

 bb

 v0.15.0

 Table of contents

 	README

 	Change Log

 	Tutorials

 	Your First Robot

 	Starting and Stopping

 	Sensors and PubSub

 	Forward Kinematics

 	Commands and State Machine

 	Exporting to URDF

 	Parameters

 	Parameter Bridges

 	Inverse Kinematics

 	Simulation Mode

 	Custom States and Command Categories

 	How-to Guides

 	How to Add a Custom Command

 	How to Deploy to Nerves

 	How to Implement Safety Callbacks

 	How to Integrate a Servo Driver

 	How to Troubleshoot PubSub

 	How to Use URDF with ROS Tools

 	How to Write a Custom Sensor

 	Explanation

 	Understanding the Command System

 	Understanding the PubSub System

 	Reactive Controllers

 	Understanding the Supervision Architecture

 	Understanding Safety in Beam Bots

 	Reference

 	Error Types Reference

 	Message Types Reference

 	Telemetry Events Reference

 	DSL Reference

 	BB

 	
 Modules

 	Core

 	BB

 	BB.PubSub

 	BB.Robot

 	BB.Supervisor

 	BB.Telemetry

 	DSL

 	BB.Dsl

 	BB.Dsl.Actuator

 	BB.Dsl.Axis

 	BB.Dsl.Box

 	BB.Dsl.Bridge

 	BB.Dsl.Capsule

 	BB.Dsl.Category

 	BB.Dsl.CategoryTransformer

 	BB.Dsl.Collision

 	BB.Dsl.Color

 	BB.Dsl.Command

 	BB.Dsl.Command.Argument

 	BB.Dsl.CommandTransformer

 	BB.Dsl.Controller

 	BB.Dsl.Cylinder

 	BB.Dsl.DefaultNameTransformer

 	BB.Dsl.Dynamics

 	BB.Dsl.Inertia

 	BB.Dsl.Inertial

 	BB.Dsl.Joint

 	BB.Dsl.Limit

 	BB.Dsl.Link

 	BB.Dsl.Material

 	BB.Dsl.Mesh

 	BB.Dsl.Origin

 	BB.Dsl.Param

 	BB.Dsl.ParamGroup

 	BB.Dsl.ParamRef

 	BB.Dsl.ParameterTransformer

 	BB.Dsl.RobotTransformer

 	BB.Dsl.Sensor

 	BB.Dsl.Sphere

 	BB.Dsl.State

 	BB.Dsl.StateTransformer

 	BB.Dsl.SupervisorTransformer

 	BB.Dsl.Texture

 	BB.Dsl.TopologyTransformer

 	BB.Dsl.UniquenessTransformer

 	BB.Dsl.Verifiers.ValidateCategoryRefs

 	BB.Dsl.Verifiers.ValidateChildSpecs

 	BB.Dsl.Verifiers.ValidateParamRefs

 	BB.Dsl.Verifiers.ValidateStateRefs

 	BB.Dsl.Visual

 	BB.Dsl.WildcardExpansionTransformer

 	Commands

 	BB.Command

 	BB.Command.Arm

 	BB.Command.Context

 	BB.Command.Disarm

 	BB.Command.Event

 	BB.Command.MoveTo

 	BB.Command.ResultCache

 	BB.Command.Server

 	BB.Command.SetState

 	Controllers

 	BB.Controller

 	BB.Controller.Action

 	BB.Controller.Action.Callback

 	BB.Controller.Action.Command

 	BB.Controller.Action.Context

 	BB.Controller.PatternMatch

 	BB.Controller.Server

 	BB.Controller.Threshold

 	Sensors

 	BB.Sensor

 	BB.Sensor.Mimic

 	BB.Sensor.OpenLoopPositionEstimator

 	BB.Sensor.Server

 	Actuators

 	BB.Actuator

 	BB.Actuator.Server

 	Messages

 	BB.Message

 	BB.Message.Actuator.BeginMotion

 	BB.Message.Actuator.Command.Effort

 	BB.Message.Actuator.Command.Hold

 	BB.Message.Actuator.Command.Position

 	BB.Message.Actuator.Command.Stop

 	BB.Message.Actuator.Command.Trajectory

 	BB.Message.Actuator.Command.Velocity

 	BB.Message.Actuator.EndMotion

 	BB.Message.Geometry.Accel

 	BB.Message.Geometry.Point3D

 	BB.Message.Geometry.Pose

 	BB.Message.Geometry.Twist

 	BB.Message.Geometry.Wrench

 	BB.Message.Option

 	BB.Message.Sensor.BatteryState

 	BB.Message.Sensor.Image

 	BB.Message.Sensor.Imu

 	BB.Message.Sensor.JointState

 	BB.Message.Sensor.LaserScan

 	BB.Message.Sensor.Range

 	Safety

 	BB.Safety

 	BB.Safety.Controller

 	BB.Safety.HardwareError

 	Parameters

 	BB.Parameter

 	BB.Parameter.Changed

 	BB.Parameter.Schema

 	BB.Parameter.Store

 	BB.Parameter.Store.Dets

 	BB.Parameter.Type

 	Kinematics

 	BB.IK.Solver

 	BB.Motion

 	BB.Motion.Tracker

 	BB.Robot.Kinematics

 	Math

 	BB.Math.Quaternion

 	BB.Math.Transform

 	BB.Math.Vec3

 	Errors

 	BB.Error

 	BB.Error.Category

 	BB.Error.Category.Full

 	BB.Error.Hardware

 	BB.Error.Hardware.BusError

 	BB.Error.Hardware.DeviceError

 	BB.Error.Hardware.Disconnected

 	BB.Error.Hardware.Timeout

 	BB.Error.Invalid

 	BB.Error.Invalid.Command

 	BB.Error.Invalid.JointConfig

 	BB.Error.Invalid.Parameter

 	BB.Error.Invalid.Topology

 	BB.Error.Kinematics

 	BB.Error.Kinematics.MultiFailed

 	BB.Error.Kinematics.NoDofs

 	BB.Error.Kinematics.NoSolution

 	BB.Error.Kinematics.SelfCollision

 	BB.Error.Kinematics.Singularity

 	BB.Error.Kinematics.UnknownLink

 	BB.Error.Kinematics.Unreachable

 	BB.Error.Protocol

 	BB.Error.Safety

 	BB.Error.Safety.CollisionRisk

 	BB.Error.Safety.DisarmFailed

 	BB.Error.Safety.EmergencyStop

 	BB.Error.Safety.LimitExceeded

 	BB.Error.Severity

 	BB.Error.State

 	BB.Error.State.CommandCrashed

 	BB.Error.State.Invalid

 	BB.Error.State.NotAllowed

 	BB.Error.State.Preempted

 	BB.Error.State.Timeout

 	Collision

 	BB.Collision

 	BB.Collision.BroadPhase

 	BB.Collision.Mesh

 	BB.Collision.Primitives

 	URDF

 	BB.Urdf.Exporter

 	BB.Urdf.Xml

 	Simulation

 	BB.Sim.Actuator

 	BB.Sim.Bridge

 	BB.Sim.Controller

 	Bridges

 	BB.Bridge

 	BB.BridgeSupervisor

 	CLDR

 	BB.Cldr

 	BB.Cldr.AcceptLanguage

 	BB.Cldr.Currency

 	BB.Cldr.Locale

 	BB.Cldr.Number

 	BB.Cldr.Number.Cardinal

 	BB.Cldr.Number.Format

 	BB.Cldr.Number.Formatter.Decimal

 	BB.Cldr.Number.Ordinal

 	BB.Cldr.Number.PluralRule.Range

