

 Bandit

 v1.8.0

 [image: Logo]

 Table of contents

 	Changelog

 	README

 	Implementation Notes

 	HTTP/1 Implementation Notes

 	HTTP/2 Implementation Notes

 	WebSocket Implementation Notes

 	
 Modules

 	Bandit

 	Bandit.HTTP2.Settings

 	Bandit.PhoenixAdapter

 	Bandit.PrimitiveOps.WebSocket

 	Bandit.Telemetry

 	Bandit.Trace

 	Exceptions

 	Bandit.HTTP2.Errors.ConnectionError

 	Bandit.HTTP2.Errors.StreamError

 	Bandit.HTTPError

 	Bandit.TransportError

 Changelog

1.8.0 (18 Aug 2025)
Enhancements
	If the user has set a content-length header when calling send_chunked/3,
the response is streamed via content-length delimited framing and not chunked (#510)

1.7.0 (29 May 2025)
Enhancements
	Add support for new get_sock_data/1 and get_ssl_data/1 callbacks from Plug 1.18 (#497)
	Honour server-sent Connection: close headers (#495, thanks @ruslandoga!)

Fixes
	Don't overwrite non-default HTTP/2 settings when receiving HTTP/2 settings (#494, thanks @ns-blee!)
	Fix handling of early-connection error handling in HTTP/2 (#486)

1.6.11 (31 Mar 2025)
Changes
	Ensure that HTTP/1 request headers are sent to the Plug in the order they're
sent (#482)
	Do not populate the cookies header with an empty string if no cookies were
sent in HTTP/2 (#483)

1.6.10 (25 Mar 2025)
Fixes
	Fix bug introduced when closing compressed websock connections in certain circumstances (#478)

Enhancements
	Standardize & document the format of messages sent to HTTP/2 Stream processes (#481)

1.6.9 (21 Mar 2025)
Fixes
	Do not close compression context before calling websock close callback (#462,
thanks @thiagopromano!)

1.6.8 (5 Mar 2025)
Fixes
	Do not send stream WINDOW_UPDATEs on the last data frame of a stream

Enhancements
	Add status to the telemetry metadata emitted on WebSocket upgrades (#466)

1.6.7 (30 Jan 2025)
Changes
	Consider timeouts when reading HTTP/1 headers as a connection error and not an HTTP error
	Enhance logging for WebSocket deflation errors

1.6.6 (25 Jan 2025)
Fixes
	Consider closures during HTTP/1 header reading as a socket error to silence them by default via log_client_closures config flag
	Send connection: close when closing connection on error per RFC9112§9.6

Enhancements
	Add experimental opt-in trace logging to help diagnose hard to reproduce errors
	Move CI to 1.18 & improve tests (#459, #461, thanks @grzuy!)

1.6.5 (15 Jan 2025)
Fixes
	Fix regression introduced in 1.6.1 where we would not send headers set by the Plug during WebSocket upgrades (#458)

Enhancements
	Properly normalize Erlang errors before emitting telemetry and logged crash_reason (#455, thanks @grzuy!)

1.6.4 (11 Jan 2025)
Fixes
	Fix error in socket setup error handling introduced in 1.6.2 (thanks @danielspofford!)

1.6.3 (8 Jan 2025)
Fixes
	Always close HTTP/1 connection in any case where an error comes out of the plug (#452, thanks @zookzook!)
	Fix dialyzer warning introduced by Thousand Island 1.3.9

1.6.2 (4 Jan 2025)
Enhancements
	Send telemetry events on Plugs that throw or exit (#443)
	Improve test robustness & speed (#446)
	Read a minimal number of bytes when sniffing for protocol (#449)
	Add plug and websock to logging metadata whenever possible (#448)
	Add plug and websock to telemetry metadata whenever possible (#447)
	Silently eat Bandit.TransportError errors during HTTP/1 error fallback handling

Fixes
	Bump hpax to 1.0.2, fixes https://github.com/phoenixframework/phoenix/issues/6020 (thanks @krainboltgreene!)
	Fix cases where we would desync on pipelined POST requests (#442)

Changes
	Unwrap Plug.Conn.WrapperErrors raised by Plug and handle the wrapped error per policy
	Surface socket setup errors as Bandit.TransportError for consistency in logging

1.6.1 (6 Dec 2024)
Enhancements
	Add deflate support when sending chunked responses (#429)

Fixes
	Bring in updated HPAX to fix HTTP/2 error cases seen in AWS load balancing
environments (#392)
	Improve handle of pipelined HTTP/1.1 requests (#437)
	Improve error handling when dealing with socket errors (#433)

Changes
	Use Plug.Call.inform/2 to send websocket upgrades (#428)

1.6.0 (18 Nov 2024)
Enhancements
	Add framework for supporting optimized native code on various hot paths (#394,
thanks @alisinabh!)
	Pass conn and exception data as logger metadata (#417 & #420, thanks @grzuy!)
	Loosen hpax dependency requirements
	Add log_client_closures http option, defaulting to false (#397, thanks @goncalotomas!)
	Handle plugs that throw a result (#411, thanks @grzuy!)

Fixes
	Improve content-length send logic per RFC9110§8.6/8.7
	Explicitly signal keepalives in HTTP/1.0 requests

Changes
	Fix typo & clarify docs
	Update security policy

1.5.7 (1 Aug 2024)
Changes
	Timeouts encountered while reading a request body will now result in a 408 Request Timeout being returned to the client by way of a Bandit.HTTPError
being raised. Previously, a :more tuple was returned (#385, thanks
@martosaur!)

1.5.6 (1 Aug 2024)
Fixes
	Improve handling of the end of stream condition for HTTP/2 requests that send
a body which isn't read by the Plug (#387, thanks @fekle!)

1.5.5 (19 Jun 2024)
Changes
	Add domain: [:bandit] to the metadata of all logger calls
	Bring logging of early-connect HTTP2 errors under the log_protocol_errors umbrella

1.5.4 (14 Jun 2024)
Changes
	Raise HTTP/2 send window timeouts as stream errors so that they're logged as
protocol errors (thanks @hunterboerner!)

1.5.3 (7 Jun 2024)
Changes
	Add :short and :verbose options to log_protocol_errors configuration
option. Change default value to :short, which will log protocol
errors as a single summary line instead of a full stack trace
	Raise Bandit.HTTPError errors when attempting to write to a closed client
connection (except for chunk/2 calls, which now return {:error, reason}).
Unless otherwise caught by the user, these errors will bubble out past the
configured plug and terminate the plug process. This closely mimics the
behaviour of Cowboy in this regard (#359)
	Respect the plug-provided content-length on HEAD responses (#353, thanks
@meeq!)
	Minor changes to how 'non-system process dictionary entries' are identified

Fixes
	No longer closes on HTTP/1 requests smaller than the size of the HTTP/2
preamble
	Close deflate contexts more eagerly for reduced memory use

1.5.2 (10 May 2024)
Fixes
	Don't crash on non-stringable process dictionary keys (#350, thanks
@ryanwinchester, @chrismccord!)

