

    

        Backpex

        v0.15.2


          [image: Logo]



    


  

    Table of contents

    
      



      	Translations





    	Introduction
      


      	Introduction



      

    




    	About
      


      	What is Backpex?


      	Why we built Backpex?


      	Contribute to Backpex



      

    




    	Get Started
      


      	Installation



      

    




    	Live Resource
      


      	What is a LiveResource?


      	Templates


      	Item Query


      	Ordering


      	on_mount Hook


      	Hooks


      	Navigation


      	Panels


      	Fluid Layout


      	Listen to PubSub Events


      	Additional classes for index table rows



      

    




    	Fields
      


      	What is a Field?


      	Custom Fields


      	Alignment


      	Visibility


      	Defaults


      	Readonly


      	Custom Alias


      	Placeholder


      	Debounce and Throttle


      	Index Edit


      	Error Customization


      	Computed Fields



      

    




    	Filter
      


      	What is a Filter?


      	How to add a Filter?


      	Filter Presets


      	Custom Filter


      	Visibility and Authorization



      

    




    	Actions
      


      	Item Actions


      	Resource Actions



      

    




    	Authorization
      


      	LiveResource Authorization


      	Field Authorization



      

    




    	Searching
      


      	Search


      	Full-Text Search



      

    




    	Upgrade Guides
      


      	Upgrading to v0.15


      	Upgrading to v0.14


      	Upgrading to v0.13


      	Upgrading to v0.12


      	Upgrading to v0.11


      	Upgrading to v0.10


      	Upgrading to v0.9


      	Upgrading to v0.8


      	Upgrading to v0.7


      	Upgrading to v0.6


      	Upgrading to v0.5


      	Upgrading to v0.3


      	Upgrading to v0.2



      

    




        	
          Modules
          


      	Backpex


      	Backpex.CookieController


      	Backpex.Ecto.Amount.Type


      	Backpex.FormComponent


      	Backpex.InitAssigns


      	Backpex.LiveResource


      	Backpex.Mix.IgniterHelpers


      	Backpex.Resource


      	Backpex.Router


      	Backpex.ThemeSelectorPlug


      	BackpexWeb





    	Adapters
      


      	Backpex.Adapter


      	Backpex.Adapters.Ash


      	Backpex.Adapters.Ecto



      

    




    	Components
      


      	Backpex.HTML


      	Backpex.HTML.CoreComponents


      	Backpex.HTML.Form


      	Backpex.HTML.Layout


      	Backpex.HTML.Resource



      

    




    	Fields
      


      	Backpex.Field


      	Backpex.Fields.BelongsTo


      	Backpex.Fields.Boolean


      	Backpex.Fields.Currency


      	Backpex.Fields.Date


      	Backpex.Fields.DateTime


      	Backpex.Fields.HasMany


      	Backpex.Fields.HasManyThrough


      	Backpex.Fields.InlineCRUD


      	Backpex.Fields.MultiSelect


      	Backpex.Fields.Number


      	Backpex.Fields.Select


      	Backpex.Fields.Text


      	Backpex.Fields.Textarea


      	Backpex.Fields.Time


      	Backpex.Fields.URL


      	Backpex.Fields.Upload



      

    




    	Actions
      


      	Backpex.ItemAction


      	Backpex.ItemActions.Delete


      	Backpex.ItemActions.Edit


      	Backpex.ItemActions.Show


      	Backpex.ResourceAction



      

    




    	Filters
      


      	Backpex.Filter


      	Backpex.Filters.Boolean


      	Backpex.Filters.MultiSelect


      	Backpex.Filters.Range


      	Backpex.Filters.Select



      

    




    	Metrics
      


      	Backpex.Metric


      	Backpex.Metrics.Value



      

    




    	Exceptions
      


      	Backpex.ForbiddenError


      	Backpex.NoResultsError



      

    




        



          	
            Mix Tasks
            

                	mix backpex.install


            

          


      

    

  

    Translations

You are able to translate all strings used by Backpex. This includes general strings like "New", "Edit", "Delete", as well as error messages.
Setup
Configuration
In order to translate strings, you need to configure two translator functions in your application config:
config :backpex,
  translator_function: {MyAppWeb.CoreComponents, :translate_backpex},
  error_translator_function: {MyAppWeb.CoreComponents, :translate_error}
The first one is being used to translate general strings. The second one is being used to translate (changeset) errors.
Using Gettext
We recommend using Gettext for translations. If you want to use it, the translator functions should look like this:
def translate_backpex({msg, opts}) do
  if count = opts[:count] do
    Gettext.dngettext(MyAppWeb.Gettext, "backpex", msg, msg, count, opts)
  else
    Gettext.dgettext(MyAppWeb.Gettext, "backpex", msg, opts)
  end
end

def translate_error({msg, opts}) do
  if count = opts[:count] do
    Gettext.dngettext(DemoWeb.Gettext, "errors", msg, msg, count, opts)
  else
    Gettext.dgettext(DemoWeb.Gettext, "errors", msg, opts)
  end
end
You can place the functions in a module of your choice. In this example, we use MyAppWeb.CoreComponents. Don't forget to use the correct module in your config as well.
You will also need to create a Gettext template file in your application. You can use the this template from our GitHub repository as it contains all the translations used by Backpex. Note that this file may contain unreleased translations, so be sure to select the tag that matches your version in the branch selection input in the top left corner.
Warning
If you copy the above mentioned backpex.pot file, you should remove the elixir-autogen comments. Otherwise, running the gettext.extract --merge task will remove the translations from your project.
Modify texts (per LiveResource)
In addition to translating texts, Backpex provides a way to modify texts per LiveResource with the Backpex.LiveResource.translate/1 callback.
You can use it to match on any text and either translate or modify it.
See the the backpex.pot file in our GitHub repository for all available translations to match on.
The opts param (map) contains all the bindings you might need to construct a text. You can find the bindings inside the texts, e.g. the text "New %{resource}" will get at least one binding named resource (e.g. %{resource: "User"}).
# in your LiveResource
@impl Backpex.LiveResource
def translate({"Cancel", _opts}), do: gettext("Go back")
def translate({"Save", _opts}), do: gettext("Continue")
def translate({"New %{resource}", opts}), do: gettext("Create %{resource}", opts)
Info
Note that you cannot change form errors with the translate/1 callback as you can already define a custom translate_error function
per field. See error customization guide for detailed information.


  

    Introduction

[image: CI]
[image: License: MIT]
[image: Hex]
[image: Hex Docs]
  
  

  

  Phoenix LiveView Admin Panel · Backpex
  

  

  📚 Documentation
  •
  🛠️ Installation Guide
  •
  🩵 Contribute
  
    
    What is Backpex? - Backpex v0.15.2
    
    

    


  
  

    What is Backpex?

Backpex is a highly customizable administration panel for Phoenix LiveView applications. It allows you to quickly create CRUD views of your existing data using configurable LiveResources. Backpex integrates seamlessly with your existing Phoenix LiveView application and provides an easy way to manage your resources. It is highly customizable and can be extended with your own layouts, views, field types, filters and more.
Backpex is built on top of Phoenix LiveView and provides a rich set of features to manage your resources. With Backpex, you can set up an administration panel for your application in hours, not days.
Whether you want to quickly scaffold CRUD views for your existing data or build a full-fledged administration panel, Backpex has you covered.
TODO: add screenshots of key features here


  

  
    
    Why we built Backpex? - Backpex v0.15.2
    
    

    


  
  

    Why we built Backpex?

After building several Phoenix applications, we realized that we were repeating ourselves when it came to building administration panels. We were writing the same CRUD views, search and filter functionality over and over again. We wanted a tool that would allow us to quickly scaffold these views and focus on building the core functionality of our applications.
The tool we wanted had to be able to serve as a simple backend administration panel in one project, while being the core of the application in another.
We looked at existing solutions, but found that none of them offered the flexibility and customization we were looking for. We decided to develop Backpex to solve this problem and provide a highly customizable administration panel for Phoenix LiveView applications.


  

  
    
    Contribute to Backpex - Backpex v0.15.2
    
    

    


  
  

    Contribute to Backpex

We are excited to have you contribute to Backpex! We are always looking for ways to improve the project and welcome any contributions in the form of bug reports, feature requests, documentation improvements, code contributions, and more.
What can I contribute?
We provide a roadmap and a list of issues that you can work on to contribute to Backpex.
	Roadmap: https://github.com/orgs/naymspace/projects/2
	Issues: https://github.com/naymspace/backpex/issues

Especially, issues labeled with good-first-issue are a good starting point for new contributors.
We also use GitHub's discussion feature to discuss new ideas and features.
	Discussions: https://github.com/naymspace/backpex/discussions

If you don't find an issue that you want to work on, you can always contribute to Backpex by:
	Reporting bugs (create an issue)
	Requesting new features (use the discussions)
	Improving the documentation
	Improving the demo application

Fork the repository
In order to contribute to Backpex, you need to fork the repository. You can do this by clicking the "Fork" button in the top right corner of the repository page at https://github.com/naymspace/backpex.
Clone the repository
After forking the repository, you need to clone it to your local machine. You can do this by running the git clone command along with the URL of your forked repository.
Setting up your development environment
You first need to create a .env file in the demo directory of the project with the following content:
SECRET_KEY_BASE=<SECRET_KEY_BASE>
LIVE_VIEW_SIGNING_SALT=<LIVE_VIEW_SIGNING_SALT>

For development purposes you can copy the values from the demo/.env.example file.
You can then start the development environment by running the following command in the root directory of the project:
docker compose up

Backpex comes with a demo application that you can use to test the features of the project. The command will start a PostgreSQL database and the demo application on http://localhost:4000.
To insert some demo data into the database, you can run the following command:
docker compose exec app mix ecto.seed

Making changes
After setting up your development environment, you can start making changes to the project. We recommend creating a new branch for your changes. After submitting your changes to your forked repository, you can create a pull request to the develop branch of the main repository.


  

  
    
    Installation - Backpex v0.15.2
    
    

    


  
  

    Installation

The following guide will help you to install Backpex in your Phoenix application. We will guide you through the installation process and show you how to create a simple resource. 
Prerequisites
Backpex integrates seamlessly with your existing Phoenix LiveView application, but there are a few prerequisites you need to meet before you can start using it.
Phoenix LiveView
Backpex is built on top of Phoenix LiveView, so you need to have Phoenix LiveView installed in your application. If you generate a new Phoenix application using the latest version of the mix phx.new generator, Phoenix LiveView is included by default.
Info
We have created an initial version of the Backpex installer task, which runs with the help of the Igniter framework. This installer automates the upcoming steps up to the "Create an example resource" step. Feedback is welcome!
Tailwind CSS
Backpex uses Tailwind CSS for styling. Make sure you have Tailwind CSS installed in your application. You can install Tailwind CSS by following the official installation guide. If you generate a new Phoenix application using the latest version of the mix phx.new generator, Tailwind CSS is included by default.
Note that the current version of Backpex requires Tailwind CSS version 4
Ecto
Backpex currently depends on Ecto as the database layer. Make sure you have a running Ecto repository in your application.
Warning
Backpex requires a single primary key field in your database schema. Compound keys are not supported. We tested Backpex with UUID (binary_id), integer (bigserial) and string primary keys. Note that the primary key is used in the URL for Show and Edit Views, so make sure it is always URL-encoded or safe to use in a URL.
If you meet all these prerequisites, you are ready to install and configure Backpex in your Phoenix application.
Add to list of dependencies
In your mix.exs:
defp deps do
  [
    ...
    {:backpex, "~> 0.13.0"}
  ]
end
Check hex.pm page for the latest version.
Global configuration
Set the PubSub server of your application in your config.exs:
config :backpex, :pubsub_server, MyApp.PubSub
See the Listen to PubSub Events guide for more info on how use and customize
your PubSub configuration.
Backpex Hooks
Backpex comes with a few JS hooks which need to be included in your app.js.
import { Hooks as BackpexHooks } from 'backpex';

const Hooks = [] // your application hooks (optional)

const liveSocket = new LiveSocket('/live', Socket, {
  params: { _csrf_token: csrfToken },
  hooks: {...Hooks, ...BackpexHooks }
})
daisyUI
Backpex is styled using daisyUI. Make sure you have daisyUI installed in your application. You can install daisyUI by following the official installation guide.
Note that the current version of Backpex requires daisyUI version 5.
Add files to Tailwind content
Backpex uses Tailwind CSS and daisyUI. Make sure to add Backpex files as a tailwind source in order to include the Backpex styles.
In your stylesheet:
@source "../../deps/backpex/**/*.*ex";
@source "../../deps/backpex/assets/js/**/*.*js";
Info
The path to the Backpex files may vary depending on your project setup.
Setup formatter
Backpex ships with a formatter configuration. To use it, add Backpex to the list of dependencies in your .formatter.exs.
# my_app/.formatter.exs
[
  import_deps: [:backpex]
]
Configure routing
To make LiveResources accessible in your application, you first need to configure your router (router.ex).
Backpex needs to add a backpex_cookies route to your router. This route is used to set the cookies needed for a Backpex LiveResource.
Backpex provides a macro you can use to add the required routes to your router. Make sure to import Backpex.Router at the top of your router file or prefix the function calls.
You have to do this step only once in your router file, so if you already added the backpex_routes/0 macro, you can skip this step.
# router.ex

import Backpex.Router

scope "/admin", MyAppWeb do
  pipe_through :browser

  # add this line
  backpex_routes()
end
It does not matter where you place the backpex_routes/0 macro in your router file. You can insert it in every scope you want to, but we recommend placing it in the scope you want to use backpex in, e.g. /admin. But always make sure that the scope you put it in pipes through the :browser pipeline: pipe_through :browser.
Create a default admin layout component
Although Backpex does not ship with a predefined layout component, it does provide components that you can use to build your own layout component. You can find all Backpex components in the lib/backpex/html directory of our GitHub repository (see the snippet below for a pre-built layout that you can copy & paste into your application). 
Warning
Note that some components are tied to Backpex and therefore might not be used outside of it. Our goal is to make them more generic in the future so all Backpex components can easily be used in custom views, too.
To get you started quickly, we provide a layout component you can copy & paste into your application. Place it as a file in your lib/myapp_web/templates/layout directory. You can name it whatever you like, but we recommend using admin.html.heex. You can also use this component as the only layout in your application if your application consists of only an admin interface. This layout component uses the Backpex.HTML.Layout.app_shell/1 component, which can be used to easily add an app shell layout to your application.
<Backpex.HTML.Layout.app_shell fluid={@fluid?}>
  <:topbar>
    <Backpex.HTML.Layout.topbar_branding />

    <Backpex.HTML.Layout.topbar_dropdown class="mr-2 md:mr-0">
      <:label>
        <label tabindex="0" class="btn btn-square btn-ghost">
          <Backpex.HTML.CoreComponents.icon name="hero-user" class="size-6" />
        </label>
      </:label>
      <li>
        <.link href="/" class="text-error flex justify-between hover:bg-base-200">
          <p>Logout</p>
          <Backpex.HTML.CoreComponents.icon name="hero-arrow-right-on-rectangle" class="size-5" />
        </.link>
      </li>
    </Backpex.HTML.Layout.topbar_dropdown>
  </:topbar>
  <:sidebar>
    <!-- Sidebar Content -->
  </:sidebar>
  <Backpex.HTML.Layout.flash_messages flash={@flash} />
  {render_slot(@inner_content)}
</Backpex.HTML.Layout.app_shell>
In addition we recommend to add a bodyless function definition and to configure declarative assigns for your layout component.
defmodule MyAppWeb.Layouts do
  use MyAppWeb, :html

  embed_templates "layouts/*"

  attr :flash, :map, required: true, doc: "the map of flash messages"
  attr :fluid?, :boolean, default: true, doc: "if the content uses full width"
  attr :current_url, :string, required: true, doc: "the current url"

  slot :inner_block, required: true

  def admin(assigns)
end
Make sure to always add the Backpex.HTML.Layout.flash_messages component to display flash messages in your layout component and do not forget to render the :inner_content slot to insert the content of the LiveView.
We use the icon/1 component to render icons in the layout component. The icon/1 component is part of the core_components module that ships with new Phoenix projects. See (core_components.ex)(https://github.com/phoenixframework/phoenix/blob/main/priv/templates/phx.gen.live/core_components.ex). Feel free to use your own icon component or library.
Information
The Backpex.HTML.Layout.app_shell/1 component accepts a boolean fluid to determine if a LiveResource should be rendered full width. There is a fluid? option you can configure in a LiveResource. See the Fluid Layout documentation for more information.
Remove default background color
If you start with a new Phoenix project, you may have a default background color set for your body tag. This conflicts with the background color of the Backpex app_shell.
So if you have this in your root.html.heex.
<body class="bg-white">
</body>
You should remove the bg-white class.
If you need this color on your body tag to style your application, consider using another root layout for Backpex (see put_root_layout/2).
Remove @tailwindcss/forms plugin
There is a conflict between the @tailwindcss/forms plugin and daisyUI. You should remove the @tailwindcss/forms plugin to prevent styling issues.
// remove this line
@plugin "tailwindcss/forms;
If your application depends on the @tailwindcss/forms plugin, you can keep the plugin and change the strategy to 'class'. This will prevent the plugin from conflicting with daisyUI. Note that you then have to add the form classes provided by the @tailwindcss/forms plugin to your inputs manually.
Create an example resource
To make it more practical, we are going to create a simple resource that we will use in all our examples later in the installation guide. You can skip this step if you want to use your own resource or just follow the guide.
The example resource will be a Post resource with the following fields:
	title (string)
	views (integer)

Run the following commands:
$ mix phx.gen.schema Blog.Post blog_posts title:string views:integer
$ mix ecto.migrate

These commands will generate a Post schema and a migration file. The migration file will create a blog_posts table in your database.
You are now prepared to set up the Backpex layout component and a LiveResource for the Post resource.
Configure LiveResource
To create a LiveResource for the Post resource, you need to create LiveResource module.
defmodule MyAppWeb.Live.PostLive do
  use Backpex.LiveResource,
    adapter_config: [
      schema: MyApp.Blog.Post,
      repo: MyApp.Repo,
      update_changeset: &MyApp.Blog.Post.update_changeset/3,
      create_changeset: &MyApp.Blog.Post.create_changeset/3
    ],
    layout: {MyAppWeb.Layouts, :admin}
end
Backpex.LiveResource is the module that will generate the corresponding LiveViews for the resource you configured. We provide a macro you have to use to configure the LiveResource. You are required to set some general options to tell Backpex where to find the resource and what changesets should be used. The above example shows the configuration for a Post resource.
All options you can see in the above example are required:
	The layout option tells Backpex which layout component to use for the LiveResource. In this case, we use the :admin(admin.html.heex) component created in the previous step.
	The schema option tells Backpex which schema to use for the resource.
	The repo option tells Backpex which repo to use for the resource.
	The update_changeset and create_changeset options tell Backpex which changesets to use for updating and creating the resource.
	The pubsub option tells Backpex which pubsub options to use for the resource (see the Listen to PubSub Events guide for more information).

If your primary key is not named "id", you are also required to set the primary_key option:
use Backpex.LiveResource,
  adapter_config: [
    ...
  ],
  primary_key: :code
In addition to the required options, you pass to the Backpex.LiveResource macro, you are required to implement the following callback functions in the module:
	singular_name/0 - This function should return the singular name of the resource.
	plural_name/0 - This function should return the plural name of the resource.
	fields/0 - This function should return a list of fields to display in the LiveResource.

After implementing the required callback functions, our PostLive module looks like this:
defmodule MyAppWeb.Live.PostLive do
  use Backpex.LiveResource,
    adapter_config: [
      schema: MyApp.Blog.Post,
      repo: MyApp.Repo,
      update_changeset: &MyApp.Blog.Post.update_changeset/3,
      create_changeset: &MyApp.Blog.Post.create_changeset/3
    ],
    layout: {MyAppWeb.Layouts, :admin}

  @impl Backpex.LiveResource
  def singular_name, do: "Post"

  @impl Backpex.LiveResource
  def plural_name, do: "Posts"

  @impl Backpex.LiveResource
  def fields do
    [
      title: %{
        module: Backpex.Fields.Text,
        label: "Title"
      },
      views: %{
        module: Backpex.Fields.Number,
        label: "Views"
      }
    ]
  end
end
The fields/0 function returns a list of fields to display in the LiveResource. See What is a Field? for more information.
Information
We recommend placing the LiveResource in the lib/myapp_web/live directory. You can name the module like you want, but in this case, we recommend using post_live.ex.
Configure resource routing
Add resource routes
To make LiveResources accessible in your application, you need to add routes for them. Backpex makes it easy to add the required routes to your router by providing the live_resources/3 macro.
Furthermore, Backpex provides a Backpex.InitAssigns module / hook. This will attach the current_url to the LiveView. Backpex needs it to highlight the current sidebar item in the layout component. You can also use your own init assigns module if you want to attach more assigns to the LiveView, but make sure to add the current_url to the assigns.
In the following example, we use the Phoenix.LiveView.Router.live_session/3 function to add the Backpex.InitAssigns Hook to all LiveViews in the /admin scope. This is our recommended way, but you could also add the on_mount Hook to manually to your LiveResources.
# router.ex

import Backpex.Router

scope "/admin", MyAppWeb do
  pipe_through :browser

  backpex_routes()

  # add these lines
  live_session :default, on_mount: Backpex.InitAssigns do
    live_resources "/posts", PostLive
  end
end
The live_resources/3 macro will add the required routes for the PostLive module. You can now access the PostLive LiveResource at /admin/posts.
Add resource link to the sidebar
You probably also want to add link to your created LiveResource in the sidebar. For this, Backpex provides the Backpex.HTML.Layout.sidebar_item/1 component.
If you copied the provided layout component from the section above, you can just use the sidebar_item/1 component inside the sidebar slot like this:
<Backpex.HTML.Layout.app_shell fluid={@fluid?}>
  <:topbar>
    <!-- Topbar Content -->
  </:topbar>
  <:sidebar>
    <!-- Add these lines -->
    <Backpex.HTML.Layout.sidebar_item current_url={@current_url} navigate={~p"/admin/posts"}>
      <.icon name="hero-book-open" class="size-5" /> Posts
    </Backpex.HTML.Layout.sidebar_item>
  </:sidebar>
  <Backpex.HTML.Layout.flash_messages flash={@flash} />
  {@inner_content}
</Backpex.HTML.Layout.app_shell>
Note that Backpex also provides the Backpex.HTML.Layout.sidebar_item/1 component to create nested sidebar sections.
Configure a default route
In case you want a default route for /admin we recommend creating a redirect controller such as the following:
In my_app_web/controller create a file named redirect_controller.ex:
# redirect_controller.ex

defmodule MyAppWeb.RedirectController do
  use MyAppWeb, :controller

  def redirect_to_posts(conn, _params) do
    conn
    |> Phoenix.Controller.redirect(to: ~p"/admin/posts")
    |> Plug.Conn.halt()
  end
end
And configure in your router.ex file:
#router.ex

scope "/admin", MyAppWeb do
  pipe_through :browser

  backpex_routes()

  # add this line
  get "/", RedirectController, :redirect_to_posts

  live_session :default, on_mount: Backpex.InitAssigns do
    live_resources "/posts", PostLive
  end
end
Provide a Tailwind CSS plugin for Heroicons
Backpex uses the heroicons icon set. Backpex provides a Backpex.HTML.CoreComponents.icon/1 component, but you need to provide the icons and a Tailwind CSS plugin to generate the necessary styles to display them. If you generated your Phoenix project with the latest version of the mix phx.new generator, you already have the dependency and plugin installed. If not, follow the steps below.
Track the heroicons GitHub repository
Track the heroicons GitHub repository with Mix:
def deps do
  [
    ...
    {:heroicons,
      github: "tailwindlabs/heroicons",
      tag: "v2.1.1",
      sparse: "optimized",
      app: false,
      compile: false,
      depth: 1}
  ]
end
This will add the heroicons repository as a dependency to your project. You can find the optimized SVG icons in the deps/heroicons directory.
Add the Tailwind CSS plugin
Define the following plugin and import it into your stylesheet to generate the necessary styles to display the icons.
// tailwind.heroicons.js

// add fs, plugin and path to the top of the file
const plugin = require('tailwindcss/plugin')
const fs = require('fs')
const path = require('path')

module.exports = plugin(function ({ matchComponents, theme }) {
  const iconsDir = path.join(__dirname, '../../deps/heroicons/optimized')
  const values = {}
  const icons = [
    ['', '/24/outline'],
    ['-solid', '/24/solid'],
    ['-mini', '/20/solid'],
    ['-micro', '/16/solid']
  ]
  icons.forEach(([suffix, dir]) => {
    fs.readdirSync(path.join(iconsDir, dir)).forEach((file) => {
      const name = path.basename(file, '.svg') + suffix
      values[name] = { name, fullPath: path.join(iconsDir, dir, file) }
    })
  })
  matchComponents(
    {
      hero: ({ name, fullPath }) => {
        let content = fs
          .readFileSync(fullPath)
          .toString()
          .replace(/\r?\n|\r/g, '')
        content = encodeURIComponent(content)
        let size = theme('spacing.6')
        if (name.endsWith('-mini')) {
          size = theme('spacing.5')
        } else if (name.endsWith('-micro')) {
          size = theme('spacing.4')
        }
        return {
          [`--hero-${name}`]: `url('data:image/svg+xml;utf8,${content}')`,
          '-webkit-mask': `var(--hero-${name})`,
          mask: `var(--hero-${name})`,
          'mask-repeat': 'no-repeat',
          'background-color': 'currentColor',
          'vertical-align': 'middle',
          display: 'inline-block',
          width: size,
          height: size
        }
      }
    },
    { values }
  )
})
@plugin "./tailwind_heroicons.js";
This plugin will generate the necessary styles to display the heroicons in your application. You can now use the Backpex.HTML.CoreComponents.icon/1 component to render the icons in your application.
For example, to render the user icon, you can use the following code:
<Backpex.HTML.CoreComponents.icon name="hero-user" class="size-5" />
Set daisyUI theme
Backpex supports daisyUI themes. The following steps will guide you through setting up daisyUI themes in your application and optionally adding a theme selector to your layout component.
1. Add the themes to your application.
First, you need to add the themes to your stylesheet. You can add the themes to the daisyui plugin options. The following example shows how to add the light, dark, and cyberpunk themes to your application.
@plugin "daisyui" {
  themes: dark, cyberpunk;
}

@plugin "daisyui/theme" {
  name: "light";

  --color-primary: #1d4ed8;
  --color-primary-content: white;
  --color-secondary: #f39325;
  --color-secondary-content: white;
}
The full list of themes can be found at the daisyUI website.
2. Set the assign and the default daisyUI theme in your root layout.
We fetch the theme from the assigns and set the data-theme attribute on the html tag. If no theme is set, we default to the light theme.
# root.html.heex
<html data-theme={assigns[:theme] || "light"}>
  ...
</html>
If you just want to use a single theme, you can set the data-theme attribute to the theme name. You can skip the next steps and are done with the theme setup.
# root.html.heex
<html data-theme="light">
  ...
</html>
3. Add Backpex.ThemeSelectorPlug to the pipeline in the router
To add the saved theme to the assigns, you can add the Backpex.ThemeSelectorPlug to the pipeline in your router. This plug will fetch the selected theme from the session and put it in the assigns.
# router.ex
  pipeline :browser do
    ...
    # Add this plug
    plug Backpex.ThemeSelectorPlug
  end
4. Add the theme selector component to the app shell
You can add a theme selector to your layout component to allow users to change the theme. The following example shows how to add a theme selector to the admin component. The list of themes should match the themes you added to your stylesheet.
<Backpex.HTML.Layout.app_shell fluid={@fluid?}>
  <:topbar>
    <Backpex.HTML.Layout.topbar_branding />

    <!-- Add this -->
    <Backpex.HTML.Layout.theme_selector
      socket={@socket}
      themes={[
        {"Light", "light"},
        {"Dark", "dark"},
        {"Cyberpunk", "cyberpunk"}
      ]}
    />

    <Backpex.HTML.Layout.topbar_dropdown>
      <!-- Topbar Dropdown -->
    </Backpex.HTML.Layout.topbar_dropdown>
  </:topbar>
  <:sidebar>
    <!-- Sidebar Content -->
  </:sidebar>
  <Backpex.HTML.Layout.flash_messages flash={@flash} />
  <%= @inner_content %>
</Backpex.HTML.Layout.app_shell>
5. Set selected theme
To set the selected theme as soon as possible, you can run this function inside your app.js:
import { Hooks as BackpexHooks } from 'backpex';
// ...
BackpexHooks.BackpexThemeSelector.setStoredTheme()
This will minimize flashes with the old theme in some situations.


  

  
    
    What is a LiveResource? - Backpex v0.15.2
    
    

    


  
  

    What is a LiveResource?

When refer to a LiveResource in Backpex, we are talking about a module that contains the configuration for a resource. This module is responsible for defining the resource's schema, the actions that can be performed on it, and the fields that will be rendered.
In the documentation, we also talk about the resource configuration file. With this, we refer to the module that implements the Backpex.LiveResource behavior. This is a Backpex LiveResource module.


  

  
    
    Templates - Backpex v0.15.2
    
    

    


  
  

    Templates

You can customize certain template parts of Backpex. While you can only use our app shell layout, you can also define functions to provide additional templates to be rendered on the resource LiveView or completely overwrite certain parts like the header or main content.
See render_resource_slot/3 for supported positions.
Configuration
To add a custom template to a resource, you need to implement the render_resource_slot/3 callback in your resource configuration file.
# in your resource configuration file
@impl Backpex.LiveResource
def render_resource_slot(assigns, :index, :before_main), do: ~H"Hello World!"
The example above will render the string "Hello World!" before the main content of the index view.


  

  
    
    Item Query - Backpex v0.15.2
    
    

    


  
  

    Item Query

It is possible to manipulate the query when fetching resources for index, show and edit view when using
Backpex.Adapters.Ecto.
In all queries we define a from query with a named binding to fetch all existing resources on index view or a specific resource on show / edit view.
After that, we call the item_query function. By default it returns the incoming query.
The item_query function makes it easy to add custom query expressions.
Configuration
To add a custom query to a resource, you need to provide a function to the item_query option in your adapter_config.
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...other options
  adapter_config: [
    # ...other adapter options
    item_query: &__MODULE__.item_query/3
  ]

  def item_query(query, :index, _assigns) do
    query
    |> where([post], post.published)
  end

  def item_query(query, _live_action, _assigns) do
    query
  end
The example above will filter all posts by a published boolean on index view. We also made use of the named binding. It's always the name of the provided schema in snake_case. It is recommended to build your item_query on top of the incoming query. Otherwise you will likely get binding errors.
Make sure to always cover all possible cases or add a fallback item_query/3 function that just returns the query.
Important
Note that it is not possible to use an anonymous function for item_query configuration. You must refer to a public function defined within a module.