 	BB.Cldr.Number.Symbol

 	BB.Cldr.Number.System

 	BB.Cldr.Number.Transliterate

 	BB.Cldr.Rbnf.NumberSystem

 	BB.Cldr.Rbnf.Ordinal

 	BB.Cldr.Rbnf.Spellout

 	BB.Cldr.Unit

 	Examples

 	BB.ExampleRobots

 	BB.ExampleRobots.CollisionTestArm

 	BB.ExampleRobots.DifferentialDriveRobot

 	BB.ExampleRobots.LinearActuator

 	BB.ExampleRobots.PanTiltCamera

 	BB.ExampleRobots.SixDofArm

 	Testing

 	BB.Test.AsyncCommand

 	BB.Test.MockActuator

 	BB.Test.MockBridge

 	BB.Test.MockController

 	BB.Test.MockSolver

 	BB.Test.ParameterBridge

 	Units

 	BB.Unit

 	BB.Unit.Option

 	Internals

 	BB.ControllerSupervisor

 	BB.Diagnostic

 	BB.JointSupervisor

 	BB.LinkSupervisor

 	BB.Process

 	BB.Robot.Builder

 	BB.Robot.CommandInfo

 	BB.Robot.Joint

 	BB.Robot.Link

 	BB.Robot.ParamResolver

 	BB.Robot.Runtime

 	BB.Robot.State

 	BB.Robot.Topology

 	BB.Robot.Units

 	BB.SensorSupervisor

 	BB.Server.ParamResolution

 	BB.StateMachine.Transition

 	
 Mix Tasks

 	mix bb.add_robot

 	mix bb.install

 	mix bb.to_urdf

 README

[image: Beam Bots Logo]Beam Bots
[image: CI]
[image: License: Apache 2.0]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
[image: OpenSSF Best Practices]
[image: OpenSSF Scorecard]
[image: Ask DeepWiki]
Beam Bots is a framework for building resilient robotics projects in Elixir.
Features
	Spark DSL for defining robot topologies (links, joints, sensors, actuators)
	Physical units via ~u sigil with automatic SI conversion (e.g., ~u(90 degree), ~u(0.1 meter))
	Topology-based supervision - supervision tree mirrors robot structure for fault isolation
	Hierarchical PubSub - subscribe to messages by path or subtree
	Forward kinematics - compute link positions using Nx tensors
	Message system - typed payloads with schema validation
	Command system - state machine with arm/disarm and custom commands
	URDF export - export robot definitions for use with ROS tools

Example
defmodule MyRobot do
 use BB

 topology do
 link :base do
 joint :shoulder do
 type(:revolute)

 origin do
 z(~u(0.1 meter))
 end

 axis do
 end

 limit do
 effort(~u(10 newton_meter))
 velocity(~u(1 radian_per_second))
 end

 link :upper_arm do
 joint :elbow do
 type(:revolute)

 origin do
 z(~u(0.3 meter))
 end

 axis do
 roll(~u(-90 degree))
 end

 limit do
 effort(~u(10 newton_meter))
 velocity(~u(1 radian_per_second))
 end

 link :forearm do
 end
 end
 end
 end
 end
 end
end

Start the supervision tree
{:ok, _pid} = BB.Supervisor.start_link(MyRobot)

Compute forward kinematics
robot = MyRobot.robot()
positions = %{shoulder: :math.pi() / 4, elbow: 0.0}
{x, y, z} = BB.Robot.Kinematics.link_position(robot, positions, :forearm)

Export to URDF
mix bb.to_urdf MyRobot -o robot.urdf
Documentation
Tutorials
Guided introduction to Beam Bots:
	Your First Robot - defining robots with the DSL
	Starting and Stopping - supervision trees
	Sensors and PubSub - publishing and subscribing to messages
	Forward Kinematics - computing link positions
	Commands and State Machine - controlling the robot
	Exporting to URDF - interoperability with ROS tools
	Parameters - runtime-adjustable configuration
	Parameter Bridges - bidirectional remote access

How-to Guides
Task-oriented guides for common operations:
	Integrate a Servo Driver - creating hardware driver packages
	Add a Custom Command - extending the command system
	Implement Safety Callbacks - safe hardware shutdown
	Deploy to Nerves - embedded deployment
	Write a Custom Sensor - creating sensor modules

Explanation
Understanding the architecture:
	Understanding Safety - the safety system design
	Supervision Architecture - why topology mirrors supervision
	Command System - command execution patterns
	PubSub System - hierarchical messaging

Reference
	DSL Reference - all DSL options
	Message Types - PubSub message schemas
	Error Types - structured error reference
	Telemetry Events - observability

Status
Core functionality is implemented. Companion packages:
	bb_kino - Livebook widgets for robot control and visualisation
	bb_liveview - Phoenix LiveView dashboard
	bb_ik_fabrik - FABRIK inverse kinematics solver
	bb_servo_pca9685 - PCA9685 PWM servo driver (I2C, 16-channel)
	bb_servo_pigpio - pigpio servo driver (Raspberry Pi GPIO)
	bb_servo_robotis - Robotis/Dynamixel servo driver

See proposals for planned features.
Installation
With Igniter (Recommended)
If your project uses Igniter:
mix igniter.install bb

This will:
	Add Beam Bots to your dependencies
	Create a {YourApp}.Robot module with arm/disarm commands and a base link
	Add the robot to your application supervision tree
	Configure the formatter for the Beam Bots DSL

To add additional robots later:
mix bb.add_robot --robot MyApp.Robots.SecondRobot

Manual Installation
Add Beam Bots to your dependencies:
def deps do
 [
 {:bb, "~> 0.1"}
]
end
Then create a robot module manually (see Your First Robot).
Sponsors
This project is made possible by the generous support of our sponsors:
	Alembic (@team-alembic) - Development Support
	Frank Hunleth (@fhunleth) - Hardware Donation
	Pascal Charbonneau (@pcharbon70) - GitHub Sponsor

