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Axon Guides
    

Axon is a library for creating and training neural networks in Elixir. The Axon guides are a collection of Livebooks designed to introduce Axon's APIs and design decisions from the bottom-up. After working through the guides, you will feel comfortable and confident working with Axon and using Axon for your next deep learning problem.
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Your first Axon model
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:kino, ">= 0.9.0"}
])
:ok

  
    
  
  Your first model


Axon is a library for creating and training neural networks in Elixir. Everything in Axon centers around the %Axon{} struct which represents an instance of an Axon model.
Models are just graphs which represent the transformation and flow of input data to a desired output. Really, you can think of models as representing a single computation or function. An Axon model, when executed, takes data as input and returns transformed data as output.
All Axon models start with a declaration of input nodes. These are the root nodes of your computation graph, and correspond to the actual input data you want to send to Axon:
input = Axon.input("data")
#Axon<
  inputs: %{"data" => nil}
  outputs: "data"
  nodes: 1
>
Technically speaking, input is now a valid Axon model which you can inspect, execute, and initialize. You can visualize how data flows through the graph using Axon.Display.as_graph/2:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(input, template)
graph TD;
3[/"data (:input) {2, 8}"/];
;
Notice the execution flow is just a single node, because your graph only consists of an input node! You pass data in and the model spits the same data back out, without any intermediate transformations.
You can see this in action by actually executing your model. You can build the %Axon{} struct into it's initialization and forward functions by calling Axon.build/2. This pattern of "lowering" or transforming the %Axon{} data structure into other functions or representations is very common in Axon. By simply traversing the data structure, you can create useful functions, execution visualizations, and more!
{init_fn, predict_fn} = Axon.build(input)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
Notice that Axon.build/2 returns a tuple of {init_fn, predict_fn}. init_fn has the signature:
init_fn.(template :: map(tensor) | tensor, initial_params :: map) :: map(tensor)
while predict_fn has the signature:
predict_fn.(params :: map(tensor), input :: map(tensor) | tensor)
init_fn returns all of your model's trainable parameters and state. You need to pass a template of the expected inputs because the shape of certain model parameters often depend on the shape of model inputs. You also need to pass any initial parameters you want your model to start with. This is useful for things like transfer learning, which you can read about in another guide.
predict_fn returns transformed inputs from your model's trainable parameters and the given inputs.
params = init_fn.(Nx.template({1, 8}, :f32), %{})
%{}
In this example, you use Nx.template/2 to create a template tensor, which is a placeholder that does not actually consume any memory. Templates are useful for initialization because you don't actually need to know anything about your inputs other than their shape and type.
Notice init_fn returned an empty map because your model does not have any trainable parameters. This should make sense because it's just an input layer.
Now you can pass these trainable parameters to predict_fn along with some input to actually execute your model:
predict_fn.(params, Nx.iota({1, 8}, type: :f32))
#Nx.Tensor<
  f32[1][8]
  [
    [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
  ]
>
And your model just returned the given input, as expected!


  

    
Sequential models
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:kino, ">= 0.9.0"}
])
:ok

  
    
  
  Creating a sequential model


In the last guide, you created a simple identity model which just returned the input. Of course, you would never actually use Axon for such purposes. You want to create real neural networks!
In equivalent frameworks in the Python ecosystem such as Keras and PyTorch, there is a concept of sequential models. Sequential models are named after the sequential nature in which data flows through them. Sequential models transform the input with sequential, successive transformations.
If you're an experienced Elixir programmer, this paradigm of sequential transformations might sound a lot like what happens when using the pipe (|>) operator. In Elixir, it's common to see code blocks like:
list
|> Enum.map(fn x -> x + 1 end)
|> Enum.filter(&rem(&1, 2) == 0)
|> Enum.count()
The snippet above passes list through a sequence of transformations. You can apply this same paradigm in Axon to create sequential models. In fact, creating sequential models is so natural with Elixir's pipe operator, that Axon does not need a distinct sequential construct. To create a sequential model, you just pass Axon models through successive transformations in the Axon API:
model =
  Axon.input("data")
  |> Axon.dense(32)
  |> Axon.activation(:relu)
  |> Axon.dropout(rate: 0.5)
  |> Axon.dense(1)
  |> Axon.activation(:softmax)
#Axon<
  inputs: %{"data" => nil}
  outputs: "softmax_0"
  nodes: 6
>
If you visualize this model, it's easy to see how data flows sequentially through it:
template = Nx.template({2, 16}, :f32)
Axon.Display.as_graph(model, template)
graph TD;
3[/"data (:input) {2, 16}"/];
4["dense_0 (:dense) {2, 32}"];
5["relu_0 (:relu) {2, 32}"];
6["dropout_0 (:dropout) {2, 32}"];
7["dense_1 (:dense) {2, 1}"];
8["softmax_0 (:softmax) {2, 1}"];
7 --> 8;
6 --> 7;
5 --> 6;
4 --> 5;
3 --> 4;
Your model is more involved and as a result so is the execution graph! Now, using the same constructs from the last section, you can build and run your model:
{init_fn, predict_fn} = Axon.build(model)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
params = init_fn.(template, %{})
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[32]
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[16][32]
      [
        [0.21433714032173157, -0.04525795578956604, 0.32405969500541687, -0.06933712959289551, -0.24735209345817566, 0.1957167088985443, -0.2714379131793976, -0.34026962518692017, 0.03781759738922119, -0.16317953169345856, -0.1272507756948471, -0.08459293842315674, 0.20401403307914734, 0.26613888144493103, -0.3234696388244629, 0.295791357755661, 0.29850414395332336, -0.22220905125141144, -0.33034151792526245, 0.32582345604896545, -0.19104702770709991, -0.3434463143348694, 0.031930625438690186, 0.32875487208366394, 0.17335721850395203, -0.0336279571056366, -0.02203202247619629, -0.30805233120918274, 0.01472097635269165, 0.293319970369339, 0.17995354533195496, 0.09916016459465027],
        [-0.33202630281448364, -0.09507006406784058, -0.12178492546081543, -0.005500674247741699, -0.24997547268867493, 0.31693217158317566, 0.31857630610466003, 0.13662374019622803, 0.11216515302658081, -0.2711845338344574, -0.18932600319385529, -0.10278302431106567, -0.1910824328660965, -0.15239068865776062, 0.2373746931552887, ...],
        ...
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[32][1]
      [
        [-0.22355356812477112],
        [0.09599864482879639],
        [0.06676572561264038],
        [-0.06866732239723206],
        [0.1822824478149414],
        [0.1860904097557068],
        [-0.3795042335987091],
        [-0.18182222545146942],
        [0.4170041084289551],
        [0.1812545657157898],
        [0.18777817487716675],
        [-0.15454193949699402],
        [0.16937363147735596],
        [-0.007449895143508911],
        [0.421792209148407],
        [-0.3314356803894043],
        [-0.29834187030792236],
        [0.3285354971885681],
        [0.034806013107299805],
        [0.1091541051864624],
        [-0.385672390460968],
        [0.004853636026382446],
        [0.3387643098831177],
        [0.03320261836051941],
        [0.3905656933784485],
        [-0.3835979700088501],
        [-0.06302008032798767],
        [0.03648516535758972],
        [0.24170255661010742],
        [0.01687285304069519],
        [-0.017035305500030518],
        [-0.2674438953399658]
      ]
    >
  }
}
Wow! Notice that this model actually has trainable parameters. You can see that the parameter map is just a regular Elixir map. Each top-level entry maps to a layer with a key corresponding to that layer's name and a value corresponding to that layer's trainable parameters. Each layer's individual trainable parameters are given layer-specific names and map directly to Nx tensors.
Now you can use these params with your predict_fn:
predict_fn.(params, Nx.iota({2, 16}, type: :f32))
#Nx.Tensor<
  f32[2][1]
  [
    [1.0],
    [1.0]
  ]
>
And voila! You've successfully created and used a sequential model in Axon!


  

    
Complex models
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:kino, ">= 0.9.0"}
])
:ok

  
    
  
  Creating more complex models


Not all models you'd want to create fit cleanly in the sequential paradigm. Some models require a more flexible API. Fortunately, because Axon models are just Elixir data structures, you can manipulate them and decompose architectures as you would any other Elixir program:
input = Axon.input("data")

x1 = input |> Axon.dense(32)
x2 = input |> Axon.dense(64) |> Axon.relu() |> Axon.dense(32)

out = Axon.add(x1, x2)
#Axon<
  inputs: %{"data" => nil}
  outputs: "add_0"
  nodes: 7
>
In the snippet above, your model branches input into x1 and x2. Each branch performs a different set of transformations; however, at the end the branches are merged with an Axon.add/3. You might sometimes see layers like Axon.add/3 called combinators. Really they're just layers that operate on multiple Axon models at once - typically to merge some branches together.
out represents your final Axon model.
If you visualize this model, you can see the full effect of the branching in this model:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
4["dense_0 (:dense) {2, 32}"];
5["dense_1 (:dense) {2, 64}"];
6["relu_0 (:relu) {2, 64}"];
7["dense_2 (:dense) {2, 32}"];
8["container_0 (:container) {{2, 32}, {2, 32}}"];
9["add_0 (:add) {2, 32}"];
8 --> 9;
7 --> 8;
4 --> 8;
6 --> 7;
5 --> 6;
3 --> 5;
3 --> 4;
And you can use Axon.build/2 on out as you would any other Axon model:
{init_fn, predict_fn} = Axon.build(out)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
#Nx.Tensor<
  f32[2][32]
  [
    [-4.283246040344238, 1.8983498811721802, 3.697357654571533, -4.720174789428711, 4.1636152267456055, 1.001131534576416, -0.7027540802955627, -3.7821826934814453, 0.027841567993164062, 9.267499923706055, 3.33616304397583, -1.5465859174728394, 8.983413696289062, 3.7445120811462402, 2.2405576705932617, -3.61336350440979, -1.7320983409881592, 0.5740477442741394, -0.22006472945213318, -0.1806044578552246, 1.1092393398284912, -0.29313594102859497, -0.41948509216308594, 3.526411533355713, -0.9127179384231567, 1.8373844623565674, 1.1746022701263428, -0.6885149478912354, -1.4326229095458984, -1.3498257398605347, -5.803186416625977, 1.5204020738601685],
    [-15.615742683410645, 6.555544853210449, 7.033155918121338, -12.33556842803955, 14.105436325073242, -4.230871200561523, 5.985136032104492, -8.445676803588867, 5.383096694946289, 23.413570404052734, 0.8907639980316162, -1.400709629058838, 19.19326400756836, 13.784171104431152, 9.641424179077148, -8.407038688659668, -5.688483238220215, 4.383636474609375, ...]
  ]
>
As your architectures grow in complexity, you might find yourself reaching for better abstractions to organize your model creation code. For example, PyTorch models are often organized into nn.Module. The equivalent of an nn.Module in Axon is a regular Elixir function. If you're translating models from PyTorch to Axon, it's natural to create one Elixir function per nn.Module.
You should write your models as you would write any other Elixir code - you don't need to worry about any framework specific constructs:
defmodule MyModel do
  def model() do
    Axon.input("data")
    |> conv_block()
    |> Axon.flatten()
    |> dense_block()
    |> dense_block()
    |> Axon.dense(1)
  end

  defp conv_block(input) do
    residual = input

    x = input |> Axon.conv(3, padding: :same) |> Axon.mish()

    x
    |> Axon.add(residual)
    |> Axon.max_pool(kernel_size: {2, 2})
  end

  defp dense_block(input) do
    input |> Axon.dense(32) |> Axon.relu()
  end
end
{:module, MyModel, <<70, 79, 82, 49, 0, 0, 8, ...>>, {:dense_block, 1}}
model = MyModel.model()
#Axon<
  inputs: %{"data" => nil}
  outputs: "dense_2"
  nodes: 12
>
template = Nx.template({1, 28, 28, 3}, :f32)
Axon.Display.as_graph(model, template)
graph TD;
10[/"data (:input) {1, 28, 28, 3}"/];
11["conv_0 (:conv) {1, 28, 28, 3}"];
12["mish_0 (:mish) {1, 28, 28, 3}"];
13["container_0 (:container) {{1, 28, 28, 3}, {1, 28, 28, 3}}"];
14["add_0 (:add) {1, 28, 28, 3}"];
15["max_pool_0 (:max_pool) {1, 14, 14, 3}"];
16["flatten_0 (:flatten) {1, 588}"];
17["dense_0 (:dense) {1, 32}"];
18["relu_0 (:relu) {1, 32}"];
19["dense_1 (:dense) {1, 32}"];
20["relu_1 (:relu) {1, 32}"];
21["dense_2 (:dense) {1, 1}"];
20 --> 21;
19 --> 20;
18 --> 19;
17 --> 18;
16 --> 17;
15 --> 16;
14 --> 15;
13 --> 14;
10 --> 13;
12 --> 13;
11 --> 12;
10 --> 11;


  

    
Multi-input / multi-output models
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:kino, ">= 0.9.0"}
])
:ok

  
    
  
  Creating multi-input models


Sometimes your application necessitates the use of multiple inputs. To use multiple inputs in an Axon model, you just need to declare multiple inputs in your graph:
input_1 = Axon.input("input_1")
input_2 = Axon.input("input_2")

out = Axon.add(input_1, input_2)
#Axon<
  inputs: %{"input_1" => nil, "input_2" => nil}
  outputs: "add_0"
  nodes: 4
>
Notice when you inspect the model, it tells you what your models inputs are up front. You can also get metadata about your model inputs programmatically with Axon.get_inputs/1:
Axon.get_inputs(out)
%{"input_1" => nil, "input_2" => nil}
Each input is uniquely named, so you can pass inputs by-name into inspection and execution functions with a map:
inputs = %{
  "input_1" => Nx.template({2, 8}, :f32),
  "input_2" => Nx.template({2, 8}, :f32)
}

Axon.Display.as_graph(out, inputs)
graph TD;
3[/"input_1 (:input) {2, 8}"/];
4[/"input_2 (:input) {2, 8}"/];
5["container_0 (:container) {{2, 8}, {2, 8}}"];
6["add_0 (:add) {2, 8}"];
5 --> 6;
4 --> 5;
3 --> 5;
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(inputs, %{})
%{}
inputs = %{
  "input_1" => Nx.iota({2, 8}, type: :f32),
  "input_2" => Nx.iota({2, 8}, type: :f32)
}

predict_fn.(params, inputs)
#Nx.Tensor<
  f32[2][8]
  [
    [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0],
    [16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0, 30.0]
  ]
>
If you forget a required input, Axon will raise:
predict_fn.(params, %{"input_1" => Nx.iota({2, 8}, type: :f32)})

  
    
  
  Creating multi-output models


Depending on your application, you might also want your model to have multiple outputs. You can achieve this by using Axon.container/2 to wrap multiple nodes into any supported Nx container:
inp = Axon.input("data")

x1 = inp |> Axon.dense(32) |> Axon.relu()
x2 = inp |> Axon.dense(64) |> Axon.relu()

out = Axon.container({x1, x2})
#Axon<
  inputs: %{"data" => nil}
  outputs: "container_0"
  nodes: 6
>
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
7[/"data (:input) {2, 8}"/];
8["dense_0 (:dense) {2, 32}"];
9["relu_0 (:relu) {2, 32}"];
10["dense_1 (:dense) {2, 64}"];
11["relu_1 (:relu) {2, 64}"];
12["container_0 (:container) {{2, 32}, {2, 64}}"];
11 --> 12;
9 --> 12;
10 --> 11;
7 --> 10;
8 --> 9;
7 --> 8;
When executed, containers will return a data structure which matches their input structure:
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
{#Nx.Tensor<
   f32[2][32]
   [
     [0.4453479051589966, 1.7394963502883911, 0.8509911298751831, 0.35142624378204346, 0.0, 0.0, 0.0, 3.942654609680176, 0.0, 0.0, 0.0, 0.6140655279159546, 0.0, 5.719906330108643, 1.1410939693450928, 0.0, 2.6871578693389893, 3.373258352279663, 0.0, 0.0, 0.0, 0.3058185875415802, 0.0, 0.0, 1.3737146854400635, 2.2648088932037354, 1.3570061922073364, 0.0, 0.05746358633041382, 0.0, 2.046199321746826, 4.884631156921387],
     [0.0, 2.0598671436309814, 2.4343056678771973, 3.2341041564941406, 0.0, 1.905256748199463, 0.0, 12.712749481201172, 0.0, 0.0, 0.0, 4.559232711791992, 0.0, 12.027459144592285, 0.8423471450805664, 0.0, 8.888325691223145, ...]
   ]
 >,
 #Nx.Tensor<
   f32[2][64]
   [
     [2.211906909942627, 0.937014639377594, 0.017132893204689026, 0.0, 3.617021083831787, 1.3125507831573486, 1.1870051622390747, 0.0, 0.0, 1.245000958442688, 1.5268664360046387, 0.0, 2.16796612739563, 0.8091188669204712, 0.45314761996269226, 0.0, 0.05176612734794617, 0.0, 5.982738018035889, 1.58057701587677, 0.0, 0.0, 1.2986125946044922, 0.8577098250389099, 0.0, 1.1064631938934326, 1.1242716312408447, 1.8777625560760498, 3.4422712326049805, 0.13321448862552643, 2.753225088119507, 0.0, 0.45021766424179077, 0.5664225816726685, 0.0, 0.0, 0.0, 1.5448659658432007, 0.0, 0.7237715721130371, 0.1693495213985443, 0.0, 0.719341516494751, 0.0, 0.0, 4.644839763641357, 0.0, 3.597681760787964, ...],
     ...
   ]
 >}
You can output maps as well:
out = Axon.container(%{x1: x1, x2: x2})
#Axon<
  inputs: %{"data" => nil}
  outputs: "container_0"
  nodes: 6
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
%{
  x1: #Nx.Tensor<
    f32[2][32]
    [
      [1.4180752038955688, 1.8710994720458984, 0.0, 1.1198676824569702, 1.1357430219650269, 0.0, 0.0, 0.0, 2.907017469406128, 0.0, 0.3814663589000702, 0.0, 0.6225995421409607, 1.1952786445617676, 0.0, 3.6701409816741943, 3.581918716430664, 1.4750021696090698, 0.910987377166748, 0.0, 0.0, 0.0, 2.317782402038574, 0.8362345695495605, 0.0, 1.9256348609924316, 0.0, 0.0, 0.0, 1.8028252124786377, 1.448373556137085, 1.743951678276062],
      [3.7401936054229736, 2.494429349899292, 0.0, 0.9745509624481201, 8.416919708251953, 0.0, 0.6044515371322632, 0.0, 2.5829238891601562, 0.0, 3.592892646789551, 0.0, 0.0, 4.004939079284668, 0.0, 9.755555152893066, 5.3506879806518555, ...]
    ]
  >,
  x2: #Nx.Tensor<
    f32[2][64]
    [
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.5240116119384766, 0.0, 1.6478428840637207, 0.0, 0.0, 0.0, 0.0, 2.1685361862182617, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5010783672332764, 0.36673399806022644, 0.0, 0.0, 0.5610344409942627, 1.9324723482131958, 0.39768826961517334, 0.0, 0.0, 0.0, 0.0, 0.0, 0.054594263434410095, 0.6123883128166199, 0.15942004323005676, 0.7058550715446472, 0.0, 1.860019326210022, 0.2499483972787857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03381317853927612, ...],
      ...
    ]
  >
}
Containers even support arbitrary nesting:
out = Axon.container({%{x1: {x1, x2}, x2: %{x1: x1, x2: {x2}}}})
#Axon<
  inputs: %{"data" => nil}
  outputs: "container_0"
  nodes: 6
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
{%{
   x1: {#Nx.Tensor<
      f32[2][32]
      [
        [1.7373675107955933, 0.0, 5.150482177734375, 0.544252336025238, 0.275376558303833, 0.0, 0.0, 0.0, 0.0, 1.7849855422973633, 0.7857151031494141, 0.2273893654346466, 0.2701767086982727, 2.321484327316284, 2.685051441192627, 0.0, 2.547382116317749, 0.0, 0.0, 0.0, 0.722919225692749, 2.3600289821624756, 1.4695687294006348, 0.0, 0.0, 0.0, 1.0015852451324463, 1.2762010097503662, 0.0, 0.07927703857421875, 0.0, 0.6216219663619995],
        [4.996878623962402, 0.0, 14.212154388427734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.517582356929779, 0.0, 2.036062479019165, 2.907236337661743, 8.515787124633789, 7.998186111450195, ...]
      ]
    >,
    #Nx.Tensor<
      f32[2][64]
      [
        [1.2057430744171143, 0.0, 0.0, 0.8717040419578552, 1.7653638124465942, 0.0, 0.0, 0.0, 0.0, 0.9921279549598694, 0.0, 1.0860291719436646, 2.3648557662963867, 0.0, 0.0, 2.0518181324005127, 1.6323723793029785, 0.9113610982894897, 1.6805293560028076, 0.8101096749305725, 0.0, 0.0, 0.0, 2.2150073051452637, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2320713996887207, 0.0, 2.553570508956909, 0.28632092475891113, 0.0, 0.0, 0.020383253693580627, 0.0, 0.2926883101463318, 1.3561311960220337, 0.8884503245353699, 3.1455295085906982, 0.0, 0.0, 1.237722635269165, 0.0, 2.149625539779663, ...],
        ...
      ]
    >},
   x2: %{
     x1: #Nx.Tensor<
       f32[2][32]
       [
         [1.7373675107955933, 0.0, 5.150482177734375, 0.544252336025238, 0.275376558303833, 0.0, 0.0, 0.0, 0.0, 1.7849855422973633, 0.7857151031494141, 0.2273893654346466, 0.2701767086982727, 2.321484327316284, 2.685051441192627, 0.0, 2.547382116317749, 0.0, 0.0, 0.0, 0.722919225692749, 2.3600289821624756, 1.4695687294006348, 0.0, 0.0, 0.0, 1.0015852451324463, 1.2762010097503662, 0.0, 0.07927703857421875, 0.0, 0.6216219663619995],
         [4.996878623962402, 0.0, 14.212154388427734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.517582356929779, 0.0, 2.036062479019165, 2.907236337661743, 8.515787124633789, ...]
       ]
     >,
     x2: {#Nx.Tensor<
        f32[2][64]
        [
          [1.2057430744171143, 0.0, 0.0, 0.8717040419578552, 1.7653638124465942, 0.0, 0.0, 0.0, 0.0, 0.9921279549598694, 0.0, 1.0860291719436646, 2.3648557662963867, 0.0, 0.0, 2.0518181324005127, 1.6323723793029785, 0.9113610982894897, 1.6805293560028076, 0.8101096749305725, 0.0, 0.0, 0.0, 2.2150073051452637, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2320713996887207, 0.0, 2.553570508956909, 0.28632092475891113, 0.0, 0.0, 0.020383253693580627, 0.0, 0.2926883101463318, 1.3561311960220337, 0.8884503245353699, 3.1455295085906982, 0.0, 0.0, 1.237722635269165, ...],
          ...
        ]
      >}
   }
 }}


  

    
Custom layers
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:kino, ">= 0.9.0"}
])
:ok

  
    
  
  Creating custom layers


While Axon has a plethora of built-in layers, more than likely you'll run into a case where you need something not provided by the framework. In these instances, you can use custom layers.
To Axon, layers are really just defn implementations with special Axon inputs. Every layer in Axon (including the built-in layers), are implemented with the Axon.layer/3 function. The API of Axon.layer/3 intentionally mirrors the API of Kernel.apply/2. To declare a custom layer you need 2 things:
	A defn implementation
	Inputs

The defn implementation looks like any other defn you'd write; however, it must always account for additional opts as an argument:
defmodule CustomLayers0 do
  import Nx.Defn

  defn my_layer(input, opts \\ []) do
    opts = keyword!(opts, mode: :train, alpha: 1.0)

    input
    |> Nx.sin()
    |> Nx.multiply(opts[:alpha])
  end
end
{:module, CustomLayers0, <<70, 79, 82, 49, 0, 0, 10, ...>>, true}
Regardless of the options you configure your layer to accept, the defn implementation will always receive a :mode option indicating whether or not the model is running in training or inference mode. You can customize the behavior of your layer depending on the mode.
With an implementation defined, you need only to call Axon.layer/3 to apply our custom layer to an Axon input:
input = Axon.input("data")

out = Axon.layer(&CustomLayers0.my_layer/2, [input])
#Axon<
  inputs: %{"data" => nil}
  outputs: "custom_0"
  nodes: 2
>
Now you can inspect and execute your model as normal:
template = Nx.template({2, 8}, :f32)
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
4["custom_0 (:custom) {2, 8}"];
3 --> 4;
Notice that by default custom layers render with a default operation marked as :custom. This can make it difficult to determine which layer is which during inspection. You can control the rendering by passing :op_name to Axon.layer/3:
out = Axon.layer(&CustomLayers0.my_layer/2, [input], op_name: :my_layer)

Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
5["my_layer_0 (:my_layer) {2, 8}"];
3 --> 5;
You can also control the name of your layer via the :name option. All other options are forwarded to the layer implementation function:
out =
  Axon.layer(&CustomLayers0.my_layer/2, [input],
    name: "layer",
    op_name: :my_layer,
    alpha: 2.0
  )

Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
6["layer (:my_layer) {2, 8}"];
3 --> 6;
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
%{}
predict_fn.(params, Nx.iota({2, 8}, type: :f32))
#Nx.Tensor<
  f32[2][8]
  [
    [0.0, 1.6829419136047363, 1.8185948133468628, 0.28224000334739685, -1.513604998588562, -1.9178485870361328, -0.558830976486206, 1.3139731884002686],
    [1.978716492652893, 0.8242369890213013, -1.0880422592163086, -1.9999804496765137, -1.073145866394043, 0.8403340578079224, 1.9812147617340088, 1.3005757331848145]
  ]
>
Notice that this model does not have any trainable parameters because none of the layers have trainable parameters. You can introduce trainable parameters by passing inputs created with Axon.param/3 to Axon.layer/3. For example, you can modify your original custom layer to take an additional trainable parameter:
defmodule CustomLayers1 do
  import Nx.Defn

  defn my_layer(input, alpha, _opts \\ []) do
    input
    |> Nx.sin()
    |> Nx.multiply(alpha)
  end
end
{:module, CustomLayers1, <<70, 79, 82, 49, 0, 0, 10, ...>>, true}
And then construct the layer with a regular Axon input and a trainable parameter:
alpha = Axon.param("alpha", fn _ -> {} end)

out = Axon.layer(&CustomLayers1.my_layer/3, [input, alpha], op_name: :my_layer)
#Axon<
  inputs: %{"data" => nil}
  outputs: "my_layer_0"
  nodes: 2
>
{init_fn, predict_fn} = Axon.build(out)
params = init_fn.(template, %{})
%{
  "my_layer_0" => %{
    "alpha" => #Nx.Tensor<
      f32
      -1.2601861953735352
    >
  }
}
Notice how your model now initializes with a trainable parameter "alpha" for your custom layer. Each parameter requires a unique (per-layer) string name and a function which determines the parameter's shape from the layer's input shapes.
If you plan on re-using custom layers in many locations, it's recommended that you wrap them in an Elixir function as an interface:
defmodule CustomLayers2 do
  import Nx.Defn

  def my_layer(%Axon{} = input, opts \\ []) do
    opts = Keyword.validate!(opts, [:name])
    alpha = Axon.param("alpha", fn _ -> {} end)

    Axon.layer(&my_layer_impl/3, [input, alpha], name: opts[:name], op_name: :my_layer)
  end

  defnp my_layer_impl(input, alpha, _opts \\ []) do
    input
    |> Nx.sin()
    |> Nx.multiply(alpha)
  end
end
{:module, CustomLayers2, <<70, 79, 82, 49, 0, 0, 12, ...>>, true}
out =
  input
  |> CustomLayers2.my_layer()
  |> CustomLayers2.my_layer()
  |> Axon.dense(1)
#Axon<
  inputs: %{"data" => nil}
  outputs: "dense_0"
  nodes: 4
>
Axon.Display.as_graph(out, template)
graph TD;
3[/"data (:input) {2, 8}"/];
8["my_layer_0 (:my_layer) {2, 8}"];
9["my_layer_1 (:my_layer) {2, 8}"];
10["dense_0 (:dense) {2, 1}"];
9 --> 10;
8 --> 9;
3 --> 8;


  

    
Model hooks
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Creating models with hooks


Sometimes it's useful to inspect or visualize the values of intermediate layers in your model during the forward or backward pass. For example, it's common to visualize the gradients of activation functions to ensure your model is learning in a stable manner. Axon supports this functionality via model hooks.
Model hooks are a means of unidirectional communication with an executing model. Hooks are unidirectional in the sense that you can only receive information from your model, and not send information back.
Hooks are attached per-layer and can execute at 4 different points in model execution: on the pre-forward, forward, or backward pass of the model or during model initialization. You can also configure the same hook to execute on all 3 events. You can attach hooks to models using Axon.attach_hook/3:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.attach_hook(fn val -> IO.inspect(val, label: :dense_forward) end, on: :forward)
  |> Axon.attach_hook(fn val -> IO.inspect(val, label: :dense_init) end, on: :initialize)
  |> Axon.relu()
  |> Axon.attach_hook(fn val -> IO.inspect(val, label: :relu) end, on: :forward)

{init_fn, predict_fn} = Axon.build(model)

input = Nx.iota({2, 4}, type: :f32)
params = init_fn.(input, %{})
dense_init: %{
  "bias" => #Nx.Tensor<
    f32[8]
    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
  >,
  "kernel" => #Nx.Tensor<
    f32[4][8]
    [
      [0.6067318320274353, 0.5483129620552063, -0.05663269758224487, -0.48249542713165283, -0.18357598781585693, 0.6496620774269104, 0.4919115900993347, -0.08380156755447388],
      [-0.19745409488677979, 0.10483592748641968, -0.43387970328330994, -0.1041460633277893, -0.4129607081413269, -0.6482449769973755, 0.6696910262107849, 0.4690167307853699],
      [-0.18194729089736938, -0.4856645464897156, 0.39400774240493774, -0.28496378660202026, 0.32120805978775024, -0.41854584217071533, 0.5671316981315613, -0.21937215328216553],
      [0.4516749978065491, -0.23585206270217896, -0.6682141423225403, 0.4286096692085266, -0.14930623769760132, -0.3825327157974243, 0.2700549364089966, -0.3888852596282959]
    ]
  >
}
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][8]
      [
        [0.6067318320274353, 0.5483129620552063, -0.05663269758224487, -0.48249542713165283, -0.18357598781585693, 0.6496620774269104, 0.4919115900993347, -0.08380156755447388],
        [-0.19745409488677979, 0.10483592748641968, -0.43387970328330994, -0.1041460633277893, -0.4129607081413269, -0.6482449769973755, 0.6696910262107849, 0.4690167307853699],
        [-0.18194729089736938, -0.4856645464897156, 0.39400774240493774, -0.28496378660202026, 0.32120805978775024, -0.41854584217071533, 0.5671316981315613, -0.21937215328216553],
        [0.4516749978065491, -0.23585206270217896, -0.6682141423225403, 0.4286096692085266, -0.14930623769760132, -0.3825327157974243, 0.2700549364089966, -0.3888852596282959]
      ]
    >
  }
}
Notice how during initialization the :dense_init hook fired and inspected the layer's parameters. Now when executing, you'll see outputs for :dense and :relu:
predict_fn.(params, input)
relu: #Nx.Tensor<
  f32[2][8]
  [
    [0.7936763167381287, 0.0, 0.0, 0.61175537109375, 0.0, 0.0, 2.614119291305542, 0.0],
    [3.5096981525421143, 0.0, 0.0, 0.0, 0.0, 0.0, 10.609275817871094, 0.0]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [0.7936763167381287, 0.0, 0.0, 0.61175537109375, 0.0, 0.0, 2.614119291305542, 0.0],
    [3.5096981525421143, 0.0, 0.0, 0.0, 0.0, 0.0, 10.609275817871094, 0.0]
  ]
>
It's important to note that hooks execute in the order they were attached to a layer. If you attach 2 hooks to the same layer which execute different functions on the same event, they will run in order:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.attach_hook(fn val -> IO.inspect(val, label: :hook1) end, on: :forward)
  |> Axon.attach_hook(fn val -> IO.inspect(val, label: :hook2) end, on: :forward)
  |> Axon.relu()

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(input, %{})

predict_fn.(params, input)
hook2: #Nx.Tensor<
  f32[2][8]
  [
    [-0.6567458510398865, 2.2303993701934814, -1.540865421295166, -1.873536229133606, -2.386439085006714, -1.248870849609375, -2.9092607498168945, -0.1976098120212555],
    [2.4088101387023926, 5.939034461975098, -2.024522066116333, -7.58249568939209, -10.193460464477539, 0.33839887380599976, -10.836882591247559, 1.8173918724060059]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [0.0, 2.2303993701934814, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
    [2.4088101387023926, 5.939034461975098, 0.0, 0.0, 0.0, 0.33839887380599976, 0.0, 1.8173918724060059]
  ]
>
Notice that :hook1 fires before :hook2.
You can also specify a hook to fire on all events:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.attach_hook(&IO.inspect/1, on: :all)
  |> Axon.relu()
  |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model)
{#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>,
 #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>}
On initialization:
params = init_fn.(input, %{})
%{
  "bias" => #Nx.Tensor<
    f32[8]
    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
  >,
  "kernel" => #Nx.Tensor<
    f32[4][8]
    [
      [0.2199305295944214, -0.05434012413024902, -0.07989239692687988, -0.4456246793270111, -0.2792319655418396, -0.1601254940032959, -0.6115692853927612, 0.37740427255630493],
      [-0.3606935739517212, 0.6091846823692322, -0.3203054368495941, -0.6252920031547546, -0.41500264406204224, -0.20729252696037292, -0.6763507127761841, -0.6776859164237976],
      [0.659041702747345, -0.615885317325592, -0.45865312218666077, 0.18774819374084473, 0.31994110345840454, -0.3055777847766876, -0.3537192642688751, 0.4297131896018982],
      [0.06112170219421387, 0.13321959972381592, 0.5566524863243103, -0.1115691065788269, -0.3557875156402588, -0.03118818998336792, -0.5788122415542603, -0.6988758444786072]
    ]
  >
}
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][8]
      [
        [0.2199305295944214, -0.05434012413024902, -0.07989239692687988, -0.4456246793270111, -0.2792319655418396, -0.1601254940032959, -0.6115692853927612, 0.37740427255630493],
        [-0.3606935739517212, 0.6091846823692322, -0.3203054368495941, -0.6252920031547546, -0.41500264406204224, -0.20729252696037292, -0.6763507127761841, -0.6776859164237976],
        [0.659041702747345, -0.615885317325592, -0.45865312218666077, 0.18774819374084473, 0.31994110345840454, -0.3055777847766876, -0.3537192642688751, 0.4297131896018982],
        [0.06112170219421387, 0.13321959972381592, 0.5566524863243103, -0.1115691065788269, -0.3557875156402588, -0.03118818998336792, -0.5788122415542603, -0.6988758444786072]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][1]
      [
        [0.3259686231613159],
        [0.4874255657196045],
        [0.6338149309158325],
        [0.4437469244003296],
        [-0.22870665788650513],
        [0.8108665943145752],
        [7.919073104858398e-4],
        [0.4469025135040283]
      ]
    >
  }
}
On pre-forward and forward:
predict_fn.(params, input)
#Nx.Tensor<
  f32[2][4]
  [
    [0.0, 1.0, 2.0, 3.0],
    [4.0, 5.0, 6.0, 7.0]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
    [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
    [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
  ]
>
#Nx.Tensor<
  f32[2][1]
  [
    [0.6458775401115417],
    [1.1593825817108154]
  ]
>
And on backwards:
Nx.Defn.grad(fn params -> predict_fn.(params, input) end).(params)
#Nx.Tensor<
  f32[2][4]
  [
    [0.0, 1.0, 2.0, 3.0],
    [4.0, 5.0, 6.0, 7.0]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
    [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
  ]
>
#Nx.Tensor<
  f32[2][8]
  [
    [1.1407549381256104, -0.22292715311050415, 0.43234577775001526, -0.5845029354095459, -0.8424829840660095, -0.9120126962661743, -3.1202259063720703, -1.9148870706558228],
    [3.4583563804626465, 0.06578820943832397, -0.776448130607605, -4.563453197479248, -3.7628071308135986, -3.7287485599517822, -12.002032279968262, -4.19266414642334]
  ]
>
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.6519372463226318, 0.4874255657196045, 0.6338149309158325, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][8]
      [
        [1.3038744926452637, 1.949702262878418, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        [1.9558117389678955, 2.4371278285980225, 0.6338149309158325, 0.0, 0.0, 0.0, 0.0, 0.0],
        [2.6077489852905273, 2.924553394317627, 1.267629861831665, 0.0, 0.0, 0.0, 0.0, 0.0],
        [3.259686231613159, 3.4119789600372314, 1.9014447927474976, 0.0, 0.0, 0.0, 0.0, 0.0]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [2.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][1]
      [
        [4.599111557006836],
        [0.06578820943832397],
        [0.43234577775001526],
        [0.0],
        [0.0],
        [0.0],
        [0.0],
        [0.0]
      ]
    >
  }
}
Finally, you can specify hooks to only run when the model is built in a certain mode such as training and inference mode. You can read more about training and inference mode in Training and inference mode:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.attach_hook(&IO.inspect/1, on: :forward, mode: :train)
  |> Axon.relu()

{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(input, %{})
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][8]
      [
        [-0.13241732120513916, 0.6946331858634949, -0.6328000426292419, -0.684409499168396, -0.39569517970085144, -0.10005003213882446, 0.2501150965690613, 0.14561182260513306],
        [-0.5495109558105469, 0.459137499332428, -0.4059434235095978, -0.4489462077617645, -0.6331832408905029, 0.05011630058288574, -0.35836488008499146, -0.2661571800708771],
        [0.29260867834091187, 0.42186349630355835, 0.32596689462661743, -0.12340176105499268, 0.6767188906669617, 0.2658537030220032, 0.5745270848274231, 6.475448608398438e-4],
        [0.16781508922576904, 0.23747843503952026, -0.5311254858970642, 0.22617805004119873, -0.5153165459632874, 0.19729173183441162, -0.5706893801689148, -0.5531126260757446]
      ]
    >
  }
}
The model was built in training mode so the hook will run:
predict_fn.(params, input)
#Nx.Tensor<
  f32[2][8]
  [
    [0.539151668548584, 2.0152997970581055, -1.347386121749878, -0.017215579748153687, -0.8256950974464417, 1.173698902130127, -0.9213788509368896, -1.9241999387741089],
    [-0.3468663692474365, 9.267749786376953, -6.322994232177734, -4.139533042907715, -4.295599460601807, 2.8265457153320312, -1.3390271663665771, -4.616241931915283]
  ]
>
%{
  prediction: #Nx.Tensor<
    f32[2][8]
    [
      [0.539151668548584, 2.0152997970581055, 0.0, 0.0, 0.0, 1.173698902130127, 0.0, 0.0],
      [0.0, 9.267749786376953, 0.0, 0.0, 0.0, 2.8265457153320312, 0.0, 0.0]
    ]
  >,
  state: %{}
}
{init_fn, predict_fn} = Axon.build(model, mode: :inference)
params = init_fn.(input, %{})
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][8]
      [
        [0.02683490514755249, -0.28041765093803406, 0.15839070081710815, 0.16674137115478516, -0.5444575548171997, -0.34951671957969666, 0.08247309923171997, 0.6700448393821716],
        [0.6001952290534973, -0.26907777786254883, 0.4580194354057312, -0.060002803802490234, -0.5385662317276001, -0.46773862838745117, 0.25804388523101807, -0.6824946999549866],
        [0.13328874111175537, -0.46421635150909424, -0.5192649960517883, -0.0429919958114624, 0.0771912932395935, -0.447194904088974, 0.30910569429397583, -0.6105270981788635],
        [0.5253992676734924, 0.41786473989486694, 0.6903378367424011, 0.6038702130317688, 0.06673228740692139, 0.4242702126502991, -0.6737087368965149, -0.6956207156181335]
      ]
    >
  }
}
The model was built in inference mode so the hook will not run:
predict_fn.(params, input)
#Nx.Tensor<
  f32[2][8]
  [
    [2.4429705142974854, 0.056083738803863525, 1.490502953529358, 1.6656239032745361, 0.0, 0.0, 0.0, 0.0],
    [7.585843086242676, 0.0, 4.640434741973877, 4.336091041564941, 0.0, 0.0, 0.0, 0.0]
  ]
>


  

    
Accelerating Axon
    

Mix.install([
  {:axon, ">= 0.5.0"},
  {:exla, ">= 0.5.0"},
  {:torchx, ">= 0.5.0"},
  {:benchee, "~> 1.1"},
  {:kino, ">= 0.9.0", override: true}
])
:ok

  
    
  
  Using Nx Backends in Axon


Nx provides two mechanisms for accelerating your neural networks: backends and compilers. Before we learn how to effectively use them, first let's create a simple model for benchmarking purposes:
model =
  Axon.input("data")
  |> Axon.dense(32)
  |> Axon.relu()
  |> Axon.dense(1)
  |> Axon.softmax()
#Axon<
  inputs: %{"data" => nil}
  outputs: "softmax_0"
  nodes: 5
>
Backends are where your tensors (your neural network inputs and parameters) are located. By default, Nx and Axon run all computations using the Nx.BinaryBackend which is a pure Elixir implementation of various numerical routines. The Nx.BinaryBackend is guaranteed to run wherever an Elixir installation runs; however, it is very slow. Due to the computational expense of neural networks, you should basically never use the Nx.BinaryBackend and instead opt for one of the available accelerated libraries. At the time of writing, Nx officially supports two of them:
	EXLA - Acceleration via Google's XLA project
	TorchX - Bindings to LibTorch

Axon will respect the global and process-level Nx backend configuration. Compilers are covered more in-depth in the second half of this example. You can set the default backend using the following APIs:
# Sets the global compilation options (for all Elixir processes)
Nx.global_default_backend(Torchx.Backend)
# OR
Nx.global_default_backend(EXLA.Backend)

# Sets the process-level compilation options (current process only)
Nx.default_backend(Torchx.Backend)
# OR
Nx.default_backend(EXLA.Backend)
Now all tensors and operations on them will run on the configured backend:
{inputs, _next_key} =
  Nx.Random.key(9999)
  |> Nx.Random.uniform(shape: {2, 128})

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
  EXLA.Backend<cuda:0, 0.3278685746.4275961901.179470>
  f32[2][1]
  [
    [1.0],
    [1.0]
  ]
>
As you swap backends above, you will get tensors allocated on different backends as results. You should be careful using multiple backends in the same project as attempting to mix tensors between backends may result in strange performance bugs or errors, as Nx will require you to explicitly convert between backends.
With most larger models, using a compiler will bring more performance benefits in addition to the backend.

  
    
  
  Using Nx Compilers in Axon


Axon is built entirely on top of Nx's numerical definitions defn. Functions declared with defn tell Nx to use just-in-time compilation to compile and execute the given numerical definition with an available Nx compiler. Numerical definitions enable acceleration on CPU/GPU/TPU via pluggable compilers. At the time of this writing, only EXLA supports a compiler in addition to its backend.
When you call Axon.build/2, Axon can automatically mark your initialization and forward functions as JIT compiled functions. First let's make sure we are using the EXLA backend:
Nx.default_backend(EXLA.Backend)
And now let's build another model, this time passing the EXLA compiler as an option:
{inputs, _next_key} =
  Nx.Random.key(9999)
  |> Nx.Random.uniform(shape: {2, 128})

{init_fn, predict_fn} = Axon.build(model, compiler: EXLA)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)

15:39:26.463 [info] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

15:39:26.473 [info] XLA service 0x7f3488329030 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:

15:39:26.473 [info]   StreamExecutor device (0): NVIDIA GeForce RTX 3050 Ti Laptop GPU, Compute Capability 8.6

15:39:26.473 [info] Using BFC allocator.

15:39:26.473 [info] XLA backend allocating 3605004288 bytes on device 0 for BFCAllocator.

15:39:28.272 [info] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.

#Nx.Tensor<
  f32[2][1]
  EXLA.Backend<cuda:0, 0.3278685746.4275699756.253533>
  [
    [1.0],
    [1.0]
  ]
>
You can also instead JIT compile functions explicitly via the Nx.Defn.jit or compiler-specific JIT APIs. This is useful when running benchmarks against various backends:
{init_fn, predict_fn} = Axon.build(model)

# These will both JIT compile with EXLA
exla_init_fn = Nx.Defn.jit(init_fn, compiler: EXLA)
exla_predict_fn = EXLA.jit(predict_fn)
#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>
Benchee.run(
  %{
    "elixir init" => fn -> init_fn.(inputs, %{}) end,
    "exla init" => fn -> exla_init_fn.(inputs, %{}) end
  },
  time: 10,
  memory_time: 5,
  warmup: 2
)
Warning: the benchmark elixir init is using an evaluated function.
  Evaluated functions perform slower than compiled functions.
  You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
  Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Warning: the benchmark exla init is using an evaluated function.
  Evaluated functions perform slower than compiled functions.
  You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
  Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Operating System: Linux
CPU Information: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Number of Available Cores: 4
Available memory: 24.95 GB
Elixir 1.13.4
Erlang 25.0.4

Benchmark suite executing with the following configuration:
warmup: 2 s
time: 10 s
memory time: 5 s
reduction time: 0 ns
parallel: 1
inputs: none specified
Estimated total run time: 34 s

Benchmarking elixir init ...
Benchmarking exla init ...

Name                  ips        average  deviation         median         99th %
exla init          3.79 K        0.26 ms   ±100.40%        0.24 ms        0.97 ms
elixir init        0.52 K        1.91 ms    ±35.03%        1.72 ms        3.72 ms

Comparison:
exla init          3.79 K
elixir init        0.52 K - 7.25x slower +1.65 ms

Memory usage statistics:

Name           Memory usage
exla init           9.80 KB
elixir init       644.63 KB - 65.80x memory usage +634.83 KB

**All measurements for memory usage were the same**
Benchee.run(
  %{
    "elixir predict" => fn -> predict_fn.(params, inputs) end,
    "exla predict" => fn -> exla_predict_fn.(params, inputs) end
  },
  time: 10,
  memory_time: 5,
  warmup: 2
)
Warning: the benchmark elixir predict is using an evaluated function.
  Evaluated functions perform slower than compiled functions.
  You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
  Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Warning: the benchmark exla predict is using an evaluated function.
  Evaluated functions perform slower than compiled functions.
  You can move the Benchee caller to a function in a module and invoke `Mod.fun()` instead.
  Alternatively, you can move the benchmark into a benchmark.exs file and run mix run benchmark.exs

Operating System: Linux
CPU Information: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Number of Available Cores: 4
Available memory: 24.95 GB
Elixir 1.13.4
Erlang 25.0.4

Benchmark suite executing with the following configuration:
warmup: 2 s
time: 10 s
memory time: 5 s
reduction time: 0 ns
parallel: 1
inputs: none specified
Estimated total run time: 34 s

Benchmarking elixir predict ...
Benchmarking exla predict ...

Name                     ips        average  deviation         median         99th %
exla predict          2.32 K        0.43 ms   ±147.05%        0.34 ms        1.61 ms
elixir predict        0.28 K        3.53 ms    ±42.21%        3.11 ms        7.26 ms

Comparison:
exla predict          2.32 K
elixir predict        0.28 K - 8.20x slower +3.10 ms

Memory usage statistics:

Name              Memory usage
exla predict          10.95 KB
elixir predict        91.09 KB - 8.32x memory usage +80.14 KB

**All measurements for memory usage were the same**
Notice how calls to EXLA variants are significantly faster. These speedups become more pronounced with more complex models and workflows.
It's important to note that in order to use a given library as an Nx compiler, it must implement the Nx compilation behaviour. For example, you cannot invoke Torchx as an Nx compiler because it does not support JIT compilation at this time.

  
    
  
  A Note on CPUs/GPUs/TPUs


While Nx mostly tries to standardize behavior across compilers and backends, some behaviors are backend-specific. For example, the API for choosing an acceleration platform (e.g. CUDA/ROCm/TPU) is backend-specific. You should refer to your chosen compiler or backend's documentation for information on targeting various accelerators. Typically, you only need to change a few configuration options and your code will run as-is on a chosen accelerator.


  

    
Training and inference mode
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Executing models in inference mode


Some layers have different considerations and behavior when running during model training versus model inference. For example dropout layers are intended only to be used during training as a form of model regularization. Certain stateful layers like batch normalization keep a running-internal state which changes during training mode but remains fixed during inference mode. Axon supports mode-dependent execution behavior via the :mode option passed to all building, compilation, and execution methods. By default, all models build in inference mode. You can see this behavior by adding a dropout layer with a dropout rate of 1. In inference mode this layer will have no affect:
inputs = Nx.iota({2, 8}, type: :f32)

model =
  Axon.input("data")
  |> Axon.dense(4)
  |> Axon.sigmoid()
  |> Axon.dropout(rate: 0.99)
  |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
  f32[2][1]
  [
    [0.6900148391723633],
    [1.1159517765045166]
  ]
>
You can also explicitly specify the mode:
{init_fn, predict_fn} = Axon.build(model, mode: :inference)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
#Nx.Tensor<
  f32[2][1]
  [
    [-1.1250841617584229],
    [-1.161189317703247]
  ]
>
It's important that you know which mode your model's were compiled for, as running a model built in :inference mode will behave drastically different than a model built in :train mode.