  

  
    
    Ordering - Backpex v0.15.2
    
    

    


  
  

    Ordering

You can configure the ordering of the resource index page. By default, the resources are ordered by the id field in ascending order.
Configuration
To configure the ordering of the resource index page, use the init_order option in your resource configuration file. This option accepts either a map or a function that returns a map.
The map must contain the following keys:
	:by - The field to order by (atom)
	:direction - The order direction (:asc for ascending or :desc for descending)

Using a Map
You can directly specify the ordering with a map:
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...other options
  init_order: %{by: :inserted_at, direction: :desc}
This configuration orders resources by the inserted_at field in descending order.
Using a Function
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...other options
  init_order: &__MODULE__.init_order/1

def init_order(_assigns) do
  %{by: :username, direction: :asc}
end
The function must:
	Take one argument (assigns)
	Return a map with :by and :direction keys

This approach allows you to determine the ordering based on runtime conditions or user-specific data in assigns.
Important
Note that it is not possible to use an anonymous function for init_order configuration. You must refer to a public function defined within a module.


  

  
    
    on_mount Hook - Backpex v0.15.2
    
    

    


  
  

    on_mount Hook

Backpex provides a way to add on_mount hooks that are invoked on the LiveView's mount (see https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html#on_mount/1).
You can use an on_mount hook to attach a handle_event, handle_params or handle_info callback to your LiveResource, 
e.g. if you add additional code that sends events to the LiveView and you need to handle them.
Configuration
Simply set the on_mount option in your LiveResource and add a on_mount callback.
You can pass a single value or a list of multiple hooks similar to the on_mount option
for LiveView's live_session function: https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Router.html#live_session/3-options.
use Backpex.LiveResource,
  ...,
  on_mount: {__MODULE__, :my_hook}

def on_mount(:my_hook, _params, _session, socket) do
  attach_hook(socket, :handle_event_callback, :handle_event, &handle_event/3)

  {:cont, socket}
end

def handle_event("my-event", _params_, socket) do
  # Do stuff

  {:halt, socket}
end

def handle_event(_event_, _params_, socket) do
  {:cont, socket}
end
Important: 
Make sure to halt for custom events as Backpex won't handle them. In addition, you are required to add a catch-all event at the end that continues. 
Otherwise, Backpex will not receive internal events.


  

  
    
    Hooks - Backpex v0.15.2
    
    

    


  
  

    Hooks

You may define hooks that are called before their respective action. Those hooks are on_item_created, on_item_updated and on_item_deleted.
Info
Note that the hooks are called after the changes have been persisted to the database.
Configuration
To add a hook to a resource, you need to implement the on_item_created/2, on_item_updated/2 or on_item_deleted/2 callback in your resource configuration file.
# in your resource configuration file

@impl Backpex.LiveResource
def on_item_created(socket, item) do
    # do something
    socket
end
The example above will call the on_item_created hook after an item has been created.


  

  
    
    Navigation - Backpex v0.15.2
    
    

    


  
  

    Navigation

By default, Backpex redirects to the previous resource path (index or show view) after creating or updating an item, 
but you can customize this behavior.
Configuration
To define a custom navigation path, you need to implement the return_to/5 callback in your resource configuration file:
# in your resource configuration file
@impl Backpex.LiveResource
def return_to(socket, assigns, live_action, _form_action, item) do
    ~p"/home"
end
The example above will always redirect to the /home path after editing an item.
Available Live Actions
Backpex supports the following live actions:
	:index - The list view of your resource
	:new - The form for creating a new resource
	:edit - The form for editing an existing resource
	:show - The detailed view of a single resource
	:resource_action - An open resource action on the list view

Form Actions
When working with forms (in :new or  :edit live actions), the following form actions are available:
	:save - When a form is successfully submitted aka the "Save" button was clicked
	:cancel - When a form submission is canceled aka the "Cancel" button was clicked

For all other live actions, the form_action will be nil.


  

  
    
    Panels - Backpex v0.15.2
    
    

    


  
  

    Panels

You can define panels to group certain fields together. Panels are displayed in the provided order.
Configuration
To add panels to a resource, you need to implement the panels/0 callback in your resource configuration file. It has to return a keyword list with an identifier and label for each panel.

# in your resource configuration file
@impl Backpex.LiveResource
def panels do
  [
    contact: "Contact"
  ]
end
The example above will define a panel with the identifier contact and the label Contact.
Usage
You can move fields into panels with the panel field configuration that has to return the identifier of the corresponding panel. Fields without a panel are displayed in the :default panel. The :default panel has no label.
# in your fields list
@impl Backpex.LiveResource
def fields do
  [
    %{
      ...,
      panel: :contact
    }
  ]
end
The example above will move the field into the contact panel.
Info
Note that a panel is not displayed when there are no fields in it.


  

  
    
    Fluid Layout - Backpex v0.15.2
    
    

    


  
  

    Fluid Layout

Backpex provides a way to create a fluid layout. A fluid layout is a layout that fills the entire width of the screen. This layout is useful for applications that need to display a lot of content on the screen.
Information
The  fluid? options requires you to pass the fluid? assign to the Backpex.HTML.Layout.app_shell/1 component in your layout file. See the Create layout documentation for more information.
Configure LiveResource
To create a fluid layout, you need to set the fluid? option in a LiveResource to true. 
# in your LiveResource module
defmodule MyAppWeb.Live.UserLive do
  use Backpex.LiveResource, fluid?: true
end


  

  
    
    Listen to PubSub Events - Backpex v0.15.2
    
    

    


  
  

    Listen to PubSub Events

As mentioned in the installation guide you are able to configure PubSub events for each
LiveResources individually. Backpex will use the configuration to publish deleted, updated and created events.
Backpex will listen to these events and update the UI accordingly. Sometimes you may want to listen to these events and 
perform some custom actions. For example you want to show a toast to all users currently on the resource that a post has
been created.
Customize Configuration
You may overwrite the PubSub configuration for your Posts LiveResource like this:
use Backpex.LiveResource,
  ...,
  pubsub: [
    server: Demo.PubSub
    topic: "posts"
  ]
If you do not set a topic yourself, we take the stringified version of the live resource name as the default topic.
iex(1)> to_string(DemoWeb.UserLive)
"Elixir.DemoWeb.UserLive"
The server can be configured in your config.exs:
config :backpex, pubsub_server: Demo.PubSub,
Listen to events
You can listen for Backpex PubSub events by implementing the Phoenix.LiveView handle_info/2 callback in your LiveResource module. You can attach this callback via an on_mount hook by setting the on_mount option in your LiveResource.
# in your resource configuration file
use Backpex.LiveResource,
  on_mount: __MODULE__,
  ...

  def on_mount(:default, _params, _session, socket) do
    socket = Phoenix.LiveView.attach_hook(socket, :handle_pubsub_messages, :handle_info, &handle_info/2)
    {:cont, socket}
  end

  def handle_info({"created", item}, socket) do
    # make something in response to the event
    {:halt, socket}
  end

  def handle_info({"updated", item}, socket) do
    # make something in response to the event
    {:halt, socket}
  end

  def handle_info({"deleted", item}, socket) do
    # make something in response to the event
    {:halt, socket}
  end

  ...
end


  

  
    
    Additional classes for index table rows - Backpex v0.15.2
    
    

    


  
  

    Additional classes for index table rows

You can add additional classes to table rows on the index view. This allows you, for example, to color the rows. 
Configuration
To add additional classes to table rows on the index view, you need to implement the index_row_class/4 callback in your resource configuration file.
# in your resource configuration file

@impl Backpex.LiveResource
def index_row_class(assigns, item, selected, index), do: "bg-yellow-100"
The example above will add the bg-yellow-100 class to all table rows on the index view.
Info
Note that we call the function twice. Once for the row on the tr element and a second time for the item action overlay, because in most cases the overlay should have the same style applied.


  

  
    
    What is a Field? - Backpex v0.15.2
    
    

    


  
  

    What is a Field?

Backpex fields are the building blocks of a resource. They define the data that will be displayed and manipulated in the resource views. Fields can be of different types, such as text, number, date, and select. Each field type has its own configuration options and behavior. Typically, you want to configure a field for each type of data you want to display in your resource.
Backpex ships with a set of built-in field types, but you can also create custom fields to fit your specific needs.
Built-in Field Types
Backpex provides the following built-in field types:
	Backpex.Fields.BelongsTo
	Backpex.Fields.Boolean
	Backpex.Fields.Currency
	Backpex.Fields.DateTime
	Backpex.Fields.Date
	Backpex.Fields.HasManyThrough
	Backpex.Fields.HasMany
	Backpex.Fields.InlineCRUD
	Backpex.Fields.MultiSelect
	Backpex.Fields.Number
	Backpex.Fields.Select
	Backpex.Fields.Text
	Backpex.Fields.Textarea
	Backpex.Fields.Upload
	Backpex.Fields.URL

You can click on each field type to see its documentation and configuration options.
Configuration
To define fields for a resource, you need to implement the fields/0 callback in your resource module. This function must return a list of field configurations.
@impl Backpex.LiveResource
def fields do
  [
    username: %{
      module: Backpex.Fields.Text,
      label: "Username"
    },
    age: %{
      module: Backpex.Fields.Number,
      label: "Age"
    }
  ]
end
The example above will define two fields: username and age. Both fields use the built-in field types Backpex.Fields.Text and Backpex.Fields.Number, respectively.
Field Configuration
Each field configuration must contain the following keys:
	module: The module that implements the field behavior.
	label: The label that will be displayed for the field.

In addition to these keys, you can configure each field with additional options specific to the field type. For example, a text field can have a placeholder option to set a placeholder text for the input field.
@impl Backpex.LiveResource
def fields do
  [
    username: %{
      module: Backpex.Fields.Text,
      label: "Username",
      placeholder: "Enter your username"
    }
  ]
end
The example above will set the placeholder "Enter your username" for the username field.
The following sections will cover general field options and how to create custom fields.


  

  
    
    Custom Fields - Backpex v0.15.2
    
    

    


  
  

    Custom Fields

Backpex ships with a set of default fields that can be used to create content types. See Built-in Field Types for a complete list of the default fields. In addition to the default fields, you can create custom fields for more advanced use cases.
When creating your own custom field, you can use the field macro from the BackpexWeb module. It automatically implements the Backpex.Field behavior and defines some aliases and imports.
Note that a field has to be a LiveComponent.
Warning
As Backpex is still under active development in a 0.X version, it can be assumed that there will be breaking changes to the 
fields API in future releases, which will require you to update your custom fields.
Creating a Custom Field
The simplest version of a custom field would look like this:
use Backpex.Field

@impl Backpex.Field
def render_value(assigns) do
~H"""
<p>
    <%= HTML.pretty_value(@value) %>
</p>
"""
end

@impl Backpex.Field
def render_form(assigns) do
~H"""
<div>
    <Layout.field_container>
    <:label>
        <Layout.input_label text={@field_options[:label]} />
    </:label>
    <BackpexForm.input
        type="text"
        field={@form[@name]}
        translate_error_fun={Backpex.Field.translate_error_fun(@field_options, assigns)}
        phx-debounce={Backpex.Field.debounce(@field_options, assigns)}
        phx-throttle={Backpex.Field.throttle(@field_options, assigns)}
    />
    </Layout.field_container>
</div>
"""
end
The render_value/1 function returns markup that is used to display a value on index and show views.
The render_form/1 function returns markup that is used to render a form on edit and new views.
See Backpex.Field for more information on the available callback functions. For example, you can implement render_index_form/1 to make the field editable in the index view.
Add field option validation
With Backpex v0.9 we are validating field options. This ensures that only field options that are actually used by the field can be defined in the field options map. So if your custom field requires certain field options, make sure you define them.
Note that we use NimbleOptions to validate field options.
To add field option validation pass a config schema to use Backpex.Field.
@config_schema [
    custom_option: [
        doc: "A custom field option.",
        type: :string
    ],
    # see https://hexdocs.pm/nimble_options/NimbleOptions.html
    # or any other core backpex field for examples...
]

use Backpex.Field, config_schema: @config_schema
You can then access your custom option safely in your field.
@impl Backpex.Field
def render_value(assigns) do
    custom_option = assigns.field_options[:custom_option]

    # ...
end


  

  
    
    Alignment - Backpex v0.15.2
    
    

    


  
  

    Alignment

It is possible to align the field values of a resource on index views and the labels of the fields on edit views.
Field Alignment (Index Views)
You can align the field values of a resource on index views by setting the align option in the field configuration.
The following alignments are supported: :left, :center and :right
# in your resource configuration file

@impl Backpex.LiveResource
def fields do
[
  %{
    ...,
    align: :center
  }
]
end
The example above will center the field value on the index view.
Label Alignment (Form Views)
You can align the labels of the fields on form views by setting the label_align option in the field configuration.
The following label orientations are supported: :top, :center and :bottom.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
  %{
    ...,
    align_label: :top
  }
]
end
The example above will align the label to the top on the form view.


  

  
    
    Visibility - Backpex v0.15.2
    
    

    


  
  

    Visibility

You can change the visibility of fields in certain views.
Visibility with only and except
You can use the only and except options to define the views where a field should be visible. The only option will show the field only in the specified views, while the except option will show the field in all views except the specified ones. The options have to be a list of view names.
The following values are supported: :new, :edit, :show and :index.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    likes: %{
        module: Backpex.Fields.Number,
        label: "Likes",
        only: [:show, :edit]
    }
]
end
The example above will show the likes field only in the show and edit views.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    likes: %{
        module: Backpex.Fields.Number,
        label: "Likes",
        except: [:new]
    }
]
end
The example above will show the likes field in all views except the new view.
Visibility with visible
Important
Note that the option visible is only available for the show and edit views.
To change the visibility of a field, you can also set the visible option in the field configuration. The visible option has to return a function that receives the assigns and returns a boolean value.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    likes: %{
        module: Backpex.Fields.Number,
        label: "Likes",
        visible: fn assigns ->
            assigns.current_user.role in [:admin]
        end
    }
]
end
The example above will show the likes field only to users with the admin role.
Warning
Note that hidden fields are not exempt from validation by Backpex itself and the visible function is not executed on :index.
Visibility with can?
In addition to the visible option, we provide a can? option that you can use to determine the visibility of a field.
It can also be used on :index. It takes the assigns as a parameter and has to return a boolean value.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    inserted_at: %{
        module: Backpex.Fields.DateTime,
        label: "Created At",
        can?: fn
            %{live_action: :show} = _assigns ->
            true

            _assigns ->
            false
        end
    }
]
end
Also see the field authorization guide.
Advanced Example
Imagine you want to implement a checkbox in order to toggle an input field (post likes). The input field should be visible when it has a certain value (post likes > 0).
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    # show_likes is a virtual field in the post schema
    show_likes: %{
        module: Backpex.Fields.Boolean,
        label: "Show likes",
        # initialize the button based on the likes value
        select: dynamic([post: p], fragment("? > 0", p.likes)),
    },
    likes: %{
        module: Backpex.Fields.Number,
        label: "Likes",
        # display the field based on the `show_likes` value
        # the value can be part of the changeset or item (when edit view is opened initially).
        visible: fn
            %{live_action: :new} = assigns ->
            Map.get(assigns.changeset.changes, :show_likes)

            %{live_action: :edit} = assigns ->
            Map.get(assigns.changeset.changes, :show_likes, Map.get(assigns.item, :show_likes, false))

            _assigns ->
            true
        end
    }
]
end


  

  
    
    Defaults - Backpex v0.15.2
    
    

    


  
  

    Defaults

You can assign default values to fields in your resource configuration file. This is useful when you want to provide a default value for a field that is not required.
Configuration
To define a default value for a field, you need to set the default option in the field configuration. The default option has to return a function that receives the assigns and returns the default value.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        default: fn _assigns -> "Default Username" end
    }
]
end
The example above will assign the default value "Default Username" to the username field.


  

  
    
    Readonly - Backpex v0.15.2
    
    

    


  
  

    Readonly

Fields can be configured to be readonly. In edit view, these fields are rendered with the additional HTML attributes readonly and disabled, ensuring that users cannot interact with the field or change its value.
In index view, if readonly and index editable are both set to true, forms will be rendered with the readonly HTML attribute.
Supported fields
On index view, readonly is supported for all fields with the index editable option (see Index Edit).
On edit view, readonly is supported for:
	Backpex.Fields.Date
	Backpex.Fields.DateTime
	Backpex.Fields.Number
	Backpex.Fields.Text
	Backpex.Fields.Textarea

Configuration
To enable readonly for a field, you need to set the readonly option to true in the field configuration. This key must contain either a boolean value or a function that returns a boolean value.
# in your resource configuration file
def fields do
[
  rating: %{
    module: Backpex.Fields.Text,
    label: "Rating",
    readonly: fn assigns ->
        assigns.current_user.role in [:employee]
    end
  }
]
end
# in your resource configuration file
def fields do
[
  rating: %{
    module: Backpex.Fields.Text,
    label: "Rating",
    readonly: true
  }
]
end
Readonly for custom fields
You can also add readonly functionality to a custom field. To do this, you need to handle the readonly state in the Backpex.Field.render_form/1 function of your custom field. You can access the readonly value from the assigns, which will be true or false.
@impl Backpex.Field
def render_form(assigns) do
~H"""
<div>
  <Layout.field_container>
    <:label>
        <Layout.input_label text={@field[:label]} />
    </:label>
    <BackpexForm.input
      type="text"
      field={@form[@name]}
      translate_error_fun={Backpex.Field.translate_error_fun(@field_options, assigns)}
      phx-debounce={Backpex.Field.debounce(@field_options, assigns)}
      phx-throttle={Backpex.Field.throttle(@field_options, assigns)}
      readonly={@readonly}
      disabled={@readonly}
    />
  </Layout.field_container>
</div>
"""
end
If your readonly logic is more complex, you can also use a dedicated function that returns the markup for the readonly state.
@impl Backpex.Field
def render_form(%{readonly: true} = assigns) do
# Return readonly markup
end

def render_form(%{readonly: false} = assigns) do
# Return editable markup
end
When defining a custom field with index editable support, you need to handle the readonly state in Backpex.Field.render_index_form/1. There is also a readonly value in the assigns, which will be true or false.


  

  
    
    Custom Alias - Backpex v0.15.2
    
    

    


  
  

    Custom Alias

Backpex automatically generates aliases for queries in your fields. However, if you try to add two Backpex.Field.BelongsTo fields of the same association, you will encounter an error indicating that the alias is already in use by another field. To resolve this issue, Backpex allows the assignment of custom aliases to fields, eliminating naming conflicts in queries.
Configuration
To use a custom alias, define the custom_alias key in your field configuration. The value of the custom_alias key must be a unique atom that is not already in use by another field.
@impl Backpex.LiveResource
def fields do
[
    second_category: %{
        module: Backpex.Fields.BelongsTo,
        label: "Second Category",
        display_field: :name,
        searchable: true,
        custom_alias: :second_category,
        select: dynamic([second_category: sc], sc.name)
    },
]
end
The example above will assign the alias :second_category to the second_category field. This alias can now be used in queries without causing conflicts with other fields.


  

  
    
    Placeholder - Backpex v0.15.2
    
    

    


  
  

    Placeholder

You can configure a placeholder for form fields. The placeholder will be displayed in the input field when the field is empty.
Important
Note that the option only works for input fields that are not type textarea, select, toggle or checkbox.
Configuration
To set a placeholder for a field, you need to set the placeholder option in the field configuration. The placeholder either has to be a string or a function that receives the assigns and returns the placeholder string.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        placeholder: "Enter your username"
    }
]
end
The example above will set the placeholder "Enter your username" for the username field.


  

  
    
    Debounce and Throttle - Backpex v0.15.2
    
    

    


  
  

    Debounce and Throttle

You can debounce and throttle the input of a field in the edit view. This is useful when you want to reduce the number of requests sent to the server.
Configuration
To enable debounce or throttle for a field, you need to set the debounce or throttle option in the field configuration.
	debounce: Has to return either an integer timeout value (in milliseconds), or "blur". When an integer is provided, emitting the event is delayed by the specified milliseconds. When "blur" is provided, emitting the event is delayed until the field is blurred by the user.
	throttle: Has to return an integer timeout value (in milliseconds). The event is emitted at most once every specified milliseconds.

See Phoenix LiveView documentation for more information on debouncing and throttling.
The options can be set to a function that receives the assigns and returns the debounce or throttle value or a static value.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        debounce: 500
    }
]
end
The example above will debounce the input of the username field by 500 milliseconds.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        debounce: fn _assigns -> 500 end
    }
]
end
The example above will debounce the input of the username field by 500 milliseconds.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        debounce: "blur"
    }
]
end
The example above will debounce the input of the username field until the field is blurred by the user.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        throttle: 500
    }
]
end
The example above will throttle the input of the username field by 500 milliseconds.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    username: %{
        module: Backpex.Fields.Text,
        label: "Username",
        throttle: fn _assigns -> 500 end
    }
]
end
The example above will throttle the input of the username field by 500 milliseconds.


  

  
    
    Index Edit - Backpex v0.15.2
    
    

    


  
  

    Index Edit

A small number of fields support index editable. These fields can be edited inline on the index view.
Configuration
To enable index editable for a field, you need to set the index_editable option to true in the field configuration.
# in your resource configuration file
def fields do
[
    name: %{
        module: Backpex.Fields.Text,
        label: "Name",
        index_editable: true
    }
]
end
The example above will enable index editable for the name text field.
Supported fields
	Backpex.Fields.BelongsTo
	Backpex.Fields.Date
	Backpex.Fields.DateTime
	Backpex.Fields.Number
	Backpex.Fields.Select
	Backpex.Fields.Text

Custom index editable implementation
You can add index editable support to your custom fields by defining the render_index_form/1 function and enabling index editable for your field.


  

  
    
    Error Customization - Backpex v0.15.2
    
    

    


  
  

    Error Customization

You can customize the error messages for each field in your resource configuration file.
Configuration
To customize the error messages for a field, you need to define a translate_error/1 function in the field configuration. The function receives the error tuple and must return a tuple with the message and metadata.
@impl Backpex.LiveResource
def fields do
[
    number: %{
        module: Backpex.Fields.Number,
        label: "Number",
        translate_error: fn
            {_msg, [type: :integer, validation: :cast] = metadata} = _error ->
                {"has to be a number", metadata}

            error ->
                error
        end
    }
]
end
The example above will return the message "has to be a number" when the input is not a number.


  

  
    
    Computed Fields - Backpex v0.15.2
    
    

    


  
  

    Computed Fields

In some cases you want to compute new fields based on existing fields. Backpex adds a way to support this.
Configuration
There is a select option you may add to a field. This option has to return a dynamic. This query will then be executed to select fields when listing your resources. In addition this query will also be used to order / search this field.
# in your resource configuration file

@impl Backpex.LiveResource
def fields do
[
    total: %{
        module: Backpex.Fields.Integer,
        label: "Total",
        select: dynamic([post: p], fragment("likes + dislikes")),
    }
]
end
The example above will compute the value of the total field based on the likes and dislikes fields.
Example
Imagine there is a user table with first_name and last_name. Now, on your index view you want to add a column to display the full_name. You could create a generated column in you database, but there are several reasons for not adding generated columns for all computed fields you want to display in your application.
You can display the full_name of your users by adding the following field to the resource configuration file.
# in your resource configuration file

@impl Backpex.LiveResource
def fields do
[
    full_name: %{
        module: Backpex.Fields.Text,
        label: "Full Name",
        searchable: true,
        except: [:edit],
        select: dynamic([user: u], fragment("concat(?, ' ', ?)", u.first_name, u.last_name))
    }
]
end
We are using a database fragment to build the full_name based on the first_name and last_name of an user. Backpex will select this field when listing resources automatically. Ordering and searching works the same like on all other fields, because Backpex uses the query you provided in the dynamic in order / search queries, too.
We recommend to display this field on index and show view only.
Important
Note: You are required to add a virtual field full_name to your user schema. Otherwise, Backpex is not able to select this field.
Computed Fields with Associations
Computed fields also work with associations.
For example, you are able to add a select query to a Backpex.Field.BelongsTo field.
Imagine you want to display a list of posts with the corresponding authors (users). The user column should be a full_name computed by the first_name and last_name:
# in your resource configuration file

@impl Backpex.LiveResource
def fields do
[
    user: %{
        module: Backpex.Fields.BelongsTo,
        label: "Full Name",
        display_field: :full_name,
        select: dynamic([user: u], fragment("concat(?, ' ', ?)", u.first_name, u.last_name)),
        options_query: fn query, _assigns ->
            query |> select_merge([user], %{full_name: fragment("concat(?, ' ', ?)", user.first_name, user.last_name)})
        end
    }
]
end
We recommend to add a select_merge to the options_query where you select the same field. Otherwise, displaying the same values in the select form on edit page will not work.
Do not forget to add the virtual field full_name to your user schema in this example, too.


  

  
    
    What is a Filter? - Backpex v0.15.2
    
    

    


  
  

    What is a Filter?

Filters are used to filter the data that is being displayed in the (index) view. They are used to narrow down the data that is being displayed based on certain criteria.
Backpex allows you to define filters for your LiveResources. Backpex handles the filtering of the data for you as well as the UI for the filters. You just need to define the filters and Backpex will take care of the rest.
Backpex ships with a set of default filters that can be used to filter the data. In addition to the default filters, you can create custom filters for more advanced use cases.
Built-in Filters
Backpex provides the following built-in filters:
	Backpex.Filters.Boolean
	Backpex.Filters.Range
	Backpex.Filters.Select
	Backpex.Filters.MultiSelect

You can click on each filter type to see its documentation and configuration options.
We will go through how to define filters for a LiveResource in the next section.


  

  
    
    How to add a Filter? - Backpex v0.15.2
    
    

    


  
  

    How to add a Filter?

Adding a filter to your LiveResource is a two step process:
Defining a Filter module
First, you need to define a filter module that implements one of the behaviors from the Backpex.Filters namespace., This may be one of the built-in filters or a custom filter.
We suggest to use a MyAppWeb.Filters.<FILTERNAME> convention.
If you want to add one of the built-in filters, you can click on the filter type in the list of Built-in Filters to see how to define a filter module for that filter type.
For example, the following example shows how to define a filter module for a select filter that filters posts based on a category:
defmodule MyAppWeb.Filters.PostCategorySelect do
  use Backpex.Filters.Select

  alias MyApp.Category
  alias MyApp.Post
  alias MyApp.Repo

  @impl Backpex.Filter
  def label, do: "Category"

  @impl Backpex.Filters.Select
  def prompt, do: "Select category ..."

  @impl Backpex.Filters.Select
  def options(_assigns) do
    query =
      from p in Post,
        join: c in Category,
        on: p.category_id == c.id,
        distinct: c.name,
        select: {c.name, c.id}

    Repo.all(query)
  end
end
Adding the Filter to your LiveResource
After you have defined the filter module, you need to add the filter to your LiveResource.
To do this, you need to define the filter in the filters/0 callback in your LiveResource module.
Here is an example of how to add a filter to your LiveResource:
@impl Backpex.LiveResource
def filters, do: [
    category_id: %{
        module: MyAppWeb.Filters.PostCategorySelect,
    }
]
In this example, we add a filter with the name category_id to the LiveResource. The filter uses the MyAppWeb.Filters.PostCategorySelect module we defined earlier.
Overwriting the Filter Label
You can also overwrite the filter label defined in the filter label by adding a label key to the filter map:
@impl Backpex.LiveResource
def filters, do: [
    category_id: %{
        module: MyAppWeb.Filters.PostCategorySelect,
        label: "Category"
    }
]


  

  
    
    Filter Presets - Backpex v0.15.2
    
    

    


  
  

    Filter Presets

Backpex allows you to define filter presets for your filters. Filter presets are used to define a set of filter configurations that can easily be applied to the data being displayed in the index view. Filter Presets consist of a name and a list of values that are used to filter the data. For example, you can define a filter preset for a date filter that filters the data based on the current month. Then the user can easily apply this filter by selecting the preset from the filter dropdown.
Defining a Filter Preset
To define presets for your filters, you need to add a list of maps under the key of :presets to your filter in your LiveResource.
Each of those maps has two keys:
	:label – the name of the preset shown to the user
	:values – a function with arity 0 that returns the values corresponding to your used filter

See the example below for some preset examples. We add a preset for a date filter that filters the data based on the last 7 days and a preset for a select filter that filters the data based on the published status of an event.
@impl Backpex.LiveResource
def filters, do: [
    begins_at: %{
        module: MyAppWeb.Filters.DateRange,
        label: "Begins At",
        presets: [
            %{
                label: "Last 7 Days",
                values: fn -> %{
                    "start" => Date.add(Date.utc_today(), -7),
                    "end" => Date.utc_today()
                } end
            }
        ]
    },
    published: %{
        module: MyAppWeb.Filters.EventPublished,
        presets: [
            %{
                label: "Both",
                values: fn -> [:published, :not_published] end
            },
            %{
                label: "Only published",
                values: fn -> [:published] end
            }
        ]
    }
]


  

  
    
    Custom Filter - Backpex v0.15.2
    
    

    


  
  

    Custom Filter

Backpex ships with a set of default filters that can be used to filter the data. In addition to the default filters, you can create custom filters for more advanced use cases.
Creating a Custom Filter
You can create a custom filter by using the filter macro from the BackpexWeb module.. It automatically implements the Backpex.Filter behavior and defines some aliases and imports.
When creating a custom filter, you need to implement the following callbacks: query/4, render/1 and render_form/1. The query/4 function is used to filter the data based on the filter values. It receives the query, the attribute, the values of the filter and the assigns and should return the filtered query. The render/1 function returns the markup that is used to display the filter on the index view. The render_form/1 function returns the markup that is used to render the filter form on the index view.
Here is an example of a custom select filter:
defmodule MyApp.Filters.CustomSelectFilter do
    use BackpexWeb, :filter

    @impl Backpex.Filter
    def label, do: "Event status"

    @impl Backpex.Filter
    def render(assigns) do
        assigns = assign(assigns, :label, option_value_to_label(my_options(), assigns.value))

        ~H"""
        <%= @label %>
        """
    end

    @impl Backpex.Filter
    def render_form(assigns) do
        ~H"""
        <.form_field
            type="select"
            selected={selected(@value)}
            options={my_options()}
            form={@form}
            field={@field}
            label=""
        />
        """
    end

    @impl Backpex.Filter
    def query(query, attribute, value, _assigns) do
        where(query, [x], field(x, ^attribute) == ^value)
    end

    defp option_value_to_label(options, value) do
        Enum.find_value(options, fn {option_label, option_value} ->
        if option_value == value, do: option_label
        end)
    end

    defp my_options, do: [
        {"Select an option...", nil},
        {"Open", :open},
        {"Close", :close},
    ]

    defp selected(""), do: nil
    defp selected(value), do: value
end
In this example, we define a custom select filter that filters the data based on the event status. The query/4 function filters the data based on the selected value.
See Backpex.Filter for available callback functions.