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.15.0 (2026-01-18)
Features:
	add extensible state system with category-based command concurrency (#35) by James Harton

	add extensible state system with category-based command concurrency by James Harton

v0.14.0 (2026-01-17)
Features:
	add BB.Sensor.Mimic for mechanically-linked joints (#34) by James Harton

v0.13.2 (2026-01-13)
Bug Fixes:
	enforce name uniqueness for bridges in DSL verifier (#31) by James Harton

v0.13.1 (2026-01-09)
Improvements:
	auto-add OpenLoopPositionEstimator in simulation mode (#30) by James Harton

v0.13.0 (2026-01-05)
Features:
	add reactive controllers for threshold and pattern matching (#28) by James Harton

v0.12.0 (2026-01-04)
Breaking Changes:
	convert commands from Task-based to GenServer-based execution (#27) by James Harton

	convert commands from Task-based to GenServer-based execution by James Harton

Improvements:
	add command options support and tests by James Harton

	use structured errors in MoveTo command (#26) by James Harton

v0.11.0 (2025-12-30)
Features:
	add collision detection system (#25) by James Harton

	add collision detection module by James Harton

Bug Fixes:
	pass all solver options through BB.Motion by James Harton

Improvements:
	address credo issues and refine collision detection by James Harton

v0.10.0 (2025-12-29)
Features:
	add simulation mode for running robots without hardware (#21) by James Harton

	add Vec3 and Quaternion modules with Transform integration (#22) by James Harton

v0.9.0 (2025-12-26)
Features:
	add diagnostic and performance telemetry by James Harton

	add structured error handling with splode by James Harton

Improvements:
	add @type t to BB.Error.Invalid.JointConfig by James Harton

	make BB.Safety.disarm/2 timeout configurable by James Harton

v0.8.0 (2025-12-24)
Features:
	add param() references and wrapper GenServer pattern (#19) by James Harton

	parameters: allow setting params via start_link options by James Harton

	dsl: add param() references for topology fields by James Harton

	dsl: add param() references in actuator/sensor/controller options by James Harton

Improvements:
	fix arm/disarm actions by James Harton

v0.7.0 (2025-12-20)
Features:
	safety: add hardware error reporting with auto-disarm (#16) by James Harton

v0.6.0 (2025-12-20)
Features:
	add GenServer behaviours with options_schema callbacks (#15) by James Harton

v0.5.0 (2025-12-18)
Features:
	add motion integration for IK solving and actuator commands (#14) by James Harton

Bug Fixes:
	move argument type docs to entity docs field by James Harton

Improvements:
	make alpha channel of color optional by James Harton

	motion: add joint state publishing and flexible target formats by James Harton

v0.4.0 (2025-12-13)
Features:
	add BB.Safety system for centralised arm/disarm control (#10) by James Harton

	add BB.Safety system for centralised arm/disarm control by James Harton

Improvements:
	concurrent disarm callbacks and :disarming state by James Harton

	refactor terminate callback and add safety docs to CLAUDE.md by James Harton

v0.3.0 (2025-12-13)
Features:
	add standard actuator command interface (#9) by James Harton

	add BB.Message.Actuator.EndMotion (#8) by James Harton

	add BB.Sensor.OpenLoopPositionEstimator (#7) by James Harton

v0.2.1 (2025-12-09)
v0.2.0 (2025-12-06)
Breaking Changes:
	rename project from Kinetix to Beam Bots by James Harton

	change axis DSL from translational to rotational units by James Harton

	move name option from robot to settings section by James Harton

	restructure DSL with top-level sections by James Harton

	refactor command execution to task-based model by James Harton

	add robot_sensors and controllers DSL sections by James Harton

Features:
	add parameter system for runtime-adjustable configuration by James Harton

	add Igniter install tasks for project scaffolding by James Harton

	add URDF export mix task (#8) by James Harton

	add robot state machine for command control by James Harton

	add process communication functions and registry partitioning by James Harton

	add hierarchical pubsub system for robot component messages by James Harton

	add optimised robot representation with forward kinematics by James Harton

	add topology-based supervision tree for fault isolation by James Harton

	add actuator entity and sensors to joints by James Harton

	add sensor DSL entity for defining robot sensors by James Harton

	add foundational message system for robot component communication (#5) by James Harton

	Add basic robot definition DSL (#4) by James Harton

v0.1.0 (2025-11-27)

 Your First Robot

This tutorial guides you through defining your first robot with Beam Bots. By the end, you'll understand the core DSL concepts and have a working robot definition.
Prerequisites
	Elixir 1.19 or later
	Beam Bots installed in your project

Quick Start with Igniter
The fastest way to get started is with Igniter:
mix igniter.install bb

This creates a {YourApp}.Robot module with arm/disarm commands and a base link, adds it to your supervision tree, and configures the formatter. You can skip to Step 2 and modify the generated module.
Manual Installation
If you prefer to create the module manually, add Beam Bots to your dependencies:
mix.exs
def deps do
 [
 {:bb, "~> 0.1"}
]
end
What We're Building
We'll create a simple two-link robot arm: a base that can rotate (pan), with an arm that can tilt up and down. This is similar to a pan-tilt camera mount.
 [camera] <- tilt joint rotates this
 |
 [pan_link] <- pan joint rotates this
 |
 [base] <- fixed to the world
Step 1: Create the Module
Create a new file lib/my_robot.ex:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 end
 end
end
Let's break this down:
	use BB brings in the Beam Bots DSL and the ~u sigil for physical units
	topology do ... end defines the robot's physical structure
	link :base do ... end creates our first link (rigid body)

Compile and test:
iex> MyRobot.robot()
%BB.Robot{name: MyRobot, links: %{base: %BB.Robot.Link{...}}, ...}
The robot/0 function returns a compiled struct optimised for runtime use.
Step 2: Add a Joint and Child Link
Joints connect links. Let's add a pan joint that allows rotation around the Z-axis:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 joint :pan_joint do
 type(:revolute)

 axis do
 end

 link :pan_link do
 end
 end
 end
 end
end
Key concepts:
	Joints are nested inside links - the parent link contains the joint definition
	type(:revolute) - a revolute joint rotates around an axis (like a hinge)
	axis - defines which axis the joint rotates around. An empty axis block defaults to the Z-axis. You can specify different orientations using roll, pitch, and yaw.
	Child link is nested inside the joint - this creates the kinematic chain

For Roboticists: The DSL compiles to an Elixir struct at compile-time. There's no runtime parsing - the robot definition is baked into your module.

For Elixirists: Links are rigid bodies (solid pieces). Joints are the connections between them that allow movement. A revolute joint is like a door hinge - it rotates around one axis.

Step 3: Add Joint Limits
Real joints have physical constraints. Let's limit the pan joint's range of motion:
joint :pan_joint do
 type(:revolute)

 axis do
 end

 limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
 effort(~u(5 newton_meter))
 velocity(~u(60 degree_per_second))
 end

 link :pan_link do
 end
end
The ~u() sigil creates unit-aware values:
	~u(-90 degree) - negative 90 degrees
	~u(5 newton_meter) - maximum torque the joint can apply
	~u(60 degree_per_second) - maximum rotation speed