  
    
  
  Executing models in training mode


By specifying mode: :train, you tell your models to execute in training mode. You can see the effects of this behavior here:
{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
%{
  prediction: #Nx.Tensor<
    f32[2][1]
    [
      [0.0],
      [0.0]
    ]
  >,
  state: %{
    "dropout_0" => %{
      "key" => #Nx.Tensor<
        u32[2]
        [309162766, 2699730300]
      >
    }
  }
}
First, notice that your model now returns a map with keys :prediction and :state. :prediction contains the actual model prediction, while :state contains the updated state for any stateful layers such as batch norm. When writing custom training loops, you should extract :state and use it in conjunction with the updates API to ensure your stateful layers are updated correctly. If your model has stateful layers, :state will look similar to your model's parameter map:
model =
  Axon.input("data")
  |> Axon.dense(4)
  |> Axon.sigmoid()
  |> Axon.batch_norm()
  |> Axon.dense(1)

{init_fn, predict_fn} = Axon.build(model, mode: :train)
params = init_fn.(inputs, %{})
predict_fn.(params, inputs)
%{
  prediction: #Nx.Tensor<
    f32[2][1]
    [
      [0.4891311526298523],
      [-0.4891311228275299]
    ]
  >,
  state: %{
    "batch_norm_0" => %{
      "mean" => #Nx.Tensor<
        f32[4]
        [0.525083601474762, 0.8689039349555969, 0.03931800276041031, 0.0021854371298104525]
      >,
      "var" => #Nx.Tensor<
        f32[4]
        [0.13831248879432678, 0.10107331722974777, 0.10170891880989075, 0.10000484436750412]
      >
    }
  }
}


  

    
Your first training loop
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Creating an Axon training loop


Axon generalizes the concept of training, evaluation, hyperparameter optimization, and more into the Axon.Loop API. Axon loops are a instrumented reductions over Elixir Streams - that basically means you can accumulate some state over an Elixir Stream and control different points in the loop execution.
With Axon, you'll most commonly implement and work with supervised training loops. Because supervised training loops are so common in deep learning, Axon has a loop factory function which takes care of most of the boilerplate of creating a supervised training loop for you. In the beginning of your deep learning journey, you'll almost exclusively use Axon's loop factories to create and run loops.
Axon's supervised training loop assumes you have an input stream of data with entries that look like:
{batch_inputs, batch_labels}
Each entry is a batch of input data with a corresponding batch of labels. You can simulate some real training data by constructing an Elixir stream:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)
#Function<51.6935098/2 in Stream.repeatedly/1>
The most basic supervised training loop in Axon requires 3 things:
	An Axon model
	A loss function
	An optimizer

You can construct an Axon model using the knowledge you've gained from going through the model creation guides:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)
#Axon<
  inputs: %{"data" => nil}
  outputs: "dense_2"
  nodes: 6
>
Axon comes with built-in loss functions and optimizers which you can use directly when constructing your training loop. To construct your training loop, you use Axon.Loop.trainer/3:
loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)
#Axon.Loop<
  metrics: %{
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
You'll notice that Axon.Loop.trainer/3 returns an %Axon.Loop{} data structure. This data structure contains information which Axon uses to control the execution of the loop. In order to run the loop, you need to explicitly pass it to Axon.Loop.run/4:
Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0563023
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.038592107594013214, 0.19925688207149506, -0.08018972724676132, -0.11267539858818054, 0.35166260600090027, -0.0794963389635086, 0.20298318564891815, 0.3049686849117279]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.06691190600395203, -0.32860732078552246, 0.22386932373046875, 0.16137443482875824, 0.23626506328582764, 0.2438151240348816, 0.2662005126476288, 0.32266947627067566]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.03138260543346405, 0.2621246576309204, 0.021843062713742256, -0.07498764991760254]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.541576087474823, 0.4923045039176941, 0.5933979749679565, -0.5083895921707153],
        [0.5120893120765686, -0.6925638318061829, 0.36635661125183105, -0.05748361349105835],
        [0.26158788800239563, -0.1788359135389328, -0.14064575731754303, -0.08323567360639572],
        [0.6685130596160889, -0.4880330264568329, 0.5104460120201111, -0.3399733006954193],
        [-0.6356683969497681, 0.770803689956665, -0.3876360058784485, -0.5178110599517822],
        [0.4476216733455658, -0.21042484045028687, -0.4300518333911896, -0.2693784534931183],
        [0.08789066225290298, 0.47043612599372864, 0.02871485985815525, 0.6908602714538574],
        [0.45776790380477905, 0.6735268235206604, 0.40828803181648254, 0.19558420777320862]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.748963475227356]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.22219088673591614],
        [1.1391150951385498],
        [-0.13221295177936554],
        [-0.27904900908470154]
      ]
    >
  }
}
Axon.Loop.run/4 expects a loop to execute, some data to loop over, and any initial state you explicitly want your loop to start with. Axon.Loop.run/4 will then iterate over your data, executing a step function on each batch, and accumulating some generic loop state. In the case of a supervised training loop, this generic loop state actually represents training state including your model's trained parameters.
Axon.Loop.run/4 also accepts options which control the loops execution. This includes :iterations which controls the number of iterations per epoch a loop should execute for, and :epochs which controls the number of epochs a loop should execute for:
Axon.Loop.run(loop, train_data, %{}, epochs: 3, iterations: 500)
Epoch: 0, Batch: 450, loss: 0.0935063
Epoch: 1, Batch: 450, loss: 0.0576384
Epoch: 2, Batch: 450, loss: 0.0428323
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.035534460097551346, 0.2604885697364807, -0.10573504120111465, -0.16461455821990967, 0.3610309064388275, -0.10921606421470642, 0.2061888873577118, 0.3162775933742523]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.05344606190919876, -0.3463115096092224, 0.23782028257846832, 0.20592278242111206, 0.2195105254650116, 0.2618684470653534, 0.2559347450733185, 0.3006669282913208]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.03086121939122677, 0.28601887822151184, 0.02634759061038494, -0.08197703212499619]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.5404174327850342, 0.49248307943344116, 0.5927202701568604, -0.5083895921707153],
        [0.5133915543556213, -0.7197086811065674, 0.3669036030769348, -0.057483553886413574],
        [0.26609811186790466, -0.20234307646751404, -0.14102067053318024, -0.08141336590051651],
        [0.673393964767456, -0.512398362159729, 0.5106634497642517, -0.3384905159473419],
        [-0.6347945928573608, 0.7695014476776123, -0.3877493143081665, -0.5186421275138855],
        [0.45236992835998535, -0.2351287305355072, -0.4305106997489929, -0.2674770951271057],
        [0.08871842920780182, 0.46521952748298645, 0.02729635499417782, 0.691332221031189],
        [0.4584391117095947, 0.6687410473823547, 0.4068295657634735, 0.19576647877693176]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.7425869703292847]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.24965399503707886],
        [1.1746525764465332],
        [-0.12984804809093475],
        [-0.2796761095523834]
      ]
    >
  }
}
You may have noticed that by default Axon.Loop.trainer/3 configures your loop to log information about training progress every 50 iterations. You can control this when constructing your supervised training loop with the :log option:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd, log: 100)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 900, loss: 0.1492715
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.09267199039459229, 0.5775123834609985, -0.07691138982772827, 0.04283804073929787, -0.015639742836356163, -0.0725373700261116, -0.10598818212747574, 0.021243896335363388]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.07886508852243423, 0.826379120349884, 0.1022031158208847, -0.5164816975593567, 0.390212744474411, 0.2709604799747467, -0.05409134551882744, -0.6204537749290466]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.09577611088752747, 0.3303026556968689, -0.25102874636650085, -0.3312375247478485]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.5508446097373962, -0.03904113546013832, 0.382876992225647, -0.6273598670959473],
        [0.13289013504981995, 0.947068452835083, -0.27359727025032043, 0.4073275923728943],
        [-0.10011858493089676, -0.32976964116096497, -0.3160743713378906, -0.3586210012435913],
        [-0.628970205783844, -0.19567319750785828, -0.07241304218769073, -0.43270331621170044],
        [-0.6155693531036377, -0.020595157518982887, -0.3254905045032501, 0.18614870309829712],
        [-0.07561944425106049, -0.34477049112319946, -0.30149057507514954, -0.6603768467903137],
        [-0.17559891939163208, -0.2768605649471283, 0.5830116868019104, 0.11386138200759888],
        [-0.6376093626022339, -0.31125709414482117, 0.2749727964401245, -0.6777774691581726]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.767456591129303]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.3530634641647339],
        [0.9497018456459045],
        [0.31334763765335083],
        [-0.624195396900177]
      ]
    >
  }
}


  

    
Instrumenting loops with metrics
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Adding metrics to training loops


Often times when executing a loop you want to keep track of various metrics such as accuracy or precision. For training loops, Axon by default only tracks loss; however, you can instrument the loop with additional built-in metrics. For example, you might want to track mean-absolute error on top of a mean-squared error loss:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.metric(:mean_absolute_error)
#Axon.Loop<
  metrics: %{
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>},
    "mean_absolute_error" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     :mean_absolute_error}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
When specifying a metric, you can specify an atom which maps to any of the metrics defined in Axon.Metrics. You can also define custom metrics. For more information on custom metrics, see Writing custom metrics.
When you run a loop with metrics, Axon will aggregate that metric over the course of the loop execution. For training loops, Axon will also report the aggregate metric in the training logs:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0590630 mean_absolute_error: 0.1463431
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.015203186310827732, 0.1997198462486267, 0.09740892797708511, -0.007404750678688288, 0.11397464573383331, 0.3608400523662567, 0.07219560444355011, -0.06638865917921066]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.07889414578676224, 0.30445051193237305, 0.1377921849489212, 0.015571207739412785, 0.7115736603736877, -0.6404237151145935, 0.25553327798843384, 0.057831913232803345]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.10809992998838425, 0.0, 0.47775307297706604, -0.1641010195016861]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.040330830961465836, -0.36995524168014526, 0.001599793671630323, 0.6012424826622009],
        [0.21044284105300903, -0.39482879638671875, -0.5866784453392029, 0.15573620796203613],
        [-0.09234675765037537, 0.27758270502090454, -0.6663768291473389, 0.6017312407493591],
        [-0.4454570412635803, 0.1304328441619873, -0.31381309032440186, 0.1906844824552536],
        [0.3460652530193329, -0.3017694056034088, -0.1680794507265091, -0.47811293601989746],
        [0.28633055090904236, -0.34003201127052307, 0.6202688813209534, 0.18027405440807343],
        [0.5729941129684448, 0.32222074270248413, 0.20647864043712616, 0.02462891861796379],
        [-0.13146185874938965, -0.06700503826141357, 0.6600251793861389, -0.06442582607269287]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.4863035976886749]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.41491562128067017],
        [-0.948100209236145],
        [-1.2559744119644165],
        [1.0097774267196655]
      ]
    >
  }
}
By default, the metric will have a name which matches the string form of the given metric. You can give metrics semantic meaning by providing an explicit name:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error, "model error")
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0607362 model error: 0.1516546
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.2577069401741028, 0.16761353611946106, 0.11587327718734741, 0.28539595007896423, -0.2071152776479721, -0.02039412036538124, -0.11152249574661255, 0.2389308214187622]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.1265750676393509, 0.6902633309364319, -0.10233660787343979, -0.2544037103652954, -0.26677289605140686, -0.31035077571868896, 0.3845033347606659, -0.33032187819480896]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.0, 0.16427761316299438, 0.02123815007507801, 0.22260485589504242]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.3859425485134125, 0.49959924817085266, -0.34108400344848633, 0.6222119331359863],
        [-0.43326857686042786, -0.42272067070007324, 0.04245679825544357, -0.4357914626598358],
        [-0.3065953850746155, 0.587925374507904, 0.2960704267024994, -0.31594154238700867],
        [-0.35595524311065674, 0.6649497747421265, 0.4832736849784851, 0.3025558590888977],
        [0.048333823680877686, -0.17023107409477234, 0.09139639884233475, -0.6511918902397156],
        [-0.12099027633666992, -0.02014642395079136, 0.025831595063209534, -0.09945832937955856],
        [0.3415437340736389, 0.41694650053977966, 0.24677544832229614, 0.06690020114183426],
        [-0.1977071762084961, 0.39345067739486694, 0.26068705320358276, 0.35502269864082336]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.8329466581344604]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.23763614892959595],
        [-1.031561255455017],
        [0.1092313677072525],
        [-0.7191486358642578]
      ]
    >
  }
}
Axon's default aggregation behavior is to aggregate metrics with a running average; however, you can customize this behavior by specifying an explicit accumulation function. Built-in accumulation functions are :running_average and :running_sum:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.metric(:mean_absolute_error, "total error", :running_sum)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0688004 total error: 151.4876404
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.34921368956565857, 0.2217460423707962, 0.274880051612854, 0.016405446454882622, -0.11720903217792511, -0.20693546533584595, 0.14232252538204193, -0.07956698536872864]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.37851807475090027, -0.17135880887508392, -0.3878959119319916, 0.19248774647712708, 0.12453905493021011, -0.2750281095504761, 0.5614567995071411, 0.6186240315437317]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.28566694259643555, 0.27262070775032043, -0.2875851094722748, 0.0]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.23161421716213226, 0.8222984671592712, 0.09437259286642075, -0.4825701117515564],
        [-0.38828352093696594, 0.6247998476028442, 0.5035035610198975, 0.0026152729988098145],
        [0.5202338099479675, 0.7906754612922668, 0.08624745905399323, -0.5285568833351135],
        [0.47950035333633423, -0.07571044564247131, 0.32921522855758667, -0.7011756896972656],
        [-0.3601212203502655, 0.44817543029785156, 0.13981425762176514, -0.01014477014541626],
        [-0.3157005310058594, -0.6309216618537903, 0.5622371435165405, 0.27447545528411865],
        [-0.5749425292015076, -0.5073797702789307, -0.3527824282646179, 0.08027392625808716],
        [-0.5331286191940308, 0.15432128310203552, -0.015716910362243652, -0.5225256681442261]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.8275660872459412]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.45810666680336],
        [-1.0092405080795288],
        [0.5322748422622681],
        [-0.5989866852760315]
      ]
    >
  }
}


  

    
Your first evaluation loop
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Creating an Axon evaluation loop


Once you have a trained model, it's necessary to test the trained model on some test data. Axon's loop abstraction is general enough to work for both training and evaluating models. Just as Axon implements a canned Axon.Loop.trainer/3 factory, it also implements a canned Axon.Loop.evaluator/1 factory.
Axon.Loop.evaluator/1 creates an evaluation loop which you can instrument with metrics to measure the performance of a trained model on test data. First, you need a trained model:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

train_loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)

data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

trained_model_state = Axon.Loop.run(train_loop, data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.1285532
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.06848274916410446, 0.037988610565662384, -0.199247345328331, 0.18008524179458618, 0.10976515710353851, -0.10479626059532166, 0.562850832939148, -0.030415315181016922]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.2839881181716919, 0.11133058369159698, -0.5213645100593567, -0.14406965672969818, 0.37532612681388855, -0.28965434432029724, -0.9048429131507874, -5.540614947676659e-4]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.2961483597755432, 0.3721822202205658, -0.1726730614900589, -0.20648165047168732]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.602420449256897, 0.46551579236984253, 0.3295630216598511, 0.484800785779953],
        [0.05755739286541939, -0.2412092238664627, 0.27874955534935, 0.13457047939300537],
        [-0.26997247338294983, -0.4479314386844635, 0.4976465106010437, -0.05715075880289078],
        [-0.7245721220970154, 0.1187945082783699, 0.14330074191093445, 0.3257679343223572],
        [-0.032964885234832764, -0.625235915184021, -0.05669135972857475, -0.7016372680664062],
        [-0.08433973789215088, -0.07334757596254349, 0.08273869007825851, 0.46893611550331116],
        [0.4123252332210541, 0.9876810312271118, -0.3525731563568115, 0.030163511633872986],
        [0.6962482333183289, 0.5394620299339294, 0.6907036304473877, -0.5448697209358215]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.7519291043281555]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.7839917540550232],
        [-0.8586246967315674],
        [0.8599083423614502],
        [0.29766184091567993]
      ]
    >
  }
}
Running loops with Axon.Loop.trainer/3 returns a trained model state which you can use to evaluate your model. To construct an evaluation loop, you just call Axon.Loop.evaluator/1 with your pre-trained model:
test_loop = Axon.Loop.evaluator(model)
#Axon.Loop<
  metrics: %{},
  handlers: %{
    completed: [],
    epoch_completed: [],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Next, you'll need to instrument your test loop with the metrics you'd like to aggregate:
test_loop = test_loop |> Axon.Loop.metric(:mean_absolute_error)
#Axon.Loop<
  metrics: %{
    "mean_absolute_error" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     :mean_absolute_error}
  },
  handlers: %{
    completed: [],
    epoch_completed: [],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Finally, you can run your loop on test data. Because you want to test your trained model, you need to provide your model's initial state to the test loop:
Axon.Loop.run(test_loop, data, trained_model_state, iterations: 1000)
Batch: 999, mean_absolute_error: 0.0856894
%{
  0 => %{
    "mean_absolute_error" => #Nx.Tensor<
      f32
      0.08568935841321945
    >
  }
}


  

    
Using loop event handlers
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Adding event handlers to training loops


Often times you want more fine-grained control over things that happen during loop execution. For example, you might want to save loop state to a file every 500 iterations, or log some output to :stdout at the end of every epoch. Axon loops allow more fine-grained control via events and event handlers.
Axon fires a number of events during loop execution which allow you to instrument various points in the loop execution cycle. You can attach event handlers to any of these events:
events = [
  :started,             # After loop state initialization
  :epoch_started,       # On epoch start
  :iteration_started,   # On iteration start
  :iteration_completed, # On iteration complete
  :epoch_completed,     # On epoch complete
  :epoch_halted,        # On epoch halt, if early halted
  :halted,              # On loop halt, if early halted
  :completed            # On loop completion
]
Axon packages a number of common loop event handlers for you out of the box. These handlers should cover most of the common event handlers you would need to write in practice. Axon also allows for custom event handlers. See Writing custom event handlers for more information.
An event handler will take the current loop state at the time of the fired event, and alter or use it in someway before returning control back to the main loop execution. You can attach any of Axon's pre-packaged event handlers to a loop by using the function directly. For example, if you want to checkpoint loop state at the end of every epoch, you can use Axon.Loop.checkpoint/2:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.checkpoint(event: :epoch_completed)
#Axon.Loop<
  metrics: %{
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<17.37390314/1 in Axon.Loop.checkpoint/2>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>},
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Now when you execute your loop, it will save a checkpoint at the end of every epoch:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.5345965
Epoch: 1, Batch: 50, loss: 0.4578816
Epoch: 2, Batch: 50, loss: 0.4527244
Epoch: 3, Batch: 50, loss: 0.4466343
Epoch: 4, Batch: 50, loss: 0.4401709
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.1074252650141716, -0.0033432210329920053, -0.08044778555631638, 0.0016452680574730039, -0.01557128969579935, -0.061440952122211456, 0.061030879616737366, 0.012781506404280663]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.3504936695098877, 0.6722151041030884, -0.5550820231437683, 0.05254736915230751, 0.7404129505157471, -0.24307608604431152, -0.7073894739151001, 0.6447222828865051]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.19830459356307983, 0.0, 0.0, -0.04925372824072838]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.4873020648956299, -0.3363800644874573, -0.6058675050735474, -0.47888076305389404],
        [-0.18936580419540405, -0.5579301714897156, -0.49217337369918823, 0.04828363656997681],
        [0.3202762305736542, -0.033479928970336914, 0.11928367614746094, -0.5225698351860046],
        [0.3883931040763855, 0.07413274049758911, 0.548823893070221, -0.03494540974497795],
        [-0.2598196268081665, -0.4546756446361542, 0.5866180062294006, 0.2946240305900574],
        [0.2722054719924927, -0.5802338123321533, 0.4854300618171692, -0.5049118399620056],
        [-0.415179044008255, -0.5426293611526489, -0.1631108522415161, -0.6544353365898132],
        [-0.3079695403575897, 0.09391731023788452, -0.40262123942375183, -0.27837851643562317]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.016238097101449966]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.3102125823497772],
        [-1.078292727470398],
        [0.7910841703414917],
        [0.014510140754282475]
      ]
    >
  }
}
You can also use event handlers for things as simple as implementing custom logging with the pre-packaged Axon.Loop.log/4 event handler:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.log(fn _state -> "epoch is over\n" end, event: :epoch_completed, device: :stdio)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.3220241
epoch is over
Epoch: 1, Batch: 50, loss: 0.2309804
epoch is over
Epoch: 2, Batch: 50, loss: 0.1759415
epoch is over
Epoch: 3, Batch: 50, loss: 0.1457551
epoch is over
Epoch: 4, Batch: 50, loss: 0.1247821
epoch is over
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.01846296526491642, -0.0016654117498546839, 0.39859917759895325, 0.21187178790569305, 0.08815062046051025, -0.11071830987930298, 0.06280634552240372, -0.11682439595460892]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.08840499818325043, 0.44253841042518616, -0.6063749194145203, -0.1487167924642563, 0.24857401847839355, 0.1697462797164917, -0.5370600819587708, 0.1658734828233719]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.08111556619405746, 0.32310858368873596, -0.059386227279901505, -0.09515857696533203]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.6057762503623962, -0.2633209824562073, 0.23028653860092163, -0.2710704505443573],
        [0.03961030766367912, -0.335278183221817, 0.16016681492328644, 0.10653878003358841],
        [0.36239713430404663, 0.8330743312835693, 0.4745633602142334, -0.29585230350494385],
        [-0.04394621402025223, 0.45401355624198914, 0.5953336954116821, -0.6513576507568359],
        [-0.6447072625160217, -0.6225455403327942, -0.4814218580722809, 0.6882413625717163],
        [-0.44460421800613403, -0.04251839220523834, 0.4619944095611572, 0.24515877664089203],
        [-0.49396005272865295, -0.08895684778690338, 0.5212237238883972, 0.24301064014434814],
        [0.3074108958244324, 0.2640342712402344, 0.4197620749473572, -0.05698487162590027]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.6520459651947021]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.45083022117614746],
        [-0.8733288049697876],
        [-0.1894296556711197],
        [0.030911535024642944]
      ]
    >
  }
}
For even more fine-grained control over when event handlers fire, you can add filters. For example, if you only want to checkpoint loop state every 2 epochs, you can use a filter:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.checkpoint(event: :epoch_completed, filter: [every: 2])
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.3180207
Epoch: 1, Batch: 50, loss: 0.1975918
Epoch: 2, Batch: 50, loss: 0.1353940
Epoch: 3, Batch: 50, loss: 0.1055405
Epoch: 4, Batch: 50, loss: 0.0890203
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.047411054372787476, 0.1582564115524292, -0.027924394235014915, 0.1774083375930786, 0.09764095395803452, 0.1040089949965477, 0.006841400172561407, -0.11682236939668655]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.20366023480892181, 0.7318703532218933, -0.028611917048692703, -0.5324040055274963, -0.6856501698493958, 0.21694214642047882, 0.3281741738319397, -0.13051153719425201]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.1859581470489502, 0.3360026180744171, 0.24061667919158936, -0.016354668885469437]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.07366377860307693, -0.3261552155017853, -0.6951385140419006, -0.4232194125652313],
        [0.7334840893745422, -0.17827139794826508, -0.6411628127098083, -0.41898131370544434],
        [0.4770638346672058, -0.4738321304321289, 0.5755389332771301, 0.30976954102516174],
        [-0.498087614774704, 0.10546410828828812, 0.690037190914154, -0.5016340613365173],
        [0.17509347200393677, 0.4518563449382782, -0.10358063131570816, 0.2223401516675949],
        [0.6422480344772339, 0.19363932311534882, 0.2870054543018341, -0.1483648419380188],
        [-0.10362248122692108, -0.7047968506813049, 0.02847556211054325, -0.18464618921279907],
        [-0.6756409406661987, -0.42686882615089417, -0.5484509468078613, 0.596512496471405]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.23296000063419342]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.48827823996543884],
        [-0.7908728122711182],
        [-0.5326805114746094],
        [0.3789232671260834]
      ]
    >
  }
}
Axon event handlers support both keyword and function filters. Keyword filters include keywords such as :every, :once, and :always. Function filters are arity-1 functions which accept the current loop state and return a boolean.