  

  
    
    Visibility and Authorization - Backpex v0.15.2
    
    

    


  
  

    Visibility and Authorization

You can control whether a filter is visible or not by implementing the can?/1 callback in your filter module.
Configuration
The can?/1 callback receives the assigns and has to return a boolean value. If the callback returns true, the filter will be visible. If it returns false, the filter will be hidden. If you don't implement the can?/1 callback, the filter will be visible by default.
Here is an example of how to hide a filter based on the user's role:
defmodule MyAppWeb.Filters.MyFilter do
  use BackpexWeb, :filter

  @impl Backpex.Filter
  def can?(assigns), do: assigns.current_user.role == :admin
end
In this example, the MyFilter filter will only be visible if the user's role is admin.


  

  
    
    Item Actions - Backpex v0.15.2
    
    

    


  
  

    Item Actions

An item action defines an action (such as deleting a user) that can be performed on one or more items. Unlike resource actions, item actions are not automatically performed on all items in a resource.
An item action could be something like deleting a user, or sending an email to a specific user.
There are multiple ways to perform an Item Action:
	use the checkboxes in the first column of the resource table to select 1-n items and trigger the action later on
	use an icon in the last column of the resource table to perform the Item Action for one item

If you use the first method, you must trigger the item action using the button above the resource action. If you use the second method, the item action is triggered immediately.
Backpex ships with a few built-in item actions, such as delete, show, and edit.
Configuration
To add an item action to a resource, you need to implement the item_actions/1 callback in your resource configuration module. The function has to return a list of maps, where each map represents an item action. It takes the default item actions as an argument. This way you can add your custom item actions to the default ones or even replace them.
Let's say we want to add a show item action to navigate to the show view of a user and replace all other default item actions.
First, we need to add the item action to our resource configuration module.
# in your resource configuration file
@impl Backpex.LiveResource
def item_actions([_show, _edit, _delete]) do
  [
    show: %{
      module: DemoWeb.ItemAction.Show
    }
  ]
end
In the above example, we only return the show item action. This way we replace the default show, edit, and delete item actions with our custom show item action.
Implementing an Item Action
An item action is a module that uses the Backpex.ItemAction module. To get started, you can use the BackpexWeb module and provide the :item_action option. This will import the necessary functions and macros to define an item action.
In the following example, we define an item action to navigate to the show view of a user.
defmodule DemoWeb.ItemAction.Show do
  use BackpexWeb, :item_action

  @impl Backpex.ItemAction
  def icon(assigns, _item) do
    ~H"""
    <Backpex.HTML.CoreComponents.icon name="hero-eye" class="h-5 w-5 cursor-pointer transition duration-75 hover:scale-110 hover:text-green-600" />
    """
  end

  @impl Backpex.ItemAction
  def label(_assigns, _item), do: "Show"

  @impl Backpex.ItemAction
  def handle(socket, [item | _items], _data) do
    path = Router.get_path(socket, socket.assigns.live_resource, socket.assigns.params, :show, item)
    {:ok, Phoenix.LiveView.push_patch(socket, to: path)}
  end
end
As with resource actions, the Backpex.ItemAction.handle/3 function is called when the item action is triggered. The handle function receives the socket, the items to be affected by the action, and the parameters passed by the user.
In the example above, we define an item action to navigate to a user's show view. The function Backpex.ItemAction.handle/3 is used to navigate to the corresponding view. The Backpex.Router.get_path/6 function is used to generate the path needed.
The callbacks Backpex.ItemAction.icon/2 and Backpex.ItemAction.label/2 get the item on which the action is executed. You can use the item to customize this function depending on the item.
Important
Note that the item in the Backpex.ItemAction.label/2 callback is nil if the callback is used to display the label of the item action button above the resource table or the label of the confirmation dialog. The item is present if the callback is used to determine the tooltip for the item action icon.
See Backpex.ItemAction for a list of all available callbacks.
Placement of Item Actions
Item actions can be placed in the resource table or at the top of it. You can specify the placement of the item action by using the only and except keys.
The only key is used to include specified placements, meaning the item action will only appear in the specified locations. In contrast, the except key is used to exclude specified placements, meaning the item action will appear in all locations except those specified.
The only and except keys must provide a list and accept the following options:
	:row - displays an icon for each element in the table, clicking it triggers the item action for the corresponding element
	:index - displays a button at the top of the resource table, clicking it will trigger the item action for selected items

The following example shows how to place the show item action on the index table rows only.
# in your resource configuration file
@impl Backpex.LiveResource
def item_actions([_show, _edit, _delete]) do
  [
    show: %{
      module: DemoWeb.ItemAction.Show,
      only: [:row]
    }
  ]
end
Confirmation Dialog
By default an item action is triggered immediately when the user clicks on the corresponding icon in the resource table or in the show view, but an item actions also supports a confirmation dialog. To enable the confirmation dialog you need to implement the Backpex.ItemAction.confirm/1 function and return a string that will be displayed in the confirmation dialog. The confirmation dialog will be displayed when the user clicks on the icon in the resource table.
You might want to use the Backpex.ItemAction.cancel_label/1 (defaults to "Cancel") and Backpex.ItemAction.confirm_label/1 (defaults to "Apply") functions to set the labels of the buttons in the dialog.
Item Actions with Forms
If you want to create an item action that requires user input, you can define a form for the item action. This is done by implementing the Backpex.ItemAction.fields/0 callback.
The fields/0 callback has to return a list of (form) fields that will be displayed in the form like you would do in a LiveResource.
Item Actions with a form must also implement the Backpex.ItemAction.changeset/3 callback to validate and cast the parameters received from the form.
In the following example, we define an item action to soft delete users. The item action will also ask the user for a reason before the user can be deleted.
First, we need to add the item action to our resource configuration module.
# in your resource configuration file

@impl Backpex.LiveResource
def item_actions([show, edit, _delete]) do
    Enum.concat(
      [show, edit],
      soft_delete: %{module: DemoWeb.ItemAction.SoftDelete}
    )
end
Next, we need to implement the item action module:
defmodule DemoWeb.ItemAction.SoftDelete do
    use BackpexWeb, :item_action

    import Ecto.Changeset

    alias Backpex.Resource

    @impl Backpex.ItemAction
    def icon(assigns, _item) do
    ~H"""
    <Backpex.HTML.CoreComponents.icon name="hero-eye" class="h-5 w-5 cursor-pointer transition duration-75 hover:scale-110 hover:text-green-600" />
    """
    end

    @impl Backpex.ItemAction
    def fields do
      [
        reason: %{
          module: Backpex.Fields.Textarea,
          label: "Reason",
          type: :string
        }
      ]       
    end

    @impl Backpex.ItemAction
    def changeset(change, attrs, _meta) do
      change
      |> cast(attrs, [:reason])
      |> validate_required([:reason])
    end

    @impl Backpex.ItemAction
    def confirm(_assigns), do: "Why do you want to delete this item?"

    @impl Backpex.ItemAction
    def label(_assigns, _item), do: "Delete"

    @impl Backpex.ItemAction
    def confirm_label(_assigns), do: "Delete"

    @impl Backpex.ItemAction
    def cancel_label(_assigns), do: "Cancel"

    @impl Backpex.ItemAction
    def handle(socket, items, data) do
      datetime = DateTime.truncate(DateTime.utc_now(), :second)

      socket =
        try do
          {:ok, _count_} =
            Backpex.Resource.update_all(
              socket.assigns,
              items,
              [set: [deleted_at: datetime, reason: data.reason]],
              "deleted"
            )

            socket
            |> clear_flash()
            |> put_flash(:info, "Item(s) successfully deleted.")
        rescue
          socket
          |> clear_flash()
          |> put_flash(:error, error)
        end

      {:ok, socket}
    end
end
The above ItemAction require users to fill out the reason field before the action can be performed. The reason field is defined in the Backpex.ItemAction.fields/0 function. The Backpex.ItemAction.changeset/3 function is used to validate the user input.
Important
If your ItemAction has form fields, you must also implement the Backpex.ItemAction.confirm/1 function.



  

  
    
    Resource Actions - Backpex v0.15.2
    
    

    


  
  

    Resource Actions

Resource actions are a way to define custom actions that can be performed on a whole resource.
A resource action could be something like exporting a resource to a CSV file, or sending an email to all users in a resource.
Configuration
You define resource actions by implementing the resource_actions/0 callback in your resource configuration module.
Let's say you have a resource called User and you want to add a resource action to invite users to your application.
First, you need to add the resource action to your resource configuration module.
# in your resource configuration file

@impl Backpex.LiveResource
def resource_actions() do
[
    invite: %{
        module: MyWebApp.Admin.ResourceActions.Invite,
    }
]
end
Each resource action is a map with at least the module key. The module key should point to the module that implements the resource action. The key in the keyword list is the unique id of the resource action.
Implementing a Resource Action
A resource action is a module that uses the Backpex.ResourceAction module.
defmodule MyAppWeb.Admin.Actions.Invite do
    use Backpex.ResourceAction

    import Ecto.Changeset

    @impl Backpex.ResourceAction
    def label, do: "Invite"

    @impl Backpex.ResourceAction
    def title, do: "Invite user"

    # you can reuse Backpex fields in the field definition
    @impl Backpex.ResourceAction
    def fields do
        [
            email: %{
                module: Backpex.Fields.Text,
                label: "Email",
                type: :string
            }
        ]
    end

    @impl Backpex.ResourceAction
    def changeset(change, attrs) do
        change
        |> cast(attrs, [:email])
        |> validate_required([:email])
        |> validate_email(:email)
    end

    @impl Backpex.ResourceAction
    def handle(_socket, data) do
        # Send mail

        # We suppose there was no error.
        if true do
            {:ok, "An invitation email to #{data.email} was sent successfully."}
        else
            {:error, "An error occurred while sending an invitation email to  #{data.email}!"}
        end
    end
end
See Backpex.ResourceAction for a documentation of the callbacks.
The handle/2 callback is called when the user submits the form to perform the action. In this example, we suppose there was no error sending the invitation email and return a success message.
You can access the email entered by the user in the data argument. The data argument is a map that contains the casted and validated data from the form (received from Ecto.Changeset.apply_action/2).
We validate the email address using the validate_email/2 function provided by the Ecto.Changeset module.
Info
Each resource action has its own route. The route is defined by the id of the resource action. If you use the live_resource/3 macro, the route is automatically added to the live resource.


  

  
    
    LiveResource Authorization - Backpex v0.15.2
    
    

    


  
  

    LiveResource Authorization

You are able to define authorization rules for your resources. The authorization rules are defined in the resource configuration file and are used to control access to certain actions.
Configuration
To define authorization rules for a resource, you need to implement the can/3 callback in the resource configuration file.
# in your resource configuration file
@impl Backpex.LiveResource
def can?(assigns, :show, item), do: false
def can?(assigns, action, item), do: true
The example above will deny access to the show action and allow access to all other actions.
# in your resource configuration file
@impl Backpex.LiveResource
def can?(assigns, :show, item) do
    user = assigns.current_user

    item.user_id == user.id
end‚

def can?(assigns, action, item), do: true
The example above will deny access to the show action if the user_id of the item does not match the id of the current user.
You can also use can/3 to restrict access to item or resource actions.
# in your resource configuration file
@impl Backpex.LiveResource
def can?(_assigns, :my_item_action, item), do: item.role == :admin
def can?(assigns, action, item), do: true
The example above will deny access to the my_item_action action if the role of the item is not :admin.
Parameters
The can? callback receives the following parameters:
	assigns - the assigns of the LiveView
	action - the action that is being authorized (available actions are: :index , :new, :show, :edit, :delete, :your_item_action_key, :your_resource_action_key)
	item - the item that is being authorized

Return value
The can? callback must return a boolean value. If the return value is true, the action is allowed. If the return value is false, the action is denied.


  

  
    
    Field Authorization - Backpex v0.15.2
    
    

    


  
  

    Field Authorization

You can define authorization rules for your fields.
Configuration
To define authorization rules for a field, you may use the can?/1 callback for a field configuration. It takes the assigns and has to return a boolean value.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    inserted_at: %{
        module: Backpex.Fields.DateTime,
        label: "Created At",
        can?: fn
            %{live_action: :show} = _assigns ->
            true

            _assigns ->
            false
        end
    }
]
end
The above example will show the inserted_at field only in the show view.


  

  
    
    Search - Backpex v0.15.2
    
    

    


  
  

    Search

Backpex provides a simple search feature that allows you to search for records in your resources. You can search for records based on the values of the fields in your resources.
Info
Note that fields are searched using a case-insensitive ilike query.
Configuration
To enable searching, you need to flag the fields you want to search on as searchable.
# in your resource configuration file
@impl Backpex.LiveResource
def fields do
[
    %{
        ...,
        searchable: true
    }
]
end
A search input will appear automatically on the resource index view.
In addition to basic searching, Backpex allows you to perform full-text searches on resources (see Full-Text Search Guide).


  

  
    
    Full-Text Search - Backpex v0.15.2
    
    

    


  
  

    Full-Text Search

Backpex allows you to perform full-text searches on resources. It uses the built-in PostgreSQL full-text search functionality.
Create a Generated Column
Backpex forces you to create a generated column to use the full-text search functionality. It must contain a tsvector that is generated from all the columns that you want to be considered when searching. You are free to choose a name for this column.
Below is an example of a generated column for a movie review resource with a title column and an overview column. Both columns should be searchable.
# in the database up migration

execute("""
ALTER TABLE film_reviews
  ADD COLUMN generated_tsvector tsvector
  GENERATED ALWAYS AS (
    to_tsvector('english', coalesce(title, '') || ' ' || coalesce(overview, ''))
  ) STORED;
""")
You can also concat multiple tsvectors in the generated column. This is useful if the table contains data in different languages. We recommend that you specify the language when using the to_tsvector function. Otherwise the default language will be used.
Create an Index
To increase the speed of full-text searches, especially for resources with large amounts of data, you should create an index on the generated column created in the previous step.
We strongly recommend that you use a GIN index, as it makes full-text searches really fast. The disadvantage is that a GIN index takes up a lot of disk space, so if you are limited in disk space, feel free to use a GiST index instead.
# in the database up migration

execute("""
CREATE INDEX film_reviews_search_idx ON film_reviews USING GIN(generated_tsvector);
""")
# in the database down migration

execute("""
DROP INDEX film_reviews_search_idx;
""")

drop table(:film_reviews)
Important
Note that you must explicitly define up and down migrations. Otherwise, the index cannot be dropped.
To enable full-text search, you need to specify the name of the generated column in the live resource of the corresponding resource:
# in the live resource

use Backpex.LiveResource,
  full_text_search: :generated_tsvector
You can now perform full-text searches on the resource index view.


  

  
    
    Upgrading to v0.15 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.15

Bump Your Deps
Update Backpex to the latest version:
defp deps do
  [
    {:backpex, "~> 0.15.0"}
  ]
end
Index edit input defaults have changed
We have updated the default classes for index edit inputs. Mainly, we have removed the hardcoded width. To increase the width of index edit inputs, use the index_column_class option on your field:
def fields do
  [
    username: %{
      module: Backpex.Fields.Text,
      label: "Username",
      index_editable: true,
      index_column_class: "min-w-[10rem]"
    },
    ...
  ]
end
Phoenix 1.8 layout changes
In Phoenix v1.7 and earlier versions, the layout was usually configured at LiveView level. 
use Phoenix.LiveView, layout: {MyAppWeb.Layouts, :app}
Backpex configured the provided layout in the same way.
From Phoenix v1.8, the layout is explicitly rendered in templates by calling the <Layouts.app /> component.
See https://hexdocs.pm/phoenix_live_view/1.1.8/live-layouts.html and https://www.phoenixframework.org/blog/phoenix-1-8-released
Backpex adapts to this change, interpreting your configured layout as a component called in every Backpex LiveView.
Ensure that your layout can be used as a component. At the very least, check that you've replaced {@inner_block} with {render_slot (@inner_block)} in your template. You may also want to add declarative assigns and a bodyless function definition to your layout, or extract the entire markup to MyAppWeb.Layouts.
Note that it is now also possible to configure the layout as a function:
use Backpex.LiveResource,
  layout: &MyAppWeb.admin/1
Resource and adapter functions have been updated
We've updated some functions in Backpex.Resource and the adapter modules (Backpex.Adapters.Ecto and Backpex.Adapters.Ash) to include the fields as an additional parameter.
The following functions are affected:
Backpex.Resource:
	list/3 -> Backpex.Resource.list/4
	count/3 -> Backpex.Resource.count/4
	get/3 -> Backpex.Resource.get/4
	get!/3 -> Backpex.Resource.get!/4

Backpex.Adapter (including Backpex.Adapters.Ecto and Backpex.Adapters.Ash):
	list/3 -> Backpex.Adapter.list/4
	count/3 -> Backpex.Adapter.count/4
	get/3 -> Backpex.Adapter.get/4

For example:
# before
Resource.get(primary_value, socket.assigns, live_resource)
# after
Resource.get(primary_value, fields, socket.assigns, live_resource)
:only/:except field option changes
You no longer need to pass :resource_action in addition to :index to the fields :only/:except option.
Before, it was needed to make fields visible behind the backdrop of the resource action modal.


  

  
    
    Upgrading to v0.14 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.14

Bump Your Deps
Update Backpex to the latest version:
defp deps do
  [
    {:backpex, "~> 0.14.0"}
  ]
end
Filter callback functions have been changed
We now pass the assigns to the query and options filter callbacks. Therefore, the arity of these functions has changed.
	Backpex.Filter.query/3 -> Backpex.Filter.query/4
	Backpex.Filters.Boolean.options/0 -> Backpex.Filters.Boolean.options/1
	Backpex.Filters.MultiSelect.options/0 -> Backpex.Filters.MultiSelect.options/1
	Backpex.Filters.Select.options/0 -> Backpex.Filters.Select.options/1

If you have implemented any of the above callbacks, make sure to change your filters.
Before:
defmodule MyAppWeb.Filters.PostPublished do
  use Backpex.Filters.Boolean

  @impl Backpex.Filter
  def label, do: "Published?"

  @impl Backpex.Filters.Boolean
  def options do
    [
      ...
    ]
  end
end
After:
defmodule MyAppWeb.Filters.PostPublished do
  use Backpex.Filters.Boolean

  @impl Backpex.Filter
  def label, do: "Published?"

  @impl Backpex.Filters.Boolean
  def options(_assigns) do
    [
      ...
    ]
  end
end
input/1 component has been updated
We've updated the Backpex.HTML.Form.input/1 component:
	input_wrapper_class attribute has been removed as it was used by the select input only
	new error class attribute to provide an error class to user over the defaults
	legend element was replaced by div element to align with Phoenix CoreComponents

If you use the input/1 make sure to update your code to accommodate these breaking changes, particularly removing any references to the deprecated input_wrapper_class attribute.
Item Actions with form require changeset/3 callback
All item actions that define fields (basically all item actions with a form) must also implement Backpex.ItemAction.changeset/3. This is necessary for validating and casting the parameters received from the form.
@impl Backpex.ItemAction
def changeset(change, attrs, _metadata) do
  change
  |> Ecto.Changeset.cast(attrs, [:field1, :field2])
  |> Ecto.Changeset.validate_required([:field1])
end
render_form_readonly/1 callback has been removed
We removed the render_form_readonly/1 callback from fields. Instead, readonly must be handled directly in the Backpex.Field.render_form/1 callback.
Make sure to update your custom fields accordingly. The readonly value will be available in the assigns, which will be true or false.
@impl Backpex.Field
def render_form(%{readonly: true} = assigns) do
# Render readonly field
end

def render_form(%{readonly: false} = assigns) do
# Render editable field
end
See the Readonly guide for more details.


  

  
    
    Upgrading to v0.13 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.13

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.13.0"}
    ]
  end
Removed assigns
We have removed a lot of socket assigns from LiveResources. If you depend on them, you can get them via the
@live_resource assign which contains the module name of your LiveResource.
Before:
@schema
@repo
@changeset_function
@singular_name
@plural_name
@full_text_search
After:
@live_resource.config(:adapter_config)[:schema]
@live_resource.config(:adapter_config)[:repo]
@live_resource.config(:adapter_config)[:update_changeset] # or: :create_changeset
@live_resource.singular_name()
@live_resource.plural_name()
@live_resource.config(:full_text_search)
Modified components
The following components have been modified:
	Backpex.HTML.Layout.modal/1 (see #951)
	Backpex.HTML.Layout.flash_messages/1 (see #1063)

If you use any of these in your project codebase, make sure they work as expected. You may need to change some
attributes (see the component documentation).
Translations
In case you want to translate Backpex, these are the added strings:
msgid "Attempting to reconnect..."
msgstr ""

msgid "Hang in there while we get back on track..."
msgstr ""

msgid "Something went wrong!"
msgstr ""

msgid "We can't find the internet!"
msgstr ""
Display help_text in your custom fields
We've added a new help_text field option to display a text below the input on form views. If you have custom fields in your application, you may want to support this option as well.
You can use the Backpex.Field.help_text/2 function to get the help text.
If you use the Backpex.HTML.Form.input/1 component, you can simply pass this value as the help_text attribute.
<Backpex.HTML.Form.input
  type="text"
  field={@form[@name]}
  placeholder={@field_options[:placeholder]}
  translate_error_fun={Backpex.Field.translate_error_fun(@field_options, assigns)}
  <!-- add this line -->
  help_text={Backpex.Field.help_text(@field_options, assigns)} 
  phx-debounce={Backpex.Field.debounce(@field_options, assigns)}
  phx-throttle={Backpex.Field.throttle(@field_options, assigns)}
/>
LiveResource is no longer a LiveView
We split the LiveResource module in Backpex to have dedicated LiveViews for Index, Form (Edit and New) and Show views.
The consequence is that your LiveResource module is no longer a LiveView. Therefore, you can no longer define handle_event, 
handle_info or handle_params callbacks or set on_mount hooks directly in your LiveResource module.
We are introducing a new on_mount LiveResource option that you can use to set on_mount hooks. This gives you the flexibility 
to still be able to attach handle_event,  handle_info or handle_params callbacks.
Before:
use Backpex.LiveResource,
  ...

@impl Phoenix.LiveView
def handle_event(_params, _url, socket) do
  # Do stuff

  {:cont, socket}
end
After:
use Backpex.LiveResource,
  ...,
  on_mount: {__MODULE__, :my_hook}

def on_mount(:my_hook, _params, _session, socket) do
  socket = Phoenix.LiveView.attach_hook(socket, :handle_event_callback, :handle_event, &handle_event/3)

  {:cont, socket}
end

def handle_event("my-event", _params_, socket) do
  # Do stuff

  # Make sure to halt as Backpex won't handle these events.
  {:halt, socket}
end

# Make sure to add a catch all event at the end. Otherwise Backpex won't receive internal events.
def handle_event(_event_, _params_, socket) do
  {:cont, socket}
end
See on_mount Hook Guide for detailed information.


  

  
    
    Upgrading to v0.12 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.12

Bump Your Deps
Update Backpex to the latest version:
defp deps do
  [
    {:backpex, "~> 0.12.0"}
  ]
end
Upgrade to Tailwind 4 and daisyUI 5
The setup now requires you to use Tailwind 4 and daisyUI 5. All internal Backpex components have been upgraded. To
upgrade you application components, you should visit these upgrade guides:
	https://tailwindcss.com/docs/upgrade-guide
	https://daisyui.com/docs/upgrade/

See the upgraded installation guide or our
demo installation on how the setup should look like.
The design might look a bit different than before. Thats because we went with some of the new defaults of daisyUI.
If you want to restore the previous look, you can overwrite most of the things with your own
custom theme.
If you want to recreate the same look Backpex had before, use the custom theme provided in this pull request comment.
PubSub config is now optional
You can safely remove the pubsub configuration from your LiveResources:
pubsub: [
  name: Demo.PubSub
  topic: "posts",
  event_prefix: "post_"
]
In order to make it work, you need to set your PubSub server in your config:
config :backpex, :pubsub_server, MyApp.PubSub
In case you still want to overwrite the settings, the name option is now called server.
The option for event_prefix was removed. Broadcasted events are just called created, updated and deleted now.
See Listen to PubSub Events for more info.
return_to/4 becomes return_to/5
We have added a form_action parameter to the return_to function.
This allows you to customize the URL based on whether the user cancels or saves an item.
If you previously had something like this in your LiveResource:
@impl Backpex.LiveResource
def return_to(socket, assigns, _live_action, _item) do
  ~p"/admin/posts"
end
change it to:
@impl Backpex.LiveResource
def return_to(socket, assigns, _live_action, _form_action, _item) do
  ~p"/admin/posts"
end
For more information on the new parameter and available options see the Navigation Guide
"Save & Continue editing" button is disabled by default
The "Save & Continue editing" button is now disabled by default. Use the save_and_continue_editing? option in your 
LiveResource to enable it.
use Backpex.LiveResource,
  ...,
  save_and_continue_button?: true
Translations have been updated
We added a new translate/1 callback to LiveResources that allows you to translate and change any text in Backpex.
Previously, we had some callbacks to customize texts in Backpex:
	search_placeholder/0
	create_button_label/0
	resource_created_message/0

Such callbacks are limited and do not scale as we'd need to add another one as soon as someone wants to modify a different text.
Therefore, we removed all of the above callbacks.
You can now implement the translate/1 callback in your LiveResource and match on the text. 
Then return any text you would like to replace the original text with.
For example, if you want to change the label of the "Cancel" and "Save" label in forms as well as the button label for creating a new resource:
# in your LiveResource
@impl Backpex.LiveResource
def translate({"Cancel", _opts}), do: gettext("Go back")
def translate({"Save", _opts}), do: gettext("Continue")
def translate({"New %{resource}", opts}), do: gettext("Create %{resource}", opts)
The opts param contains any bindings you might need for constructing a text.
See Translations Guide for detailed information.
To support the new callback, we needed to update some function and components that you might use in your application.
Backpex.translate/2 has been split into Backpex.translate/2 and Backpex.translate_error/1. See the corresponding function docs for information on how to use them now.
The following components were affected:
	Backpex.HTML.CoreComponents.filter_badge/1
	Backpex.HTML.Form.multi_select/1
	Backpex.HTML.Layout.flash_messages/1
	Backpex.HTML.Layout.theme_selector/1
	Backpex.HTML.Layout.modal/1
	Backpex.HTML.Resource.index_filter/1
	Backpex.HTML.Resource.pagination_info/1
	Backpex.HTML.Resource.pagination/1

If you use any of them, make sure they work as expected. You might need to add certain attributes (see the corresponding component documentation).
Backpex.translate/2 has been split up


  

  
    
    Upgrading to v0.11 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.11

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.11.0"}
    ]
  end
Removed Alpine.js in favor of Backpex JS hooks
We removed the Alpine.js dependency and replaced it with custom hooks. In order to make them work, you now need to
import these Backpex hooks into your JS bundle. If you are not using Alpine.js, you can now remove it so that the
app.js looks something like this:
import { Hooks as BackpexHooks } from 'backpex';

const Hooks = [] // your application hooks (optional)

const liveSocket = new LiveSocket('/live', Socket, {
  params: { _csrf_token: csrfToken },
  hooks: {...Hooks, ...BackpexHooks }
})
Some hooks come with Tailwind classes, so make sure you add the paths to your content section in your tailwind.config.js.
..,
content: [
  ...,
  // add this line
  '../deps/backpex/assets/js/**/*.*js'
]
In case you are using the theme selector, you do not need to add the JS hook for that. It is in included in
BackpexHooks now. But make sure to add this line your app.js to reduce flickering:
BackpexHooks.BackpexThemeSelector.setStoredTheme()
See demo setup for more information.
Parameter changes in core modules
In case you are using Backpex.Resource or one of the Backpex.Adapter modules (Backpex.Adapters.Ecto or
Backpex.Adapters.Ash) directly check out the updated function definitions. This will also apply in case you built your
own adapter.
Make sure to cover all cases with the item_query/3 function
We have removed code that ensures that a fallback item query function is always added to your LiveResource. 
Make sure to always cover all possible cases or add a fallback item_query/3 function that just returns the query.
For example:
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...other options
  adapter_config: [
    # ...other adapter options
    item_query: &__MODULE__.item_query/3
  ]

  def item_query(query, :index, _assigns) do
    query
    |> where([post], post.published)
  end

  # make sure to add this fallback function
  def item_query(query, _live_action, _assigns) do
    query
  end
We removed Ecto.Query import from LiveResource
Previously, we automatically imported Ecto.Query into LiveResources. We removed this behavior,
so you need to import it yourself if you need it, e.g. for the item_query/3 callback.
Component changes
	We have removed the Backpex.HTML.Resource.edit_panel/1 component and replaced it with a more usable Backpex.HTML.Resource.edit_card/1 component.
	We have removed default top margin from Backpex.HTML.Form.error/1 component, but added an attr to set classes from outside



  

  
    
    Upgrading to v0.10 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.10

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.10.0"}
    ]
  end
LiveView 1.0
See phoenix_live_view changelog for info on how to upgrade to 1.0.