1.5.1 (10 May 2024)
Enhancements
	Process dictionary is now cleared of all non-system process dictionary entries
between keepalive requests (#349)
	Explicitly run a GC before upgrading a connection to websocket (#348)
	Improve docs around deflate options (thanks @kotsius!)

1.5.0 (21 Apr 2024)
Enhancements
	Bandit now respects an exception's conformance to Plug.Exception when
determining which status code to return to the client (if the plug did not
already send one). Previously they were always returned as 500 (for HTTP/1)
or an 'internal error' stream error (for HTTP/2)
	Bandit now only logs the stacktrace of plug-generated exceptions whose status
code (as determined by Plug.Exception.status/1) is contained within the new
log_exceptions_with_status_codes configuration option (defaulting to
500..599)
	As a corollary to the above, Bandit request handler processes no longer exit
abnormally in the case of plug-generated exceptions

Changes
	HTTP semantic errors encountered in an HTTP/2 request are returned to the
client using their proper status code instead of as a 'protocol error' stream
error

1.4.2 (2 Apr 2024)
Enhancements
	Support top-level :inet and :inet6 options for Plug.Cowboy compatibility (#337)

1.4.1 (27 Mar 2024)
Changes
	BREAKING CHANGE Move log_protocol_errors configuration option into
shared http_options top-level config (and apply it to HTTP/2 errors as well)
	BREAKING CHANGE Remove origin_telemetry_span_context from WebSocket
telemetry events
	BREAKING CHANGE Remove stream_id from HTTP/2 telemetry events
	Add conn to the metadata of telemetry start events for HTTP requests
	Stop sending WebSocket upgrade failure reasons to the client (they're still
logged)

Fixes
	Return HTTP semantic errors to HTTP/2 clients as protocol errors instead of
internal errors

1.4.0 (26 Mar 2024)
[!WARNING]
IMPORTANT Phoenix users MUST upgrade to WebSockAdapter 0.5.6 or newer when
upgrading to Bandit 1.4.0 or newer as some internal module names have changed

Enhancements
	Complete refactor of HTTP/2. Improved process model is MUCH easier to
understand and yields about a 10% performance boost to HTTP/2 requests (#286 /
#307)
	Substantial refactor of the HTTP/1 and HTTP/2 stacks to share a common code
path for much of their implementations, with the protocol-specific parts being
factored out to a minimal Bandit.HTTPTransport protocol internally, which
allows each protocol to define its own implementation for the minimal set of
things that are different between the two stacks (#297 / #329)

Changes
	BREAKING CHANGE Move configuration options that are common between HTTP/1
and HTTP/2 stacks into a shared http_options top-level config
	BREAKING CHANGE The HTTP/2 header size limit options have been deprecated,
and have been replaced with a single max_header_block_size option. The setting
defaults to 50k bytes, and refers to the size of the compressed header block
as sent on the wire (including any continuation frames)
	BREAKING CHANGE Remove req_line_bytes, req_header_bytes, resp_line_bytes and
resp_header_bytes from HTTP/1 request telemetry measurements
	BREAKING CHANGE Remove status, method and request_target from
telemetry metadata. All of this information can be obtained from the conn
struct attached to most telemetry events
	BREAKING CHANGE Re-reading a body that has already been read returns {:ok, "", conn} instead of raising a Bandit.BodyAlreadyReadError
	BREAKING CHANGE Remove Bandit.BodyAlreadyReadError
	BREAKING CHANGE Remove h2c support via Upgrade header. This was deprecated
in RFC9113 and never in widespread use. We continue to support h2c via prior
knowledge, which remains the only supported mechanism for h2c in RFC9113
	Treat trailing bytes beyond the indicated content-length on HTTP/1 requests as
an error
	Surface request body read timeouts on HTTP/1 requests as {:more...} tuples
and not errors
	Socket sending errors are no longer surfaced on chunk sends in HTTP/1
	We no longer log if processes that are linked to an HTTP/2 stream process
terminate unexpectedly. This has always been unspecified behaviour so is not
considered a breaking change
	Calls of Plug.Conn functions for an HTTP/2 connection must now come from the
stream process; any other process will raise an error. Again, this has always
been unspecified behaviour
	We now send an empty DATA frame for explicitly zero byte bodies instead of
optimizing to a HEADERS frame with end_stream set (we still do so for cases
such as 204/304 and HEAD requests)
	We now send RST_STREAM frames if we complete a stream and the remote end is
still open. This optimizes cases where the client may still be sending a body
that we never consumed and don't care about
	We no longer explicitly close the connection when we receive a GOAWAY frame

1.3.0 (8 Mar 2024)
Enhancements
	Run an explicit garbage collection between every 'n' keepalive requests on the same HTTP/1.1 connection in order to keep reported (but not actual!) memory usage from growing over time. Add gc_every_n_keepalive_requests option to configure this (default value of
5). #322, thanks @ianko & @Nilsonn!)
	Add log_protocol_errors option to optionally quell console logging of 4xx errors generated by Bandit. Defaults to true for now; may switch to false in the future based on adoption (#321, thanks @Stroemgren!)

Changes
	Don't send a transfer-encoding header for 1xx or 204 responses (#317, thanks
@mwhitworth!)

1.2.3 (23 Feb 2024)
Changes
	Log port number when listen fails (#312, thanks @jonatanklosko!)
	Accept mixed-case keepalive directives (#308, thanks @gregors!)

1.2.2 (16 Feb 2024)
Changes
	Reset Logger metadata on every request

1.2.1 (12 Feb 2024)
Changes
	Disable logging of unknown messages received by an idle HTTP/1 handler to
avoid noise on long polling clients. This can be changed via the
log_unknown_messages http_1 option (#299)

1.2.0 (31 Jan 2024)
Enhancements
	Automatically pull in :otp_app value in Bandit.PhoenixAdapter (thanks
@krns!)
	Include response body metrics for HTTP/1 chunk responses

Fixes
	Fix broken HTTP/1 inform/3 return value (thanks @wojtekmach!)
	Maintain HTTP/1 read timeout after receiving unknown messages

1.1.3 (12 Jan 2024)
Fixes
	Do not send a fallback response if the plug has already sent one (#288 & #289, thanks @jclem!)

Changes
	Packagaing improvements (#283, thanks @wojtekmach!)

1.1.2 (20 Dec 2023)
Fixes
	Fix support for proplist-style arguments (#277, thanks @jjcarstens!)
	Speed up WebSocket framing (#272, thanks @crertel!)
	Fix off-by-one error in HTTP2 sendfile (#269, thanks @OrangeDrangon!)
	Improve mix file packaging (#266, thanks @patrickjaberg!)

1.1.1 (14 Nov 2023)
Fixes
	Do not advertise disabled protocols via ALPN (#263)

1.1.0 (2 Nov 2023)
Changes
	Messages sent to Bandit HTTP/1 handlers no longer intentionally crash the
handler process but are now logged in the same manner as messages sent to a
no-op GenServer (#259)
	Messages regarding normal termination of monitored processes are no longer
handled by the WebSocket handler, but are now passed to the configured
WebSock.handle_info/2 callback (#259)

Enhancements
	Add support for Phoenix.Endpoint.server_info/1 (now in Phoenix main; #258)
	Add support for :max_heap_size option in WebSocket handler (introduced in
websock_adapter 0.5.5; #255, thanks @v0idpwn!)

