

 Bandit

 v1.10.2

 [image: Logo]

 Table of contents

 	Changelog

 	README

 	Implementation Notes

 	HTTP/1 Implementation Notes

 	HTTP/2 Implementation Notes

 	WebSocket Implementation Notes

 	
 Modules

 	Bandit

 	Bandit.HTTP2.Settings

 	Bandit.PhoenixAdapter

 	Bandit.PrimitiveOps.WebSocket

 	Bandit.Telemetry

 	Bandit.Trace

 	Exceptions

 	Bandit.HTTP2.Errors.ConnectionError

 	Bandit.HTTP2.Errors.StreamError

 	Bandit.HTTPError

 	Bandit.TransportError

Bandit

Bandit is an HTTP server for Plug and WebSock apps.
As an HTTP server, Bandit's primary goal is to act as 'glue' between client connections managed
by Thousand Island and application code defined
via the Plug and/or
WebSock APIs. As such there really isn't a whole lot of
user-visible surface area to Bandit, and as a consequence the API documentation presented here
is somewhat sparse. This is by design! Bandit is intended to 'just work' in almost all cases;
the only thought users typically have to put into Bandit comes in the choice of which options (if
any) they would like to change when starting a Bandit server. The sparseness of the Bandit API
should not be taken as an indicator of the comprehensiveness or robustness of the project.
Using Bandit With Phoenix
Bandit fully supports Phoenix. Phoenix applications which use WebSockets for
features such as Channels or LiveView require Phoenix 1.7 or later.
Using Bandit to host your Phoenix application couldn't be simpler:
	Add Bandit as a dependency in your Phoenix application's mix.exs:
 {:bandit, "~> 1.8"}

	Add the following adapter: line to your endpoint configuration in config/config.exs, as in the following example:
 # config/config.exs

 config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...

	That's it! You should now see messages at startup indicating that Phoenix is
using Bandit to serve your endpoint, and everything should 'just work'. Note
that if you have set any exotic configuration options within your endpoint,
you may need to update that configuration to work with Bandit; see the
Bandit.PhoenixAdapter
documentation for more information.

Using Bandit With Plug Applications
Using Bandit to host your own Plug is very straightforward. Assuming you have
a Plug module implemented already, you can host it within Bandit by adding
something similar to the following to your application's Application.start/2
function:
lib/my_app/application.ex

defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 {Bandit, plug: MyApp.MyPlug}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
For less formal usage, you can also start Bandit using the same configuration
options via the Bandit.start_link/1 function:
Start an http server on the default port 4000, serving MyApp.MyPlug
Bandit.start_link(plug: MyPlug)
Configuration
A number of options are defined when starting a server. The complete list is
defined by the t:Bandit.options/0 type.
Setting up an HTTPS Server
By far the most common stumbling block encountered when setting up an HTTPS
server involves configuring key and certificate data. Bandit is comparatively
easy to set up in this regard, with a working example looking similar to the
following:
lib/my_app/application.ex

defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 {Bandit,
 plug: MyApp.MyPlug,
 scheme: :https,
 certfile: "/absolute/path/to/cert.pem",
 keyfile: "/absolute/path/to/key.pem"}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
WebSocket Support
If you're using Bandit to run a Phoenix application as suggested above, there is
nothing more for you to do; WebSocket support will 'just work'.
If you wish to interact with WebSockets at a more fundamental level, the
WebSock and
WebSockAdapter libraries
provides a generic abstraction for WebSockets (very similar to how Plug is
a generic abstraction on top of HTTP). Bandit fully supports all aspects of
these libraries.
Receiving messages in your Plug process: A word of warning
The Plug specification is concerned only with the shape of the Plug.init/1
and Plug.call/2 functions; it says nothing about the process model that
underlies the call, nor about how the Plug function should respond to any
messages it may receive. Although it is occasionally necessary to receive
messages from within your Plug call, this must be done with caution as Bandit
makes extensive use of messaging internally, especially with HTTP/2 based
requests.
In particular, you must ensure that your code never receives messages that
match the patterns {:bandit, _} or {:plug_conn, :sent}. Any receive calls
you make should be appropriately guarded to ensure that these messages remain in
the process' mailbox for Bandit to process them when required.

