

 Bash

 v0.3.0

 Table of contents

 	LICENSE

 	Architecture Guide

 	
 Modules

 	Core API

 	Bash

 	Bash.Formatter

 	Bash.Script

 	Bash.Session

 	Bash.Sigil

 	Bash.Telemetry

 	Elixir Interop

 	Bash.Context

 	Bash.Interop

 	Bash.Interop.Result

 	Parsing

 	Bash.Parser

 	Bash.Parser.Arithmetic

 	Bash.Parser.VariableExpander

 	Bash.Tokenizer

 	AST Nodes

 	Bash.AST

 	Bash.AST.Arithmetic

 	Bash.AST.ArrayAssignment

 	Bash.AST.Assignment

 	Bash.AST.BraceExpand

 	Bash.AST.Case

 	Bash.AST.Command

 	Bash.AST.Comment

 	Bash.AST.Compound

 	Bash.AST.Coproc

 	Bash.AST.ForLoop

 	Bash.AST.Function

 	Bash.AST.If

 	Bash.AST.Meta

 	Bash.AST.Pipeline

 	Bash.AST.Redirect

 	Bash.AST.RegexPattern

 	Bash.AST.TestCommand

 	Bash.AST.TestExpression

 	Bash.AST.Variable

 	Bash.AST.Walkable

 	Bash.AST.WhileLoop

 	Bash.AST.Word

 	Bash.Statement

 	Execution

 	Bash.Arithmetic

 	Bash.CommandPort

 	Bash.CommandResult

 	Bash.Execution

 	Bash.ExecutionResult

 	Bash.Executor

 	Bash.OrphanSupervisor

 	Bash.Pipe

 	Bash.ProcessSubst

 	Bash.Sink

 	Bash.Variable

 	Job Control

 	Bash.Job

 	Bash.JobProcess

 	Builtins

 	Bash.Builtin

 	Bash.Builtin.Alias

 	Bash.Builtin.Bg

 	Bash.Builtin.Break

 	Bash.Builtin.Builtin

 	Bash.Builtin.Caller

 	Bash.Builtin.Cd

 	Bash.Builtin.Colon

 	Bash.Builtin.Command

 	Bash.Builtin.Complete

 	Bash.Builtin.Continue

 	Bash.Builtin.Coproc

 	Bash.Builtin.Declare

 	Bash.Builtin.Dirs

 	Bash.Builtin.Disown

 	Bash.Builtin.Echo

 	Bash.Builtin.Enable

 	Bash.Builtin.Eval

 	Bash.Builtin.Exec

 	Bash.Builtin.Exit

 	Bash.Builtin.Export

 	Bash.Builtin.False

 	Bash.Builtin.Fc

 	Bash.Builtin.Fg

 	Bash.Builtin.Getopts

 	Bash.Builtin.Hash

 	Bash.Builtin.Help

 	Bash.Builtin.History

 	Bash.Builtin.Jobs

 	Bash.Builtin.Kill

 	Bash.Builtin.Let

 	Bash.Builtin.Local

 	Bash.Builtin.Mapfile

 	Bash.Builtin.Popd

 	Bash.Builtin.Printf

 	Bash.Builtin.Pushd

 	Bash.Builtin.Pwd

 	Bash.Builtin.Read

 	Bash.Builtin.Readonly

 	Bash.Builtin.Return

 	Bash.Builtin.Set

 	Bash.Builtin.Shift

 	Bash.Builtin.Shopt

 	Bash.Builtin.Source

 	Bash.Builtin.Suspend

 	Bash.Builtin.Test

 	Bash.Builtin.TestCommand

 	Bash.Builtin.Times

 	Bash.Builtin.Trap

 	Bash.Builtin.True

 	Bash.Builtin.Type

 	Bash.Builtin.Ulimit

 	Bash.Builtin.Umask

 	Bash.Builtin.Unalias

 	Bash.Builtin.Unset

 	Bash.Builtin.Unsupported

 	Bash.Builtin.Wait

 	Exceptions

 	Bash.EscapeError

 	Bash.SyntaxError

 	
 Mix Tasks

 	mix bash.format

 	mix bash.validate

Bash

A Bash interpreter written in pure Elixir.
Execute shell scripts from Elixir with compile-time validation, persistent sessions,
and the ability to extend Bash with Elixir functions.
Quick Start
Add to mix.exs
{:bash, "~> 0.3.0"}
Run a command
{:ok, result, _session} = Bash.run("echo hello")
Bash.stdout(result)
#=> "hello\n"

Start a session and run many commands
result = Bash.with_session(fn session ->
 session
 |> Bash.run("echo hello")
 |> Bash.run("echo uhoh >&2")
 |> Bash.stdout()
end)
#=> "hello\n"

Or use the sigil for compile-time parsing
import Bash.Sigil
iex> ~BASH"echo 'uh oh' >&2 && echo 'heyo'"O # 'O' modifier executes and returns both stdout and stderr
"uh oh\nheyo\n"

iex> ~BASH"ls -la | head -5"S # 'S' modifier executes and returns only stdout
"total 12536\ndrwxr-xr-x@ 4 dbern staff 128 Jan 20 02:27 _build\ndrwxr-xr-x@ 23 dbern staff 736 Jan 27 12:10 .\ndrwxr-x---+ 178 dbern staff 5696 Jan 27 12:09 ..\ndrwxr-xr-x@ 3 dbern staff 96 Jan 22 13:29 .git\n"

iex> ~BASH"echo 'uh oh' >&2 && echo 'heyo'"E # 'E' modifier executes and returns only stderr
"uh oh\n"

iex> ~BASH"echo { foo"
** (Bash.SyntaxError) [SC1056] Bash syntax error at line 1:

> 1 | echo { foo
 ^

 hint: expected '}' to close brace group
Use as your Bash formatter.
./formatter.exs
[
 plugins: [Bash.Formatter],
 inputs: [
 # ...
 "**/*.{sh,bash}"
],
 bash: [
 indent_style: :spaces, # :spaces or :tabs (but you know which one is correct)
 indent_width: 2, # number of spaces (ignored if :tabs)
 line_length: 100 # max line length before wrapping
]
 # ...
]
Why Use This?
For DevOps & Infrastructure: Embed shell scripts in Elixir applications with
proper error handling, without shelling out to /bin/bash.
For Testing: Create reproducible shell environments with controlled state
and captured output.
For Scripting: Write scripts that combine Bash's text processing with Elixir's
power - call Elixir functions directly from Bash pipelines.
For fun: because YOLO
Features
	Feature	Description
	Compile-time parsing	~BASH and ~b sigil validates scripts at compile time with ShellCheck-compatible errors
	Persistent sessions	Maintain environment variables, working directory, aliases, functions, and history
	Elixir interop	Define Elixir functions callable from Bash using defbash
	Full I/O support	Redirections, pipes, heredocs, process substitution
	Job control	Background jobs, fg/bg switching, signal handling
	Streaming output	Process stdout/stderr incrementally with configurable sinks

Usage
Running Scripts
Simple execution
{:ok, result, _} = Bash.run(~b"echo hello")
Bash.stdout(result)
#=> "hello\n"

With environment variables
{:ok, result, _} = Bash.run(~b"echo $USER", env: %{"USER" => "alice"})
Bash.stdout(result)
#=> "alice\n"

Multi-line scripts with arithmetic
{:ok, result, _} = Bash.run("""
x=5
y=10
echo $((x + y))
""")
Bash.stdout(result)
#=> "15\n"
The Sigil
import Bash.Sigil

Parse at compile time, execute at runtime
~BASH"echo hello"S # returns stdout string
~BASH"echo error >&2"E # returns stderr string
~BASH"echo hello" # returns %Bash.Script{} AST (no execution)
person = "world"
~BASH"echo 'Hello #{person}'"O # returns "Hello #{person}\n"
~b"echo 'Hello #{person}'"O # returns "Hello world\n"
Sessions
Sessions maintain state across multiple commands:
{:ok, session} = Bash.Session.new()

Set variables
Bash.run("export GREETING=hello", session)

Use them later
{:ok, result, _} = Bash.run("echo $GREETING", session)
Bash.stdout(result)
#=> "hello\n"

Working directory persists
Bash.run("cd /tmp", session)
{:ok, result, _} = Bash.run("pwd", session)
Bash.stdout(result)
#=> "/tmp\n"
Elixir Interop
Define Elixir functions callable from Bash:
defmodule MyApp.BashAPI do
 use Bash.Interop, namespace: "myapp"

 defbash greet(args, _state) do
 case args do
 [name | _] ->
 Bash.puts(:stderr, "uhoh!")
 # Appended to stdout, and exits 0
 {:ok, "Hello #{name}!\n"}
 [] ->
 # Appended to stderr, and exits 1
 {:error, "usage: myapp.greet NAME"}
 end
 end

 defbash upcase(_args, _state) do
 Bash.stream(:stdin)
 |> Stream.each(fn line ->
 Bash.puts(String.upcase(String.trim(line)) <> "\n")
 :ok
 end)
 |> Stream.run()

 :ok
 end
end
Load the API into a session:
Option 1: Load at session creation
{:ok, session} = Bash.Session.new(apis: [MyApp.BashAPI])

Option 2: Load into existing session
{:ok, session} = Bash.Session.new()
:ok = Bash.Session.load_api(session, MyApp.BashAPI)

Now callable from Bash
{:ok, result, _} = Bash.run("myapp.greet World", session)
Bash.stdout(result)
#=> "Hello World!\n"

Works in pipelines
{:ok, result, _} = Bash.run("echo hello | myapp.upcase", session)
Bash.stdout(result)
#=> "HELLO\n"
Supported Features
Control Flow
	if/then/elif/else/fi
	for loops (word lists and C-style)
	while and until loops
	case statements
	&&, ||, ; operators
	Command groups { } and subshells ()

Variables
	Simple variables ($VAR, ${VAR})
	Arrays (indexed and associative)
	Parameter expansion (${VAR:-default}, ${VAR:+alt}, ${#VAR}, etc.)
	Arithmetic expansion ($((expr)))

Builtins
alias, bg, break, builtin, cd, command, continue, declare,
dirs, disown, echo, enable, eval, exec, exit, export, false,
fg, getopts, hash, help, history, jobs, kill, let, local,
mapfile, popd, printf, pushd, pwd, read, readonly, return,
set, shift, shopt, source, test, times, trap, true, type,
ulimit, umask, unalias, unset, wait
I/O
	Redirections (>, >>, <, 2>&1, etc.)
	Pipelines
	Here documents and here strings
	Process substitution (<(cmd), >(cmd))

Other
	Functions
	Brace expansion ({a,b,c}, {1..10})
	Glob patterns
	Quoting (single, double, $'...')
	Command substitution (`cmd` and $(cmd))

 Summary

 Functions

 escape(string, context)

 Escape a string for safe interpolation within a Bash quoted context.

 escape!(string, context)

 exit_code(result)

 Get the exit code from an executed script or AST node.

 format(content, opts \\ [])

 Format a bash script string.

 format_file(file, opts \\ [])

 Format a file

 get_state()

 Get the current session state within a defbash function.

 output(session)

 Get all output (stdout + stderr) from an executed script, AST node, or session.

 parse(script)

 Parse a Bash script string into an AST.

 parse_file(path)

 Parse a Bash script file into an AST.

 puts(message)

 Write to stdout within a defbash function.

 puts(atom, message)

 Write to stdout or stderr within a defbash function.

 run(script)

 Executes a Bash script, AST, or string.

 run(script, script)

 run(script, script, opts)

 run_file(path, session_or_opts \\ nil, opts \\ [])

 Execute a Bash script file.

 stderr(session)

 Get stderr output from an executed script, AST node, or session.

 stdout(session)

 Get stdout output from an executed script, AST node, or session.

 stream(source)

 Get stdin as a lazy stream within a defbash function.

 stream(target, enumerable)

 Stream an enumerable to stdout or stderr within a defbash function.

 success?(result)

 Check if execution was successful (exit code 0).

 update_state(updates)

 Accumulate state update deltas within a defbash function.

 validate(script)

 Validate a Bash script without executing it.

 validate_file(path)

 Validate a Bash script file without executing it.

 with_session(fun)

 Execute a function with a session that is automatically stopped afterwards.

 with_session(opts, fun)

 Functions

 escape(string, context)

 @spec escape(String.t(), integer() | String.t()) ::
 {:ok, String.t()} | {:error, EscapeError.t()}

Escape a string for safe interpolation within a Bash quoted context.
This function ensures the string won't break out of its quote context.
It does NOT escape expansion characters like $ - users should choose
the appropriate quote type (single quotes for literal content, double
quotes when expansion is desired).
Arguments
	string - the string to escape
	context - the quote context:	?" - double quotes: escapes " and \
	?' - single quotes: escapes ' using end/restart technique
	"DELIM" - heredoc: validates delimiter doesn't appear on its own line

Examples
Double quotes - escape " and \
iex> Bash.escape!("say \"hello\"", ?")
"say \\\"hello\\\""

iex> Bash.escape!("path\\to\\file", ?")
"path\\\\to\\\\file"

Single quotes - escape ' using end/restart technique
iex> Bash.escape!("it's here", ?')
"it'\\''s here"

Heredoc - validates delimiter doesn't appear
iex> Bash.escape!("safe content", "EOF")
"safe content"
Raises
Raises Bash.EscapeError if the string cannot be safely escaped,
such as when a heredoc delimiter appears on its own line.
Bash.escape!("line1\nEOF\nline2", "EOF")
#=> raises Bash.EscapeError

 escape!(string, context)

 @spec escape!(String.t(), integer() | String.t()) :: String.t()

 exit_code(result)

 @spec exit_code(Bash.ExecutionResult.t() | {atom(), Bash.ExecutionResult.t(), pid()}) ::
 non_neg_integer() | nil

Get the exit code from an executed script or AST node.
Accepts either a result struct or a result tuple for pipe chaining.
Examples
{:ok, script, _} = Bash.run("exit 42")
Bash.exit_code(script)
#=> 42

Pipe-friendly
Bash.run("exit 42") |> Bash.exit_code()
#=> 42

 format(content, opts \\ [])

 @spec format(String.t(), Keyword.t()) :: String.t()

Format a bash script string.
Returns the formatted script as a string. If parsing fails, the original
content is returned unchanged.
See Bash.Formatter for more details.
Options
	:indent_style - Either :spaces or :tabs. Defaults to :spaces.
	:indent_width - Number of spaces per indent level (when using spaces).
Defaults to 2.
	:line_length - Maximum line length. Defaults to 80.

Examples
Bash.format("if [-f foo];then\necho bar\nfi")
#=> "if [-f foo]; then\n echo bar\nfi\n"

Bash.format("if true;then\necho ok\nfi", bash: [indent_style: :tabs])
#=> "if true; then\n\techo ok\nfi\n"

 format_file(file, opts \\ [])

 @spec format_file(Path.t(), Keyword.t()) :: :ok

Format a file
For options, see format/2

 get_state()

Get the current session state within a defbash function.
This function is only valid inside defbash function bodies.
Examples
defbash show_var(args, _state) do
 state = Bash.get_state()
 var_name = List.first(args)
 value = get_in(state, [:variables, var_name])
 Bash.puts("#{var_name}=#{inspect(value)}\n")
 :ok
end

 output(session)

 @spec output(
 Bash.ExecutionResult.t()
 | {atom(), Bash.ExecutionResult.t(), pid()}
 | pid()
) :: String.t()

Get all output (stdout + stderr) from an executed script, AST node, or session.
Accepts:
	A result struct
	A result tuple {:ok | :error, result, session} for pipe chaining

	A session PID to get accumulated output

Examples
{:ok, script, _} = Bash.run("echo out; echo err >&2")
Bash.output(script)
#=> "out\nerr\n"

Pipe-friendly
Bash.run("echo out; echo err >&2") |> Bash.output()
#=> "out\nerr\n"

From session
{:ok, session} = Bash.Session.new()
Bash.run("echo out; echo err >&2", session)
Bash.output(session)
#=> "out\nerr\n"

 parse(script)

 @spec parse(String.t()) :: {:ok, Bash.Script.t()} | {:error, Bash.SyntaxError.t()}

Parse a Bash script string into an AST.
Returns {:ok, %Script{}} on success, or {:error, %SyntaxError{}} on failure.
Examples
iex> {:ok, script} = Bash.parse("echo hello")
iex> script.statements
[%Bash.AST.Command{name: "echo", args: ["hello"]}]

iex> {:error, %Bash.SyntaxError{}} = Bash.parse("if true")
Missing 'then' and 'fi'

 parse_file(path)

 @spec parse_file(Path.t()) ::
 {:ok, Bash.Script.t()} | {:error, Bash.SyntaxError.t() | File.posix()}

Parse a Bash script file into an AST.
Reads the file and parses its contents. Returns {:ok, %Script{}} on success,
or {:error, reason} on failure (either file read error or syntax error).
Examples
iex> {:ok, script} = Bash.parse_file("script.sh")
iex> script.statements
[%Bash.AST.Command{...}]

iex> {:error, %Bash.SyntaxError{}} = Bash.parse_file("invalid.sh")

iex> {:error, :enoent} = Bash.parse_file("missing.sh")

 puts(message)

Write to stdout within a defbash function.
This function is only valid inside defbash function bodies.
Examples
defbash greet(args, _state) do
 name = List.first(args, "world")
 Bash.puts("Hello #{name}!\n")
 :ok
end

 puts(atom, message)

Write to stdout or stderr within a defbash function.
This function is only valid inside defbash function bodies.
Examples
defbash example(_args, _state) do
 Bash.puts(:stdout, "normal output\n")
 Bash.puts(:stderr, "error output\n")
 :ok
end

 run(script)

Executes a Bash script, AST, or string.
Accepts:
	script: Can be:	A string - will be parsed and executed
	An AST struct (Script, Command, Pipeline, etc.) - will be executed in sequence
	A result tuple {:ok | :error | :exit, result, session} - continues with that session

	session_or_opts: Can be:	nil - creates a new session with default options
	A PID - uses an existing session
	Keyword list - creates a new session with these initialization options

	opts: Execution options:	await: true|false - whether to wait for result (default: true)

Returns:
	When await: true (default): {:ok, result, session_pid} or {:error, result, session_pid}
	When await: false: {:ok, session_pid}

Examples
Execute a string
{:ok, result, session_pid} = Bash.run("echo hello")

Execute an AST
{:ok, result, session_pid} = Bash.run(~BASH"echo hello")

Execute a multi-line script
{:ok, result, session_pid} = Bash.run("""
x=5
y=10
echo $x $y
""")

With existing session PID
{:ok, session} = Session.new()
{:ok, result, ^session} = Bash.run(~BASH"echo hello", session)

With session initialization options
{:ok, result, session_pid} = Bash.run(~BASH"echo $USER", env: %{"USER" => "alice"})

Async execution
{:ok, ref, session_pid} = Bash.run(~BASH"sleep 10", nil, await: false)

Pipe-friendly chaining - continues with the same session
Bash.run("x=5")
|> Bash.run("echo $x")
|> Bash.stdout()
#=> "5\n"

 run(script, script)

 run(script, script, opts)

 run_file(path, session_or_opts \\ nil, opts \\ [])

 @spec run_file(Path.t(), pid() | keyword() | map() | nil, keyword()) ::
 {:ok, term(), pid()}
 | {:error, term(), pid() | nil}
 | {:exit, term(), pid()}
 | {:exec, term(), pid()}

Execute a Bash script file.
Reads and parses the file, then executes it. Accepts the same session and
execution options as run/3.
Returns:
	{:ok, result, session_pid} on success
	{:error, result, session_pid} on execution error
	{:error, %SyntaxError{}, nil} on parse error
	{:error, posix_error, nil} on file read error

