a binary for saving and loading
loop from previous states.
You can consider the serialized state to be a checkpoint of
all state at a given iteration and epoch.
By default, the step state is serialized using Nx.serialize/2;
however, this behavior can be changed if step state is an application
specific container. For example, if you introduce your own data
structure into step_state, Nx.serialize/2 will not be sufficient
for serialization - you must pass custom serialization as an option
with :serialize_step_state.
Additional opts controls serialization options such as compression.
It is forwarded to :erlang.term_to_binary/2.

 Link to this function

 train_step(model, loss, optimizer, opts \\ [])

 View Source

Creates a supervised train step from a model, loss function, and
optimizer.
This function is intended for more fine-grained control over the loop
creation process. It returns a tuple of {init_fn, step_fn} where init_fn
is an initialization function which returns an initial step state and
step_fn is a supervised train step constructed from model, loss,
and optimizer.
model must be an Axon struct, a valid defn container
of Axon structs, or a {init_fn, apply_fn}-tuple where init_fn is
an arity-2 function which initializes the model state and apply_fn is
an arity-2 function which applies the forward pass of the model. The forward
pass of the model must return a map with keys :prediction and :state
representing the model's prediction and updated state for layers which
aggregate state during training.
loss must be an atom which matches a function in Axon.Losses, a list
of {loss, weight} tuples representing a basic weighted loss function
for multi-output models, or an arity-2 function representing a custom loss
function.
optimizer must be an atom matching the name of a valid optimizer in Polaris.Optimizers,
or a {init_fn, update_fn} tuple where init_fn is an arity-1 function which
initializes the optimizer state from the model parameters and update_fn is an
arity-3 function that receives (gradient, optimizer_state, model_parameters) and
scales gradient updates with respect to input parameters, optimizer state, and gradients.
The update_fn returns {scaled_updates, optimizer_state}, which can then be applied to
the model through model_parameters = Axon.Update.apply_updates(model_parameters, scaled_updates).
See Polaris.Updates for more information on building optimizers.

 options

 Options

	:seed - seed to use when constructing models. Seed controls random initialization
of model parameters. Defaults to no seed which constructs a random seed for you at
model build time.

	:loss_scale - type of loss-scaling to use, if any. Loss-scaling is necessary when
doing mixed precision training for numerical stability. Defaults to :identity or
no loss-scaling.

	:gradient_accumulation_steps - number of gradient accumulation steps to take during
training. Gradient accumulation decreases the number of updates by accumulating gradients
between steps, increasing the effective batch size on smaller devices. Defaults to 1.

 Link to this function

 trainer(model, loss, optimizer, opts \\ [])

 View Source

Creates a supervised training loop from a model, loss function,
and optimizer.
This function is useful for training models on most standard supervised
learning tasks. It assumes data consists of tuples of input-target pairs,
e.g. [{x0, y0}, {x1, y1}, ..., {xN, yN}] where x0 and y0 are batched
tensors or containers of batched tensors.
It defines an initialization function which first initializes model state
using the given model and then initializes optimizer state using the initial
model state. The step function uses a differentiable objective function
defined with respect to the model parameters, input data, and target data
using the given loss function. It then updates model parameters using the
given optimizer in order to minimize loss with respect to the model parameters.
model must be an Axon struct, a valid defn container
of Axon structs, or a {init_fn, apply_fn}-tuple where init_fn is
an arity-2 function which initializes the model state and apply_fn is
an arity-2 function which applies the forward pass of the model.
loss must be an atom which matches a function in Axon.Losses, a list
of {loss, weight} tuples representing a basic weighted loss function
for multi-output models, or an arity-2 function representing a custom loss
function.
optimizer must be an atom matching the name of a valid optimizer in Polaris.Optimizers,
or a {init_fn, update_fn} tuple where init_fn is an arity-1 function which
initializes the optimizer state from attached parameters and update_fn is an
arity-3 function which scales gradient updates with respect to input parameters,
optimizer state, and gradients. See Polaris.Updates for more information on building
optimizers.
This function creates a step function which outputs a map consisting of the following
fields for step_state:
%{
 y_pred: tensor() | container(tensor()), # Model predictions for use in metrics
 y_true: tensor() | container(tensor()), # True labels for use in metrics
 loss: tensor(), # Running average of loss over epoch
 model_state: container(tensor()), # Model parameters and state
 optimizer_state: container(tensor()) # Optimizer state associated with each parameter
}