1.0.0 (18 Oct 2023)
Changes
	Remove internal tracking of remote max_concurrent_streams setting (#248)

1.0.0-pre.18 (10 Oct 2023)
Fixes
	Fix startup when plug module has not yet been loaded by the BEAM

1.0.0-pre.17 (9 Oct 2023)
Enhancements
	Support function based plugs & improve startup analysis of plug configuration
(#236)
	Improve keepalive support when Plug does not read request bodies (#244)
	Improve logic around not sending bodies on HEAD requests (#242)

Changes
	Internal refactor of WebSocket validation (#229)

1.0.0-pre.16 (18 Sep 2023)
Changes
	Use protocol default port in the event that no port is provided in host header (#228)

Fixes
	Improve handling of iolist response bodies (#231, thanks @travelmassive!)

1.0.0-pre.15 (9 Sep 2023)
Fixes
	Fix issue with setting remote IP at connection startup (#227, thanks @jimc64!)

1.0.0-pre.14 (28 Aug 2023)
Enhancements
	Add Bandit.PhoenixAdapter.bandit_pid/2 (#212)
	Return errors to Plug.Conn.Adapter.chunk/2 HTTP/1 calls (#216)

Changes
	Plug.Conn function calls must come from the process on which Plug.call/2 was called (#217, reverts #117)

1.0.0-pre.13 (15 Aug 2023)
Enhancements
	Add ability to send preamble frames when closing a WebSock connection (#211)

1.0.0-pre.12 (12 Aug 2023)
Fixes
	Bump ThousandIsland to 1.0.0-pre.7 to fix leaking file descriptors on
Plug.Conn.sendfile/5 calls (thanks @Hermanverschooten!)

1.0.0-pre.11 (11 Aug 2023)
Changes
	BREAKING CHANGE Move conn value in telemetry events from measurements to metadata

Enhancements
	Add method, request_target and status fields to telemetry metadata on HTTP stop events
	Improve RFC compliance regarding cache-related headers on deflated responses (#207, thanks @tanguilp!)
	Bump to Thousand Island 1.0.0-pre.6
	Doc improvements (particularly around implementation notes)
	Typespec improvements (thanks @moogle19!)

1.0.0-pre.10 (28 Jun 2023)
Enhancements
	Add support for Plug.Conn.inform/3 on HTTP/1 connections (#180)
	Add support for h2c upgrades (#186, thanks @alisinabh!)
	Internal refactoring of HTTP/1 content-length encoded body reads (#184, #190,
thanks @asakura & @moogle19!)

Changes
	Bump Thousand Island to 1.0.0-pre.6 (gaining support for suspend/resume API)
	Drop Elixir 1.12 as a supported target (it should continue to work, but is no
longer covered by CI)

Fixes
	Fix crash when Plug used Plug.Conn.get_peer_data/1 function on HTTP/1
connections (#170, thanks @moogle19!)
	Fix port behaviour when connecting over unix socket (#176, thanks @asakura
& @ibarchenkov!)

1.0.0-pre.9 (16 Jun 2023)
Changes
	Use new ThousandIsland APIs for socket info (#167, thanks @asakura!)

Fixes
	Handle nil connection close reason when closing a WebSocket

1.0.0-pre.8 (15 Jun 2023)
Fixes
	Further improve logging on WebSocket upgrade errors (#149)

1.0.0-pre.7 (14 Jun 2023)
Enhancements
	Refactor HTTP/1 read routines (#158 & #166, thanks @asakura!)
	Improve logging on WebSocket upgrade errors (#149)

Changes
	Override any content-length headers that may have been set by Plug (#165)
	Send content-length on HTTP/2 responses where appropriate (#165)

Fixes
	Send correct content-length header when sending deflated response (#151)
	Do not attempt to deflate if Plug sends a content-encoding header (#165)
	Improve corner case handling of content-length request header (#163, thanks
@ryanwinchester!)
	Handle case where ThousandIsland returns error tuples on some helper routines
(#162)

1.0.0-pre.6 (8 Jun 2023)
Changes
	Always use the declaed scheme if declared in a request-line or :scheme
pseudo-header (#159)
	Internal tidying (thanks @asakura!)

1.0.0-pre.5 (2 Jun 2023)
Enhancements
	Total overhaul of typespecs throughout the library (thanks @asakura!)

1.0.0-pre.4 (23 May 2023)
Enhancements
	Performance / correctness improvements to header length validation (#143,
thanks @moogle19!)
	Performance improvements to host header port parsing (#145 & #147, thanks
@ryanwinchester!)
	Improve WebSocket upgrade failure error messages to aid in diagnosis (#152)

Changes
	Consolidate credo config (#146, thanks @ryanwinchester!)

Fixes
	Fix error in suggested version dependencies during 1.0-pre series (#142,
thanks @cvkmohan!)

1.0.0-pre.3 (3 May 2023)
Enhancements
	Respect read timeout for HTTP/1 keepalives (#140)
	Support Websock 0.5.1, including support for optional WebSock.terminate/2
(#131)

Changes
	Use Req instead of Finch in tests (#137)
	Improve a few corner cases in tests (#136)

1.0.0-pre.2 (24 Apr 2023)
Fixes
	Don't require transport_options to be a keyword list (#130, thanks @justinludwig!)

1.0.0-pre.1 (21 Apr 2023)
Changes
	Update Thousand Island dependency to 1.0-pre

Changelog for 0.7.x
0.7.7 (11 Apr 2023)
Changes
	Bandit will now raise an error at startup if no plug is specified in config
(thanks @moogle19!)

Fixes
	Fix crash at startup when using otp_app option (thanks @moogle19!)
	Minor doc formatting fixes

0.7.6 (9 Apr 2023)
Changes
	BREAKING CHANGE Rename top-level options field to thousand_island_options
	BREAKING CHANGE Rename deflate_opts to deflate_options where used
	Massive overhaul of documentation to use types where possible
	Bandit now uses a term of the form {Bandit, ref()} for id in our child spec
	Bumped to Thousand Island 0.6.7. num_connections is now 16384 by default

Enhancements
	Added top level support for the following convenience parameters:	port can now be set at the top level of your configuration
	ip can now be set at the top level of your configuration
	keyfile and certfile can now be set at the top level of your configuration

	Transport options are now validated by Plug.SSL.configure/1 when starting
an HTTPS server
	Rely on Thousand Island to validate options specified in thousand_island_options. This should avoid cases like #125 in the future.