 Summary

 Types

 deflate_options()

 Options to configure the deflate library used for HTTP and WebSocket compression

 http_1_options()

 Options to configure the HTTP/1 stack in Bandit

 http_2_options()

 Options to configure the HTTP/2 stack in Bandit

 http_options()

 Options to configure shared aspects of the HTTP stack in Bandit

 options()

 Possible top-level options to configure a Bandit server

 websocket_options()

 Options to configure the WebSocket stack in Bandit

 zstd_options()

 Options to configure the zstd library used for HTTP compression

 Functions

 start_link(arg)

 Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

 Types

 deflate_options()

 @type deflate_options() :: [
 level: :zlib.zlevel(),
 window_bits: :zlib.zwindowbits(),
 memory_level: :zlib.zmemlevel(),
 strategy: :zlib.zstrategy()
]

Options to configure the deflate library used for HTTP and WebSocket compression

 http_1_options()

 @type http_1_options() :: [
 enabled: boolean(),
 max_request_line_length: pos_integer(),
 max_header_length: pos_integer(),
 max_header_count: pos_integer(),
 max_requests: pos_integer(),
 clear_process_dict: boolean(),
 gc_every_n_keepalive_requests: pos_integer(),
 log_unknown_messages: boolean()
]

Options to configure the HTTP/1 stack in Bandit
	enabled: Whether or not to serve HTTP/1 requests. Defaults to true
	max_request_line_length: The maximum permitted length of the request line
(expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_length: The maximum permitted length of any single header (combined
key & value, expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/1.1 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/1.1 connection before closing the connection. Defaults to 0 (no limit)
	clear_process_dict: Whether to clear the process dictionary of all non-internal entries
between subsequent keepalive requests. If set, all keys not starting with $ are removed from
the process dictionary between requests. Defaults to true
	gc_every_n_keepalive_requests: How often to run a full garbage collection pass between subsequent
keepalive requests on the same HTTP/1.1 connection. Defaults to 5 (garbage collect between
every 5 requests). This option is currently experimental, and may change at any time
	log_unknown_messages: Whether or not to log unknown messages sent to the handler process.
Defaults to false

 http_2_options()

 @type http_2_options() :: [
 enabled: boolean(),
 max_header_block_size: pos_integer(),
 max_requests: pos_integer(),
 max_reset_stream_rate: {pos_integer(), pos_integer()} | nil,
 default_local_settings: keyword()
]

Options to configure the HTTP/2 stack in Bandit
	enabled: Whether or not to serve HTTP/2 requests. Defaults to true
	max_header_block_size: The maximum permitted length of a field block of an HTTP/2 request
(expressed as the number of compressed bytes). Includes any concatenated block fragments from
continuation frames. Defaults to 50_000 bytes
	max_requests: The maximum number of requests to serve in a single
HTTP/2 connection before closing the connection. Defaults to 0 (no limit)
	max_reset_stream_rate: The maximum rate of stream resets (RST_STREAM frames) allowed.
Specified as a tuple of {count, milliseconds} where count is the maximum number of
RST_STREAM frames allowed within the time window of milliseconds. Defaults to {500, 10_000}
(500 resets per 10 seconds). Setting this to nil disables rate limiting
	default_local_settings: Options to override the default values for local HTTP/2
settings. Values provided here will override the defaults specified in RFC9113§6.5.2

 http_options()

 @type http_options() :: [
 compress: boolean(),
 response_encodings: list(),
 deflate_options: deflate_options(),
 zstd_options: zstd_options(),
 log_exceptions_with_status_codes: list() | Range.t(),
 log_protocol_errors: :short | :verbose | false,
 log_client_closures: :short | :verbose | false
]