Examples
Execute a script file
{:ok, result, session_pid} = Bash.run_file("script.sh")

With session options
{:ok, result, session_pid} = Bash.run_file("script.sh", env: %{"DEBUG" => "1"})

With existing session
{:ok, session} = Bash.Session.new()
{:ok, result, ^session} = Bash.run_file("script.sh", session)

 stderr(session)

 @spec stderr(
 Bash.ExecutionResult.t()
 | {atom(), Bash.ExecutionResult.t(), pid()}
 | pid()
) :: String.t()

Get stderr output from an executed script, AST node, or session.
Accepts:
	A result struct
	A result tuple {:ok | :error, result, session} for pipe chaining

	A session PID to get accumulated stderr

Examples
{:ok, script, _} = Bash.run("echo error >&2")
Bash.stderr(script)
#=> "error\n"

Pipe-friendly
Bash.run("echo error >&2") |> Bash.stderr()
#=> "error\n"

From session
{:ok, session} = Bash.Session.new()
Bash.run("echo error >&2", session)
Bash.stderr(session)
#=> "error\n"

 stdout(session)

 @spec stdout(
 Bash.ExecutionResult.t()
 | {atom(), Bash.ExecutionResult.t(), pid()}
 | pid()
) :: String.t()

Get stdout output from an executed script, AST node, or session.
Accepts:
	A result struct
	A result tuple {:ok | :error, result, session} for pipe chaining

	A session PID to get accumulated stdout

Examples
{:ok, script, _} = Bash.run("echo hello")
Bash.stdout(script)
#=> "hello\n"

Pipe-friendly
Bash.run("echo hello") |> Bash.stdout()
#=> "hello\n"

From session
{:ok, session} = Bash.Session.new()
Bash.run("echo hello", session)
Bash.stdout(session)
#=> "hello\n"

 stream(source)

Get stdin as a lazy stream within a defbash function.
This function is only valid inside defbash function bodies.
Returns an empty stream if no stdin is available.
Examples
defbash upcase(_args, _state) do
 Bash.stream(:stdin)
 |> Stream.each(fn line ->
 Bash.puts(String.upcase(line))
 end)
 |> Stream.run()

 :ok
end

 stream(target, enumerable)

Stream an enumerable to stdout or stderr within a defbash function.
This function is only valid inside defbash function bodies.
Examples
defbash generate(_args, _state) do
 stream = Stream.map(1..5, &"#{&1}\n")
 Bash.stream(:stdout, stream)
 :ok
end

defbash errors(_args, _state) do
 Bash.stream(:stderr, ["warning 1\n", "warning 2\n"])
 :ok
end

 success?(result)

 @spec success?(Bash.ExecutionResult.t() | {atom(), Bash.ExecutionResult.t(), pid()}) ::
 boolean()

Check if execution was successful (exit code 0).
Accepts either a result struct or a result tuple for pipe chaining.
Examples
{:ok, script, _} = Bash.run("true")
Bash.success?(script)
#=> true

Pipe-friendly
Bash.run("true") |> Bash.success?()
#=> true

 update_state(updates)

Accumulate state update deltas within a defbash function.
Accepts a map or keyword list of update keys. Updates are accumulated
as deltas and applied after execution completes.
This function is only valid inside defbash function bodies.
Examples
defbash set_var([name, value], _state) do
 Bash.update_state(%{variables: %{name => Bash.Variable.new(value)}})
 :ok
end

 validate(script)

 @spec validate(String.t()) :: :ok | {:error, Bash.SyntaxError.t()}

Validate a Bash script without executing it.
Parses the script and returns :ok if valid, or {:error, %SyntaxError{}}
if the script has syntax errors.
Examples
iex> Bash.validate("echo hello")
:ok

iex> {:error, %Bash.SyntaxError{}} = Bash.validate("if true")
Missing 'then' and 'fi'

 validate_file(path)

 @spec validate_file(Path.t()) :: :ok | {:error, Bash.SyntaxError.t() | File.posix()}

Validate a Bash script file without executing it.
Reads the file and validates its contents. Returns :ok if valid,
or {:error, reason} on failure (either file read error or syntax error).
Examples
iex> Bash.validate_file("valid_script.sh")
:ok

iex> {:error, %Bash.SyntaxError{}} = Bash.validate_file("invalid.sh")

iex> {:error, :enoent} = Bash.validate_file("missing.sh")

 with_session(fun)

 @spec with_session((pid() -> result)) :: result when result: term()

Execute a function with a session that is automatically stopped afterwards.
Creates a new session, passes it to the function, and ensures the session
is stopped when the function returns or raises. Returns whatever the
function returns.
Examples
Simple usage
result = Bash.with_session(fn session ->
 {:ok, result, _} = Bash.run("echo hello", session)
 Bash.stdout(result)
end)
#=> "hello\n"

With session options
result = Bash.with_session([env: %{"USER" => "alice"}], fn session ->
 {:ok, result, _} = Bash.run("echo $USER", session)
 Bash.stdout(result)
end)
#=> "alice\n"

With APIs
Bash.with_session([apis: [MyApp.BashAPI]], fn session ->
 Bash.run("myapp.greet World", session)
end)

 with_session(opts, fun)

 @spec with_session(
 keyword(),
 (pid() -> result)
) :: result
when result: term()

Bash.Formatter

Mix formatter plugin for Bash scripts and sigils.
Formats .sh and .bash files, as well as ~BASH and ~b sigils in Elixir code.
Configuration
Add to your .formatter.exs:
[
 plugins: [Bash.Formatter],
 inputs: [
 "{mix,.formatter}.exs",
 "{config,lib,test}/**/*.{ex,exs}",
 "scripts/**/*.{sh,bash}"
],
 # Optional Bash formatter configuration
 bash: [
 indent_style: :spaces, # :spaces or :tabs
 indent_width: 2, # number of spaces (ignored if :tabs)
 line_length: 100 # max line length before wrapping
]
]
Formatting Behavior
	Preserves shebang lines exactly as-is
	Normalizes indentation based on configuration
	Wraps long lines after operators (|, &&, ||) with backslash continuation
	Never breaks inside strings, heredocs, arrays, or comments
	Preserves existing backslash continuations
	Graceful degradation: returns input unchanged on parse errors

Bash.Script

Top-level script: a sequence of statements with separators.
Examples
Simple script
%Script{
 statements: [
 %Assignment{name: "x", value: ...},
 {:separator, ";"},
 %Command{name: "echo", args: [...]}
]
}

Single statement (no separators)
%Script{
 statements: [%Command{name: "echo", args: [...]}]
}

 Summary

 Types

 output_entry()

 separator()

 statement_or_separator()

 t()

 Types

 output_entry()

 @type output_entry() :: {:stdout, String.t()} | {:stderr, String.t()}

 separator()

 @type separator() :: {:separator, String.t()}

 statement_or_separator()

 @type statement_or_separator() :: Bash.AST.Statement.t() | separator()

 t()

 @type t() :: %Bash.Script{
 collector: pid() | nil,
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 shebang: String.t() | nil,
 state_updates: map(),
 statements: [statement_or_separator()]
}

Bash.Session

Session GenServer for maintaining Bash execution context.
Each session maintains its own environment variables, working directory,
and I/O context for executing Bash commands.
	Variable	Description
	BASH_VERSION	"5.3" Version information for this Bash.
	CDPATH	A colon-separated list of directories to search for directories given as arguments to cd.
	GLOBIGNORE	A colon-separated list of patterns describing filenames to be ignored by pathname expansion.
	HISTFILE	The name of the file where your command history is stored.
	HISTFILESIZE	The maximum number of lines this file can contain.
	HISTSIZE	The maximum number of history lines that a running shell can access.
	HOME	The complete pathname to your login directory.
	HOSTNAME	The name of the current host.
	HOSTTYPE	The type of CPU this version of Bash is running under.
	IGNOREEOF	Controls the action of the shell on receipt of an EOF character as the sole input. If set, then the value of it is the number of EOF characters that can be seen in a row on an empty line before the shell will exit (default 10). When unset, EOF signifies the end of input.
	MACHTYPE	A string describing the current system Bash is running on.
	MAILCHECK	How often, in seconds, Bash checks for new mail.
	MAILPATH	(Unsupported) A colon-separated list of filenames which Bash checks for new mail.
	OSTYPE	The version of Unix this version of Bash is running on.
	PATH	A colon-separated list of directories to search when looking for commands.
	PROMPT_COMMAND	(Unsupported) A command to be executed before the printing of each primary prompt.
	PS1	(Unsupported) The primary prompt string.
	PS2	(Unsupported) The secondary prompt string.
	PWD	The full pathname of the current directory.
	SHELLOPTS	A colon-separated list of enabled shell options.
	TERM	(Always set to "dumb") The name of the current terminal type.
	TIMEFORMAT	The output format for timing statistics displayed by the time reserved word.
	auto_resume	(Unsupported) Non-null means a command word appearing on a line by itself is first looked for in the list of currently stopped jobs. If found there, that job is foregrounded. A value of exact means that the command word must exactly match a command in the list of stopped jobs. A value of substring means that the command word must match a substring of the job. Any other value means that the command must be a prefix of a stopped job.
	histchars	(Unsupported) Characters controlling history expansion and quick substitution. The first character is the history substitution character, usually !. The second is the quick substitution character, usually ^. The third is the history comment character, usually #.

| HISTIGNORE | A colon-separated list of patterns used to decide which commands should be saved on the history
list. |

 Summary

 Types

 t()

 Functions

 background_job(session, job_spec \\ nil)

 Send job to background (resume if stopped).

 begin_execution(session, command, opts \\ [])

 Begin a new command execution with fresh StringIO streams.

 chdir(session, path)

 Changes the working directory for the session.

 close_fd(session, fd)

 Close a file descriptor.

 end_execution(session, opts)

 End the current execution and move it to completed executions.

 execute(session, ast, opts \\ [])

 Executes a command AST within this session synchronously.

 execute_async(session, ast)

 Executes a command AST within this session asynchronously.

 execution(session, index)

 Get a specific execution by index.

 flush_output(session)

 Clear the accumulated output and return what was collected.

 foreground_job(session, job_spec \\ nil)

 Bring job to foreground.

 get_all_env(session)

 Gets all environment variables from the session.

 get_command_history(session)

 Get the command history for this session.

 get_cwd(session)

 Gets the current working directory for the session.

 get_env(session, key)

 Gets an environment variable from the session.

 get_job(session, job_number)

 Get a specific job by number.

 get_output(session)

 Get accumulated output from the session's output collector.

 get_state(session)

 Get the session state (for builtins that need direct access).

 get_var(session, var_name)

 Gets a variable value from the session, with optional index/key for arrays.

 get_var(session, var_name, index_or_key)

 gets(session, opts \\ [])

 Read a line from stdin (convenience wrapper for read/3).

 list(opts \\ [])

 Lists all running sessions.

 list_apis(session)

 List loaded API namespaces.

 list_jobs(session)

 Get all jobs for this session.

 load_api(session, module)

 Load an Elixir API module into a session.

 new(opts \\ [])

 Creates a new session with default environment.

 new_child(parent, opts \\ [])

 Creates a child session that inherits state from a parent.

 open_fd(session, fd, path, modes)

 Open a file descriptor for reading or writing.

 open_stdin(session, content)

 Open a StringIO device for stdin from a string.

 pipe_forward(session)

 Wire the previous execution's stdout to the current stdin for pipeline stages.

 pop_completed_jobs(session)

 Get and clear completed jobs for notification display.

 puts(session, data)

 Write a line to stdout (convenience wrapper for write/3).

 read(session, source \\ :stdin, mode \\ :line)

 Read from an input source.

 set_env(session, key, value)

 Sets an environment variable in the session.

 signal_job(session, job_spec, signal)

 Send signal to job.

 start_background_job(session, opts)

 Start a background job and return its job number and OS PID.

 start_link(opts)

 stderr(session, opts \\ [])

 Get the merged stderr content from all completed executions.

 stdout(session, opts \\ [])

 Get the merged stdout content from all completed executions.

 stop(session)

 Stops a session and its job supervisor.

 wait_for_jobs(session, job_specs \\ nil)

 Wait for job(s) to complete.

 write(session, arg2, data)

 Write to an output destination.

 Types

 t()

 @type t() :: %Bash.Session{
 aliases: %{required(String.t()) => String.t()},
 call_stack: [
 %{
 line_number: pos_integer(),
 function_name: String.t(),
 source_file: String.t()
 }
],
 call_timeout: timeout(),
 command_history: [Bash.CommandResult.t()],
 completed_jobs: [Bash.Job.t()],
 current: Bash.Execution.t() | nil,
 current_function_name: term(),
 current_job: pos_integer() | nil,
 dir_stack: [String.t()],
 elixir_modules: %{required(String.t()) => module()},
 executions: [Bash.Execution.t()],
 file_descriptors: %{
 required(non_neg_integer()) => pid() | {:coproc, pid(), :read | :write}
 },
 functions: %{required(String.t()) => Bash.AST.Function.t()},
 hash: %{required(String.t()) => {pos_integer(), String.t()}},
 id: String.t(),
 in_function: boolean(),
 in_loop: boolean(),
 is_pipeline_tail: boolean(),
 job_supervisor: pid() | nil,
 jobs: %{required(pos_integer()) => pid()},
 next_job_number: pos_integer(),
 options: %{required(String.t()) => boolean()},
 output_collector: pid() | nil,
 pipe_stdin: term(),
 positional_params: [[String.t()]],
 previous_job: pos_integer() | nil,
 signal_jobs_fn: term(),
 special_vars: %{required(String.t()) => integer() | String.t() | nil},
 start_background_job_fn: term(),
 start_runtime_ms: term(),
 stderr: pid() | nil,
 stderr_sink: Bash.Sink.t() | nil,
 stdin: pid() | nil,
 stdin_device: pid() | nil,
 stdout: pid() | nil,
 stdout_sink: Bash.Sink.t() | nil,
 traps: %{required(String.t()) => String.t() | :ignore},
 variables: %{required(String.t()) => Bash.Variable.t()},
 working_dir: String.t()
}

 Functions

 background_job(session, job_spec \\ nil)

 @spec background_job(pid(), pos_integer() | nil) :: :ok | {:error, term()}

Send job to background (resume if stopped).

 begin_execution(session, command, opts \\ [])

 @spec begin_execution(t(), String.t(), keyword()) :: t()

Begin a new command execution with fresh StringIO streams.
Creates a new Execution struct with separate stdout/stderr streams
and sets it as the current execution.
Options
	:pipeline_tail - Whether this command is at the end of a pipeline
(default: true). Only pipeline tail commands forward to user sinks.

Examples
session = Session.begin_execution(session, "echo hello")
session = Session.begin_execution(session, "cat", pipeline_tail: false)

 chdir(session, path)

Changes the working directory for the session.

 close_fd(session, fd)

 @spec close_fd(t(), non_neg_integer()) :: t()

Close a file descriptor.
Examples
session = Session.close_fd(session, 3)

 end_execution(session, opts)

 @spec end_execution(
 t(),
 keyword()
) :: t()

End the current execution and move it to completed executions.
Marks the execution with the given exit code and timestamp,
then appends it to the executions list.
Options
	:exit_code - The exit code for the execution (default: 0)

Examples
session = Session.end_execution(session, exit_code: 0)
session = Session.end_execution(session, exit_code: 1)

 execute(session, ast, opts \\ [])

Executes a command AST within this session synchronously.
Blocks until the command completes and returns the result.
Options
	:on_output - Callback function for streaming output. When provided,
output is streamed to the callback as it arrives instead of being
accumulated in the result. The callback receives {:stdout, binary}
or {:stderr, binary} tuples.

Examples
Standard execution (accumulates output)
{:ok, session} = Session.new()
{:ok, result} = Session.execute(session, ast)

Streaming execution (output flows to callback)
{:ok, session} = Session.new()
{:ok, result} = Session.execute(session, ast, on_output: fn
 {:stdout, data} -> IO.write(data)
 {:stderr, data} -> IO.write(:stderr, data)
end)

 execute_async(session, ast)

Executes a command AST within this session asynchronously.
Returns immediately without waiting for the command to complete.
The result will be stored in the session's command history.
Examples
{:ok, session} = Session.new()
:ok = Session.execute_async(session, ast)
Command executes in background

 execution(session, index)

 @spec execution(t(), non_neg_integer()) :: Bash.Execution.t() | nil

Get a specific execution by index.
Examples
exec = Session.execution(session, 0)
Execution.stdout_contents(exec)

 flush_output(session)

 @spec flush_output(pid()) :: {String.t(), String.t()}

Clear the accumulated output and return what was collected.
Useful for tests that want to run multiple commands and check output after each.

 foreground_job(session, job_spec \\ nil)

 @spec foreground_job(pid(), pos_integer() | nil) ::
 {:ok, Bash.CommandResult.t()} | {:error, term()}

Bring job to foreground.
Blocks until the job completes and returns a CommandResult.

 get_all_env(session)

Gets all environment variables from the session.

 get_command_history(session)

 @spec get_command_history(pid()) :: [Bash.CommandResult.t()]

Get the command history for this session.

 get_cwd(session)

Gets the current working directory for the session.

 get_env(session, key)

Gets an environment variable from the session.

 get_job(session, job_number)

 @spec get_job(pid(), pos_integer()) :: {:ok, Bash.Job.t()} | {:error, :not_found}

Get a specific job by number.

 get_output(session)

 @spec get_output(pid()) :: {String.t(), String.t()}

Get accumulated output from the session's output collector.
Returns {stdout, stderr} tuple with all output captured during execution.
This is the primary way to retrieve output in tests.
Examples
{:ok, session} = Session.new()
{:ok, _, _} = Bash.run(~b"echo hello", session)
{stdout, stderr} = Session.get_output(session)
assert stdout =~ "hello"

 get_state(session)

 @spec get_state(pid()) :: t()

Get the session state (for builtins that need direct access).

 get_var(session, var_name)

Gets a variable value from the session, with optional index/key for arrays.
Retrieves the session state and delegates to Variable.get/2 or Variable.get/3.
Examples
Session.get_var(session, "myvar")
Session.get_var(session, "myarray", 0)
Session.get_var(session, "myassoc", "key")

 get_var(session, var_name, index_or_key)

 gets(session, opts \\ [])

 @spec gets(
 t(),
 keyword()
) :: {:ok, String.t()} | :eof | {:error, term()}

Read a line from stdin (convenience wrapper for read/3).
Options
	:source - Source to read from (default: :stdin)
	:delimiter - Line delimiter (default: "\n")

Examples
{:ok, line} = Session.gets(session)
{:ok, line} = Session.gets(session, source: {:fd, 3})

 list(opts \\ [])

 @spec list(keyword()) :: [{String.t(), pid()}]

Lists all running sessions.
Returns a list of tuples containing the session ID and pid.
Options
	:registry - The registry to query (default: Bash.SessionRegistry)

Examples
iex> {:ok, session} = Bash.Session.new()
iex> sessions = Bash.Session.list()
iex> Enum.any?(sessions, fn {_id, pid} -> pid == session end)
true

 list_apis(session)

 @spec list_apis(pid() | t()) :: [String.t()]

List loaded API namespaces.

 list_jobs(session)

 @spec list_jobs(pid()) :: [Bash.Job.t()]

Get all jobs for this session.

 load_api(session, module)

 @spec load_api(pid(), module()) :: :ok

Load an Elixir API module into a session.
The module must use Bash.Interop and define a namespace.
Once loaded, functions defined with defbash become callable from
bash scripts as namespace.function_name.
Examples
Load into a running session (recommended)
{:ok, session} = Session.new()
:ok = Session.load_api(session, MyApp.BashAPI)

Or load at session creation
{:ok, session} = Session.new(apis: [MyApp.BashAPI])