0.7.5 (4 Apr 2023)
Changes
	Drop explicit support for Elixir 1.11 since we no longer test it in CI (should
still work, just that it's now at-your-own-risk)
	Add logo to ex_doc and README

Fixes
	Allow access to Thousand Island's underlying shutdown_timeout option
	Fix test errors that cropped up in OTP 26

0.7.4 (27 Mar 2023)
Changes
	Calling Plug.Conn adapter functions for HTTP/2 based requests are no longer
restricted to being called from the process which called Plug.call/2

Enhancements
	Added startup_log to control whether / how Bandit logs the bound host & port
at startup (Thanks @danschultzer)
	Improved logging when the configured port is in use at startup (Thanks
@danschultzer)
	Update to Thousand Island 0.6.5

0.7.3 (20 Mar 2023)
Enhancements
	Added advanced handler_module configuration option to options

Fixes
	Support returning x-gzip as negotiated content-encoding (previously would
negotiate a request for x-gzip as gzip)

0.7.2 (18 Mar 2023)
Enhancements
	Added HTTP compression via 'Content-Encoding' negotiation, enabled by default.
Configuration is available; see Bandit
docs for details

Changes
	Minor refactor of internal HTTP/2 plumbing. No user visible changes

0.7.1 (17 Mar 2023)
Changes
	Update documentation & messaging to refer to RFC911x RFCs where appropriate
	Validate top-level config options at startup
	Revise Phoenix adapter to support new config options
	Doc updates

0.7.0 (17 Mar 2023)
Enhancements
	Add configuration points for various parameters within the HTTP/1, HTTP/2 and
WebSocket stacks. See Bandit
docs for details

Changelog for 0.6.x
0.6.11 (17 Mar 2023)
Changes
	Modified telemetry event payloads to match the conventions espoused by
:telemetry.span/3
	Default shutdown timeout is now 15s (up from 5s)

Enhancements
	Update to Thosuand Island 0.6.4 (from 0.6.2)

0.6.10 (10 Mar 2023)
Enhancements
	Support explicit setting of WebSocket close codes & reasons as added in WebSock
0.5.0

0.6.9 (20 Feb 2023)
Enhancements
	Add comprehensive Telemetry support within Bandit, as documented in the
Bandit.Telemetry module
	Update our ThousandIsland dependnecy to pull in Thousand Island's newly
updated Telemetry support as documented in the ThousandIsland.Telemetry
module
	Fix parsing of host / request headers which contain IPv6 addresses (#97).
Thanks @derekkraan!

Changes
	Use Plug's list of response code reason phrases (#96). Thanks @jclem!
	Minor doc updates

0.6.8 (31 Jan 2023)
Changes
	Close WebSocket connections with a code of 1000 (instead of 1001) when
shutting down the server (#89)
	Use 100 acceptor processes by default (instead of 10)
	Improvements to make WebSocket frame masking faster

0.6.7 (17 Jan 2023)
Enhancements
	Remove logging entirely when client connections do not contain a valid protocol
	Refactor WebSocket support for about a 20% performance lift

Bug Fixes
	Add nodelay option to test suite to fix artificially slow WebSocket perf tests

0.6.6 (11 Jan 2023)
Enhancements
	Log useful message when a TLS connection is made to plaintext server (#74)

0.6.5 (10 Jan 2023)
Enhancements
	Update Thousand Island to 0.5.15 (quiets logging in timeout cases)
	Quiet logging in when client connections do not contain a valid protocol
	Refactor HTTP/1 for about a 20% performance lift
	Add WebSocket support to CI benchmark workflow
	Doc updates

Bug Fixes
	Allow multiple instances of Bandit to be started in the same node (#75)
	Improve error handling in HTTP/1 when protocol errors are encountered (#74)

 README

[image: Bandit]
[image: Bandit]
[image: Build Status]
[image: Docs]

 HTTP/1 Implementation Notes - Bandit v1.8.0

 HTTP/1 Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of HTTP/1.x as
defined in RFC 9112.
Process model
Within a Bandit server, an HTTP/1 connection is modeled as a single process.
This process is tied to the lifecycle of the underlying TCP connection; in the
case of an HTTP client which makes use of HTTP's keep-alive feature to make
multiple requests on the same connection, all of these requests will be serviced
by this same process.
The execution model to handle a given request is quite straightforward: the
underlying Thousand Island library
will call Bandit.HTTP1.Handler.handle_data/3, which will then construct a
Bandit.HTTP1.Socket struct that conforms to the Bandit.HTTPTransport
protocol. It will then call Bandit.Pipeline.run/3, which will go through the
process of reading the request (by calling functions on the
Bandit.HTTPTransport protocol), and constructing a Plug.Conn structure to
represent the request and subsequently pass it to the configured Plug module.
Testing
All of this is exhaustively tested. Tests are located in request_test.exs, and
are broadly either concerned with testing network-facing aspects of the
implementation (ie: how well Bandit satisfies the relevant RFCs) or the Plug-facing
aspects of the implementation.
Unfortunately, there is no HTTP/1 equivalent to the external h2spec test suite.

 HTTP/2 Implementation Notes - Bandit v1.8.0

 HTTP/2 Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of HTTP/2 as
defined in RFC 9110 & RFC
9113
Process model
Within a Bandit server, an HTTP/2 connection is modeled as a set of processes:
	1 process per connection, a Bandit.HTTP2.Handler module implementing the
ThousandIsland.Handler behaviour, and;
	1 process per stream (i.e.: per HTTP request) within the connection, implemented as
a Bandit.HTTP2.StreamProcess process

Each of these processes model the majority of their state via a
Bandit.HTTP2.Connection & Bandit.HTTP2.Stream struct, respectively.
The lifetimes of these processes correspond to their role; a connection process lives for as long
as a client is connected, and a stream process lives only as long as is required to process
a single stream request within a connection.
Connection processes are the 'root' of each connection's process group, and are supervised by
Thousand Island in the same manner that ThousandIsland.Handler processes are usually supervised
(see the project README for details).
Stream processes are not supervised by design. The connection process starts new
stream processes as required, via a standard start_link
call, and manages the termination of the resultant linked stream processes by
handling {:EXIT,...} messages as described in the Elixir documentation. Each
stream process stays alive long enough to fully model an HTTP/2 stream,
beginning its life in the :init state and ending it in the :closed state (or
else by a stream or connection error being raised). This approach is aligned
with the realities of the HTTP/2 model, insofar as if a connection process
terminates there is no reason to keep its constituent stream processes around,
and if a stream process dies the connection should be able to handle this
without itself terminating. It also means that our process model is very
lightweight - there is no extra supervision overhead present because no such
supervision is required for the system to function in the desired way.
Reading client data
The overall structure of the implementation is managed by the Bandit.HTTP2.Handler module, and
looks like the following:
	Bytes are asynchronously received from ThousandIsland via the
Bandit.HTTP2.Handler.handle_data/3 function
	Frames are parsed from these bytes by calling the Bandit.HTTP2.Frame.deserialize/2
function. If successful, the parsed frame(s) are returned. We retain any unparsed bytes in
a buffer in order to attempt parsing them upon receipt of subsequent data from the client
	Parsed frames are passed into the Bandit.HTTP2.Connection module along with a struct of
same module. Frames are processed via the Bandit.HTTP2.Connection.handle_frame/3 function.
Connection-level frames are handled within the Bandit.HTTP2.Connection
struct, and stream-level frames are passed along to the corresponding stream
process, which is wholly responsible for managing all aspects of a stream's
state (which is tracked via the Bandit.HTTP2.Stream struct). The one
exception to this is the handling of frames sent to streams which have
already been closed (and whose corresponding processes have thus terminated).
Any such frames are discarded without effect.
	This process is repeated every time we receive data from the client until the
Bandit.HTTP2.Connection module indicates that the connection should be closed, either
normally or due to error. Note that frame deserialization may end up returning a connection
error if the parsed frames fail specific criteria (generally, the frame parsing modules are
responsible for identifying errors as described in section
6 of RFC 9113). In these cases, the
failure is passed through to the connection module for processing in order to coordinate an
orderly shutdown or client notification as appropriate