Options to configure shared aspects of the HTTP stack in Bandit
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	response_encodings: A list of compression encodings, expressed in order of preference.
Defaults to ~w(zstd gzip x-gzip deflate), with zstd only being present on platforms which
have the zstd library compiled in
	deflate_options: A keyword list of options to set on the deflate library. A complete list can
be found at deflate_options/0. Note that these options only affect the behaviour of the
'deflate' content encoding; 'gzip' does not have any configurable options (this is a
limitation of the underlying :zlib library)
	zstd_options: A map of options passed verbatim to :zstd, review the options here
	log_exceptions_with_status_codes: Which exceptions to log. Bandit will log only those
exceptions whose status codes (as determined by Plug.Exception.status/1) match the specified
list or range. Defaults to 500..599
	log_protocol_errors: How to log protocol errors such as malformed requests. :short will
log a single-line summary, while :verbose will log full stack traces. The value of false
will disable protocol error logging entirely. Defaults to :short
	log_client_closures: How to log cases where the client closes the connection. These happen
routinely in the real world and so the handling of them is configured separately since they
can be quite noisy. Takes the same options as log_protocol_errors, but defaults to false

 options()

 @type options() :: [
 {:plug, module() | {module(), Plug.opts()}}
 | {:scheme, :http | :https}
 | {:port, :inet.port_number()}
 | {:ip, :inet.socket_address()}
 | :inet
 | :inet6
 | {:keyfile, binary()}
 | {:certfile, binary()}
 | {:otp_app, Application.app()}
 | {:cipher_suite, :strong | :compatible}
 | {:display_plug, module()}
 | {:startup_log, Logger.level() | false}
 | {:thousand_island_options, ThousandIsland.options()}
 | {:http_options, http_options()}
 | {:http_1_options, http_1_options()}
 | {:http_2_options, http_2_options()}
 | {:websocket_options, websocket_options()}
]

Possible top-level options to configure a Bandit server
	plug: The Plug to use to handle connections. Can be specified as MyPlug or {MyPlug, plug_opts}
	scheme: One of :http or :https. If :https is specified, you will also need to specify
valid certfile and keyfile values (or an equivalent value within
thousand_island_options.transport_options). Defaults to :http
	port: The TCP port to listen on. This option is offered as a convenience and actually sets
the option of the same name within thousand_island_options. If a string value is passed, it
will be parsed as an integer. Defaults to 4000 if scheme is :http, and 4040 if scheme is
:https
	ip: The interface(s) to listen on. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Can be specified as:	{1, 2, 3, 4} for IPv4 addresses
	{1, 2, 3, 4, 5, 6, 7, 8} for IPv6 addresses
	:loopback for local loopback (ie: 127.0.0.1)
	:any for all interfaces (ie: 0.0.0.0)
	{:local, "/path/to/socket"} for a Unix domain socket. If this option is used, the port
option must be set to 0

	inet: Only bind to IPv4 interfaces. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Must be specified
as a bare atom :inet
	inet6: Only bind to IPv6 interfaces. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Must be specified
as a bare atom :inet6
	keyfile: The path to a file containing the SSL key to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	certfile: The path to a file containing the SSL certificate to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	otp_app: Provided as a convenience when using relative paths for keyfile and certfile
	cipher_suite: Used to define a pre-selected set of ciphers, as described by
Plug.SSL.configure/1. Optional, can be either :strong or :compatible
	display_plug: The plug to use when describing the connection in logs. Useful for situations
such as Phoenix code reloading where you have a 'wrapper' plug but wish to refer to the
connection by the endpoint name
	startup_log: The log level at which Bandit should log startup info.
Defaults to :info log level, can be set to false to disable it
	thousand_island_options: A list of options to pass to Thousand Island. Bandit sets some
default values in this list based on your top-level configuration; these values will be
overridden by values appearing here. A complete list can be found at
ThousandIsland.options/0
	http_options: A list of options to configure the shared aspects of Bandit's HTTP stack. A
complete list can be found at http_options/0
	http_1_options: A list of options to configure Bandit's HTTP/1 stack. A complete list can
be found at http_1_options/0
	http_2_options: A list of options to configure Bandit's HTTP/2 stack. A complete list can
be found at http_2_options/0
	websocket_options: A list of options to configure Bandit's WebSocket stack. A complete list can
be found at websocket_options/0

 websocket_options()