  

  
    
    Upgrading to v0.9 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.9

Bump your deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.9.0"}
    ]
  end
Refactor calls to Backpex.HTML.Form.field_input/1
We've refactored the Backpex.HTML.Form.field_input/1 component and renamed it to Backpex.HTML.Form.input/1.
	It doesn't rely on a field_options map anymore (instead all options must be passed explicitly)
	It now supports lists for all class attributes (class, input_class and input_wrapper_class)
	It now accepts a translate_error_fun attribute

In addition, the input_class and input_wrapper_class attributes now completely override the defaults.
Make sure to update your calls to Backpex.HTML.Form.field_input/1. This may apply to your custom fields as well.
Before:
@impl Backpex.Field
def render_form(assigns) do
  ~H"""
  <div>
    <Layout.field_container>
      <:label align={Backpex.Field.align_label(@field_options, assigns, :center)}>
        <Layout.input_label text={@field_options[:label]} />
      </:label>
      <BackpexForm.field_input type="text" field={@form[@name]} field_options={@field_options} />
    </Layout.field_container>
  </div>
  """
end
After:
@impl Backpex.Field
def render_form(assigns) do
  ~H"""
  <div>
    <Layout.field_container>
      <:label align={Backpex.Field.align_label(@field_options, assigns, :center)}>
        <Layout.input_label text={@field_options[:label]} />
      </:label>
      <BackpexForm.input
        type="text"
        field={@form[@name]}
        translate_error_fun={Backpex.Field.translate_error_fun(@field_options, assigns)}
        phx-debounce={Backpex.Field.debounce(@field_options, assigns)}
        phx-throttle={Backpex.Field.throttle(@field_options, assigns)}
      />
    </Layout.field_container>
  </div>
  """
end
Backpex.LiveResource function usage
Although the change is relatively small, if you are using public functions of the Backpex.LiveResource directly,
check the updated function definitions in the module documentation.
Refactor custom fields
In case you built your own custom fields: We changed the way how to use the Backpex.Field.
Before:
  use BackpexWeb, :field
After:
  use Backpex.Field
In case your field has field-specific configuration options, you need to provide those when using Backpex.Field:
  @config_schema [
    # see https://hexdocs.pm/nimble_options/NimbleOptions.html
    # or any other core backpex field for examples...
  ]

  use Backpex.Field, config_schema: @config_schema
Removed string support on throttle field options
The fields that allow the throttle options previously supported a string value (e.g. "500").
Please change it to an integer value (e.g. 500).
Resource Action and Item Action init_change/1 is renamed
The term init_change was confusing because the result is being used as the base schema / item for the changeset function. Therefore we renamed the function to base_schema/1 for both Item Actions and Resource Actions.
Resource Action and Item Action handle functions behave differently
Both Item Action and Resource Action handle functions now have to return either {:ok, socket} or {:error, changeset}. A flash message is no longer added to the socket automatically.
Make sure to read the improved documentation for the handle functions to understand how you should use them now:
	Backpex.ItemAction.handle/3
	Backpex.ResourceAction.handle/2

Translate new texts
The latest version of Backpex introduces the following texts
	"Save & Continue Editing"

Make sure you translate these texts in your translation files.


  

  
    
    Upgrading to v0.8 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.8

Bump your deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.8.0"}
    ]
  end
Introduction of the adapter pattern
Changed Backpex.LiveResource configuration
With this version of Backpex we are starting to implement the adapter pattern for flexible data layers.
Going forward you need to move adapter-specific configuration to the adapter_config options. Before:
  use Backpex.LiveResource,
    layout: {DemoWeb.Layouts, :admin},
    schema: Demo.User,
    repo: Demo.Repo,
    update_changeset: &Demo.User.changeset/3,
    create_changeset: &Demo.User.changeset/3,
    pubsub: Demo.PubSub,
    topic: "users",
    event_prefix: "user_"
After:
  use Backpex.LiveResource,
    adapter: Backpex.Adapters.Ecto,
    adapter_config: [
      schema: Demo.User,
      repo: Demo.Repo,
      update_changeset: &Demo.User.changeset/3,
      create_changeset: &Demo.User.changeset/3,
    ],
    layout: {DemoWeb.Layouts, :admin},
    pubsub: [
      name: Demo.PubSub,
      topic: "users",
      event_prefix: "user_"
    ]
The adapter key is optional and defaults to Backpex.Adapters.Ecto. See Backpex.Adapter for more information.
As you may have noticed in the above example, we also changed the pubsub configuration syntax. 
You now have to provide a Keyword list with the name, topic and event_prefix key (see below).
In addition, all options of the LiveResource and the corresponding adapters are now validated at compile time.
Refactor item query
With the release of the adapter pattern, the item_query/3 function has to be configured in the adapter config.
If you had an item_query/3 configuration like this:
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...options

  @impl Backpex.LiveResource
  def item_query(query, :index, _assigns) do
    query
    |> where([post], post.published)
  end
change it to an adapter config:
# in your resource configuration file (live resource)
use Backpex.LiveResource,
  # ...other options
  adapter_config: [
    # ...other adapter options
    item_query: &__MODULE__.item_query/3
  ]

  def item_query(query, :index, _assigns) do
    query
    |> where([post], post.published)
  end

  def item_query(query, _live_action_, _assigns) do
    query
  end
See Item Query documentation for more information.
Note that the item_query/3 function is only used in Backpex.Adapters.Ecto.

Changed Backpex.Resource parameters
If you are not using this module directly in your code, you can safely ignore this section.
All functions in the Backpex.Resource module previously expected adapter specific parameters like repo and schema.
This is now simplified to just the live_resource. See Backpex.Resource for the updated functions.
PubSub configuration syntax has changed
We have changed the syntax for configuring PubSub. You now have to provide a keyword list with the name, topic and 
event_prefix keys instead of separate options.
  use Backpex.LiveResource,
    ...
    pubsub: Demo.PubSub,
    topic: "users",
    event_prefix: "user_"
After:
  use Backpex.LiveResource,
    ...
    pubsub: [
      name: Demo.PubSub,
      topic: "users",
      event_prefix: "user_"
    ]
Removed the ability to disable PubSub
We have stated in our documentation that you must configure PubSub in your LiveResource. However, you could set pubsub 
to false, which prevented PubSub events from being sent. We have removed this behavior and setting  pubsub to false 
will result in an error.
This configuration is not possible anymore:
  use Backpex.LiveResource,
    ...
    pubsub: false
No anonymous functions in LiveResource configuration anymore
it is no longer possible to use an anonymous function in LiveResource configuration options.
If you had something like this:
use Backpex.LiveResource,
  init_order: fn _assigns -> %{by: :username, direction: :asc} end
you have to change it to this:
use Backpex.LiveResource,
  init_order: &__MODULE__.init_order/1

def init_order(_assigns) do
  %{by: :username, direction: :asc}
end


  

  
    
    Upgrading to v0.7 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.7

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.7.0"}
    ]
  end
Update calls to Backpex.Field.handle_index_editable/2
We have updated the arity and syntax of Backpex.Field.handle_index_editable/2. It is now Backpex.Field.handle_index_editable/3 and accepts the socket, the value and the change. We now need the value to update the form accordingly.
If you had code like this, e.g. for custom fields:
@impl Phoenix.LiveComponent
def handle_event("update-field", %{"index_form" => %{"value" => value}}, socket) do
  Backpex.Field.handle_index_editable(socket, %{} |> Map.put(socket.assigns.name, value))
end
it should now look like this
@impl Phoenix.LiveComponent
def handle_event("update-field", %{"index_form" => %{"value" => value}}, socket) do
  Backpex.Field.handle_index_editable(socket, value, Map.put(%{}, socket.assigns.name, value))
end
Update calls to Backpex.Resource
We have updated certain functions in Backpex.Resource.
The following functions are affected:
	update/6 (update/5 before)
	insert/6 (insert/5 before)
	change/7
	put_assocs/2 (has been removed)

If you call one of these functions in your application, you will probably need to update the function call.
See Backpex.Resource for the updated documentation of the functions.
Update your Item Actions
We've changed the arity of some item action callback functions.
	icon/1 becomes icon/2
	label/1 becomes label/2 

Both callback functions now receive the item as the second parameter. This allows you to construct the icon and label based on the corresponding item.
If you had an item action with code like this
@impl Backpex.ItemAction
def icon(assigns) do
 ...
end

@impl Backpex.ItemAction
def label(_assigns) do
  ...
end
it should now look like this
@impl Backpex.ItemAction
def icon(assigns, _item) do
 ...
end

@impl Backpex.ItemAction
def label(_assigns, _item) do
  ...
end
Read more about the new item parameter in the item action guide.


  

  
    
    Upgrading to v0.6 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.6

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.6.0"}
    ]
  end
Change Backpex.Fields.ManyToMany to Backpex.Fields.HasMany
With version 0.6, we have combined the Backpex.Fields.ManyToMany and Backpex.Fields.HasMany field. The functionality of the fields is now combined in the Backpex.Fields.HasMany field. The API of the field has not changed, so you can simply replace Backpex.Fields.ManyToMany with Backpex.Fields.HasMany in your resource configuration.


  

  
    
    Upgrading to v0.5 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.5

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.5.0"}
    ]
  end
Uploads: Item in consume_upload/4 now contains changes
Previously, we passed the item without its changes to the consume_upload/4 callback function. With 0.5, we now pass the persisted item (with its changes) to the function.
Resource Actions now receive the data instead of the params
Previously, Resource Actions received the params from the form. With 0.5, Resource Actions now receive the data from the form. The data is a map that contains the casted and validated data from the form (received from Ecto.Changeset.apply_action/2).
If you had a resource action like this:
defmodule MyAppWeb.Admin.ResourceActions.Invite do
    # ...

    @impl Backpex.ResourceAction
    def handle(_socket, params) do
        # Send invite mail to users

        # We suppose there was no error sending the mail.
        if true do
            {:ok, "An invitation email to #{params["email"]} was sent successfully."}
        else
            {:error, "An error occurred while sending an invitation email to  #{params["email"]}!"}
        end
    end
end
You should update it to:
defmodule MyAppWeb.Admin.ResourceActions.Invite do
    # ...

    @impl Backpex.ResourceAction
    def handle(_socket, data) do
        # Send invite mail to users

        # We suppose there was no error sending the mail.
        if true do
            {:ok, "An invitation email to #{data.email} was sent successfully."}
        else
            {:error, "An error occurred while sending an invitation email to  #{data.email}!"}
        end
    end
end
Note that the data is now casted. Therefore you now have atom keys instead of string keys.
Item Actions now receive the data instead of the params
Previously, Item Actions received the params from the form. With 0.5, Item Actions now receive the data from the form. The data is a map that contains the casted and validated data from the form (received from Ecto.Changeset.apply_action/2).
If you had an item action like this:
defmodule MyAppWeb.Admin.ItemActions.Delete do
    # ...

    @impl Backpex.ItemAction
    def handle(socket, items, params) do
        datetime = DateTime.truncate(DateTime.utc_now(), :second)

        socket =
            try do
                {:ok, _count} =
                    Backpex.Resource.update_all(
                        socket.assigns,
                        items,
                        [set: [deleted_at: datetime, reason: params["reason"]]],
                        "deleted"
                    )

                socket
                |> clear_flash()
                |> put_flash(:info, "Item(s) successfully deleted.")
            rescue
                socket
                |> clear_flash()
                |> put_flash(:error, error)
            end

        {:noreply, socket}
    end
end
You should update it to:
defmodule MyAppWeb.Admin.ItemActions.Delete do
    # ...

    @impl Backpex.ItemAction
    def handle(socket, items, data) do
        datetime = DateTime.truncate(DateTime.utc_now(), :second)

        socket =
            try do
                {:ok, _count} =
                    Backpex.Resource.update_all(
                        socket.assigns,
                        items,
                        [set: [deleted_at: datetime, reason: data.reason]],
                        "deleted"
                )

                socket
                |> clear_flash()
                |> put_flash(:info, "Item(s) successfully deleted.")
            rescue
                socket
                |> clear_flash()
                |> put_flash(:error, error)
            end

        {:noreply, socket}
    end
end
Note that the data is now casted. Therefore you now have atom keys instead of string keys.
Refactor the use of icons
We have refactored the way we use icons in Backpex. Previously, we installed the Heroicons hex.pm package. We now require a Tailwind plugin that generates the styles for a new Backpex.HTML.CoreComponents.icon/1 component. This is the default way of using heroicons in new Phoenix projects. We documented the new way in the installation guide.


  

  
    
    Upgrading to v0.3 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.3

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.3.0"}
    ]
  end
Update calls to Backpex.Resource
We have updated certain functions in Backpex.Resource to make them more explicit and usable from outside. 
The following functions are affected:
	Backpex.Resource.get!/5 (get/4 before)
	Backpex.Resource.delete/3 (delete/2 before)
	Backpex.Resource.delete_all/4 (delete_all/2 before)
	Backpex.Resource.update/5 (update/2 before)
	Backpex.Resource.update_all/6 (update_all/4 before)
	Backpex.Resource.insert/5 (insert/2 before)

If you call one of these functions in your application, you will probably need to update the function call.
We added extensive documentation to the updated functions in Backpex.Resource.
See Pull Request #269 for more information.
Update Upload callback functions
We have updated Backpex.Fields.Upload and improved uploads in Backpex:
	Uploaded and existing files are now included in the change to allow them to be validated in the changeset
	Uploads can be required
	Uploads are not removed until form is saved
	Form field errors are displayed for upload field

For these requirements we have simplified the functions in Backpex.FormComponent and adapted the validation flow to classic Phoenix applications.
We also updated the callback functions / options used for Backpex.Fields.Upload. Among other things, we have split consume/2 into several callbacks (put_upload_change/6 and consume_upload/4). This allows developers to put uploaded files to the change before consuming the uploads. This makes it possible to do validation on uploads (e.g. require files to be uploaded).
We have also rewritten all the upload documentation in Backpex.Fields.Upload. It contains full examples for single and multiple upload fields.
We recommend that you read the new upload documentation and adapt the callback functions in your application accordingly.
See Pull Request #269 for more information.


  

  
    
    Upgrading to v0.2 - Backpex v0.15.2
    
    

    


  
  

    Upgrading to v0.2

Bump Your Deps
Update Backpex to the latest version:
  defp deps do
    [
      {:backpex, "~> 0.2.0"}
    ]
  end
Pass assigns to init_change functions
We change the arity of the init_change/0 function to init_change/1 for resource and item actions.
The param will be the assigns. This adds more ways to construct an initial change.
If you had such a function in your resource or item action:
@impl Backpex.ItemAction
def init_change() do
  # construct init change
end
You need to change it to this:
@impl Backpex.ItemAction
def init_change(_assigns) do
  # construct init change
end
Change arity of changeset functions
See Pull Request.
We are introducing a new way to pass metadata to changeset functions. Previously, we supported changeset functions with
different arities to optionally pass the assigns and target name to changesets.
With this release, we require the arity of all changeset functions you provide to be 3.
The metadata, previously passed as additional parameters, is now passed as a keyword list to changesets as the third parameter.
Currently we pass the following metadata to changesets:
	:assigns - the assigns
	:target - the name of the form target that triggered the changeset call

When you previously had a LiveResource and Schema that looked like the following:
defmodule MyAppWeb.UserLive do
  use Backpex.LiveResource,
      ...
      update_changeset: &MyApp.User.changeset/2,
      create_changeset: &MyApp.User.changeset/2,
end


defmodule MyApp.User do
  ...

  def changeset(user, attrs) do
      ...
  end
end
You have to change it to this:
defmodule MyAppWeb.UserLive do
  use Backpex.LiveResource,
    ...
    update_changeset: &MyApp.User.changeset/3,
    create_changeset: &MyApp.User.changeset/3,
end


defmodule MyApp.User do
  ...

  def changeset(user, attrs, metadata) do
    # fetch assigns from metadata
    assigns = Keyword.get(metadata, :assigns)

    # fetch target from metadata
    assigns = Keyword.get(metadata, :target)

    ...
  end
end
This change applies to Resource and Item Actions as well.
For example:
defmodule MyApp.EmailResourceAction
  use Backpex.ResourceAction

  @impl Backpex.ResourceAction
  def changeset(change, attrs, _metadata \\ []) do
    ...
  end
end
Update prompt option
With v0.2 we are updating the prompt option for fields. This affects to the following fields: BelongsTo, Select, HasMany, ManyToMany and MultiSelect. 
The prompt option can be raw text or a function that takes the assigns and returns text. 
We no longer support adding additional options.
If you previously had a field that looked like the following:
def fields do
  [
    user: %{
      module: Backpex.Fields.BelongsTo,
      label: "Author",
      prompt: [key: "Please select an author", disabled: true],
      ...
    },
  ]
end
You need to change it to the following:
def fields do
  [
    user: %{
      module: Backpex.Fields.BelongsTo,
      label: "Author",
      prompt: "Please select an author",
      ...
    },
  ]
end


  

  
    
    Backpex - Backpex v0.15.2
    
    

    


  
  

    
Backpex 
    



      
Backpex provides an easy way to manage existing resources in your application.

      


      
        Summary


  
    Functions
  


    
      
        translate(msg, live_resource \\ nil)

      


        Translates a text with the configured translator_function. If a live_resource is given, it calls the LiveResource's translate callback.



    


    
      
        translate_error(msg)

      


        Translates an error text with the configured error_translator_function.



    





      


      
        Functions


        


    

  
    
      
    
    
      translate(msg, live_resource \\ nil)



        
          
        

    

  


  

Translates a text with the configured translator_function. If a live_resource is given, it calls the LiveResource's translate callback.
Examples
Backpex.translate("Hello")

Backpex.translate({"Hello %{name}", %{name: "World"}})

Backpex.translate("Welcome", MyApp.LiveResource)

  



  
    
      
    
    
      translate_error(msg)



        
          
        

    

  


  

Translates an error text with the configured error_translator_function.
Examples
Backpex.translate_error("can't be blank")

Backpex.translate_error({"must be greater than %{number}", %{number: 0}})

  


        

      


  

  
    
    Backpex.CookieController - Backpex v0.15.2
    
    

    


  
  

    
Backpex.CookieController 
    




      
        Summary


  
    Functions
  


    
      
        update(conn, map)

      


    





      


      
        Functions


        


  
    
      
    
    
      update(conn, map)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Ecto.Amount.Type - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Ecto.Amount.Type 
    



      
Provides a type for Ecto to store a amount.
The underlying data type should be an integer.
Migration
create table(:my_table) do
  add :amount, :integer
end
Schema
schema "my_table" do
  field :amount, Backpex.Ecto.Amount.Type
end

schema "my_table" do
  field :amount, Backpex.Ecto.Amount.Type, currency: :EUR, separator: ".", delimiter: ","
end

      


      
        Summary


  
    Functions
  


    
      
        cast(str, opts)

      


        Callback implementation for Ecto.ParameterizedType.cast/2.



    


    
      
        dump(int, dumper, opts)

      


        Callback implementation for Ecto.ParameterizedType.dump/3.



    


    
      
        init(opts)

      


        Callback implementation for Ecto.ParameterizedType.init/1.



    


    
      
        load(int, loader, opts)

      


        Callback implementation for Ecto.ParameterizedType.load/3.



    


    
      
        type(params)

      


        Callback implementation for Ecto.ParameterizedType.type/1.



    





      


      
        Functions


        


  
    
      
    
    
      cast(str, opts)



        
          
        

    

  


  

Callback implementation for Ecto.ParameterizedType.cast/2.

  



  
    
      
    
    
      dump(int, dumper, opts)



        
          
        

    

  


  

Callback implementation for Ecto.ParameterizedType.dump/3.

  



  
    
      
    
    
      init(opts)



        
          
        

    

  


  

Callback implementation for Ecto.ParameterizedType.init/1.

  



  
    
      
    
    
      load(int, loader, opts)



        
          
        

    

  


  

Callback implementation for Ecto.ParameterizedType.load/3.

  



  
    
      
    
    
      type(params)



        
          
        

    

  


  

Callback implementation for Ecto.ParameterizedType.type/1.

  


        

      


  

  
    
    Backpex.FormComponent - Backpex v0.15.2
    
    

    


  
  

    
Backpex.FormComponent 
    



      
The form live component.

      


      
        Summary


  
    Functions
  


    
      
        handle_event(msg, params, socket)

      


        Callback implementation for Phoenix.LiveComponent.handle_event/3.



    


    
      
        render(assigns)

      


        Callback implementation for Phoenix.LiveComponent.render/1.



    


    
      
        update(assigns, socket)

      


        Callback implementation for Phoenix.LiveComponent.update/2.



    





      


      
        Functions


        


  
    
      
    
    
      handle_event(msg, params, socket)



        
          
        

    

  


  

Callback implementation for Phoenix.LiveComponent.handle_event/3.

  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Callback implementation for Phoenix.LiveComponent.render/1.

  



  
    
      
    
    
      update(assigns, socket)



        
          
        

    

  


  

Callback implementation for Phoenix.LiveComponent.update/2.

  


        

      


  

  
    
    Backpex.InitAssigns - Backpex v0.15.2
    
    

    


  
  

    
Backpex.InitAssigns 
    



      
Ensures Backpex assigns are applied to all LiveViews attaching this hook.

      


      
        Summary


  
    Functions
  


    
      
        on_mount(atom, params, session, socket)

      


    





      


      
        Functions


        


  
    
      
    
    
      on_mount(atom, params, session, socket)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.LiveResource - Backpex v0.15.2
    
    

    


  
  

    
Backpex.LiveResource behaviour
    



      
A LiveResource makes it easy to manage existing resources in your application. It provides extensive configuration options in order to meet everyone's needs. In connection with Backpex.Components you can build an individual admin dashboard on top of your application in minutes.
use Backpex.LiveResource
When you use Backpex.LiveResource, the Backpex.LiveResource module will set @behavior Backpex.LiveResource. Additionally it will create a LiveView based on the given configuration in order to create fully functional index, show, new and edit views for a resource. It will also insert fallback functions that can be overridden.

      


      
        Summary


  
    Callbacks
  


    
      
        can?(assigns, action, item)

      


        The function that can be used to restrict access to certain actions. It will be called before performing
an action and aborts when the function returns false.



    


    
      
        fields()

      


        A list of fields defining your resource. See Backpex.Field.



    


    
      
        filters()

      


        A optional keyword list of filters to be used on the index view.



    


    
      
        filters(assigns)

      


        A optional keyword list of filters to be used on the index view.



    


    
      
        index_row_class(assigns, item, selected, index)

      


        An extra class to be added to table rows on the index view.



    


    
      
        item_actions(default_actions)

      


        A list of item_actions that may be performed on (selected) items.



    


    
      
        metrics()

      


        A list of metrics shown on the index view of your resource.



    


    
      
        on_item_created(socket, item)

      


        This function is executed when an item has been created.



    


    
      
        on_item_deleted(socket, item)

      


        This function is executed when an item has been deleted.



    


    
      
        on_item_updated(socket, item)

      


        This function is executed when an item has been updated.



    


    
      
        panels()

      


        A list of panels to group certain fields together.



    


    
      
        plural_name()

      


        The plural name of the resource used for translations and titles.



    


    
      
        render_resource_slot(assigns, action, position)

      


        The function that can be used to add content to certain positions on Backpex views. It may also be used to overwrite content.



    


    
      
        resource_actions()

      


        A list of resource_actions that may be performed on the given resource.



    


    
      
        return_to(socket, assigns, live_action, form_action, item)

      


        This function navigates to the specified path when an item has been created or updated. Defaults to the previous resource path (index or show).



    


    
      
        singular_name()

      


        The singular name of the resource used for translations and titles.



    


    
      
        translate(msg)

      


        This function can be used to provide custom translations for texts. See the translations guide for detailed information.



    





  
    Functions
  


    
      
        __using__(opts)

      


        Uses LiveResource in the current module to make it a LiveResource.



    


    
      
        active_filters(assigns)

      


        Returns list of active filters.



    


    
      
        assign_changeset(socket, changeset_function, item, fields, live_action)

      


    


    
      
        build_criteria(assigns)

      


    


    
      
        calculate_total_pages(items_length, per_page)

      


        Calculates the total amount of pages.



    


    
      
        default_attrs(arg1, fields, assigns)

      


    


    
      
        empty_filter_key()

      


    


    
      
        fields(live_resource, live_action, assigns)

      


        Returns the fields of the given Backpex.LiveResource.



    


    
      
        fields_by_action(fields, action)

      


        Returns filtered fields by a certain action.



    


    
      
        fields_by_can(fields, assigns)

      


        Returns filtered fields by the result of the implemented can? function.



    


    
      
        filter_field_by_action(field_options, action)

      


        Filters a field by a given action. It checks whether the field contains the only or
except key and decides whether or not to keep the field.



    


    
      
        filter_options(arg1, filter_configs)

      


        Returns all filter options.



    


    
      
        get_filter_options(query_options)

      


        Returns list of filter options from query options



    


    
      
        get_valid_filters_from_params(params, valid_filters, empty_filter_key)

      


    


    
      
        insert_on_mount_hooks(hooks)

      


    


    
      
        order_options_by_params(params, fields, init_order, assigns)

      


        Returns order options by params.



    


    
      
        orderable?(field)

      


        Checks whether a field is orderable or not.



    


    
      
        orderable_fields(fields)

      


        Returns all orderable fields. A field is orderable by default.



    


    
      
        parse_integer(map, key, default)

      


        Parses integer text representation map value of the given key. If the map does not contain the given key or parsing fails
the default value is returned.



    


    
      
        primary_value(item, live_resource)

      


    


    
      
        pubsub(live_resource)

      


        Returns the pubsub settings for the current LiveResource.



    


    
      
        resolve_init_order(init_order, assigns)

      


        Resolves the initial order configuration.



    


    
      
        search_options(params, fields, schema)

      


        Returns all search options.



    


    
      
        searchable_fields(fields)

      


        Returns all searchable fields. A field is not searchable by default.



    


    
      
        validate_page(page, total_pages)

      


        Validates a page number.



    


    
      
        value_in_permitted_or_default(value, permitted, default)

      


        Checks whether the given value is in a list of permitted values. Otherwise return default value.



    





      


      
        Callbacks


        


  
    
      
    
    
      can?(assigns, action, item)



        
          
        

    

  


  

      

          @callback can?(assigns :: map(), action :: atom(), item :: map() | nil) :: boolean()


      


The function that can be used to restrict access to certain actions. It will be called before performing
an action and aborts when the function returns false.

  



  
    
      
    
    
      fields()



        
          
        

    

  


  

      

          @callback fields() :: list()


      


A list of fields defining your resource. See Backpex.Field.

  



  
    
      
    
    
      filters()



        
          
        

    

  


  

      

          @callback filters() :: keyword()


      


A optional keyword list of filters to be used on the index view.

  



  
    
      
    
    
      filters(assigns)



        
          
        

    

  


  

      

          @callback filters(assigns :: map()) :: keyword()


      


A optional keyword list of filters to be used on the index view.

  



  
    
      
    
    
      index_row_class(assigns, item, selected, index)



        
          
        

    

  


  

      

          @callback index_row_class(
  assigns :: map(),
  item :: map(),
  selected :: boolean(),
  index :: integer()
) ::
  binary() | nil


      


An extra class to be added to table rows on the index view.

  



  
    
      
    
    
      item_actions(default_actions)



        
          
        

    

  


  

      

          @callback item_actions(default_actions :: [map()]) :: list()


      


A list of item_actions that may be performed on (selected) items.

  



  
    
      
    
    
      metrics()



        
          
        

    

  


  

      

          @callback metrics() :: keyword()


      


A list of metrics shown on the index view of your resource.

  



  
    
      
    
    
      on_item_created(socket, item)



        
          
        

    

  


  

      

          @callback on_item_created(socket :: Phoenix.LiveView.Socket.t(), item :: map()) ::
  Phoenix.LiveView.Socket.t()


      


This function is executed when an item has been created.

  



  
    
      
    
    
      on_item_deleted(socket, item)



        
          
        

    

  


  

      

          @callback on_item_deleted(socket :: Phoenix.LiveView.Socket.t(), item :: map()) ::
  Phoenix.LiveView.Socket.t()


      


This function is executed when an item has been deleted.

  



  
    
      
    
    
      on_item_updated(socket, item)



        
          
        

    

  


  

      

          @callback on_item_updated(socket :: Phoenix.LiveView.Socket.t(), item :: map()) ::
  Phoenix.LiveView.Socket.t()


      


This function is executed when an item has been updated.

  



  
    
      
    
    
      panels()



        
          
        

    

  


  

      

          @callback panels() :: list()


      


A list of panels to group certain fields together.

  



  
    
      
    
    
      plural_name()



        
          
        

    

  


  

      

          @callback plural_name() :: binary()


      


The plural name of the resource used for translations and titles.

  



  
    
      
    
    
      render_resource_slot(assigns, action, position)



        
          
        

    

  


  

      

          @callback render_resource_slot(assigns :: map(), action :: atom(), position :: atom()) ::
  %Phoenix.LiveView.Rendered{
    caller: term(),
    dynamic: term(),
    fingerprint: term(),
    root: term(),
    static: term()
  }


      


The function that can be used to add content to certain positions on Backpex views. It may also be used to overwrite content.
See the following list for the available positions and the corresponding actions:
	all actions	:before_page_title
	:page_title
	:before_main
	:main
	:after_main


	:index action	:before_actions
	:actions
	:before_filters
	:filters
	:before_metrics
	:metrics




  



  
    
      
    
    
      resource_actions()



        
          
        

    

  


  

      

          @callback resource_actions() :: list()


      


A list of resource_actions that may be performed on the given resource.

  



  
    
      
    
    
      return_to(socket, assigns, live_action, form_action, item)



        
          
        

    

  


  

      

          @callback return_to(
  socket :: Phoenix.LiveView.Socket.t(),
  assigns :: map(),
  live_action :: atom(),
  form_action :: atom(),
  item :: map()
) :: binary()


      


This function navigates to the specified path when an item has been created or updated. Defaults to the previous resource path (index or show).

  



  
    
      
    
    
      singular_name()



        
          
        

    

  


  

      

          @callback singular_name() :: binary()


      


The singular name of the resource used for translations and titles.

  



  
    
      
    
    
      translate(msg)



        
          
        

    

  


  

      

          @callback translate(msg :: tuple()) :: binary()


      


This function can be used to provide custom translations for texts. See the translations guide for detailed information.
Examples
# in your LiveResource

@impl Backpex.LiveResource
def translate({"Cancel", _opts}), do: gettext("Go back")
def translate({"Save", _opts}), do: gettext("Continue")
def translate({"New %{resource}", opts}), do: gettext("Create %{resource}", opts)

  


        

      

      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Uses LiveResource in the current module to make it a LiveResource.
use Backpex.LiveResource,
  adapter_config: [
    schema: MyApp.User,
    repo: MyApp.Repo,
    update_changeset: &MyApp.User.update_changeset/3,
    create_changeset: &MyApp.User.create_changeset/3
  ],
  layout: {MyAppWeb.LayoutView, :admin}
  # ...
Options
	:adapter (atom/0) - The data layer adapter to use. The default value is Backpex.Adapters.Ecto.