Processing requests
The state of a particular stream are contained within a Bandit.HTTP2.Stream
struct, maintained within a Bandit.HTTP2.StreamProcess process. As part of the
stream's lifecycle, the server's configured Plug is called, with an instance of
the Bandit.Adapter struct being used to interface with the Plug. There
is a separation of concerns between the aspect of HTTP semantics managed by
Bandit.Adapter (roughly, those concerns laid out in
RFC9110) and the more
transport-specific HTTP/2 concerns managed by Bandit.HTTP2.Stream (roughly the
concerns specified in RFC9113).
Testing
All of this is exhaustively tested. Tests are broken up primarily into protocol_test.exs, which
is concerned with aspects of the implementation relating to protocol conformance and
client-facing concerns, while plug_test.exs is concerned with aspects of the implementation
having to do with the Plug API and application-facing concerns. There are also more
unit-style tests covering frame serialization and deserialization.
In addition, the h2spec conformance suite is run via a System wrapper & executes the entirety
of the suite (in strict mode) against a running Bandit server.
Limitations and Assumptions
Some limitations and assumptions of this implementation:
	This handler assumes that the HTTP/2 connection preface has already been consumed from the
client. The Bandit.InitialHandler module uses this preface to discriminate between various
HTTP versions when determining which handler to use
	Priority frames are parsed and validated, but do not induce any action on the part of the
server. There is no priority assigned to respective streams in terms of processing; all streams
are run in parallel as soon as they arrive
	While flow control is completely implemented here, the specific values used for upload flow
control (that is, the end that we control) are fixed. Specifically, we attempt to maintain
fairly large windows in order to not restrict client uploads (we 'slow-start' window changes
upon receipt of first byte, mostly to retain parity between connection and stream window
management since connection windows cannot be changed via settings). The majority of flow
control logic has been encapsulated in the Bandit.HTTP2.FlowControl module should future
refinement be required

 WebSocket Implementation Notes - Bandit v1.8.0

 WebSocket Handler

Included in this folder is a complete ThousandIsland.Handler based implementation of WebSockets
as defined in RFC 6455.
Upgrade mechanism
A good overview of this process is contained in this ElixirConf EU
talk.
Upgrading an HTTP connection to a WebSocket connection is coordinated by code
contained within several libraries, including Bandit,
WebSockAdapter, and
Plug.
The HTTP request containing the upgrade request is first passed to the user's
application as a standard Plug call. After inspecting the request and deeming it
a suitable upgrade candidate (via whatever policy the application dictates), the
user indicates a desire to upgrade the connection to a WebSocket by calling
WebSockAdapter.upgrade/4, which checks that the request is a valid WebSocket
upgrade request, and then calls Plug.Conn.upgrade_adapter/3 to signal to
Bandit that the connection should be upgraded at the conclusion of the request.
At the conclusion of the Plug.call/2 callback, Bandit.Pipeline will then
attempt to upgrade the underlying connection. As part of this upgrade process,
Bandit.DelegatingHandler will switch the Handler for the connection to be
Bandit.WebSocket.Handler. This will cause any future communication after the
upgrade process to be handled directly by Bandit's WebSocket stack.
Process model
Within a Bandit server, a WebSocket connection is modeled as a single process.
This process is directly tied to the lifecycle of the underlying WebSocket
connection; when upgrading from HTTP/1, the existing HTTP/1 handler process
'magically' becomes a WebSocket process by changing which Handler the
Bandit.DelegatingHandler delegates to.
The execution model to handle a given request is quite straightforward: at
upgrade time, the Bandit.DelegatingHandler will call handle_connection/2 to
allow the WebSocket handler to initialize any startup state. Connection state is
modeled by the Bandit.WebSocket.Connection struct and module.
All data subsequently received by the underlying Thousand
Island library will result in
a call to Bandit.WebSocket.Handler.handle_data/3, which will then attempt to
parse the data into one or more WebSocket frames. Once a frame has been
constructed, it is them passed through to the configured WebSock handler by
way of the underlying Bandit.WebSocket.Connection.
Testing
All of this is exhaustively tested. Tests are broken up primarily into protocol_test.exs, which
is concerned with aspects of the implementation relating to protocol conformance and
client-facing concerns, while sock_test.exs is concerned with aspects of the implementation
having to do with the WebSock API and application-facing concerns. There are also more
unit-style tests covering frame serialization and deserialization.
In addition, the autobahn conformance suite is run via a System wrapper & executes the entirety
of the suite against a running Bandit server.

 Bandit - Bandit v1.8.0

Bandit

Bandit is an HTTP server for Plug and WebSock apps.
As an HTTP server, Bandit's primary goal is to act as 'glue' between client connections managed
by Thousand Island and application code defined
via the Plug and/or
WebSock APIs. As such there really isn't a whole lot of
user-visible surface area to Bandit, and as a consequence the API documentation presented here
is somewhat sparse. This is by design! Bandit is intended to 'just work' in almost all cases;
the only thought users typically have to put into Bandit comes in the choice of which options (if
any) they would like to change when starting a Bandit server. The sparseness of the Bandit API
should not be taken as an indicator of the comprehensiveness or robustness of the project.
Using Bandit With Phoenix
Bandit fully supports Phoenix. Phoenix applications which use WebSockets for
features such as Channels or LiveView require Phoenix 1.7 or later.
Using Bandit to host your Phoenix application couldn't be simpler:
	Add Bandit as a dependency in your Phoenix application's mix.exs:
 {:bandit, "~> 1.0"}

	Add the following adapter: line to your endpoint configuration in config/config.exs, as in the following example:
 # config/config.exs

 config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...

	That's it! You should now see messages at startup indicating that Phoenix is
using Bandit to serve your endpoint, and everything should 'just work'. Note
that if you have set any exotic configuration options within your endpoint,
you may need to update that configuration to work with Bandit; see the
Bandit.PhoenixAdapter
documentation for more information.