Now myapp.* functions are available in bash scripts

 new(opts \\ [])

Creates a new session with default environment.

 new_child(parent, opts \\ [])

 @spec new_child(
 t() | pid(),
 keyword()
) :: {:ok, pid()} | {:error, term()}

Creates a child session that inherits state from a parent.
The child session inherits (per bash behavior):
	Environment variables
	Working directory
	Functions
	Shell options

The child session does NOT inherit (per bash behavior):
	Aliases
	Hash table (command path cache)

The child session gets its own:
	Job supervisor and job table
	Session ID

This is used for subshell execution where changes to env/cwd
should not propagate back to the parent.

 open_fd(session, fd, path, modes)

 @spec open_fd(t(), non_neg_integer(), String.t(), [atom()]) ::
 {:ok, t()} | {:error, term()}

Open a file descriptor for reading or writing.
Examples
session = Session.open_fd(session, 3, "/path/to/file", [:read])
session = Session.open_fd(session, 4, "/path/to/output", [:write])

 open_stdin(session, content)

 @spec open_stdin(t(), String.t()) :: t()

Open a StringIO device for stdin from a string.
Useful for providing initial input to a session or pipeline.
Examples
session = Session.open_stdin(session, "line1\nline2\n")

 pipe_forward(session)

 @spec pipe_forward(t()) :: t()

Wire the previous execution's stdout to the current stdin for pipeline stages.
Takes the stdout content from the last completed execution and creates
a new StringIO device for reading as the next command's stdin.
Examples
After cmd1 completes:
session = Session.pipe_forward(session)
Now stdin reads from cmd1's stdout

 pop_completed_jobs(session)

 @spec pop_completed_jobs(pid()) :: [Bash.Job.t()]

Get and clear completed jobs for notification display.

 puts(session, data)

 @spec puts(t(), iodata()) :: t()

Write a line to stdout (convenience wrapper for write/3).
Appends a newline to the data.
Examples
session = Session.puts(session, "hello") # writes "hello\n"

 read(session, source \\ :stdin, mode \\ :line)

 @spec read(t(), :stdin | {:fd, non_neg_integer()}, :line | :all | non_neg_integer()) ::
 {:ok, String.t()} | :eof | {:error, term()}

Read from an input source.
Sources
	:stdin - Read from session's stdin
	{:fd, n} - Read from file descriptor n

Modes
	:line - Read a single line (default)
	:all - Read all available content
	n when is_integer(n) - Read n bytes

Examples
{:ok, line} = Session.read(session, :stdin, :line)
{:ok, all} = Session.read(session, :stdin, :all)
{:ok, chunk} = Session.read(session, {:fd, 3}, 1024)

 set_env(session, key, value)

Sets an environment variable in the session.

 signal_job(session, job_spec, signal)

 @spec signal_job(pid(), pos_integer(), atom() | integer()) :: :ok | {:error, term()}

Send signal to job.

 start_background_job(session, opts)

 @spec start_background_job(
 pid(),
 keyword()
) ::
 {:ok, job_number :: pos_integer(), os_pid :: pos_integer() | nil}
 | {:error, term()}

Start a background job and return its job number and OS PID.
Options
	:command - Command name to execute (required)
	:args - List of arguments (default: [])

 start_link(opts)

 stderr(session, opts \\ [])

 @spec stderr(
 t(),
 keyword()
) :: Enumerable.t() | String.t()

Get the merged stderr content from all completed executions.
Options
	:index - Get stderr from a specific execution by index

Examples
All stderr as a stream
Session.stderr(session) |> Enum.to_list()

Specific execution's stderr
Session.stderr(session, index: 0)

 stdout(session, opts \\ [])

 @spec stdout(
 t(),
 keyword()
) :: Enumerable.t() | String.t()

Get the merged stdout content from all completed executions.
Options
	:index - Get stdout from a specific execution by index

Examples
All stdout as a stream
Session.stdout(session) |> Enum.to_list()

Specific execution's stdout
Session.stdout(session, index: 0)

 stop(session)

 @spec stop(pid()) :: :ok

Stops a session and its job supervisor.

 wait_for_jobs(session, job_specs \\ nil)

 @spec wait_for_jobs(pid(), [pos_integer()] | nil) ::
 {:ok, [integer()]} | {:error, term()}

Wait for job(s) to complete.

 write(session, arg2, data)

 @spec write(t(), :stdout | :stderr | {:fd, non_neg_integer()}, iodata()) :: t()

Write to an output destination.
Writes to the current execution's StringIO stream. If the session is
at the pipeline tail and has user-provided sinks, also forwards to those.
Destinations
	:stdout - Write to stdout
	:stderr - Write to stderr
	{:fd, n} - Write to file descriptor n

Examples
session = Session.write(session, :stdout, "hello\n")
session = Session.write(session, :stderr, "error message\n")
session = Session.write(session, {:fd, 3}, data)

Bash.Sigil

Sigil implementation for ~BASH and ~bash.
This module provides the ~BASH/bash sigil that parses Bash scripts at compile time
and returns a Script struct for execution.
Validation
The sigil performs structural validation on the parsed AST, detecting common errors:
	Unclosed quotes ("hello or 'hello)
	Unclosed command groups ({ echo hello)
	Missing control flow terminators (if without fi, do without done)

Errors include ShellCheck-compatible codes and helpful hints.
Examples
Valid scripts parse successfully:
~BASH"echo hello"
~BASH"if true; then echo hi; fi"

Invalid scripts raise SyntaxError:
~BASH"{ echo hello"
=> ** (Bash.SyntaxError) [SC1056] Bash syntax error at line 1, column 0:
{ echo hello
^
hint: '{' starts a command group - missing '}'

 Summary

 Functions

 sigil_BASH(term, modifiers)

 sigil_b(term, modifiers)

 The ~BASH sigil for parsing Bash scripts into a Script AST struct.

 Functions

 sigil_BASH(term, modifiers)

 (macro)

 sigil_b(term, modifiers)

 (macro)

The ~BASH sigil for parsing Bash scripts into a Script AST struct.
Returns a Script struct that can be serialized back to bash strings.
Modifiers
Modifiers can be combined. Lowercase modifiers set session options,
uppercase modifiers control output.
Output modifiers (uppercase, mutually exclusive)
	No output modifier: Returns %Bash.Script{} struct (default)
	S: Execute and return stdout as string
	E: Execute and return stderr as string
	O: Execute and return combined output as string

Session option modifiers (lowercase, can combine)
	e: Enable errexit (exit on error)
	v: Enable verbose mode
	p: Enable pipefail
	u: Enable nounset (error on undefined variables)

Examples
Single command returns a Script:
iex> ~BASH"echo hello world"
%Bash.Script{statements: [%Bash.AST.Command{...}]}

Serialize back to string:
iex> script = ~BASH"echo hello"
iex> to_string(script)
"echo hello"

Execute and get stdout:
iex> ~BASH"echo hello"S
"hello\n"

Execute and get stderr:
iex> ~BASH"echo error >&2"E
"error\n"

Execute and get combined output:
iex> ~BASH"echo out; echo err >&2"O
"out\nerr\n"

Execute with errexit and return stdout:
iex> ~BASH"echo hello"eS
"hello\n"

Execute with pipefail and errexit:
iex> ~BASH"false | echo hi"epS
"hi\n"

Bash.Telemetry

Telemetry instrumentation for the Bash interpreter.
This module emits telemetry events for script execution, allowing you to
monitor performance, track usage, and integrate with observability tools.
Available Events
All events follow the span pattern with :start, :stop, and :exception suffixes.
Session Execution
	[:bash, :session, :run, :start] - Emitted when Bash.run/3 begins execution
	Measurement: %{system_time: integer}
	Metadata: %{session: pid}

	[:bash, :session, :run, :stop] - Emitted when Bash.run/3 completes
	Measurement: %{duration: native_time}
	Metadata: %{session: pid, status: :ok | :error | :exit | :exec, exit_code: integer | nil}

	[:bash, :session, :run, :exception] - Emitted when Bash.run/3 raises an exception
	Measurement: %{duration: native_time}
	Metadata: %{session: pid, kind: :error | :exit | :throw, reason: term, stacktrace: list}

Command Execution
	[:bash, :command, :start] - Emitted before a command executes
	Measurement: %{system_time: integer}
	Metadata: %{command: String.t, args: list(String.t)}

	[:bash, :command, :stop] - Emitted after a command completes
	Measurement: %{duration: native_time}
	Metadata: %{command: String.t, args: list(String.t), exit_code: integer | nil}

	[:bash, :command, :exception] - Emitted when a command raises an exception
	Measurement: %{duration: native_time}
	Metadata: %{command: String.t, args: list(String.t), kind: atom, reason: term, stacktrace: list}

For Loop Execution
	[:bash, :for_loop, :start] - Emitted before a for loop begins
	Measurement: %{system_time: integer}
	Metadata: %{variable: String.t, item_count: integer}

	[:bash, :for_loop, :stop] - Emitted after a for loop completes
	Measurement: %{duration: native_time}
	Metadata: %{variable: String.t, item_count: integer, iteration_count: integer, exit_code: integer | nil}

	[:bash, :for_loop, :exception] - Emitted when a for loop raises an exception
	Measurement: %{duration: native_time}
	Metadata: %{variable: String.t, item_count: integer, kind: atom, reason: term, stacktrace: list}

While/Until Loop Execution
	[:bash, :while_loop, :start] - Emitted before a while/until loop begins
	Measurement: %{system_time: integer}
	Metadata: %{until: boolean}

	[:bash, :while_loop, :stop] - Emitted after a while/until loop completes
	Measurement: %{duration: native_time}
	Metadata: %{until: boolean, iteration_count: integer, exit_code: integer | nil}

	[:bash, :while_loop, :exception] - Emitted when a while/until loop raises an exception
	Measurement: %{duration: native_time}
	Metadata: %{until: boolean, kind: atom, reason: term, stacktrace: list}

Usage Example
Attach handlers to receive telemetry events:
:telemetry.attach_many(
 "bash-telemetry-handler",
 [
 [:bash, :session, :run, :start],
 [:bash, :session, :run, :stop],
 [:bash, :session, :run, :exception],
 [:bash, :command, :start],
 [:bash, :command, :stop],
 [:bash, :command, :exception],
 [:bash, :for_loop, :start],
 [:bash, :for_loop, :stop],
 [:bash, :for_loop, :exception],
 [:bash, :while_loop, :start],
 [:bash, :while_loop, :stop],
 [:bash, :while_loop, :exception]
],
 &MyApp.TelemetryHandler.handle_event/4,
 nil
)
Note on Output
Output (stdout/stderr) is intentionally NOT included in telemetry metadata
to avoid memory issues with large outputs. Use output collectors or sinks
if you need to capture command output.

Bash.Context

Unified execution context for defbash functions in both builtins and interop.
Manages process-dictionary-based I/O context with support for nesting
(e.g., eval calling builtins). Provides stdout/stderr writing, stdin reading,
state access, and delta-based state updates.
I/O Functions
	write/1 - Write raw data to stdout
	write_stderr/1 - Write raw data to stderr
	puts/1 - Write to stdout with trailing newline
	error/1 - Write to stderr with trailing newline

Stdin
	gets/0 - Read a line from stdin
	read/1 - Read from stdin (:all, :line, or byte count)
	stream/1 - Get stdin as a lazy stream

Output Streams
	stream/2 - Stream an enumerable to stdout or stderr

State
	get_state/0 - Get the current session state
	update_state/1 - Accumulate state update deltas

 Summary

 Types

 t()

 Functions

 delete_context()

 Delete the current context and restore previous (for interop cleanup).

 error(message)

 Write message to stderr with trailing newline.

 get_state()

 Get the current session state.

 get_state_updates()

 Get accumulated state updates from the current context.

 gets()

 Read a line from stdin.

 puts(message)

 Write message to stdout with trailing newline.

 puts(atom, message)

 Write to stdout or stderr.

 read(n)

 Read from stdin.

 stream(atom)

 Get stdin as a lazy stream.

 stream(atom, enumerable)

 Stream an enumerable to stdout or stderr.

 update_state(updates)

 Request state updates to be applied after execution completes.

 write(data)

 Write raw data to stdout (no newline added).

 write_stderr(data)

 Write raw data to stderr (no newline added).

 Types

 t()

 @type t() :: %Bash.Context{state: map(), state_updates: map(), stdin: term()}

 Functions

 delete_context()

 @spec delete_context() :: :ok

Delete the current context and restore previous (for interop cleanup).

 error(message)

 @spec error(String.t()) :: :ok

Write message to stderr with trailing newline.

 get_state()

 @spec get_state() :: map()

Get the current session state.

 get_state_updates()

 @spec get_state_updates() :: map()

Get accumulated state updates from the current context.
Used by interop's execute_with_context to retrieve deltas without
going through finalize/1.

 gets()

 @spec gets() :: {:ok, String.t()} | :eof | {:error, term()}

Read a line from stdin.
Returns {:ok, line}, :eof, or {:error, reason}.

 puts(message)

 @spec puts(String.t()) :: :ok

Write message to stdout with trailing newline.

 puts(atom, message)

 @spec puts(:stdout | :stderr, String.t()) :: :ok

Write to stdout or stderr.
When called with a stream target and message:
	puts(:stdout, message) - Write to stdout
	puts(:stderr, message) - Write to stderr

 read(n)

 @spec read(:all | :line | non_neg_integer()) ::
 {:ok, String.t()} | :eof | {:error, term()}

Read from stdin.
Modes:
	:all - Read all remaining input
	:line - Read a single line (same as gets/0)
	n (integer) - Read n bytes

 stream(atom)

 @spec stream(:stdin) :: Enumerable.t()

Get stdin as a lazy stream.
Returns an empty stream if no stdin is available.

 stream(atom, enumerable)

 @spec stream(:stdout | :stderr, Enumerable.t()) :: :ok

Stream an enumerable to stdout or stderr.
Each element is converted to a string and written immediately.

 update_state(updates)

 @spec update_state(keyword() | map()) :: :ok

Request state updates to be applied after execution completes.
Accumulates a delta map of update keys.
For more details on settings variables, see Bash.Variable. By default, a string key
and string value will default to an exported variable.
Example
update_state(
 working_dir: "/new/path",
 variables: %{"PWD" => "/new/path"}
)

 write(data)

 @spec write(iodata()) :: :ok

Write raw data to stdout (no newline added).

 write_stderr(data)

 @spec write_stderr(iodata()) :: :ok

Write raw data to stderr (no newline added).

Bash.Interop

Define Elixir functions callable from Bash scripts.
This module provides the defbash macro for creating functions that can be
invoked from bash scripts using the namespace.function syntax.
Usage
defmodule MyApp.BashAPI do
 use Bash.Interop, namespace: "myapp"

 defbash greet(args, _state) do
 case args do
 [name | _] ->
 Bash.puts("Hello #{name}!\n")
 :ok

 [] ->
 {:error, "usage: myapp.greet NAME"}
 end
 end
end
Functions are loaded into a session with Bash.Session.load_api/2:
{:ok, session} = Bash.Session.new()
Bash.Session.load_api(session, MyApp.BashAPI)
Then callable from Bash as myapp.greet "World".
I/O Functions
Inside defbash functions, use the Bash module for I/O:
	Bash.puts(message) - Write raw data to stdout (no newline added)
	Bash.puts(:stderr, message) - Write raw data to stderr (no newline added)
	Bash.stream(:stdin) - Get stdin as a lazy Stream
	Bash.stream(:stdout, enumerable) - Stream each element to stdout
	Bash.stream(:stderr, enumerable) - Stream each element to stderr
	Bash.get_state() - Get the current session state map
	Bash.update_state(updates) - Accumulate state update deltas

Return Values
defbash functions must return one of:
Success
	:ok - Exit code 0, no additional output
	{:ok, message} - Exit code 0, message (binary) written to stdout
	{:ok, stream} - Exit code 0, lazy stream consumed to stdout
	{:ok, exit_code} - Exit with exit_code (integer), no additional output

Error
	{:error, exit_code} - Exit with exit_code (integer), no output
	{:error, message} - Exit code 1, message (binary) written to stderr
	{:error, stream} - Exit code 1, lazy stream consumed to stderr

Loop Control
Only valid when the function is called inside a for, while, or until loop:
	:continue - Skip to the next loop iteration
	:break - Break out of the enclosing loop

State Updates
Use Bash.update_state/1 to request changes to session state. Updates are
accumulated as deltas and applied after execution completes. Common keys:
	:variables - Map of variable name to string or Bash.Variable (merged, strings auto-wrapped as exported)
	:working_dir - New working directory (replaced)
	:options - Shell options map (merged)

Examples
Simple output
defbash hello(_args, _state) do
 Bash.puts("hello world\n")
 :ok
end
Return-based output
defbash version(_args, _state) do
 {:ok, "1.0.0\n"}
end
Error handling
defbash divide(args, _state) do
 case args do
 [a, b] ->
 b = String.to_integer(b)

 if b == 0 do
 {:error, "divide: division by zero\n"}
 else
 {:ok, "#{div(String.to_integer(a), b)}\n"}
 end

 _ ->
 {:error, "usage: math.divide A B\n"}
 end
end
Streaming stdin
defbash upcase(_args, _state) do
 Bash.stream(:stdin)
 |> Stream.each(fn chunk ->
 Bash.puts(String.upcase(chunk))
 end)
 |> Stream.run()

 :ok
end
Streaming output
defbash count(_args, _state) do
 {:ok, Stream.map(1..5, &"#{&1}\n")}
end
Custom exit code
defbash check(args, _state) do
 if File.exists?(List.first(args, "")) do
 :ok
 else
 {:ok, 1}
 end
end
State updates
defbash set_var(args, _state) do
 case args do
 [name, value] ->
 Bash.update_state(%{variables: %{name => Bash.Variable.new(value)}})
 :ok

 _ ->
 {:error, "usage: myapp.set_var NAME VALUE\n"}
 end
end
Loop control
In a bash loop: for i in 1 2 3; do myapp.skip_even "$i"; done
defbash skip_even(args, _state) do
 n = args |> List.first() |> String.to_integer()

 if rem(n, 2) == 0 do
 :continue
 else
 Bash.puts("#{n}\n")
 :ok
 end
end

 Summary

 Functions

 __using__(opts)

 Sets up a module to define bash-callable functions.

 defbash(arg, list)

 Define a bash-callable function.

 Functions

 __using__(opts)

 (macro)

Sets up a module to define bash-callable functions.
Options
	:namespace - Required. The namespace prefix for bash calls.
	:on_define - Optional. A callback function invoked at compile time when
each defbash function is defined. Receives (function_name, module) and
should return a metadata map or nil. This allows external modules to
annotate functions using module attributes.

