

 Bandit

 v1.0.0-pre.13

 [image: Logo]

 Table of contents

 	Changelog

 	README

 	Implementation Notes

 	HTTP/1 Implementation Notes

 	HTTP/2 Implementation Notes

 	WebSocket Implementation Notes

 	Modules

 	Bandit

 	Bandit.HTTP2.Settings

 	Bandit.Logger

 	Bandit.PhoenixAdapter

 	Bandit.Telemetry

 	Bandit.BodyAlreadyReadError

 	Bandit.HTTP2.Stream.StreamError

Changelog for 1.0.0-pre

1.0.0-pre.13 (15 Aug 2023)
Enhancements
	Add ability to send preamble frames when closing a WebSock connection (#211)

1.0.0-pre.12 (12 Aug 2023)
Fixes
	Bump ThousandIsland to 1.0.0-pre.7 to fix leaking file descriptors on
Plug.Conn.sendfile/5 calls (thanks @Hermanverschooten!)

1.0.0-pre.11 (11 Aug 2023)
Changes
	BREAKING CHANGE Move conn value in telemetry events from measurements to metadata

Enhancements
	Add method, request_target and status fields to telemetry metadata on HTTP stop events
	Improve RFC compliance regarding cache-related headers on deflated responses (#207, thanks @tanguilp!)
	Bump to Thousand Island 1.0.0-pre.6
	Doc improvements (particularly around implementation notes)
	Typespec improvements (thanks @moogle19!)

1.0.0-pre.10 (28 Jun 2023)
Enhancements
	Add support for Plug.Conn.inform/3 on HTTP/1 connections (#180)
	Add support for h2c upgrades (#186, thanks @alisinabh!)
	Internal refactoring of HTTP/1 content-length encoded body reads (#184, #190,
thanks @asakura & @moogle19!)

Changes
	Bump Thousand Island to 1.0.0-pre.6 (gaining support for suspend/resume API)
	Drop Elixir 1.12 as a supported target (it should continue to work, but is no
longer covered by CI)

Fixes
	Fix crash when Plug used Plug.Conn.get_peer_data/1 function on HTTP/1
connections (#170, thanks @moogle19!)
	Fix port behaviour when connecting over unix socket (#176, thanks @asakura
& @ibarchenkov!)

1.0.0-pre.9 (16 Jun 2023)
Changes
	Use new ThousandIsland APIs for socket info (#167, thanks @asakura!)

Fixes
	Handle nil connection close reason when closing a WebSocket

1.0.0-pre.8 (15 Jun 2023)
Fixes
	Further improve logging on WebSocket upgrade errors (#149)

1.0.0-pre.7 (14 Jun 2023)
Enhancements
	Refactor HTTP/1 read routines (#158 & #166, thanks @asakura!)
	Improve logging on WebSocket upgrade errors (#149)

Changes
	Override any content-length headers that may have been set by Plug (#165)
	Send content-length on HTTP/2 responses where appropriate (#165)

Fixes
	Send correct content-length header when sending deflated response (#151)
	Do not attempt to deflate if Plug sends a content-encoding header (#165)
	Improve corner case handling of content-length request header (#163, thanks
@ryanwinchester!)
	Handle case where ThousandIsland returns error tuples on some helper routines
(#162)

1.0.0-pre.6 (8 Jun 2023)
Changes
	Always use the declaed scheme if declared in a request-line or :scheme
pseudo-header (#159)
	Internal tidying (thanks @asakura!)

1.0.0-pre.5 (2 Jun 2023)
Enhancements
	Total overhaul of typespecs throughout the library (thanks @asakura!)

1.0.0-pre.4 (23 May 2023)
Enhancements
	Performance / correctness improvements to header length validation (#143,
thanks @moogle19!)
	Performance improvements to host header port parsing (#145 & #147, thanks
@ryanwinchester!)
	Improve WebSocket upgrade failure error messages to aid in diagnosis (#152)

Changes
	Consolidate credo config (#146, thanks @ryanwinchester!)

Fixes
	Fix error in suggested version dependencies during 1.0-pre series (#142,
thanks @cvkmohan!)