 @type websocket_options() :: [
 enabled: boolean(),
 max_frame_size: pos_integer(),
 validate_text_frames: boolean(),
 compress: boolean(),
 deflate_options: deflate_options()
]

Options to configure the WebSocket stack in Bandit
	enabled: Whether or not to serve WebSocket upgrade requests. Defaults to true
	max_frame_size: The maximum size of a single WebSocket frame (expressed as
a number of bytes on the wire). Defaults to 0 (no limit)
	validate_text_frames: Whether or not to validate text frames as being UTF-8. Strictly
speaking this is required per RFC6455§5.6, however it can be an expensive operation and one
that may be safely skipped in some situations. Defaults to true
	compress: Whether or not to allow per-message deflate compression globally. Note that
upgrade requests still need to set the compress: true option in connection_opts on
a per-upgrade basis for compression to be negotiated (see 'WebSocket Support' section below
for details). Defaults to true
	deflate_options: A keyword list of options to set on the deflate library when using the
per-message deflate extension. A complete list can be found at deflate_options/0.
window_bits is currently ignored and left to negotiation.

 zstd_options()

 @type zstd_options() :: map()

Options to configure the zstd library used for HTTP compression

 Functions

 start_link(arg)

 @spec start_link(options()) :: Supervisor.on_start()

Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

Bandit.HTTP2.Settings

Settings as defined in RFC9113§6.5.2

 Summary

 Types

 t()

 A collection of settings as defined in RFC9113§6.5

 Types

 t()

 @type t() :: %Bandit.HTTP2.Settings{
 header_table_size: non_neg_integer(),
 initial_window_size: non_neg_integer(),
 max_concurrent_streams: non_neg_integer() | :infinity,
 max_frame_size: non_neg_integer(),
 max_header_list_size: non_neg_integer() | :infinity
}

A collection of settings as defined in RFC9113§6.5

Bandit.PhoenixAdapter

A Bandit adapter for Phoenix.
This adapter provides out-of-the-box support for all aspects of Phoenix 1.7 and later. Earlier
versions of Phoenix will work with this adapter, but without support for WebSockets.
To use this adapter, your project will need to include Bandit as a dependency:
{:bandit, "~> 1.0"}
Once Bandit is included as a dependency of your Phoenix project, add the following adapter:
line to your endpoint configuration in config/config.exs, as in the following example:
config/config.exs

config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...
That's it! After restarting Phoenix you should see the startup message indicate that it is being
served by Bandit, and everything should 'just work'. Note that if you have set any exotic
configuration options within your endpoint, you may need to update that configuration to work
with Bandit; see below for details.
Endpoint configuration
This adapter supports the standard Phoenix structure for endpoint configuration. Top-level keys for
:http and :https are supported, and configuration values within each of those are interpreted
as raw Bandit configuration as specified by Bandit.options/0. Bandit's configuration supports
all values used in a standard out-of-the-box Phoenix application, so if you haven't made any
substantial changes to your endpoint configuration things should 'just work' for you.
In the event that you have made advanced changes to your endpoint configuration, you may need
to update this config to work with Bandit. Consult Bandit's documentation at
Bandit.options/0 for details.
It can be difficult to know exactly where to put the options that you may need to set from the
ones available at Bandit.options/0. The general idea is that anything inside the http: or
https: keyword lists in your configuration are passed directly to Bandit.start_link/1, so an
example may look like so:
config/{dev,prod,etc}.exs