Using Bandit With Plug Applications
Using Bandit to host your own Plug is very straightforward. Assuming you have
a Plug module implemented already, you can host it within Bandit by adding
something similar to the following to your application's Application.start/2
function:
lib/my_app/application.ex

defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 {Bandit, plug: MyApp.MyPlug}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
For less formal usage, you can also start Bandit using the same configuration
options via the Bandit.start_link/1 function:
Start an http server on the default port 4000, serving MyApp.MyPlug
Bandit.start_link(plug: MyPlug)
Configuration
A number of options are defined when starting a server. The complete list is
defined by the t:Bandit.options/0 type.
Setting up an HTTPS Server
By far the most common stumbling block encountered when setting up an HTTPS
server involves configuring key and certificate data. Bandit is comparatively
easy to set up in this regard, with a working example looking similar to the
following:
lib/my_app/application.ex

defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 {Bandit,
 plug: MyApp.MyPlug,
 scheme: :https,
 certfile: "/absolute/path/to/cert.pem",
 keyfile: "/absolute/path/to/key.pem"}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
WebSocket Support
If you're using Bandit to run a Phoenix application as suggested above, there is
nothing more for you to do; WebSocket support will 'just work'.
If you wish to interact with WebSockets at a more fundamental level, the
WebSock and
WebSockAdapter libraries
provides a generic abstraction for WebSockets (very similar to how Plug is
a generic abstraction on top of HTTP). Bandit fully supports all aspects of
these libraries.
Receiving messages in your Plug process: A word of warning
The Plug specification is concerned only with the shape of the Plug.init/1
and Plug.call/2 functions; it says nothing about the process model that
underlies the call, nor about how the Plug function should respond to any
messages it may receive. Although it is occasionally necessary to receive
messages from within your Plug call, this must be done with caution as Bandit
makes extensive use of messaging internally, especially with HTTP/2 based
requests.
In particular, you must ensure that your code never receives messages that
match the patterns {:bandit, _} or {:plug_conn, :sent}. Any receive calls
you make should be appropriately guarded to ensure that these messages remain in
the process' mailbox for Bandit to process them when required.

 Summary

 Types

 deflate_options()

 Options to configure the deflate library used for HTTP compression

 http_1_options()

 Options to configure the HTTP/1 stack in Bandit

 http_2_options()

 Options to configure the HTTP/2 stack in Bandit

 http_options()

 Options to configure shared aspects of the HTTP stack in Bandit

 options()

 Possible top-level options to configure a Bandit server

 websocket_options()

 Options to configure the WebSocket stack in Bandit

 Functions

 start_link(arg)

 Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

 Types

 deflate_options()

 @type deflate_options() :: [
 level: :zlib.zlevel(),
 window_bits: :zlib.zwindowbits(),
 memory_level: :zlib.zmemlevel(),
 strategy: :zlib.zstrategy()
]

Options to configure the deflate library used for HTTP compression

 http_1_options()

 @type http_1_options() :: [
 enabled: boolean(),
 max_request_line_length: pos_integer(),
 max_header_length: pos_integer(),
 max_header_count: pos_integer(),
 max_requests: pos_integer(),
 clear_process_dict: boolean(),
 gc_every_n_keepalive_requests: pos_integer(),
 log_unknown_messages: boolean()
]

Options to configure the HTTP/1 stack in Bandit
	enabled: Whether or not to serve HTTP/1 requests. Defaults to true
	max_request_line_length: The maximum permitted length of the request line
(expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_length: The maximum permitted length of any single header (combined
key & value, expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/1.1 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/1.1 connection before closing the connection. Defaults to 0 (no limit)
	clear_process_dict: Whether to clear the process dictionary of all non-internal entries
between subsequent keepalive requests. If set, all keys not starting with $ are removed from
the process dictionary between requests. Defaults to true
	gc_every_n_keepalive_requests: How often to run a full garbage collection pass between subsequent
keepalive requests on the same HTTP/1.1 connection. Defaults to 5 (garbage collect between
every 5 requests). This option is currently experimental, and may change at any time
	log_unknown_messages: Whether or not to log unknown messages sent to the handler process.
Defaults to false

 http_2_options()

 @type http_2_options() :: [
 enabled: boolean(),
 max_header_block_size: pos_integer(),
 max_requests: pos_integer(),
 default_local_settings: keyword()
]

Options to configure the HTTP/2 stack in Bandit
	enabled: Whether or not to serve HTTP/2 requests. Defaults to true
	max_header_block_size: The maximum permitted length of a field block of an HTTP/2 request
(expressed as the number of compressed bytes). Includes any concatenated block fragments from
continuation frames. Defaults to 50_000 bytes
	max_requests: The maximum number of requests to serve in a single
HTTP/2 connection before closing the connection. Defaults to 0 (no limit)
	default_local_settings: Options to override the default values for local HTTP/2
settings. Values provided here will override the defaults specified in RFC9113§6.5.2

 http_options()

 @type http_options() :: [
 compress: boolean(),
 deflate_options: deflate_options(),
 log_exceptions_with_status_codes: list() | Range.t(),
 log_protocol_errors: :short | :verbose | false,
 log_client_closures: :short | :verbose | false
]

Options to configure shared aspects of the HTTP stack in Bandit
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	deflate_options: A keyword list of options to set on the deflate library. A complete list can
be found at deflate_options/0. Note that these options only affect the behaviour of the
'deflate' content encoding; 'gzip' does not have any configurable options (this is a
limitation of the underlying :zlib library)
	log_exceptions_with_status_codes: Which exceptions to log. Bandit will log only those
exceptions whose status codes (as determined by Plug.Exception.status/1) match the specified
list or range. Defaults to 500..599
	log_protocol_errors: How to log protocol errors such as malformed requests. :short will
log a single-line summary, while :verbose will log full stack traces. The value of false
will disable protocol error logging entirely. Defaults to :short
	log_client_closures: How to log cases where the client closes the connection. These happen
routinely in the real world and so the handling of them is configured separately since they
can be quite noisy. Takes the same options as log_protocol_errors, but defaults to false

 options()

 @type options() :: [
 {:plug, module() | {module(), Plug.opts()}}
 | {:scheme, :http | :https}
 | {:port, :inet.port_number()}
 | {:ip, :inet.socket_address()}
 | :inet
 | :inet6
 | {:keyfile, binary()}
 | {:certfile, binary()}
 | {:otp_app, Application.app()}
 | {:cipher_suite, :strong | :compatible}
 | {:display_plug, module()}
 | {:startup_log, Logger.level() | false}
 | {:thousand_island_options, ThousandIsland.options()}
 | {:http_options, http_options()}
 | {:http_1_options, http_1_options()}
 | {:http_2_options, http_2_options()}
 | {:websocket_options, websocket_options()}
]