1.0.0-pre.3 (3 May 2023)
Enhancements
	Respect read timeout for HTTP/1 keepalives (#140)
	Support Websock 0.5.1, including support for optional WebSock.terminate/2
(#131)

Changes
	Use Req instead of Finch in tests (#137)
	Improve a few corner cases in tests (#136)

1.0.0-pre.2 (24 Apr 2023)
Fixes
	Don't require transport_options to be a keyword list (#130, thanks @justinludwig!)

1.0.0-pre.1 (21 Apr 2023)
Changes
	Update Thousand Island dependency to 1.0-pre

Changelog for 0.7.x
0.7.7 (11 Apr 2023)
Changes
	Bandit will now raise an error at startup if no plug is specified in config
(thanks @moogle19!)

Fixes
	Fix crash at startup when using otp_app option (thanks @moogle19!)
	Minor doc formatting fixes

0.7.6 (9 Apr 2023)
Changes
	BREAKING CHANGE Rename top-level options field to thousand_island_options
	BREAKING CHANGE Rename deflate_opts to deflate_options where used
	Massive overhaul of documentation to use types where possible
	Bandit now uses a term of the form {Bandit, ref()} for id in our child spec
	Bumped to Thousand Island 0.6.7. num_connections is now 16384 by default

Enhancements
	Added top level support for the following convenience parameters:	port can now be set at the top level of your configuration
	ip can now be set at the top level of your configuration
	keyfile and certfile can now be set at the top level of your configuration

	Transport options are now validated by Plug.SSL.configure/1 when starting
an HTTPS server
	Rely on Thousand Island to validate options specified in thousand_island_options. This should avoid cases like #125 in the future.

0.7.5 (4 Apr 2023)
Changes
	Drop explicit support for Elixir 1.11 since we no longer test it in CI (should
still work, just that it's now at-your-own-risk)
	Add logo to ex_doc and README

Fixes
	Allow access to Thousand Island's underlying shutdown_timeout option
	Fix test errors that cropped up in OTP 26

0.7.4 (27 Mar 2023)
Changes
	Calling Plug.Conn adapter functions for HTTP/2 based requests are no longer
restricted to being called from the process which called Plug.call/2

Enhancements
	Added startup_log to control whether / how Bandit logs the bound host & port
at startup (Thanks @danschultzer)
	Improved logging when the configured port is in use at startup (Thanks
@danschultzer)
	Update to Thousand Island 0.6.5

0.7.3 (20 Mar 2023)
Enhancements
	Added advanced handler_module configuration option to options

Fixes
	Support returning x-gzip as negotiated content-encoding (previously would
negotiate a request for x-gzip as gzip)

0.7.2 (18 Mar 2023)
Enhancements
	Added HTTP compression via 'Content-Encoding' negotiation, enabled by default.
Configuration is available; see Bandit
docs for details

Changes
	Minor refactor of internal HTTP/2 plumbing. No user visible changes

0.7.1 (17 Mar 2023)
Changes
	Update documentation & messaging to refer to RFC911x RFCs where appropriate
	Validate top-level config options at startup
	Revise Phoenix adapter to support new config options
	Doc updates

0.7.0 (17 Mar 2023)
Enhancements
	Add configuration points for various parameters within the HTTP/1, HTTP/2 and
WebSocket stacks. See Bandit
docs for details

Changelog for 0.6.x
0.6.11 (17 Mar 2023)
Changes
	Modified telemetry event payloads to match the conventions espoused by
:telemetry.span/3
	Default shutdown timeout is now 15s (up from 5s)

Enhancements
	Update to Thosuand Island 0.6.4 (from 0.6.2)

0.6.10 (10 Mar 2023)
Enhancements
	Support explicit setting of WebSocket close codes & reasons as added in WebSock
0.5.0

0.6.9 (20 Feb 2023)
Enhancements
	Add comprehensive Telemetry support within Bandit, as documented in the
Bandit.Telemetry module
	Update our ThousandIsland dependnecy to pull in Thousand Island's newly
updated Telemetry support as documented in the ThousandIsland.Telemetry
module
	Fix parsing of host / request headers which contain IPv6 addresses (#97).
Thanks @derekkraan!