  

    
Custom models, loss functions, and optimizers
    

Mix.install([
  {:axon, github: "elixir-nx/axon"},
  {:nx, "~> 0.3.0", github: "elixir-nx/nx", sparse: "nx", override: true}
])
:ok

  
    
  
  Using custom models in training loops


In the Your first training loop, you learned how to declare a supervised training loop using Axon.Loop.trainer/3 with a model, loss function, and optimizer. Your overall model and loop declaration looked something like this:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

loop = Axon.Loop.trainer(model, :mean_squared_error, :sgd)
This example uses an %Axon{} struct to represent your model to train, and atoms to represent your loss function and optimizer. Some of your problems will require a bit more flexibility than this example affords. Fortunately, Axon.Loop.trainer/3 is designed for flexibility.
For example, if your model cannot be cleanly represented as an %Axon{} model, you can instead opt instead to define custom initialization and forward functions to pass to Axon.Loop.trainer/3. Actually, Axon.Loop.trainer/3 is doing this for you under the hood - the ability to pass an %Axon{} struct directly is just a convenience:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

lowered_model = {init_fn, predict_fn} = Axon.build(model)

loop = Axon.Loop.trainer(lowered_model, :mean_squared_error, :sgd)
#Axon.Loop<
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<23.20267452/1 in Axon.Loop.log/5>,
       #Function<5.20267452/1 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<23.20267452/1 in Axon.Loop.log/5>,
       #Function<3.20267452/1 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  metrics: %{
    "loss" => {#Function<12.6031754/3 in Axon.Metrics.running_average/1>,
     #Function<6.20267452/2 in Axon.Loop.build_loss_fn/1>}
  },
  ...
>
Notice that Axon.Loop.trainer/3 handles the "lowered" form of an Axon model without issue. When you pass an %Axon{} struct, the trainer factory converts it to a lowered representation for you. With this construct, you can build custom models entirely with Nx defn, or readily mix your Axon models into custom workflows without worrying about compatibility with the Axon.Loop API:
defmodule CustomModel do
  import Nx.Defn

  defn custom_predict_fn(model_predict_fn, params, input) do
    %{prediction: preds} = out = model_predict_fn.(params, input)
    %{out | prediction: Nx.cos(preds)}
  end
end
{:module, CustomModel, <<70, 79, 82, 49, 0, 0, 9, ...>>, {:custom_predict_fn, 3}}
train_data =
  Stream.repeatedly(fn ->
    xs = Nx.random_normal({8, 1})
    ys = Nx.sin(xs)
    {xs, ys}
  end)

{init_fn, predict_fn} = Axon.build(model, mode: :train)
custom_predict_fn = &CustomModel.custom_predict_fn(predict_fn, &1, &2)

loop = Axon.Loop.trainer({init_fn, custom_predict_fn}, :mean_squared_error, :sgd)

Axon.Loop.run(loop, train_data, %{}, iterations: 500)
Epoch: 0, Batch: 500, loss: 0.3053460
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.06573846191167831, 0.37533989548683167, -0.014221129938960075, -0.0056641618721187115, -0.013241665437817574, -0.04930500313639641, 0.03238297998905182, 0.019304191693663597]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.3132522702217102, -0.9284062385559082, 0.5041953921318054, 0.09051526337862015, 0.003381401300430298, -0.22686156630516052, 0.506594181060791, 0.46744370460510254]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.008441010490059853, 0.0, 0.5370790958404541, 0.03584281727671623]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.3442431688308716, -0.33131587505340576, -0.03751888871192932, -0.5497395396232605],
        [-0.4568001925945282, -0.5024663805961609, 0.8712142109870911, -0.13484779000282288],
        [0.7310590744018555, -0.34318023920059204, 0.3977772295475006, -0.6045383214950562],
        [-0.5255699157714844, -0.2829623818397522, -0.45367464423179626, -0.157784566283226],
        [-0.47948920726776123, 0.2930692136287689, -0.3784458339214325, -0.69244384765625],
        [0.7052943706512451, 0.015830136835575104, -0.02979498915374279, 0.6160839796066284],
        [0.3201732933521271, -0.1367085874080658, -0.17100055515766144, 0.7335636019706726],
        [-0.2825513482093811, -0.424674928188324, -0.3110836148262024, 0.46001508831977844]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.6889857649803162]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.7191283106803894],
        [-0.4222411513328552],
        [1.122635006904602],
        [-0.7385509014129639]
      ]
    >
  }
}

  
    
  
  Using custom loss functions in training loops


Just as Axon.Loop.trainer/3 allows more flexibility with models, it also supports more flexible loss functions. In most cases, you can get away with using one of Axon's built-in loss functions by specifying an atom. Atoms map directly to a loss-function defined in Axon.Losses. Under the hood, Axon.Loop.trainer/3 is doing something like:
loss_fn = &apply(Axon.Losses, loss_atom, [&1, &2])
Rather than pass an atom, you can pass your own custom arity-2 function to Axon.Loop.trainer/3. This arises most often in cases where you want to control some parameters of the loss function, such as the batch-level reduction:
loss_fn = &Axon.Losses.mean_squared_error(&1, &2, reduction: :sum)

loop = Axon.Loop.trainer(model, loss_fn, :sgd)
#Axon.Loop<
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<23.20267452/1 in Axon.Loop.log/5>,
       #Function<5.20267452/1 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<23.20267452/1 in Axon.Loop.log/5>,
       #Function<3.20267452/1 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  metrics: %{
    "loss" => {#Function<12.6031754/3 in Axon.Metrics.running_average/1>,
     #Function<41.3316493/2 in :erl_eval.expr/6>}
  },
  ...
>
You can also define your own custom loss functions, so long as they match the following spec:
loss(
  y_true :: tensor[batch, ...] | container(tensor),
  y_preds :: tensor[batch, ...] | container(tensor)
  ) :: scalar
This is useful for constructing loss functions when dealing with multi-output scenarios. For example, it's very easy to construct a custom loss function which is a weighted average of several loss functions on multiple inputs:
train_data =
  Stream.repeatedly(fn ->
    xs = Nx.random_normal({8, 1})
    y1 = Nx.sin(xs)
    y2 = Nx.cos(xs)
    {xs, {y1, y2}}
  end)

shared =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()

y1 = Axon.dense(shared, 1)
y2 = Axon.dense(shared, 1)

model = Axon.container({y1, y2})

custom_loss_fn = fn {y_true1, y_true2}, {y_pred1, y_pred2} ->
  loss1 = Axon.Losses.mean_squared_error(y_true1, y_pred1, reduction: :mean)
  loss2 = Axon.Losses.mean_squared_error(y_true2, y_pred2, reduction: :mean)

  loss1
  |> Nx.multiply(0.4)
  |> Nx.add(Nx.multiply(loss2, 0.6))
end

model
|> Axon.Loop.trainer(custom_loss_fn, :sgd)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 1000, loss: 0.1098235
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.07738334685564041, 0.04548311233520508, 0.049238916486501694, 0.38714033365249634, -0.030310271307826042, -0.07575170695781708, 0.02918776497244835, 0.15639683604240417]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.5250527858734131, 0.9252119660377502, -0.7720071077346802, 0.3685735762119293, -0.15688209235668182, -0.41163918375968933, 0.7827479839324951, 0.07295594364404678]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.012770675122737885, 0.6008449792861938, 0.29370757937431335, -0.05354489013552666]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.08783119916915894, 0.4296257495880127, 0.07153885811567307, -0.6921477317810059],
        [0.15848888456821442, -0.4663836658000946, 0.7126847505569458, 0.0693722814321518],
        [-0.24852830171585083, -0.7588720321655273, -0.5033655166625977, 0.6524038314819336],
        [0.2933746874332428, 0.6656989455223083, -0.046741705387830734, 0.44998466968536377],
        [0.17215801775455475, -0.3072860836982727, 0.2046997845172882, -0.7001357078552246],
        [0.6354788541793823, -0.12706635892391205, -0.18666459619998932, -0.26693975925445557],
        [-0.3737913966178894, -0.07344938814640045, 0.22658668458461761, -0.37110695242881775],
        [0.01989569514989853, 0.39410898089408875, -0.30496707558631897, -0.4945743680000305]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.5888826251029968]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [1.0239059925079346],
        [0.25252565741539],
        [0.8877795338630676],
        [-0.13882321119308472]
      ]
    >
  },
  "dense_3" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.2557465434074402]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.6269392371177673],
        [1.1281259059906006],
        [-0.503214418888092],
        [-0.5435869693756104]
      ]
    >
  }
}

  
    
  
  Using custom optimizers in training loops


As you might expect, it's also possible to customize the optimizer passed to Axon.Loop.trainer/3. If you read the Polaris.Updates documentation, you'll learn that optimizers are actually represented as the tuple {init_fn, update_fn} where init_fn initializes optimizer state from model state and update_fn scales gradients from optimizer state, gradients, and model state.
You likely won't have to implement a custom optimizer; however, you should know how to construct optimizers with different hyperparameters and how to apply different modifiers to different optimizers to customize the optimization process.
When you specify an optimizer as an atom in Axon.Loop.trainer/3, it maps directly to an optimizer declared in Polaris.Optimizers. You can instead opt to declare your optimizer directly. This is most useful for controlling things like the learning rate and various optimizer hyperparameters:
train_data =
  Stream.repeatedly(fn ->
    xs = Nx.random_normal({8, 1})
    ys = Nx.sin(xs)
    {xs, ys}
  end)

model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

optimizer = {_init_optimizer_fn, _update_fn} = Polaris.Optimizers.sgd(learning_rate: 1.0e-3)

model
|> Axon.Loop.trainer(:mean_squared_error, optimizer)
|> Axon.Loop.run(train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 1000, loss: 0.0992607
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.06136200204491615, -0.08278193324804306, -0.07280997931957245, 0.08740464597940445, 0.08663233369588852, -0.06915996968746185, 0.03753892332315445, 0.06512840837240219]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.622833251953125, 0.24778570234775543, 0.4959430694580078, -0.604946494102478, -0.31578049063682556, 0.09977878630161285, 0.776294469833374, 0.5804685950279236]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.012786266393959522, 0.01057625561952591, 0.10597240924835205, 0.13692162930965424]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.46233609318733215, -0.7435348033905029, -0.10738609731197357, 0.09911829978227615],
        [0.5295257568359375, 0.48769527673721313, -0.23950818181037903, -0.26084062457084656],
        [-0.5117107033729553, 0.2039143443107605, -0.12630638480186462, -0.41089773178100586],
        [-0.6043668985366821, 0.3961969316005707, 0.5120400190353394, -0.6773409247398376],
        [0.22123000025749207, 0.7197521924972534, 0.2679356038570404, -0.12402179092168808],
        [0.4830038249492645, 0.3629038631916046, 0.49994897842407227, -0.25865232944488525],
        [0.29824453592300415, 0.29333528876304626, -0.05371938645839691, 0.5230391621589661],
        [0.5483304262161255, 0.08283360302448273, -0.6959219574928284, 0.6471460461616516]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.07759959995746613]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.036170706152915955],
        [-0.5362256765365601],
        [-0.6853286027908325],
        [0.6693617701530457]
      ]
    >
  }
}


  

    
Writing custom metrics
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Writing custom metrics


When passing an atom to Axon.Loop.metric/5, Axon dispatches the function to a built-in function in Axon.Metrics. If you find you'd like to use a metric that does not exist in Axon.Metrics, you can define a custom function:
defmodule CustomMetric do
  import Nx.Defn

  defn my_weird_metric(y_true, y_pred) do
    Nx.atan2(y_true, y_pred) |> Nx.sum()
  end
end
{:module, CustomMetric, <<70, 79, 82, 49, 0, 0, 8, ...>>, true}
Then you can pass that directly to Axon.Loop.metric/5. You must provide a name for your custom metric:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.metric(&CustomMetric.my_weird_metric/2, "my weird metric")
#Axon.Loop<
  metrics: %{
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>},
    "my weird metric" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     &CustomMetric.my_weird_metric/2}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Then when running, Axon will invoke your custom metric function and accumulate it with the given aggregator:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, loss: 0.0681635 my weird metric: -5.2842808
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.0866982489824295, 0.4234408140182495, 0.18205422163009644, 0.34029239416122437, -0.25770726799964905, -0.07117943465709686, 0.11470477283000946, -0.027526771649718285]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.7088809013366699, 0.4486531913280487, 0.4666421115398407, 0.4163222312927246, 0.5076444149017334, 0.10119977593421936, 0.6628422141075134, -0.024421442300081253]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.2924745976924896, 0.0065560233779251575, 0.0, -0.21106423437595367]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.3407173752784729, -0.6905813217163086, -0.5984221696853638, -0.23955762386322021],
        [0.42608022689819336, 0.5949274301528931, -0.24687853455543518, -0.4948572516441345],
        [0.27617380023002625, -0.44326621294021606, -0.5848686099052429, 0.31592807173728943],
        [0.5401414632797241, -0.1041281446814537, -0.4072037935256958, 0.4387882947921753],
        [-0.5410752892494202, 0.4544697403907776, -0.6238576173782349, -0.2077195793390274],
        [-0.41753143072128296, -0.11599045991897583, -0.22447934746742249, -0.5805748701095581],
        [0.1651047021150589, -0.526184618473053, 0.34729963541030884, 0.3307822048664093],
        [0.6879482865333557, 0.27184563875198364, -0.4907835125923157, -0.3555335998535156]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.8146252036094666]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [1.2187021970748901],
        [0.13001228868961334],
        [0.2703772783279419],
        [-0.3591017723083496]
      ]
    >
  }
}
While the metric defaults are designed with supervised training loops in mind, they can be used for much more flexible purposes. By default, metrics look for the fields :y_true and :y_pred in the given loop's step state. They then apply the given metric function on those inputs. You can also define metrics which work on other fields. For example you can track the running average of a given parameter with a metric just by defining a custom output transform:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

output_transform = fn %{model_state: model_state} ->
  [model_state["dense_0"]["kernel"]]
end

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.metric(&Nx.mean/1, "dense_0_kernel_mean", :running_average, output_transform)
  |> Axon.Loop.metric(&Nx.variance/1, "dense_0_kernel_var", :running_average, output_transform)
#Axon.Loop<
  metrics: %{
    "dense_0_kernel_mean" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     &Nx.mean/1},
    "dense_0_kernel_var" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     &Nx.variance/1},
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Axon will apply your custom output transform to the loop's step state and forward the result to your custom metric function:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, dense_0_kernel_mean: -0.1978206 dense_0_kernel_var: 0.2699870 loss: 0.0605523
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.371105819940567, 0.26451945304870605, -0.048297226428985596, 0.14616385102272034, -0.19356133043766022, -0.2924956679344177, 0.08295489847660065, 0.25213995575904846]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.3888320028781891, -0.39463144540786743, 0.5427617430686951, -0.776488721370697, -0.2402891218662262, -0.6489362716674805, 0.772796094417572, -0.3739306926727295]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.0, -0.006653765682131052, 0.0, 0.3086839020252228]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.5556576251983643, 0.5547546148300171, -0.2708005905151367, 0.7341570258140564],
        [-0.01800161600112915, 0.19749529659748077, -0.09523773193359375, 0.4989740252494812],
        [-0.19737857580184937, -0.2741832435131073, -0.3699955344200134, 0.21036939322948456],
        [-0.09787613153457642, -0.5631319284439087, 0.007957160472869873, 0.23681949079036713],
        [-0.469108909368515, 0.24062377214431763, -0.012939095497131348, -0.5055088400840759],
        [0.11229842901229858, -0.5476430058479309, 0.013744592666625977, -0.631401538848877],
        [-0.5834296941757202, -0.42305096983909607, 0.1393480896949768, -0.4647532105445862],
        [-0.3684111535549164, -0.5147689580917358, -0.3725535273551941, 0.46682292222976685]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.8305950164794922]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.7111979722976685],
        [-0.49341335892677307],
        [-0.32701319456100464],
        [-1.0638068914413452]
      ]
    >
  }
}
You can also define custom accumulation functions. Axon has definitions for computing running averages and running sums; however, you might find you need something like an exponential moving average:
defmodule CustomAccumulator do
  import Nx.Defn

  defn running_ema(acc, obs, _i, opts \\ []) do
    opts = keyword!(opts, alpha: 0.9)
    obs * opts[:alpha] + acc * (1 - opts[:alpha])
  end
end
{:module, CustomAccumulator, <<70, 79, 82, 49, 0, 0, 11, ...>>, true}
Your accumulator must be an arity-3 function which accepts the current accumulated value, the current observation, and the current iteration and returns the aggregated metric. You can pass a function direct as an accumulator in your metric:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

output_transform = fn %{model_state: model_state} ->
  [model_state["dense_0"]["kernel"]]
end

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.metric(
    &Nx.mean/1,
    "dense_0_kernel_ema_mean",
    &CustomAccumulator.running_ema/3,
    output_transform
  )
#Axon.Loop<
  metrics: %{
    "dense_0_kernel_ema_mean" => {#Function<15.37390314/3 in Axon.Loop.build_metric_fn/3>,
     &Nx.mean/1},
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Then when you run the loop, Axon will use your custom accumulator:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, iterations: 1000)
Epoch: 0, Batch: 950, dense_0_kernel_ema_mean: -0.0139760 loss: 0.0682910
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [-0.3344854414463043, -0.14519920945167542, 0.1061621680855751, 0.36911827325820923, 0.014146199449896812, 0.46089673042297363, -0.1707312911748886, -0.054649338126182556]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [0.6524605751037598, -0.3795280158519745, -0.2069108486175537, 0.6815686821937561, -0.5734748840332031, 0.5515486001968384, -0.13509605824947357, -0.711794912815094]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.3078235387802124, -0.24773009121418, -0.027328377589583397, 0.0769796073436737]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.785156786441803, 0.07306647300720215, 0.339533269405365, -0.2188076674938202],
        [0.29139244556427, 0.15977036952972412, 0.6193944215774536, -0.4305708408355713],
        [-0.21063144505023956, -0.3738138973712921, -0.27965712547302246, 0.051842525601387024],
        [0.7297297716140747, -0.08164620399475098, 0.07651054859161377, -0.43577027320861816],
        [0.07917583733797073, -0.27750709652900696, 0.21028375625610352, -0.6430750489234924],
        [0.7177602648735046, -0.2743614912033081, -0.5894488096237183, 0.634209156036377],
        [0.4251592457294464, 0.6134526133537292, -0.35339266061782837, 0.4966743588447571],
        [-0.49672019481658936, 0.46769094467163086, -0.44432300329208374, -0.3249942660331726]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.8245151042938232]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.9500011205673218],
        [0.9115968942642212],
        [0.39282673597335815],
        [0.19936752319335938]
      ]
    >
  }
}


  

    
Writing custom event handlers
    

Mix.install([
  {:axon, ">= 0.5.0"}
])
:ok

  
    
  
  Writing custom event handlers


If you require functionality not offered by any of Axon's built-in event handlers, then you'll need to write a custom event handler. Custom event handlers are functions which accept loop state, perform some action, and then defer execution back to the main loop. For example, you can write custom loop handlers which visualize model outputs, communicate with an external Kino process, or simply halt the loop based on some criteria.
All event handlers must accept an %Axon.Loop.State{} struct and return a tuple of {control_term, state} where control_term is one of :continue, :halt_epoch, or :halt_loop and state is the updated loop state:
defmodule CustomEventHandler0 do
  alias Axon.Loop.State

  def my_weird_handler(%State{} = state) do
    IO.puts("My weird handler: fired")
    {:continue, state}
  end
end
{:module, CustomEventHandler0, <<70, 79, 82, 49, 0, 0, 6, ...>>, {:my_weird_handler, 1}}
To register event handlers, you use Axon.Loop.handle/4:
model =
  Axon.input("data")
  |> Axon.dense(8)
  |> Axon.relu()
  |> Axon.dense(4)
  |> Axon.relu()
  |> Axon.dense(1)

loop =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :sgd)
  |> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler0.my_weird_handler/1)
#Axon.Loop<
  metrics: %{
    "loss" => {#Function<11.133813849/3 in Axon.Metrics.running_average/1>,
     #Function<9.37390314/2 in Axon.Loop.build_loss_fn/1>}
  },
  handlers: %{
    completed: [],
    epoch_completed: [
      {&CustomEventHandler0.my_weird_handler/1,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>},
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<6.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    epoch_halted: [],
    epoch_started: [],
    halted: [],
    iteration_completed: [
      {#Function<27.37390314/1 in Axon.Loop.log/3>,
       #Function<64.37390314/2 in Axon.Loop.build_filter_fn/1>}
    ],
    iteration_started: [],
    started: []
  },
  ...
>
Axon will trigger your custom handler to run on the attached event:
train_data =
  Stream.repeatedly(fn ->
    {xs, _next_key} =
      :random.uniform(9999)
      |> Nx.Random.key()
      |> Nx.Random.normal(shape: {8, 1})

    ys = Nx.sin(xs)
    {xs, ys}
  end)

Axon.Loop.run(loop, train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.0990703
My weird handler: fired
Epoch: 1, Batch: 50, loss: 0.0567622
My weird handler: fired
Epoch: 2, Batch: 50, loss: 0.0492784
My weird handler: fired
Epoch: 3, Batch: 50, loss: 0.0462587
My weird handler: fired
Epoch: 4, Batch: 50, loss: 0.0452806
My weird handler: fired
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.10819189250469208, 0.008151392452418804, -0.0318693183362484, 0.010302421636879444, 0.15788722038269043, 0.05119801685214043, 0.14268818497657776, -0.11528034508228302]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.4275593161582947, 0.40442031621932983, 0.7287659645080566, -0.7832129597663879, 0.3329123258590698, -0.5598123073577881, 0.8389336466789246, 0.3197469413280487]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.0671013742685318, 0.13561469316482544, 0.06218714639544487, 0.2104845941066742]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.4444102942943573, 0.4518184959888458, 0.45315614342689514, 0.35392478108406067],
        [0.008407601155340672, -0.6081852912902832, -0.05863206833600998, 0.14386630058288574],
        [-0.010219200514256954, -0.5528244376182556, 0.3754919469356537, -0.6242967247962952],
        [0.3531058132648468, -0.18348301947116852, -0.0019897441379725933, 0.41002658009529114],
        [0.676723062992096, -0.09349705278873444, 0.1101854145526886, 0.06494166702032089],
        [0.1534113883972168, 0.6402403116226196, 0.23490086197853088, -0.2196572870016098],
        [0.5835862755775452, -0.6581316590309143, -0.3047991394996643, -0.07485166192054749],
        [-0.6115342378616333, 0.3316897749900818, -0.3606548309326172, 0.3397740423679352]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.10111129283905029]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.7433153390884399],
        [-0.8213723301887512],
        [-0.44361063838005066],
        [-1.049617052078247]
      ]
    >
  }
}
You can use event handlers to early-stop a loop or loop epoch by returning a :halt_* control term. Halt control terms can be one of :halt_epoch or :halt_loop. :halt_epoch halts the current epoch and continues to the next. :halt_loop halts the loop altogether.
defmodule CustomEventHandler1 do
  alias Axon.Loop.State

  def always_halts(%State{} = state) do
    IO.puts("stopping loop")
    {:halt_loop, state}
  end
end
{:module, CustomEventHandler1, <<70, 79, 82, 49, 0, 0, 6, ...>>, {:always_halts, 1}}
The loop will immediately stop executing and return the current state at the time it was halted:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler1.always_halts/1)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 50, loss: 0.2201974
stopping loop
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.07676638662815094, -0.18689222633838654, 0.10066182911396027, -0.021994125097990036, 0.12006694823503494, -0.014219668693840504, 0.13600556552410126, -0.017512166872620583]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.5354958772659302, -0.216745987534523, -0.5694359540939331, 0.023495405912399292, 0.17701618373394012, 0.011712944135069847, 0.5289720892906189, 0.07360327988862991]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [0.0012482400052249432, 0.09300543367862701, 0.08570009469985962, -0.018982920795679092]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [0.3016211688518524, 0.31998082995414734, -0.3300730884075165, 0.24982869625091553],
        [0.03864569962024689, -0.44071364402770996, 0.6553062200546265, -0.5294798612594604],
        [0.25020459294319153, 0.7249991297721863, 0.15611837804317474, -0.5045580863952637],
        [-0.5500670075416565, 0.15677094459533691, -0.6531851291656494, -0.09289993345737457],
        [0.1618722379207611, 0.4479053020477295, 0.705923318862915, -0.3853490352630615],
        [-0.6752215623855591, 0.577272891998291, -0.1268012821674347, 0.6133111715316772],
        [0.5361366271972656, -0.2996085286140442, 0.28480708599090576, 0.47739118337631226],
        [-0.6443014144897461, -0.2866927981376648, 0.023463081568479538, -0.1491370052099228]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [0.0047520860098302364]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [0.3796459138393402],
        [-0.9757304191589355],
        [0.9530885815620422],
        [-0.05134368687868118]
      ]
    >
  }
}
Note that halting an epoch will fire a different event than completing an epoch. So if you implement a custom handler to halt the loop when an epoch completes, it will never fire if the epoch always halts prematurely:
defmodule CustomEventHandler2 do
  alias Axon.Loop.State

  def always_halts_epoch(%State{} = state) do
    IO.puts("\nstopping epoch")
    {:halt_epoch, state}
  end

  def always_halts_loop(%State{} = state) do
    IO.puts("stopping loop\n")
    {:halt_loop, state}
  end
end
{:module, CustomEventHandler2, <<70, 79, 82, 49, 0, 0, 8, ...>>, {:always_halts_loop, 1}}
If you run these handlers in conjunction, the loop will not terminate prematurely:
model
|> Axon.Loop.trainer(:mean_squared_error, :sgd)
|> Axon.Loop.handle_event(:iteration_completed, &CustomEventHandler2.always_halts_epoch/1)
|> Axon.Loop.handle_event(:epoch_completed, &CustomEventHandler2.always_halts_loop/1)
|> Axon.Loop.run(train_data, %{}, epochs: 5, iterations: 100)
Epoch: 0, Batch: 0, loss: 0.0000000
stopping epoch

stopping epoch

stopping epoch

stopping epoch

stopping epoch
%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[8]
      [0.009215549565851688, -0.005282022058963776, -0.0023747326340526342, 0.002623362001031637, 0.003890525083988905, 6.010813522152603e-4, -0.0024882694706320763, 0.0029246946796774864]
    >,
    "kernel" => #Nx.Tensor<
      f32[1][8]
      [
        [-0.3484582304954529, -0.39938971400260925, 0.03963512182235718, -0.3549930155277252, 0.09539157152175903, 0.5987873077392578, -0.23635399341583252, 0.01850329153239727]
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[4]
      [-0.00194685033056885, 0.007812315598130226, 0.01710106059908867, 0.0080711729824543]
    >,
    "kernel" => #Nx.Tensor<
      f32[8][4]
      [
        [-0.6497661471366882, -0.3379145562648773, 0.3343344032764435, 0.4334254860877991],
        [-0.37884217500686646, -0.41724908351898193, -0.19513007998466492, -0.22494879364967346],
        [-0.42438197135925293, -0.40400123596191406, 0.5355109572410583, 0.4295356869697571],
        [0.15086597204208374, 0.30529624223709106, 0.002222923096269369, 0.32834741473197937],
        [-0.09336567670106888, 0.471781849861145, -0.06567475199699402, -0.4361487627029419],
        [0.23664812743663788, 0.13572633266448975, -0.13837064802646637, -0.09471122920513153],
        [0.6461064219474792, -0.2435072958469391, -0.04861235246062279, -0.1969985067844391],
        [0.17856749892234802, 0.41614532470703125, -0.06008348613977432, -0.3271574079990387]
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      [-0.005317525006830692]
    >,
    "kernel" => #Nx.Tensor<
      f32[4][1]
      [
        [-0.07891849428415298],
        [0.32653072476387024],
        [-0.5885495543479919],
        [-0.2781771719455719]
      ]
    >
  }
}
You may access and update any portion of the loop state. Keep in mind that event handlers are not JIT-compiled, so you should be certain to manually JIT-compile any long-running or expensive operations.