Possible top-level options to configure a Bandit server
	plug: The Plug to use to handle connections. Can be specified as MyPlug or {MyPlug, plug_opts}
	scheme: One of :http or :https. If :https is specified, you will also need to specify
valid certfile and keyfile values (or an equivalent value within
thousand_island_options.transport_options). Defaults to :http
	port: The TCP port to listen on. This option is offered as a convenience and actually sets
the option of the same name within thousand_island_options. If a string value is passed, it
will be parsed as an integer. Defaults to 4000 if scheme is :http, and 4040 if scheme is
:https
	ip: The interface(s) to listen on. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Can be specified as:	{1, 2, 3, 4} for IPv4 addresses
	{1, 2, 3, 4, 5, 6, 7, 8} for IPv6 addresses
	:loopback for local loopback (ie: 127.0.0.1)
	:any for all interfaces (ie: 0.0.0.0)
	{:local, "/path/to/socket"} for a Unix domain socket. If this option is used, the port
option must be set to 0

	inet: Only bind to IPv4 interfaces. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Must be specified
as a bare atom :inet
	inet6: Only bind to IPv6 interfaces. This option is offered as a convenience and actually sets the
option of the same name within thousand_island_options.transport_options. Must be specified
as a bare atom :inet6
	keyfile: The path to a file containing the SSL key to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	certfile: The path to a file containing the SSL certificate to use for this server. This option is
offered as a convenience and actually sets the option of the same name within
thousand_island_options.transport_options. If a relative path is used here, you will also
need to set the otp_app parameter and ensure that the named file is part of your application
build
	otp_app: Provided as a convenience when using relative paths for keyfile and certfile
	cipher_suite: Used to define a pre-selected set of ciphers, as described by
Plug.SSL.configure/1. Optional, can be either :strong or :compatible
	display_plug: The plug to use when describing the connection in logs. Useful for situations
such as Phoenix code reloading where you have a 'wrapper' plug but wish to refer to the
connection by the endpoint name
	startup_log: The log level at which Bandit should log startup info.
Defaults to :info log level, can be set to false to disable it
	thousand_island_options: A list of options to pass to Thousand Island. Bandit sets some
default values in this list based on your top-level configuration; these values will be
overridden by values appearing here. A complete list can be found at
ThousandIsland.options/0
	http_options: A list of options to configure the shared aspects of Bandit's HTTP stack. A
complete list can be found at http_options/0
	http_1_options: A list of options to configure Bandit's HTTP/1 stack. A complete list can
be found at http_1_options/0
	http_2_options: A list of options to configure Bandit's HTTP/2 stack. A complete list can
be found at http_2_options/0
	websocket_options: A list of options to configure Bandit's WebSocket stack. A complete list can
be found at websocket_options/0

 websocket_options()

 @type websocket_options() :: [
 enabled: boolean(),
 max_frame_size: pos_integer(),
 validate_text_frames: boolean(),
 compress: boolean()
]

Options to configure the WebSocket stack in Bandit
	enabled: Whether or not to serve WebSocket upgrade requests. Defaults to true
	max_frame_size: The maximum size of a single WebSocket frame (expressed as
a number of bytes on the wire). Defaults to 0 (no limit)
	validate_text_frames: Whether or not to validate text frames as being UTF-8. Strictly
speaking this is required per RFC6455§5.6, however it can be an expensive operation and one
that may be safely skipped in some situations. Defaults to true
	compress: Whether or not to allow per-message deflate compression globally. Note that
upgrade requests still need to set the compress: true option in connection_opts on
a per-upgrade basis for compression to be negotiated (see 'WebSocket Support' section below
for details). Defaults to true

 Functions

 start_link(arg)

 @spec start_link(options()) :: Supervisor.on_start()

Starts a Bandit server using the provided arguments. See options/0 for specific options to
pass to this function.

 Bandit.HTTP2.Settings - Bandit v1.8.0

Bandit.HTTP2.Settings

Settings as defined in RFC9113§6.5.2

 Summary

 Types

 t()

 A collection of settings as defined in RFC9113§6.5

 Types

 t()

 @type t() :: %Bandit.HTTP2.Settings{
 header_table_size: non_neg_integer(),
 initial_window_size: non_neg_integer(),
 max_concurrent_streams: non_neg_integer() | :infinity,
 max_frame_size: non_neg_integer(),
 max_header_list_size: non_neg_integer() | :infinity
}

A collection of settings as defined in RFC9113§6.5

 Bandit.PhoenixAdapter - Bandit v1.8.0

Bandit.PhoenixAdapter

A Bandit adapter for Phoenix.
This adapter provides out-of-the-box support for all aspects of Phoenix 1.7 and later. Earlier
versions of Phoenix will work with this adapter, but without support for WebSockets.
To use this adapter, your project will need to include Bandit as a dependency:
{:bandit, "~> 1.0"}
Once Bandit is included as a dependency of your Phoenix project, add the following adapter:
line to your endpoint configuration in config/config.exs, as in the following example:
config/config.exs

config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter, # <---- ADD THIS LINE
 url: [host: "localhost"],
 render_errors: ...
That's it! After restarting Phoenix you should see the startup message indicate that it is being
served by Bandit, and everything should 'just work'. Note that if you have set any exotic
configuration options within your endpoint, you may need to update that configuration to work
with Bandit; see below for details.
Endpoint configuration
This adapter supports the standard Phoenix structure for endpoint configuration. Top-level keys for
:http and :https are supported, and configuration values within each of those are interpreted
as raw Bandit configuration as specified by Bandit.options/0. Bandit's configuration supports
all values used in a standard out-of-the-box Phoenix application, so if you haven't made any
substantial changes to your endpoint configuration things should 'just work' for you.
In the event that you have made advanced changes to your endpoint configuration, you may need
to update this config to work with Bandit. Consult Bandit's documentation at
Bandit.options/0 for details.
It can be difficult to know exactly where to put the options that you may need to set from the
ones available at Bandit.options/0. The general idea is that anything inside the http: or
https: keyword lists in your configuration are passed directly to Bandit.start_link/1, so an
example may look like so:
config/{dev,prod,etc}.exs

config :your_app, YourAppWeb.Endpoint,
 http: [
 ip: {127, 0, 0, 1},
 port: 4000,
 thousand_island_options: [num_acceptors: 123],
 http_options: [log_protocol_errors: false],
 http_1_options: [max_requests: 1],
 websocket_options: [compress: false]
],
Note that, unlike the adapter: Bandit.PhoenixAdapter configuration change outlined previously,
configuration of specific http: and https: values is done on a per-environment basis in
Phoenix, so these changes will typically be in your config/dev.exs, config/prod.exs and
similar files.