Changes
	Use Plug's list of response code reason phrases (#96). Thanks @jclem!
	Minor doc updates

0.6.8 (31 Jan 2023)
Changes
	Close WebSocket connections with a code of 1000 (instead of 1001) when
shutting down the server (#89)
	Use 100 acceptor processes by default (instead of 10)
	Improvements to make WebSocket frame masking faster

0.6.7 (17 Jan 2023)
Enhancements
	Remove logging entirely when client connections do not contain a valid protocol
	Refactor WebSocket support for about a 20% performance lift

Bug Fixes
	Add nodelay option to test suite to fix artificially slow WebSocket perf tests

0.6.6 (11 Jan 2023)
Enhancements
	Log useful message when a TLS connection is made to plaintext server (#74)

0.6.5 (10 Jan 2023)
Enhancements
	Update Thousand Island to 0.5.15 (quiets logging in timeout cases)
	Quiet logging in when client connections do not contain a valid protocol
	Refactor HTTP/1 for about a 20% performance lift
	Add WebSocket support to CI benchmark workflow
	Doc updates

Bug Fixes
	Allow multiple instances of Bandit to be started in the same node (#75)
	Improve error handling in HTTP/1 when protocol errors are encountered (#74)

README

[image: Bandit]
[image: Bandit]
[image: Build Status]
[image: Docs]

 HTTP/1 Implementation Notes - Bandit v1.0.0-pre.13

HTTP/1 Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of HTTP/1.x as
defined in RFC 9112.
Process model
Within a Bandit server, an HTTP/1 connection is modeled as a single process.
This process is tied to the lifecycle of the underlying TCP connection; in the
case of an HTTP client which makes use of HTTP's keep-alive feature to make
multiple requests on the same connection, all of these requests will be serviced
by this same process.
The execution model to handle a given request is quite straightforward: the
underlying Thousand Island library
will call Bandit.HTTP1.Handler.handle_data/3, which will then attmept to parse
the headers of the request by calling Bandit.HTTP1.Adapter.read_headers/1.
Assuming the common case, this list of headers will then be passed to
Bandit.Pipeline.run/6, which will construct a Plug.Conn structure to
represent the request and subsequently pass it to the configured Plug module.
Testing
All of this is exhaustively tested. Tests are located in request_test.exs, and
are broadly either concerned with testing network-facing aspects of the
implementation (ie: how well Bandit satisfies the relevant RFCs) or the Plug-facing
aspects of the implementation.
Unfortunately, there is no HTTP/1 equivalent to the external h2spec test suite.

 HTTP/2 Implementation Notes - Bandit v1.0.0-pre.13

HTTP/2 Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of HTTP/2 as
defined in RFC 9113.
Process model
Within a Bandit server, an HTTP/2 connection is modeled as a set of processes:
	1 process per connection, a Bandit.HTTP2.Handler module implementing the
ThousandIsland.Handler behaviour, and;
	1 process per stream (i.e.: per HTTP request) within the connection, implemented as
a Bandit.HTTP2.StreamTask Task