Example
defmodule MyApp.BashAPI do
 use Bash.Interop, namespace: "myapp"
end
Example with on_define callback
defmodule MyApp.RemoteBashAPI do
 use Bash.Interop,
 namespace: "remote",
 on_define: fn name, module ->
 execute_on = Module.get_attribute(module, :execute_on) || :guest
 Module.delete_attribute(module, :execute_on)
 %{execute_on: execute_on}
 end

 @execute_on :server
 defbash server_func(args, _state), do: {:ok, "runs on server"}

 defbash guest_func(args, _state), do: {:ok, "runs on guest"}
end

 defbash(arg, list)

 (macro)

Define a bash-callable function.
The function receives two arguments:
	args - List of string arguments passed from bash
	state - The current session state map

I/O
Inside the function body, use the Bash module for I/O:
	Bash.puts(message) - Write raw data to stdout
	Bash.puts(:stderr, message) - Write raw data to stderr
	Bash.stream(:stdin) - Get stdin as a lazy Stream
	Bash.stream(:stdout, enumerable) - Stream each element to stdout
	Bash.stream(:stderr, enumerable) - Stream each element to stderr
	Bash.get_state() - Get current session state
	Bash.update_state(updates) - Accumulate state update deltas

Return Values
Success
	:ok - Exit code 0, no additional output
	{:ok, binary} - Exit code 0, binary written to stdout
	{:ok, stream} - Exit code 0, lazy stream consumed to stdout
	{:ok, exit_code} - Exit with integer code, no additional output

Error
	{:error, exit_code} - Exit with integer code, no output
	{:error, binary} - Exit code 1, binary written to stderr
	{:error, stream} - Exit code 1, lazy stream consumed to stderr

Loop Control
	:continue - Skip to next loop iteration (only valid inside loops)
	:break - Break out of enclosing loop (only valid inside loops)

Examples
defbash greet(args, _state) do
 case args do
 [name | _] ->
 Bash.puts("Hello #{name}!\n")
 :ok

 [] ->
 {:error, "usage: myapp.greet NAME\n"}
 end
end

defbash upcase(_args, _state) do
 Bash.stream(:stdin)
 |> Stream.each(fn chunk ->
 Bash.puts(String.upcase(chunk))
 end)
 |> Stream.run()

 :ok
end

defbash count(_args, _state) do
 {:ok, Stream.map(1..5, &"#{&1}\n")}
end

Bash.Interop.Result

Normalized result from an Elixir interop function call.
This struct provides a consistent interface for accessing the results
of defbash function calls, regardless of which return format was used.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.Interop.Result{exit_code: non_neg_integer()}

Bash.Parser

Recursive descent parser for Bash scripts.
Converts tokens from the Tokenizer into AST nodes.
Grammar Overview
The parser follows Bash's grammar from parse.y:
script → statement_list EOF
statement → simple_command
 | compound_command
 | pipeline
 | control_flow
pipeline → command ('|' command)*
command → simple_command redirect*
simple_cmd → assignment* name word* redirect*
compound_cmd → '{' list '}'
 | '(' list ')'
 | if_clause
 | for_clause
 | while_clause
 | case_clause
 | function_def

 Summary

 Types

 state()

 token()

 Functions

 parse(input)

 Parse a Bash script string into an AST.

 Types

 state()

 @type state() :: %{tokens: [token()], pos: non_neg_integer()}

 token()

 @type token() :: Bash.Tokenizer.token()

 Functions

 parse(input)

 @spec parse(String.t()) ::
 {:ok, Bash.Script.t()} | {:error, String.t(), pos_integer(), pos_integer()}

Parse a Bash script string into an AST.

Bash.Parser.Arithmetic

Parser for bash arithmetic expressions.
Parses expressions like "x + 1", "a++ * b--", "x = y ? 1 : 0"
into an AST that can be evaluated by Bash.AST.Arithmetic.
Operator Precedence (lowest to highest)
	, (comma/sequence)
	=, +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, |= (assignment)
	? : (ternary)
	|| (logical OR)
	&& (logical AND)
	| (bitwise OR)
	^ (bitwise XOR)
	& (bitwise AND)
	==, != (equality)
	<, <=, >, >= (comparison)
	<<, >> (bit shift)
	+, - (addition/subtraction)
	*, /, % (multiplication/division/modulo)
	** (exponentiation)
	!, ~, +, - (unary)
	++, -- (pre/post increment/decrement)

AST Node Types
	{:number, n} - integer literal
	{:var, name} - variable reference
	{:binop, op, left, right} - binary operation
	{:unop, op, expr} - unary operation
	{:assign, op, var_node, expr} - assignment
	{:ternary, cond, true_expr, false_expr} - ternary operator
	{:pre_inc, name} / {:pre_dec, name} - pre-increment/decrement
	{:post_inc, var_node} / {:post_dec, var_node} - post-increment/decrement

 Summary

 Functions

 parse(expr)

 Parse an arithmetic expression string into an AST.

 tokenize(input, acc)

 Functions

 parse(expr)

Parse an arithmetic expression string into an AST.
Returns {:ok, ast} or {:error, reason}.
Examples
iex> Arithmetic.parse("1 + 2")
{:ok, {:binop, "+", {:number, 1}, {:number, 2}}}

iex> Arithmetic.parse("x = 5")
{:ok, {:assign, "=", {:var, "x"}, {:number, 5}}}

iex> Arithmetic.parse("++x")
{:ok, {:pre_inc, "x"}}

 tokenize(input, acc)

Bash.Parser.VariableExpander

Hand-written parser and expander for Bash variable expansions.
Handles all forms of parameter expansion:
	Simple: $VAR
	Braced: ${VAR}
	Default values: ${VAR:-default}, ${VAR:=default}, ${VAR:?error}, ${VAR:+alternate}
	Pattern removal: ${VAR#pattern}, ${VAR##pattern}, ${VAR%pattern}, ${VAR%%pattern}
	Substitution: ${VAR/pattern/replacement}, ${VAR//pattern/replacement}
	Substring: ${VAR:offset}, ${VAR:offset:length}
	Length: ${#VAR}

References:
	https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion
	https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/subst.c?h=bash-5.3

 Summary

 Types

 modifier()

 token()

 Functions

 parse(text)

 Parse a string into a list of tokens for variable expansion.

 Types

 modifier()

 @type modifier() ::
 {:length}
 | {:default, String.t(), String.t()}
 | {:pattern, String.t(), String.t()}
 | {:subst, String.t(), String.t()}
 | {:substring, String.t()}

 token()

 @type token() ::
 {:literal, String.t()}
 | {:var_simple, String.t()}
 | {:var_braced, String.t(), [modifier()]}

 Functions

 parse(text)

 @spec parse(String.t()) :: {:ok, [token()]} | {:error, String.t()}

Parse a string into a list of tokens for variable expansion.
Returns {:ok, tokens} or {:error, reason}.

Bash.Tokenizer

Lexer for Bash syntax.
Produces a stream of tokens with position information for the parser to consume.
Handles quoting, escapes, and nested structures (command substitution, etc.) correctly.
Token Types
Tokens are tuples of {type, value, line, column} or {type, line, column} for
valueless tokens like operators.
Word tokens
	{:word, parts, line, col} - A word with parts (literals, variables, etc.)
	{:assignment_word, name, value_parts, line, col} - VAR=value

Operators
	{:pipe, line, col} - |
	{:and_if, line, col} - &&
	{:or_if, line, col} - ||
	{:background, line, col} - &
	{:semi, line, col} - ;
	{:dsemi, line, col} - ;;
	{:semi_and, line, col} - ;&
	{:dsemi_and, line, col} - ;;&
	{:newline, line, col} - \n
	{:lparen, line, col} - (
	{:rparen, line, col} -)
	{:lbrace, line, col} - {
	{:rbrace, line, col} - }

Redirections
	{:less, fd, line, col} - <
	{:greater, fd, line, col} - >
	{:dgreater, fd, line, col} - >>
	{:lessand, fd, line, col} - <&
	{:greaterand, fd, line, col} - >&
	{:lessgreat, fd, line, col} - <>
	{:dless, fd, line, col} - << (heredoc)
	{:dlessdash, fd, line, col} - <<- (heredoc with tab stripping)
	{:tless, fd, line, col} - <<< (herestring)
	{:andgreat, line, col} - &>
	{:anddgreat, line, col} - &>>
	{:brace_fd, varname, line, col} - {VAR} before redirect operator

Reserved words (context-dependent)
	{:if, line, col}
	{:then, line, col}
	{:else, line, col}
	{:elif, line, col}
	{:fi, line, col}
	{:case, line, col}
	{:esac, line, col}
	{:for, line, col}
	{:while, line, col}
	{:until, line, col}
	{:do, line, col}
	{:done, line, col}
	{:in, line, col}
	{:function, line, col}
	{:bang, line, col} - !

Test constructs
	{:lbracket, line, col} - [
	{:rbracket, line, col} -]
	{:dlbracket, line, col} - [[
	{:drbracket, line, col} -]]

Arithmetic
	{:arith_command, content, line, col} - ((...)) arithmetic command with raw content

Special
	{:eof, line, col} - End of input
	{:comment, text, line, col} - # comment

 Summary

 Types

 brace_spec()

 heredoc_pending()

 position()

 state()

 token()

 word_part()

 Functions

 tokenize(input)

 Tokenize a Bash script into a list of tokens.

 Types

 brace_spec()

 @type brace_spec() :: %{
 type: :list | :range,
 items: [[word_part()]] | nil,
 range_start: String.t() | nil,
 range_end: String.t() | nil,
 step: integer() | nil,
 zero_pad: non_neg_integer() | nil
}

 heredoc_pending()

 @type heredoc_pending() :: %{
 delimiter: String.t(),
 strip_tabs: boolean(),
 expand: boolean(),
 start_line: pos_integer(),
 start_col: pos_integer()
}

 position()

 @type position() :: {line :: pos_integer(), column :: pos_integer()}

 state()

 @type state() :: %{
 input: String.t(),
 pos: non_neg_integer(),
 line: pos_integer(),
 column: pos_integer(),
 in_test_expr: boolean(),
 after_regex_op: boolean(),
 pending_heredocs: [heredoc_pending()]
}

 token()

 @type token() ::
 {:word, [word_part()], pos_integer(), pos_integer()}
 | {:assignment_word, String.t(), [word_part()], pos_integer(), pos_integer()}
 | {:append_word, String.t(), [word_part()], pos_integer(), pos_integer()}
 | {:arith_command, String.t(), pos_integer(), pos_integer()}
 | {atom(), pos_integer(), pos_integer()}
 | {atom(), non_neg_integer(), pos_integer(), pos_integer()}
 | {:comment, String.t(), pos_integer(), pos_integer()}

 word_part()

 @type word_part() ::
 {:literal, String.t()}
 | {:single_quoted, String.t()}
 | {:double_quoted, [word_part()]}
 | {:variable, String.t()}
 | {:variable_braced, String.t(), keyword()}
 | {:command_subst, [token()]}
 | {:process_subst_in, [token()]}
 | {:process_subst_out, [token()]}
 | {:arith_expand, String.t()}
 | {:backtick, String.t()}
 | {:brace_expand, brace_spec()}

 Functions

 tokenize(input)

 @spec tokenize(String.t()) ::
 {:ok, [token()]} | {:error, String.t(), pos_integer(), pos_integer()}

Tokenize a Bash script into a list of tokens.
Returns {:ok, tokens} or {:error, reason, line, column}.

Bash.AST

Typed Abstract Syntax Tree (AST) for Bash.
This module defines structured types for representing parsed Bash code.
Each AST node includes metadata for source location tracking and error reporting.
Design Principles
	Type Safety: Every node is a proper struct with @type specs
	Source Tracking: All nodes include line/column for error messages
	Complete: Represents all Bash constructs we support
	Immutable: AST is built once during parsing, never modified

AST Hierarchy
Script (top level)
├── Statement (commands, assignments, control flow)
│ ├── Command (simple command with args)
│ ├── Pipeline (cmd1 | cmd2 | cmd3)
│ ├── Assignment (VAR=value)
│ ├── If (if/elif/else/fi)
│ ├── ForLoop (for var in items; do...; done)
│ ├── WhileLoop (while/until condition; do...; done)
│ ├── Case (case var in "pattern)" esac)
│ ├── Function (function name { ...; })
│ ├── Compound (subshells, groups, logical, sequential)
│ ├── Word (text with variable expansion)
│ └── Variable (variable reference with operators)
└── Expression (expandable text, tests, arithmetic)
 ├── TestExpression (`[[...]]` expressions)
 └── Arithmetic (`((...))` arithmetic)
Reference
Bash grammar: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/parse.y?h=bash-5.3

 Summary

 Functions

 assignment_name(node)

 Extracts the variable name from an Assignment node.

 command_name(node)

 Extracts the literal command name from a Command node.

 is_assignment(node)

 Returns true if node is an Assignment with the given variable name.

 is_assignment(node, name)

 is_command(node)

 Returns true if node is a Command with the given literal name.

 is_command(node, name)

 postwalk(node, fun)

 Bottom-up transformation using the Walkable protocol.

 prewalk(node, fun)

 Top-down transformation using the Walkable protocol.

 reduce(node, acc, fun)

 Reduces over all nodes in the tree without modifying it.

 walk_tree(node, acc, pre, post)

 Walks the AST with an accumulator, calling pre before descending
into children and post after.

 Functions

 assignment_name(node)

 (macro)

Extracts the variable name from an Assignment node.
Usable in guards and pattern match when clauses.
Examples
import Bash.AST

AST.reduce(script, [], fn
 node when is_assignment(node, "PATH") -> [:found | acc]
 _, acc -> acc
end)

 command_name(node)

 (macro)

Extracts the literal command name from a Command node.
Usable in guards and pattern match when clauses.
Examples
import Bash.AST

In a walker callback
AST.prewalk(script, fn
 node when command_name(node) == "rm" -> nil
 node -> node
end)

In a function head
def handle_command(node) when command_name(node) == "sudo" do
 # ...
end

 is_assignment(node)

 (macro)

Returns true if node is an Assignment with the given variable name.
Usable in guards and pattern match when clauses.

 is_assignment(node, name)

 (macro)

 is_command(node)

 (macro)

Returns true if node is a Command with the given literal name.
Usable in guards and pattern match when clauses.
Examples
import Bash.AST

AST.prewalk(script, fn
 node when is_command(node, "rm") -> nil
 node -> node
end)

 is_command(node, name)

 (macro)

 postwalk(node, fun)

 @spec postwalk(Bash.AST.Walkable.t(), (Bash.AST.Walkable.t() ->
 Bash.AST.Walkable.t() | nil)) ::
 Bash.AST.Walkable.t() | nil

Bottom-up transformation using the Walkable protocol.
Applies fun to each node after processing its children.
Return nil to remove a node from its parent list.

 prewalk(node, fun)

 @spec prewalk(Bash.AST.Walkable.t(), (Bash.AST.Walkable.t() ->
 Bash.AST.Walkable.t() | nil)) ::
 Bash.AST.Walkable.t() | nil

Top-down transformation using the Walkable protocol.
Applies fun to each node before descending into its children.
Return nil to remove a node from its parent list.

 reduce(node, acc, fun)

 @spec reduce(Bash.AST.Walkable.t(), acc, (Bash.AST.Walkable.t(), acc -> acc)) :: acc
when acc: term()

Reduces over all nodes in the tree without modifying it.
Visits each node depth-first (pre-order) and applies fun to
accumulate a result.

 walk_tree(node, acc, pre, post)

 @spec walk_tree(node, acc, (node, acc -> {node, acc}), (node, acc -> {node, acc})) ::
 {node, acc}
when node: Bash.AST.Walkable.t(), acc: term()

Walks the AST with an accumulator, calling pre before descending
into children and post after.
Both callbacks receive (node, acc) and must return {node, acc}.
Returning nil as the node removes it from parent lists.

Bash.AST.Arithmetic

Arithmetic expression for ((...)) constructs.
Examples
((x = 5))
%Arithmetic{
 operator: :assign,
 operands: [
 {:var, "x"},
 {:literal, 5}
]
}

((x + 5))
%Arithmetic{
 operator: :add,
 operands: [
 {:var, "x"},
 {:literal, 5}
]
}

((x > 5))
%Arithmetic{
 operator: :gt,
 operands: [
 {:var, "x"},
 {:literal, 5}
]
}

((x++))
%Arithmetic{
 operator: :post_increment,
 operands: [{:var, "x"}]
}

(((x + y) * z))
%Arithmetic{
 operator: :mul,
 operands: [
 %Arithmetic{operator: :add, operands: [{:var, "x"}, {:var, "y"}]},
 {:var, "z"}
]
}

 Summary

 Types

 operand()

 operator()

 t()

 Types

 operand()

 @type operand() :: {:var, String.t()} | {:literal, integer()} | t()

 operator()

 @type operator() ::
 :assign
 | :add_assign
 | :sub_assign
 | :mul_assign
 | :div_assign
 | :mod_assign
 | :add
 | :sub
 | :mul
 | :div
 | :mod
 | :pow
 | :pre_increment
 | :post_increment
 | :pre_decrement
 | :post_decrement
 | :eq
 | :ne
 | :lt
 | :le
 | :gt
 | :ge
 | :and
 | :or
 | :not
 | :bit_and
 | :bit_or
 | :bit_xor
 | :bit_not
 | :left_shift
 | :right_shift
 | :ternary

 t()

 @type t() :: %Bash.AST.Arithmetic{
 exit_code: 0..255 | nil,
 expression: term(),
 meta: Bash.AST.Meta.t(),
 operands: [operand()],
 operator: operator(),
 state_updates: map()
}

Bash.AST.ArrayAssignment

Array assignment statement.
Examples
Array literal: arr=(a b c)
%ArrayAssignment{
 name: "arr",
 elements: [%Word{...}, %Word{...}, %Word{...}],
 subscript: nil
}

Array element: arr[0]=value
%ArrayAssignment{
 name: "arr",
 elements: [%Word{...}],
 subscript: {:index, "0"}
}

All elements: arr[@]=value (expands to multiple assignments)
%ArrayAssignment{
 name: "arr",
 elements: [%Word{...}],
 subscript: :all_values
}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.ArrayAssignment{
 append: term(),
 elements: [Bash.AST.Word.t()],
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 name: String.t(),
 state_updates: map(),
 subscript: Bash.AST.Variable.subscript()
}

Bash.AST.Assignment

Variable assignment.
Examples
VAR=value
%Assignment{
 name: "VAR",
 value: %Word{parts: [{:literal, "value"}]}
}

export PATH=/usr/bin:$PATH
%Assignment{
 name: "PATH",
 value: %Word{...},
 export: true
}

local x=1 (in function)
%Assignment{
 name: "x",
 value: %Word{parts: [{:literal, "1"}]},
 local: true
}

 Summary

 Types

 t()

 Functions

 execute(ast, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.Assignment{
 append: boolean(),
 exit_code: 0..255 | nil,
 export: boolean(),
 local: boolean(),
 meta: Bash.AST.Meta.t(),
 name: String.t(),
 readonly: boolean(),
 state_updates: map(),
 value: Bash.AST.Word.t()
}

 Functions

 execute(ast, stdin, session_state)

Bash.AST.BraceExpand

Brace expansion AST node.
Represents brace expansion patterns like {a,b,c} or {1..10}.
Types
	:list - Comma-separated alternatives: {a,b,c}
	:range - Sequence generation: {1..10}, {a..z}, {1..10..2}

Examples
List: {a,b,c}
%BraceExpand{type: :list, items: ["a", "b", "c"]}

Numeric range: {1..5}
%BraceExpand{type: :range, range_start: "1", range_end: "5"}

Range with step: {1..10..2}
%BraceExpand{type: :range, range_start: "1", range_end: "10", step: 2}

Zero-padded: {01..05}
%BraceExpand{type: :range, range_start: "01", range_end: "05", zero_pad: 2}

 Summary

 Types

 t()

 word_part()

 Types

 t()

 @type t() :: %Bash.AST.BraceExpand{
 items: [[word_part()]] | nil,
 meta: Bash.AST.Meta.t() | nil,
 range_end: String.t() | nil,
 range_start: String.t() | nil,
 step: integer() | nil,
 type: :list | :range,
 zero_pad: non_neg_integer() | nil
}

 word_part()

 @type word_part() ::
 {:literal, String.t()}
 | {:brace_expand, t()}
 | {:variable, String.t()}
 | {:variable_braced, String.t(), keyword()}
 | {:command_subst, String.t()}
 | {:arith_expand, String.t()}
 | {:single_quoted, String.t()}
 | {:double_quoted, [word_part()]}