	:adapter_config (keyword/0) - Required. The configuration for the data layer. See corresponding adapter for possible configuration values.

	:primary_key (atom/0) - The primary key used for identifying items. The default value is :id.

	:layout - Required. Layout to be used by the LiveResource.

	:pubsub (keyword/0) - PubSub configuration.
	:server (atom/0) - PubSub server of the project.

	:topic (String.t/0) - The topic for PubSub.
By default a stringified version of the live resource module name is used.



	:per_page_options (list of integer/0) - The page size numbers you can choose from. The default value is [15, 50, 100].

	:per_page_default (integer/0) - The default page size number. The default value is 15.

	:init_order - Order that will be used when no other order options are given. The default value is {:%{}, [], [by: :id, direction: :asc]}.

	:fluid? (boolean/0) - If the layout fills out the entire width. The default value is false.

	:full_text_search (atom/0) - The name of the generated column used for full text search. The default value is nil.

	:save_and_continue_button? (boolean/0) - If the "Save & Continue editing" button is shown on form views. The default value is false.

	:on_mount - An optional list of hooks to attach to the mount lifecycle. Passing a single value is also accepted.
See https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html#on_mount/1



  



  
    
      
    
    
      active_filters(assigns)



        
          
        

    

  


  

Returns list of active filters.

  



  
    
      
    
    
      assign_changeset(socket, changeset_function, item, fields, live_action)



        
          
        

    

  


  


  



  
    
      
    
    
      build_criteria(assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      calculate_total_pages(items_length, per_page)



        
          
        

    

  


  

Calculates the total amount of pages.
Examples
iex> Backpex.LiveResource.calculate_total_pages(1, 2)
1
iex> Backpex.LiveResource.calculate_total_pages(10, 10)
1
iex> Backpex.LiveResource.calculate_total_pages(20, 10)
2
iex> Backpex.LiveResource.calculate_total_pages(25, 6)
5

  



  
    
      
    
    
      default_attrs(arg1, fields, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      empty_filter_key()



        
          
        

    

  


  


  



  
    
      
    
    
      fields(live_resource, live_action, assigns)



        
          
        

    

  


  

Returns the fields of the given Backpex.LiveResource.
Each field is validated against each fields config schema and filtered by the live_action and
the fields can? options.

  



  
    
      
    
    
      fields_by_action(fields, action)



        
          
        

    

  


  

Returns filtered fields by a certain action.
Example
iex> Backpex.LiveResource.fields_by_action([field1: %{label: "Field1"}, field2: %{label: "Field2"}], :index)
[field1: %{label: "Field1"}, field2: %{label: "Field2"}]
iex> Backpex.LiveResource.fields_by_action([field1: %{label: "Field1", except: [:show]}, field2: %{label: "Field2"}], :show)
[field2: %{label: "Field2"}]
iex> Backpex.LiveResource.fields_by_action([field1: %{label: "Field1", only: [:index]}, field2: %{label: "Field2"}], :show)
[field2: %{label: "Field2"}]

  



  
    
      
    
    
      fields_by_can(fields, assigns)



        
          
        

    

  


  

Returns filtered fields by the result of the implemented can? function.
Example
> Backpex.LiveResource.fields_by_can([field1: %{label: "Field1"}], %{})
[field1: %{label: "Field1"}]
> Backpex.LiveResource.fields_by_can([field1: %{label: "Field1", can?: fn _assigns -> true end}, field2: %{label: "Field2", can?: fn _assigns -> true end}], %{})
[field1: %{label: "Field1"}, field2: %{label: "Field2"}]
> Backpex.LiveResource.fields_by_can([field1: %{label: "Field1", can?: fn _assigns -> false end}, field2: %{label: "Field2", can?: fn _assigns -> true end}], %{})
[field2: %{label: "Field2"}]
> Backpex.LiveResource.fields_by_can([field1: %{label: "Field1", can?: fn _assigns -> false end}], %{})
[]

  



  
    
      
    
    
      filter_field_by_action(field_options, action)



        
          
        

    

  


  

Filters a field by a given action. It checks whether the field contains the only or
except key and decides whether or not to keep the field.
Examples
iex> Backpex.LiveResource.filter_field_by_action(%{only: [:index]}, :index)
true
iex> Backpex.LiveResource.filter_field_by_action(%{only: [:edit]}, :index)
false
iex> Backpex.LiveResource.filter_field_by_action(%{except: [:edit]}, :index)
true
iex> Backpex.LiveResource.filter_field_by_action(%{except: [:index]}, :index)
false

  



  
    
      
    
    
      filter_options(arg1, filter_configs)



        
          
        

    

  


  

Returns all filter options.

  



  
    
      
    
    
      get_filter_options(query_options)



        
          
        

    

  


  

Returns list of filter options from query options

  



  
    
      
    
    
      get_valid_filters_from_params(params, valid_filters, empty_filter_key)



        
          
        

    

  


  


  



  
    
      
    
    
      insert_on_mount_hooks(hooks)


        (macro)


        
          
        

    

  


  


  



  
    
      
    
    
      order_options_by_params(params, fields, init_order, assigns)



        
          
        

    

  


  

Returns order options by params.
Examples
iex> Backpex.LiveResource.order_options_by_params(%{"order_by" => "field", "order_direction" => "asc"}, [field: %{}], %{by: :id, direction: :asc}, %{})
%{order_by: :field, order_direction: :asc}
iex> Backpex.LiveResource.order_options_by_params(%{}, [field: %{}], %{by: :id, direction: :desc}, %{})
%{order_by: :id, order_direction: :desc}
iex> Backpex.LiveResource.order_options_by_params(%{"order_by" => "field", "order_direction" => "asc"}, [field: %{orderable: false}], %{by: :id, direction: :asc}, %{})
%{order_by: :id, order_direction: :asc}

  



  
    
      
    
    
      orderable?(field)



        
          
        

    

  


  

Checks whether a field is orderable or not.
Examples
iex> Backpex.LiveResource.orderable?({:name, %{orderable: true}})
true
iex> Backpex.LiveResource.orderable?({:name, %{orderable: false}})
false
iex> Backpex.LiveResource.orderable?({:name, %{}})
true
iex> Backpex.LiveResource.orderable?(nil)
false

  



  
    
      
    
    
      orderable_fields(fields)



        
          
        

    

  


  

Returns all orderable fields. A field is orderable by default.
Example
iex> Backpex.LiveResource.orderable_fields([field1: %{orderable: true}])
[:field1]
iex> Backpex.LiveResource.orderable_fields([field1: %{}])
[:field1]
iex> Backpex.LiveResource.orderable_fields([field1: %{orderable: false}])
[]

  



  
    
      
    
    
      parse_integer(map, key, default)



        
          
        

    

  


  

Parses integer text representation map value of the given key. If the map does not contain the given key or parsing fails
the default value is returned.
Examples
iex> Backpex.LiveResource.parse_integer(%{number: "1"}, :number, 2)
1
iex> Backpex.LiveResource.parse_integer(%{number: "abc"}, :number, 1)
1

  



  
    
      
    
    
      primary_value(item, live_resource)



        
          
        

    

  


  


  



  
    
      
    
    
      pubsub(live_resource)



        
          
        

    

  


  

Returns the pubsub settings for the current LiveResource.

  



  
    
      
    
    
      resolve_init_order(init_order, assigns)



        
          
        

    

  


  

Resolves the initial order configuration.
Examples
iex> Backpex.LiveResource.resolve_init_order(%{by: :name, direction: :asc}, %{})
%{by: :name, direction: :asc}

iex> Backpex.LiveResource.resolve_init_order(fn _ -> %{by: :age, direction: :desc} end, %{})
%{by: :age, direction: :desc}

iex> Backpex.LiveResource.resolve_init_order(fn assigns -> fn _ -> %{by: assigns.sort_by, direction: :asc} end end, %{sort_by: :date})
** (ArgumentError) init_order function should not return another function

iex> Backpex.LiveResource.resolve_init_order(:invalid, %{})
** (ArgumentError) init_order must be a map with keys :by and :direction, or a function returning such a map. Got: :invalid

  



  
    
      
    
    
      search_options(params, fields, schema)



        
          
        

    

  


  

Returns all search options.

  



  
    
      
    
    
      searchable_fields(fields)



        
          
        

    

  


  

Returns all searchable fields. A field is not searchable by default.
Example
iex> Backpex.LiveResource.searchable_fields([field1: %{searchable: true}])
[:field1]
iex> Backpex.LiveResource.searchable_fields([field1: %{}])
[]
iex> Backpex.LiveResource.searchable_fields([field1: %{searchable: false}])
[]

  



  
    
      
    
    
      validate_page(page, total_pages)



        
          
        

    

  


  

Validates a page number.
Examples
iex> Backpex.LiveResource.validate_page(1, 5)
1
iex> Backpex.LiveResource.validate_page(-1, 5)
1
iex> Backpex.LiveResource.validate_page(6, 5)
5

  



  
    
      
    
    
      value_in_permitted_or_default(value, permitted, default)



        
          
        

    

  


  

Checks whether the given value is in a list of permitted values. Otherwise return default value.
Examples
iex> Backpex.LiveResource.value_in_permitted_or_default(3, [1, 2, 3], 5)
3
iex> Backpex.LiveResource.value_in_permitted_or_default(3, [1, 2], 5)
5

  


        

      


  

  
    
    Backpex.Mix.IgniterHelpers - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Mix.IgniterHelpers 
    



      
Helper functions for the Backpex mix tasks.

      


      
        Summary


  
    Functions
  


    
      
        add_line_to_file(igniter, file_path, new_line)

      


        Updates a file by adding a line if it doesn't already exist.



    


    
      
        exists_in_module?(igniter, module, line)

      


        Checks if a specific string exists within a module's source code.



    


    
      
        npm_package_installed?(package_name)

      


        Checks if an npm package is already installed in the project.



    


    
      
        pubsub_module(igniter)

      


        Gets the Phoenix PubSub module from the application configuration.



    


    
      
        string_in_source?(source, string)

      


        Checks if a specific string exists within a source's content.



    


    
      
        web_folder_path(igniter)

      


        Gets the web folder path for the Phoenix application.



    





      


      
        Functions


        


  
    
      
    
    
      add_line_to_file(igniter, file_path, new_line)



        
          
        

    

  


  

Updates a file by adding a line if it doesn't already exist.

  



  
    
      
    
    
      exists_in_module?(igniter, module, line)



        
          
        

    

  


  

Checks if a specific string exists within a module's source code.

  



  
    
      
    
    
      npm_package_installed?(package_name)



        
          
        

    

  


  

Checks if an npm package is already installed in the project.

  



  
    
      
    
    
      pubsub_module(igniter)



        
          
        

    

  


  

Gets the Phoenix PubSub module from the application configuration.

  



  
    
      
    
    
      string_in_source?(source, string)



        
          
        

    

  


  

Checks if a specific string exists within a source's content.

  



  
    
      
    
    
      web_folder_path(igniter)



        
          
        

    

  


  

Gets the web folder path for the Phoenix application.

  


        

      


  

  
    
    Backpex.Resource - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Resource 
    



      
Generic context module for Backpex resources.
Work in progress
This module is still under heavy development and will change as we progress with the Backpex.Adapter
implementation in the coming releases. Keep this in mind when using this module directly.

      


      
        Summary


  
    Functions
  


    
      
        broadcast(result, event, live_resource)

      


        Broadcasts event on the live_resource topic in case result contains {:ok, item}.



    


    
      
        build_changeset_metadata(assigns, target \\ nil)

      


        Builds metadata passed to changeset functions.



    


    
      
        change(item, attrs, fields, assigns, live_resource, opts \\ [])

      


        Applies a change to a given item by calling the specified changeset function.
In addition, puts the given assocs into the function and calls the Backpex.Field.before_changeset/6 callback for each field.



    


    
      
        count(criteria, fields, assigns, live_resource)

      


        Gets the total count of the current live_resource.
Possibly being constrained the item query and the search- and filter options.



    


    
      
        delete_all(items, live_resource)

      


        Deletes multiple items.
Additionally broadcasts the corresponding event for each deleted item.



    


    
      
        get(primary_value, fields, assigns, live_resource)

      


        Gets a database record with the given fields by the given  primary_value.



    


    
      
        get!(primary_value, fields, assigns, live_resource)

      


        Same as get/4 but returns the result or raises an error.



    


    
      
        insert(item, attrs, fields, assigns, live_resource, opts)

      


        Inserts a new item into a repository with specific parameters and options. It takes a repo module, a changeset function, an item, parameters for the changeset function, and additional options.



    


    
      
        list(criteria, fields, assigns, live_resource)

      


        Returns a list of items by given criteria.



    


    
      
        update(item, attrs, fields, assigns, live_resource, opts \\ [])

      


        Handles the update of an existing item with specific parameters and options. It takes a repo module, a changeset function, an item, parameters for the changeset function, and additional options.



    


    
      
        update_all(items, updates, event_name \\ "updated", live_resource)

      


        Updates multiple items from a given repository and schema.
Additionally broadcasts the corresponding event, when PubSub config is given.



    





      


      
        Functions


        


  
    
      
    
    
      broadcast(result, event, live_resource)



        
          
        

    

  


  

Broadcasts event on the live_resource topic in case result contains {:ok, item}.

  



    

  
    
      
    
    
      build_changeset_metadata(assigns, target \\ nil)



        
          
        

    

  


  

Builds metadata passed to changeset functions.
TODO: move?
Parameters
	assigns: The assigns that will be passed to the changeset function.
	target (optional, default nil): The target to be passed to the changeset function.


  



    

  
    
      
    
    
      change(item, attrs, fields, assigns, live_resource, opts \\ [])



        
          
        

    

  


  

Applies a change to a given item by calling the specified changeset function.
In addition, puts the given assocs into the function and calls the Backpex.Field.before_changeset/6 callback for each field.
Parameters
	item: The initial data structure to be changed.
	attrs: A map of attributes that will be used to modify the item. These attributes are passed to the changeset function.
	fields: The fields for this change.
	assigns: The assigns that will be passed to the changeset function.
	live_resource: The Backpex.LiveResource to be used.
	opts (keyword list): A list of options for customizing the behavior of the change function. The available options are:	assocs (optional, default []): A list of associations that should be put into the changeset.
	target (optional, default nil): The target to be passed to the changeset function.
	action (optional, default :validate): An atom indicating the action to be performed on the changeset.




  



  
    
      
    
    
      count(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Gets the total count of the current live_resource.
Possibly being constrained the item query and the search- and filter options.

  



  
    
      
    
    
      delete_all(items, live_resource)



        
          
        

    

  


  

Deletes multiple items.
Additionally broadcasts the corresponding event for each deleted item.
Parameters
	items (list): A list of structs, each representing an entity to be deleted. The list must contain items that have an id field.
	live_resource (module): The Backpex.LiveResource module.


  



  
    
      
    
    
      get(primary_value, fields, assigns, live_resource)



        
          
        

    

  


  

Gets a database record with the given fields by the given  primary_value.
Returns {:ok, nil} if no result was found.
Parameters
	primary_value: The identifier for the specific item to be fetched.
	assigns (map): The current assigns of the socket.
	live_resource (module): The Backpex.LiveResource module.


  



  
    
      
    
    
      get!(primary_value, fields, assigns, live_resource)



        
          
        

    

  


  

Same as get/4 but returns the result or raises an error.

  



  
    
      
    
    
      insert(item, attrs, fields, assigns, live_resource, opts)



        
          
        

    

  


  

Inserts a new item into a repository with specific parameters and options. It takes a repo module, a changeset function, an item, parameters for the changeset function, and additional options.
Parameters
	item (struct): The Ecto schema struct.
	attrs (map): A map of parameters that will be passed to the changeset_function.
	TODO: docs


  



  
    
      
    
    
      list(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns a list of items by given criteria.
Example criteria:
[
  order: %{by: :item, direction: :asc},
  pagination: %{page: 1, size: 5},
  search: {"hello", [:title, :description]}
]

  



    

  
    
      
    
    
      update(item, attrs, fields, assigns, live_resource, opts \\ [])



        
          
        

    

  


  

Handles the update of an existing item with specific parameters and options. It takes a repo module, a changeset function, an item, parameters for the changeset function, and additional options.
Parameters
	item (struct): The Ecto schema struct.
	attrs (map): A map of parameters that will be passed to the changeset_function.
	TODO: docs


  



    

  
    
      
    
    
      update_all(items, updates, event_name \\ "updated", live_resource)



        
          
        

    

  


  

Updates multiple items from a given repository and schema.
Additionally broadcasts the corresponding event, when PubSub config is given.
Parameters
	items (list): A list of structs, each representing an entity to be updated.
	updates (list): A list of updates passed to Ecto update_all function.
	event_name (string, default: updated): The name to be used when broadcasting the event.
	live_resource (module): The Backpex.LiveResource module.


  


        

      


  

  
    
    Backpex.Router - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Router 
    



      
Provides LiveView routing for Backpex resources.

      


      
        Summary


  
    Functions
  


    
      
        active?(current_path, to_path)

      


        Checks whether the to path is the same as the current path



    


    
      
        backpex_routes()

      


    


    
      
        cookie_path(socket)

      


        Finds the cookie path by the given socket.



    


    
      
        filter_actions(actions, only, except)

      


        Filters actions based on only and except parameters.



    


    
      
        get_path(socket, module, params, action, params_or_item \\ %{})

      


        Finds the raw path by the given socket and module and puts the path params into the raw path.



    


    
      
        get_path(socket, module, params, action, id_or_instance, query_params)

      


    


    
      
        has_resource_actions?(module, live_resource)

      


    


    
      
        live_resources(path, live_resource, options \\ [])

      


        Defines "RESTful" routes for a Backpex resource.



    


    
      
        member?(list, item, default)

      


        Checks whether item is member of list and returns default value if list is nil or empty.



    


    
      
        put_route_params(route, params)

      


        Replace path params with actual params



    





      


      
        Functions


        


  
    
      
    
    
      active?(current_path, to_path)



        
          
        

    

  


  

Checks whether the to path is the same as the current path
Examples
iex> Backpex.Router.active?(URI.new!("https://example.com/admin/events"), "/admin/events")
true
iex> Backpex.Router.active?(URI.new!("https://example.com/admin/events"), "/admin/users")
false

  



  
    
      
    
    
      backpex_routes()


        (macro)


        
          
        

    

  


  


  



  
    
      
    
    
      cookie_path(socket)



        
          
        

    

  


  

Finds the cookie path by the given socket.

  



  
    
      
    
    
      filter_actions(actions, only, except)



        
          
        

    

  


  

Filters actions based on only and except parameters.
Examples
iex> Backpex.Router.filter_actions([:index, :edit, :show], [:index], nil)
[:index]
iex> Backpex.Router.filter_actions([:index, :edit, :show], nil, [:index])
[:edit, :show]
iex> Backpex.Router.filter_actions([:index, :edit, :show], nil, nil)
[:index, :edit, :show]
iex> Backpex.Router.filter_actions([:index, :edit, :show], [], [])
[:index, :edit, :show]

  



    

  
    
      
    
    
      get_path(socket, module, params, action, params_or_item \\ %{})



        
          
        

    

  


  

Finds the raw path by the given socket and module and puts the path params into the raw path.

  



  
    
      
    
    
      get_path(socket, module, params, action, id_or_instance, query_params)



        
          
        

    

  


  


  



  
    
      
    
    
      has_resource_actions?(module, live_resource)



        
          
        

    

  


  


  



    

  
    
      
    
    
      live_resources(path, live_resource, options \\ [])


        (macro)


        
          
        

    

  


  

Defines "RESTful" routes for a Backpex resource.
Options
	:only - Only generate routes for these actions, e.g. [:index, :show] The default value is nil.

	:except - Generate routes for all actions except these, e.g. [:edit] The default value is nil.

	:container (term/0) - An optional tuple for the HTML tag and DOM attributes for the LiveView container The default value is nil.

	:as - Optionally configures the named helper The default value is nil.

	:metadata - A map to optional feed metadata used on telemetry events and route info The default value is nil.

	:private - An optional map of private data to put in the plug connection The default value is nil.


Example
defmodule MyAppWeb.Router
  import Backpex.Router

  scope "/admin", MyAppWeb do
    pipe_through :browser

    live_session :default, on_mount: Backpex.InitAssigns do
      live_resources("/users", UserLive, only: [:index])
      live_resources("/users", UserLive, only: [:index], metadata: %{route_name: :foo, access: :user}
    end
  end
end

  



  
    
      
    
    
      member?(list, item, default)



        
          
        

    

  


  

Checks whether item is member of list and returns default value if list is nil or empty.
Examples
iex> Backpex.Router.member?([:index], :index, true)
true
iex> Backpex.Router.member?([:edit], :index, true)
false
iex> Backpex.Router.member?([], :index, true)
true
iex> Backpex.Router.member?(nil, :index, true)
true

  



  
    
      
    
    
      put_route_params(route, params)



        
          
        

    

  


  

Replace path params with actual params
Examples
iex> Backpex.Router.put_route_params("/:param1/events/:param2/show", %{"param1" => "123", "param2" => "xyz", "test" => "abcdef"})
"/123/events/xyz/show"
iex> Backpex.Router.put_route_params("/:param1/events/:id/edit", %{"param1" => "123", "id" => "xyz"})
"/123/events/xyz/edit"
iex> Backpex.Router.put_route_params("/:param1/events/:id/edit", %{"param1" => "123", "id" => "hällö / world"})
"/123/events/h%C3%A4ll%C3%B6+%2F+world/edit"
iex> Backpex.Router.put_route_params("/events", %{"param1" => "123", "param2" => "xyz"})
"/events"
iex> Backpex.Router.put_route_params("/events", %{})
"/events"
iex> Backpex.Router.put_route_params("/:id/users", %{})
** (ArgumentError) Cannot build route '/:id/users' because required parameter 'id' is missing in the list of params.

  


        

      


  

  
    
    Backpex.ThemeSelectorPlug - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ThemeSelectorPlug 
    



      
Contains a plug that inserts the theme into the assigns

      


      
        Summary


  
    Functions
  


    
      
        call(conn, default)

      


    


    
      
        init(default)

      


    





      


      
        Functions


        


  
    
      
    
    
      call(conn, default)



        
          
        

    

  


  


  



  
    
      
    
    
      init(default)



        
          
        

    

  


  


  


        

      


  

  
    
    BackpexWeb - Backpex v0.15.2
    
    

    


  
  

    
BackpexWeb 
    



      
The entrypoint for defining the web interface of Backpex.
Example
use BackpexWeb, :html

      


      
        Summary


  
    Functions
  


    
      
        __using__(which)

      


        When used, dispatch to the appropriate function.



    


    
      
        field()

      


        Includes all globally available field functions and helpers.



    


    
      
        filter()

      


    


    
      
        html()

      


        Includes all globally available HTML functions and helpers.



    


    
      
        item_action()

      


        Includes all globally available item action functions and helpers.



    


    
      
        metric()

      


    





      


      
        Functions


        


  
    
      
    
    
      __using__(which)


        (macro)


        
          
        

    

  


  

When used, dispatch to the appropriate function.

  



  
    
      
    
    
      field()



        
          
        

    

  


  

Includes all globally available field functions and helpers.

  



  
    
      
    
    
      filter()



        
          
        

    

  


  


  



  
    
      
    
    
      html()



        
          
        

    

  


  

Includes all globally available HTML functions and helpers.

  



  
    
      
    
    
      item_action()



        
          
        

    

  


  

Includes all globally available item action functions and helpers.

  



  
    
      
    
    
      metric()



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Adapter - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Adapter behaviour
    



      
Specification of the datalayer adapter.
Work in progress
The Backpex.Adapter behaviour is currently under heavy development and will change drastically in future updates.
Backpex started out as Ecto-only and this is still deeply embedded in the core. We are working on changing this.
Do not rely on the current API to build new adapters, as the callbacks will still change significantly. This will be
an iterative process over the next few releases.

      


      
        Summary


  
    Callbacks
  


    
      
        change(item, attrs, fields, assigns, live_resource, opts)

      


        Applies a change to a given item.



    


    
      
        count(criteria, fields, assigns, live_resource)

      


        Gets the total count of the current live_resource.
Possibly being constrained the item query and the search- and filter options.



    


    
      
        delete_all(items, live_resource)

      


        Deletes multiple items.



    


    
      
        get(primary_value, fields, assigns, live_resource)

      


        Gets a database record with the given primary key value.



    


    
      
        insert(item, live_resource)

      


        Inserts given item.



    


    
      
        list(criteria, fields, assigns, live_resource)

      


        Returns a list of items by given criteria.



    


    
      
        update(item, live_resource)

      


        Updates given item.



    


    
      
        update_all(items, updates, live_resource)

      


        Updates given items.



    





      


      
        Callbacks


        


  
    
      
    
    
      change(item, attrs, fields, assigns, live_resource, opts)



        
          
        

    

  


  

      

          @callback change(
  item :: struct(),
  attrs :: map(),
  fields :: term(),
  assigns :: list(),
  live_resource :: module(),
  opts :: keyword()
) :: Ecto.Changeset.t()


      


Applies a change to a given item.

  



  
    
      
    
    
      count(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

      

          @callback count(
  criteria :: keyword(),
  fields :: list(),
  assigns :: map(),
  live_resource :: module()
) ::
  {:ok, non_neg_integer()}


      


Gets the total count of the current live_resource.
Possibly being constrained the item query and the search- and filter options.

  



  
    
      
    
    
      delete_all(items, live_resource)



        
          
        

    

  


  

      

          @callback delete_all(items :: [struct()], live_resource :: module()) ::
  {:ok, term()} | {:error, term()}


      


Deletes multiple items.

  



  
    
      
    
    
      get(primary_value, fields, assigns, live_resource)



        
          
        

    

  


  

      

          @callback get(
  primary_value :: term(),
  fields :: list(),
  assigns :: map(),
  live_resource :: module()
) ::
  {:ok, struct() | nil} | {:error, term()}


      


Gets a database record with the given primary key value.
Should return nil if no result was found.

  



  
    
      
    
    
      insert(item, live_resource)



        
          
        

    

  


  

      

          @callback insert(item :: struct(), live_resource :: module()) ::
  {:ok, struct()} | {:error, term()}


      


Inserts given item.

  



  
    
      
    
    
      list(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

      

          @callback list(
  criteria :: keyword(),
  fields :: list(),
  assigns :: map(),
  live_resource :: module()
) ::
  {:ok, list()}


      


Returns a list of items by given criteria.

  



  
    
      
    
    
      update(item, live_resource)



        
          
        

    

  


  

      

          @callback update(item :: struct(), live_resource :: module()) ::
  {:ok, struct()} | {:error, term()}


      


Updates given item.

  



  
    
      
    
    
      update_all(items, updates, live_resource)



        
          
        

    

  


  

      

          @callback update_all(items :: [struct()], updates :: keyword(), live_resource :: module()) ::
  {:ok, non_neg_integer()}


      


Updates given items.

  


        

      


  

  
    
    Backpex.Adapters.Ash - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Adapters.Ash 
    



      
The Backpex.Adapter to connect your Backpex.LiveResource to an Ash.Resource.
adapter_config
	:resource (atom/0) - Required. The Ash.Resource that will be used to perform CRUD operations.

Work in progress
The Backpex.Adapters.Ash is currently not usable! It can barely list and show items. We will work on this as we continue to implement  the Backpex.Adapter pattern throughout the codebase.

      


      
        Summary


  
    Functions
  


    
      
        change(item, attrs, fields, assigns, live_resource, opts)

      


        Applies a change to a given item.



    


    
      
        count(criteria, fields, assigns, live_resource)

      


        Returns the number of items matching the given criteria.



    


    
      
        delete_all(items, live_resource)

      


        Deletes multiple items.



    


    
      
        get(primary_value, fields, assigns, live_resource)

      


        Gets a database record with the given primary key value.



    


    
      
        insert(item, live_resource)

      


        Inserts given item.



    


    
      
        list(criteria, fields, assigns, live_resource)

      


        Returns a list of items by given criteria.



    


    
      
        update(item, live_resource)

      


        Updates given item.



    


    
      
        update_all(items, updates, live_resource)

      


        Updates given items.



    


    
      
        validate_config!(config)

      


    





      


      
        Functions


        


  
    
      
    
    
      change(item, attrs, fields, assigns, live_resource, opts)



        
          
        

    

  


  

Applies a change to a given item.

  



  
    
      
    
    
      count(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns the number of items matching the given criteria.

  



  
    
      
    
    
      delete_all(items, live_resource)



        
          
        

    

  


  

Deletes multiple items.

  



  
    
      
    
    
      get(primary_value, fields, assigns, live_resource)



        
          
        

    

  


  

Gets a database record with the given primary key value.
Returns nil if no result was found.

  



  
    
      
    
    
      insert(item, live_resource)



        
          
        

    

  


  

Inserts given item.

  



  
    
      
    
    
      list(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns a list of items by given criteria.

  



  
    
      
    
    
      update(item, live_resource)



        
          
        

    

  


  

Updates given item.

  



  
    
      
    
    
      update_all(items, updates, live_resource)



        
          
        

    

  


  

Updates given items.

  



  
    
      
    
    
      validate_config!(config)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Adapters.Ecto - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Adapters.Ecto 
    



      
The Backpex.Adapter to connect your Backpex.LiveResource to an Ecto.Schema.
adapter_config
	:repo (atom/0) - Required. The Ecto.Repo that will be used to perform CRUD operations for the given schema.

	:schema (atom/0) - Required. The Ecto.Schema for the resource.

	:update_changeset (function of arity 3) - Changeset to use when updating items. Additional metadata is passed as a keyword list via the third parameter:
	:assigns - the assigns
	:target - the name of the form target that triggered the changeset call. Default to nil if the call was not triggered by a form field. The default value is &Backpex.Adapters.Ecto.default_changeset/3.


	:create_changeset (function of arity 3) - Changeset to use when creating items. Additional metadata is passed as a keyword list via the third parameter:
	:assigns - the assigns
	:target - the name of the form target that triggered the changeset call. Default to nil if the call was not triggered by a form field. The default value is &Backpex.Adapters.Ecto.default_changeset/3.


	:item_query (function of arity 3) - The function that can be used to modify the ecto query. It will be used when resources are being fetched. This
happens on index, edit and show view. In most cases this function will be used to filter items on index
view based on certain criteria, but it may also be used to join other tables on edit or show view.
This function should accept the following parameters:
	query - Ecto.Query.t()
	live_action - atom()
	assigns - map()

It should return an Ecto.Queryable. It is recommended to build your item_query on top of the incoming query.
Otherwise you will likely get binding errors.
The default value is &Backpex.Adapters.Ecto.default_item_query/3.