The lifetimes of these processes correspond to their role; a connection process lives for as long
as a client is connected, and a stream process lives only as long as is required to process
a single stream request within a connection.
Connection processes are the 'root' of each connection's process group, and are supervised by
Thousand Island in the same manner that ThousandIsland.Handler processes are usually supervised
(see the project README for details).
Stream processes are not supervised by design. The connection process starts new stream processes as required, and does so
once a complete header block for a new stream has been received. It starts stream processes via
a standard start_link call, and manages the termination of the resultant linked stream processes
by handling {:EXIT,...} messages as described in the Elixir documentation. This approach is
aligned with the realities of the HTTP/2 model, insofar as if a connection process terminates
there is no reason to keep its constituent stream processes around, and if a stream process dies
the connection should be able to handle this without itself terminating. It also means that our
process model is very lightweight - there is no extra supervision overhead present because no such
supervision is required for the system to function in the desired way.
Reading client data
The overall structure of the implementation is managed by the Bandit.HTTP2.Handler module, and
looks like the following:
	Bytes are asynchronously received from ThousandIsland via the
Bandit.HTTP2.Handler.handle_data/3 function
	Frames are parsed from these bytes by calling the Bandit.HTTP2.Frame.deserialize/2
function. If successful, the parsed frame(s) are returned. We retain any unparsed bytes in
a buffer in order to attempt parsing them upon receipt of subsequent data from the client
	Parsed frames are passed into the Bandit.HTTP2.Connection module along with a struct of
same module. Frames are applied against this struct in a vaguely FSM-like manner, using pattern
matching within the Bandit.HTTP2.Connection.handle_frame/3 function. Any side-effects of
received frames are applied in these functions, and an updated connection struct is returned to
represent the updated connection state. These side-effects can take the form of starting stream
tasks, conveying data to running stream tasks, responding to the client with various frames, or
any number of other actions
	This process is repeated every time we receive data from the client until the
Bandit.HTTP2.Connection module indicates that the connection should be closed, either
normally or due to error. Note that frame deserialization may end up returning a connection
error if the parsed frames fail specific criteria (generally, the frame parsing modules are
responsible for identifying errors as described in section
6 of RFC 9113). In these cases, the
failure is passed through to the connection module for processing in order to coordinate an
orderly shutdown or client notification as appropriate

Processing requests
The details of a particular stream are contained within a Bandit.HTTP2.Stream struct
(as well as a Bandit.HTTP2.StreamTask process in the case of active streams). The
Bandit.HTTP2.StreamCollection module manages a collection of streams, allowing for the memory
efficient management of complete & yet unborn streams alongside active ones.
Once a complete header block has been read, a Bandit.HTTP2.StreamTask is started to manage the
actual calling of the configured Plug module for this server, using the Bandit.HTTP2.Adapter
module as the implementation of the Plug.Conn.Adapter behaviour. This adapter uses a simple
receive pattern to listen for messages sent to it from the connection process, a pattern chosen
because it allows for easy provision of the blocking-style API required by the Plug.Conn.Adapter
behaviour. Functions in the Bandit.HTTP2.Adapter behaviour which write data to the client use
GenServer calls to the Bandit.HTTP2.Handler module in order to pass data to the connection
process.
Testing
All of this is exhaustively tested. Tests are broken up primarily into protocol_test.exs, which
is concerned with aspects of the implementation relating to protocol conformance and
client-facing concerns, while plug_test.exs is concerned with aspects of the implementation
having to do with the Plug API and application-facing concerns. There are also more
unit-style tests covering frame serialization and deserialization.
In addition, the h2spec conformance suite is run via a System wrapper & executes the entirety
of the suite (in strict mode) against a running Bandit server.
Limitations and Assumptions
Some limitations and assumptions of this implementation:
	This handler assumes that the HTTP/2 connection preface has already been consumed from the
client. The Bandit.InitialHandler module uses this preface to discriminate between various
HTTP versions when determining which handler to use
	Priority frames are parsed and validated, but do not induce any action on the part of the
server. There is no priority assigned to respective streams in terms of processing; all streams
are run in parallel as soon as they arrive
	While flow control is completely implemented here, the specific values used for upload flow
control (that is, the end that we control) are fixed. Specifically, we attempt to maintain
fairly large windows in order to not restrict client uploads (we 'slow-start' window changes
upon receipt of first byte, mostly to retain parity between connection and stream window
management since connection windows cannot be changed via settings). The majority of flow
control logic has been encapsulated in the Bandit.HTTP2.FlowControl module should future
refinement be required