  

    
Converting ONNX models to Axon
    

Mix.install(
  [
    {:axon, ">= 0.5.0"},
    {:exla, ">= 0.5.0"},
    {:axon_onnx, ">= 0.4.0"},
    {:stb_image, ">= 0.6.0"},
    {:kino, ">= 0.9.0"},
    {:req, ">= 0.3.8"}
  ]
  # for Nvidia GPU change to "cuda111" for CUDA 11.1+ or "cuda118" for CUDA 11.8
  # CUDA 12.x not supported by XLA
  # or you can put this value in ENV variables in Livebook settings
  # XLA_TARGET=cuda111
  # system_env: %{"XLA_TARGET" => xla_target}
)

  
    
  
  Converting an ONNX model into Axon


Axon is a new machine learning capability, specific to Elixir. We would like to take
advantage of a large amount of models that have been written in other languages and
machine learning frameworks. Let's take a look at how we could use a model developed
in another language.
Converting models developed by data scientists into a production capable implementation is a
challenge for all languages and frameworks. ONNX is an interchange
format that allows models written in one language or framework to be converted into
another language and framework.
The source model must use constructs mapped into ONNX. Also, the destination framework must
support the model's ONNX constructs. From an Elixir focus, we are interested in ONNX models
that axon_onnx can convert into Axon models.

  
    
  
  Why is ONNX important to Axon?


Elixir can get access to thousands of public models and your organization may have private models
written in other languages and frameworks. Axon will be hard pressed to quickly repeat the
countless person-hours spent on developing models in other languages like Tensorflow and PyTorch.
However, if the model can be converted into ONNX and then into Axon, we can directly run the model
in Elixir.

  
    
  
  Setting up our environment


Axon runs on top of Nx (Numerical Elixir). Nx has backends for
both Google's XLA (via EXLA) and PyTorch (via Torchx). In this guide, we will use EXLA.
We'll also convert from an ONNX model into an Axon model using
axon_onnx.
You can find all dependencies in the installation cell at the top of the notebook.
In there, you will also find the XLA_TARGET environment variable which you can set
to "cuda111" or "rocm" if you have any of those GPUs available. Let's also configure
Nx to store tensors in EXLA by default:
#  Nx.default_backend(EXLA.Backend)
We'll also need local access to ONNX files. For this notebook, the models/onnx folder
contains the ONNX model file. This notebook assumes the output file location will be
in models axon. Copy your ONNX model files into the models/onnx folder.
This opinionated module presents a simple API for loading in an ONNX file and saving
the converted Axon model in the provided directory. This API will allow us to
save multiple models pretty quickly.
defmodule OnnxToAxon do
  @moduledoc """
  Helper module from ONNX to Axon.
  """

  @doc """
  Loads an ONNX model into Axon and saves the model

  ## Examples

      OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)

  """
  def onnx_axon(path_to_onnx_file, path_to_axon_dir) do
    axon_name = axon_name_from_onnx_path(path_to_onnx_file)
    path_to_axon = Path.join(path_to_axon_dir, axon_name)

    {model, parameters} = AxonOnnx.import(path_to_onnx_file)
    model_bytes = Axon.serialize(model, parameters)
    File.write!(path_to_axon, model_bytes)
  end

  defp axon_name_from_onnx_path(onnx_path) do
    model_root = onnx_path |> Path.basename() |> Path.rootname()
    "#{model_root}.axon"
  end
end

  
    
  
  ONNX model


For this example, we'll use a couple ONNX models that have been saved in the Huggingface Hub.
The ONNX models were trained in Fast.ai (PyTorch) using the following notebooks:
	https://github.com/meanderingstream/fastai_course22/blob/main/saving-a-basic-fastai-model-in-onnx.ipynb
	https://github.com/meanderingstream/fastai_course22/blob/main/saving-cat-dog-breed-fastai-model-in-onnx.ipynb

To repeat this notebook, the onnx files for this notebook can be found on huggingface hub. Download the onnx models from:
	https://huggingface.co/ScottMueller/Cats_v_Dogs.ONNX
	https://huggingface.co/ScottMueller/Cat_Dog_Breeds.ONNX

Download the files and place them in a directory of your choice. By default, we will assume you downloaded them to the same directory as the notebook:
File.cd!(__DIR__)
Now let's convert an ONNX model into Axon
path_to_onnx_file = "cats_v_dogs.onnx"
path_to_axon_dir = "."
OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)
path_to_onnx_file = "cat_dog_breeds.onnx"
path_to_axon_dir = "."
OnnxToAxon.onnx_axon(path_to_onnx_file, path_to_axon_dir)

  
    
  
  Inference on ONNX derived models


To run inference on the model, you'll need 10 images focused on cats or dogs. You can download the images used in training the model at:
"https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet.tgz"
Or you can find or use your own images. In this notebook, we are going to use the local copies of the Oxford Pets dataset that was used in training the model.
Let's load the Axon model.
cats_v_dogs = File.read!("cats_v_dogs.axon")
{cats_v_dogs_model, cats_v_dogs_params} = Axon.deserialize(cats_v_dogs)
We need a tensor representation of an image. Let's start by looking at samples of
our data.
File.read!("oxford-iiit-pet/images/havanese_71.jpg")
|> Kino.Image.new(:jpeg)
To manipulate the images, we will use the StbImage library:
{:ok, img} = StbImage.read_file("oxford-iiit-pet/images/havanese_71.jpg")
%StbImage{data: binary, shape: shape, type: type} = StbImage.resize(img, 224, 224)
Now let's work on a batch of images and convert them to tensors. Here are the images we will work with:
file_names = [
  "havanese_71.jpg",
  "yorkshire_terrier_9.jpg",
  "Sphynx_206.jpg",
  "Siamese_95.jpg",
  "Egyptian_Mau_63.jpg",
  "keeshond_175.jpg",
  "samoyed_88.jpg",
  "British_Shorthair_122.jpg",
  "Russian_Blue_20.jpg",
  "boxer_99.jpg"
]
Next we resize the images:
resized_images =
  Enum.map(file_names, fn file_name ->
    ("oxford-iiit-pet/images/" <> file_name)
    |> IO.inspect(label: file_name)
    |> StbImage.read_file!()
    |> StbImage.resize(224, 224)
  end)
And finally convert them into tensors by using StbImage.to_nx/1. The created tensor will have three axes, named :height, :width, and :channel respectively. Our goal is to stack the tensors, then normalize and transpose their axes to the order expected by the neural network:
img_tensors =
  resized_images
  |> Enum.map(&StbImage.to_nx/1)
  |> Nx.stack(name: :index)
  |> Nx.divide(255.0)
  |> Nx.transpose(axes: [:index, :channels, :height, :width])
With our input data, it is finally time to work on predictions. First let's define a helper module:
defmodule Predictions do
  @doc """
  When provided a Tensor of single label predictions, returns the best vocabulary match for
  each row in the prediction tensor.

  ## Examples

     # iex> Predictions.sindle_label_prediction(path_to_onnx_file, path_to_axon_dir)
     # ["dog", "cat", "dog"]

  """
  def single_label_classification(predictions_batch, vocabulary) do
    IO.inspect(Nx.shape(predictions_batch), label: "predictions batch shape")

    for prediction_tensor <- Nx.to_batched(predictions_batch, 1) do
      {_prediction_value, prediction_label} =
        prediction_tensor
        |> Nx.to_flat_list()
        |> Enum.zip(vocabulary)
        |> Enum.max()

      prediction_label
    end
  end
end
Now we deserialize the model
{cats_v_dogs_model, cats_v_dogs_params} = Axon.deserialize(cats_v_dogs)
run a prediction using the EXLA compiler for performance
tensor_of_predictions =
  Axon.predict(cats_v_dogs_model, cats_v_dogs_params, img_tensors, compiler: EXLA)
and finally retrieve the predicted label
dog_cat_vocabulary = [
  "dog",
  "cat"
]

Predictions.single_label_classification(tensor_of_predictions, dog_cat_vocabulary)
Let's repeat the above process for the dog and cat breed model.
cat_dog_vocabulary = [
  "abyssinian",
  "american_bulldog",
  "american_pit_bull_terrier",
  "basset_hound",
  "beagle",
  "bengal",
  "birman",
  "bombay",
  "boxer",
  "british_shorthair",
  "chihuahua",
  "egyptian_mau",
  "english_cocker_spaniel",
  "english_setter",
  "german_shorthaired",
  "great_pyrenees",
  "havanese",
  "japanese_chin",
  "keeshond",
  "leonberger",
  "maine_coon",
  "miniature_pinscher",
  "newfoundland",
  "persian",
  "pomeranian",
  "pug",
  "ragdoll",
  "russian_blue",
  "saint_bernard",
  "samoyed",
  "scottish_terrier",
  "shiba_inu",
  "siamese",
  "sphynx",
  "staffordshire_bull_terrier",
  "wheaten_terrier",
  "yorkshire_terrier"
]
cat_dog_breeds = File.read!("cat_dog_breeds.axon")
{cat_dog_breeds_model, cat_dog_breeds_params} = Axon.deserialize(cat_dog_breeds)
Axon.predict(cat_dog_breeds_model, cat_dog_breeds_params, img_tensors)
|> Predictions.single_label_classification(cat_dog_vocabulary)
For cat and dog breeds, the model performed pretty well, but it was not perfect.


  

    
Modeling XOR with a neural network
    

Mix.install([
  {:axon, "~> 0.3.0"},
  {:nx, "~> 0.4.0", override: true},
  {:exla, "~> 0.4.0"},
  {:kino_vega_lite, "~> 0.1.6"}
])

Nx.Defn.default_options(compiler: EXLA)

alias VegaLite, as: Vl

  
    
  
  Introduction


In this notebook we try to create a model and learn it the logical XOR.
Even though XOR seems like a trivial operation, it cannot be modeled using a single dense layer (single-layer perceptron). The underlying reason is that the classes in XOR are not linearly separable. We cannot draw a straight line to separate the points $(0,0)$, $(1,1)$ from the points $(0,1)$, $(1,0)$. To model this properly, we need to turn to deep learning methods. Deep learning is capable of learning non-linear relationships like XOR.

  
    
  
  The model


Let's start with the model. We need two inputs, since XOR has two operands. We then concatenate them into a single input vector with Axon.concatenate/3. Then we have one hidden layer and one output layer, both of them dense.
Note: the model is a sequential neural network. In Axon, we can conveniently create such a model by using the pipe operator (|>) to add layers one by one.
x1_input = Axon.input("x1", shape: {nil, 1})
x2_input = Axon.input("x2", shape: {nil, 1})

model =
  x1_input
  |> Axon.concatenate(x2_input)
  |> Axon.dense(8, activation: :tanh)
  |> Axon.dense(1, activation: :sigmoid)

  
    
  
  Training data


The next step is to prepare training data. Since we are modeling a well-defined operation, we can just generate random operands and compute the expected XOR result for them.
The training works with batches of examples, so we repeatedly generate a whole batch of inputs and the expected result.
batch_size = 32

data =
  Stream.repeatedly(fn ->
    x1 = Nx.random_uniform({batch_size, 1}, 0, 2)
    x2 = Nx.random_uniform({batch_size, 1}, 0, 2)
    y = Nx.logical_xor(x1, x2)

    {%{"x1" => x1, "x2" => x2}, y}
  end)
Here's how a sample batch looks:
Enum.at(data, 0)

  
    
  
  Training


It's time to train our model. In this case we use binary cross entropy for the loss and stochastic gradient descent as the optimizer. We use binary cross entropy because we can consider the task of computing XOR the same as a binary classification problem. We want our output to have a binary label 0 or 1, and binary cross entropy is typically used in these cases. Having defined our training loop, we run it with Axon.Loop.run/4.
epochs = 10

params =
  model
  |> Axon.Loop.trainer(:binary_cross_entropy, :sgd)
  |> Axon.Loop.run(data, %{}, epochs: epochs, iterations: 1000)

  
    
  
  Trying the model


Finally, we can test our model on sample data.
Axon.predict(model, params, %{
  "x1" => Nx.tensor([[0]]),
  "x2" => Nx.tensor([[1]])
})
Try other combinations of $x_1$ and $x_2$ and see what the output is. To improve the model performance, you can increase the number of training epochs.

  
    
  
  Visualizing the model predictions


The original XOR we modeled only works with binary values $0$ and $1$, however our model operates in continuous space. This means that we can give it $x_1 = 0.5$, $x_2 = 0.5$ as input and we expect some output. We can use this to visualize the non-linear relationship between inputs $x_1$, $x_2$ and outputs that our model has learned.
# The number of points per axis, determines the resolution
n = 50

# We generate coordinates of inputs in the (n x n) grid
x1 = Nx.iota({n, n}, axis: 0) |> Nx.divide(n) |> Nx.reshape({:auto, 1})
x2 = Nx.iota({n, n}, axis: 1) |> Nx.divide(n) |> Nx.reshape({:auto, 1})

# The output is also a real number, but we round it into one of the two classes
y = Axon.predict(model, params, %{"x1" => x1, "x2" => x2}) |> Nx.round()

Vl.new(width: 300, height: 300)
|> Vl.data_from_values(
  x1: Nx.to_flat_list(x1),
  x2: Nx.to_flat_list(x2),
  y: Nx.to_flat_list(y)
)
|> Vl.mark(:circle)
|> Vl.encode_field(:x, "x1", type: :quantitative)
|> Vl.encode_field(:y, "x2", type: :quantitative)
|> Vl.encode_field(:color, "y", type: :nominal)
From the plot we can clearly see that during training our model learnt two clean boundaries to separate $(0,0)$, $(1,1)$ from $(0,1)$, $(1,0)$.


  

    
Classifying handwritten digits
    

Mix.install([
  {:axon, "~> 0.3.0"},
  {:nx, "~> 0.4.0", override: true},
  {:exla, "~> 0.4.0"},
  {:req, "~> 0.3.1"}
])

  
    
  
  Introduction


This livebook will walk you through training a basic neural network using Axon, accelerated by the EXLA compiler. We'll be working on the MNIST dataset which is a dataset of handwritten digits with corresponding labels. The goal is to train a model that correctly classifies these handwritten digits with a single label [0-9].

  
    
  
  Retrieving and exploring the dataset


The MNIST dataset is available for free online. Using Req we'll download both training images and training labels. Both train_images and train_labels are compressed binary data. Fortunately, Req takes care of the decompression for us.
You can read more about the format of the ubyte files here. Each file starts with a magic number and some metadata. We can use binary pattern matching to extract the information we want. In this case we extract the raw binary images and labels.
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
%{body: train_images} = Req.get!(base_url <> "train-images-idx3-ubyte.gz")
%{body: train_labels} = Req.get!(base_url <> "train-labels-idx1-ubyte.gz")

<<_::32, n_images::32, n_rows::32, n_cols::32, images::binary>> = train_images
<<_::32, n_labels::32, labels::binary>> = train_labels
We can easily read that binary data into a tensor using Nx.from_binary/2. Nx.from_binary/2 expects a raw binary and a data type. In this case, both images and labels are stored as unsigned 8-bit integers. We can start by parsing our images:
images =
  images
  |> Nx.from_binary({:u, 8})
  |> Nx.reshape({n_images, 1, n_rows, n_cols}, names: [:images, :channels, :height, :width])
  |> Nx.divide(255)
Nx.from_binary/2 returns a flat tensor. Using Nx.reshape/3 we can manipulate this flat tensor into meaningful dimensions. Notice we also normalized the tensor by dividing the input data by 255. This squeezes the data between 0 and 1 which often leads to better behavior when training models. Now, let's see what these images look like:
images[[images: 0..4]] |> Nx.to_heatmap()
In the reshape operation above, we give each dimension of the tensor a name. This makes it much easier to do things like slicing, and helps make your code easier to understand. Here we slice the images dimension of the images tensor to obtain the first 5 training images. Then, we convert them to a heatmap for easy visualization.
It's common to train neural networks in batches (actually correctly called minibatches, but you'll see batch and minibatch used interchangeably). We can "batch" our images into batches of 32 like this:
images = Nx.to_batched(images, 32)
Now, we'll need to get our labels into batches as well, but first we need to one-hot encode the labels. One-hot encoding converts input data from labels such as 3, 5, 7, etc. into vectors of 0's and a single 1 at the correct labels index. As an example, a label of: 3 gets converted to: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0].
targets =
  labels
  |> Nx.from_binary({:u, 8})
  |> Nx.new_axis(-1)
  |> Nx.equal(Nx.tensor(Enum.to_list(0..9)))
  |> Nx.to_batched(32)

  
    
  
  Defining the model


Let's start by defining a simple model:
model =
  Axon.input("input", shape: {nil, 1, 28, 28})
  |> Axon.flatten()
  |> Axon.dense(128, activation: :relu)
  |> Axon.dense(10, activation: :softmax)
All Axon models start with an input layer to tell subsequent layers what shapes to expect. We then use Axon.flatten/2 which flattens the previous layer by squeezing all dimensions but the first dimension into a single dimension. Our model consists of 2 fully connected layers with 128 and 10 units respectively. The first layer uses :relu activation which returns max(0, input) element-wise. The final layer uses :softmax activation to return a probability distribution over the 10 labels [0 - 9].

  
    
  
  Training


In Axon we express the task of training using a declarative loop API. First, we need to specify a loss function and optimizer, there are many built-in variants to choose from. In this example, we'll use categorical cross-entropy and the Adam optimizer. We will also keep track of the accuracy metric. Finally, we run training loop passing our batched images and labels. We'll train for 10 epochs using the EXLA compiler.
params =
  model
  |> Axon.Loop.trainer(:categorical_cross_entropy, :adam)
  |> Axon.Loop.metric(:accuracy, "Accuracy")
  |> Axon.Loop.run(Stream.zip(images, targets), %{}, epochs: 10, compiler: EXLA)

  
    
  
  Prediction


Now that we have the parameters from the training step, we can use them for predictions.
For this the Axon.predict can be used.
first_batch = Enum.at(images, 0)

output = Axon.predict(model, params, first_batch)
For each image, the model outputs probability distribution. This informs us how certain the model is about its prediction. Let's see the most probable digit for each image:
Nx.argmax(output, axis: 1)
If you look at the original images and you will see the predictions match the data!


  

    
Classifying horses and humans
    

Mix.install([
  {:axon, "~> 0.6.0"},
  {:nx, "~> 0.6.0"},
  {:exla, "~> 0.6.0"},
  {:stb_image, "~> 0.6.0"},
  {:req, "~> 0.4.5"},
  {:kino, "~> 0.11.0"}
])

Nx.global_default_backend(EXLA.Backend)
Nx.Defn.global_default_options(compiler: EXLA)

  
    
  
  Introduction


In this notebook, we want to predict whether an image presents a horse or a human. To do this efficiently, we will build a Convolutional Neural Network (CNN) and compare the learning process with and without gradient centralization.

  
    
  
  Loading the data


We will be using the Horses or Humans Dataset. The dataset is available as a ZIP with image files, we will download it using req. Conveniently, req will unzip the files for us, we just need to convert the filenames from strings.
%{body: files} =
  Req.get!("https://storage.googleapis.com/learning-datasets/horse-or-human.zip")

files = for {name, binary} <- files, do: {List.to_string(name), binary}

  
    
  
  Note on batching


We need to know how many images to include in a batch. A batch is a group of images to load into the GPU at a time. If the batch size is too big for your GPU, it will run out of memory, in such case you can reduce the batch size. It is generally optimal to utilize almost all of the GPU memory during training. It will take more time to train with a lower batch size.
batch_size = 32
batches_per_epoch = div(length(files), batch_size)

  
    
  
  A look at the data


We'll have a really quick look at our data. Let's see what we are dealing with:
{name, binary} = Enum.random(files)
Kino.Markdown.new(name) |> Kino.render()
Kino.Image.new(binary, :png)
Reevaluate the cell a couple times to view different images. Note that the file names are either horse[N]-[M].png or human[N]-[M].png, so we can derive the expected class from that.
While we are at it, look at this beautiful animation:
names_to_animate = ["horse01", "horse05", "human01", "human05"]

images_to_animate =
  for {name, binary} <- files, Enum.any?(names_to_animate, &String.contains?(name, &1)) do
    Kino.Image.new(binary, :png)
  end

Kino.animate(50, images_to_animate, fn
  _i, [image | images] -> {:cont, image, images}
  _i, [] -> :halt
end)
How many images are there?
length(files)
How many images will not be used for training? The remainder of the integer division will be ignored.
files
|> length()
|> rem(batch_size)

  
    
  
  Data processing


First, we need to preprocess the data for our CNN. At the beginning of the process, we chunk images into batches. Then, we use the parse_file/1 function to load images and label them accurately. Finally, we "augment" the input, which means that we normalize data and flip the images along one of the axes. The last procedure helps a neural network to make predictions regardless of the orientation of the image.
defmodule HorsesHumans.DataProcessing do
  import Nx.Defn

  def data_stream(files, batch_size) do
    files
    |> Enum.shuffle()
    |> Stream.chunk_every(batch_size, batch_size, :discard)
    |> Task.async_stream(
      fn batch ->
        {images, labels} = batch |> Enum.map(&parse_file/1) |> Enum.unzip()
        {Nx.stack(images), Nx.stack(labels)}
      end,
      timeout: :infinity
    )
    |> Stream.map(fn {:ok, {images, labels}} -> {augment(images), labels} end)
    |> Stream.cycle()
  end

  defp parse_file({filename, binary}) do
    label =
      if String.starts_with?(filename, "horses/"),
        do: Nx.tensor([1, 0], type: {:u, 8}),
        else: Nx.tensor([0, 1], type: {:u, 8})

    image = binary |> StbImage.read_binary!() |> StbImage.to_nx()

    {image, label}
  end

  defnp augment(images) do
    # Normalize
    images = images / 255.0

    # Optional vertical/horizontal flip
    { u, _new_key } = Nx.Random.key(1987) |> Nx.Random.uniform()

    cond do
      u < 0.25 -> images
      u < 0.5 -> Nx.reverse(images, axes: [2])
      u < 0.75 -> Nx.reverse(images, axes: [3])
      true -> Nx.reverse(images, axes: [2, 3])
    end
  end
end

  
    
  
  Building the model


The next step is creating our model. In this notebook, we choose the classic Convolutional Neural Network architecture. Let's dive in to the core components of a CNN.
Axon.conv/3 adds a convolutional layer, which is at the core of a CNN. A convolutional layer applies a filter function throughout the image, sliding a window with shape :kernel_size. As opposed to dense layers, a convolutional layer exploits weight sharing to better model data where locality matters. This feature is a natural fit for images.
	[image: ]
	Figure 1: A step-by-step visualization of a convolution layer for kernel_size: {3, 3}

Axon.max_pool/2 adds a downscaling operation that takes the maximum value from a subtensor according to :kernel_size.
	[image: ]
	Figure 2: Max pooling operation for kernel_size: {2, 2}

Axon.dropout/2 and Axon.spatial_dropout/2 add dropout layers which prevent a neural network from overfitting. Standard dropout drops a given rate of randomly chosen neurons during the training process. On the other hand, spatial dropout gets rid of whole feature maps. The graphical difference between dropout and spatial dropout is presented in a picture below.
	[image: ]
	Figure 3: The difference between standard dropout and spatial dropout

Knowing the relevant building blocks, let's build our network! It will have a convolutional part, composed of convolutional and pooling layers, this part should capture the spatial features of an image. Then at the end, we will add a dense layer with 512 neurons fed with all the spatial features, and a final two-neuron layer for as our classification output.
model =
  Axon.input("input", shape: {nil, 300, 300, 4})
  |> Axon.conv(16, kernel_size: {3, 3}, activation: :relu)
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.conv(32, kernel_size: {3, 3}, activation: :relu)
  |> Axon.spatial_dropout(rate: 0.5)
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
  |> Axon.spatial_dropout(rate: 0.5)
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.conv(64, kernel_size: {3, 3}, activation: :relu)
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.flatten()
  |> Axon.dropout(rate: 0.5)
  |> Axon.dense(512, activation: :relu)
  |> Axon.dense(2, activation: :softmax)

  
    
  
  Training the model


It's time to train our model. We specify the loss, optimizer and choose accuracy as our metric. We also set log: 1 to frequently update the training progress. We manually specify the number of iterations, such that each epoch goes through all of the baches once.
data = HorsesHumans.DataProcessing.data_stream(files, batch_size)

optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-4)

params =
  model
  |> Axon.Loop.trainer(:categorical_cross_entropy, optimizer, log: 1)
  |> Axon.Loop.metric(:accuracy)
  |> Axon.Loop.run(data, %{}, epochs: 10, iterations: batches_per_epoch)

  
    
  
  Extra: gradient centralization


We can improve the training by applying gradient centralization. It is a technique with a similar purpose to batch normalization. For each loss gradient, we subtract a mean value to have a gradient with mean equal to zero. This process prevents gradients from exploding.
centralized_optimizer = Polaris.Updates.compose(Polaris.Updates.centralize(), optimizer)

model
|> Axon.Loop.trainer(:categorical_cross_entropy, centralized_optimizer, log: 1)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, %{}, epochs: 10, iterations: batches_per_epoch)

  
    
  
  Inference


We can now use our trained model, let's try a couple examples.
{name, binary} = Enum.random(files)
Kino.Markdown.new(name) |> Kino.render()
Kino.Image.new(binary, :png) |> Kino.render()

input =
  binary
  |> StbImage.read_binary!()
  |> StbImage.to_nx()
  |> Nx.new_axis(0)
  |> Nx.divide(255.0)

Axon.predict(model, params, input)
Note: the model output refers to the probability that the image presents a horse and a human respectively.
You can find a validation set here, in case you want to experiment further!