Work in progress
The Backpex.Adapters.Ecto is under heavy development and will change drastically in future updates.
Backpex started out as Ecto-only and we are working on decoupling things to support multiple data sources.
This is the first draft of moving all Ecto related functions into a dedicated Ecto adapter.

      


      
        Summary


  
    Functions
  


    
      
        apply_criteria(query, criteria, fields)

      


    


    
      
        apply_filters(query, filters, empty_filter_key, assigns)

      


    


    
      
        apply_search(query, schema, full_text_search, arg)

      


    


    
      
        change(item, attrs, fields, assigns, live_resource, opts)

      


        Applies a change to a given item.



    


    
      
        count(criteria, fields, assigns, live_resource)

      


        Returns the number of items matching the given criteria.



    


    
      
        delete_all(items, live_resource)

      


        Deletes multiple items.



    


    
      
        get(primary_value, fields, assigns, live_resource)

      


        Gets a database record with the given primary key value.



    


    
      
        get_primary_key_field(schema)

      


    


    
      
        insert(item, live_resource)

      


        Inserts given item.



    


    
      
        list(criteria, fields, assigns, live_resource)

      


        Returns a list of items by given criteria.



    


    
      
        list_query(criteria, fields, assigns, live_resource)

      


        Returns the main database query for selecting a list of items by given criteria.



    


    
      
        name_by_schema(schema)

      


        Gets name by schema. This is the last part of the module name as a lowercase atom.



    


    
      
        update(item, live_resource)

      


        Updates given item.



    


    
      
        update_all(items, updates, live_resource)

      


        Updates given items.



    


    
      
        validate_config!(config)

      


    





      


      
        Functions


        


  
    
      
    
    
      apply_criteria(query, criteria, fields)



        
          
        

    

  


  


  



  
    
      
    
    
      apply_filters(query, filters, empty_filter_key, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      apply_search(query, schema, full_text_search, arg)



        
          
        

    

  


  


  



  
    
      
    
    
      change(item, attrs, fields, assigns, live_resource, opts)



        
          
        

    

  


  

Applies a change to a given item.

  



  
    
      
    
    
      count(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns the number of items matching the given criteria.

  



  
    
      
    
    
      delete_all(items, live_resource)



        
          
        

    

  


  

Deletes multiple items.

  



  
    
      
    
    
      get(primary_value, fields, assigns, live_resource)



        
          
        

    

  


  

Gets a database record with the given primary key value.

  



  
    
      
    
    
      get_primary_key_field(schema)



        
          
        

    

  


  


  



  
    
      
    
    
      insert(item, live_resource)



        
          
        

    

  


  

Inserts given item.

  



  
    
      
    
    
      list(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns a list of items by given criteria.

  



  
    
      
    
    
      list_query(criteria, fields, assigns, live_resource)



        
          
        

    

  


  

Returns the main database query for selecting a list of items by given criteria.
TODO: Should be private.

  



  
    
      
    
    
      name_by_schema(schema)



        
          
        

    

  


  

Gets name by schema. This is the last part of the module name as a lowercase atom.
TODO: Make this private once all fields are using the adapter abstractions.

  



  
    
      
    
    
      update(item, live_resource)



        
          
        

    

  


  

Updates given item.

  



  
    
      
    
    
      update_all(items, updates, live_resource)



        
          
        

    

  


  

Updates given items.

  



  
    
      
    
    
      validate_config!(config)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.HTML - Backpex v0.15.2
    
    

    


  
  

    
Backpex.HTML 
    



      
Contains common HTML functions.

      


      
        Summary


  
    Functions
  


    
      
        pretty_value(input)

      


        Prettifies any input and show a placeholder in case the value is nil.



    





      


      
        Functions


        


  
    
      
    
    
      pretty_value(input)



        
          
        

    

  


  

Prettifies any input and show a placeholder in case the value is nil.
Examples
iex> Backpex.HTML.pretty_value(nil)
"—"

iex> Backpex.HTML.pretty_value("")
"—"

iex> Backpex.HTML.pretty_value(1_000_000)
1000000

iex> Backpex.HTML.pretty_value(1.11)
1.11

iex> Backpex.HTML.pretty_value("Hello, universe")
"Hello, universe"

  


        

      


  

  
    
    Backpex.HTML.CoreComponents - Backpex v0.15.2
    
    

    


  
  

    
Backpex.HTML.CoreComponents 
    



      
Provides core components for Backpex.

      


      
        Summary


  
    Components
  


    
      
        filter_badge(assigns)

      


        Renders a filter_badge component.



    


    
      
        icon(assigns)

      


        Renders a Heroicons icon.



    





      


      
        Components


        


  
    
      
    
    
      filter_badge(assigns)



        
          
        

    

  


  

Renders a filter_badge component.
Attributes
	clear_event (:string) - event name for removing the badge. Defaults to "clear-filter".
	filter_name (:string) (required)
	label (:string) (required)
	live_resource (:atom) - Defaults to nil.

Slots
	inner_block


  



  
    
      
    
    
      icon(assigns)



        
          
        

    

  


  

Renders a Heroicons icon.
Attributes
	name (:string) (required)
	class (:any) - Defaults to nil.
	Global attributes are accepted.


  


        

      


  

  
    
    Backpex.HTML.Form - Backpex v0.15.2
    
    

    


  
  

    
Backpex.HTML.Form 
    



      
Contains all Backpex form components.

      


      
        Summary


  
    Components
  


    
      
        error(assigns)

      


        Generates a generic error message.



    


    
      
        help_text(assigns)

      


        Displays a help text.



    


    
      
        input(assigns)

      


        Renders an input.



    


    
      
        multi_select(assigns)

      


        Renders a searchable multi select.



    





  
    Functions
  


    
      
        form_errors?(show_errors, form)

      


    


    
      
        translate_form_errors(errors, translate_error_fun)

      


    





      


      
        Components


        


  
    
      
    
    
      error(assigns)



        
          
        

    

  


  

Generates a generic error message.
Attributes
	class (:string) - Defaults to nil.

Slots
	inner_block (required)


  



  
    
      
    
    
      help_text(assigns)



        
          
        

    

  


  

Displays a help text.
Attributes
	class (:string) - Defaults to nil.

Slots
	inner_block (required)


  



  
    
      
    
    
      input(assigns)



        
          
        

    

  


  

Renders an input.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	help_text (:string) - Defaults to nil.
	value (:any)
	type (:string) - Defaults to "text". Must be one of "checkbox", "color", "date", "datetime-local", "email", "file", "hidden", "month", "number", "password", "range", "radio", "search", "select", "tel", "text", "textarea", "time", "toggle", "url", or "week".
	field (Phoenix.HTML.FormField) - a form field struct retrieved from the form, for example: @form[:email].
	errors (:list) - Defaults to [].
	checked (:boolean) - the checked flag for checkbox inputs.
	prompt (:string) - the prompt for select inputs. Defaults to nil.
	options (:list) - the options to pass to Phoenix.HTML.Form.options_for_select/2.
	multiple (:boolean) - the multiple flag for select inputs. Defaults to false.
	class (:any) - additional classes for the container element. Defaults to nil.
	input_class (:any) - the input class to use over defaults. Defaults to nil.
	error_class (:any) - the input error class to use over defaults. Defaults to nil.
	translate_error_fun (:any) - a custom function to map form errors. Defaults to &Function.identity/1.
	hide_errors (:boolean) - if errors should be hidden. Defaults to false.
	Global attributes are accepted. Supports all globals plus: ["accept", "autocomplete", "capture", "cols", "disabled", "form", "list", "max", "maxlength", "min", "minlength", "multiple", "pattern", "placeholder", "readonly", "required", "rows", "size", "step"].

Slots
	inner_block


  



  
    
      
    
    
      multi_select(assigns)



        
          
        

    

  


  

Renders a searchable multi select.
Attributes
	prompt (:string) (required) - string that will be shown when no option is selected.
	help_text (:string) - help text to be displayed below input. Defaults to nil.
	not_found_text (:string) (required) - string that will be shown when there are no options.
	options (:list) (required) - a list of options for the select.
	search_input (:string) (required) - to prefill and or persist the search term for rerendering.
	event_target (:any) (required) - the target that handles the events of this component.
	field_options (:map) (required) - field options for the corresponding field.
	field (:any) (required) - form field the select should be for.
	selected (:list) (required) - the selected values.
	show_select_all (:boolean) (required) - whether to display the select all button.
	show_more (:boolean) (required) - whether there are more options to show.
	search_event (:string) - the event that will be sent when the search input changes. Defaults to "search".
	hide_search (:boolean) - if search should be hidden. Defaults to false.
	hide_errors (:boolean) - if errors should be hidden. Defaults to false.
	live_resource (:atom) - the live resource module. Defaults to nil.


  


        

      

      
        Functions


        


  
    
      
    
    
      form_errors?(show_errors, form)



        
          
        

    

  


  


  



  
    
      
    
    
      translate_form_errors(errors, translate_error_fun)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.HTML.Layout - Backpex v0.15.2
    
    

    


  
  

    
Backpex.HTML.Layout 
    



      
Contains all Backpex layout components.

      


      
        Summary


  
    Components
  


    
      
        alert(assigns)

      


        Renders an alert.



    


    
      
        app_shell(assigns)

      


        Renders an app shell representing the base of your layout.



    


    
      
        backpex_logo(assigns)

      


        Get the Backpex logo SVG.



    


    
      
        field_container(assigns)

      


        Renders the form label and input with corresponding margin and alignment.



    


    
      
        flash_messages(assigns)

      


        Renders flash messages.



    


    
      
        footer(assigns)

      


        Renders a footer. It provides a default look when no content is provided.



    


    
      
        input_label(assigns)

      


        Renders a text to be used as a label for an input.



    


    
      
        main_container(assigns)

      


        Container to wrap main elements and add margin.



    


    
      
        main_title(assigns)

      


        Renders a title.



    


    
      
        modal(assigns)

      


        Renders a modal.



    


    
      
        sidebar_item(assigns)

      


        Renders a sidebar item. It uses Phoenix.Component.link/1 component, so you can can use link and href navigation.



    


    
      
        sidebar_section(assigns)

      


        Renders a sidebar section.



    


    
      
        theme_selector(assigns)

      


        Renders a theme selector.



    


    
      
        topbar(assigns)

      


        Renders a topbar.



    


    
      
        topbar_branding(assigns)

      


        Renders the topbar branding.



    


    
      
        topbar_dropdown(assigns)

      


        Renders a topbar dropdown.



    





  
    Functions
  


    
      
        close_modal(js \\ %JS{}, id)

      


    


    
      
        open_modal(js \\ %JS{}, id)

      


    


    
      
        visible_fields_by_panel(fields, panel, assigns)

      


        Filters fields by certain panel.



    





      


      
        Components


        


  
    
      
    
    
      alert(assigns)



        
          
        

    

  


  

Renders an alert.
Attributes
	class (:string) - additional class to be added to the component. Defaults to nil.
	kind (:atom) - used for styling. Must be one of :info, :success, :warning, or :error.
	closable (:boolean) - show or hide the close button. Defaults to true.
	on_close (Phoenix.LiveView.JS) - event triggered on alert close. Defaults to %Phoenix.LiveView.JS{ops: []}.
	close_label (:string) - Defaults to "Close alert".
	title (:string) - title for the alert. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block
	icon


  



  
    
      
    
    
      app_shell(assigns)



        
          
        

    

  


  

Renders an app shell representing the base of your layout.
Attributes
	class (:string) - class added to the app shell container. Defaults to nil.
	fluid (:boolean) - toggles fluid layout. Defaults to false.

Slots
	inner_block
	topbar - content to be displayed in the topbar. Accepts attributes:	class (:string) - additional class that will be added to the component.


	sidebar - content to be displayed in the sidebar. Accepts attributes:	class (:string) - additional class that will be added to the component.


	footer - content to be displayed in the footer.


  



  
    
      
    
    
      backpex_logo(assigns)



        
          
        

    

  


  

Get the Backpex logo SVG.
Attributes
	class (:string) - class that will be added to the SVG element. Defaults to nil.


  



  
    
      
    
    
      field_container(assigns)



        
          
        

    

  


  

Renders the form label and input with corresponding margin and alignment.
Attributes
	class (:string) - extra classes to be added. Defaults to "".

Slots
	label (required) - Accepts attributes:	align (:atom) - Must be one of :top, :center, or :bottom.


	inner_block


  



  
    
      
    
    
      flash_messages(assigns)



        
          
        

    

  


  

Renders flash messages.
Attributes
	flash (:map) (required) - flash map that will be passed to Phoenix.Flash.get/2.
	close_label (:string) - Defaults to "Close alert".


  



  
    
      
    
    
      footer(assigns)



        
          
        

    

  


  

Renders a footer. It provides a default look when no content is provided.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to "".

Slots
	inner_block


  



  
    
      
    
    
      input_label(assigns)



        
          
        

    

  


  

Renders a text to be used as a label for an input.
Attributes
	text (:string) - text of the label.


  



  
    
      
    
    
      main_container(assigns)



        
          
        

    

  


  

Container to wrap main elements and add margin.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to "".

Slots
	inner_block


  



  
    
      
    
    
      main_title(assigns)



        
          
        

    

  


  

Renders a title.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to "".

Slots
	inner_block


  



  
    
      
    
    
      modal(assigns)



        
          
        

    

  


  

Renders a modal.
Attributes
	id (:string) (required) - modal ID.
	class (:string) - class for the modal wrapper. Defaults to nil.
	box_class (:string) - class for the modal box. Defaults to "max-w-xl".
	title (:string) - modal title. Defaults to nil.
	close_label (:string) - Defaults to "Close modal".
	open (:boolean) - modal open. Defaults to true.
	on_cancel (Phoenix.LiveView.JS) - event triggered on modal close. Defaults to %Phoenix.LiveView.JS{ops: []}.
	Global attributes are accepted.

Slots
	inner_block (required)


  



  
    
      
    
    
      sidebar_item(assigns)



        
          
        

    

  


  

Renders a sidebar item. It uses Phoenix.Component.link/1 component, so you can can use link and href navigation.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to "".
	current_url (:string) - the current url.
	navigate (:string)
	patch (:string)
	href (:any)

Slots
	inner_block


  



  
    
      
    
    
      sidebar_section(assigns)



        
          
        

    

  


  

Renders a sidebar section.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to nil.
	id (:string) - The id for this section. It will be used to save and load the opening state of this section from local storage. Defaults to "section".

Slots
	inner_block
	label (required) - label to be displayed on the section.


  



  
    
      
    
    
      theme_selector(assigns)



        
          
        

    

  


  

Renders a theme selector.
Attributes
	socket (:any) (required)
	class (:string) - Defaults to nil.
	label (:string) - Defaults to "Theme".
	themes (:list) - A list of tuples with {theme_label, theme_name} format. Examples include [{"Light", "light"}, {"Dark", "dark"}].


  



  
    
      
    
    
      topbar(assigns)



        
          
        

    

  


  

Renders a topbar.
Attributes
	class (:string) - additional class to be added to the component. Defaults to "".

Slots
	inner_block


  



  
    
      
    
    
      topbar_branding(assigns)



        
          
        

    

  


  

Renders the topbar branding.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to "".
	title (:string) - title that will be displayed next to the logo. Defaults to "Backpex".
	hide_title (:boolean) - if the title should be hidden. Defaults to false.

Slots
	logo - the logo of the branding.


  



  
    
      
    
    
      topbar_dropdown(assigns)



        
          
        

    

  


  

Renders a topbar dropdown.
Attributes
	class (:string) - additional class that will be added to the component. Defaults to nil.

Slots
	label (required) - label of the dropdown.


  


        

      

      
        Functions


        


    

  
    
      
    
    
      close_modal(js \\ %JS{}, id)



        
          
        

    

  


  


  



    

  
    
      
    
    
      open_modal(js \\ %JS{}, id)



        
          
        

    

  


  


  



  
    
      
    
    
      visible_fields_by_panel(fields, panel, assigns)



        
          
        

    

  


  

Filters fields by certain panel.
Examples
iex> Backpex.HTML.Layout.visible_fields_by_panel([field1: %{panel: :default}, field2: %{panel: :panel}], :default, nil)
[field1: %{panel: :default}]

iex> Backpex.HTML.Layout.visible_fields_by_panel([field1: %{panel: :default, visible: fn _assigns -> false end}, field2: %{panel: :panel}], :default, nil)
[]

iex> Backpex.HTML.Layout.visible_fields_by_panel([field1: %{panel: :default}], :panel, nil)
[]

  


        

      


  

  
    
    Backpex.HTML.Resource - Backpex v0.15.2
    
    

    


  
  

    
Backpex.HTML.Resource 
    



      
Contains all Backpex resource components.

      


      
        Summary


  
    Components
  


    
      
        edit_card(assigns)

      


        Renders an card for wrapping form fields. May be used to recreate the look of an Backpex edit view.



    


    
      
        empty_state(assigns)

      


        Renders an info block to indicate that no items are found.



    


    
      
        index_filter(assigns)

      


        Renders the index filters if the filter/0 callback is defined in the resource.



    


    
      
        index_search_form(assigns)

      


        Renders form with a search field. Emits the simple-search-input event on change.



    


    
      
        order_link(assigns)

      


        Renders a link to change the order direction for a given column.



    


    
      
        pagination(assigns)

      


        Renders pagination buttons. You are required to provide a :page pattern in the URL. It will be replaced
with the corresponding page number.



    


    
      
        pagination_info(assigns)

      


        Renders pagination info about the current page.



    


    
      
        resource_buttons(assigns)

      


        Renders a button group with create and resource action buttons.



    


    
      
        resource_field(assigns)

      


        Renders the field of the given resource.



    


    
      
        resource_filters(assigns)

      


        Renders the input fields for filters and search.



    


    
      
        resource_form_field(assigns)

      


        Renders a resource form field.



    


    
      
        resource_index_main(assigns)

      


        Renders the main resource index content.



    


    
      
        resource_index_table(assigns)

      


        Renders a resource table.



    


    
      
        resource_metrics(assigns)

      


        Renders the metrics area for the current resource.



    


    
      
        resource_show_main(assigns)

      


        Renders a show card.



    


    
      
        select_per_page(assigns)

      


        Renders a select per page button.



    


    
      
        show_panel(assigns)

      


        Renders a show panel.



    


    
      
        toggle_columns(assigns)

      


        Renders the toggle columns dropdown.



    


    
      
        toggle_columns_inputs(assigns)

      


        Renders the toggle columns inputs.



    





  
    Functions
  


    
      
        form_component(assigns)

      


    


    
      
        pagination_items(current_page, total_pages)

      


        Creates a list of pagination items based on the current page and the total number of pages. A maximum of five pages will be displayed.



    


    
      
        resource_form(assigns)

      


    


    
      
        resource_form_main(assigns)

      


    


    
      
        resource_index(assigns)

      


    


    
      
        resource_show(assigns)

      


    





      


      
        Components


        


  
    
      
    
    
      edit_card(assigns)



        
          
        

    

  


  

Renders an card for wrapping form fields. May be used to recreate the look of an Backpex edit view.
Examples
<.form :let={f} for={@form} phx-change="validate" phx-submit="submit">
  <.edit_card>
    <:panel label="Names">
      <.input field={f[:first_name]} type="text" />
      <.input field={f[:last_name]} type="text" />
    </:panel>

    <:actions>
      <button>Save</button>
    </:action>
  </.edit_card>
</.form>
Slots
	panel - a panel section. Accepts attributes:	class (:string) - optional class to be added to the wrapping panel element.
	label (:string) - optional label to be displayed as a headline for the panel.


	actions - actions like a save or cancel button.


  



  
    
      
    
    
      empty_state(assigns)



        
          
        

    

  


  

Renders an info block to indicate that no items are found.
Attributes
	socket (:any) (required)
	live_resource (:atom) (required) - live resource module.
	params (:map) (required) - query params.
	singular_name (:string) (required) - singular name of the resource.


  



  
    
      
    
    
      index_filter(assigns)



        
          
        

    

  


  

Renders the index filters if the filter/0 callback is defined in the resource.
Attributes
	live_resource (:any) (required) - module of the live resource.
	filter_options (:map) (required) - filter options.
	filters (:list) (required) - list of active filters.
	label (:string) (required)


  



  
    
      
    
    
      index_search_form(assigns)



        
          
        

    

  


  

Renders form with a search field. Emits the simple-search-input event on change.
Attributes
	searchable_fields (:list) - The fields that can be searched. Here only used to hide the component when empty. Defaults to [].
	full_text_search (:string) - full text search column name. Defaults to nil.
	value (:string) (required) - value binding for the search input.
	placeholder (:string) (required) - placeholder for the search input.


  



  
    
      
    
    
      order_link(assigns)



        
          
        

    

  


  

Renders a link to change the order direction for a given column.
Attributes
	socket (:map) (required)
	live_resource (:any) (required) - module of the live resource.
	params (:string) (required) - query parameters.
	query_options (:map) (required) - query options.
	label (:string) (required) - label to be displayed on the link.
	name (:atom) (required) - name of the column the link should change order for.


  



  
    
      
    
    
      pagination(assigns)



        
          
        

    

  


  

Renders pagination buttons. You are required to provide a :page pattern in the URL. It will be replaced
with the corresponding page number.
Attributes
	current_page (:integer) (required) - current page number.
	total_pages (:integer) (required) - number of total pages.
	path (:string) (required) - path to be used for page links.
	next_page_label (:string) - Defaults to "Next page".
	previous_page_label (:string) - Defaults to "Previous page".


  



  
    
      
    
    
      pagination_info(assigns)



        
          
        

    

  


  

Renders pagination info about the current page.
Attributes
	total (:integer) (required) - total number of items.
	query_options (:map) (required) - query options.
	live_resource (:atom) - the live resource module. Defaults to nil.


  



  
    
      
    
    
      resource_buttons(assigns)



        
          
        

    

  


  

Renders a button group with create and resource action buttons.
Attributes
	socket (:any) (required)
	live_resource (:any) (required) - module of the live resource.
	params (:string) (required) - query parameters.
	query_options (:map) - query options. Defaults to %{}.
	resource_actions (:list) - list of all resource actions provided by the resource configuration. Defaults to [].
	singular_name (:string) (required) - singular name of the resource.


  



  
    
      
    
    
      resource_field(assigns)



        
          
        

    

  


  

Renders the field of the given resource.
Attributes
	name (:string) (required) - name / key of the item field.
	item (:map) (required) - the item which provides the value to be rendered.
	fields (:list) (required) - list of all fields provided by the resource configuration.


  



  
    
      
    
    
      resource_filters(assigns)



        
          
        

    

  


  

Renders the input fields for filters and search.
Attributes
	live_resource (:any) (required) - module of the live resource.
	searchable_fields (:list) - The fields that can be searched. Here only used to hide the component when empty. Defaults to [].
	query_options (:map) - query options. Defaults to %{}.
	search_placeholder (:string) (required) - placeholder for the search input.


  



  
    
      
    
    
      resource_form_field(assigns)



        
          
        

    

  


  

Renders a resource form field.
Attributes
	name (:string) (required) - name / key of the item field.
	form (:map) (required) - form that will be used by the form field.
	repo (:any) - ecto repo.
	uploads (:map) - map that contains upload information. Defaults to %{}.
	fields (:list) (required) - list of all fields provided by the resource configuration.


  



  
    
      
    
    
      resource_index_main(assigns)



        
          
        

    

  


  

Renders the main resource index content.
Attributes
	socket (:any) (required)
	live_resource (:any) (required) - module of the live resource.
	params (:string) (required) - query parameters.
	query_options (:map) - query options. Defaults to %{}.
	total_pages (:integer) - amount of total pages. Defaults to 1.
	resource_actions (:list) - list of all resource actions provided by the resource configuration. Defaults to [].
	singular_name (:string) (required) - singular name of the resource.
	orderable_fields (:list) - list of orderable fields. Defaults to [].
	items (:list) - items that will be displayed in the table. Defaults to [].
	fields (:list) - list of fields to be displayed in the table on index view. Defaults to [].


  



  
    
      
    
    
      resource_index_table(assigns)



        
          
        

    

  


  

Renders a resource table.
Attributes
	socket (:any) (required)
	live_resource (:any) (required) - module of the live resource.
	params (:string) (required) - query parameters.
	query_options (:map) - query options. Defaults to %{}.
	fields (:list) (required) - list of fields to be displayed in the table on index view.
	orderable_fields (:list) - list of orderable fields. Defaults to [].
	searchable_fields (:list) - list of searchable fields. Defaults to [].
	items (:list) - items that will be displayed in the table. Defaults to [].
	active_fields (:list) (required) - list of active fields.
	selected_items (:list) (required) - list of selected items.


  



  
    
      
    
    
      resource_metrics(assigns)



        
          
        

    

  


  

Renders the metrics area for the current resource.
Attributes
	metrics (:list) - list of metrics to be displayed. Defaults to [].


  



  
    
      
    
    
      resource_show_main(assigns)



        
          
        

    

  


  

Renders a show card.
Attributes
	socket (:any) (required)
	live_resource (:any) (required) - module of the live resource.
	params (:string) (required) - query parameters.
	item (:map) (required) - item that will be rendered on the card.
	fields (:list) (required) - list of fields to be displayed on the card.


  



  
    
      
    
    
      select_per_page(assigns)



        
          
        

    

  


  

Renders a select per page button.
Attributes
	options (:list) (required) - A list of per page options.
	query_options (:map) - The query options. Defaults to %{}.
	class (:string) - Extra class to be added to the select. Defaults to "".


  



  
    
      
    
    
      show_panel(assigns)



        
          
        

    

  


  

Renders a show panel.
Attributes
	panel_fields (:list) (required) - list of fields to be rendered in the panel.
	class (:string) - extra class to be added. Defaults to "".
	label (:any) - optional label for the panel. Defaults to nil.


  



  
    
      
    
    
      toggle_columns(assigns)



        
          
        

    

  


  

Renders the toggle columns dropdown.
Attributes
	socket (:any) (required)
	active_fields (:list) (required) - list of active fields.
	live_resource (:atom) (required) - the live resource.
	current_url (:string) (required) - the current url.
	class (:string) - additional class to be added to the component. Defaults to "".


  



  
    
      
    
    
      toggle_columns_inputs(assigns)



        
          
        

    

  


  

Renders the toggle columns inputs.
Attributes
	form (:any) (required) - the form.
	active_fields (:list) (required) - list of active fields to be displayed.


  


        

      

      
        Functions


        


  
    
      
    
    
      form_component(assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      pagination_items(current_page, total_pages)



        
          
        

    

  


  

Creates a list of pagination items based on the current page and the total number of pages. A maximum of five pages will be displayed.
Example
iex> Backpex.HTML.Resource.pagination_items(1, 1)
[%{type: :number, number: 1}]

iex> Backpex.HTML.Resource.pagination_items(1, 2)
[%{type: :number, number: 1}, %{type: :number, number: 2}, %{type: :next, number: nil}]

iex> Backpex.HTML.Resource.pagination_items(2, 2)
[%{type: :prev, number: nil}, %{type: :number, number: 1}, %{type: :number, number: 2}]

iex> Backpex.HTML.Resource.pagination_items(2, 8)
[%{type: :prev, number: nil}, %{type: :number, number: 1}, %{type: :number, number: 2}, %{type: :number, number: 3}, %{type: :number, number: 4}, %{type: :placeholder, number: nil}, %{type: :number, number: 8}, %{type: :next, number: nil}]

iex> Backpex.HTML.Resource.pagination_items(5, 10)
[%{type: :prev, number: nil}, %{type: :number, number: 1}, %{type: :placeholder, number: nil}, %{type: :number, number: 4}, %{type: :number, number: 5}, %{type: :number, number: 6}, %{type: :placeholder, number: nil}, %{type: :number, number: 10}, %{type: :next, number: nil}]

iex> Backpex.HTML.Resource.pagination_items(9, 10)
[%{type: :prev, number: nil}, %{type: :number, number: 1}, %{type: :placeholder, number: nil}, %{type: :number, number: 7}, %{type: :number, number: 8}, %{type: :number, number: 9}, %{type: :number, number: 10}, %{type: :next, number: nil}]

  



  
    
      
    
    
      resource_form(assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      resource_form_main(assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      resource_index(assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      resource_show(assigns)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Field - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Field behaviour
    



      
Behaviour implemented by all fields.
A field defines how a column is rendered on index, show and edit views. In the resource configuration file you can
configure a list of fields. You may create your own field by implementing this behaviour. A field has to be a
LiveComponent.
Options
These are general field options which can be used on every field. Check the field modules for field-specific options.
	:module (atom/0) - Required. The field module.

	:label (String.t/0) - Required. The field label.

	:help_text - A text to be displayed below the input on form views.

	:default (function of arity 1) - A function to assign default values to fields. Also see the field defaults guide.

	:render (function of arity 1) - A function to overwrite the template used . It should take assigns and return a HEEX template.

	:render_form (function of arity 1) - A function to overwrite the template used in forms. It should take assigns and return a HEEX template.

	:custom_alias (atom/0) - A custom alias for the field.

	:align - Align the field value on index views.

	:align_label - Align the label of the field on form views.

	:searchable (boolean/0) - Define wether this field should be searchable on the index view.

	:orderable (boolean/0) - Define wether this field should be orderable on the index view.

	:visible (function of arity 1) - Function to change the visibility of a field for all views except index. Receives the assigns and has to return a boolean.

	:can? (function of arity 1) - Function to change the visibility of a field for all views. Receives the assigns and has to return a boolean.

	:panel (atom/0) - Group field into panel. Also see the panels guide.

	:index_editable - Define wether this field should be editable on the index view. Also see the
index edit guide.

	:index_column_class - Add additional class(es) to the index column.
In case of a function it takes the assigns and should return a string.

	:select (struct of type Ecto.Query.DynamicExpr) - Define a dynamic select query expression for this field.
Example
full_name: %{
  module: Backpex.Fields.Text,
  label: "Full Name",
  select: dynamic([user: u], fragment("concat(?, ' ', ?)", u.first_name, u.last_name)),
}

	:only - Define the only views where this field should be visible.

	:except - Define the views where this field should not be visible.

	:translate_error (function of arity 1) - Function to customize error messages for a field. The function receives the error tuple and must return a tuple
with the message and metadata.