 WebSocket Implementation Notes - Bandit v1.0.0-pre.13

WebSocket Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of WebSockets
as defined in RFC 6455.
Upgrade mechanism
A good overview of this process is contained in this ElixirConf EU
talk.
Upgrading an HTTP connection to a WebSocket connection is coordinated by code
contained within several libraries, including Bandit,
WebSockAdapter, and
Plug.
The HTTP request containing the upgrade request is first passed to the user's
application as a standard Plug call. After inspecting the request and deeming it
a suitable upgrade candidate (via whatever policy the application dictates), the
user indicates a desire to upgrade the connection to a WebSocket by calling
Plug.Conn.upgrade_adapter/3 (this is most commonly done by calling
WebSockAdapter.upgrade/4, which wraps this underlying call in
a server-agnostic manner). At the conclusion of the Plug.call/2 callback,
Bandit.Pipeline will then attempy to upgrade the underlying connection. As
part of this upgrade process, Bandit.DelegatingHandler will switch the
Handler for the connection to be Bandit.WebSocket.Handler. This will cause any
future communication after the upgrade process to be handled directly by
Bandit's WebSocket stack.
Process model
Within a Bandit server, a WebSocket connection is modeled as a single process.
This process is directly tied to the lifecycle of the underlying WebSocket
connection; when upgrading from HTTP/1, the existing HTTP/1 handler process
'magically' becomes a WebSocket process by changing which Handler the
Bandit.DelegatingHandler delegates to.
The execution model to handle a given request is quite straightforward: at
upgrade time, the Bandit.DelegatingHandler will call handle_connection/2 to
allow the WebSocket handler to initialize any startup state. Connection state is
modeled by the Bandit.WebSocket.Connection struct and module.
All data subsequently received by the underlying Thousand
Island library will result in
a call to Bandit.WebSocket.Handler.handle_data/3, which will then attmept to
parse the data into one or more WebSocket frames. Once a frame has been
constructed, it is them passed through to the configured WebSock handler by
way of the underlying Bandit.WebSocket.Connection.
Testing
All of this is exhaustively tested. Tests are broken up primarily into protocol_test.exs, which
is concerned with aspects of the implementation relating to protocol conformance and
client-facing concerns, while sock_test.exs is concerned with aspects of the implementation
having to do with the WebSock API and application-facing concerns. There are also more
unit-style tests covering frame serialization and deserialization.
In addition, the autobahn conformance suite is run via a System wrapper & executes the entirety
of the suite against a running Bandit server.

 Bandit - Bandit v1.0.0-pre.13

Bandit

Bandit is an HTTP server for Plug and WebSock apps.
As an HTTP server, Bandit's primary goal is to act as 'glue' between client connections managed
by Thousand Island and application code defined
via the Plug and/or
WebSock APIs. As such there really isn't a whole lot of
user-visible surface area to Bandit, and as a consequence the API documentation presented here
is somewhat sparse. This is by design! Bandit is intended to 'just work' in almost all cases;
the only thought users typically have to put into Bandit comes in the choice of which options (if
any) they would like to change when starting a Bandit server. The sparseness of the Bandit API
should not be taken as an indicator of the comprehensiveness or robustness of the project.
Using Bandit With Phoenix
Bandit fully supports Phoenix. Phoenix applications which use WebSockets for
features such as Channels or LiveView require Phoenix 1.7 or later.
Using Bandit to host your Phoenix application couldn't be simpler:
	Add Bandit as a dependency in your Phoenix application's mix.exs:
 {:bandit, "~> 1.0-pre"}

	Add the following adapter: line to your endpoint configuration in config/config.exs, as in the following example:
 # config/config.exs

 config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...

	That's it! You should now see messages at startup indicating that Phoenix is
using Bandit to serve your endpoint, and everything should 'just work'. Note
that if you have set any exotic configuration options within your endpoint,
you may need to update that configuration to work with Bandit; see the
Bandit.PhoenixAdapter
documentation for more information.