  

    
Generating text with LSTM
    

Mix.install([
  {:axon, "~> 0.3.0"},
  {:nx, "~> 0.4.0", override: true},
  {:exla, "~> 0.4.0"},
  {:req, "~> 0.3.1"}
])

Nx.Defn.default_options(compiler: EXLA)
Nx.global_default_backend(EXLA.Backend)

  
    
  
  Introduction


Recurrent Neural Networks (RNNs) can be used as generative models. This means that in addition to being used for predictive models (making predictions) they can learn the sequences of a problem and then generate entirely new plausible sequences for the problem domain.
Generative models like this are useful not only to study how well a model has learned a problem, but to learn more about the problem domain itself.
In this example, we will discover how to create a generative model for text, character-by-character using Long Short-Term Memory (LSTM) recurrent neural networks in Elixir with Axon.

  
    
  
  Preparation


Using Project Gutenburg we can download a text books that are no longer protected under copywrite, so we can experiment with them.
The one that we will use for this experiment is Alice's Adventures in Wonderland by Lewis Carroll. You can choose any other text or book that you like for this experiment.
# Change the URL if you'd like to experiment with other books
download_url = "https://www.gutenberg.org/files/11/11-0.txt"
options = [transport_opts: [signature_algs_cert: :ssl.signature_algs(:default, :"tlsv1.3") ++ [sha: :rsa]]]

book_text = Req.get!(download_url, connect_options: options).body
First of all, we need to normalize the content of the book. We are only interested in the sequence of English characters, periods and new lines. Also currently we don't care about the capitalization and things like apostrophe so we can remove all other unknown characters and downcase everything. We can use a regular expression for that.
We can also convert the string into a list of characters so we can handle them easier. You will understand exactly why a bit further.
normalized_book_text =
  book_text
  |> String.downcase()
  |> String.replace(~r/[^a-z \.\n]/, "")
  |> String.to_charlist()
We converted the text to a list of characters, where each character is a number (specifically, a Unicode code point). Lowercase English characters are represented with numbers between 97 = a and 122 = z, a space is 32 = [ ], a new line is 10 = \n and the period is 46 = ..
So we should have 26 + 3 (= 29) characters in total. Let's see if that's true.
normalized_book_text |> Enum.uniq() |> Enum.count()
Since we want to use this 29 characters as possible values for each input in our neural network, we can re-map them to values between 0 and 28. So each specific neuron will indicate a specific character.
# Extract all then unique characters we have and sort them for clarity
characters = normalized_book_text |> Enum.uniq() |> Enum.sort()
characters_count = Enum.count(characters)

# Create a mapping for every character
char_to_idx = characters |> Enum.with_index() |> Map.new()
# And a reverse mapping to convert back to characters
idx_to_char = characters |> Enum.with_index(&{&2, &1}) |> Map.new()

IO.puts("Total book characters: #{Enum.count(normalized_book_text)}")
IO.puts("Total unique characters: #{characters_count}")
Now we need to create our training and testing data sets. But how?
Our goal is to teach the machine what comes after a sequence of characters (usually). For example given the following sequence "Hello, My name i" the computer should be able to guess that the next character is probably "s".
graph LR;
  A[Input: Hello my name i]-->NN[Neural Network]-->B[Output: s];
Let's choose an arbitrary sequence length and create a data set from the book text. All we need to do is read X amount of characters from the book as the input and then read 1 more as the designated output.
After doing all that, we also want to convert every character to it's index using the char_to_idx mapping that we have created before.
Neural networks work best if you scale your inputs and outputs. In this case we are going to scale everything between 0 and 1 by dividing them by the number of unique characters that we have.
And for the final step we will reshape it so we can use the data in our LSTM model.
sequence_length = 100

train_data =
  normalized_book_text
  |> Enum.map(&Map.fetch!(char_to_idx, &1))
  |> Enum.chunk_every(sequence_length, 1, :discard)
  # We don't want the last chunk since we don't have a prediction for it.
  |> Enum.drop(-1)
  |> Nx.tensor()
  |> Nx.divide(characters_count)
  |> Nx.reshape({:auto, sequence_length, 1})
For our train results, We will do the same. Drop the first sequence_length characters and then convert them to the mapping. Additionally, we will do one-hot encoding.
The reason we want to use one-hot encoding is that in our model we don't want to only return a character as the output. We want it to return the probability of each character for the output. This way we can decide if certain probability is good or not or even we can decide between multiple possible outputs or even discard everything if the network is not confident enough.
In Nx, you can achieve this encoding by using this snippet
Nx.tensor([
  [0],
  [1],
  [2]
])
|> Nx.equal(Nx.iota({1, 3}))
To sum it up, Here is how we generate the train results.
train_results =
  normalized_book_text
  |> Enum.drop(sequence_length)
  |> Enum.map(&Map.fetch!(char_to_idx, &1))
  |> Nx.tensor()
  |> Nx.reshape({:auto, 1})
  |> Nx.equal(Nx.iota({1, characters_count}))

  
    
  
  Defining the Model


# As the input, we expect the sequence_length characters

model =
  Axon.input("input_chars", shape: {nil, sequence_length, 1})
  # The LSTM layer of our network
  |> Axon.lstm(256)
  # Selecting only the output from the LSTM Layer
  |> then(fn {out, _} -> out end)
  # Since we only want the last sequence in LSTM we will slice it and
  # select the last one
  |> Axon.nx(fn t -> t[[0..-1//1, -1]] end)
  # 20% dropout so we will not become too dependent on specific neurons
  |> Axon.dropout(rate: 0.2)
  # The output layer. One neuron for each character and using softmax,
  # as activation so every node represents a probability
  |> Axon.dense(characters_count, activation: :softmax)

  
    
  
  Training the network


To train the network, we will use Axon's Loop API. It is pretty straightforward.
For the loss function we can use categorical cross-entropy since we are dealing with categories (each character) in our output. For the optimizer we can use Adam.
We will train our network for 20 epochs. Note that we are working with a fair amount data, so it may take a long time unless you run it on a GPU.
batch_size = 128
train_batches = Nx.to_batched(train_data, batch_size)
result_batches = Nx.to_batched(train_results, batch_size)

IO.puts("Total batches: #{Enum.count(train_batches)}")

params =
  model
  |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.001))
  |> Axon.Loop.run(Stream.zip(train_batches, result_batches), %{}, epochs: 20, compiler: EXLA)

:ok

  
    
  
  Generating text


Now we have a trained neural network, so we can start generating text with it! We just need to pass the initial sequence as the input to the network and select the most probable output. Axon.predict/3 will give us the output layer and then using Nx.argmax/1 we get the most confident neuron index, then simply convert that index back to its Unicode representation.
generate_fn = fn model, params, init_seq ->
  # The initial sequence that we want the network to complete for us.
  init_seq =
    init_seq
    |> String.trim()
    |> String.downcase()
    |> String.to_charlist()
    |> Enum.map(&Map.fetch!(char_to_idx, &1))

  Enum.reduce(1..100, init_seq, fn _, seq ->
    init_seq =
      seq
      |> Enum.take(-sequence_length)
      |> Nx.tensor()
      |> Nx.divide(characters_count)
      |> Nx.reshape({1, sequence_length, 1})

    char =
      Axon.predict(model, params, init_seq)
      |> Nx.argmax()
      |> Nx.to_number()

    seq ++ [char]
  end)
  |> Enum.map(&Map.fetch!(idx_to_char, &1))
end

# The initial sequence that we want the network to complete for us.
init_seq = """
not like to drop the jar for fear
of killing somebody underneath so managed to put it into one of the
cupboards as she fell past it.
"""

generate_fn.(model, params, init_seq) |> IO.puts()

  
    
  
  Multi LSTM layers


We can improve our network by stacking multiple LSTM layers together. We just need to change our model and re-train our network.
new_model =
  Axon.input("input_chars", shape: {nil, sequence_length, 1})
  |> Axon.lstm(256)
  |> then(fn {out, _} -> out end)
  |> Axon.dropout(rate: 0.2)
  # This time we will pass all of the `out` to the next lstm layer.
  # We just need to slice the last one.
  |> Axon.lstm(256)
  |> then(fn {out, _} -> out end)
  |> Axon.nx(fn x -> x[[0..-1//1, -1]] end)
  |> Axon.dropout(rate: 0.2)
  |> Axon.dense(characters_count, activation: :softmax)
Then we can train the network using the exact same code as before
# Using a smaller batch size in this case will give the network more opportunity to learn
batch_size = 64
train_batches = Nx.to_batched(train_data, batch_size)
result_batches = Nx.to_batched(train_results, batch_size)

IO.puts("Total batches: #{Enum.count(train_batches)}")

new_params =
  new_model
  |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.001))
  |> Axon.Loop.run(Stream.zip(train_batches, result_batches), %{}, epochs: 50, compiler: EXLA)

:ok

  
    
  
  Generate text with the new network


generate_fn.(new_model, new_params, init_seq) |> IO.puts()
As you may see, it improved a lot with this new model and the extensive training. This time it knows about rules like adding a space after period.

  
    
  
  References


The above example was written heavily inspired by this article by Jason Brownlee.


  

    
Classifying fraudulent transactions
    

Mix.install([
  {:axon, "~> 0.3.0"},
  {:nx, "~> 0.4.0", override: true},
  {:exla, "~> 0.4.0"},
  {:explorer, "~> 0.3.1"},
  {:kino, "~> 0.7.0"}
])

Nx.Defn.default_options(compiler: EXLA)
Nx.global_default_backend(EXLA.Backend)

alias Explorer.{DataFrame, Series}

  
    
  
  Introduction


This time we will examine the Credit Card Fraud Dataset. Due to confidentiality, the original data were preprocessed by principal component analysis (PCA), and then 31 principal components were selected for the final data set. The dataset is highly imbalanced. The positive class (frauds) account for 0.172% of all transactions. Eventually, we will create a classifier which has not only great accuracy but, what is even more important, a high recall and precision - two metrics that are much more indicative of performance with imbalanced classification problems.

  
    
  
  Data processing


The first step is to prepare the data for training and evaluation. Please download the dataset in the CSV format from https://www.kaggle.com/mlg-ulb/creditcardfraud (this requires a Kaggla account). Once done, put the file path in the input below.
data_path_input = Kino.Input.text("Data path (CSV)")
Now, let's read the data into an Explorer.Dataframe:
data_path = Kino.Input.read(data_path_input)

df = DataFrame.from_csv!(data_path, dtypes: [{"Time", :float}])
For further processing, we will need a couple helper functions. We will group them in a module for convenience.
defmodule CredidCard.Data do
  import Nx.Defn

  def split_train_test(df, portion) do
    num_examples = DataFrame.n_rows(df)
    num_train = ceil(portion * num_examples)
    num_test = num_examples - num_train

    train = DataFrame.slice(df, 0, num_train)
    test = DataFrame.slice(df, num_train, num_test)
    {train, test}
  end

  def split_features_targets(df) do
    features = DataFrame.select(df, &(&1 == "Class"), :drop)
    targets = DataFrame.select(df, &(&1 == "Class"), :keep)
    {features, targets}
  end

  def df_to_tensor(df) do
    df
    |> DataFrame.names()
    |> Enum.map(&Series.to_tensor(df[&1]))
    |> Nx.stack(axis: 1)
  end

  defn normalize_features(tensor) do
    max =
      tensor
      |> Nx.abs()
      |> Nx.reduce_max(axes: [0], keep_axes: true)

    tensor / max
  end
end
With that, we can start converting the data into the desired format. First, we split the data into training and test data (in proportion 80% into a training set and 20% into a test set).
{train_df, test_df} = CredidCard.Data.split_train_test(df, 0.8)
{DataFrame.n_rows(train_df), DataFrame.n_rows(test_df)}
Next, we separate features from labels and convert both to tensors. In case of features we additionally normalize each of them, dividing by the maximum absolute value of that feature.
{train_features, train_targets} = CredidCard.Data.split_features_targets(train_df)
{test_features, test_targets} = CredidCard.Data.split_features_targets(test_df)

train_inputs =
  train_features
  |> CredidCard.Data.df_to_tensor()
  |> CredidCard.Data.normalize_features()

test_inputs =
  test_features
  |> CredidCard.Data.df_to_tensor()
  |> CredidCard.Data.normalize_features()

train_targets = CredidCard.Data.df_to_tensor(train_targets)
test_targets = CredidCard.Data.df_to_tensor(test_targets)

:ok

  
    
  
  Building the model


Our model for predicting whether a transaction was fraudulent or not is a dense neural network. It consists of two dense layers with 256 neurons, ReLU activation functions, one dropout layer, and a dense layer with one neuron (since the problem is a binary prediction) followed by a sigmoid activation function.
model =
  Axon.input("input")
  |> Axon.dense(256)
  |> Axon.relu()
  |> Axon.dense(256)
  |> Axon.relu()
  |> Axon.dropout(rate: 0.3)
  |> Axon.dense(1)
  |> Axon.sigmoid()

  
    
  
  Training our model


Now we have both data and model architecture prepared, it's time to train!
Note the disproportion in the data samples:
fraud = Nx.sum(train_targets) |> Nx.to_number()
legit = Nx.size(train_targets) - fraud

batched_train_inputs = Nx.to_batched(train_inputs, 2048)
batched_train_targets = Nx.to_batched(train_targets, 2048)
batched_train = Stream.zip(batched_train_inputs, batched_train_targets)

IO.puts("# of legit transactions (train): #{legit}")
IO.puts("# of fraudulent transactions (train): #{fraud}")
IO.puts("% fraudlent transactions (train): #{100 * (fraud / (legit + fraud))}%")
As always, we define our train loop. We are using binary cross-entropy as our loss function and Adam as the optimizer with a learning rate of 0.01. Then we immediately start the training passing our train portion of the dataset.
loss =
  &Axon.Losses.binary_cross_entropy(
    &1,
    &2,
    negative_weight: 1 / legit,
    positive_weight: 1 / fraud,
    reduction: :mean
  )

optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-2)

params =
  model
  |> Axon.Loop.trainer(loss, optimizer)
  |> Axon.Loop.run(batched_train, %{}, epochs: 30, compiler: EXLA)

:ok

  
    
  
  Model evaluation


After the training, there is only one thing left: testing. Here, we will focus on the number of true positive, true negative, false positive, and false negative values, but also on the likelihood of denying legit and fraudulent transactions.
batched_test_inputs = Nx.to_batched(test_inputs, 2048)
batched_test_targets = Nx.to_batched(test_targets, 2048)
batched_test = Stream.zip(batched_test_inputs, batched_test_targets)

summarize = fn %Axon.Loop.State{metrics: metrics} = state ->
  legit_transactions_declined = Nx.to_number(metrics["fp"])
  legit_transactions_accepted = Nx.to_number(metrics["tn"])
  fraud_transactions_accepted = Nx.to_number(metrics["fn"])
  fraud_transactions_declined = Nx.to_number(metrics["tp"])
  total_fraud = fraud_transactions_declined + fraud_transactions_accepted
  total_legit = legit_transactions_declined + legit_transactions_accepted

  fraud_denial_percent = 100 * (fraud_transactions_declined / total_fraud)
  legit_denial_percent = 100 * (legit_transactions_declined / total_legit)

  IO.write("\n")
  IO.puts("Legit Transactions Declined: #{legit_transactions_declined}")
  IO.puts("Fraudulent Transactions Caught: #{fraud_transactions_declined}")
  IO.puts("Fraudulent Transactions Missed: #{fraud_transactions_accepted}")
  IO.puts("Likelihood of catching fraud: #{fraud_denial_percent}%")
  IO.puts("Likelihood of denying legit transaction: #{legit_denial_percent}%")

  {:continue, state}
end

model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:true_positives, "tp", :running_sum)
|> Axon.Loop.metric(:true_negatives, "tn", :running_sum)
|> Axon.Loop.metric(:false_positives, "fp", :running_sum)
|> Axon.Loop.metric(:false_negatives, "fn", :running_sum)
|> Axon.Loop.handle(:epoch_completed, summarize)
|> Axon.Loop.run(batched_test, params, compiler: EXLA)

:ok


  

    
MNIST Denoising Autoencoder using Kino for visualization
    

Mix.install([
  {:exla, "~> 0.4.0"},
  {:nx, "~> 0.4.0", override: true},
  {:axon, "~> 0.3.0"},
  {:req, "~> 0.3.1"},
  {:kino, "~> 0.7.0"},
  {:scidata, "~> 0.1.9"},
  {:stb_image, "~> 0.5.2"},
  {:table_rex, "~> 3.1.1"}
])

  
    
  
  Introduction


The goal of this notebook is to build a Denoising Autoencoder from scratch using Livebook. This notebook is based on Training an Autoencoder on Fashion MNIST, but includes some tips on using Livebook to train the model and using Kino (Livebook's interactive widget library) to play with and visualize our results.

  
    
  
  Data loading


An autoencoder learns to recreate data it's seen in the dataset. For this notebook, we're going to try something simple: generating images of digits using the MNIST digit recognition dataset.
Following along with the Fashion MNIST Autoencoder example, we'll use Scidata to download the MNIST dataset and then preprocess the data.
# We're not going to use the labels so we'll ignore them
{train_images, _train_labels} = Scidata.MNIST.download()
{train_images_binary, type, shape} = train_images
The shape tells us we have 60,000 images with a single channel of size 28x28.
According to the MNIST website:
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

Let's preprocess and normalize the data accordingly.
train_images =
  train_images_binary
  |> Nx.from_binary(type)
  # Since pixels are organized row-wise, reshape into rows x columns
  |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
  # Normalize the pixel values to be between 0 and 1
  |> Nx.divide(255)
# Make sure they look like numbers
train_images[[images: 0..2]] |> Nx.to_heatmap()
That looks right! Let's repeat the process for the test set.
{test_images, _train_labels} = Scidata.MNIST.download_test()
{test_images_binary, type, shape} = test_images

test_images =
  test_images_binary
  |> Nx.from_binary(type)
  # Since pixels are organized row-wise, reshape into rows x columns
  |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
  # Normalize the pixel values to be between 0 and 1
  |> Nx.divide(255)

test_images[[images: 0..2]] |> Nx.to_heatmap()

  
    
  
  Building the model


An autoencoder is a a network that has the same sized input as output, with a "bottleneck" layer in the middle with far fewer parameters than the input. Its goal is to force the output to reconstruct the input. The bottleneck layer forces the network to learn a compressed representation of the input space.
A denoising autoencoder is a small tweak on an autoencoder that takes a corrupted input (often corrupted by adding noise or zeroing out pixels) and reconstructs the original input, removing the noise in the process.
The part of the autoencoder that takes the input and compresses it into the bottleneck layer is called the encoder and the part that takes the compressed representation and reconstructs the input is called the decoder. Usually the decoder mirrors the encoder.
MNIST is a pretty easy dataset, so we're going to try a fairly small autoencoder.
The input image has size 784 (28 rows  28 cols  1 pixel). We'll set up the encoder to turn that into 256 features, then 128, 64, and then 10 features for the bottleneck layer. The decoder will do the reverse, take the 10 features and go to 64, 128, 256 and 784. I'll use fully-connected (dense) layers.

  
    
  
  The model


model =
  Axon.input("image", shape: {nil, 1, 28, 28})
  # This is now 28*28*1 = 784
  |> Axon.flatten()
  # The encoder
  |> Axon.dense(256, activation: :relu)
  |> Axon.dense(128, activation: :relu)
  |> Axon.dense(64, activation: :relu)
  # Bottleneck layer
  |> Axon.dense(10, activation: :relu)
  # The decoder
  |> Axon.dense(64, activation: :relu)
  |> Axon.dense(128, activation: :relu)
  |> Axon.dense(256, activation: :relu)
  |> Axon.dense(784, activation: :sigmoid)
  # Turn it back into a 28x28 single channel image
  |> Axon.reshape({:auto, 1, 28, 28})

# We can use Axon.Display to show us what each of the layers would look like
# assuming we send in a batch of 4 images
Axon.Display.as_table(model, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
Checking our understanding, since the layers are all dense layers, the number of parameters should be input_features * output_features parameters for the weights + output_features parameters for the biases for each layer.
This should match the Total Parameters output from Axon.Display (486298 parameters)
# encoder
encoder_parameters = 784 * 256 + 256 + (256 * 128 + 128) + (128 * 64 + 64) + (64 * 10 + 10)
decoder_parameters = 10 * 64 + 64 + (64 * 128 + 128) + (128 * 256 + 256) + (256 * 784 + 784)
total_parameters = encoder_parameters + decoder_parameters

  
    
  
  Training


With the model set up, we can now try to train the model. We'll use MSE loss to compare our reconstruction with the original
We'll create the training input by turning our image list into batches of size 128 and then using the same image as both the input and the target. However, the input image will have noise added to it that the autoencoder will have to remove.
For validation data, we'll use the test set and look at how the autoencoder does at reconstructing the test set to make sure we're not overfitting
The function below adds some noise to the image by adding the image with gaussian noise scaled by a noise factor. We then have to make sure the pixel values are still within the 0..1.0 range.
We have to define this function using defn so that Nx can optimize it. If we don't do this, adding noise will take a really long time, making our training loop very slow. See Nx.defn for more details. defn can only be used in a module so we'll define a little module to contain it.
defmodule Noiser do
  import Nx.Defn

  @noise_factor 0.4

  defn add_noise(images) do
    @noise_factor
    |> Nx.multiply(Nx.random_normal(images))
    |> Nx.add(images)
    |> Nx.clip(0.0, 1.0)
  end
end

add_noise = Nx.Defn.jit(&Noiser.add_noise/1, compiler: EXLA)
batch_size = 128

# The original image which is the target the network will trying to match
batched_train_images =
  train_images
  |> Nx.to_batched(batch_size)

batched_noisy_train_images =
  train_images
  |> Nx.to_batched(batch_size)
  # goes after to_batched so the noise is different every time
  |> Stream.map(add_noise)

# The noisy image is the input to the network
# and the original image is the target it's trying to match
train_data = Stream.zip(batched_noisy_train_images, batched_train_images)

batched_test_images =
  test_images
  |> Nx.to_batched(batch_size)

batched_noisy_test_images =
  test_images
  |> Nx.to_batched(batch_size)
  |> Stream.map(add_noise)

test_data = Stream.zip(batched_noisy_test_images, batched_test_images)
Let's see what an element of the input and target look like
{input_batch, target_batch} = Enum.at(train_data, 0)
{Nx.to_heatmap(input_batch[images: 0]), Nx.to_heatmap(target_batch[images: 0])}
Looks right (and tricky). Let's see how the model does.
params =
  model
  |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
  |> Axon.Loop.validate(model, test_data)
  |> Axon.Loop.run(train_data, %{}, epochs: 20, compiler: EXLA)

:ok
Now that we have a model that theoretically has learned something, we'll see what it's learned by running it on some images from the test set. We'll use Kino to allow us to select the image from the test set to run the model against. To avoid losing the params that took a while to train, we'll create another branch so we can experiment with the params and stop execution when needed without having to retrain.

  
    
  
  Evaluation


A note on branching
By default, everything in Livebook runs sequentially in a single process. Stopping a running cell aborts that process and consequently all its state is lost. A branching section copies everything from its parent and runs in a separate process. Thanks to this isolation, when we stop a cell in a branching section, only the state within that section is gone.
Since we just spent a bunch of time training the model and don't want to lose that memory state as we continue to experiment, we create a branching section. This does add some memory overhead, but it's worth it so we can experiment without fear!
To use Kino to give us an interactive tool to evaluate the model, we'll create a Kino.Frame that we can dynamically update. We'll also create a form using Kino.Control to allow the user to select which image from the test set they'd like to evaluate the model on. Finally Kino.Control.stream enables us to respond to changes in the user's selection when the user clicks the "Render" button.
We can use Nx.concatenate to stack the images side by side for a prettier output.
form =
  Kino.Control.form(
    [
      test_image_index: Kino.Input.number("Test Image Index", default: 0)
    ],
    submit: "Render"
  )

Kino.render(form)

form
|> Kino.Control.stream()
|> Kino.animate(fn %{data: %{test_image_index: image_index}} ->
  test_image = test_images[[images: image_index]] |> add_noise.()

  reconstructed_image =
    model
    |> Axon.predict(params, test_image)
    # Get rid of the batch dimension
    |> Nx.squeeze(axes: [0])

  combined_image = Nx.concatenate([test_image, reconstructed_image], axis: :width)
  Nx.to_heatmap(combined_image)
end)
That looks pretty good!
Note we used Kino.animate/2 which runs asynchronously so we don't block execution of the rest of the notebook.

  
    
  
  A better training loop


Note that we branch from the "Building a model" section since we only need the model definition for this section and not the previously trained model.
It'd be nice to see how the model improves as it trains. In this section (also a branch since I plan to experiment and don't want to lose the execution state) we'll improve the training loop to use Kino to show us how it's doing.
Axon.Loop.handle gives us a hook into various points of the training loop. We'll can use it with the :iteration_completed event to get a copy of the state of the params after some number of completed iterations of the training loop. By using those params to render an image in the test set, we can get a live view of the autoencoder learning to reconstruct its inputs.
# A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
  test_image = test_images[[images: image_index]] |> add_noise.()
  reconstructed_image = Axon.predict(model, params, test_image) |> Nx.squeeze(axes: [0])
  Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

Nx.to_heatmap(combined_input_output.(params, 0))
It'd also be nice to have a prettier version of the output. Let's convert the heatmap to a png to make that happen.
image_to_kino = fn image ->
  image
  |> Nx.multiply(255)
  |> Nx.as_type(:u8)
  |> Nx.transpose(axes: [:height, :width, :channels])
  |> StbImage.from_nx()
  |> StbImage.resize(200, 400)
  |> StbImage.to_binary(:png)
  |> Kino.Image.new(:png)
end

image_to_kino.(combined_input_output.(params, 0))
Much nicer!
Once again we'll use Kino.Frame for dynamically updating output:
frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
  Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
  # state.step_state[:model_state] contains the model params when this event is fired
  params = state.step_state[:model_state]
  image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
  image = combined_input_output.(params, image_index) |> image_to_kino.()
  Kino.Frame.append(frame, image)
  {:continue, state}
end

params =
  model
  |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
  |> Axon.Loop.handle(:iteration_completed, render_example_handler, every: 450)
  |> Axon.Loop.validate(model, test_data)
  |> Axon.Loop.run(train_data, %{}, epochs: 20, compiler: EXLA)

:ok
Awesome! We have a working denoising autoencoder that we can visualize getting better in 20 epochs!