These units are automatically converted to SI base units (radians, newton-metres) in the compiled robot struct.
Step 4: Position the Joint
By default, joints are at the origin of their parent link. Use origin to offset them:
joint :pan_joint do
 type(:revolute)

 origin do
 z(~u(0.05 meter))
 end

 axis do
 end

 limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
 effort(~u(5 newton_meter))
 velocity(~u(60 degree_per_second))
 end

 link :pan_link do
 end
end
The joint is now 5cm above the base link's origin.
Step 5: Add a Second Joint
Let's add a tilt joint to create a full pan-tilt mechanism:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 joint :pan_joint do
 type(:revolute)

 origin do
 z(~u(0.05 meter))
 end

 axis do
 end

 limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
 effort(~u(5 newton_meter))
 velocity(~u(60 degree_per_second))
 end

 link :pan_link do
 joint :tilt_joint do
 type(:revolute)

 origin do
 z(~u(0.03 meter))
 end

 axis do
 roll(~u(-90 degree))
 end

 limit do
 lower(~u(-45 degree))
 upper(~u(90 degree))
 effort(~u(2 newton_meter))
 velocity(~u(45 degree_per_second))
 end

 link :camera_link do
 end
 end
 end
 end
 end
 end
end
The tilt joint rotates around the Y-axis (specified by roll(~u(-90 degree)) which rotates the default Z-axis to point along Y), allowing the camera to look up and down.
Step 6: Add Visual Geometry
To visualise the robot, add visual geometry to each link:
link :base do
 visual do
 cylinder do
 radius(~u(0.04 meter))
 height(~u(0.05 meter))
 end

 material do
 color do
 red(0.2)
 green(0.2)
 blue(0.2)
 alpha(1.0)
 end
 end
 end

 joint :pan_joint do
 # ... joint definition
 end
end
Available geometry types:
	box - with x, y, z dimensions
	cylinder - with radius and height
	sphere - with radius
	mesh - with filename for custom 3D models

Complete Example
Here's the full robot definition:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 visual do
 cylinder do
 radius(~u(0.04 meter))
 height(~u(0.05 meter))
 end

 material do
 color do
 red(0.2)
 green(0.2)
 blue(0.2)
 alpha(1.0)
 end
 end
 end

 joint :pan_joint do
 type(:revolute)

 origin do
 z(~u(0.05 meter))
 end

 axis do
 end

 limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
 effort(~u(5 newton_meter))
 velocity(~u(60 degree_per_second))
 end

 link :pan_link do
 visual do
 origin do
 z(~u(0.015 meter))
 end

 box do
 x(~u(0.03 meter))
 y(~u(0.03 meter))
 z(~u(0.03 meter))
 end

 material do
 color do
 red(0.3)
 green(0.3)
 blue(0.3)
 alpha(1.0)
 end
 end
 end

 joint :tilt_joint do
 type(:revolute)

 origin do
 z(~u(0.03 meter))
 end

 axis do
 roll(~u(-90 degree))
 end

 limit do
 lower(~u(-45 degree))
 upper(~u(90 degree))
 effort(~u(2 newton_meter))
 velocity(~u(45 degree_per_second))
 end

 link :camera_link do
 visual do
 box do
 x(~u(0.05 meter))
 y(~u(0.03 meter))
 z(~u(0.03 meter))
 end

 material do
 color do
 red(0.1)
 green(0.1)
 blue(0.1)
 alpha(1.0)
 end
 end
 end
 end
 end
 end
 end
 end
 end
end
Exploring the Compiled Robot
The robot/0 function returns a BB.Robot struct:
iex> robot = MyRobot.robot()
iex> Map.keys(robot.links)
[:base, :pan_link, :camera_link]

iex> Map.keys(robot.joints)
[:pan_joint, :tilt_joint]

iex> robot.joints.pan_joint.type
:revolute

iex> robot.joints.pan_joint.limit.upper
1.5707963267948966 # 90 degrees in radians
Notice that angles are stored in radians (SI units) even though we defined them in degrees.
Joint Types
BB supports six joint types:
	Type	Description	Use Case
	:revolute	Rotation with limits	Arm joints, pan-tilt
	:continuous	Unlimited rotation	Wheels
	:prismatic	Linear sliding	Linear actuators
	:fixed	No movement	Welded connections
	:floating	6 degrees of freedom	Free-floating objects
	:planar	Movement in a plane	Some mobile bases

What's Next?
You've defined a robot structure, but it's not running yet. In the next tutorial, we'll:
	Start the robot's supervision tree
	Understand how the process structure mirrors the physical structure
	Learn about Beam Bots' fault isolation model

Continue to Starting and Stopping.

 Starting and Stopping

In the previous tutorial, we defined a robot using the Beam Bots DSL. Now we'll bring it to life by starting its supervision tree and understanding the process structure.
Prerequisites
Complete Your First Robot first. You should have a MyRobot module defined.
Starting the Robot
Start your robot with BB.Supervisor.start_link/2:
iex> {:ok, pid} = BB.Supervisor.start_link(MyRobot)
{:ok, #PID<0.234.0>}
Your robot is now running. The supervisor has spawned a tree of processes that mirrors your robot's physical structure.
Understanding the Process Tree
BB creates a supervision tree that reflects your robot's topology:
BB.Supervisor (MyRobot)
├── Registry - Process name registry
├── PubSub Registry - Message routing
├── Task.Supervisor - Command execution
├── Runtime - State machine & robot state
├── SensorSupervisor - Robot-level sensors
├── ControllerSupervisor - Robot-level controllers
├── BridgeSupervisor - Parameter bridges
└── LinkSupervisor (:base)
 └── JointSupervisor (:pan_joint)
 └── LinkSupervisor (:pan_link)
 └── JointSupervisor (:tilt_joint)
 └── LinkSupervisor (:camera_link)
Each link and joint in your robot definition becomes a supervisor in the process tree.
For Roboticists: A supervisor is like a watchdog process. If a child process crashes, the supervisor can restart it automatically. This is how Erlang/Elixir applications achieve fault tolerance.

For Elixirists: The tree structure mirrors the physical robot. If an actuator on the camera fails, only the camera's subtree is affected - the pan joint and base keep running.

Fault Isolation
The topology-based supervision gives you fault isolation for free. Consider this scenario:
	A sensor on camera_link crashes due to a hardware glitch
	Only the camera_link supervisor restarts that sensor
	The rest of the robot continues operating

If the camera link's supervisor itself fails repeatedly:
	It escalates to its parent (tilt_joint supervisor)
	The tilt joint subtree restarts
	The pan joint and base continue operating

This mirrors how physical robot failures propagate - a broken wrist doesn't stop the shoulder from working.
Viewing the Process Tree
You can inspect the running processes:
iex> Supervisor.which_children(MyRobot)
[
 {{BB.LinkSupervisor, :base}, #PID<0.236.0>, :supervisor, ...},
 {BB.Robot.Runtime, #PID<0.235.0>, :worker, ...},
 ...
]
Or use Observer for a graphical view:
iex> :observer.start()
Navigate to the Applications tab and find your robot's supervision tree.
Stopping the Robot
Stop the robot by stopping its supervisor:
iex> Supervisor.stop(MyRobot)
:ok
This gracefully shuts down all child processes in reverse order.
Adding to Your Application
In a real application, you'll want to start the robot as part of your application supervision tree.
In your application.ex:
defmodule MyApp.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 # Start the robot supervisor
 MyRobot
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Now your robot starts automatically with your application.
Multiple Robots
You can run multiple robots in the same application:
children = [
 LeftArm,
 RightArm,
 MobileBase
]
Each robot has its own isolated supervision tree.
The Robot Runtime
The Runtime process manages your robot's operational state. When the robot starts, it's in the :disarmed state - a safe mode where actuators won't respond to commands.
iex> BB.Robot.Runtime.state(MyRobot)
:disarmed
We'll cover the state machine and commands in Commands and State Machine.
Process Registration
Every process in the robot tree is registered with a unique name. You can look up any process:
iex> BB.Process.whereis(MyRobot, :pan_joint)
#PID<0.238.0>
This registry is used internally for routing messages and looking up components.
Supervision Strategies
By default, BB uses :one_for_one supervision - if a child crashes, only that child restarts. This is appropriate for most robotics applications where components are independent.
You can customise the supervisor module in your robot's settings:
settings do
 supervisor_module(MySupervisor)
end
What's Next?
The robot is running but not doing much yet. In the next tutorial, we'll:
	Add sensors that publish data
	Subscribe to sensor messages
	Understand the PubSub system

Continue to Sensors and PubSub.