Bash.AST.Case

Case statement: pattern matching.
Examples
case $var in
pattern1) commands1 ;;
pattern2|pattern3) commands2 ;;
*) default ;;
esac
%Case{
 word: %Word{parts: [{:variable, "var"}]},
 cases: [
 {[%Word{parts: [{:literal, "pattern1"}]}], [...]},
 {[%Word{parts: [{:literal, "pattern2"}]},
 %Word{parts: [{:literal, "pattern3"}]}
], [...]},
 {[%Word{parts: [{:literal, "*"}]}], [...]}
]
}

 Summary

 Types

 case_clause()

 t()

 terminator()

 Functions

 execute(case, stdin, session_state)

 Types

 case_clause()

 @type case_clause() ::
 {patterns :: [Bash.AST.Word.t()], body :: [Bash.Statement.t()], terminator()}

 t()

 @type t() :: %Bash.AST.Case{
 cases: [case_clause()],
 exit_code: 0..255 | nil,
 matched_pattern_index: non_neg_integer() | nil,
 meta: Bash.AST.Meta.t(),
 state_updates: map(),
 word: Bash.AST.Word.t()
}

 terminator()

 @type terminator() :: :break | :fallthrough | :continue_matching

 Functions

 execute(case, stdin, session_state)

Bash.AST.Command

Simple command: name with arguments and optional redirections.
Examples
echo hello world
%Command{
 name: %Word{parts: [{:literal, "echo"}]},
 args: [
 %Word{parts: [{:literal, "hello"}]},
 %Word{parts: [{:literal, "world"}]}
]
}

VAR=value command arg
%Command{
 name: %Word{parts: [{:literal, "command"}]},
 args: [%Word{parts: [{:literal, "arg"}]}],
 env_assignments: [{"VAR", %Word{parts: [{:literal, "value"}]}}]
}

command < input.txt > output.txt
%Command{
 name: %Word{parts: [{:literal, "command"}]},
 redirects: [
 %Redirect{direction: :input, target: "input.txt"},
 %Redirect{direction: :output, target: "output.txt"}
]
}

 Summary

 Types

 t()

 Functions

 execute(ast, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.Command{
 args: [Bash.AST.Word.t()],
 env_assignments: [{String.t(), Bash.AST.Word.t()}],
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 name: Bash.AST.Word.t(),
 redirects: [Bash.AST.Redirect.t()],
 state_updates: map()
}

 Functions

 execute(ast, stdin, session_state)

Bash.AST.Comment

Comment for # ... constructs.
Examples
This is a comment
%Comment{
 text: " This is a comment"
}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.Comment{meta: Bash.AST.Meta.t(), text: String.t()}

Bash.AST.Compound

Compound statement: subshell or command group.
Examples
(cd /tmp && ls) - subshell
%Compound{
 kind: :subshell,
 statements: [...]
}

{ cd /tmp && ls; } - group (current shell)
%Compound{
 kind: :group,
 statements: [...]
}

cmd1; cmd2; cmd3 - sequential
%Compound{
 statements: [
 %Command{name: "cmd1", ...},
 %Command{name: "cmd2", ...}
]
}

cmd1 && cmd2 || cmd3 - operand
%Compound{
 statements: [
 %Command{name: "cmd1", ...},
 {:operator, :&&}
 %Command{name: "cmd2", ...},
 {:operator, :||}
 %Command{name: "cmd3", ...}
]
}

cmd1 & cmd2 & - operand
%Compound{
 statements: [
 %Command{name: "cmd1", ...},
 {:operator, :bg},
 %Command{name: "cmd2", ...},
 {:operator, :bg}
]
}

 Summary

 Types

 kind()

 t()

 Functions

 execute(compound, stdin, session_state)

 Types

 kind()

 @type kind() :: :subshell | :group | :operand | :sequential

 t()

 @type t() :: %Bash.AST.Compound{
 exit_code: 0..255 | nil,
 kind: kind(),
 meta: Bash.AST.Meta.t(),
 redirects: [Redirect.t()],
 state_updates: map(),
 statements: [Statement.t()]
}

 Functions

 execute(compound, stdin, session_state)

Bash.AST.Coproc

Coproc AST node.
Represents coproc [NAME] command where command can be simple or compound.
When a NAME is provided (only valid with compound commands in real bash),
the coproc array variable and PID variable use that name. Otherwise,
the default name "COPROC" is used.
Simple commands are executed via ExCmd.Process (external OS process).
Compound commands are executed within the Elixir bash interpreter in a
spawned BEAM process with message-passing I/O.
Examples
coproc cat
%Coproc{body: %Command{name: "cat"}}

coproc MYPROC { cat; }
%Coproc{name: "MYPROC", body: %Compound{kind: :group, ...}}

 Summary

 Types

 t()

 Functions

 execute(ast, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.Coproc{
 body: Bash.Statement.t(),
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 name: String.t(),
 state_updates: map()
}

 Functions

 execute(ast, stdin, session_state)

Bash.AST.ForLoop

for NAME [in WORDS ...] ; do COMMANDS; done
Execute commands for each member in a list.
The for loop executes a sequence of commands for each member in a list of items. If in WORDS ...; is not present, then in "$@" is assumed. For each element in WORDS, NAME is set to that element, and the COMMANDS are executed.
Exit Status:
Returns the status of the last command executed.
Examples
for var in one two three; do echo $var; done
%ForLoop{
 variable: "var",
 items: [
 %Word{parts: [{:literal, "one"}]},
 %Word{parts: [{:literal, "two"}]},
 %Word{parts: [{:literal, "three"}]}
],
 body: [
 %Command{name: "echo", args: [%Word{parts: [{:variable, "var"}]}]}
]
}

for file in *.txt; do process $file; done
%ForLoop{
 variable: "file",
 items: [%Word{parts: [{:glob, "*.txt"}]}],
 body: [...]
}

 Summary

 Types

 t()

 Functions

 execute(ast, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.ForLoop{
 body: [Bash.Statement.t()],
 condition: String.t() | nil,
 exit_code: 0..255 | nil,
 init: String.t() | nil,
 items: [Bash.AST.Word.t()],
 iteration_count: non_neg_integer() | nil,
 meta: Bash.AST.Meta.t(),
 state_updates: map(),
 update: String.t() | nil,
 variable: String.t() | nil
}

 Functions

 execute(ast, stdin, session_state)

Bash.AST.Function

Function definition.
Examples
function name { body; }
%Function{
 name: "name",
 body: [...]
}

name() { body; }
%Function{
 name: "name",
 body: [...]
}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.Function{
 body: Bash.Statement.t(),
 exit_code: 0..255 | nil,
 exported: boolean(),
 meta: Bash.AST.Meta.t(),
 name: String.t(),
 state_updates: map()
}

Bash.AST.If

Conditional statement: if/elif/else/fi.
Examples
if [-f file]; then echo exists; fi
%If{
 condition: %Command{name: "test", args: ["-f", "file"]},
 body: [%Command{name: "echo", args: ["exists"]}],
 elif_clauses: [],
 else_body: nil
}

if cmd1; then body1; elif cmd2; then body2; else body3; fi
%If{
 condition: %Command{name: "cmd1", ...},
 body: [...],
 elif_clauses: [
 {%Command{name: "cmd2", ...}, [...]}
],
 else_body: [...]
}

 Summary

 Types

 t()

 Functions

 execute(if, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.If{
 body: [Bash.Statement.t()],
 condition: Bash.Statement.t(),
 elif_clauses: [{Bash.Statement.t(), [Bash.Statement.t()]}],
 else_body: [Bash.Statement.t()] | nil,
 executed_branch: :then | :elif | :else | nil,
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 state_updates: map()
}

 Functions

 execute(if, stdin, session_state)

Bash.AST.Meta

Source location metadata attached to every AST node.
Used for error reporting, debugging, and execution tracking.
Fields
Source Location
	line - Line number in source (1-indexed)
	column - Column number in source (1-indexed)
	source_range - Character range in source (optional)

Evaluation Tracking (nil before execution)
	evaluated - true if node was executed, false if skipped, nil if not yet run
	duration_ms - Execution time in milliseconds
	started_at - DateTime when execution started
	completed_at - DateTime when execution completed

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.Meta{
 column: pos_integer(),
 completed_at: DateTime.t() | nil,
 duration_ms: non_neg_integer() | nil,
 evaluated: boolean() | nil,
 line: pos_integer(),
 source_range: Range.t() | nil,
 started_at: DateTime.t() | nil
}

Bash.AST.Pipeline

Pipeline: sequence of commands connected by pipes (|).
Examples
ls | grep txt | wc -l
%Pipeline{
 commands: [
 %Command{name: "ls", ...},
 %Command{name: "grep", args: ["txt"], ...},
 %Command{name: "wc", args: ["-l"], ...}
]
}

! grep pattern file
%Pipeline{
 commands: [%Command{name: "grep", ...}],
 negate: true
}

 Summary

 Types

 t()

 Functions

 execute(pipeline, stdin, session_state, opts \\ [])

 Types

 t()

 @type t() :: %Bash.AST.Pipeline{
 commands: [Bash.AST.Command.t()],
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 negate: boolean(),
 pipestatus: [0..255] | nil,
 state_updates: map()
}

 Functions

 execute(pipeline, stdin, session_state, opts \\ [])

Bash.AST.Redirect

I/O redirection.
Examples
< input.txt
%Redirect{
 direction: :input,
 fd: 0,
 target: {:file, %Word{parts: [{:literal, "input.txt"}]}}
}

> output.txt
%Redirect{
 direction: :output,
 fd: 1,
 target: {:file, %Word{parts: [{:literal, "output.txt"}]}}
}

>> append.txt
%Redirect{
 direction: :append,
 fd: 1,
 target: {:file, %Word{parts: [{:literal, "append.txt"}]}}
}

2>&1 (redirect stderr to stdout)
%Redirect{
 direction: :duplicate,
 fd: 2,
 target: {:fd, 1}
}

&> all_output.txt (redirect both stdout and stderr)
%Redirect{
 direction: :output,
 fd: :both,
 target: {:file, %Word{parts: [{:literal, "all_output.txt"}]}}
}

<<EOF (heredoc)
content
EOF
%Redirect{
 direction: :heredoc,
 fd: 0,
 target: {:heredoc, %Word{parts: [{:literal, "content\n"}]}, "EOF", false}
}

<<< "string" (herestring)
%Redirect{
 direction: :herestring,
 fd: 0,
 target: {:word, %Word{parts: [{:literal, "string"}]}}
}

 Summary

 Types

 direction()

 t()

 target()

 Types

 direction()

 @type direction() :: :input | :output | :append | :duplicate | :heredoc | :herestring

 t()

 @type t() :: %Bash.AST.Redirect{
 direction: direction(),
 fd: integer() | :both | {:var, String.t()},
 meta: Bash.AST.Meta.t(),
 target: target()
}

 target()

 @type target() ::
 {:file, Bash.AST.Word.t()}
 | {:fd, integer()}
 | {:heredoc, content :: Bash.AST.Word.t(), delimiter :: String.t(),
 strip_tabs :: boolean()}
 | {:word, Bash.AST.Word.t()}

Bash.AST.RegexPattern

Regex pattern for use with the =~ operator in [[]] test expressions.
Unlike regular words, regex patterns preserve metacharacters like [,], (,),
{, }, |, *, +, ?, ^, $, and . as literal regex syntax rather than
interpreting them as shell glob patterns or operators.
Examples
[["hello123" =~ [0-9]+]]
%RegexPattern{
 parts: [literal: "[0-9]+"]
}

[["$str" =~ ^${prefix}[0-9]+$]]
%RegexPattern{
 parts: [
 {:literal, "^"},
 {:variable, %AST.Variable{name: "prefix"}},
 {:literal, "[0-9]+$"}
]
}
BASH_REMATCH
When a regex pattern matches, the BASH_REMATCH array is populated:
	BASH_REMATCH[0] contains the entire match
	BASH_REMATCH[1..n] contain capture group matches

When the pattern does not match, BASH_REMATCH is unset.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.RegexPattern{
 meta: Bash.AST.Meta.t(),
 parts: [Bash.AST.Word.part()]
}

Bash.AST.TestCommand

Test command for [...] conditional constructs.
This represents the POSIX test command using bracket notation.
The args are passed directly to the test builtin for evaluation.
Examples
[-f file]
%TestCommand{
 args: ["-f", "file"]
}

["$x" -eq 5]
%TestCommand{
 args: [%Word{...}, "-eq", "5"]
}

 Summary

 Types

 t()

 Functions

 execute(test_command, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.TestCommand{
 args: [Bash.AST.Word.t() | String.t()],
 exit_code: 0..255 | nil,
 meta: Bash.AST.Meta.t(),
 state_updates: map()
}

 Functions

 execute(test_command, stdin, session_state)

Bash.AST.TestExpression

Test expression for [[...]] conditional constructs.
This represents bash's extended test expression using double bracket notation.
The expression tokens are passed directly to the test expression builtin for evaluation.
Examples
[[-f file]]
%TestExpression{
 expression: ["-f", "file"]
}

[[$x -eq 5]]
%TestExpression{
 expression: [%Word{...}, "-eq", "5"]
}

[[-f file1 && -f file2]]
%TestExpression{
 expression: ["-f", "file1", "&&", "-f", "file2"]
}
Expressions are composed of the same primaries used
by the test builtin, and may be combined using the following operators:
	(EXPRESSION) - Returns the value of EXPRESSION
	! EXPRESSION - True if EXPRESSION is false; else false
	EXPR1 && EXPR2 - True if both EXPR1 and EXPR2 are true; else false
	EXPR1 || EXPR2 - True if either EXPR1 or EXPR2 is true; else false

When the == and != operators are used, the string to the right of
the operator is used as a pattern and pattern matching is performed.
When the =~ operator is used, the string to the right of the operator
is matched as a regular expression.
The && and || operators do not evaluate EXPR2 if EXPR1 is sufficient to
determine the expression's value.
Exit Status:
0 or 1 depending on value of EXPRESSION.
Operator precedence: ! > && > ||
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/test.def?h=bash-5.3

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.AST.TestExpression{
 exit_code: 0..255 | nil,
 expression: [Bash.AST.Word.t() | String.t()],
 meta: Bash.AST.Meta.t(),
 state_updates: map()
}

Bash.AST.Variable

Variable reference with optional parameter expansion operators.
Examples
$VAR or ${VAR}
%Variable{name: "VAR", expansion: nil}

${VAR:-default}
%Variable{
 name: "VAR",
 expansion: {:default, %Word{parts: [{:literal, "default"}]}}
}

${VAR:=default}
%Variable{
 name: "VAR",
 expansion: {:assign_default, %Word{...}}
}

${VAR:?error message}
%Variable{
 name: "VAR",
 expansion: {:error, %Word{...}}
}

${VAR:+alternate}
%Variable{
 name: "VAR",
 expansion: {:alternate, %Word{...}}
}

${#VAR}
%Variable{name: "VAR", expansion: {:length}}

${VAR:offset:length}
%Variable{
 name: "VAR",
 expansion: {:substring, 0, 10}
}

${VAR#pattern}
%Variable{
 name: "VAR",
 expansion: {:remove_prefix, %Word{...}, :shortest}
}

${VAR##pattern}
%Variable{
 name: "VAR",
 expansion: {:remove_prefix, %Word{...}, :longest}
}

${VAR%pattern}
%Variable{
 name: "VAR",
 expansion: {:remove_suffix, %Word{...}, :shortest}
}

${VAR%%pattern}
%Variable{
 name: "VAR",
 expansion: {:remove_suffix, %Word{...}, :longest}
}

${VAR/pattern/replacement}
%Variable{
 name: "VAR",
 expansion: {:substitute, %Word{...}, %Word{...}, :first}
}

${VAR//pattern/replacement}
%Variable{
 name: "VAR",
 expansion: {:substitute, %Word{...}, %Word{...}, :all}
}

 Summary

 Types

 expansion()

 subscript()

 t()

 Types

 expansion()

 @type expansion() ::
 nil
 | {:default, Bash.AST.Word.t()}
 | {:assign_default, Bash.AST.Word.t()}
 | {:error, Bash.AST.Word.t()}
 | {:alternate, Bash.AST.Word.t()}
 | {:length}
 | {:substring, integer(), integer() | nil}
 | {:remove_prefix, Bash.AST.Word.t(), :shortest | :longest}
 | {:remove_suffix, Bash.AST.Word.t(), :shortest | :longest}
 | {:substitute, pattern :: Bash.AST.Word.t(),
 replacement :: Bash.AST.Word.t(), :first | :all}
 | {:prefix_names, :star | :at}
 | {:transform,
 :quote
 | :escape
 | :prompt
 | :assignment
 | :quoted_keys
 | :keys
 | :attributes
 | :upper
 | :lower}

 subscript()

 @type subscript() :: nil | {:index, String.t()} | :all_values | :all_star

 t()

 @type t() :: %Bash.AST.Variable{
 expansion: expansion(),
 meta: Bash.AST.Meta.t(),
 name: String.t(),
 subscript: subscript()
}

Bash.AST.Walkable protocol

Protocol for traversing and transforming AST nodes.
Each AST node implements this protocol to expose its child statement nodes
and allow reconstruction with updated children. This powers the tree
traversal functions in Bash.AST.
Statement lists in the AST may contain interleaved separator tuples like
{:separator, "\n"} or {:operator, :and}. The protocol implementations
filter these out when returning children and splice them back in during
reconstruction.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 children(node)

 Returns child statement nodes as a flat list.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 children(node)

 @spec children(t()) :: [Bash.Statement.t()]

Returns child statement nodes as a flat list.

Bash.AST.WhileLoop

While or until loop.
Examples
while [condition]; do body; done
%WhileLoop{
 condition: %Command{name: "test", ...},
 body: [...],
 until: false
}

until [condition]; do body; done
%WhileLoop{
 condition: %Command{name: "test", ...},
 body: [...],
 until: true
}

 Summary

 Types

 t()

 Functions

 execute(ast, stdin, session_state)

 Types

 t()

 @type t() :: %Bash.AST.WhileLoop{
 body: [Bash.Statement.t()],
 condition: Bash.Statement.t(),
 exit_code: 0..255 | nil,
 iteration_count: non_neg_integer() | nil,
 meta: Bash.AST.Meta.t(),
 redirects: [Bash.AST.Redirect.t()],
 state_updates: map(),
 until: boolean()
}

 Functions

 execute(ast, stdin, session_state)

Bash.AST.Word

Word: expandable text that may contain variables, command substitutions, etc.
A word is composed of parts that are either literals or expansions.
Quoting affects how expansions are performed.
Examples
hello (literal)
%Word{
 parts: [{:literal, "hello"}],
 quoted: :none
}

$USER (variable)
%Word{
 parts: [{:variable, %Variable{name: "USER"}}],
 quoted: :none
}

"hello $USER" (double-quoted with expansion)
%Word{
 parts: [
 {:literal, "hello "},
 {:variable, %Variable{name: "USER"}}
],
 quoted: :double
}

'hello $USER' (single-quoted, no expansion)
%Word{
 parts: [{:literal, "hello $USER"}],
 quoted: :single
}

$(echo test) (command substitution)
%Word{
 parts: [
 {:command_subst, [%Command{name: "echo", args: ["test"]}]}
],
 quoted: :none
}

$((1 + 2)) (arithmetic expansion)
%Word{
 parts: [{:arith_expand, "1 + 2"}],
 quoted: :none
}

*.txt (glob pattern)
%Word{
 parts: [{:glob, "*.txt"}],
 quoted: :none
}

 Summary

 Types

 part()

 quote_type()

 t()

 Types

 part()

 @type part() ::
 {:literal, String.t()}
 | {:variable, Variable.t()}
 | {:command_subst, [Statement.t()]}
 | {:process_subst_in, [Statement.t()]}
 | {:process_subst_out, [Statement.t()]}
 | {:arith_expand, String.t()}
 | {:glob, String.t()}
 | {:brace_expand, BraceExpand.t()}

 quote_type()

 @type quote_type() :: :none | :single | :double

 t()

 @type t() :: %Bash.AST.Word{
 meta: Bash.AST.Meta.t(),
 parts: [part()],
 quoted: quote_type()
}

Bash.Statement

Type definition for executable Bash statements.
A statement is any top-level executable construct that can appear
in a script or command list.