  

    
Training an Autoencoder on Fashion MNIST
    

Mix.install([
  {:axon, "~> 0.3.0"},
  {:nx, "~> 0.4.0", override: true},
  {:exla, "~> 0.4.0"},
  {:scidata, "~> 0.1.9"}
])

Nx.Defn.default_options(compiler: EXLA)

  
    
  
  Introduction


An autoencoder is a deep learning model which consists of two parts: encoder and decoder. The encoder compresses high dimensional data into a low dimensional representation and feeds it to the decoder. The decoder tries to recreate the original data from the low dimensional representation.
Autoencoders can be used in the following problems:
	Dimensionality reduction
	Noise reduction
	Generative models
	Data augmentation

Let's walk through a basic autoencoder implementation in Axon to get a better understanding of how they work in practice.

  
    
  
  Downloading the data


To train and test how our model works, we use one of the most popular data sets: Fashion MNIST. It consists of small black and white images of clothes. Loading this data set is very simple with the help of Scidata.
{image_data, _label_data} = Scidata.FashionMNIST.download()
{bin, type, shape} = image_data
We get the data in a raw format, but this is exactly the information we need to build an Nx tensor.
train_images =
  bin
  |> Nx.from_binary(type)
  |> Nx.reshape(shape)
  |> Nx.divide(255.0)
We also normalize pixel values into the range $[0, 1]$.
We can visualize one of the images by looking at the tensor heatmap:
Nx.to_heatmap(train_images[1])

  
    
  
  Encoder and decoder


First we need to define the encoder and decoder. Both are one-layer neural networks.
In the encoder, we start by flattening the input, so we get from shape {batch_size, 1, 28, 28} to {batch_size, 784} and we pass the input into a dense layer. Our dense layer has only latent_dim number of neurons. The latent_dim (or the latent space) is a compressed representation of data. Remember, we want our encoder to compress the input data into a lower-dimensional representation, so we choose a latent_dim which is less than the dimensionality of the input.
encoder = fn x, latent_dim ->
  x
  |> Axon.flatten()
  |> Axon.dense(latent_dim, activation: :relu)
end
Next, we pass the output of the encoder to the decoder and try to reconstruct the compressed data into its original form. Since our original input had a dimensionality of 784, we use a dense layer with 784 neurons. Because our original data was normalized to have pixel values between 0 and 1, we use a :sigmoid activation in our dense layer to squeeze output values between 0 and 1. Our original input shape was 28x28, so we use Axon.reshape to convert the flattened representation of the outputs into an image with correct the width and height.
decoder = fn x ->
  x
  |> Axon.dense(784, activation: :sigmoid)
  |> Axon.reshape({:batch, 1, 28, 28})
end
If we just bind the encoder and decoder sequentially, we'll get the desired model. This was pretty smooth, wasn't it?
model =
  Axon.input("input", shape: {nil, 1, 28, 28})
  |> encoder.(64)
  |> decoder.()

  
    
  
  Training the model


Finally, we can train the model. We'll use the :adam and :mean_squared_error loss with Axon.Loop.trainer. Our loss function will measure the aggregate error between pixels of original images and the model's reconstructed images. We'll also :mean_absolute_error using Axon.Loop.metric. Axon.Loop.run trains the model with the given training data.
batch_size = 32
epochs = 5

batched_images = Nx.to_batched(train_images, batch_size)
train_batches = Stream.zip(batched_images, batched_images)

params =
  model
  |> Axon.Loop.trainer(:mean_squared_error, :adam)
  |> Axon.Loop.metric(:mean_absolute_error, "Error")
  |> Axon.Loop.run(train_batches, %{}, epochs: epochs, compiler: EXLA)

  
    
  
  Extra: losses


To better understand what is mean absolute error (MAE) and mean square error (MSE) let's go through an example.
# Error definitions for a single sample

mean_square_error = fn y_pred, y ->
  y_pred
  |> Nx.subtract(y)
  |> Nx.power(2)
  |> Nx.mean()
end

mean_absolute_error = fn y_pred, y ->
  y_pred
  |> Nx.subtract(y)
  |> Nx.abs()
  |> Nx.mean()
end
We will work with a sample image of a shoe, a slightly noised version of that image, and also an entirely different image from the dataset.
shoe_image = train_images[0]
noised_shoe_image = Nx.add(shoe_image, Nx.random_normal(shoe_image, 0.0, 0.05))
other_image = train_images[1]
:ok
For the same image both errors should be 0, because when we have two exact copies, there is no pixel difference.
{
  mean_square_error.(shoe_image, shoe_image),
  mean_absolute_error.(shoe_image, shoe_image)
}
Now the noised image:
{
  mean_square_error.(shoe_image, noised_shoe_image),
  mean_absolute_error.(shoe_image, noised_shoe_image)
}
And a different image:
{
  mean_square_error.(shoe_image, other_image),
  mean_absolute_error.(shoe_image, other_image)
}
As we can see, the noised image has a non-zero MSE and MAE but is much smaller than the error of two completely different pictures. In other words, both of these error types measure the level of similarity between images. A small error implies decent prediction values. On the other hand, a large error value suggests poor quality of predictions.
If you look at our implementation of MAE and MSE, you will notice that they are very similar. MAE and MSE can also be called the $L_1$ and $L_2$ loss respectively for the $L_1$ and $L_2$ norm. The $L_2$ loss (MSE) is typically preferred because it's a smoother function whereas $L_1$ is often difficult to optimize with stochastic gradient descent (SGD).

  
    
  
  Inference


Now, let's see how our model is doing! We will compare a sample image before and after compression.
sample_image = train_images[0..0//1]
compressed_image = Axon.predict(model, params, sample_image, compiler: EXLA)

sample_image
|> Nx.to_heatmap()
|> IO.inspect(label: "Original")

compressed_image
|> Nx.to_heatmap()
|> IO.inspect(label: "Compressed")

:ok
As we can see, the generated image is similar to the input image. The only difference between them is the absence of a sign in the middle of the second shoe. The model treated the sign as noise and bled this into the plain shoe.


  

    
A Variational Autoencoder for MNIST
    

Mix.install([
  {:exla, "~> 0.4.0"},
  {:nx, "~> 0.4.0", override: true},
  {:axon, "~> 0.3.0"},
  {:req, "~> 0.3.1"},
  {:kino, "~> 0.7.0"},
  {:scidata, "~> 0.1.9"},
  {:stb_image, "~> 0.5.2"},
  {:kino_vega_lite, "~> 0.1.6"},
  {:vega_lite, "~> 0.1.6"},
  {:table_rex, "~> 3.1.1"}
])

alias VegaLite, as: Vl

# This speeds up all our `Nx` operations without having to use `defn`
Nx.global_default_backend(EXLA.Backend)

:ok

  
    
  
  Introduction


In this notebook, we'll be building a variational autoencoder (VAE). This will help demonstrate splitting up models, defining custom layers and loss functions, using multiple outputs, and a few additional Kino tricks for training models.
This notebook builds on the denoising autoencoder example and turns the simple autoencoder into a variational one for the same dataset.

  
    
  
  Training a simple autoencoder


This section will proceed without much explanation as most of it is extracted from denoising autoencoder example. If anything here doesn't make sense, take a look at that notebook for an explanation.
defmodule Data do
  @moduledoc """
  A module to hold useful data processing utilities,
  mostly extracted from the previous notebook
  """

  @doc """
  Converts the given image into a `Kino.Image`.

  `image` must be a single channel `Nx` tensor with pixel values between 0 and 1.
  `height` and `width` are the output size in pixels
  """
  def image_to_kino(image, height \\ 200, width \\ 200) do
    image
    |> Nx.multiply(255)
    |> Nx.as_type(:u8)
    |> Nx.transpose(axes: [:height, :width, :channels])
    |> StbImage.from_nx()
    |> StbImage.resize(height, width)
    |> StbImage.to_binary(:png)
    |> Kino.Image.new(:png)
  end

  @doc """
  Converts image data from `Scidata.MNIST` into an `Nx` tensor and normalizes it.
  """
  def preprocess_data(data) do
    {image_data, _labels} = data
    {images_binary, type, shape} = image_data

    images_binary
    |> Nx.from_binary(type)
    # Since pixels are organized row-wise, reshape into rows x columns
    |> Nx.reshape(shape, names: [:images, :channels, :height, :width])
    # Normalize the pixel values to be between 0 and 1
    |> Nx.divide(255)
  end

  @doc """
  Converts a tensor of images into random batches of paired images for model training
  """
  def prepare_training_data(images, batch_size) do
    Stream.flat_map([nil], fn nil ->
      images |> Nx.shuffle(axis: :images) |> Nx.to_batched(batch_size)
    end)
    |> Stream.map(fn batch -> {batch, batch} end)
  end
end
train_images = Data.preprocess_data(Scidata.FashionMNIST.download())
test_images = Data.preprocess_data(Scidata.FashionMNIST.download_test())

Kino.render(train_images[[images: 0]] |> Data.image_to_kino())
Kino.render(test_images[[images: 0]] |> Data.image_to_kino())

:ok
Now for our simple autoencoder model. We won't be using a denoising autoencoder here.
Note that we're giving each of the layers a name - the reason for this will be apparent later.
I'm also using a small custom layer to shift and scale the output of the sigmoid layer slightly so it can hit the 0 and 1 targets. I noticed the gradients tend to explode without this.
defmodule CustomLayer do
  import Nx.Defn

  def scaling_layer(%Axon{} = input, _opts \\ []) do
    Axon.layer(&scaling_layer_impl/2, [input])
  end

  defnp scaling_layer_impl(x, _opts \\ []) do
    x
    |> Nx.subtract(0.05)
    |> Nx.multiply(1.2)
  end
end
model =
  Axon.input("image", shape: {nil, 1, 28, 28})
  # This is now 28*28*1 = 784
  |> Axon.flatten()
  # The encoder
  |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
  |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
  |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
  # Bottleneck layer
  |> Axon.dense(10, activation: :relu, name: "bottleneck_layer")
  # The decoder
  |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
  |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
  |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
  |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
  |> CustomLayer.scaling_layer()
  # Turn it back into a 28x28 single channel image
  |> Axon.reshape({:auto, 1, 28, 28})

# We can use Axon.Display to show us what each of the layers would look like
# assuming we send in a batch of 4 images
Axon.Display.as_table(model, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
batch_size = 128

train_data = Data.prepare_training_data(train_images, 128)
test_data = Data.prepare_training_data(test_images, 128)

{input_batch, target_batch} = Enum.at(train_data, 0)
Kino.render(input_batch[[images: 0]] |> Data.image_to_kino())
Kino.render(target_batch[[images: 0]] |> Data.image_to_kino())

:ok
When training, it can be useful to stop execution early - either when you see it's failing and you don't want to waste time waiting for the remaining epochs to finish, or if it's good enough and you want to start experimenting with it.
The kino_early_stop/1 function below is a handy handler to give us a Kino.Control.button that will stop the training loop when clicked.
We also have plot_losses/1 function to visualize our train and validation losses using VegaLite.
defmodule KinoAxon do
  @doc """
  Adds handler function which adds a frame with a "stop" button
  to the cell with the training loop.

  Clicking "stop" will halt the training loop.
  """
  def kino_early_stop(loop) do
    frame = Kino.Frame.new() |> Kino.render()
    stop_button = Kino.Control.button("stop")
    Kino.Frame.render(frame, stop_button)

    {:ok, button_agent} = Agent.start_link(fn -> nil end)

    stop_button
    |> Kino.Control.stream()
    |> Kino.listen(fn _event ->
      Agent.update(button_agent, fn _ -> :stop end)
    end)

    handler = fn state ->
      stop_state = Agent.get(button_agent, & &1)

      if stop_state == :stop do
        Agent.stop(button_agent)
        Kino.Frame.render(frame, "stopped")
        {:halt_loop, state}
      else
        {:continue, state}
      end
    end

    Axon.Loop.handle(loop, :iteration_completed, handler)
  end

  @doc """
  Plots the training and validation losses using Kino and VegaLite.

  This *must* come after `Axon.Loop.validate`.
  """
  def plot_losses(loop) do
    vl_widget =
      Vl.new(width: 600, height: 400)
      |> Vl.mark(:point, tooltip: true)
      |> Vl.encode_field(:x, "epoch", type: :ordinal)
      |> Vl.encode_field(:y, "loss", type: :quantitative)
      |> Vl.encode_field(:color, "dataset", type: :nominal)
      |> Kino.VegaLite.new()
      |> Kino.render()

    handler = fn state ->
      %Axon.Loop.State{metrics: metrics, epoch: epoch} = state
      loss = metrics["loss"] |> Nx.to_number()
      val_loss = metrics["validation_loss"] |> Nx.to_number()

      points = [
        %{epoch: epoch, loss: loss, dataset: "train"},
        %{epoch: epoch, loss: val_loss, dataset: "validation"}
      ]

      Kino.VegaLite.push_many(vl_widget, points)
      {:continue, state}
    end

    Axon.Loop.handle(loop, :epoch_completed, handler)
  end
end
# A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
  test_image = test_images[[images: image_index]]
  reconstructed_image = Axon.predict(model, params, test_image) |> Nx.squeeze(axes: [0])
  Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
  # state.step_state[:model_state] contains the model params when this event is fired
  params = state.step_state[:model_state]
  image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
  image = combined_input_output.(params, image_index) |> Data.image_to_kino(200, 400)
  Kino.Frame.render(frame, image)
  Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
  {:continue, state}
end

params =
  model
  |> Axon.Loop.trainer(:mean_squared_error, Polaris.Optimizers.adamw(learning_rate: 0.001))
  |> KinoAxon.kino_early_stop()
  |> Axon.Loop.handle(:iteration_completed, render_example_handler, every: 450)
  |> Axon.Loop.validate(model, test_data)
  |> KinoAxon.plot_losses()
  |> Axon.Loop.run(train_data, %{}, epochs: 40, compiler: EXLA)

:ok

  
    
  
  Splitting up the model


Cool! We now have the parameters for a trained, simple autoencoder. Our next step is to split up the model so we can use the encoder and decoder separately. By doing that, we'll be able to take an image and encode it to get the model's compressed image representation (the latent vector). We can then manipulate the latent vector and run the manipulated latent vector through the decoder to get a new image.
Let's start by defining the encoder and decoder separately as two different models.
encoder =
  Axon.input("image", shape: {nil, 1, 28, 28})
  # This is now 28*28*1 = 784
  |> Axon.flatten()
  # The encoder
  |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
  |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
  |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
  # Bottleneck layer
  |> Axon.dense(10, activation: :relu, name: "bottleneck_layer")

# The output from the encoder
decoder =
  Axon.input("latent", shape: {nil, 10})
  # The decoder
  |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
  |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
  |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
  |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
  |> CustomLayer.scaling_layer()
  # Turn it back into a 28x28 single channel image
  |> Axon.reshape({:auto, 1, 28, 28})

Axon.Display.as_table(encoder, Nx.template({4, 1, 28, 28}, :f32)) |> IO.puts()
Axon.Display.as_table(decoder, Nx.template({4, 10}, :f32)) |> IO.puts()
We have the two models, but the problem is these are untrained models so we don't have the corresponding set of parameters. We'd like to use the parameters from the autoencoder we just trained and apply them to our split up models.
Let's first take a look at what params actually are:
params
Params are just a Map with the layer name as the key identifying which parameters to use. We can easily match up the layer names with the output from the Axon.Display.as_table/2 call for the autoencoder model.
So all we need to do is create a new Map that plucks out the right layers from our autoencoder params for each model and use that to run inference on our split up models.
Fortunately, since we gave each of the layers names, this requires no work at all - we can use the Map as it is since the layer names match up! Axon will ignore any extra keys so those won't be a problem.
Note that naming the layers wasn't required, if the layers didn't have names we would have some renaming to do to get the names to match between the models. But giving them names made it very convenient :)
Let's try encoding an image, printing the latent and then decoding the latent using our split up model to make sure it's working.
image = test_images[[images: 0]]

# Encode the image
latent = Axon.predict(encoder, params, image)
IO.inspect(latent, label: "Latent")
# Decode the image
reconstructed_image = Axon.predict(decoder, params, latent) |> Nx.squeeze(axes: [0])

combined_image = Nx.concatenate([image, reconstructed_image], axis: :width)
Data.image_to_kino(combined_image, 200, 400)
Perfect! Seems like the split up models are working as expected. Now let's try to generate some new images using our autoencoder. To do this, we'll manipulate the latent so it's slightly different from what the encoder gave us. Specifically, we'll try to interpolate between two images, showing 100 steps from our starting image to our final image.
num_steps = 100

# Get our latents, image at index 0 is our starting point
# index 1 is where we'll end
latents = Axon.predict(encoder, params, test_images[[images: 0..1]])
# Latents is a {2, 10} tensor
# The step we'll add to our latent to move it towards image[1]
step = Nx.subtract(latents[1], latents[0]) |> Nx.divide(num_steps)
# We can make a batch of all our new latents
new_latents = Nx.multiply(Nx.iota({num_steps + 1, 1}), step) |> Nx.add(latents[0])

reconstructed_images = Axon.predict(decoder, params, new_latents)

reconstructed_images =
  Nx.reshape(
    reconstructed_images,
    Nx.shape(reconstructed_images),
    names: [:images, :channels, :height, :width]
  )

Stream.interval(div(5000, num_steps))
|> Stream.take(num_steps + 1)
|> Kino.animate(fn i ->
  Data.image_to_kino(reconstructed_images[i])
end)
Cool! We have interpolation! But did you notice that some of the intermediate frames don't look fashionable at all? Autoencoders don't generally return good results for random vectors in their latent space. That's where a VAE can help.

  
    
  
  Making it variational


In a VAE, instead of outputting a latent vector, our encoder will output a distribution. Essentially this means instead of 10 outputs we'll have 20. 10 of them will represent the mean and 10 will represent the log of the variance of the latent. We'll have to sample from this distribution to get our latent vector. Finally, we'll have to modify our loss function to also compute the KL Divergence between the latent distribution and a standard normal distribution (this acts as a regularizer of the latent space).
We'll start by defining our model:
defmodule Vae do
  import Nx.Defn

  @latent_features 10

  defp sampling_layer(%Axon{} = input, _opts \\ []) do
    Axon.layer(&sampling_layer_impl/2, [input], name: "sampling_layer", op_name: :sample)
  end

  defnp sampling_layer_impl(x, _opts \\ []) do
    mu = x[[0..-1//1, 0, 0..-1//1]]
    log_var = x[[0..-1//1, 1, 0..-1//1]]
    std_dev = Nx.exp(0.5 * log_var)
    eps = Nx.random_normal(std_dev)
    sample = mu + std_dev * eps
    Nx.stack([sample, mu, std_dev], axis: 1)
  end

  defp encoder_partial() do
    Axon.input("image", shape: {nil, 1, 28, 28})
    # This is now 28*28*1 = 784
    |> Axon.flatten()
    # The encoder
    |> Axon.dense(256, activation: :relu, name: "encoder_layer_1")
    |> Axon.dense(128, activation: :relu, name: "encoder_layer_2")
    |> Axon.dense(64, activation: :relu, name: "encoder_layer_3")
    # Bottleneck layer
    |> Axon.dense(@latent_features * 2, name: "bottleneck_layer")
    # Split up the mu and logvar
    |> Axon.reshape({:auto, 2, @latent_features})
    |> sampling_layer()
  end

  def encoder() do
    encoder_partial()
    # Grab only the sample (ie. the sampled latent)
    |> Axon.nx(fn x -> x[[0..-1//1, 0]] end)
  end

  def decoder(input_latent) do
    input_latent
    |> Axon.dense(64, activation: :relu, name: "decoder_layer_1")
    |> Axon.dense(128, activation: :relu, name: "decoder_layer_2")
    |> Axon.dense(256, activation: :relu, name: "decoder_layer_3")
    |> Axon.dense(784, activation: :sigmoid, name: "decoder_layer_4")
    |> CustomLayer.scaling_layer()
    # Turn it back into a 28x28 single channel image
    |> Axon.reshape({:auto, 1, 28, 28})
  end

  def autoencoder() do
    encoder_partial = encoder_partial()
    encoder = encoder()
    autoencoder = decoder(encoder)
    Axon.container(%{mu_sigma: encoder_partial, reconstruction: autoencoder})
  end
end
There's a few interesting things going on here. First, since our model has become more complex, we've used a module to keep it organized. We also built a custom layer to do the sampling and output the sampled latent vector as well as the distribution parameters (mu and sigma).
Finally, we need the distribution itself so we can calculate the KL Divergence in our loss function. To make the model output the distribution parameters (mu and sigma), we use Axon.container/1 to produce two outputs from our model instead of one. Now, instead of getting a tensor as an output, we'll get a map with the two tensors we need for our loss function.
Our loss function also has to be modified so be the sum of the KL divergence and MSE. Here's our custom loss function:
defmodule CustomLoss do
  import Nx.Defn

  defn loss(y_true, %{reconstruction: reconstruction, mu_sigma: mu_sigma}) do
    mu = mu_sigma[[0..-1//1, 1, 0..-1//1]]
    sigma = mu_sigma[[0..-1//1, 2, 0..-1//1]]
    kld = Nx.sum(-Nx.log(sigma) - 0.5 + Nx.multiply(sigma, sigma) + Nx.multiply(mu, mu))
    kld * 0.1 + Axon.Losses.mean_squared_error(y_true, reconstruction, reduction: :sum)
  end
end
With all our pieces ready, we can pretty much use the same training loop as we did earlier. The only modifications needed are to account for the fact that the model outputs a map with two values instead of a single tensor and telling the trainer to use our custom loss.
model = Vae.autoencoder()

# A helper function to display the input and output side by side
combined_input_output = fn params, image_index ->
  test_image = test_images[[images: image_index]]
  %{reconstruction: reconstructed_image} = Axon.predict(model, params, test_image)
  reconstructed_image = reconstructed_image |> Nx.squeeze(axes: [0])
  Nx.concatenate([test_image, reconstructed_image], axis: :width)
end

frame = Kino.Frame.new() |> Kino.render()

render_example_handler = fn state ->
  # state.step_state[:model_state] contains the model params when this event is fired
  params = state.step_state[:model_state]
  image_index = Enum.random(0..(Nx.axis_size(test_images, :images) - 1))
  image = combined_input_output.(params, image_index) |> Data.image_to_kino(200, 400)
  Kino.Frame.render(frame, image)
  Kino.Frame.append(frame, "Epoch: #{state.epoch}, Iteration: #{state.iteration}")
  {:continue, state}
end

params =
  model
  |> Axon.Loop.trainer(&CustomLoss.loss/2, Polaris.Optimizers.adam(learning_rate: 0.001))
  |> KinoAxon.kino_early_stop()
  |> Axon.Loop.handle(:epoch_completed, render_example_handler)
  |> Axon.Loop.validate(model, test_data)
  |> KinoAxon.plot_losses()
  |> Axon.Loop.run(train_data, %{}, epochs: 40, compiler: EXLA)

:ok
Finally, we can try our interpolation again:
num_steps = 100

# Get our latents, image at index 0 is our starting point
# index 1 is where we'll end
latents = Axon.predict(Vae.encoder(), params, test_images[[images: 0..1]])
# Latents is a {2, 10} tensor
# The step we'll add to our latent to move it towards image[1]
step = Nx.subtract(latents[1], latents[0]) |> Nx.divide(num_steps)
# We can make a batch of all our new latents
new_latents = Nx.multiply(Nx.iota({num_steps + 1, 1}), step) |> Nx.add(latents[0])

decoder = Axon.input("latent", shape: {nil, 10}) |> Vae.decoder()

reconstructed_images = Axon.predict(decoder, params, new_latents)

reconstructed_images =
  Nx.reshape(
    reconstructed_images,
    Nx.shape(reconstructed_images),
    names: [:images, :channels, :height, :width]
  )

Stream.interval(div(5000, num_steps))
|> Stream.take(num_steps + 1)
|> Kino.animate(fn i ->
  Data.image_to_kino(reconstructed_images[i])
end)
Did you notice the difference? Every step in our interpolation looks similar to items in our dataset! This is the benefit of the VAE: we can generate new items by using random latents. In contrast, in the simple autoencoder, for the most part only latents we got from our encoder were likely to produce sensible outputs.
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Model State Data Structure.
This data structure represents all the state needed for
a model to perform inference.
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Axon.Quantization 
    



      
Model quantization.
Model quantization is a technique for reducing the memory footprint of
a model by converting portions of a model to use quantized representations.
Typically, these quantized representations are low-precision integers.
This is an experimental API which implements weight-only quantization.
The implementation in this module will convert dense layers in a large
model to quantized-variants. The only supported quantization type is
{:s, 8}. Axon quantization is inference-only. Training is not currently
supported.
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Quantized Layer Implementations.
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Axon.Quantization.QTensor 
    



      
Representation of a quantized tensor.
A quantized tensor stores information about the quantized
value, scale, and zero-point. This module contains lower-level
functions for converting to and from quantized tensors.
In most cases, you should prefer to use the public APIs in
Axon.Quantization.
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Axon 
    



      
A high-level interface for creating neural network models.
Axon is built entirely on top of Nx numerical definitions,
so every neural network can be JIT or AOT compiled using
any Nx compiler, or even transformed into high-level neural
network formats like TensorFlow Lite and
ONNX.
For a more in-depth overview of Axon, refer to the Guides.