 Sensors and PubSub

In this tutorial, you'll learn how to add sensors to your robot and subscribe to their messages using Beam Bots' hierarchical PubSub system.
Prerequisites
Complete Starting and Stopping. You should have a MyRobot module that you can start.
Adding a Sensor to the DSL
Sensors are processes that publish data. Add one to your robot:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 sensor :imu, MyImuSensor

 joint :pan_joint do
 # ... rest of robot
 end
 end
 end
end
The sensor declaration takes:
	A name (:imu)
	A child spec (MyImuSensor or {MyImuSensor, options})

Sensors can be attached at three levels:
	Robot level - in a sensors do ... end block
	Link level - inside a link definition
	Joint level - inside a joint definition

Implementing a Sensor Process
A sensor is a GenServer that publishes messages. Here's a simple IMU sensor:
defmodule MyImuSensor do
 use GenServer

 alias BB.Message.Sensor.Imu
 alias BB.Message.{Vec3, Quaternion}
 alias BB.PubSub

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts)
 end

 @impl GenServer
 def init(opts) do
 # BB passes robot context in opts
 robot = Keyword.fetch!(opts, :robot)
 path = Keyword.fetch!(opts, :path)

 # Schedule periodic readings
 :timer.send_interval(100, :read_sensor)

 {:ok, %{robot: robot, path: path}}
 end

 @impl GenServer
 def handle_info(:read_sensor, state) do
 # Create an IMU message
 {:ok, message} = Imu.new(:imu,
 orientation: Quaternion.identity(),
 angular_velocity: Vec3.zero(),
 linear_acceleration: Vec3.new(0.0, 0.0, 9.81)
)

 # Publish to subscribers
 # Path format: [:sensor | location_path]
 PubSub.publish(state.robot, [:sensor | state.path], message)

 {:noreply, state}
 end
end
Key points:
	BB passes :robot and :path in the options
	The path reflects where the sensor is in the topology (e.g., [:base, :imu])
	Publish with [:sensor | path] to identify it as a sensor message

For Roboticists: This is similar to ROS publishers. The sensor publishes on a topic (path) and subscribers receive the messages asynchronously.

For Elixirists: The sensor is just a GenServer. BB starts it as part of the supervision tree and provides context about where it sits in the robot topology.

Subscribing to Messages
Start your robot and subscribe to sensor messages:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)
iex> BB.PubSub.subscribe(MyRobot, [:sensor])
{:ok, #PID<0.234.0>}
Now your IEx process receives sensor messages:
iex> flush()
{:bb, [:sensor, :base, :imu], %BB.Message{...}}
{:bb, [:sensor, :base, :imu], %BB.Message{...}}
Subscription Patterns
The path you subscribe to determines which messages you receive:
All sensor messages from anywhere
BB.PubSub.subscribe(MyRobot, [:sensor])

Sensors under the base link
BB.PubSub.subscribe(MyRobot, [:sensor, :base])

Only the specific IMU sensor
BB.PubSub.subscribe(MyRobot, [:sensor, :base, :imu])

All messages (sensors, actuators, everything)
BB.PubSub.subscribe(MyRobot, [])
Filtering by Message Type
Subscribe only to specific message types:
alias BB.Message.Sensor.Imu

BB.PubSub.subscribe(MyRobot, [:sensor],
 message_types: [Imu]
)
This is useful when you have many sensors but only care about IMU data.
Receiving Messages in a Process
In a real application, you'll receive messages in a GenServer:
defmodule MyController do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts)
 end

 @impl GenServer
 def init(opts) do
 robot = Keyword.fetch!(opts, :robot)

 # Subscribe to all sensor messages
 BB.PubSub.subscribe(robot, [:sensor])

 {:ok, %{robot: robot}}
 end

 @impl GenServer
 def handle_info({:bb, path, message}, state) do
 # Process the sensor message
 IO.inspect(message.payload, label: "Received from #{inspect(path)}")
 {:noreply, state}
 end
end
Message Structure
Messages have a standard envelope structure:
%BB.Message{
 timestamp: -576460748776542, # monotonic nanoseconds
 frame_id: :imu,
 payload: %BB.Message.Sensor.Imu{
 orientation: {:quaternion, 0.0, 0.0, 0.0, 1.0},
 angular_velocity: {:vec3, 0.0, 0.0, 0.0},
 linear_acceleration: {:vec3, 0.0, 0.0, 9.81}
 }
}
	timestamp - Monotonic time in nanoseconds (from System.monotonic_time/1)
	frame_id - Coordinate frame for the data (typically the sensor name)
	payload - The actual sensor data struct (type depends on message type)

Available Message Types
BB includes common sensor message types:
	Module	Description
	BB.Message.Sensor.Imu	Accelerometer, gyroscope
	BB.Message.Sensor.JointState	Joint positions, velocities, efforts
	BB.Message.Sensor.LaserScan	Lidar range data
	BB.Message.Sensor.Range	Single distance measurement
	BB.Message.Sensor.Image	Camera images
	BB.Message.Sensor.BatteryState	Battery status

And geometry types for transforms and motion:
	Module	Description
	BB.Message.Geometry.Point3D	3D point (wraps BB.Math.Vec3)
	BB.Message.Geometry.Pose	Position + orientation (wraps BB.Math.Transform)
	BB.Message.Geometry.Twist	Linear + angular velocity
	BB.Message.Geometry.Wrench	Force + torque
	BB.Message.Geometry.Accel	Linear + angular acceleration

Creating Custom Payload Types
You can define your own payload types for domain-specific sensor data. Use the use BB.Message macro with a schema:
defmodule MyApp.Message.Temperature do
 @moduledoc "Temperature reading from a thermal sensor."

 defstruct [:celsius, :sensor_id]

 use BB.Message,
 schema: [
 celsius: [
 type: :float,
 required: true,
 doc: "Temperature in degrees Celsius"
],
 sensor_id: [
 type: :atom,
 required: true,
 doc: "Identifier of the temperature sensor"
]
]

 @type t :: %__MODULE__{
 celsius: float(),
 sensor_id: atom()
 }

 # Custom convenience constructor (in addition to generated new/2)
 @spec new(atom(), atom(), float()) ::
 {:ok, BB.Message.t()} | {:error, term()}
 def new(frame_id, sensor_id, celsius) do
 new(frame_id, celsius: celsius, sensor_id: sensor_id)
 end
end
The use BB.Message macro:
	Sets up the BB.Message behaviour
	Compiles the schema via Spark.Options
	Generates a new/2 function: new(frame_id, attrs)
	Implements the schema/0 callback