 Summary

 Functions

 bandit_pid(endpoint, scheme \\ :http)

 Returns the Bandit server process for the provided scheme within the given Phoenix Endpoint

 server_info(endpoint, scheme)

 Returns the bound address and port of the Bandit server process for the provided
scheme within the given Phoenix Endpoint

 Functions

 bandit_pid(endpoint, scheme \\ :http)

Returns the Bandit server process for the provided scheme within the given Phoenix Endpoint

 server_info(endpoint, scheme)

Returns the bound address and port of the Bandit server process for the provided
scheme within the given Phoenix Endpoint

 Bandit.PrimitiveOps.WebSocket - Bandit v1.8.0

Bandit.PrimitiveOps.WebSocket behaviour

WebSocket primitive operations behaviour and default implementation

 Summary

 Callbacks

 ws_mask(payload, mask)

 WebSocket masking according to RFC6455§5.3

 Callbacks

 ws_mask(payload, mask)

 @callback ws_mask(payload :: binary(), mask :: integer()) :: binary()

WebSocket masking according to RFC6455§5.3

 Bandit.Telemetry - Bandit v1.8.0

Bandit.Telemetry

The following telemetry spans are emitted by bandit
[:bandit, :request, *]
Represents Bandit handling a specific client HTTP request
This span is started by the following event:
	[:bandit, :request, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}

This span is ended by the following event:
	[:bandit, :request, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	req_header_end_time: The time that header reading completed, in :native units
	req_body_start_time: The time that request body reading started, in :native units.
	req_body_end_time: The time that request body reading completed, in :native units
	req_body_bytes: The length of the request body, in octets
	resp_start_time: The time that the response started, in :native units
	resp_end_time: The time that the response completed, in :native units
	resp_body_bytes: The length of the response body, in octets. If the response is
compressed, this is the size of the compressed payload as sent on the wire
	resp_uncompressed_body_bytes: The length of the original, uncompressed body. Only
included for responses which are compressed
	resp_compression_method: The method of compression, as sent in the Content-Encoding
header of the response. Only included for responses which are compressed

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}
	error: The error that caused the span to end, if it ended in error

The following events may be emitted within this span:
	[:bandit, :request, :exception]
 The request for this span ended unexpectedly
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	conn: The Plug.Conn representing this connection. Not present in cases where error
is also set and the nature of error is such that Bandit was unable to successfully build
the conn
	plug: The Plug which is being used to serve this request. Specified as {plug_module, plug_opts}
	kind: The kind of unexpected condition, typically :exit
	exception: The exception which caused this unexpected termination. May be an exception
or an arbitrary value when the event was an uncaught throw or an exit
	stacktrace: The stacktrace of the location which caused this unexpected termination

[:bandit, :websocket, *]
Represents Bandit handling a WebSocket connection
This span is started by the following event:
	[:bandit, :websocket, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	compress: Details about the compression configuration for this connection

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	websock: The WebSock which is being used to serve this request. Specified as websock_module

This span is ended by the following event:
	[:bandit, :websocket, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	recv_text_frame_count: The number of text frames received
	recv_text_frame_bytes: The total number of bytes received in the payload of text frames
	recv_binary_frame_count: The number of binary frames received
	recv_binary_frame_bytes: The total number of bytes received in the payload of binary frames
	recv_ping_frame_count: The number of ping frames received
	recv_ping_frame_bytes: The total number of bytes received in the payload of ping frames
	recv_pong_frame_count: The number of pong frames received
	recv_pong_frame_bytes: The total number of bytes received in the payload of pong frames
	recv_connection_close_frame_count: The number of connection close frames received
	recv_connection_close_frame_bytes: The total number of bytes received in the payload of connection close frames
	recv_continuation_frame_count: The number of continuation frames received
	recv_continuation_frame_bytes: The total number of bytes received in the payload of continuation frames
	send_text_frame_count: The number of text frames sent
	send_text_frame_bytes: The total number of bytes sent in the payload of text frames
	send_binary_frame_count: The number of binary frames sent
	send_binary_frame_bytes: The total number of bytes sent in the payload of binary frames
	send_ping_frame_count: The number of ping frames sent
	send_ping_frame_bytes: The total number of bytes sent in the payload of ping frames
	send_pong_frame_count: The number of pong frames sent
	send_pong_frame_bytes: The total number of bytes sent in the payload of pong frames
	send_connection_close_frame_count: The number of connection close frames sent
	send_connection_close_frame_bytes: The total number of bytes sent in the payload of connection close frames
	send_continuation_frame_count: The number of continuation frames sent
	send_continuation_frame_bytes: The total number of bytes sent in the payload of continuation frames

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	origin_telemetry_span_context: The span context of the Bandit :request span from which
this connection originated
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	websock: The WebSock which is being used to serve this request. Specified as websock_module
	error: The error that caused the span to end, if it ended in error

 Summary

 Types

 t()

 Functions

 monotonic_time()

 See System.monotonic_time/0.

 span_exception(span, kind, reason, stacktrace)

 Types

 t()

 @opaque t()

 Functions

 monotonic_time()

 @spec monotonic_time() :: integer()

See System.monotonic_time/0.

 span_exception(span, kind, reason, stacktrace)

 @spec span_exception(
 t(),
 Exception.kind(),
 Exception.t() | term(),
 Exception.stacktrace()
) :: :ok

 Bandit.Trace - Bandit v1.8.0

Bandit.Trace

THIS MODULE IS EXPERIMENTAL AND SUBJECT TO CHANGE
Helper functions to provide visibility into runtime errors within a running Bandit instance
Can be used within an IEx session attached to a running Bandit instance, as follows:
iex> Bandit.Trace.start_tracing()
... # Wait for traces to show up whenever exceptions are raised
iex> Bandit.Trace.stop_tracing()
It can also be started within your application by adding Bandit.Trace to your process tree.
Bandit.Trace will emit a trace on every exception that Bandit sees (both those emitted from
within your Plug as well as internal ones due to protocol violations and the like). These traces
consist of a complete dump of all telemetry events that occur in the offending request's parent
connection.
Tracing imposes a modest but non-zero load; it should be safe to run in most production
environments, but it is not intended to run on an ongoing basis.
By default, Bandit.Trace maintains a FIFO log of the last 10000 telemetry events that Bandit
has emitted. Events which correlate to the parent connection which have been evicted from this
queue will not be included in this output.
WARNING The emitted logs contains a complete copy of your request's Plug data, as well as all data
sent and received on all requests which are contained in the output. It is therefore of the utmost
importance that you carefully redact the output before sharing it publicly.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_events()

 Return the complete queue of telemetry events that Bandit.Trace is currently tracking

 handle_event(event, measurements, metadata, pid)

 start_tracing(opts \\ [])

 Start tracing of all Bandit requests

 stop_tracing()

 Stop any active trace session

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_events()

Return the complete queue of telemetry events that Bandit.Trace is currently tracking

 handle_event(event, measurements, metadata, pid)

 start_tracing(opts \\ [])

Start tracing of all Bandit requests
See module documentation for intended usage. Accepts the following options:
	max_size: The size of the telemetry event queue to maintain. By default, Bandit.Trace maintains a
queue of the last 10000 telemetry events
	trace_on_exception: Whether or not to emit traces when an error is raised within
Bandit. Defaults to true

 stop_tracing()

Stop any active trace session

 Bandit.HTTP2.Errors.ConnectionError - Bandit v1.8.0

Bandit.HTTP2.Errors.ConnectionError exception

 Bandit.HTTP2.Errors.StreamError - Bandit v1.8.0

Bandit.HTTP2.Errors.StreamError exception

 Bandit.HTTPError - Bandit v1.8.0

Bandit.HTTPError exception

 Bandit.TransportError - Bandit v1.8.0

Bandit.TransportError exception

OEBPS/dist/epub-4WIP524F.js