 Summary

 Types

 t()

 Types

 t()

 @type t() ::
 Bash.AST.Command.t()
 | Bash.AST.Pipeline.t()
 | Bash.AST.Assignment.t()
 | Bash.AST.If.t()
 | Bash.AST.ForLoop.t()
 | Bash.AST.Comment.t()
 | Bash.AST.TestCommand.t()
 | Bash.AST.TestExpression.t()
 | Bash.AST.WhileLoop.t()
 | Bash.AST.Case.t()
 | Bash.AST.Function.t()
 | Bash.AST.Compound.t()
 | Bash.AST.Coproc.t()

Bash.Arithmetic

Evaluates bash arithmetic expressions.
Supports the full range of bash arithmetic operators:
	Arithmetic: + - * / % **
	Comparison: < > <= >= == !=
	Logical: && || !
	Bitwise: & | ^ ~ << >>

	Assignment: = += -= *= /= %= <<= >>= &= ^= |=
	Increment/decrement: ++ --
	Ternary: ?:
	Parentheses for grouping

Variable references work without $ prefix (e.g., x + 1 where x is a variable).
Examples
iex> Arithmetic.evaluate("1 + 2", %{})
{:ok, 3, %{}}

iex> Arithmetic.evaluate("x + 1", %{"x" => "5"})
{:ok, 6, %{"x" => "5"}}

iex> Arithmetic.evaluate("x = 5", %{})
{:ok, 5, %{"x" => "5"}}
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/let.def?h=bash-5.3

Bash.CommandPort

Executes external commands using ExCmd.
ExCmd provides proper stdin/stdout/stderr separation with backpressure,
unlike native Erlang ports which cannot close stdin separately from stdout.
Streaming
By default, output is accumulated for backwards compatibility. To stream
output without accumulation, pass a :sink option:
Streaming to callback
sink = Bash.Sink.Passthrough.new(fn chunk -> IO.inspect(chunk) end)
CommandPort.execute("cat", ["bigfile.txt"], sink: sink)

Streaming to file
{sink, close} = Bash.Sink.File.new("/tmp/output.txt")
CommandPort.execute("cat", ["bigfile.txt"], sink: sink)
close.()

Bash.CommandResult

Represents the result of executing a command.
Output is streamed through sinks during execution rather than accumulated here.
Use OutputCollector to capture output when needed for testing.
Fields
	command - The command string that was executed
	exit_code - The exit code (0 for success, non-zero for failure)
	error - Error type if command failed (:command_not_found, :timeout, etc.)

 Summary

 Types

 error_type()

 t()

 Types

 error_type()

 @type error_type() :: :command_not_found | :command_failed | :timeout | term()

 t()

 @type t() :: %Bash.CommandResult{
 command: String.t(),
 error: error_type() | nil,
 exit_code: non_neg_integer() | nil
}

Bash.Execution

Represents a single command execution with its own I/O streams.
Each command in a session gets its own Execution struct with separate
StringIO devices for stdout and stderr. This enables:
	Per-command output inspection after execution
	Pipeline wiring (previous stdout becomes next stdin)
	Merged enumeration across all executions

Example
Create execution for a command
{:ok, exec} = Execution.new("echo hello")

Write to its streams
IO.puts(exec.stdout, "hello")

Get output after completion
Execution.stdout_contents(exec) # => "hello\n"

 Summary

 Types

 t()

 Functions

 close(execution)

 Closes the StringIO devices for this execution.

 complete(exec, exit_code)

 Marks the execution as completed with the given exit code.

 new(command)

 Creates a new Execution with fresh StringIO streams.

 stderr_contents(execution)

 Gets the stderr contents from the execution.

 stdout_contents(execution)

 Gets the stdout contents from the execution.

 Types

 t()

 @type t() :: %Bash.Execution{
 command: String.t(),
 completed_at: DateTime.t() | nil,
 exit_code: 0..255 | nil,
 started_at: DateTime.t(),
 stderr: pid(),
 stdout: pid()
}

 Functions

 close(execution)

 @spec close(t()) :: :ok

Closes the StringIO devices for this execution.
Should be called when the execution is no longer needed to free resources.

 complete(exec, exit_code)

 @spec complete(t(), 0..255) :: t()

Marks the execution as completed with the given exit code.

 new(command)

 @spec new(String.t()) :: {:ok, t()} | {:error, term()}

Creates a new Execution with fresh StringIO streams.
Examples
{:ok, exec} = Execution.new("echo hello")
IO.write(exec.stdout, "hello\n")

 stderr_contents(execution)

 @spec stderr_contents(t()) :: String.t()

Gets the stderr contents from the execution.
Returns the accumulated output written to stderr.

 stdout_contents(execution)

 @spec stdout_contents(t()) :: String.t()

Gets the stdout contents from the execution.
Returns the accumulated output written to stdout.

Bash.ExecutionResult protocol

Protocol for extracting execution results from various result types.
This protocol provides a unified interface for both:
	CommandResult structs (which still have output for external commands)
	AST nodes with embedded execution results (output goes to sinks)

Note: stdout/stderr/all_output functions return results from the collector
for Script types, and empty strings for AST nodes since output goes to sinks.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 all_output(result)

 Get all output as a string

 exit_code(result)

 Get exit code

 stderr(result)

 Get stderr output as a string

 stdout(result)

 Get stdout output as a string

 success?(result)

 Check if execution was successful (exit code 0)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 all_output(result)

 @spec all_output(t()) :: String.t()

Get all output as a string

 exit_code(result)

 @spec exit_code(t()) :: non_neg_integer() | nil

Get exit code

 stderr(result)

 @spec stderr(t()) :: String.t()

Get stderr output as a string

 stdout(result)

 @spec stdout(t()) :: String.t()

Get stdout output as a string

 success?(result)

 @spec success?(t()) :: boolean()

Check if execution was successful (exit code 0)

Bash.Executor

Executes parsed Bash AST nodes within session context.
This module dispatches AST node execution to the appropriate module's
execute/3 function, handling session state like environment variables
and working directory.

Bash.OrphanSupervisor

GenServer for managing orphaned/disowned jobs.
When a job is disowned via the disown builtin, it is detached from
the session and monitored by this supervisor. This ensures the job continues
running even after the session terminates.
Unlike session-supervised jobs, orphaned jobs:
	Do not notify any session on completion
	Continue running until they exit naturally or are killed
	Are not affected by session termination
	Are monitored by this supervisor for tracking purposes

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(init_arg)

Bash.Pipe

Bidirectional OS pipe backed by a POSIX FIFO (named pipe).
Provides streaming, zero-copy data transfer between processes using
real OS pipes. Data written to the pipe is available for reading
without accumulation in BEAM memory — the kernel manages the buffer.
Uses mkfifo to create a named pipe in a temporary directory,
then opens read and write ends as regular file devices.
sequenceDiagram
 participant Writer
 participant FIFO as OS FIFO (kernel buffer)
 participant Reader

 Writer->>FIFO: IO.binwrite(write_end, data)
 FIFO-->>Reader: IO.binread(read_end, :line)
 Writer->>FIFO: File.close(write_end)
 FIFO-->>Reader: :eof

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.Pipe{path: Path.t(), read_end: pid() | nil, write_end: pid() | nil}

Bash.ProcessSubst

GenServer managing process substitution execution.
Process substitution (<(command) and >(command)) creates a named pipe (FIFO)
and runs a background command that reads from or writes to it. The FIFO path
is returned and can be used as a file argument to other commands.
Input Process Substitution
Creates a FIFO where the command's stdout is written. The parent command
reads from this FIFO as if it were a file.
diff <(sort file1) <(sort file2)
Output Process Substitution
Creates a FIFO where the parent command writes. The substituted command
reads from this FIFO as its stdin.
tee >(gzip > file.gz) >(bzip2 > file.bz2)
Lifecycle
	Created via start_link/1 with command AST and session state
	Creates FIFO in session's temp directory
	Spawns background process via ExCmd
	Returns FIFO path synchronously
	Background process runs until command completes or FIFO is closed
	Cleanup happens on GenServer stop (FIFO removed)

 Summary

 Types

 direction()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 direction()

 @type direction() :: :input | :output

 t()

 @type t() :: %Bash.ProcessSubst{
 command_ast: term(),
 direction: direction(),
 fifo_path: String.t() | nil,
 os_pid: pos_integer() | nil,
 session_state: map(),
 worker_pid: pid() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

Bash.Sink

Output sink functions for streaming command output.
A sink is a function that receives {:stdout, binary} or {:stderr, binary} chunks.
Sinks enable streaming output without accumulating in memory.
Sink Types
	collector/1 - Writes to an OutputCollector GenServer (default for sessions)
	stream/2 - Writes to a File.Stream or any Collectable
	passthrough/1 - Forwards chunks to a callback function
	file/2 - Writes directly to a file path
	null/0 - Discards all output (for /dev/null)

Builtin Helpers
	write/3 - Write to stdout/stderr sink from session_state
	write_stdout/2 - Write to stdout sink
	write_stderr/2 - Write to stderr sink

Usage
Create a collector-backed sink
{:ok, collector} = OutputCollector.start_link()
sink = Sink.collector(collector)
sink.({:stdout, "hello"})

Create a File.Stream sink
stream = File.stream!("/tmp/output.txt")
sink = Sink.stream(stream)
sink.({:stdout, "hello"})

In builtins, use the helpers:
Sink.write_stdout(session_state, "output\n")
Sink.write_stderr(session_state, "error\n")

 Summary

 Types

 chunk()

 t()

 Functions

 collector(pid)

 Creates a sink that writes to an OutputCollector GenServer.

 write_stderr(session_state, data)

 Write data to stderr sink if available.

 write_stdout(session_state, data)

 Write data to stdout sink if available.

 Types

 chunk()

 @type chunk() :: {:stdout, binary()} | {:stderr, binary()}

 t()

 @type t() :: (chunk() -> :ok | {:error, term()})

 Functions

 collector(pid)

 @spec collector(pid()) :: t()

Creates a sink that writes to an OutputCollector GenServer.
This is the default sink type used by sessions. Output is accumulated
as iodata in the collector and retrieved at the end of execution.
Examples
{:ok, collector} = OutputCollector.start_link()
sink = Sink.collector(collector)
sink.({:stdout, "hello\n"})
sink.({:stderr, "warning\n"})

Later, retrieve output
{stdout, stderr} = OutputCollector.output(collector)

 write_stderr(session_state, data)

 @spec write_stderr(map(), binary()) :: :ok | :no_sink

Write data to stderr sink if available.
Returns :ok if written to sink, :no_sink if no sink configured.
Examples
case Sink.write_stderr(session_state, "error\n") do
 :ok -> {:ok, %CommandResult{exit_code: 0}}
 :no_sink -> :no_sink
end

 write_stdout(session_state, data)

 @spec write_stdout(map(), binary()) :: :ok | :no_sink

Write data to stdout sink if available.
Returns :ok if written to sink, :no_sink if no sink configured.
Builtins should check the return value to decide whether to include
output in the CommandResult.
Examples
case Sink.write_stdout(session_state, "hello\n") do
 :ok -> {:ok, %CommandResult{exit_code: 0}}
 :no_sink -> :no_sink
end

Bash.Variable

Bash variable with attributes and value.
Supports scalar values, indexed arrays, and associative arrays.
Working with Sessions
You can retrieve variables directly from a session:
Variable.get(session, "myvar") # Get scalar variable
Variable.get(session, "myarray", 0) # Get array element at index 0
Variable.get(session, "myassoc", "key") # Get associative array element
Or work with Variable structs directly:
var = Variable.new("hello")
Variable.get(var, nil) # => "hello"

 Summary

 Types

 array_type()

 attributes()

 t()

 value()

 Functions

 all_keys(arg1)

 Get all keys for ${!arr[@]} expansion

 all_values(variable)

 Get all values for ${arr[@]} expansion

 array?(arg1)

 Returns true if the variable is an array (indexed or associative).

 get(session, var_name, index_or_key)

 is_associative_array?(arg1)

 Returns true if the variable is an associative array.

 length(variable)

 Get length for ${#arr[@]} or ${#var}

 nameref?(arg1)

 Returns true if the variable is a nameref.

 nameref_target(arg1)

 Get the nameref target variable name, or nil if not a nameref.

 new(value \\ "")

 Create scalar variable

 new_associative_array(values \\ %{})

 Create associative array

 new_indexed_array(values \\ %{})

 Create indexed array

 new_nameref(target_name)

 Create a nameref variable that references another variable by name

 readonly?(arg1)

 Returns true if the variable is marked readonly.

 set(var, value, idx)

 Set value at index, returns new Variable

 Types

 array_type()

 @type array_type() :: :indexed | :associative | nil

 attributes()

 @type attributes() :: %{
 readonly: boolean(),
 export: boolean(),
 integer: boolean(),
 array_type: array_type(),
 nameref: String.t() | nil
}

 t()

 @type t() :: %Bash.Variable{attributes: attributes(), value: value()}

 value()

 @type value() ::
 String.t()
 | %{required(integer()) => String.t()}
 | %{required(String.t()) => String.t()}

 Functions

 all_keys(arg1)

Get all keys for ${!arr[@]} expansion

 all_values(variable)

Get all values for ${arr[@]} expansion

 array?(arg1)

Returns true if the variable is an array (indexed or associative).

 get(session, var_name, index_or_key)

 is_associative_array?(arg1)

Returns true if the variable is an associative array.

 length(variable)

Get length for ${#arr[@]} or ${#var}

 nameref?(arg1)

Returns true if the variable is a nameref.

 nameref_target(arg1)

Get the nameref target variable name, or nil if not a nameref.

 new(value \\ "")

Create scalar variable

 new_associative_array(values \\ %{})

Create associative array

 new_indexed_array(values \\ %{})

Create indexed array

 new_nameref(target_name)

Create a nameref variable that references another variable by name

 readonly?(arg1)

Returns true if the variable is marked readonly.

 set(var, value, idx)

Set value at index, returns new Variable

Bash.Job

Represents a background job in a Bash session.
Each job has:
	A job number (1-based, assigned by Session)
	An OS process ID (from ExCmd)
	Status tracking (running, stopped, done)

Job States
	:running - Process is actively executing
	:stopped - Process has been suspended (SIGSTOP)
	:done - Process has completed (exit code available)

Output
Job output flows through sinks to the session's OutputCollector,
not accumulated in the Job struct itself.

 Summary

 Types

 status()

 t()

 Types

 status()

 @type status() :: :running | :stopped | :done

 t()

 @type t() :: %Bash.Job{
 command: String.t(),
 completed_at: DateTime.t() | nil,
 erlang_pid: pid() | nil,
 exit_code: integer() | nil,
 job_number: pos_integer(),
 os_pid: pos_integer() | nil,
 started_at: DateTime.t(),
 status: status()
}

Bash.JobProcess

GenServer wrapping a background OS process.
Each background job is managed by a JobProcess GenServer which:
	Starts and monitors the OS process via ExCmd
	Accumulates stdout/stderr output preserving order
	Notifies the Session on status changes (done, stopped)
	Supports foregrounding (blocks caller until completion)
	Handles signals (SIGSTOP, SIGCONT, SIGTERM, etc.)

Lifecycle
	Started by Session via start_link/1
	Spawns OS process via ExCmd
	Spawns reader tasks for stdout/stderr that send messages back
	On process exit, notifies Session and transitions to :done
	Can be foregrounded (caller blocks until done)
	Can receive signals (kill, stop, continue)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.JobProcess{
 await_start_from: term(),
 command_string: String.t(),
 env: [{String.t(), String.t()}],
 excmd_process: pid() | nil,
 foreground_from: GenServer.from() | nil,
 job: Bash.Job.t(),
 last_signal: term(),
 os_pid: pos_integer() | nil,
 output_collector: term(),
 session_pid: pid(),
 stderr_reader: pid() | nil,
 stderr_sink: term(),
 stdout_reader: pid() | nil,
 stdout_sink: term(),
 working_dir: String.t()
}

Bash.Builtin

Central registry for Bash builtin commands and reserved words.
This module provides:
	List of reserved words (keywords)
	List of all standard bash builtins
	Map of implemented builtins to their modules
	defbash macro for implementing builtins with streaming I/O

Reference: https://cgit.git.savannah.gnu.org/plain/bash.git/tree/builtins?h=bash-5.3
Implementing Builtins with defbash
Use use Bash.Builtin and the defbash macro to implement builtins
with automatic streaming I/O through sinks:
defmodule Bash.Builtin.Echo do
 use Bash.Builtin

 defbash execute(args, state) do
 text = Enum.join(args, " ")
 puts(text)
 :ok
 end
end
I/O Functions
Inside defbash, the following functions are available:
	puts(message) - Write to stdout with newline
	write(data) - Write raw data to stdout
	error(message) - Write to stderr with newline
	gets() - Read a line from stdin
	read(:all) - Read all stdin

State Updates
Use update_state/1 to request state changes:
defbash execute(args, state) do
 update_state(working_dir: "/new/path", env: %{"FOO" => "bar"})
 :ok
end
Return Values
	:ok - Exit code 0
	{:ok, n} - Exit code n
	{:error, message} - Exit code 1, message to stderr

 Summary

 Functions

 __using__(opts)

 Sets up a module as a builtin implementation with streaming I/O.

 all_builtins()

 Returns the list of all bash builtins (implemented and unimplemented).

 builtin?(name)

 Check if a name is a builtin (implemented or not).

 builtin_modules()

 Returns the map of implemented builtins to their module implementations.

 defbash(arg, list)

 Define a builtin's execute function with streaming I/O support.

 get_module(name)

 Get the module for a builtin, if implemented.

 implemented?(name)

 Check if a builtin is implemented.

 implemented_builtins()

 Returns the list of implemented builtin names.

 reserved_word?(name)

 Check if a name is a reserved word.

 reserved_words()

 Returns the list of bash reserved words.

 Functions

 __using__(opts)

 (macro)

Sets up a module as a builtin implementation with streaming I/O.
Example
defmodule Bash.Builtin.MyBuiltin do
 use Bash.Builtin

 defbash execute(args, state) do
 puts("Hello from builtin!")
 :ok
 end
end

 all_builtins()

Returns the list of all bash builtins (implemented and unimplemented).

 builtin?(name)

Check if a name is a builtin (implemented or not).

 builtin_modules()

Returns the map of implemented builtins to their module implementations.

 defbash(arg, list)

 (macro)

Define a builtin's execute function with streaming I/O support.
The function receives:
	args - List of string arguments
	state - The session state map (with sinks, variables, etc.)

Inside the body, use:
	puts/1 - Write line to stdout
	write/1 - Write raw to stdout
	error/1 - Write line to stderr
	gets/0 - Read line from stdin
	read/1 - Read from stdin
	update_state/1 - Request state changes

Return values:
	:ok - Success, exit code 0
	{:ok, n} - Success, exit code n
	{:error, message} - Failure, writes message to stderr

 get_module(name)

Get the module for a builtin, if implemented.

 implemented?(name)

Check if a builtin is implemented.

 implemented_builtins()

Returns the list of implemented builtin names.

 reserved_word?(name)

Check if a name is a reserved word.

 reserved_words()

Returns the list of bash reserved words.