Note: Define defstruct before use BB.Message.
Use your custom payload in a sensor:
defmodule MyTemperatureSensor do
 use GenServer

 alias MyApp.Message.Temperature
 alias BB.PubSub

 def start_link(opts), do: GenServer.start_link(__MODULE__, opts)

 @impl GenServer
 def init(opts) do
 robot = Keyword.fetch!(opts, :robot)
 path = Keyword.fetch!(opts, :path)

 :timer.send_interval(1000, :read_temperature)

 {:ok, %{robot: robot, path: path}}
 end

 @impl GenServer
 def handle_info(:read_temperature, state) do
 # Read from actual hardware here
 celsius = 23.5 + :rand.uniform() * 2

 {:ok, message} = Temperature.new(:thermal_sensor, :temp_1, celsius)
 PubSub.publish(state.robot, [:sensor | state.path], message)

 {:noreply, state}
 end
end
The Spark.Options schema validates attributes when creating messages. If validation fails, BB.Message.new/3 returns {:error, reason} with details about what went wrong.
Unsubscribing
Stop receiving messages:
BB.PubSub.unsubscribe(MyRobot, [:sensor])
Debugging Subscriptions
List who's subscribed to a path:
iex> BB.PubSub.subscribers(MyRobot, [:sensor])
[{#PID<0.234.0>, []}] # PID and message type filters
Sensors with Options
Pass configuration to your sensor:
topology do
 link :base do
 sensor :imu, {MyImuSensor, sample_rate: 200, bus: :spi0}
 end
end
Your sensor receives these in start_link/1:
def init(opts) do
 robot = Keyword.fetch!(opts, :robot)
 path = Keyword.fetch!(opts, :path)
 sample_rate = Keyword.get(opts, :sample_rate, 100)
 bus = Keyword.get(opts, :bus, :i2c1)

 # ...
end
Robot-Level Sensors
Some sensors aren't attached to a specific link (e.g., GPS, battery monitor). Define them at robot level:
defmodule MyRobot do
 use BB

 sensors do
 sensor :gps, GpsSensor
 sensor :battery, BatteryMonitor
 end

 topology do
 # ... links and joints
 end
end
These sensors publish with shorter paths: [:sensor, :gps] instead of [:sensor, :base, :gps].
What's Next?
You can now publish and subscribe to sensor data. In the next tutorial, we'll:
	Use sensor data to compute robot state
	Understand forward kinematics
	Calculate link positions from joint angles

Continue to Forward Kinematics.

 Forward Kinematics

In this tutorial, you'll learn how to compute link positions from joint angles using Beam Bots' forward kinematics system.
Prerequisites
Complete Your First Robot. You should have a MyRobot module with at least two joints.
What is Forward Kinematics?
For Elixirists: Forward kinematics answers the question "if my joints are at these angles, where is my end effector?" It's the mathematical relationship between joint angles and Cartesian positions.

Forward kinematics computes the position and orientation of any link given the current joint positions. For a robot arm:
	Input: Joint angles (e.g., shoulder at 45°, elbow at 30°)
	Output: Position of the hand in 3D space (x, y, z)

BB uses 4x4 homogeneous transformation matrices internally, leveraging Nx tensors for efficient computation.
Computing Link Position
Pass a map of joint positions to compute where a link is:
iex> robot = MyRobot.robot()
iex> alias BB.Robot.Kinematics

iex> positions = %{
...> pan_joint: :math.pi() / 4,
...> tilt_joint: :math.pi() / 6
...> }

iex> {x, y, z} = Kinematics.link_position(robot, positions, :camera_link)
{0.021213203435596423, 0.021213203435596423, 0.10598076211353316}
The result is in metres, relative to the base link's origin.
Positions are in radians for revolute joints and metres for prismatic joints.
Tip: Use :math.pi() for readable angle values. π/4 = 45°, π/2 = 90°, etc.

Querying a Running Robot
For a running robot, query the Runtime for current joint positions:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)
iex> positions = BB.Robot.Runtime.positions(MyRobot)
%{pan_joint: 0.0, tilt_joint: 0.0}

iex> robot = MyRobot.robot()
iex> {x, y, z} = Kinematics.link_position(robot, positions, :camera_link)
The Runtime maintains joint positions based on sensor feedback. See Commands and State Machine for how sensors update positions.
Getting the Full Transform
For orientation as well as position, get the full 4x4 transform:
iex> positions = %{pan_joint: :math.pi() / 4, tilt_joint: 0.0}
iex> transform = Kinematics.forward_kinematics(robot, positions, :camera_link)
#Nx.Tensor<
 f64[4][4]
 ...
>
Extract components:
iex> alias BB.Math.Transform

Get position
iex> {x, y, z} = Transform.get_translation(transform)

Get rotation matrix (3x3)
iex> rotation = Transform.get_rotation(transform)
All Link Transforms
Compute transforms for every link at once:
iex> positions = %{pan_joint: :math.pi() / 4, tilt_joint: :math.pi() / 6}
iex> transforms = Kinematics.all_link_transforms(robot, positions)
%{
 base: #Nx.Tensor<...>,
 pan_link: #Nx.Tensor<...>,
 camera_link: #Nx.Tensor<...>
}
This is more efficient than calling forward_kinematics/3 multiple times.
Working with Transforms
Transforms are 4x4 homogeneous matrices. Here are common operations:
alias BB.Math.Transform

Identity transform (no translation, no rotation)
identity = Transform.identity()

Create from position
t1 = Transform.from_translation(0.1, 0.0, 0.5)

Create rotation around Z axis
t2 = Transform.from_rotation_z(:math.pi() / 4)

Compose transforms (apply t2 then t1)
combined = Transform.compose(t1, t2)

Invert a transform
inverse = Transform.inverse(transform)
For Roboticists: These are standard SE(3) operations. The transforms follow the DH convention internally but are exposed through a cleaner API.

Practical Example: Sweeping Joint Angles
Here's a complete example that tracks the camera position as we sweep through joint angles:
defmodule KinematicsDemo do
 alias BB.Robot.Kinematics

 def sweep_pan(robot) do
 # Sweep pan joint from -90° to +90°
 for angle <- -90..90//10 do
 radians = angle * :math.pi() / 180
 positions = %{pan_joint: radians, tilt_joint: 0.0}

 {x, y, z} = Kinematics.link_position(robot, positions, :camera_link)
 IO.puts("Pan #{angle}°: x=#{Float.round(x, 3)}, y=#{Float.round(y, 3)}, z=#{Float.round(z, 3)}")
 end
 end
end

Run it
robot = MyRobot.robot()
KinematicsDemo.sweep_pan(robot)
Output:
Pan -90°: x=-0.03, y=0.0, z=0.08
Pan -80°: x=-0.03, y=0.005, z=0.08
...
Pan 0°: x=0.0, y=0.03, z=0.08
...
Pan 90°: x=0.03, y=0.0, z=0.08
Unit Conventions
BB uses SI units throughout:
	Quantity	Unit
	Position	metres
	Angle	radians
	Velocity	m/s or rad/s
	Force	newtons
	Torque	newton-metres

This differs from the DSL where you can use degrees and other units. The ~u() sigil handles conversion automatically.
Coordinate Frames
Each link has its own coordinate frame. The transform returned by forward_kinematics/3 describes how to get from the base frame to the link's frame.
For a pan-tilt camera:
	base frame: fixed to the world
	pan_link frame: rotates with the pan joint
	camera_link frame: rotates with both pan and tilt

When the camera looks at a point, you need to transform that point from world coordinates into the camera's frame.
What's Next?
Forward kinematics tells you where links are given joint angles. But how do you control the robot? In the next tutorial, we'll:
	Understand the robot state machine (disarmed → idle → executing)
	Use built-in arm/disarm commands
	Implement custom commands

Continue to Commands and State Machine.