Using Bandit With Plug Applications
Using Bandit to host your own Plug is very straightforward. Assuming you have
a Plug module implemented already, you can host it within Bandit by adding
something similar to the following to your application's Application.start/2
function:
def start(_type, _args) do
 children = [
 {Bandit, plug: MyApp.MyPlug}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
For less formal usage, you can also start Bandit using the same configuration
options via the Bandit.start_link/1 function:
Start an http server on the default port 4000, serving MyApp.MyPlug
Bandit.start_link(plug: MyPlug)
Configuration
A number of options are defined when starting a server. The complete list is
defined by the t:Bandit.options/0 type.
Setting up an HTTPS Server
By far the most common stumbling block encountered when setting up an HTTPS
server involves configuring key and certificate data. Bandit is comparatively
easy to set up in this regard, with a working example looking similar to the
following:
def start(_type, _args) do
 children = [
 {Bandit,
 plug: MyPlug,
 scheme: :https,
 certfile: "/absolute/path/to/cert.pem",
 keyfile: "/absolute/path/to/key.pem"}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
WebSocket Support
If you're using Bandit to run a Phoenix application as suggested above, there is
nothing more for you to do; WebSocket support will 'just work'.
If you wish to interact with WebSockets at a more fundamental level, the
WebSock and
WebSockAdapter libraries
provides a generic abstraction for WebSockets (very similar to how Plug is
a generic abstraction on top of HTTP). Bandit fully supports all aspects of
these libraries.

 Summary

 Types

 deflate_options()

 Options to configure the deflate library used for HTTP compression

 http_1_options()

 Options to configure the HTTP/1 stack in Bandit

 http_2_options()

 Options to configure the HTTP/2 stack in Bandit

 options()

 Possible top-level options to configure a Bandit server

 websocket_options()

 Options to configure the WebSocket stack in Bandit

 Functions

 start_link(arg)

 Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

Types

 Link to this type

 deflate_options()

 View Source

 @type deflate_options() :: [
 level: :zlib.zlevel(),
 window_bits: :zlib.zwindowbits(),
 memory_level: :zlib.zmemlevel(),
 strategy: :zlib.zstrategy()
]

Options to configure the deflate library used for HTTP compression

 Link to this type

 http_1_options()

 View Source

 @type http_1_options() :: [
 enabled: boolean(),
 max_request_line_length: pos_integer(),
 max_header_length: pos_integer(),
 max_header_count: pos_integer(),
 max_requests: pos_integer(),
 compress: boolean(),
 deflate_opions: deflate_options()
]

Options to configure the HTTP/1 stack in Bandit
	enabled: Whether or not to serve HTTP/1 requests. Defaults to true
	max_request_line_length: The maximum permitted length of the request line
(expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_length: The maximum permitted length of any single header (combined
key & value, expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/1.1 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/1.1 connection before closing the connection. Defaults to 0 (no limit)
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	deflate_options: A keyword list of options to set on the deflate library. A complete list can
be found at deflate_options/0

 Link to this type

 http_2_options()

 View Source

 @type http_2_options() :: [
 enabled: boolean(),
 max_header_key_length: pos_integer(),
 max_header_value_length: pos_integer(),
 max_header_count: pos_integer(),
 max_requests: pos_integer(),
 default_local_settings: Bandit.HTTP2.Settings.t(),
 compress: boolean(),
 deflate_options: deflate_options()
]

Options to configure the HTTP/2 stack in Bandit
	enabled: Whether or not to serve HTTP/2 requests. Defaults to true
	max_header_key_length: The maximum permitted length of any single header key
(expressed as the number of decompressed bytes) in an HTTP/2 request. Defaults to 10_000 bytes
	max_header_value_length: The maximum permitted length of any single header value
(expressed as the number of decompressed bytes) in an HTTP/2 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/2 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/2 connection before closing the connection. Defaults to 0 (no limit)
	default_local_settings: Options to override the default values for local HTTP/2
settings. Values provided here will override the defaults specified in RFC9113§6.5.2
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	deflate_options: A keyword list of options to set on the deflate library. A complete list can
be found at deflate_options/0

 Link to this type

 options()

 View Source

 @type options() :: [
 plug: module() | {module(), Plug.opts()},
 scheme: :http | :https,
 port: :inet.port_number(),
 ip: :inet.socket_address(),
 keyfile: binary(),
 certfile: binary(),
 otp_app: binary() | atom(),
 cipher_suite: :strong | :compatible,
 display_plug: module(),
 startup_log: Logger.level() | false,
 thousand_island_options: ThousandIsland.options(),
 http_1_options: http_1_options(),
 http_2_options: http_2_options(),
 websocket_options: websocket_options()
]