config :your_app, YourAppWeb.Endpoint,
 http: [
 ip: {127, 0, 0, 1},
 port: 4000,
 thousand_island_options: [num_acceptors: 123],
 http_options: [log_protocol_errors: false],
 http_1_options: [max_requests: 1],
 websocket_options: [compress: false]
],
Note that, unlike the adapter: Bandit.PhoenixAdapter configuration change outlined previously,
configuration of specific http: and https: values is done on a per-environment basis in
Phoenix, so these changes will typically be in your config/dev.exs, config/prod.exs and
similar files.

 Summary

 Functions

 bandit_pid(endpoint, scheme \\ :http)

 Returns the Bandit server process for the provided scheme within the given Phoenix Endpoint

 server_info(endpoint, scheme)

 Returns the bound address and port of the Bandit server process for the provided
scheme within the given Phoenix Endpoint

 Functions

 bandit_pid(endpoint, scheme \\ :http)

Returns the Bandit server process for the provided scheme within the given Phoenix Endpoint

 server_info(endpoint, scheme)

Returns the bound address and port of the Bandit server process for the provided
scheme within the given Phoenix Endpoint

Bandit.PrimitiveOps.WebSocket behaviour

WebSocket primitive operations behaviour and default implementation

 Summary

 Callbacks

 ws_mask(payload, mask)

 WebSocket masking according to RFC6455§5.3

 Callbacks

 ws_mask(payload, mask)

 @callback ws_mask(payload :: binary(), mask :: integer()) :: binary()

WebSocket masking according to RFC6455§5.3

Bandit.Telemetry

The following telemetry spans are emitted by bandit
[:bandit, :request, *]
Represents Bandit handling a specific client HTTP request
This span is started by the following event:
	[:bandit, :request, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}

This span is ended by the following event:
	[:bandit, :request, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	req_header_end_time: The time that header reading completed, in :native units
	req_body_start_time: The time that request body reading started, in :native units.
	req_body_end_time: The time that request body reading completed, in :native units
	req_body_bytes: The length of the request body, in octets
	resp_start_time: The time that the response started, in :native units
	resp_end_time: The time that the response completed, in :native units
	resp_body_bytes: The length of the response body, in octets. If the response is
compressed, this is the size of the compressed payload as sent on the wire
	resp_uncompressed_body_bytes: The length of the original, uncompressed body. Only
included for responses which are compressed
	resp_compression_method: The method of compression, as sent in the Content-Encoding
header of the response. Only included for responses which are compressed

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}
	error: The error that caused the span to end, if it ended in error

The following events may be emitted within this span:
	[:bandit, :request, :exception]
 The request for this span ended unexpectedly
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}
	kind: The kind of unexpected condition, typically :exit
	exception: The exception which caused this unexpected termination. May be an exception
or an arbitrary value when the event was an uncaught throw or an exit
	stacktrace: The stacktrace of the location which caused this unexpected termination

[:bandit, :websocket, *]
Represents Bandit handling a WebSocket connection
This span is started by the following event:
	[:bandit, :websocket, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	compress: Details about the compression configuration for this connection

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	websock: The WebSock which is being used to serve this request. Specified as websock_module