 Commands and State Machine

In this tutorial, you'll learn how to control your robot using commands and understand the robot state machine.
Prerequisites
Complete Starting and Stopping. You should understand how to start a robot's supervision tree.
The Robot State Machine
Every Beam Bots robot has a state machine with two core operational states:
:disarmed ──arm──→ :idle ──disarm──→ :disarmed
	:disarmed - Robot is safe, actuators won't respond
	:idle - Robot is ready, waiting for commands

When commands are running, the robot remains in its current operational state. For backwards compatibility, BB.Robot.Runtime.state/1 returns :executing when commands are running in :idle state:
BB.Robot.Runtime.state(MyRobot) # => :executing (when commands running in :idle)
BB.Robot.Runtime.operational_state(MyRobot) # => :idle (the actual state)
For Roboticists: This is similar to the arming concept in flight controllers. A disarmed robot won't move even if commanded to.

For Elixirists: Commands are short-lived GenServers with state machine guards. The robot only accepts certain commands based on its current state.

Checking Robot State
Query the current state:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)
iex> BB.Robot.Runtime.state(MyRobot)
:disarmed
New robots always start in :disarmed.
Built-in Arm and Disarm Commands
To use the standard arm/disarm commands, add them to your robot:
defmodule MyRobot do
 use BB

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end
 end

 topology do
 # ... your robot topology
 end
end
The DSL generates convenience functions on your module:
iex> {:ok, cmd} = MyRobot.arm()
iex> {:ok, :armed, _opts} = BB.Command.await(cmd)

iex> BB.Robot.Runtime.state(MyRobot)
:idle
Command Execution Model
Commands are short-lived GenServers. When you execute a command:
	The Runtime spawns a supervised GenServer for the command
	You receive the command's pid
	Use BB.Command.await/2 or BB.Command.yield/2 to get the result

Execute and wait for result
{:ok, cmd} = MyRobot.arm()
{:ok, result, _opts} = BB.Command.await(cmd)

Execute with timeout
{:ok, cmd} = MyRobot.move(shoulder: 0.5)
case BB.Command.yield(cmd, 5000) do
 {:ok, result} -> handle_result(result)
 {:error, reason} -> handle_error(reason)
 nil -> handle_still_running()
end
Commands run in supervised GenServers - if they crash, the robot returns to :idle (or the appropriate safe state) and awaiting callers receive an error.
Defining Custom Commands
Add commands to your robot with the commands block:
commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end

 command :move_joint do
 handler MyMoveJointCommand
 allowed_states [:idle]
 end
end
Each command specifies:
	handler - Module using BB.Command
	allowed_states - Robot states where this command can execute

Implementing a Command Handler
Create a module using BB.Command:
defmodule MyMoveJointCommand do
 use BB.Command

 alias BB.Robot.State, as: RobotState

 @impl BB.Command
 def handle_command(goal, context, state) do
 # goal is a map of the arguments passed to the command
 # context provides access to robot state
 # state is the command's internal state (includes :result key)

 joint = Map.fetch!(goal, :joint)
 position = Map.fetch!(goal, :position)

 # Update joint position
 :ok = RobotState.set_joint_position(context.robot_state, joint, position)

 # Get the new position and store result
 new_position = RobotState.get_joint_position(context.robot_state, joint)
 {:stop, :normal, %{state | result: {:ok, %{joint: joint, position: new_position}}}}
 end

 @impl BB.Command
 def result(%{result: result}), do: result
end
Required Callbacks
handle_command/3 - The main entry point:
	goal - Map of arguments passed when executing the command
	context - Struct containing:	robot_module - The robot module
	robot - The static robot struct
	robot_state - The dynamic state (ETS-backed joint positions)
	execution_id - Unique ID for this execution

	state - The command's internal state map (includes :result and :next_state keys)

Returns GenServer-style tuples:
	{:noreply, state} - Continue running (waiting for messages)
	{:noreply, state, timeout | :hibernate | {:continue, term}} - Continue with action

	{:stop, reason, state} - Complete the command

result/1 - Extract the result when command stops:
	Called in terminate/2 to get the result for awaiting callers
	Returns {:ok, result}, {:ok, result, opts}, or {:error, reason}

Optional Callbacks
init/1 - Initialise command state (default returns {:ok, Map.new(opts)})
handle_safety_state_change/2 - Handle safety transitions:
@impl BB.Command
def handle_safety_state_change(:disarming, state) do
 # Robot is being disarmed - stop gracefully
 {:stop, :disarmed, state}
end

def handle_safety_state_change(_new_state, state) do
 # Continue execution (use with care!)
 {:continue, state}
end
The default implementation stops with :disarmed on any safety state change.
handle_info/2, handle_call/3, handle_cast/2 - Standard GenServer callbacks for receiving messages during execution.
Async Commands
Commands that wait for external events (sensors, timers) can use the full GenServer lifecycle:
defmodule WaitForPositionCommand do
 use BB.Command

 alias BB.PubSub

 @impl BB.Command
 def handle_command(goal, context, state) do
 target = Map.fetch!(goal, :target_position)
 joint = Map.fetch!(goal, :joint)

 # Subscribe to sensor updates
 PubSub.subscribe(context.robot_module, [:sensor, joint])

 # Store target in state and wait
 {:noreply, %{state | target: target, joint: joint}}
 end

 @impl BB.Command
 def handle_info({:bb, [:sensor, _joint], %{payload: joint_state}}, state) do
 current = hd(joint_state.positions)

 if abs(current - state.target) < 0.01 do
 # Reached target
 {:stop, :normal, %{state | result: {:ok, %{final_position: current}}}}
 else
 {:noreply, state}
 end
 end

 def handle_info(_msg, state), do: {:noreply, state}

 @impl BB.Command
 def result(%{result: result}), do: result
end
State vs Physical Movement
Important: Calling RobotState.set_joint_position/3 only updates Beam Bots' internal representation of where joints are. It does not move physical hardware.
To actually move a robot, you need:
	Actuators - GenServer processes that subscribe to command messages and drive motors
	Sensors - GenServer processes that read encoders and publish JointState messages
	Runtime - subscribes to sensor messages and updates the internal state