Possible top-level options to configure a Bandit server
	plug: The Plug to use to handle connections. Can be specified as MyPlug or {MyPlug, plug_opts}
	scheme: One of :http or :https. If :https is specified, you will also need to specify
valid certfile and keyfile values (or an equivalent value within
thousand_island_options.transport_options). Defaults to :http
	port: The TCP port to listen on. This option is offered as a convenience and actually sets
the option of the same name within thousand_island_options. If ia string value is passed, it
will be parsed as an integer. Defaults to 4000 if scheme is :http, and 4040 if scheme is
:https
	ip: The interface(s) to listen on. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Can be specified as:	{1, 2, 3, 4} for IPv4 addresses
	{1, 2, 3, 4, 5, 6, 7, 8} for IPv6 addresses
	:loopback for local loopback (ie: 127.0.0.1)
	:any for all interfaces (ie: 0.0.0.0)
	{:local, "/path/to/socket"} for a Unix domain socket. If this option is used, the port
option must be set to 0

	keyfile: The path to a file containing the SSL key to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	certfile: The path to a file containing the SSL certificate to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	otp_app: Provided as a convenience when using relative paths for keyfile and certfile
	cipher_suite: Used to define a pre-selected set of ciphers, as described by
Plug.SSL.configure/1. Optional, can be either :strong or :compatible
	display_plug: The plug to use when describing the connection in logs. Useful for situations
such as Phoenix code reloading where you have a 'wrapper' plug but wish to refer to the
connection by the endpoint name
	startup_log: The log level at which Bandit should log startup info.
Defaults to :info log level, can be set to false to disable it
	thousand_island_options: A list of options to pass to Thousand Island. Bandit sets some
default values in this list based on your top-level configuration; these values will be
overridden by values appearing here. A complete list can be found at
ThousandIsland.options/0
	http_1_options: A list of options to configure Bandit's HTTP/1 stack. A complete list can
be found at http_1_options/0
	http_2_options: A list of options to configure Bandit's HTTP/2 stack. A complete list can
be found at http_2_options/0
	websocket_options: A list of options to configure Bandit's WebSocket stack. A complete list can
be found at websocket_options/0

 Link to this type

 websocket_options()

 View Source

 @type websocket_options() :: [
 enabled: boolean(),
 max_frame_size: pos_integer(),
 validate_text_frames: boolean(),
 compress: boolean()
]

Options to configure the WebSocket stack in Bandit
	enabled: Whether or not to serve WebSocket upgrade requests. Defaults to true
	max_frame_size: The maximum size of a single WebSocket frame (expressed as
a number of bytes on the wire). Defaults to 0 (no limit)
	validate_text_frames: Whether or not to validate text frames as being UTF-8. Strictly
speaking this is required per RFC6455§5.6, however it can be an expensive operation and one
that may be safely skipped in some situations. Defaults to true
	compress: Whether or not to allow per-message deflate compression globally. Note that
upgrade requests still need to set the compress: true option in connection_opts on
a per-upgrade basis for compression to be negotiated (see 'WebSocket Support' section below
for details). Defaults to true

Functions

 Link to this function

 start_link(arg)

 View Source

 @spec start_link(options()) :: Supervisor.on_start()

Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

 Bandit.HTTP2.Settings - Bandit v1.0.0-pre.13

Bandit.HTTP2.Settings

Settings as defined in RFC9113§6.5.2

 Summary

 Types

 t()

 A collection of settings as defined in RFC9113§6.5

Types

 Link to this type

 t()

 View Source

 @type t() :: %Bandit.HTTP2.Settings{
 header_table_size: non_neg_integer(),
 initial_window_size: non_neg_integer(),
 max_concurrent_streams: non_neg_integer() | :infinity,
 max_frame_size: non_neg_integer(),
 max_header_list_size: non_neg_integer() | :infinity
}

A collection of settings as defined in RFC9113§6.5

 Bandit.Logger - Bandit v1.0.0-pre.13

Bandit.Logger

Logging conveniences for Bandit servers
Allows dynamically adding and altering the log level used to trace connections
within a Bandit server via the use of telemetry hooks. Should you wish
to do your own logging or tracking of these events, a complete list of the
telemetry events emitted by Bandit is described in the module documentation
for Bandit.Telemetry.
The logging included in this module is concerned specifically with protocol level events.
Should you wish to log lower level transport concens, there are similar functions to these in
the ThousandIsland.Logger module. Corresponding telemetry events are described in the
module documentation for ThousandIsland.Telemetry.