Bash.Builtin.Alias

alias [-p] [name[=value] ...]
alias with no arguments or with the -p option prints the list of aliases
in the form alias NAME=VALUE on standard output. When arguments are
supplied, an alias is defined for each NAME whose VALUE is given.
A trailing space in VALUE causes the next word to be checked for alias
substitution when the alias is expanded.
Exit Status:
Returns success (0) unless a NAME is supplied for which no alias has been
defined, in which case it returns failure (1).
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/alias.def?h=bash-5.3

Bash.Builtin.Bg

bg [job_spec ...]
Place each JOB_SPEC in the background, as if it had been started with &.
If JOB_SPEC is not present, the shell's notion of the current job is used.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/fg_bg.def?h=bash-5.3

Bash.Builtin.Break

break [n]
Exit from within a FOR, WHILE or UNTIL loop. If N is specified, break N levels.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/break.def?h=bash-5.3

Bash.Builtin.Builtin

builtin [shell-builtin [arg ...]]
Execute the specified shell builtin, passing it args, and return its exit status.
This is useful when you wish to define a shell function with the same name as a
shell builtin, retaining the functionality of the builtin within the function.
The return status is non-zero if shell-builtin is not a shell builtin command.
Exit Status:
Returns the exit status of SHELL-BUILTIN, or false if SHELL-BUILTIN is not a
shell builtin.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/builtin.def?h=bash-5.3

Bash.Builtin.Caller

caller [EXPR]
Returns the context of the current subroutine call.
Without EXPR, returns "$line $filename". With EXPR, returns "$line $subroutine $filename";
this extra information can be used to provide a stack trace.
The value of EXPR indicates how many call frames to go back before the
current one; the top frame is frame 0.
Call Stack Entry Format
Each entry in the session's call_stack should be a map with:
	:line_number - The line number where the function was called from
	:function_name - The name of the function being called
	:source_file - The source file containing the call

Exit Status
Returns 0 if the specified frame exists, 1 otherwise (including when not in a function).
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/caller.def?h=bash-5.3

Bash.Builtin.Cd

cd [-L|-P] [dir]
Change the current directory to DIR. The variable $HOME is the default DIR. The variable CDPATH defines the search path for the directory containing DIR. Alternative directory names in CDPATH are separated by a colon (:). A null directory name is the same as the current directory, i.e. .. If DIR begins with a slash (/), then CDPATH is not used. If the directory is not found, and the shell option cdable_vars is set, then try the word as a variable name. If that variable has a value, then cd to the value of that variable. The -P option says to use the physical directory structure instead of following symbolic links; the -L option forces symbolic links to be followed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/cd.def?h=bash-5.3
Supports:
	cd - Change to HOME directory
	cd - - Change to OLDPWD (previous directory) and print it
	cd <dir> - Change to specified directory
	-L - Follow symbolic links (default unless set -P is active)
	-P - Use physical directory structure (resolve symlinks)
	CDPATH - Search path for directories
	Tilde expansion (~, ~/path)

Updates environment variables:
	PWD - Current working directory
	OLDPWD - Previous working directory

Bash.Builtin.Colon

Null command.
No effect; the command does nothing.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/colon.def?h=bash-5.3

Bash.Builtin.Command

command [-pVv] command [arg ...]
Run COMMAND with ARGS ignoring shell functions.
If the -p option is given, the search for COMMAND is performed using a
default value for PATH that is guaranteed to find all the standard utilities.
If the -V or -v option is given, a description of COMMAND is printed.
The -v option outputs a single word; -V outputs a more verbose description.
Exit Status:
Returns exit status of COMMAND, or failure if COMMAND is not found.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/command.def?h=bash-5.3

Bash.Builtin.Complete

complete [-abcdefgjksuv] [-pr] [-o option] [-A action] [-G globpat] [-W wordlist] [-P prefix] [-S suffix] [-X filterpat] [-F function] [-C command] [name ...]
For each NAME, specify how arguments are to be completed. If the -p option is supplied, or if no options are supplied, existing completion specifications are printed in a way that allows them to be reused as input. The -r option removes a completion specification for each NAME, or, if no NAMEs are supplied, all completion specifications.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/complete.def?h=bash-5.3

Bash.Builtin.Continue

continue [n]
Resume for, while, or until loops.
Resumes the next iteration of the enclosing FOR, WHILE or UNTIL loop. If N is specified, resumes the Nth enclosing loop.
Exit Status:
The exit status is 0 unless N is not greater than or equal to 1.

Bash.Builtin.Coproc

coproc [NAME] command [redirections]
Create a coprocess named NAME.
Execute COMMAND asynchronously, with the standard output and standard
input of the command connected via a pipe to file descriptors assigned
to indices 0 and 1 of an array variable NAME in the executing shell.
The default NAME is "COPROC".
The coprocess is executed asynchronously in a subshell, as if the command
had been terminated with the & control operator.
When the coprocess is executed, the shell creates an array variable NAME
in the context of the executing shell. The standard output of command is
connected via a pipe to a file descriptor in the executing shell, and that
file descriptor is assigned to NAME[0]. The standard input of command is
connected via a pipe to a file descriptor in the executing shell, and that
file descriptor is assigned to NAME[1].
The shell also sets the variable NAME_PID to the process ID of the coprocess.
Exit Status:
Returns the exit status of COMMAND.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/reserved.def?h=bash-5.3
Architecture
Two modes of operation:
External (simple commands like coproc cat)
stateDiagram-v2
 [*] --> running: start_link external
 running --> running: read/write via ExCmd.Process
 running --> closing: close_stdin
 closing --> stopped: process exits
 running --> stopped: process exits
 stopped --> [*]
Internal (compound commands like coproc MYPROC { cat; })
stateDiagram-v2
 [*] --> running: start_link internal
 running --> running: read/write via message passing
 running --> closing: close_stdin
 closing --> stopped: body task exits
 running --> stopped: body task exits
 stopped --> [*]
File descriptors stored in the session's file_descriptors map contain
{:coproc, pid, :read | :write} tuples that route I/O through this
GenServer.

Bash.Builtin.Declare

declare [-afFirtx] [-p] [name[=value] ...]
Declare variables and/or give them attributes. If no NAMEs are given, then display the values of variables instead. The -p option will display the attributes and values of each NAME.
The flags are:
	-a - to make NAMEs indexed arrays
	-A - to make NAMEs associative arrays
	-f - to select from among function names only
	-F - to display function names without definitions
	-i - to make NAMEs have the "integer" attribute
	-r - to make NAMEs readonly
	-x - to make NAMEs export
	-p - display variable declarations

Variables with the integer attribute have arithmetic evaluation (see let) done when the variable is assigned to.
When displaying values of variables, -f displays a function's name and definition. The -F option restricts the display to function name only.
Using + instead of - turns off the given attribute instead. When used in a function, makes NAMEs local, as with the local command.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/declare.def?h=bash-5.3

Bash.Builtin.Dirs

dirs [-clpv] [+N] [-N]
Display directory stack.
Display the list of currently remembered directories. Directories find their way onto the list with the pushd command; you can get back up through the list with the popd command.
Options:
	-c - clear the directory stack by deleting all of the elements
	-l - do not print tilde-prefixed versions of directories relative to your home directory
	-p - print the directory stack with one entry per line
	-v - print the directory stack with one entry per line prefixed with its position in the stack

Arguments:
	+N Displays the Nth entry counting from the left of the list shown by dirs when invoked without options, starting with zero.

	-N Displays the Nth entry counting from the right of the list shown by dirs when invoked without options, starting with zero.

Exit Status:
Returns success unless an invalid option is supplied or an error occurs.
Reference: https://www.gnu.org/software/bash/manual/html_node/Directory-Stack-Builtins.html

Bash.Builtin.Disown

disown [-h] [-ar] [jobspec ... | pid ...]
Remove jobs from the job table or mark them so they don't receive SIGHUP.
Options:
 -a Remove all jobs if no jobspec is given
 -r Remove only running jobs
 -h Mark jobs so that SIGHUP is not sent when the shell exits
Without options, remove each JOBSPEC from the table of active jobs.
If JOBSPEC is not present, the current job is used.
Exit Status:
Returns success unless an invalid option or JOBSPEC is given.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/jobs.def?h=bash-5.3

Bash.Builtin.Echo

echo [-neE] [arg ...]
Output the ARGs. If -n is specified, the trailing newline is suppressed. If the -e option is given, interpretation of the following backslash-escaped characters is turned on:
	\a - alert (bell)
	\b - backspace
	\c - suppress trailing newline
	\E - escape character
	\f - form feed
	\n - new line
	\r - carriage return
	\t - horizontal tab
	\v - vertical tab
	\\ - backslash
	\0nnn -the character whose ASCII code is NNN (octal). NNN can be 0 to 3 octal digits

You can explicitly turn off the interpretation of the above characters with the -E option.

Bash.Builtin.Enable

enable [-a] [-dnps] [-f filename] [name ...]
Enable and disable builtin shell commands. This allows you to use a disk
command which has the same name as a shell builtin without specifying a
full pathname.
Options:
 -a Print every builtin with an indication of whether it is enabled
 -n Disable the named builtins
 -p Print a list of builtins (default if no names given)
 -s Restrict output to POSIX special builtins
The -f and -d options for dynamic loading are not supported in this
implementation.
Exit Status:
Returns success unless NAME is not a shell builtin or an error occurs.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/enable.def?h=bash-5.3

Bash.Builtin.Eval

eval [arg ...]
Read ARGs as input to the shell and execute the resulting command(s).
The args are concatenated together into a single string. The string is
then parsed as a bash command and executed, with the exit status of the
executed command returned.
If there are no args, or only empty args, eval returns 0.
Reference:
	https://www.gnu.org/software/bash/manual/html_node/Bourne-Shell-Builtins.html
	https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/evalstring.c?h=bash-5.3

Bash.Builtin.Exec

exec [-cl] [-a name] [command [argument ...]]
Replace the shell with the given command. If command is not specified, any
redirections take effect in the current shell.
In our interpreter context, exec executes the command and signals that the
shell should exit with that command's exit code.
Options:
	-c - Execute command with an empty environment
	-l - Place a dash at the beginning of the zeroth argument (login shell)
	-a name - Pass name as the zeroth argument to the command

Exit Status:
Returns success unless command is not found or cannot be executed.
Reference: https://www.gnu.org/software/bash/manual/html_node/Bourne-Shell-Builtins.html

Bash.Builtin.Exit

exit [n]
Exit the shell with a status of N. If N is omitted, the exit status is that of the last command executed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/exit.def?h=bash-5.3

Bash.Builtin.Export

export [-fn] [name[=value] ...] or export -p [-f]
Set export attribute for shell variables.
Marks each NAME for automatic export to the environment of subsequently executed commands. If VALUE is supplied, assign VALUE before exporting.
Options:
	-f - refer to shell functions
	-n - remove the export property from each NAME
	-p - display a list of all exported variables or functions

An argument of -- disables further option processing.
Exit Status:
Returns success unless an invalid option is given or NAME is invalid.

Bash.Builtin.False

Return an unsuccessful result.
Exit Status:
Always fails.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/colon.def?h=bash-5.3

Bash.Builtin.Fc

fc [-e ename] [-lnr] [first] [last] or fc -s [pat=rep] [cmd]
fc is used to list or edit and re-execute commands from the history list.
FIRST and LAST can be numbers specifying the range, or FIRST can be a
string, which means the most recent command beginning with that string.
Options:
 -e ENAME Select which editor to use (default: $FCEDIT, $EDITOR, or vi)
 -l List lines instead of editing
 -n Suppress line numbers when listing
 -r Reverse the order of the lines
With the fc -s [pat=rep ...] [command] format, the command is
re-executed after the substitution OLD=NEW is performed.
A useful alias to use with this is r='fc -s', so that typing r cc
runs the last command beginning with cc and typing r re-executes
the last command.
Note: Interactive editing with -e is not supported in this implementation.
Use fc -l to list and fc -s to re-execute with substitution.
Exit Status:
Returns success unless an invalid option is supplied or an error occurs.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/fc.def?h=bash-5.3

Bash.Builtin.Fg

fg [job_spec]
Place JOB_SPEC in the foreground, and make it the current job.
If JOB_SPEC is not present, the shell's notion of the current job is used.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/fg_bg.def?h=bash-5.3

Bash.Builtin.Getopts

getopts optstring name [arg]
Getopts is used by shell procedures to parse positional parameters.
OPTSTRING contains the option letters to be recognized; if a letter is followed by a colon, the option is expected to have an argument, which should be separated from it by white space.
Each time it is invoked, getopts will place the next option in the shell variable $name, initializing name if it does not exist, and the index of the next argument to be processed into the shell variable OPTIND. OPTIND is initialized to 1 each time the shell or a shell script is invoked. When an option requires an argument, getopts places that argument into the shell variable OPTARG.
getopts reports errors in one of two ways. If the first character of OPTSTRING is a colon, getopts uses silent error reporting. In this mode, no error messages are printed. If an invalid option is seen, getopts places the option character found into OPTARG. If a required argument is not found, getopts places a ':' into NAME and sets OPTARG to the option character found. If getopts is not in silent mode, and an invalid option is seen, getopts places '?' into NAME and unsets OPTARG. If a required argument is not found, a '?' is placed in NAME, OPTARG is unset, and a diagnostic message is printed.
If the shell variable OPTERR has the value 0, getopts disables the printing of error messages, even if the first character of OPTSTRING is not a colon. OPTERR has the value 1 by default.
Getopts normally parses the positional parameters ($0 - $9), but if more arguments are given, they are parsed instead.
References:
	https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/getopt.c?h=bash-5.3
	https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/getopts.def?h=bash-5.3
	https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/bashgetopt?h=bash-5.3

Bash.Builtin.Hash

hash [-lr] [-p pathname] [-dt] [name ...]
Remember or display program locations.
For each NAME, the full pathname of the command is determined and remembered.
If the -p option is supplied, PATHNAME is used as the full pathname of NAME,
and no path search is done. The -r option causes the shell to forget all
remembered locations. The -d option causes the shell to forget the remembered
location of each NAME. If the -t option is supplied the full pathname to which
each NAME corresponds is printed. If multiple NAME arguments are supplied with
-t, the NAME is printed before the hashed full pathname. The -l option causes
output to be displayed in a format that may be reused as input. If no arguments
are given, information about remembered commands is displayed.
Reference: https://www.gnu.org/software/bash/manual/html_node/Bourne-Shell-Builtins.html#index-hash

Bash.Builtin.Help

help [-dms] [pattern ...]
Display helpful information about builtin commands.
If PATTERN is specified, gives detailed help on all commands matching PATTERN,
otherwise a list of the builtins is printed.
Options:
 -d output short description for each topic
 -m display usage in pseudo-manpage format
 -s output only a short usage synopsis for each topic matching PATTERN
Reference: https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html#index-help

Bash.Builtin.History

history [-c] [-d offset] [n] or history -awrn [filename] or history -ps arg [arg...]
Display the history list with line numbers. Lines listed with
with a * have been modified. Argument of N says to list only
the last N lines. The -c option causes the history list to be
cleared by deleting all of the entries. The -d option deletes
the history entry at offset OFFSET. The -w option writes out the
current history to the history file; -r means to read the file and
append the contents to the history list instead. -a means
to append history lines from this session to the history file.
Argument -n means to read all history lines not already read
from the history file and append them to the history list.
If FILENAME is given, then that is used as the history file else
if $HISTFILE has a value, that is used, else ~/.bash_history.
If the -s option is supplied, the non-option ARGs are appended to
the history list as a single entry. The -p option means to perform
history expansion on each ARG and display the result, without storing
anything in the history list.
If the $HISTTIMEFORMAT variable is set and not null, its value is used
as a format string for strftime(3) to print the time stamp associated
with each displayed history entry. No time stamps are printed otherwise.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/history.def?h=bash-5.3

Bash.Builtin.Jobs

jobs [-lnprs] [jobspec ...] or jobs -x command [args]
Lists the active jobs. The -l option lists process id's in addition to the
normal information; the -p option lists process id's only. If -n is given,
only processes that have changed status since the last notification are
printed. JOBSPEC restricts output to that job. The -r and -s options restrict
output to running and stopped jobs only, respectively. Without options, the
status of all active jobs is printed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/jobs.def?h=bash-5.3

Bash.Builtin.Kill

kill [-s sigspec | -n signum | -sigspec] pid | jobspec ... or kill -l [sigspec]
Send the processes named by PID (or JOBSPEC) the signal SIGSPEC.
If SIGSPEC is not present, then SIGTERM is assumed. An argument of -l
lists the signal names; if arguments follow -l they are assumed to be
signal numbers for which names should be listed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/kill.def?h=bash-5.3

Bash.Builtin.Let

let arg [arg ...]
((expression))
Evaluate arithmetic expressions.
Each ARG is an arithmetic expression to be evaluated. Evaluation is done in
fixed-width integers with no check for overflow, though division by 0 is
trapped and flagged as an error.
Operator precedence (highest to lowest):
 id++, id-- variable post-increment, post-decrement
 ++id, --id variable pre-increment, pre-decrement
 -, + unary minus, plus
 !, ~ logical and bitwise negation
 * exponentiation
 , /, % multiplication, division, remainder
 +, - addition, subtraction
 <<, >> left and right bitwise shifts
 <=, >=, <, > comparison
 ==, != equality, inequality
 & bitwise AND
 ^ bitwise exclusive OR
 | bitwise OR
 && logical AND
 || logical OR
 expr ? expr : expr
 conditional operator
 =, *=, /=, %=,
 +=, -=, <<=, >>=,
 &=, ^=, |= assignment
Shell variables are allowed as operands. Variable names are replaced by
their values (coerced to integers). No $ prefix is needed.
Exit Status:
If the last ARG evaluates to 0, let returns 1; let returns 0 otherwise.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/let.def?h=bash-5.3

Bash.Builtin.Local

local [option] name[=value] ...
Local variables are visible only to the function and the commands it invokes.
This makes it possible for a function to have its own private variables.
The local builtin is essentially the same as declare, but it creates local
variables that are only visible within the function scope.
When used outside a function, it behaves like declare (creating variables
in the current scope).
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/declare.def?h=bash-5.3

Bash.Builtin.Mapfile

mapfile [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd] [-C callback] [-c quantum] [array]
Read lines from the standard input into the indexed array variable ARRAY, or
from file descriptor FD if the -u option is supplied. The variable MAPFILE is
the default ARRAY.
Options:
 -d delim Use DELIM to terminate lines, instead of newline. DELIM is a single character.
 -n count Copy at most COUNT lines. If COUNT is 0, all lines are copied.
 -O origin Begin assigning to ARRAY at index ORIGIN. The default index is 0.
 -s count Discard the first COUNT lines read.
 -t Remove a trailing DELIM from each line read (default newline).
 -u fd Read lines from file descriptor FD instead of the standard input.
 -C callback Evaluate CALLBACK each time QUANTUM lines are read.
 -c quantum Specify the number of lines read between each call to CALLBACK.
If -C is specified without -c, the default quantum is 5000.
When CALLBACK is evaluated, it is supplied the index of the next array
element to be assigned and the line to be assigned to that element as
additional arguments.
If not supplied with an explicit origin, mapfile will clear ARRAY before
assigning to it.
mapfile returns successfully unless an invalid option or option argument is
supplied, ARRAY is invalid or unassignable, or if ARRAY is not an indexed array.
readarray is a synonym for mapfile.
Reference: https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/mapfile.def?h=bash-5.3

Bash.Builtin.Popd

popd [-n] [+N | -N]
Remove entries from the directory stack.
Removes entries from the directory stack. With no arguments, removes the top directory from the stack, and changes to the new top directory.
Options:
	-n - Suppresses the normal change of directory when removing directories from the stack, so only the stack is manipulated.