Example
def fields do
  [
    rating: %{
      module: Backpex.Fields.Text,
      label: "Rating"
    }
  ]
end

      


      
        Summary


  
    Callbacks
  


    
      
        assign_uploads(field, socket)

      


        This function will be called in the FormComponent and may be used to assign uploads.



    


    
      
        association?(field)

      


        Determines whether the field is an association or not.



    


    
      
        before_changeset(changeset, attrs, metadata, repo, field, assigns)

      


        This function is called before the changeset function is called. This allows fields to modify the changeset.
The Backpex.Fields.HasMany uses this callback to put the linked associations into the changeset.



    


    
      
        display_field(field)

      


        The field to be displayed on index views. In most cases this is the name / key configured in the corresponding field definition.
In fields with associations this value often differs from the name / key. The function will receive the field definition.



    


    
      
        render_form(assigns)

      


        Will be used on edit views to render a form for the value of the provided item. This has to be a heex template.



    


    
      
        render_index_form(assigns)

      


        Used to render form on index to support index editable.



    


    
      
        render_value(assigns)

      


        Will be used on index and show views to render a value from the provided item. This has to be a heex template.



    


    
      
        schema(field, schema)

      


        The schema to be used in queries. In most cases this is the schema defined in the resource configuration.
In fields with associations this is the schema of the corresponding relation. The function will receive the field definition and the schema defined in the resource configuration.



    


    
      
        search_condition(schema_name, field_name, search_string)

      


        Defines the search condition. Defaults to an ilike condition with text comparison. The function has to return a query wrapped into a Ecto.Query.dynamic/2 which is then passed into a Ecto.Query.where/3.



    





  
    Functions
  


    
      
        __using__(opts)

      


        Defines Backpex.Field behaviour and provides default implementations.



    


    
      
        align_label(field_options, assigns, default \\ :center)

      


        Gets alignment option for label.



    


    
      
        changeset_types(fields)

      


        Returns a map of types from a list of fields used for the Ecto changeset.



    


    
      
        debounce(arg1, assigns)

      


        Defines debounce timeout value.



    


    
      
        default_config_schema()

      


        Returns the default config schema.



    


    
      
        handle_index_editable(socket, value, change)

      


        Handles index editable.



    


    
      
        help_text(arg1, assigns)

      


    


    
      
        index_editable_enabled?(field_options, assigns, default \\ false)

      


        Checks whether index editable is enabled or not.



    


    
      
        placeholder(arg1, assigns)

      


        Defines placeholder value.



    


    
      
        readonly?(arg1, assigns)

      


        Determines whether the field should be rendered as readonly version.



    


    
      
        throttle(arg1, assigns)

      


        Defines throttle timeout value.



    


    
      
        translate_error_fun(arg1, assigns)

      


    





      


      
        Callbacks


        


  
    
      
    
    
      assign_uploads(field, socket)



        
          
        

    

  


  

      

          @callback assign_uploads(field :: tuple(), socket :: Phoenix.LiveView.Socket.t()) ::
  Phoenix.LiveView.Socket.t()


      


This function will be called in the FormComponent and may be used to assign uploads.

  



  
    
      
    
    
      association?(field)



        
          
        

    

  


  

      

          @callback association?(field :: tuple()) :: boolean()


      


Determines whether the field is an association or not.

  



  
    
      
    
    
      before_changeset(changeset, attrs, metadata, repo, field, assigns)



        
          
        

    

  


  

      

          @callback before_changeset(
  changeset :: Phoenix.LiveView.Socket.t(),
  attrs :: map(),
  metadata :: keyword(),
  repo :: module(),
  field :: tuple(),
  assigns :: map()
) :: Ecto.Changeset.t()


      


This function is called before the changeset function is called. This allows fields to modify the changeset.
The Backpex.Fields.HasMany uses this callback to put the linked associations into the changeset.

  



  
    
      
    
    
      display_field(field)



        
          
        

    

  


  

      

          @callback display_field(field :: tuple()) :: atom()


      


The field to be displayed on index views. In most cases this is the name / key configured in the corresponding field definition.
In fields with associations this value often differs from the name / key. The function will receive the field definition.

  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

      

          @callback render_form(assigns :: map()) :: %Phoenix.LiveView.Rendered{
  caller: term(),
  dynamic: term(),
  fingerprint: term(),
  root: term(),
  static: term()
}


      


Will be used on edit views to render a form for the value of the provided item. This has to be a heex template.

  



  
    
      
    
    
      render_index_form(assigns)


        (optional)


        
          
        

    

  


  

      

          @callback render_index_form(assigns :: map()) :: %Phoenix.LiveView.Rendered{
  caller: term(),
  dynamic: term(),
  fingerprint: term(),
  root: term(),
  static: term()
}


      


Used to render form on index to support index editable.

  



  
    
      
    
    
      render_value(assigns)



        
          
        

    

  


  

      

          @callback render_value(assigns :: map()) :: %Phoenix.LiveView.Rendered{
  caller: term(),
  dynamic: term(),
  fingerprint: term(),
  root: term(),
  static: term()
}


      


Will be used on index and show views to render a value from the provided item. This has to be a heex template.

  



  
    
      
    
    
      schema(field, schema)



        
          
        

    

  


  

      

          @callback schema(field :: tuple(), schema :: atom()) :: atom()


      


The schema to be used in queries. In most cases this is the schema defined in the resource configuration.
In fields with associations this is the schema of the corresponding relation. The function will receive the field definition and the schema defined in the resource configuration.

  



  
    
      
    
    
      search_condition(schema_name, field_name, search_string)



        
          
        

    

  


  

      

          @callback search_condition(
  schema_name :: binary(),
  field_name :: binary(),
  search_string :: binary()
) :: Ecto.Query.dynamic_expr()


      


Defines the search condition. Defaults to an ilike condition with text comparison. The function has to return a query wrapped into a Ecto.Query.dynamic/2 which is then passed into a Ecto.Query.where/3.
Example
Imagine the underlying database type of the field is an integer. Before text comparison in an ilike condition you have to cast the integer to text.
The function could return the following query to make the field searchable.
dynamic(
  [{^schema_name, schema_name}],
  ilike(fragment("CAST(? AS TEXT)", schema_name |> field(^field_name)), ^search_string)
)

  


        

      

      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Defines Backpex.Field behaviour and provides default implementations.

  



    

  
    
      
    
    
      align_label(field_options, assigns, default \\ :center)



        
          
        

    

  


  

Gets alignment option for label.

  



  
    
      
    
    
      changeset_types(fields)



        
          
        

    

  


  

Returns a map of types from a list of fields used for the Ecto changeset.

  



  
    
      
    
    
      debounce(arg1, assigns)



        
          
        

    

  


  

Defines debounce timeout value.

  



  
    
      
    
    
      default_config_schema()



        
          
        

    

  


  

Returns the default config schema.

  



  
    
      
    
    
      handle_index_editable(socket, value, change)



        
          
        

    

  


  

Handles index editable.

  



  
    
      
    
    
      help_text(arg1, assigns)



        
          
        

    

  


  


  



    

  
    
      
    
    
      index_editable_enabled?(field_options, assigns, default \\ false)



        
          
        

    

  


  

Checks whether index editable is enabled or not.

  



  
    
      
    
    
      placeholder(arg1, assigns)



        
          
        

    

  


  

Defines placeholder value.

  



  
    
      
    
    
      readonly?(arg1, assigns)



        
          
        

    

  


  

Determines whether the field should be rendered as readonly version.

  



  
    
      
    
    
      throttle(arg1, assigns)



        
          
        

    

  


  

Defines throttle timeout value.

  



  
    
      
    
    
      translate_error_fun(arg1, assigns)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Fields.BelongsTo - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.BelongsTo 
    



      
A field for handling a belongs_to relation.
Field-specific options
See Backpex.Field for general field options.
	:display_field (atom/0) - Required. The field of the relation to be used for searching, ordering and displaying values.

	:display_field_form (atom/0) - Field to be used to display form values.

	:live_resource (atom/0) - The live resource of the association. Used to generate links navigating to the association.

	:options_query (function of arity 2) - Manipulates the list of available options in the select.
Defaults to fn (query, _field) -> query end which returns all entries.

	:prompt - The text to be displayed when no option is selected or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.


Example
@impl Backpex.LiveResource
def fields do
[
  user: %{
    module: Backpex.Fields.BelongsTo,
    label: "Username",
    display_field: :username,
    options_query: &where(&1, [user], user.role == :admin),
    live_resource: DemoWeb.UserLive
  }
]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Boolean - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Boolean 
    



      
A field for handling a boolean value.
Field-specific options
See Backpex.Field for general field options.
	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.



      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Currency - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Currency 
    



      
A field for handling a currency value.
Field-specific options
See Backpex.Field for general field options.
	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.


Schema
Backpex.Ecto.Amount.Type provides a type for Ecto to store a amount. The underlying data type should be an integer.
For a full list of configuration options see: https://hexdocs.pm/money/Money.html#module-configuration
schema "article" do
  field :price, Backpex.Ecto.Amount.Type
  ...
end

schema "article" do
  field :price, Backpex.Ecto.Amount.Type, currency: :EUR, opts: [separator: ".", delimiter: ","]
  ...
end
Example
@impl Backpex.LiveResource
def fields do
  [
    price: %{
      module: Backpex.Fields.Currency,
      label: "Price"
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Date - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Date 
    



      
A field for handling a date value.
Field-specific options
See Backpex.Field for general field options.
	:format - Format string which will be used to format the date time value or function that formats the date time.
Can also be a function wich receives a DateTime and must return a string.
The default value is "%Y-%m-%d".

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:readonly - Sets the field to readonly. Also see the panels guide.


Examples
@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.Date,
      label: "Created At",
      format: "%d.%m.%Y"
    }
  ]
end

@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.Date,
      label: "Created At",
      format: fn date -> # Takes a `Date` and returns a string
        # Timex should be installed separately, used as a reference for
        # custom formatting logic.
        Timex.format!(date, "{relative}", :relative)
      end
    }
  ]
end

@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.Date,
      label: "Created At",
      # If you use the same formatting logic in multiple places
      format: &MyApp.Formatters.Dates/1
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.DateTime - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.DateTime 
    



      
A field for handling a date time value.
Field-specific options
See Backpex.Field for general field options.
	:format - Format string which will be used to format the date time value or function that formats the date time.
Can also be a function wich receives a DateTime and must return a string.
The default value is "%Y-%m-%d %I:%M %p".

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:readonly - Sets the field to readonly. Also see the panels guide.


Examples
@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.DateTime,
      label: "Created At",
      format: "%Y.%m.%d %I:%M %p" # optional
    }
  ]
end

@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.DateTime,
      label: "Created At",
      format: fn date_time -> # Takes a `DateTime` and returns a string
        # Timex should be installed separately, used as a reference for
        # custom formatting logic.
        Timex.format!(date_time, "{relative}", :relative)
      end
    }
  ]
end

@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.Date,
      label: "Created At",
      # If you use the same formatting logic in multiple places
      format: &MyApp.Formatters.Dates/1
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.HasMany - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.HasMany 
    



      
A field for handling a has_many or many_to_many relation.
This field can not be orderable or searchable.
Field-specific options
See Backpex.Field for general field options.
	:display_field (atom/0) - Required. The field of the relation to be used for searching, ordering and displaying values.

	:display_field_form (atom/0) - The field to be used to display form values.

	:live_resource (atom/0) - The live resource of the association.

	:link_assocs (boolean/0) - Whether to automatically generate links to the association items. The default value is true.

	:options_query (function of arity 2) - Manipulates the list of available options in the multi select.
Defaults to fn (query, _field) -> query end which returns all entries.

	:prompt - The text to be displayed when no options are selected or function that receives the assigns.
The default value is "Select options...".

	:not_found_text (String.t/0) - The text to be displayed when no options are found.
The default value is "No options found".

	:query_limit - Limit passed to the query to fetch new items. Set to nil to have no limit. The default value is 10.


Example
@impl Backpex.LiveResource
def fields do
[
  posts: %{
    module: Backpex.Fields.HasMany,
    label: "Posts",
    display_field: :title,
    options_query: &where(&1, [user], user.role == :admin),
    live_resource: DemoWeb.PostLive
  }
]
end

      


      
        Summary


  
    Functions
  


    
      
        assign_selected(socket)

      


    


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      assign_selected(socket)



        
          
        

    

  


  


  



  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.HasManyThrough - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.HasManyThrough 
    



      
A field for handling a has_many (through) relation.
This field is not orderable or searchable.
Warning
This field is in beta state. Use at your own risk.
Field-specific options
See Backpex.Field for general field options.
	:display_field (atom/0) - Required. The field of the relation to be used for displaying options in the select.

	:live_resource (atom/0) - Required. The corresponding live resource of the association. Used to display the title of the modal and generate defaults
for :child_fields fields.

	:sort_by (list of atom/0) - A list of columns by which the child element output will be sorted. The sorting takes place in ascending order.

	:child_fields (keyword/0) - WIP

	:pivot_fields (keyword/0) - List to map additional data of the pivot table to Backpex fields.

	:options_query (function of arity 2) - Manipulates the list of available options in the select. Can be used to select additional data for the display_field option or to limit the available entries.",
Defaults to fn (query, _field) -> query end which returns all entries.


Example
@impl Backpex.LiveResource
def fields do
[
  addresses: %{
    module: Backpex.Fields.HasManyThrough,
    label: "Addresses",
    display_field: :street,
    live_resource: DemoWeb.AddressLive,
    sort_by: [:zip, :city],
    pivot_fields: [
      type: %{
        module: Backpex.Fields.Select,
        label: "Address Type",
        options: [Shipping: "shipping", Billing: "billing"]
      }
    ]
  }
]
end
The field requires a Ecto.Schema.has_many/3 relation with a mandatory through option in the main schema. Any extra column in the pivot table besides the relational id's must be mapped in the pivot_fields option or given a default value.

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.InlineCRUD - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.InlineCRUD 
    



      
A field to handle inline CRUD operations. It can be used with either an embeds_many or has_many (association) type column.
Field-specific options
See Backpex.Field for general field options.
	:type - Required. The type of the field.

	:child_fields (keyword/0) - Required. A list of input fields to be used. Currently only support Backpex.Fields.Text fields.
You can add additional classes to child field inputs by setting the class option in the list of child_fields.
The class can be a string or a function that takes the assigns and must return a string. In addition, you can
optionally specify the input type of child field inputs with the input_type option. We currently support :text
and :textarea. The input_type defaults to :text.


Important
Everything is currently handled by plain text input.
EmbedsMany
The field in the migration must be of type :map. You also need to use ecto's cast_embed/2 in the changeset.
Example
def changeset(your_schema, attrs) do
  your_schema
  ...
  |> cast_embed(:your_field,
    with: &your_field_changeset/2,
    sort_param: :your_field_order,
    drop_param: :your_field_delete
  )
  ...
end
Important
We use the Ecto :sort_param and :drop_param to keep track of order and dropped items. Therefore, you need to use these options as well in your changeset. The name has to be <field_name>_order and <field_name>_delete.
HasMany (Association)
A HasMany relation does not require any special configuration. You can simply define a basic Ecto.Schema.has_many/3 relation to be used with the Backpex.Fields.InlineCRUD field.
Important
You need to set on_replace: :delete to be able to delete items, and on_delete: :delete_all to be able to delete a resource with existing items. It is recommended that you also add on_delete: :delete_all to your migration.
Example
@impl Backpex.LiveResource
def fields do
  [
    embeds_many: %{
      module: Backpex.Fields.InlineCRUD,
      label: "EmbedsMany",
      type: :embed,
      except: [:index],
      child_fields: [
        field1: %{
          module: Backpex.Fields.Text,
          label: "Label1"
        },
        field2: %{
          module: Backpex.Fields.Text,
          label: "Label2"
        }
      ]
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.MultiSelect - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.MultiSelect 
    



      
A field for handling a multi select with predefined options.
This field can not be searchable.
Field-specific options
See Backpex.Field for general field options.
	:options - Required. List of options or function that receives the assigns.

	:prompt - The text to be displayed when no option is selected or function that receives the assigns.

	:not_found_text (String.t/0) - The text to be displayed when no options are found.
The default value is "No options found".


Example
@impl Backpex.LiveResource
def fields do
  [
    users: %{
      module: Backpex.Fields.MultiSelect,
      label: "Users",
      options: fn _assigns -> [{"Alex", "user_id_alex"}, {"Bob", "user_id_bob"}] end
    },
  ]

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Number - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Number 
    



      
A field for handling a number value.
Field-specific options
See Backpex.Field for general field options.
	:placeholder - Placeholder value or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:readonly - Sets the field to readonly. Also see the panels guide.



      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Select - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Select 
    



      
A field for handling a select value.
Field-specific options
See Backpex.Field for general field options.
	:options - Required. List of options or function that receives the assigns.

	:prompt - The text to be displayed when no option is selected or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.


Example
@impl Backpex.LiveResource
def fields do
  [
    role: %{
      module: Backpex.Fields.Select,
      label: "Role",
      options: [Admin: admin, User: user]
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Text - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Text 
    



      
A field for handling a text value.
Field-specific options
See Backpex.Field for general field options.
	:placeholder - Placeholder value or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:readonly - Sets the field to readonly. Also see the panels guide.



      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Textarea - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Textarea 
    



      
A field for handling long text values.
Field-specific options
See Backpex.Field for general field options.
	:placeholder - Placeholder value or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:rows (non_neg_integer/0) - Number of visible text lines for the control. The default value is 2.

	:readonly - Sets the field to readonly. Also see the panels guide.



      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Time - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Time 
    



      
A field for handling a time value.
Field-specific options
See Backpex.Field for general field options.
	:format - Format string which will be used to format the date time value or function that formats the date time.
Can also be a function wich receives a DateTime and must return a string.
The default value is "%I:%M %p".

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:readonly - Sets the field to readonly. Also see the panels guide.


Examples
@impl Backpex.LiveResource
def fields do
  [
    created_at: %{
      module: Backpex.Fields.Time,
      label: "Deliver By",
      format: "%I:%M %p"
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.URL - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.URL 
    



      
A field for handling an URL value.
Field-specific options
See Backpex.Field for general field options.
	:placeholder - Placeholder value or function that receives the assigns.

	:debounce - Timeout value (in milliseconds), "blur" or function that receives the assigns.

	:throttle - Timeout value (in milliseconds) or function that receives the assigns.

	:allowed_schemes (list of String.t/0) - List of allowed schemes for the link (e.g. https). Values with disallowed scheme are displayed as raw text. The default value is ["https", "http", "tel", "mailto"].



      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  


        

      


  

  
    
    Backpex.Fields.Upload - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Fields.Upload 
    



      
A field for handling uploads.
Warning
This field does not currently support using a custom Phoenix.LiveView.UploadWriter.
Field-specific options
See Backpex.Field for general field options.
The upload_key, accept, max_entries and max_file_size options are forwarded to
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html#allow_upload/3. See the documentation for more information.
	:upload_key (atom/0) - Required. Required identifier for the upload field (the name of the upload).

	:accept - List of filetypes that will be accepted or :any. The default value is :any.

	:max_entries (non_neg_integer/0) - Number of max files that can be uploaded. The default value is 1.

	:max_file_size (pos_integer/0) - Optional maximum file size in bytes to be allowed to uploaded. The default value is 8000000.

	:list_existing_files (function of arity 1) - Required. A function being used to display existing uploads. It has to return a list of all uploaded files as strings.
Removed files during an edit of an item are automatically removed from the list.
Parameters
	:item (struct) - The item without its changes.

Example
def list_existing_files(item), do: item.files

	:file_label (function of arity 1) - A function to be used to modify a file label of a single file. In the following example each file will have an
_upload suffix.
Parameters
	:file (string) - The file.

Example
def file_label(file), do: file <> "_upload"

	:consume_upload (function of arity 4) - Required. Required function to consume file uploads.
A function to consume uploads. It is called after the item has been saved and is used to copy the files to a
specific destination. Backpex will use this function as a callback for consume_uploaded_entries. See
https://hexdocs.pm/phoenix_live_view/uploads.html#consume-uploaded-entries for more details.
Parameters
	:socket - The socket.
	:item (struct) - The saved item (with its changes).
	:meta - The upload meta.
	:entry - The upload entry.

Example
defp consume_upload(_socket, _item, %{path: path} = _meta, entry) do
  file_name = ...
  file_url = ...
  static_dir = ...
  dest = Path.join([:code.priv_dir(:demo), "static", static_dir, file_name])

  File.cp!(path, dest)

  {:ok, file_url}
end

	:put_upload_change (function of arity 6) - Required. A function to modify the params based on certain parameters. It is important because it ensures that file paths
are added to the item change and therefore persisted in the database.
Parameters
	:socket - The socket.
	:params (map) - The current params that will be passed to the changeset function.
	:item (struct) - The item without its changes. On create will this will be an empty map.
	uploaded_entries (tuple) - The completed and in progress entries for the upload.
	removed_entries (list) - A list of removed uploads during edit.
	action (atom) - The action (:validate or :insert)

Example
def put_upload_change(_socket, params, item, uploaded_entries, removed_entries, action) do
  existing_files = item.files -- removed_entries

  new_entries =
    case action do
      :validate ->
        elem(uploaded_entries, 1)

      :insert ->
        elem(uploaded_entries, 0)
    end

  files = existing_files ++ Enum.map(new_entries, fn entry -> file_name(entry) end)

  Map.put(params, "images", files)
end

	:remove_uploads (function of arity 3) - Required. A function that is being called after editing an item to be able to delete removed files.
Note that this function is not invoked when an item is deleted. Therefore, you must implement file deletion logic in the Backpex.LiveResource.on_item_deleted/2 callback.
Parameters
	:socket - The socket.
	:item (struct) - The item without its changes.
	removed_entries (list) - A list of removed uploads during edit. The list only contains files that existed before the edit.

Example
defp remove_uploads(_socket, _item, removed_entries) do
  for file <- removed_entries do
    file_path = ...
    File.rm!(file_path)
  end
end

	:external (function of arity 2) - A 2-arity function that allows the server to generate metadata for each upload entry.
Parameters
	:entry - The upload entry.
	:socket - The socket.

Examples
This is an example for S3-Compatible object storage, for more examples check the Phoenix LiveView
documentation for External Uploads.
defp presign_upload(entry, socket) do
  config = ExAws.Config.new(:s3)
  key = "uploads/example/" <> entry.client_name

  {:ok, url} =
    ExAws.S3.presigned_url(config, :put, @bucket, key,
      expires_in: 3600,
      query_params: [{"Content-Type", entry.client_type}]
    )

  meta = %{uploader: "S3", key: key, url: url}
  {:ok, meta, socket}
end


Info
The first two examples copy uploads to a static folder in the application. In a production environment,
you should consider uploading files to an appropriate object store.
Full Single File Example
In this example we are adding an avatar upload for a user. We implement it so that exactly one avatar must exist.
defmodule Demo.Repo.Migrations.AddAvatarToUsers do
  use Ecto.Migration

  def change do
    alter table(:users) do
      add(:avatar, :string, null: false, default: "")
    end
  end
end

defmodule Demo.User do
  use Ecto.Schema

  schema "users" do
    field(:avatar, :string, default: "")
    ...
  end

  def changeset(user, attrs, _metadata \ []) do
    user
    |> cast(attrs, [:avatar])
    |> validate_required([:avatar])
    |> validate_change(:avatar, fn
      :avatar, "too_many_files" ->
        [avatar: "has to be exactly one"]

      :avatar, "" ->
        [avatar: "can't be blank"]

      :avatar, _avatar ->
        []
    end)
  end
end

defmodule DemoWeb.UserLive do
  use Backpex.LiveResource,
    ...

  @impl Backpex.LiveResource
  def fields do
    [
      avatar: %{
        module: Backpex.Fields.Upload,
        label: "Avatar",
        upload_key: :avatar,
        accept: ~w(.jpg .jpeg .png),
        max_file_size: 512_000,
        put_upload_change: &put_upload_change/6,
        consume_upload: &consume_upload/4,
        remove_uploads: &remove_uploads/3,
        list_existing_files: &list_existing_files/1,
        render: fn
          %{value: value} = assigns when value == "" or is_nil(value) ->
            ~H"<p><%= Backpex.HTML.pretty_value(@value) %></p>"

          assigns ->
            ~H'<img class="h-10 w-auto" src={file_url(@value)} />'
        end
      },
      ...
    ]
  end

  defp list_existing_files(%{avatar: avatar} = _item) when avatar != "" and not is_nil(avatar), do: [avatar]
  defp list_existing_files(_item), do: []

  def put_upload_change(_socket, params, item, uploaded_entries, removed_entries, action) do
    existing_files = list_existing_files(item) -- removed_entries

    new_entries =
      case action do
        :validate ->
          elem(uploaded_entries, 1)

        :insert ->
          elem(uploaded_entries, 0)
      end

    files = existing_files ++ Enum.map(new_entries, fn entry -> file_name(entry) end)

    case files do
      [file] ->
        Map.put(params, "avatar", file)

      [_file | _other_files] ->
        Map.put(params, "avatar", "too_many_files")

      [] ->
        Map.put(params, "avatar", "")
    end
  end

  defp consume_upload(_socket, _item, %{path: path} = _meta, entry) do
    file_name = file_name(entry)
    dest = Path.join([:code.priv_dir(:demo), "static", upload_dir(), file_name])

    File.cp!(path, dest)

    {:ok, file_url(file_name)}
  end

  defp remove_uploads(_socket, _item, removed_entries) do
    for file <- removed_entries do
      path = Path.join([:code.priv_dir(:demo), "static", upload_dir(), file])
      File.rm!(path)
    end
  end

  defp file_url(file_name) do
    static_path = Path.join([upload_dir(), file_name])
    Phoenix.VerifiedRoutes.static_url(DemoWeb.Endpoint, "/" <> static_path)
  end

  defp file_name(entry) do
    [ext | _] = MIME.extensions(entry.client_type)
    entry.uuid <> "." <> ext
  end

  defp upload_dir, do: Path.join(["uploads", "user", "avatar"])
end
Full Multi File Example
In this example, we are adding images to a product resource. We limit the images to a maximum of 2.
defmodule Demo.Repo.Migrations.AddImagesToProducts do
  use Ecto.Migration

  def change do
    alter table(:products) do
      add(:images, {:array, :string})
    end
  end
end

defmodule Demo.Product do
  use Ecto.Schema

  schema "products" do
    field(:images, {:array, :string})
    ...
  end

  def changeset(user, attrs, _metadata \ []) do
    user
    |> cast(attrs, [:images])
    |> validate_length(:images, max: 2)
  end
end

defmodule DemoWeb.ProductLive do
  use Backpex.LiveResource,
    ...

  @impl Backpex.LiveResource
  def fields do
    [
      images: %{
        module: Backpex.Fields.Upload,
        label: "Images",
        upload_key: :images,
        accept: ~w(.jpg .jpeg .png),
        max_entries: 2,
        max_file_size: 512_000,
        put_upload_change: &put_upload_change/6,
        consume_upload: &consume_upload/4,
        remove_uploads: &remove_uploads/3,
        list_existing_files: &list_existing_files/1,
        render: fn
          %{value: value} = assigns when is_list(value) ->
            ~H'''
            <div>
              <img :for={img <- @value} class="h-10 w-auto" src={file_url(img)} />
            </div>
            '''

          assigns ->
            ~H'<p><%= Backpex.HTML.pretty_value(@value) %></p>'
        end,
        except: [:index, :resource_action],
        align_label: :center
      },
      ...
    ]
  end

  defp list_existing_files(%{images: images} = _item) when is_list(images), do: images
  defp list_existing_files(_item), do: []

  defp put_upload_change(_socket, params, item, uploaded_entries, removed_entries, action) do
    existing_files = list_existing_files(item) -- removed_entries

    new_entries =
      case action do
        :validate ->
          elem(uploaded_entries, 1)

        :insert ->
          elem(uploaded_entries, 0)
      end

    files = existing_files ++ Enum.map(new_entries, fn entry -> file_name(entry) end)

    Map.put(params, "images", files)
  end

  defp consume_upload(_socket, _item, %{path: path} = _meta, entry) do
    file_name = file_name(entry)
    dest = Path.join([:code.priv_dir(:demo), "static", upload_dir(), file_name])

    File.cp!(path, dest)

    {:ok, file_url(file_name)}
  end

  defp remove_uploads(_socket, _item, removed_entries) do
    for file <- removed_entries do
      path = Path.join([:code.priv_dir(:demo), "static", upload_dir(), file])
      File.rm!(path)
    end
  end

  defp file_url(file_name) do
    static_path = Path.join([upload_dir(), file_name])
    Phoenix.VerifiedRoutes.static_url(DemoWeb.Endpoint, "/" <> static_path)
  end

  defp file_name(entry) do
    [ext | _] = MIME.extensions(entry.client_type)
    entry.uuid <> "." <> ext
  end

  defp upload_dir, do: Path.join(["uploads", "product", "images"])
end
Full External File Example
In this example we are adding an avatar upload for a user and storing it in an external object storage like S3 or R2
This example works with Cloudflare R2 and assumes that you configured ExAws and ExAws.S3 correctly and that you're
serving the images from a CDN in front of your object storage.
For more details check the Phoenix LiveView documentation for External Uploads.
defmodule Demo.Repo.Migrations.AddAvatarToUsers do
  use Ecto.Migration

  def change do
    alter table(:users) do
      add(:avatar, :string)
    end
  end
end

defmodule Demo.User do
  use Ecto.Schema

  schema "users" do
    field(:avatar, :string)
    ...
  end

  def changeset(user, attrs, _metadata \ []) do
    user
    |> cast(attrs, [:avatar])
    |> validate_change(:avatar, fn
      :avatar, "too_many_files" ->
        [avatar: "has to be exactly one"]

      :avatar, "" ->
        [avatar: "can't be blank"]

      :avatar, _avatar ->
        []
    end)
  end
end

defmodule DemoWeb.UserLive do
  use Backpex.LiveResource,
    ...