  
    
  
  Model Creation


All Axon models start with an input layer, optionally specifying
the expected shape of the input data:
input = Axon.input("input", shape: {nil, 784})
Notice you can specify some dimensions as nil, indicating
that the dimension size will be filled in at model runtime.
You can then compose inputs with other layers:
model =
  input
  |> Axon.dense(128, activation: :relu)
  |> Axon.batch_norm()
  |> Axon.dropout(rate: 0.8)
  |> Axon.dense(64)
  |> Axon.tanh()
  |> Axon.dense(10)
  |> Axon.activation(:softmax)
You can inspect the model for a nice summary:
IO.inspect(model)

#Axon<
  inputs: %{"input" => {nil, 784}}
  outputs: "softmax_0"
  nodes: 9
>
Or use the Axon.Display module to see more in-depth summaries:
Axon.Display.as_table(model, Nx.template({1, 784}, :f32)) |> IO.puts

+----------------------------------------------------------------------------------------------------------------+
|                                                     Model                                                      |
+=======================================+=============+==============+===================+=======================+
| Layer                                 | Input Shape | Output Shape | Options           | Parameters            |
+=======================================+=============+==============+===================+=======================+
| input ( input )                       | []          | {1, 784}     | shape: {nil, 784} |                       |
|                                       |             |              | optional: false   |                       |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| dense_0 ( dense["input"] )            | [{1, 784}]  | {1, 128}     |                   | kernel: f32[784][128] |
|                                       |             |              |                   | bias: f32[128]        |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| relu_0 ( relu["dense_0"] )            | [{1, 128}]  | {1, 128}     |                   |                       |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| batch_norm_0 ( batch_norm["relu_0"] ) | [{1, 128}]  | {1, 128}     | epsilon: 1.0e-5   | gamma: f32[128]       |
|                                       |             |              | channel_index: 1  | beta: f32[128]        |
|                                       |             |              | momentum: 0.1     | mean: f32[128]        |
|                                       |             |              |                   | var: f32[128]         |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| dropout_0 ( dropout["batch_norm_0"] ) | [{1, 128}]  | {1, 128}     | rate: 0.8         |                       |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| dense_1 ( dense["dropout_0"] )        | [{1, 128}]  | {1, 64}      |                   | kernel: f32[128][64]  |
|                                       |             |              |                   | bias: f32[64]         |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| tanh_0 ( tanh["dense_1"] )            | [{1, 64}]   | {1, 64}      |                   |                       |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| dense_2 ( dense["tanh_0"] )           | [{1, 64}]   | {1, 10}      |                   | kernel: f32[64][10]   |
|                                       |             |              |                   | bias: f32[10]         |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+
| softmax_0 ( softmax["dense_2"] )      | [{1, 10}]   | {1, 10}      |                   |                       |
+---------------------------------------+-------------+--------------+-------------------+-----------------------+

  
    
  
  Multiple Inputs


Creating a model with multiple inputs is as easy as declaring an
additional input in your Axon graph. Every input layer present in
the final Axon graph will be required to be passed as input at the
time of model execution.
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})

# Both inputs will be used
model1 = Axon.add(inp1, inp2)

# Only inp2 will be used
model2 = Axon.add(inp2, inp2)
Axon graphs are immutable, which means composing and manipulating
an Axon graph creates an entirely new graph. Additionally, layer
names are lazily generated at model execution time. To avoid
non-deterministic input orderings and names, Axon requires each
input to have a unique binary identifier. You can then reference
inputs by name when passing to models at execution time:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})

model1 = Axon.add(inp1, inp2)

{init_fn, predict_fn} = Axon.build(model1)

params1 = init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
# Inputs are referenced by name
predict_fn.(params1, %{"input_0" => x, "input_1" => y})

  
    
  
  Multiple Outputs


Nx offers robust container support
which is extended to Axon. Axon allows you to wrap any valid Nx container
in a layer. Containers are most commonly used to structure outputs:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container(%{foo: inp1, bar: inp2})
Containers can be arbitrarily nested:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container({%{foo: {inp1, %{bar: inp2}}}})
You can even use custom structs which implement the container protocol:
inp1 = Axon.input("input_0", shape: {nil, 1})
inp2 = Axon.input("input_1", shape: {nil, 1})
model = Axon.container(%MyStruct{foo: inp1, bar: inp2})

  
    
  
  Custom Layers


If you find that Axon's built-in layers are insufficient for your needs,
you can create your own using the custom layer API. All of Axon's built-in
layers (aside from special ones such as input, constant, and container)
make use of this same API.
Axon layers are really just placeholders for Nx computations with trainable
parameters and possibly state. To define a custom layer, you just need to
define a defn implementation:
defn my_layer(x, weight, _opts \\ []) do
  Nx.atan2(x, weight)
end
Notice the only stipulation is that your custom layer implementation must
accept at least 1 input and a list of options. At execution time, every
layer will be passed a :mode option which can be used to control behavior
at training and inference time.
Inputs to your custom layer can be either Axon graph inputs or trainable
parameters. You can pass Axon graph inputs as-is to a custom layer. To
declare trainable parameters, use Axon.param/3:
weight = Axon.param("weight", param_shape)
To create a custom layer, you "wrap" your implementation and inputs into
a layer using Axon.layer. You'll notice the API mirrors Elixir's apply:
def atan2_layer(%Axon{} = input) do
  weight = Axon.param("weight", param_shape)
  Axon.layer(&my_layer/3, [input, weight])
end

  
    
  
  Model Execution


Under the hood, Axon models are represented as Elixir structs. You
can initialize and apply models by building or compiling them with
Axon.build/2 or Axon.compile/4 and then calling the produced
initialization and predict functions:
{init_fn, predict_fn} = Axon.build(model)

params = init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
predict_fn.(params, inputs)
You may either set the default JIT compiler or backend globally, or
pass a specific compiler to Axon.build/2:
EXLA.set_as_nx_default([:tpu, :cuda, :rocm, :host])

{init_fn, predict_fn} = Axon.build(model, compiler: EXLA, mode: :train)

params = init_fn.(Nx.template({1, 1}, {:f, 32}), %{})
predict_fn.(params, inputs)
predict_fn by default runs in inference mode, which performs certain
optimizations and removes layers such as dropout layers. If constructing
a training step using Axon.predict/4 or Axon.build/2, be sure to specify
mode: :train.

  
    
  
  Model Training


Combining the Axon model creation API with the optimization and training
APIs, you can create and train neural networks with ease:
model =
  Axon.input("input_0", shape: {nil, 784})
  |> Axon.dense(128, activation: :relu)
  |> Axon.layer_norm()
  |> Axon.dropout()
  |> Axon.dense(10, activation: :softmax)

IO.inspect model

model_state =
  model
  |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adamw(learning_rate: 0.005))
  |> Axon.Loop.run(train_data, epochs: 10, compiler: EXLA)
See Polaris.Updates and Axon.Loop for a more in-depth treatment of
model optimization and model training.

  
    
  
  Using with Nx.Serving


When deploying an Axon model to production, you usually want to batch
multiple prediction requests and run the inference for all of them at
once. Conveniently, Nx already has an abstraction for this task in the
form of Nx.Serving. Here's how you could define a serving for an Axon
model:
def build_serving() do
  # Configuration
  batch_size = 4
  defn_options = [compiler: EXLA]

  Nx.Serving.new(
    # This function runs on the serving startup
    fn ->
      # Build the Axon model and load params (usually from file)
      model = build_model()
      params = load_params()

      # Build the prediction defn function
      {_init_fun, predict_fun} = Axon.build(model)

      inputs_template = %{"pixel_values" => Nx.template({batch_size, 224, 224, 3}, :f32)}
      template_args = [Nx.to_template(params), inputs_template]

      # Compile the prediction function upfront for the configured batch_size
      predict_fun = Nx.Defn.compile(predict_fun, template_args, defn_options)

      # The returned function is called for every accumulated batch
      fn inputs ->
        inputs = Nx.Batch.pad(inputs, batch_size - inputs.size)
        predict_fun.(params, inputs)
      end
    end,
    batch_size: batch_size
  )
end
Then you would start the serving server as part of your application's
supervision tree:
children = [
  ...,
  {Nx.Serving, serving: build_serving(), name: MyApp.Serving, batch_timeout: 100}
]
With that in place, you can now ask serving for predictions all across
your application (controllers, live views, async jobs, etc.). Having a
tensor input you would do:
inputs = %{"pixel_values" => ...}
batch = Nx.Batch.concatenate([inputs])
result = Nx.Serving.batched_run(MyApp.Serving, batch)
Usually you also want to do pre/post-processing of the model input/output.
You could make those preparations directly before/after Nx.Serving.batched_run/2,
however you can also make use of Nx.Serving.client_preprocessing/2 and
Nx.Serving.client_postprocessing/2 to encapsulate that logic as part of
the serving.
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Axon.Initializers 
    



      
Parameter initializers.
Parameter initializers are used to initialize the weights
and biases of a neural network. Because most deep learning
optimization algorithms are iterative, they require an initial
point to iterate from.
Sometimes the initialization of a model can determine whether
or not a model converges. In some cases, the initial point is
unstable, and therefore the model has no chance of converging
using common first-order optimization methods. In cases where
the model will converge, initialization can have a significant
impact on how quickly the model converges.
Most initialization strategies are built from intuition and
heuristics rather than theory. It's commonly accepted that
the parameters of different layers should be different -
motivating the use of random initialization for each layer's
parameters. Usually, only the weights of a layer are initialized
using a random distribution - while the biases are initialized
to a uniform constant (like 0).
Most initializers use Gaussian (normal) or uniform distributions
with variations on scale. The output scale of an initializer
should generally be large enough to avoid information loss but
small enough to avoid exploding values. The initializers in
this module have a default scale known to work well with
the initialization strategy.
The functions in this module return initialization functions which
take shapes and types and return tensors:
init_fn = Axon.Initializers.zeros()
init_fn.({1, 2}, {:f, 32})
You may use these functions from within defn or outside.
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Axon.MixedPrecision 
    



      
Utilities for creating mixed precision policies.
Mixed precision is useful for increasing model throughput at the possible
price of a small dip in accuracy. When creating a mixed precision policy,
you define the policy for params, compute, and output.
The params policy dictates what type parameters should be stored as
during training. The compute policy dictates what type should be used
during intermediate computations in the model's forward pass. The output
policy dictates what type the model should output.
Here's an example of creating a mixed precision policy and applying it
to a model:
model =
  Axon.input("input", shape: {nil, 784})
  |> Axon.dense(128, activation: :relu)
  |> Axon.batch_norm()
  |> Axon.dropout(rate: 0.5)
  |> Axon.dense(64, activation: :relu)
  |> Axon.batch_norm()
  |> Axon.dropout(rate: 0.5)
  |> Axon.dense(10, activation: :softmax)

policy = Axon.MixedPrecision.create_policy(
  params: {:f, 32},
  compute: {:f, 16},
  output: {:f, 32}
)

mp_model =
  model
  |> Axon.MixedPrecision.apply_policy(policy, except: [:batch_norm])
The example above applies the mixed precision policy to every layer in
the model except Batch Normalization layers. The policy will cast parameters
and inputs to {:f, 16} for intermediate computations in the model's forward
pass before casting the output back to {:f, 32}.
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Axon.None 
    



      
Represents a missing value of an optional node.
See Axon.input/2 and Axon.optional/2 for more details.
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Axon.StatefulOutput 
    



      
Container for returning stateful outputs from Axon layers.
Some layers, such as Axon.batch_norm/2, keep a running internal
state which is updated continuously at train time and used statically
at inference time. In order for the Axon compiler to differentiate
ordinary layer outputs from internal state, you must mark output
as stateful.
Stateful Outputs consist of two fields:
:output - Actual layer output to be forwarded to next layer
:state - Internal layer state to be tracked and updated
:output is simply forwarded to the next layer. :state is aggregated
with other stateful outputs, and then is treated specially by internal
Axon training functions such that update state parameters reflect returned
values from stateful outputs.
:state must be a map with keys that map directly to layer internal
state names. For example, Axon.Layers.batch_norm returns StatefulOutput
with :state keys of "mean" and "var".
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Module for rendering various visual representations of Axon models.
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Activation functions.
Activation functions are element-wise, (typically) non-linear
functions called on the output of another layer, such as
a dense layer:
x
|> dense(weight, bias)
|> relu()
Activation functions output the "activation" or how active
a given layer's neurons are in learning a representation
of the data-generating distribution.
Some activations are commonly used as output activations. For
example softmax is often used as the output in multiclass
classification problems because it returns a categorical
probability distribution:
iex> Axon.Activations.softmax(Nx.tensor([[1, 2, 3]], type: {:f, 32}))
#Nx.Tensor<
  f32[1][3]
  [
    [0.09003057330846786, 0.2447284758090973, 0.6652409434318542]
  ]
>
Other activations such as tanh or sigmoid are used because
they have desirable properties, such as keeping the output
tensor constrained within a certain range.
Generally, the choice of activation function is arbitrary;
although some activations work better than others in certain
problem domains. For example ReLU (rectified linear unit)
activation is a widely-accepted default. You can see
a list of activation functions and implementations
here.
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.
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Functional implementations of common neural network layer
operations.
Layers are the building blocks of neural networks. These
functional implementations can be used to express higher-level
constructs using fundamental building blocks. Neural network
layers are stateful with respect to their parameters.
These implementations do not assume the responsibility of
managing state - instead opting to delegate this responsibility
to the caller.
Basic neural networks can be seen as a composition of functions:
input
|> dense(w1, b1)
|> relu()
|> dense(w2, b2)
|> softmax()
These kinds of models are often referred to as deep feedforward networks
or multilayer perceptrons (MLPs) because information flows forward
through the network with no feedback connections. Mathematically,
a feedforward network can be represented as:
  $$
f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))
$$
You can see a similar pattern emerge if we condense the call stack
in the previous example:
softmax(dense(relu(dense(input, w1, b1)), w2, b2))
The chain structure shown here is the most common structure used
in neural networks. You can consider each function $f^{(n)}$ as a
layer in the neural network - for example $f^{(2)} is the 2nd
layer in the network. The number of function calls in the
structure is the depth of the network. This is where the term
deep learning comes from.
Neural networks are often written as the mapping:
  $$
y = f(x; \theta)
$$
Where $x$ is the input to the neural network and $\theta$ are the
set of learned parameters. In Elixir, you would write this:
y = model(input, params)
From the previous example, params would represent the collection:
{w1, b1, w2, b2}
where w1 and w2 are layer kernels, and b1 and b2 are layer
biases.
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Implementations of loss-scalers for use in mixed precision
training.
Loss scaling is used to prevent underflow when using mixed
precision during the model training process. Each loss-scale
implementation here returns a 3-tuple of the functions:
{init_fn, scale_fn, unscale_fn, adjust_fn} = Axon.LossScale.static(Nx.pow(2, 15))
You can use these to scale/unscale loss and gradients as well
as adjust the loss scale state.
Axon.Loop.trainer/3 builds loss-scaling in by default. You
can reference the Axon.Loop.train_step/3 implementation to
see how loss-scaling is applied in practice.
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Loss functions.
Loss functions evaluate predictions with respect to true
data, often to measure the divergence between a model's
representation of the data-generating distribution and the
true representation of the data-generating distribution.
Each loss function is implemented as an element-wise function
measuring the loss with respect to the input target y_true
and input prediction y_pred. As an example, the mean_squared_error/2
loss function produces a tensor whose values are the mean squared
error between targets and predictions:
iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred)
#Nx.Tensor<
  f32[2]
  [0.5, 0.5]
>
It's common to compute the loss across an entire minibatch.
You can easily do so by specifying a :reduction mode, or
by composing one of these with an Nx reduction method:
iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Losses.mean_squared_error(y_true, y_pred, reduction: :mean)
#Nx.Tensor<
  f32
  0.5
>
You can even compose loss functions:
defn my_strange_loss(y_true, y_pred) do
  y_true
  |> Axon.Losses.mean_squared_error(y_pred)
  |> Axon.Losses.binary_cross_entropy(y_pred)
  |> Nx.sum()
end
Or, more commonly, you can combine loss functions with penalties for
regularization:
defn regularized_loss(params, y_true, y_pred) do
  loss = Axon.mean_squared_error(y_true, y_pred)
  penalty = l2_penalty(params)
  Nx.sum(loss) + penalty
end
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.
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Metric functions.
Metrics are used to measure the performance and compare
performance of models in easy-to-understand terms. Often
times, neural networks use surrogate loss functions such
as negative log-likelihood to indirectly optimize a certain
performance metric. Metrics such as accuracy, also called
the 0-1 loss, do not have useful derivatives (e.g. they
are information sparse), and are often intractable even
with low input dimensions.
Despite not being able to train specifically for certain
metrics, it's still useful to track these metrics to
monitor the performance of a neural network during training.
Metrics such as accuracy provide useful feedback during
training, whereas loss can sometimes be difficult to interpret.
You can attach any of these functions as metrics within the
Axon.Loop API using Axon.Loop.metric/3.
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx compiler.
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Abstraction for modeling a reduction of a dataset with an accumulated
state for a number of epochs.
Inspired heavily by PyTorch Ignite.
The main abstraction is the %Axon.Loop{} struct, which controls a nested
reduction of the form:
Enum.reduce(1..max_epochs, state, fn epoch, state ->
  Enum.reduce(data, state, &batch_step/2)
end)
data is assumed to be an Enumerable or Stream of input data which is
handled by a processing function, batch_step. The purpose of the loop
abstraction is to take away much of the boilerplate code used in solving machine
learning tasks. Tasks such as normalizing a dataset, hyperparameter optimization,
or training machine learning models boil down to writing one function:
defn batch_step(batch, state) do
  # ...do something with batch...
  updated_state
end
For tasks such as training a neural network, state will encapsulate things
such as model and optimizer state. For supervised learning tasks, batch_step
might look something like:
defn batch_step({inputs, targets}, state) do
  %{parameters: params, optimizer_state: optim_state} = state

  gradients = grad(params, objective_fn.(&1, inputs, targets))
  {updates, new_optim_state} = optimizer.(optim_state, params, gradients)

  new_params = apply_updates(params, updates)

  %{parameters: new_params, optimizer_state: optim_state}
end
batch_step takes a batch of {input, target} pairs and the current state,
and updates the model parameters based on the gradients received from some arbitrary
objective function. This function will run in a nested loop, iterating over the entire
dataset for N epochs before finally returning the trained model state. By defining
1 function, we've created a training loop that works for most machine learning models.
In actuality, the loop abstraction accumulates a struct, %Axon.Loop.State{}, which looks
like (assuming container is a generic Elixir container of tensors, e.g. map, tuple, etc.):
%Axon.Loop.State{
  epoch: integer(),
  max_epoch: integer(),
  iteration: integer(),
  max_iteration: integer(),
  metrics: map(string(), container()),
  times: map(integer(), integer()),
  step_state: container()
}
batch_step takes in the batch and the step state field and returns a step_state,
which is a generic container of state accumulated at each iteration. The rest of the fields
in the state struct are updated automatically behind the scenes.
The loop must start from some initial step state, thus most tasks must also provide
an additional initialization function to provide some starting point for the step
state. For machine learning tasks, the initialization function will return things like
initial model parameters and optimizer state.
Typically, the final output of the loop is the accumulated final state; however, you
may optionally apply an output transform to extract specific values at the end of the
loop. For example, Axon.Loop.trainer/4 by default extracts trained model state:
output_transform = fn state ->
  state.step_state[:model_state]
end

  
    
  
  Initialize and Step


The core of the Axon loop are the init and step functions. The initialization is an
arity-0 function which provides an initial step state:
init = fn ->
  %{params: Axon.init(model)}
end
While the step function is the batch_step function mentioned earlier:
step = fn data, state ->
  new_state = # ...do something...
  new_state
end
Note that any optimization and training anonymous functions that need to be used in the
batch_step function can be passed as extra arguments. For example:
step_with_training_arguments = fn data, state, optimizer_update_fn, state_update_fn ->
  # ...do something...
end

step = &(step_with_training_arguments.(&1, &2, actual_optimizer_update_fn, actual_state_update_fn))

  
    
  
  Metrics


Often times you want to compute metrics associated with your training iterations.
To accomplish this, you can attach metrics to each Axon.Loop. Assuming a batch_step
function which looks like:
defn batch_step({inputs, targets}, state) do
  %{parameters: params, optimizer_state: optim_state} = state

  gradients = grad(params, objective_fn.(&1, inputs, targets))
  {updates, new_optim_state} = optimizer.(optim_state, params, gradients)

  new_params = apply_updates(params, updates)

  # Shown for simplicity, you can optimize this by calculating preds
  # along with the gradient calculation
  preds = model_fn.(params, inputs)

  %{
    y_true: targets,
    y_pred: preds,
    parameters: new_params,
    optimizer_state: optim_state
  }
end
You can attach metrics to this by using Axon.Loop.metric/4:
Axon.Loop.loop(&batch_step/2)
|> Axon.Loop.metric("Accuracy", :accuracy, fn %{y_true: y_, y_pred: y} -> [y_, y] end)
|> Axon.Loop.run(data)
Because metrics work directly on step_state, you typically need to provide an output
transform to indicate which values should be passed to your metric function. By default,
Axon assumes a supervised training task with the fields :y_true and :y_pred present
in the step state. See Axon.Loop.metric/4 for more information.
Metrics will be tracked in the loop state using the user-provided key. Metrics integrate
seamlessly with the supervised metrics defined in Axon.Metrics. You can also use metrics
to keep running averages of some values in the original dataset.

  
    
  
  Events and Handlers


You can instrument several points in the loop using event handlers. By default, several events
are fired when running a loop:
events = [
  :started,             # After loop state initialization
  :epoch_started,       # On epoch start
  :iteration_started,   # On iteration start
  :iteration_completed, # On iteration complete
  :epoch_completed,     # On epoch complete
  :epoch_halted,        # On epoch halt, if early halted
]
You can attach event handlers to events using Axon.Loop.handle_event/4:
loop
|> Axon.Loop.handle_event(:iteration_completed, &log_metrics/1, every: 100)
|> Axon.Loop.run(data)
The above will trigger log_metrics/1 every 100 times the :iteration_completed event
is fired. Event handlers must return a tuple {status, state}, where status is an
atom with one of the following values:
:continue   # Continue epoch, continue looping
:halt_epoch # Halt the epoch, continue looping
:halt_loop  # Halt looping
And state is an updated Axon.Loop.State struct. Handler functions take as input
the current loop state.
It's important to note that event handlers are triggered in the order they are attached
to the loop. If you have two handlers on the same event, they will trigger in order:
loop
|> Axon.Loop.handle_event(:epoch_completed, &normalize_state/1) # Runs first
|> Axon.Loop.handle_event(:epoch_completed, &log_state/1) # Runs second
You may provide filters to filter when event handlers trigger. See Axon.Loop.handle_event/4
for more details on valid filters.

  
    
  
  Factories


Axon loops are typically created from one of the factory functions provided in this
module:
	Axon.Loop.loop/3 - Creates a loop from step function and optional initialization
functions and output transform functions.

	Axon.Loop.trainer/3 - Creates a supervised training loop from model, loss, and
optimizer.

	Axon.Loop.evaluator/1 - Creates a supervised evaluator loop from model.



  
    
  
  Running loops


In order to execute a loop, you should use Axon.Loop.run/3:
Axon.Loop.run(loop, data, epochs: 10)

  
    
  
  Resuming loops


At times you may want to resume a loop from some previous state. You can accomplish this
with Axon.Loop.from_state/2:
loop
|> Axon.Loop.from_state(state)
|> Axon.Loop.run(data)
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Accumulated state in an Axon.Loop.
Loop state is a struct:
%State{
  epoch: integer(),
  max_epoch: integer(),
  iteration: integer(),
  max_iteration: integer(),
  metrics: map(string(), container()),
  times: map(integer(), integer()),
  step_state: container(),
  handler_metadata: container()
}
epoch is the current epoch, starting at 0, of the nested loop.
Defaults to 0.
max_epoch is the maximum number of epochs the loop should run
for. Defaults to 1.
iteration is the current iteration of the inner loop. In supervised
settings, this will be the current batch. Defaults to 0.
max_iteration is the maximum number of iterations the loop should
run a given epoch for. Defaults to -1 (no max).
metrics is a map of %{"metric_name" => value} which accumulates metrics
over the course of loop processing. Defaults to an empty map.
times is a map of %{epoch_number => value} which maps a given epoch
to the processing time. Defaults to an empty map.
step_state is the step state as defined by the loop's processing
initialization and update functions. step_state is a required field.
handler_metadata is a metadata field for storing loop handler metadata.
For example, loop checkpoints with specific metric criteria can store
previous best metrics in the handler meta for use between iterations.
event_counts is a metadata field which stores information about the number
of times each event has been fired. This is useful when creating custom filters.
status refers to the loop state status after the loop has executed. You can
use this to determine if the loop ran to completion or if it was halted early.
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