Arguments:
	+N - Removes the Nth entry counting from the left of the list shown by dirs, starting with zero. For example: popd +0 removes the first directory, popd +1 the second.

	-N - Removes the Nth entry counting from the right of the list shown by dirs, starting with zero. For example: popd -0 removes the last directory, popd -1 the next to last.

Exit Status:
Returns success unless an invalid argument is supplied or the directory change fails.
Reference: https://www.gnu.org/software/bash/manual/html_node/Directory-Stack-Builtins.html

Bash.Builtin.Printf

printf [-v var] format [arguments]
printf formats and prints ARGUMENTS under control of the FORMAT. FORMAT is a character string which contains three types of objects: plain characters, which are simply copied to standard output, character escape sequences which are converted and copied to the standard output, and format specifications, each of which causes printing of the next successive argument. In addition to the standard printf(1) formats, %b means to expand backslash escape sequences in the corresponding argument, and %q means to quote the argument in a way that can be reused as shell input. If the -v option is supplied, the output is placed into the value of the shell variable VAR rather than being sent to the standard output.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/printf.def?h=bash-5.3
Examples
printf "Hello %s\n" "World"
=> Hello World

printf "Count: %d\n" 42
=> Count: 42

printf "=%.0s" 1 2 3
=> ===

Bash.Builtin.Pushd

pushd [-n] [dir | +N | -N]
Add directories to the directory stack.
Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the stack the current working directory. With no arguments, exchanges the top two directories.
Arguments:
	dir - Adds DIR to the directory stack at the top, making it the new current working directory.

	+N - Rotates the stack so that the Nth directory (counting from the left of the list shown by dirs', starting with zero) is at the top. --N- Rotates the stack so that the Nth directory (counting from the right of the list shown bydirs', starting with zero) is at the top.

Options:
	-n - Suppresses the normal change of directory when adding directories to the stack, so only the stack is manipulated.

You can see the directory stack with the dirs command.
Exit Status:
Returns success unless an invalid argument is supplied or the directory change fails.
Reference: https://www.gnu.org/software/bash/manual/html_node/Directory-Stack-Builtins.html

Bash.Builtin.Pwd

pwd [-LP]
Print the current working directory. With the -P option, pwd prints the physical directory, without any symbolic links; the -L option makes pwd follow symbolic links.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/cd.def?h=bash-5.3

Bash.Builtin.Read

read [-ers] [-a array] [-d delim] [-i text] [-n nchars] [-N nchars] [-p prompt] [-t timeout] [-u fd] [name ...]
One line is read from the standard input, or from file descriptor FD if the
-u option is supplied, and the first word is assigned to the first NAME,
the second word to the second NAME, and so on, with leftover words assigned
to the last NAME. Only the characters found in $IFS are recognized as word
delimiters. If no NAMEs are supplied, the line read is stored in the REPLY
variable. If the -r option is given, this signifies raw input, and backslash
escaping is disabled. The -d option causes read to continue until the first
character of DELIM is read, rather than newline. If the -p option is supplied,
the string PROMPT is output without a trailing newline before attempting to
read. If -a is supplied, the words read are assigned to sequential indices
of ARRAY, starting at zero. If -e is supplied and the shell is interactive,
readline is used to obtain the line. If -n is supplied with a non-zero NCHARS
argument, read returns after NCHARS characters have been read. The -s option
causes input coming from a terminal to not be echoed.
The -t option causes read to time out and return failure if a complete line
of input is not read within TIMEOUT seconds. If the TMOUT variable is set,
its value is the default timeout. The return code is zero, unless end-of-file
is encountered, read times out, or an invalid file descriptor is supplied as
the argument to -u.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/read.def?h=bash-5.3

Bash.Builtin.Readonly

readonly [-aAf] [name[=value] ...] or readonly -p
Mark shell variables as not changeable. If no ARGUMENTs are given,
or if -p' is given, a list of all readonly variables is printed. An argument of--' disables further option processing.
This is equivalent to declare -r.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/declare.def?h=bash-5.3

Bash.Builtin.Return

return [n]
Causes a function to exit with the return value specified by N. If N
is omitted, the return status is that of the last command.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/return.def?h=bash-5.3

Bash.Builtin.Set

set [--abefhkmnptuvxBCHP] [-o option] [arg ...]
This should update the special variable $- with the enabled flags, eg:
 $ echo $-
 himBHs
This should update the special variable SHELLOPTS with the enabled flags, eg:
 $ echo $SHELLOPTS
 braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
Options:
	-a - Mark variables which are modified or created for export.
	-b - Notify of job termination immediately.
	-e - Exit immediately if a command exits with a non-zero status.
	-f - Disable file name generation (globbing).
	-h - (Default on) Remember the location of commands as they are looked up.
	-k - All assignment arguments are placed in the environment for a command, not just those that precede the command name.
	-m - (Default on) Job control is enabled.
	-n - Read commands but do not execute them.
	-p - Turned on whenever the real and effective user ids do not match. Disables processing of the $ENV file and importing of shell functions. Turning this option off causes the effective uid and gid to be set to the real uid and gid.
	-t - Exit after reading and executing one command.
	-u - Treat unset variables as an error when substituting.
	-v - Print shell input lines as they are read.
	-x - Print commands and their arguments as they are executed.
	-B - (Default on) the shell will perform brace expansion
	-C - If set, disallow existing regular files to be overwritten by redirection of output.
	-E - If set, the ERR trap is inherited by shell functions.
	-H - (Unsupported) Enable ! style history substitution. This flag is on by default when the shell is interactive.
	-P - If set, do not follow symbolic links when executing commands such as cd which change the current directory.
	-T - If set, the DEBUG trap is inherited by shell functions.
	- - Assign any remaining arguments to the positional parameters. The -x and -v options are turned off.
	-o option-name Set the variable corresponding to option-name:	allexport - same as -a
	braceexpand - same as -B
	emacs - use an emacs-style line editing interface (Unsupported)
	errexit - same as -e
	errtrace - same as -E
	functrace - same as -T
	hashall - same as -h
	histexpand - same as -H
	history - enable command history
	ignoreeof - the shell will not exit upon reading EOF
	interactive-comments - allow comments to appear in interactive commands (Unsupported)
	keyword - same as -k
	monitor - same as -m
	noclobber - same as -C
	noexec - same as -n
	noglob - same as -f
	nolog - currently accepted but ignored
	notify - same as -b
	nounset - same as -u
	onecmd - same as -t
	physical - same as -P
	pipefail - the return value of a pipeline is the status of the last command to exit with a non-zero status, or zero if no command exited with a non-zero status
	posix - change the behavior of bash where the default operation differs from the 1003.2 standard to match the standard
	privileged - same as -p
	verbose - same as -v
	vi - use a vi-style line editing interface (Unsupported)
	xtrace - same as -x

Using + rather than - causes these flags to be turned off. The flags can also be used upon invocation of the shell. The current set of flags may be found in $-. The remaining n ARGs are positional parameters and are assigned, in order, to $1, $2, .. $n. If no ARGs are given, all shell variables are printed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/set.def?h=bash-5.3

Bash.Builtin.Shift

shift [n]
The positional parameters from $N+1 ... are renamed to $1 ... If N is
not given, it is assumed to be 1.
Exit status: 0 on success, 1 if n is greater than the number of positional
parameters or less than zero.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/shift.def?h=bash-5.3

Bash.Builtin.Shopt

shopt [-pqsu] [-o] [optname ...]
Toggle the values of variables controlling optional shell behavior.
Options:
	-s - Enable (set) each optname
	-u - Disable (unset) each optname
	-q - Quiet mode: suppress output, exit status indicates whether option is set
	-p - Print in reusable format (default when no optnames given)
	-o - Operate on set -o options instead of shopt options

With no options, or with the -p option, a list of all settable options
is displayed, with an indication of whether or not each is set.
Exit Status:
	0 if all optnames are enabled (with -s/-u, if operation succeeded)
	1 if any optname is not a valid option or is disabled (when querying)
	2 if an invalid option is given

Reference: https://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/shopt.def?h=bash-5.3

Bash.Builtin.Source

source filename [arguments]
Read and execute commands from FILENAME and return. The pathnames
in $PATH are used to find the directory containing FILENAME. If any
ARGUMENTS are supplied, they become the positional parameters when
FILENAME is executed.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/source.def?h=bash-5.3

Bash.Builtin.Suspend

suspend [-f]
Suspend the execution of this shell until it receives a SIGCONT signal.
If the -f option is given, do not complain about this being a login shell;
just suspend anyway.
In this implementation, suspend returns a control flow signal that tells
the session/executor to pause execution. The session should wait for a
resume message before continuing.
Exit Status:
Returns success unless job control is not enabled or an error occurs.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/suspend.def?h=bash-5.3

Bash.Builtin.Test

test [expr]
Shared helper functions for test command and test expression builtins.
Exits with a status of 0 (true) or 1 (false) depending on the evaluation of EXPR. Expressions may be unary or binary. Unary expressions are often used to examine the status of a file. There are string operators as well, and numeric comparison operators.
File operators:
	-a FILE - True if file exists.
	-b FILE - True if file is block special.
	-c FILE - True if file is character special.
	-d FILE - True if file is a directory.
	-e FILE - True if file exists.
	-f FILE - True if file exists and is a regular file.
	-g FILE - True if file is set-group-id.
	-h FILE - True if file is a symbolic link.
	-L FILE - True if file is a symbolic link.
	-k FILE - True if file has its "sticky" bit set.
	-p FILE - True if file is a named pipe.
	-r FILE - True if file is readable by you.
	-s FILE - True if file exists and is not empty.
	-S FILE - True if file is a socket.
	-t FD - True if FD is opened on a terminal.
	-u FILE - True if the file is set-user-id.
	-w FILE - True if the file is writable by you.
	-x FILE - True if the file is executable by you.
	-O FILE - True if the file is effectively owned by you.
	-G FILE - True if the file is effectively owned by your group.
	-N FILE - True if the file has been modified since it was last read.
	FILE1 -nt FILE2 - True if file1 is newer than file2 (according to modification date).
	FILE1 -ot FILE2 - True if file1 is older than file2.
	FILE1 -ef FILE2 - True if file1 is a hard link to file2.

String operators:
	-z STRING - True if string is empty.
	-n STRING - True if string is not empty.
	STRING - True if string is not empty.
	STRING1 = STRING2 - True if the strings are equal.
	STRING1 != STRING2 - True if the strings are not equal.
	STRING1 < STRING2 - True if STRING1 sorts before STRING2 lexicographically.
	STRING1 > STRING2 - True if STRING1 sorts after STRING2 lexicographically.

Other operators:
	-o OPTION - True if the shell option OPTION is enabled.
	! EXPR - True if expr is false.
	EXPR1 -a EXPR2 - True if both expr1 AND expr2 are true.
	EXPR1 -o EXPR2 - True if either expr1 OR expr2 is true.
	arg1 OP arg2 - Arithmetic tests. OP is one of -eq, -ne, -lt, -le, -gt, or -ge.

Arithmetic binary operators return true if ARG1 is equal, not-equal, less-than, less-than-or-equal, greater-than, or greater-than-or-equal than ARG2.

Bash.Builtin.TestCommand

Implementation of the POSIX test builtin.
[arg...]
test [arg...]
[is a synonym for the "test" builtin, but the last argument must be a literal], to match the opening [.
See Bash.Builtins.Test
Evaluates conditional expressions with operator precedence: ! > -a > -o

Bash.Builtin.Times

times
Print the accumulated user and system times for the shell and for processes
run from the shell.
The return status is zero.
Output format:
 user_time system_time (shell)
 user_time system_time (children)
Where each time is in the format NmN.NNNs (minutes and seconds).
Since the BEAM VM doesn't distinguish user vs system CPU time, we report
:erlang.statistics(:runtime) elapsed since session start as user time
and 0m0.000s for system time.
Reference: https://www.gnu.org/software/bash/manual/html_node/Bourne-Shell-Builtins.html#index-times

Bash.Builtin.Trap

trap [-lp] [arg signal_spec ...]
The command ARG is to be read and executed when the shell receives
signal(s) SIGNAL_SPEC. If ARG is absent (and a single SIGNAL_SPEC
is supplied) or -, each specified signal is reset to its original
value. If ARG is the null string each SIGNAL_SPEC is ignored by the
shell and by the commands it invokes. If a SIGNAL_SPEC is EXIT (0)
the command ARG is executed on exit from the shell. If a SIGNAL_SPEC
is DEBUG, ARG is executed after every simple command. If the-p option
is supplied then the trap commands associated with each SIGNAL_SPEC are
displayed. If no arguments are supplied or if only -p is given, trap
prints the list of commands associated with each signal. Each SIGNAL_SPEC
is either a signal name in <signal.h> or a signal number. Signal names
are case insensitive and the SIG prefix is optional. trap -l prints
a list of signal names and their corresponding numbers. Note that a
signal can be sent to the shell with kill -signal $$.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/trap.def?h=bash-5.3

Bash.Builtin.True

Return a successful result.
Exit Status:
Always succeeds.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/colon.def?h=bash-5.3

Bash.Builtin.Type

type [-afptP] name [name ...]
For each NAME, indicate how it would be interpreted if used as a command name.
If the -t option is used, type outputs a single word which is one of alias, keyword, function, builtin, file, if NAME is an alias, shell reserved word, shell function, shell builtin, disk file, or unfound, respectively.
If the -p flag is used, type either returns the name of the disk file that would be executed, or nothing if type -t NAME would not return file.
If the -a flag is used, type displays all of the places that contain an executable named file. This includes aliases, builtins, and functions, if and only if the -p flag is not also used.
The -f flag suppresses shell function lookup.
The -P flag forces a PATH search for each NAME, even if it is an alias, builtin, or function, and returns the name of the disk file that would be executed.
typeset [-afFirtx] [-p] name[=value] ...
Obsolete. See declare.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/type.def?h=bash-5.3

Bash.Builtin.Ulimit

ulimit [-SHacdfilmnpqstuvx] [limit]
Ulimit provides control over the resources available to processes started by the shell,
on systems that allow such control. If an option is given, it is interpreted as follows:
	-S - use the soft' resource limit --H- use thehard' resource limit
	-a - all current limits are reported
	-c - the maximum size of core files created
	-d - the maximum size of a process's data segment
	-e - the maximum scheduling priority (nice)
	-f - the maximum size of files written by the shell and its children
	-i - the maximum number of pending signals
	-l - the maximum size a process may lock into memory
	-m - the maximum resident set size
	-n - the maximum number of open file descriptors
	-p - the pipe buffer size
	-q - the maximum number of bytes in POSIX message queues
	-r - the maximum real-time scheduling priority
	-s - the maximum stack size
	-t - the maximum amount of cpu time in seconds
	-u - the maximum number of user processes
	-v - the size of virtual memory
	-x - the maximum number of file locks

If LIMIT is given, it is the new value of the specified resource; the special LIMIT values
soft, hard, and unlimited stand for the current soft limit, the current hard limit,
and no limit, respectively. Otherwise, the current value of the specified resource is printed.
If no option is given, then -f is assumed. Values are in 1024-byte increments, except for -t,
which is in seconds, -p, which is in increments of 512 bytes, and -u, which is an unscaled
number of processes.
Note: Since the Erlang VM manages its own resources, setting limits is a no-op (values are
stored but not enforced). Getting limits returns system values where available.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/ulimit.def?h=bash-5.3

Bash.Builtin.Umask

umask [-p] [-S] [mode]
Display or set the file mode creation mask.
Options:
	No args: display the current file mode creation mask in octal
	-S: display in symbolic form (u=rwx,g=rx,o=rx)
	-p: display in a form that can be reused as input
	mode: set the file mode mask to the specified mode (octal or symbolic)

The default umask is 0022 (files get 644, directories get 755).
Octal Mode
The mask is specified as an octal number (e.g., 022, 077, 0000).
The mask determines which permission bits are turned OFF when creating files.
Symbolic Mode
Symbolic mode is specified as [ugoa][+-=][rwxXst]:
	u: user/owner
	g: group
	o: other
	a: all (ugo)

Example: u=rwx,g=rx,o=rx sets umask to allow rwx for user, rx for group/other.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/umask.def?h=bash-5.3

Bash.Builtin.Unalias

unalias [-a] name [name ...]
Remove each NAME from the list of defined aliases. If -a is supplied, remove
all alias definitions.
Exit Status:
Returns success (0) unless a NAME is not an existing alias, in which case
it returns failure (1).
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/alias.def?h=bash-5.3

Bash.Builtin.Unset

unset [-fvn] [name ...]
Remove variables or functions.
Each NAME refers to a variable; if there is no variable by that name,
a function with that name, if any, is unset.
Options:
	-f - treat each NAME as a shell function
	-v - treat each NAME as a shell variable
	-n - treat each NAME as a name reference and unset the variable itself rather than the variable it references

Without options, unset first tries to unset a variable, and if that fails,
tries to unset a function.
Exit Status:
Returns success unless an invalid option is given or a NAME is read-only.
Reference: https://www.gnu.org/software/bash/manual/html_node/Bourne-Shell-Builtins.html

 Summary

 Types

 mode()

 Types

 mode()

 @type mode() :: :variable | :function | :nameref

Bash.Builtin.Unsupported

Handler for builtins that are not supported in this implementation.
Some bash builtins require interactive terminal features (like tab completion
or readline bindings) or OS-level features (like process suspension) that
are not applicable to a non-interactive bash interpreter.
Returns an appropriate error message explaining why the builtin is not supported.

Bash.Builtin.Wait

wait [n ...]
Wait for the specified process and report its termination status.
If N is not given, all currently active child processes are waited for,
and the return code is zero. N may be a process ID or a job specification;
if a job spec is given, all processes in the job's pipeline are waited for.
Reference: https://cgit.git.savannah.gnu.org/cgit/bash.git/plain/builtins/wait.def?h=bash-5.3

Bash.EscapeError exception

Exception raised when a string cannot be safely escaped for a Bash context.
This occurs when escaping is not possible, such as when a heredoc delimiter
appears on its own line within the content.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.EscapeError{
 __exception__: true,
 content: String.t(),
 context: integer() | String.t(),
 message: String.t(),
 reason: :delimiter_in_content
}

Bash.SyntaxError exception

Exception raised when bash script parsing or validation fails.
Error codes follow ShellCheck conventions where applicable:
	SC1xxx: Syntax errors (parser-level)
	SC2xxx: Semantic warnings (future)

Example
iex> raise Bash.SyntaxError,
...> code: "SC1046",
...> line: 1,
...> column: 0,
...> script: "if true; then echo",
...> hint: "'if' without matching 'fi'"
Produces:
** (Bash.SyntaxError) [SC1046] Bash syntax error at line 1, column 0:

 if true; then echo
 ^

 hint: 'if' without matching 'fi'
Reference: https://www.shellcheck.net/wiki/

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bash.SyntaxError{
 __exception__: true,
 code: String.t() | nil,
 column: non_neg_integer() | nil,
 hint: String.t() | nil,
 line: pos_integer() | nil,
 message: String.t() | nil,
 script: String.t() | nil
}

mix bash.format

Formats Bash script files.
Usage
mix bash.format [options] file1.sh file2.sh
Options
	--indent - indentation style, either spaces or tabs (default: spaces)
	--indent-width - number of spaces per indent level (default: 2, ignored for tabs)
	--wrap - max line length before wrapping (default: 80)

Formats each file in place using Bash.format_file/2.

mix bash.validate

Validates Bash script files for syntax errors.
Usage
mix bash.validate file1.sh file2.sh
Validates each file using Bash.validate_file/1 and reports any errors.
Exits with status 1 if any file is invalid.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