  @base_cdn_path "https://cdn.example.com/"
  @upload_path "uploads/backpex/"
  @bucket "example"
  @base_r2_host "https://my_host.r2.cloudflarestorage.com/"

  @impl Backpex.LiveResource
  def fields do
    [
      avatar: %{
        module: Backpex.Fields.Upload,
        label: "Avatar",
        upload_key: :avatar,
        accept: ~w(.jpg .jpeg .png),
        max_file_size: 512_000,
        put_upload_change: &put_upload_change/6,
        consume_upload: &consume_upload/4,
        remove_uploads: &remove_uploads/3,
        list_existing_files: &list_existing_files/1,
        external: &presign_upload/2,
        render: fn
          %{value: value} = assigns when value == "" or is_nil(value) ->
            ~H"<p>{Backpex.HTML.pretty_value(@value)}</p>"

          assigns ->
            ~H'<img class="h-10 w-auto" src={@value} />'
        end
      },
      ...
    ]
  end

  defp list_existing_files(%{avatar: avatar} = _item) when avatar != "" and not is_nil(avatar), do: [avatar]
  defp list_existing_files(_item), do: []

  defp presign_upload(entry, socket) do
    config = ExAws.Config.new(:s3)
    key = @upload_path <> entry.client_name

    {:ok, url} =
      ExAws.S3.presigned_url(config, :put, @bucket, key,
        expires_in: 3600,
        query_params: [{"Content-Type", entry.client_type}]
    )

    meta = %{uploader: "S3", key: key, url: url}

    {:ok, meta, socket}
  end

  def put_upload_change(_socket, params, item, uploaded_entries, removed_entries, action) do
    existing_files = list_existing_files(item) -- removed_entries

    new_entries =
      case action do
        :validate ->
          elem(uploaded_entries, 1)

        :insert ->
          elem(uploaded_entries, 0)
      end

    files = existing_files ++ Enum.map(new_entries, fn entry -> entry.client_name end)

    case files do
      [file] ->
        file_path = @base_cdn_path <> @upload_path <> file
        Map.put(params, "avatar", file_path)

      [_file | _other_files] ->
        Map.put(params, "avatar", "too_many_files")

      [] ->
        Map.put(params, "avatar", "")
    end
  end

  defp consume_upload(_socket, _item, _meta, _entry) do
    {:ok, :external}
  end

  defp remove_uploads(_socket, _item, removed_entries) do
    for file <- removed_entries do
      object = String.replace_prefix(file, @base_cdn_path, "")
      ExAws.S3.delete_object(@bucket, object) |> ExAws.request!()
    end
  end
end
You also need to create an Uploader in the app.js file to handle the actual upload
let Uploaders = {}

Uploaders.S3 = function (entries, onViewError) {
  entries.forEach(entry => {
    let xhr = new XMLHttpRequest()
    onViewError(() => xhr.abort())
    xhr.onload = () => xhr.status === 200 ? entry.progress(100) : entry.error()
    xhr.onerror = () => entry.error()

    xhr.upload.addEventListener("progress", (event) => {
      if(event.lengthComputable){
        let percent = Math.round((event.loaded / event.total) * 100)
        if(percent < 100){ entry.progress(percent) }
      }
    })

    let url = entry.meta.url
    xhr.open("PUT", url, true)
    xhr.send(entry.file)
  })
}

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {
  uploaders: Uploaders,
  ...
})

      


      
        Summary


  
    Functions
  


    
      
        config_schema()

      


        Returns the schema of configurable options for this field.



    


    
      
        existing_file_paths(field, item, removed_files)

      


        Returns a list of existing files mapped to a label.



    


    
      
        label_from_file(field_options, file)

      


        Calls field option function to get label from filename. Defaults to filename.



    


    
      
        list_existing_files(field, item, removed_files)

      


        Lists existing files based on item and list of removed files.



    


    
      
        map_file_paths(field, files)

      


        Maps uploaded files to keyword list with identifier and label.



    





      


      
        Functions


        


  
    
      
    
    
      config_schema()



        
          
        

    

  


  

Returns the schema of configurable options for this field.
This can be useful for reuse in other field modules.

  



  
    
      
    
    
      existing_file_paths(field, item, removed_files)



        
          
        

    

  


  

Returns a list of existing files mapped to a label.

  



  
    
      
    
    
      label_from_file(field_options, file)



        
          
        

    

  


  

Calls field option function to get label from filename. Defaults to filename.
Examples
iex> Backpex.Fields.Upload.label_from_file(%{file_label: fn file -> file <> "xyz" end}, "file")
"filexyz"
iex> Backpex.Fields.Upload.label_from_file(%{}, "file")
"file"

  



  
    
      
    
    
      list_existing_files(field, item, removed_files)



        
          
        

    

  


  

Lists existing files based on item and list of removed files.

  



  
    
      
    
    
      map_file_paths(field, files)



        
          
        

    

  


  

Maps uploaded files to keyword list with identifier and label.

  


        

      


  

  
    
    Backpex.ItemAction - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ItemAction behaviour
    



      
Behaviour implemented by all item actions.

      


      
        Summary


  
    Callbacks
  


    
      
        base_schema(assigns)

      


        The base item / schema to use for the changeset. The result will be passed as the first parameter to changeset/3 each time it is called.



    


    
      
        cancel_label(assigns)

      


        cancel button label



    


    
      
        changeset(change, attrs, metadata)

      


        The changeset to be used in the item action. It is used to validate form inputs.



    


    
      
        confirm(assigns)

      


        This text is being displayed in the confirm dialog.



    


    
      
        confirm_label(assigns)

      


        Confirm button label



    


    
      
        fields()

      


        A list of fields to be displayed in the item action. See Backpex.Field. In addition you have to provide
a type for each field in order to support changeset generation.



    


    
      
        handle(socket, items, params)

      


        Performs the action. It takes the socket, the list of affected items, and the casted and validated data (received from Ecto.Changeset.apply_action/2).



    


    
      
        icon(assigns, item)

      


        Action icon



    


    
      
        label(assigns, item)

      


        Action label (Show label on hover)



    





  
    Functions
  


    
      
        __using__(opts)

      


        Defines Backpex.ItemAction behaviour and provides default implementations.



    


    
      
        default_actions()

      


        Returns default item actions.



    


    
      
        has_confirm_modal?(item_action)

      


        Checks whether item action has confirmation modal.



    


    
      
        has_form?(item_action)

      


        Checks whether item action has form.



    





      


      
        Callbacks


        


  
    
      
    
    
      base_schema(assigns)



        
          
        

    

  


  

      

          @callback base_schema(assigns :: map()) ::
  Ecto.Schema.t()
  | Ecto.Changeset.t()
  | {Ecto.Changeset.data(), Ecto.Changeset.types()}


      


The base item / schema to use for the changeset. The result will be passed as the first parameter to changeset/3 each time it is called.
This function is optional and can be used to use changesets with schemas in item actions. If this function is not provided,
a schemaless changeset will be created with the provided types from fields/0.

  



  
    
      
    
    
      cancel_label(assigns)


        (optional)


        
          
        

    

  


  

      

          @callback cancel_label(assigns :: map()) :: binary()


      


cancel button label

  



  
    
      
    
    
      changeset(change, attrs, metadata)


        (optional)


        
          
        

    

  


  

      

          @callback changeset(
  change ::
    Ecto.Schema.t()
    | Ecto.Changeset.t()
    | {Ecto.Changeset.data(), Ecto.Changeset.types()},
  attrs :: map(),
  metadata :: keyword()
) :: Ecto.Changeset.t()


      


The changeset to be used in the item action. It is used to validate form inputs.
Additional metadata is passed as a keyword list via the metadata parameter.
The list of metadata:
	:assigns - the assigns
	:target - the name of the form target that triggered the changeset call. Defaults to nil if the call was not triggered by a form field.


  



  
    
      
    
    
      confirm(assigns)


        (optional)


        
          
        

    

  


  

      

          @callback confirm(assigns :: map()) :: binary()


      


This text is being displayed in the confirm dialog.
There won't be any confirmation when this function is not defined.

  



  
    
      
    
    
      confirm_label(assigns)


        (optional)


        
          
        

    

  


  

      

          @callback confirm_label(assigns :: map()) :: binary()


      


Confirm button label

  



  
    
      
    
    
      fields()


        (optional)


        
          
        

    

  


  

      

          @callback fields() :: list()


      


A list of fields to be displayed in the item action. See Backpex.Field. In addition you have to provide
a type for each field in order to support changeset generation.
The following fields are currently not supported:
	Backpex.Fields.BelongsTo
	Backpex.Fields.HasMany
	Backpex.Fields.HasManyThrough
	Backpex.Fields.Upload


  



  
    
      
    
    
      handle(socket, items, params)



        
          
        

    

  


  

      

          @callback handle(
  socket :: Phoenix.LiveView.Socket.t(),
  items :: [map()],
  params :: map() | struct()
) ::
  {:ok, Phoenix.LiveView.Socket.t()} | {:error, Ecto.Changeset.t()}


      


Performs the action. It takes the socket, the list of affected items, and the casted and validated data (received from Ecto.Changeset.apply_action/2).
You must return either {:ok, socket} or {:error, changeset}.
If {:ok, socket} is returned, the action is considered successful by Backpex and the action modal is closed. However, you can add an error flash message to the socket to indicate that something has gone wrong.
If {:error, changeset} is returned, the changeset is used to update the form to display the errors. Note that Backpex already validates the form for you.
Therefore it is only necessary in rare cases to perform additional validation and return a changeset from handle/3.
For example, if you are building a duplicate action and can only check for a unique constraint when inserting the duplicate element.
You are only allowed to return {:error, changeset} if the action has a form. Otherwise Backpex will throw an ArgumentError.

  



  
    
      
    
    
      icon(assigns, item)



        
          
        

    

  


  

      

          @callback icon(assigns :: map(), item :: struct()) :: %Phoenix.LiveView.Rendered{
  caller: term(),
  dynamic: term(),
  fingerprint: term(),
  root: term(),
  static: term()
}


      


Action icon

  



  
    
      
    
    
      label(assigns, item)



        
          
        

    

  


  

      

          @callback label(assigns :: map(), item :: struct() | nil) :: binary()


      


Action label (Show label on hover)

  


        

      

      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Defines Backpex.ItemAction behaviour and provides default implementations.

  



  
    
      
    
    
      default_actions()



        
          
        

    

  


  

Returns default item actions.

  



  
    
      
    
    
      has_confirm_modal?(item_action)



        
          
        

    

  


  

Checks whether item action has confirmation modal.

  



  
    
      
    
    
      has_form?(item_action)



        
          
        

    

  


  

Checks whether item action has form.

  


        

      


  

  
    
    Backpex.ItemActions.Delete - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ItemActions.Delete 
    



      
Inline item action to redirect to show view.

      




  

  
    
    Backpex.ItemActions.Edit - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ItemActions.Edit 
    



      
Inline item action to redirect to show view.

      




  

  
    
    Backpex.ItemActions.Show - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ItemActions.Show 
    



      
Inline item action to redirect to show view.

      




  

  
    
    Backpex.ResourceAction - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ResourceAction behaviour
    



      
Behaviour implemented by all resource action modules.
use Backpex.ResourceAction
When you use Backpex.ResourceAction, the Backpex.ResourceAction module will set @behavior Backpex.ResourceAction.
In addition it will implement the base_schema/1 function in order to generate a schemaless changeset by default.

      


      
        Summary


  
    Callbacks
  


    
      
        base_schema(assigns)

      


        The base item / schema to use for the changeset. The result will be passed as the first parameter to changeset/3 each time it is called.



    


    
      
        changeset(change, attrs, metadata)

      


        The changeset to be used in the resource action. It may be used to validate form inputs.



    


    
      
        fields()

      


        A list of fields to be displayed in the resource action. See Backpex.Field. In addition you have to provide
a type for each field in order to support changeset generation.



    


    
      
        handle(socket, data)

      


        Performs the action. It takes the socket and the casted and validated data (received from Ecto.Changeset.apply_action/2).



    


    
      
        label()

      


        The label of the resource action. It will be the label for the resource action button.



    


    
      
        title()

      


        The title of the resource action. It will be part of the page header and slide over title.



    





  
    Functions
  


    
      
        __using__(opts)

      


        Defines Backpex.ResourceAction behaviour.



    


    
      
        name(action, type)

      


        Gets the name of a resource action.



    





      


      
        Callbacks


        


  
    
      
    
    
      base_schema(assigns)



        
          
        

    

  


  

      

          @callback base_schema(assigns :: map()) ::
  Ecto.Schema.t()
  | Ecto.Changeset.t()
  | {Ecto.Changeset.data(), Ecto.Changeset.types()}


      


The base item / schema to use for the changeset. The result will be passed as the first parameter to changeset/3 each time it is called.
This function is optional and can be used to use changesets with schemas in item actions. If this function is not provided,
a schemaless changeset will be created with the provided types from fields/0.

  



  
    
      
    
    
      changeset(change, attrs, metadata)



        
          
        

    

  


  

      

          @callback changeset(
  change ::
    Ecto.Schema.t()
    | Ecto.Changeset.t()
    | {Ecto.Changeset.data(), Ecto.Changeset.types()},
  attrs :: map(),
  metadata :: keyword()
) :: Ecto.Changeset.t()


      


The changeset to be used in the resource action. It may be used to validate form inputs.
Additional metadata is passed as a keyword list via the third parameter.
The list of metadata:
	:assigns - the assigns
	:target - the name of the form target that triggered the changeset call. Default to nil if the call was not triggered by a form field.


  



  
    
      
    
    
      fields()



        
          
        

    

  


  

      

          @callback fields() :: list()


      


A list of fields to be displayed in the resource action. See Backpex.Field. In addition you have to provide
a type for each field in order to support changeset generation.

  



  
    
      
    
    
      handle(socket, data)



        
          
        

    

  


  

      

          @callback handle(socket :: Phoenix.LiveView.Socket.t(), data :: map()) ::
  {:ok, Phoenix.LiveView.Socket.t()} | {:error, Ecto.Changeset.t()}


      


Performs the action. It takes the socket and the casted and validated data (received from Ecto.Changeset.apply_action/2).
You must return either {:ok, socket} or {:error, changeset}.
If {:ok, socket} is returned, the action is considered successful by Backpex and the action modal is closed. However, you can add an error flash message to the socket to indicate that something has gone wrong.
If {:error, changeset} is returned, the changeset is used to update the form to display the errors. Note that Backpex already validates the form for you. Therefore it is only necessary in rare cases to perform additional validation and return a changeset from handle/2.
You have to use Phoenix.LiveView.put_flash/3 along with the socket to show a success or error message.

  



  
    
      
    
    
      label()



        
          
        

    

  


  

      

          @callback label() :: binary()


      


The label of the resource action. It will be the label for the resource action button.

  



  
    
      
    
    
      title()



        
          
        

    

  


  

      

          @callback title() :: binary()


      


The title of the resource action. It will be part of the page header and slide over title.

  


        

      

      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Defines Backpex.ResourceAction behaviour.

  



  
    
      
    
    
      name(action, type)



        
          
        

    

  


  

Gets the name of a resource action.

  


        

      


  

  
    
    Backpex.Filter - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Filter behaviour
    



      
The base behaviour for all filters. Injects also basic layout, form and delete button for a filters rendering.

      


      
        Summary


  
    Callbacks
  


    
      
        can?(assigns)

      


        Defines whether the filter can be used or not.



    


    
      
        label()

      


        If no label is defined on the filter map, this value is used as the filter label.



    


    
      
        query(t, any, any, assigns)

      


        The filter query that is executed if an option was selected.



    


    
      
        render(assigns)

      


        Renders the filters selected value(s).



    


    
      
        render_form(assigns)

      


        Renders the filters options form.



    





      


      
        Callbacks


        


  
    
      
    
    
      can?(assigns)



        
          
        

    

  


  

      

          @callback can?(Phoenix.LiveView.Socket.assigns()) :: boolean()


      


Defines whether the filter can be used or not.

  



  
    
      
    
    
      label()


        (optional)


        
          
        

    

  


  

      

          @callback label() :: String.t()


      


If no label is defined on the filter map, this value is used as the filter label.

  



  
    
      
    
    
      query(t, any, any, assigns)



        
          
        

    

  


  

      

          @callback query(Ecto.Query.t(), any(), any(), assigns :: map()) :: Ecto.Query.t()


      


The filter query that is executed if an option was selected.

  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

      

          @callback render(Phoenix.LiveView.Socket.assigns()) :: Phoenix.LiveView.Rendered.t()


      


Renders the filters selected value(s).

  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

      

          @callback render_form(Phoenix.LiveView.Socket.assigns()) :: Phoenix.LiveView.Rendered.t()


      


Renders the filters options form.

  


        

      


  

  
    
    Backpex.Filters.Boolean - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Filters.Boolean behaviour
    



      
The boolean filter renders one checkbox per given option, hence multiple options can apply at the same time.
Instead of implementing a query callback, you need to define predicates for each option leveraging Ecto.Query.dynamic/2.
Warning
Note that only query elements will work as a predicate that also work in an Ecto.Query.where/3.
If none is selected, the filter does not change the query. If multiple options are selected they are logically reduced via orWhere.
See the following example for an implementation of a boolean filter for a published field.
defmodule MyAppWeb.Filters.EventPublished do
  use Backpex.Filters.Boolean

  @impl Backpex.Filter
  def label, do: "Published?"

  @impl Backpex.Filters.Boolean
  def options do
    [
      %{
        label: "Published",
        key: "published",
        predicate: dynamic([x], x.published)
      },
      %{
        label: "Not published",
        key: "not_published",
        predicate: dynamic([x], not x.published)
      }
    ]
  end
end
use Backpex.Filters.Boolean
When you use Backpex.Filters.Boolean, the Backpex.Filters.Boolean module will set @behavior Backpex.Filters.Boolean.
In addition it will add a render and render_form function in order to display the corresponding filter.
It will also implement the Backpex.Filter.query function to define a boolean query.

      


      
        Summary


  
    Callbacks
  


    
      
        options(assigns)

      


        The list of options for the select filter.



    





  
    Functions
  


    
      
        find_option_label(options, key)

      


    


    
      
        maybe_query(predicates, query)

      


    


    
      
        option_value_to_label(options, values)

      


    


    
      
        predicates(options)

      


    


    
      
        query(query, options, attribute, value, assigns)

      


    


    
      
        render(assigns)

      


        


    


    
      
        render_form(assigns)

      


        


    





      


      
        Callbacks


        


  
    
      
    
    
      options(assigns)



        
          
        

    

  


  

      

          @callback options(assigns :: map()) :: [map()]


      


The list of options for the select filter.

  


        

      

      
        Functions


        


  
    
      
    
    
      find_option_label(options, key)



        
          
        

    

  


  


  



  
    
      
    
    
      maybe_query(predicates, query)



        
          
        

    

  


  


  



  
    
      
    
    
      option_value_to_label(options, values)



        
          
        

    

  


  


  



  
    
      
    
    
      predicates(options)



        
          
        

    

  


  


  



  
    
      
    
    
      query(query, options, attribute, value, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Attributes
	value (:any) (required)
	options (:list) (required)


  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

Attributes
	form (:any) (required)
	field (:atom) (required)
	value (:any) (required)
	options (:list) (required)


  


        

      


  

  
    
    Backpex.Filters.MultiSelect - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Filters.MultiSelect behaviour
    



      
The multi select filter renders checkboxes for a given list of options, hence allowing the user to select multiple values.
See the following example for an implementation of a multi select user filter.
defmodule MyAppWeb.Filters.MultiUserSelect do
  use Backpex.Filters.MultiSelect

  @impl Backpex.Filter
  def label, do: "User"

  @impl Backpex.Filters.MultiSelect
  def prompt, do: "Select user ..."

  @impl Backpex.Filters.MultiSelect
  def options, do: [
    {"John Doe", "acdd1860-65ce-4ed6-a37c-433851cf68d7"},
    {"Jane Doe", "9d78ce5e-9334-4a6c-a076-f1e72522de2"}
  ]
end
use Backpex.Filters.MultiSelect
When you use Backpex.Filters.MultiSelect, the Backpex.Filters.MultiSelect module will set @behavior Backpex.Filters.Select. In addition it will add a render and render_form function in order to display the corresponding filter.

      


      
        Summary


  
    Callbacks
  


    
      
        options(assigns)

      


        The list of options for the multi select filter.



    





  
    Functions
  


    
      
        find_option_label(options, key)

      


    


    
      
        maybe_query(predicates, query)

      


    


    
      
        option_value_to_label(options, values)

      


    


    
      
        query(query, attribute, value, assigns)

      


    


    
      
        render(assigns)

      


        


    


    
      
        render_form(assigns)

      


        


    





      


      
        Callbacks


        


  
    
      
    
    
      options(assigns)



        
          
        

    

  


  

      

          @callback options(assigns :: map()) :: [{String.t() | atom(), String.t() | atom()}]


      


The list of options for the multi select filter.

  


        

      

      
        Functions


        


  
    
      
    
    
      find_option_label(options, key)



        
          
        

    

  


  


  



  
    
      
    
    
      maybe_query(predicates, query)



        
          
        

    

  


  


  



  
    
      
    
    
      option_value_to_label(options, values)



        
          
        

    

  


  


  



  
    
      
    
    
      query(query, attribute, value, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Attributes
	value (:any) (required)
	options (:list) (required)


  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

Attributes
	form (:any) (required)
	field (:atom) (required)
	value (:any) (required)
	options (:list) (required)
	prompt (:string) (required)


  


        

      


  

  
    
    Backpex.Filters.Range - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Filters.Range behaviour
    



      
The range filter renders two input fields of the same type. Backpex offers the :date, :datetime and the number type.
See the following example for an implementation of a date range filter.
defmodule MyAppWeb.Filters.DateRange do
  use Backpex.Filters.Range

  @impl Backpex.Filters.Range
  def type, do: :date

  @impl Backpex.Filter
  def label, do: "Date Range (begins at)"
end
Information
Note that the query function is already implemented via Backpex.Filters.Range.
use Backpex.Filters.Range
When you use Backpex.Filters.Range, the Backpex.Filters.Range module will set @behavior Backpex.Filters.Range.
In addition it will add a render and render_form function in order to display the corresponding filter.
It will also implement the Backpex.Filter.query function to define a range query.

      


      
        Summary


  
    Callbacks
  


    
      
        type()

      


        The type return value defines the rendered input fields of the range filter.



    





  
    Functions
  


    
      
        date?(date)

      


    


    
      
        do_query(arg, query, attribute)

      


    


    
      
        maybe_parse(type, value, is_end? \\ false)

      


    


    
      
        maybe_parse_range(type, start_at, end_at)

      


    


    
      
        parse_float_or_int(value)

      


    


    
      
        query(query, type, attribute, arg4, assigns)

      


    


    
      
        range_input_set(assigns)

      


        


    


    
      
        render(assigns)

      


        


    


    
      
        render_form(assigns)

      


        


    


    
      
        render_type(type)

      


    





      


      
        Callbacks


        


  
    
      
    
    
      type()



        
          
        

    

  


  

      

          @callback type() :: :date | :datetime | :number


      


The type return value defines the rendered input fields of the range filter.

  


        

      

      
        Functions


        


  
    
      
    
    
      date?(date)



        
          
        

    

  


  


  



  
    
      
    
    
      do_query(arg, query, attribute)



        
          
        

    

  


  


  



    

  
    
      
    
    
      maybe_parse(type, value, is_end? \\ false)



        
          
        

    

  


  


  



  
    
      
    
    
      maybe_parse_range(type, start_at, end_at)



        
          
        

    

  


  


  



  
    
      
    
    
      parse_float_or_int(value)



        
          
        

    

  


  


  



  
    
      
    
    
      query(query, type, attribute, arg4, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      range_input_set(assigns)



        
          
        

    

  


  

Attributes
	form (:any) (required)
	type (:atom) (required)
	value (:any) (required)
	live_resource (:atom) (required)


  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Attributes
	value (:map) (required)


  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

Attributes
	form (:any) (required)
	field (:atom) (required)
	value (:any) (required)
	type (:atom) (required)
	live_resource (:atom) (required)


  



  
    
      
    
    
      render_type(type)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Filters.Select - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Filters.Select behaviour
    



      
The select filter renders a select box for the implemented options/1 and prompt/0 callbacks. The prompt/0 callback defines the key for the nil value added as first option.
See the following example for an implementation of an event status filter.
defmodule MyAppWeb.Filters.EventStatusSelect do
  use Backpex.Filters.Select

  @impl Backpex.Filter
  def label, do: "Event status"

  @impl Backpex.Filters.Select
  def prompt, do: "Select an option..."

  @impl Backpex.Filters.Select
  def options(_assigns), do: [
    {"Open", :open},
    {"Close", :close},
  ]

  @impl Backpex.Filter
  def query(query, attribute, value) do
      where(query, [x], field(x, ^attribute) == ^value)
  end
end
use Backpex.Filters.Select
When you use Backpex.Filters.Select, the Backpex.Filters.Select module will set @behavior Backpex.Filters.Select.
In addition it will add a render and render_form function in order to display the corresponding filter.

      


      
        Summary


  
    Callbacks
  


    
      
        options(assigns)

      


        The list of options for the select filter.



    


    
      
        prompt()

      


        The select's default option.



    





  
    Functions
  


    
      
        option_value_to_label(options, value)

      


    


    
      
        query(query, attribute, value, assigns)

      


    


    
      
        render(assigns)

      


        


    


    
      
        render_form(assigns)

      


        


    


    
      
        selected(value)

      


    





      


      
        Callbacks


        


  
    
      
    
    
      options(assigns)



        
          
        

    

  


  

      

          @callback options(assigns :: map()) :: [{String.t() | atom(), String.t() | atom()}]


      


The list of options for the select filter.

  



  
    
      
    
    
      prompt()



        
          
        

    

  


  

      

          @callback prompt() :: String.t() | atom()


      


The select's default option.

  


        

      

      
        Functions


        


  
    
      
    
    
      option_value_to_label(options, value)



        
          
        

    

  


  


  



  
    
      
    
    
      query(query, attribute, value, assigns)



        
          
        

    

  


  


  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Attributes
	value (:any) (required)
	options (:list) (required)


  



  
    
      
    
    
      render_form(assigns)



        
          
        

    

  


  

Attributes
	form (:any) (required)
	field (:atom) (required)
	value (:any) (required)
	options (:list) (required)
	prompt (:string) (required)


  



  
    
      
    
    
      selected(value)



        
          
        

    

  


  


  


        

      


  

  
    
    Backpex.Metric - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Metric behaviour
    



      
Behaviour implemented by all metrics.
Metrics are info boxes for your resources displaying key indicators prominently on the index view in your application.
An example could be to show the current total of all orders received today. You may create your own metrics by
implementing this behaviour.

      


      
        Summary


  
    Callbacks
  


    
      
        format(data, format)

      


    


    
      
        query(query, select, repo)

      


    


    
      
        render(assigns)

      


        Used to render the metric as a heex template on the index views.



    





  
    Functions
  


    
      
        metrics_visible?(visibility, resource)

      


        Determine if metrics are visible for given live_resource.



    





      


      
        Callbacks


        


  
    
      
    
    
      format(data, format)



        
          
        

    

  


  

      

          @callback format(data :: any(), format :: any()) :: term()


      



  



  
    
      
    
    
      query(query, select, repo)



        
          
        

    

  


  

      

          @callback query(query :: Ecto.Queryable.t(), select :: any(), repo :: Ecto.Repo.t()) ::
  Ecto.Schema.t() | term() | nil


      



  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

      

          @callback render(assigns :: map()) :: %Phoenix.LiveView.Rendered{
  caller: term(),
  dynamic: term(),
  fingerprint: term(),
  root: term(),
  static: term()
}


      


Used to render the metric as a heex template on the index views.

  


        

      

      
        Functions


        


  
    
      
    
    
      metrics_visible?(visibility, resource)



        
          
        

    

  


  

Determine if metrics are visible for given live_resource.

  


        

      


  

  
    
    Backpex.Metrics.Value - Backpex v0.15.2
    
    

    


  
  

    
Backpex.Metrics.Value 
    



      
Value metrics display only a single value. This value is generated from the current index query by applying the given
aggregate function. The selected value is processed by the specified formatting function and output in the frontend.
Options
	:module - Defines the module to handle the metric.
	:label - Label text to define a headline for the metric.
	:select - Dynamic query expression defining the column to select. This is usually an aggregate function.
	:format - Optional format function to post-process the selected value from the database to display in frontend.
	:class - Optional extra css classes to be passed to the metric box.

Example
In the following example we have a live resource products with a value quantity. We use the select option here
to pass an aggregate function that adds up the quantity value of all products currently active in the index view.
@impl Backpex.LiveResource
def metrics do
  [
    total_quantity: %{
      module: Backpex.Metrics.Value,
      label: "In Stock",
      class: "w-1/3",
      select: dynamic([i], sum(i.quantity)),
      format: fn value ->
        Integer.to_string(value) <> " Products"
      end
    }
  ]
end

      


      
        Summary


  
    Functions
  


    
      
        format(data, format)

      


        Formats the selected data to display in frontend.



    


    
      
        query(query, select, repo)

      


        Performs database select to query the value of the metric



    


    
      
        render(assigns)

      


        


    





      


      
        Functions


        


  
    
      
    
    
      format(data, format)



        
          
        

    

  


  

Formats the selected data to display in frontend.

  



  
    
      
    
    
      query(query, select, repo)



        
          
        

    

  


  

Performs database select to query the value of the metric

  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Attributes
	metric (:any) (required) - the metric to be rendered.


  


        

      


  

  
    
    Backpex.ForbiddenError - Backpex v0.15.2
    
    

    


  
  

    
Backpex.ForbiddenError exception
    



      
Raised when action can not be performed due to missing permission.
If you are seeing this error, you should check if you have the permission necessary to perform the action.

      




  

  
    
    Backpex.NoResultsError - Backpex v0.15.2
    
    

    


  
  

    
Backpex.NoResultsError exception
    



      
Raised when no results can be found.

      




  

  
    
    mix backpex.install - Backpex v0.15.2
    
    

    


  
  

    
mix backpex.install 
    



      
Installs and sets up Backpex according to the installation guide
This task automates the steps from the Backpex installation guide to quickly set up Backpex in your Phoenix application.
You can run it with mix backpex.install after adding Backpex to your dependencies,
or with mix igniter.install backpex to add the dependency and run the installer in one step.
What this installer does:
	Sets up Global Configuration by configuring the PubSub server
	Adds Backpex Hooks to your app.js file
	Installs daisyUI via npm (with your permission)
	Sets up the formatter configuration
	Adds Backpex files to Tailwind content
	Adds routes to your router
	Creates a default admin layout
	Checks for and offers to remove the default background color
	Checks for and offers to remove the @tailwindcss/forms plugin

Example
mix backpex.install

Options
	--app-js-path - Path to your app.js file (default: "assets/js/app.js")
	--app-css-path - Path to your app.css file (default: "assets/css/app.css")
	--no-layout - Skip generating the admin layout


      




  
OEBPS/dist/epub-4WIP524F.js