 examples

 Examples

 basic-usage

 Basic usage

data = Stream.zip(input, target)

model = Axon.input("input", shape: {nil, 32}) |> Axon.dense(1, activation: :sigmoid)

model
|> Axon.Loop.trainer(:binary_cross_entropy, :adam)
|> Axon.Loop.run(data)

 customizing-optimizer

 Customizing Optimizer

model
|> Axon.Loop.trainer(:binary_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.05))
|> Axon.Loop.run(data)

 custom-loss

 Custom loss

loss_fn = fn y_true, y_pred -> Nx.cos(y_true, y_pred) end

model
|> Axon.Loop.trainer(loss_fn, Polaris.Optimizers.rmsprop(learning_rate: 0.01))
|> Axon.Loop.run(data)

 multiple-objectives-with-multi-output-model

 Multiple objectives with multi-output model

model = {Axon.input("input_0", shape: {nil, 1}), Axon.input("input_1", shape: {nil, 2})}
loss_weights = [mean_squared_error: 0.5, mean_absolute_error: 0.5]

model
|> Axon.Loop.trainer(loss_weights, :sgd)
|> Axon.Loop.run(data)

 options

 Options

	:log - training loss and metric log interval. Set to 0 to silence
training logs. Defaults to 50

	:seed - seed to use when constructing models. Seed controls random initialization
of model parameters. Defaults to no seed which constructs a random seed for you at
model build time.

	:loss_scale - type of loss-scaling to use, if any. Loss-scaling is necessary when
doing mixed precision training for numerical stability. Defaults to :identity or
no loss-scaling.

	:gradient_accumulation_steps - number of gradient accumulation steps to take during
training. Gradient accumulation decreases the number of updates by accumulating gradients
between steps, increasing the effective batch size on smaller devices. Defaults to 1.

 Link to this function

 validate(loop, model, validation_data, opts \\ [])

 View Source

Adds a handler function which tests the performance of model
against the given validation set.
This handler assumes the loop state matches the state initialized
in a supervised training loop. Typically, you'd call this immediately
after creating a supervised training loop:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.validate(model, validation_data)
Please note that you must pass the same (or an equivalent) model
into this method so it can be used during the validation loop. The
metrics which are computed are those which are present BEFORE the
validation handler was added to the loop. For the following loop:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error)
|> Axon.Loop.validate(model, validation_data)
|> Axon.Loop.metric(:binary_cross_entropy)
only :mean_absolute_error will be computed at validation time.
The returned loop state is altered to contain validation
metrics for use in later handlers such as early stopping and model
checkpoints. Since the order of execution of event handlers is in
the same order they are declared in the training loop, you MUST call
this method before any other handler which expects or may use
validation metrics.
By default the validation loop runs after every epoch; however, you
can customize it by overriding the default event and event filters:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error)
|> Axon.Loop.validate(model, validation_data, event: :iteration_completed, filter: [every: 10_000])
|> Axon.Loop.metric(:binary_cross_entropy)

Axon.Loop.State

Accumulated state in an Axon.Loop.
Loop state is a struct:
%State{
 epoch: integer(),
 max_epoch: integer(),
 iteration: integer(),
 max_iteration: integer(),
 metrics: map(string(), container()),
 times: map(integer(), integer()),
 step_state: container(),
 handler_metadata: container()
}
epoch is the current epoch, starting at 0, of the nested loop.
Defaults to 0.
max_epoch is the maximum number of epochs the loop should run
for. Defaults to 1.
iteration is the current iteration of the inner loop. In supervised
settings, this will be the current batch. Defaults to 0.
max_iteration is the maximum number of iterations the loop should
run a given epoch for. Defaults to -1 (no max).
metrics is a map of %{"metric_name" => value} which accumulates metrics
over the course of loop processing. Defaults to an empty map.
times is a map of %{epoch_number => value} which maps a given epoch
to the processing time. Defaults to an empty map.
step_state is the step state as defined by the loop's processing
initialization and update functions. step_state is a required field.
handler_metadata is a metadata field for storing loop handler metadata.
For example, loop checkpoints with specific metric criteria can store
previous best metrics in the handler meta for use between iterations.
event_counts is a metadata field which stores information about the number
of times each event has been fired. This is useful when creating custom filters.
status refers to the loop state status after the loop has executed. You can
use this to determine if the loop ran to completion or if it was halted early.

Axon.CompileError exception

 Anchor for this section

 Summary

 Functions

 message(exception)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(exception)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