 Summary

 Types

 log_level()

 Supported log levels

 Functions

 attach_logger(atom)

 Start logging Bandit at the specified log level. Valid values for log
level are :error and :info. Enabling a given log level implicitly enables all higher log
levels as well.

 detach_logger(atom)

 Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

Types

 Link to this type

 log_level()

 View Source

 @type log_level() :: :error | :info

Supported log levels

Functions

 Link to this function

 attach_logger(atom)

 View Source

 @spec attach_logger(log_level()) :: :ok | {:error, :already_exists}

Start logging Bandit at the specified log level. Valid values for log
level are :error and :info. Enabling a given log level implicitly enables all higher log
levels as well.

 Link to this function

 detach_logger(atom)

 View Source

 @spec detach_logger(log_level()) :: :ok | {:error, :not_found}

Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

 Bandit.PhoenixAdapter - Bandit v1.0.0-pre.13

Bandit.PhoenixAdapter

A Bandit adapter for Phoenix.
This adapter provides out-of-the-box support for all aspects of Phoenix 1.7 and later. Earlier
versions of Phoenix will work with this adapter, but without support for WebSockets.
To use this adapter, your project will need to include Bandit as a dependency:
{:bandit, "~> 1.0-pre"}
Once Bandit is included as a dependency of your Phoenix project, add the following adapter:
line to your endpoint configuration in config/config.exs, as in the following example:
config/config.exs

config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...
That's it! After restarting Phoenix you should see the startup message indicate that it is being
served by Bandit, and everything should 'just work'. Note that if you have set any exotic
configuration options within your endpoint, you may need to update that configuration to work
with Bandit; see below for details.
Endpoint configuration
This adapter supports the standard Phoenix structure for endpoint configuration. Top-level keys for
:http and :https are supported, and configuration values within each of those are interpreted
as raw Bandit configuration as specified by Bandit.options/0. Bandit's confguration supports
all values used in a standard out-of-the-box Phoenix application, so if you haven't made any
substantial changes to your endpoint configuration things should 'just work' for you.
In the event that you have made advanced changes to your endpoint configuration, you may need
to update this config to work with Bandit. Consult Bandit's documentation at
Bandit.options/0 for details.

 Bandit.Telemetry - Bandit v1.0.0-pre.13

Bandit.Telemetry

The following telemetry spans are emitted by bandit
[:bandit, :request, *]
Represents Bandit handling a specific client HTTP request
This span is started by the following event:
	[:bandit, :request, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request

This span is ended by the following event:
	[:bandit, :request, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	req_header_end_time: The time that header reading completed, in :native units
	req_body_start_time: The time that request body reading started, in :native units.
	req_body_end_time: The time that request body reading completed, in :native units
	req_line_bytes: The length of the request line, in octets. Includes all line breaks.
Not included for HTTP/2 requests
	req_header_bytes: The length of the request headers, in octets. Includes all line
breaks. Not included for HTTP/2 requests
	req_body_bytes: The length of the request body, in octets
	resp_start_time: The time that the response started, in :native units
	resp_end_time: The time that the response completed, in :native units. Not included
for chunked responses
	resp_line_bytes: The length of the reponse line, in octets. Includes all line breaks.
Not included for HTTP/2 requests
	resp_header_bytes: The length of the reponse headers, in octets. Includes all line
breaks. Not included for HTTP/2 requests
	resp_body_bytes: The length of the reponse body, in octets. If the response is
compressed, this is the size of the compressed payload as sent on the wire. Set to 0 for
chunked responses
	resp_uncompressed_body_bytes: The length of the original, uncompressed body. Only
included for responses which are compressed
	resp_compression_method: The method of compression, as sent in the Content-Encoding
header of the response. Only included for responses which are compressed

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	method: The HTTP method of the request. If Bandit could not determine