This span is ended by the following event:
	[:bandit, :websocket, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	recv_text_frame_count: The number of text frames received
	recv_text_frame_bytes: The total number of bytes received in the payload of text frames
	recv_binary_frame_count: The number of binary frames received
	recv_binary_frame_bytes: The total number of bytes received in the payload of binary frames
	recv_ping_frame_count: The number of ping frames received
	recv_ping_frame_bytes: The total number of bytes received in the payload of ping frames
	recv_pong_frame_count: The number of pong frames received
	recv_pong_frame_bytes: The total number of bytes received in the payload of pong frames
	recv_connection_close_frame_count: The number of connection close frames received
	recv_connection_close_frame_bytes: The total number of bytes received in the payload of connection close frames
	recv_continuation_frame_count: The number of continuation frames received
	recv_continuation_frame_bytes: The total number of bytes received in the payload of continuation frames
	send_text_frame_count: The number of text frames sent
	send_text_frame_bytes: The total number of bytes sent in the payload of text frames
	send_binary_frame_count: The number of binary frames sent
	send_binary_frame_bytes: The total number of bytes sent in the payload of binary frames
	send_ping_frame_count: The number of ping frames sent
	send_ping_frame_bytes: The total number of bytes sent in the payload of ping frames
	send_pong_frame_count: The number of pong frames sent
	send_pong_frame_bytes: The total number of bytes sent in the payload of pong frames
	send_connection_close_frame_count: The number of connection close frames sent
	send_connection_close_frame_bytes: The total number of bytes sent in the payload of connection close frames
	send_continuation_frame_count: The number of continuation frames sent
	send_continuation_frame_bytes: The total number of bytes sent in the payload of continuation frames

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	origin_telemetry_span_context: The span context of the Bandit :request span from which
this connection originated
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	websock: The WebSock which is being used to serve this request. Specified as websock_module
	error: The error that caused the span to end, if it ended in error

 Summary

 Types

 t()

 Functions

 monotonic_time()

 See System.monotonic_time/0.

 span_exception(span, kind, reason, stacktrace)

 Types

 t()

 @opaque t()

 Functions

 monotonic_time()

 @spec monotonic_time() :: integer()

See System.monotonic_time/0.

 span_exception(span, kind, reason, stacktrace)

 @spec span_exception(
 t(),
 Exception.kind(),
 Exception.t() | term(),
 Exception.stacktrace()
) :: :ok

Bandit.Trace

THIS MODULE IS EXPERIMENTAL AND SUBJECT TO CHANGE
Helper functions to provide visibility into runtime errors within a running Bandit instance
Can be used within an IEx session attached to a running Bandit instance, as follows:
iex> Bandit.Trace.start_tracing()
... # Wait for traces to show up whenever exceptions are raised
iex> Bandit.Trace.stop_tracing()
It can also be started within your application by adding Bandit.Trace to your process tree.
Bandit.Trace will emit a trace on every exception that Bandit sees (both those emitted from
within your Plug as well as internal ones due to protocol violations and the like). These traces
consist of a complete dump of all telemetry events that occur in the offending request's parent
connection.
Tracing imposes a modest but non-zero load; it should be safe to run in most production
environments, but it is not intended to run on an ongoing basis.
By default, Bandit.Trace maintains a FIFO log of the last 10000 telemetry events that Bandit
has emitted. Events which correlate to the parent connection which have been evicted from this
queue will not be included in this output.
WARNING The emitted logs contains a complete copy of your request's Plug data, as well as all data
sent and received on all requests which are contained in the output. It is therefore of the utmost
importance that you carefully redact the output before sharing it publicly.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_events()

 Return the complete queue of telemetry events that Bandit.Trace is currently tracking

 handle_event(event, measurements, metadata, pid)

 start_tracing(opts \\ [])

 Start tracing of all Bandit requests

 stop_tracing()

 Stop any active trace session

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_events()

Return the complete queue of telemetry events that Bandit.Trace is currently tracking

 handle_event(event, measurements, metadata, pid)

 start_tracing(opts \\ [])

Start tracing of all Bandit requests
See module documentation for intended usage. Accepts the following options:
	max_size: The size of the telemetry event queue to maintain. By default, Bandit.Trace maintains a
queue of the last 10000 telemetry events
	trace_on_exception: Whether or not to emit traces when an error is raised within
Bandit. Defaults to true

 stop_tracing()

Stop any active trace session

Bandit.HTTP2.Errors.ConnectionError exception

Bandit.HTTP2.Errors.StreamError exception

Bandit.HTTPError exception

Bandit.TransportError exception

 OEBPS/assets/logo.png

OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