Here's the typical flow:
sequenceDiagram
 participant Cmd as Command Handler
 participant Act as Actuator
 participant HW as Hardware
 participant Sens as Sensor
 participant RT as Runtime

 Cmd->>Act: publish target position
 loop Control Loop
 Act->>HW: drive motor (PWM/CAN)
 HW->>Sens: encoder signal
 Sens->>RT: publish JointState
 RT->>RT: update internal state
 end
 Cmd->>Cmd: await completion
A command handler might publish a target position:
@impl BB.Command
def handle_command(goal, context, state) do
 target = Map.fetch!(goal, :position)

 # Publish target for actuator to follow
 message = JointCommand.new!(:shoulder, target: target)
 PubSub.publish(context.robot_module, [:actuator, :shoulder], message)

 # Subscribe to sensor feedback
 PubSub.subscribe(context.robot_module, [:sensor, :shoulder])

 {:noreply, %{state | target: target}}
end

@impl BB.Command
def handle_info({:bb, [:sensor, :shoulder], %{payload: joint_state}}, state) do
 if close_enough?(joint_state, state.target) do
 {:stop, :normal, %{state | result: {:ok, :moved}}}
 else
 {:noreply, state}
 end
end
Command Arguments
Define expected arguments with the argument entity:
command :move_joint do
 handler MyMoveJointCommand
 allowed_states [:idle]

 argument :joint, :atom do
 required true
 doc "The joint to move"
 end

 argument :position, :float do
 required true
 doc "Target position in radians"
 end

 argument :velocity, :float do
 required false
 default 1.0
 doc "Movement velocity in rad/s"
 end
end
Execute with keyword arguments:
{:ok, cmd} = MyRobot.move_joint(joint: :shoulder, position: 0.5)
{:ok, result} = BB.Command.await(cmd)
Return Values
The result/1 callback returns:
Success - robot returns to :idle
{:ok, result}

Success with state transition
{:ok, result, next_state: :disarmed}

Failure - robot returns to :idle
{:error, reason}
The next_state option is how Arm and Disarm control the state machine:
In BB.Command.Arm
@impl BB.Command
def result(%{result: {:ok, value}, next_state: next_state}) do
 {:ok, value, next_state: next_state}
end

In BB.Command.Disarm - transitions to :disarmed
def result(%{result: {:ok, value}, next_state: next_state}) do
 {:ok, value, next_state: next_state}
end
Error Handling
Commands should return structured errors from BB.Error:
alias BB.Error.State.NotAllowed

@impl BB.Command
def handle_command(goal, context, state) do
 case validate_goal(goal) do
 :ok ->
 # proceed
 {:noreply, state}

 {:error, reason} ->
 {:stop, :normal, %{state | result: {:error, reason}}}
 end
end
When a command cannot start (wrong state), execute/3 returns the error directly:
iex> BB.Robot.Runtime.state(MyRobot)
:disarmed

iex> MyRobot.move_joint(joint: :shoulder, position: 0.5)
{:error, %BB.Error.State.NotAllowed{
 current_state: :disarmed,
 allowed_states: [:idle]
}}
State Validation
Commands only execute in their allowed states:
iex> BB.Robot.Runtime.state(MyRobot)
:disarmed

iex> MyRobot.move_joint(joint: :shoulder, position: 0.5)
{:error, %BB.Error.State.NotAllowed{
 current_state: :disarmed,
 allowed_states: [:idle]
}}
A Complete Example
Here's a robot with arm, disarm, and a custom move command:
defmodule SimpleArm do
 use BB

 defmodule MoveCommand do
 use BB.Command

 alias BB.Robot.State, as: RobotState

 @impl BB.Command
 def handle_command(goal, context, state) do
 positions =
 goal
 |> Enum.into(%{})
 |> Map.take([:shoulder, :elbow])

 :ok = RobotState.set_positions(context.robot_state, positions)

 new_positions = RobotState.get_all_positions(context.robot_state)
 {:stop, :normal, %{state | result: {:ok, new_positions}}}
 end

 @impl BB.Command
 def result(%{result: result}), do: result
 end

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end

 command :move do
 handler MoveCommand
 allowed_states [:idle]
 end
 end

 topology do
 link :base do
 joint :shoulder do
 type :revolute

 axis do
 end

 limit do
 effort(~u(50 newton_meter))
 velocity(~u(2 radian_per_second))
 end

 link :upper_arm do
 joint :elbow do
 type :revolute

 axis do
 end

 limit do
 effort(~u(30 newton_meter))
 velocity(~u(3 radian_per_second))
 end

 link :forearm do
 end
 end
 end
 end
 end
 end
end
Use it:
iex> {:ok, _} = BB.Supervisor.start_link(SimpleArm)

Arm the robot
iex> {:ok, cmd} = SimpleArm.arm()
iex> {:ok, :armed, _} = BB.Command.await(cmd)

Move joints
iex> {:ok, cmd} = SimpleArm.move(shoulder: 0.5, elbow: 1.0)
iex> {:ok, positions} = BB.Command.await(cmd)

Disarm
iex> {:ok, cmd} = SimpleArm.disarm()
iex> {:ok, :disarmed, _} = BB.Command.await(cmd)
Subscribing to State Transitions
Monitor state machine changes via PubSub:
BB.PubSub.subscribe(MyRobot, [:state_machine])

{:ok, cmd} = MyRobot.arm()
BB.Command.await(cmd)

Receive transition messages
receive do
 {:bb, [:state_machine], %BB.Message{payload: transition}} ->
 IO.puts("#{transition.from} → #{transition.to}")
end
Command Cancellation
By default, when a command's category is at capacity (typically 1 command), starting another command in that category returns an error. But sometimes you want commands that can cancel running commands to make room.
Use the cancel option to specify which categories a command can cancel:
commands do
 command :move_to do
 handler MoveToCommand
 allowed_states [:idle]
 cancel [:default] # Can cancel other commands in :default category
 end

 command :emergency_stop do
 handler EmergencyStopCommand
 allowed_states :* # Can run in any state
 cancel :* # Cancels all running commands
 end
end
When a command with cancel starts:
	Running commands in the specified categories are cancelled
	The new command starts
	Cancelled commands' result/1 is called and awaiting callers receive {:error, :cancelled}

The cancel option accepts:
	:* - cancels all categories (expanded to all defined categories at compile time)
	[:category1, :category2] - cancels specific categories
	[] (default) - cannot cancel anything, errors if category is full

This is useful for:
	Motion commands - send a new target without waiting for the previous move to complete
	Emergency stop - immediately halt regardless of what's running
	Trajectory updates - smoothly blend into a new path

Example with cancellable motion:
Start moving to position A
{:ok, cmd_a} = MyRobot.move_to(position: 1.0)

Before it completes, redirect to position B
This cancels cmd_a automatically
{:ok, cmd_b} = MyRobot.move_to(position: 2.0)

cmd_a returns {:error, :cancelled}
cmd_b continues to completion
Caution: Only enable cancellation for commands where interruption is safe. A calibration routine or homing sequence probably shouldn't be cancellable.

Cancelling Commands
Cancel a running command explicitly:
{:ok, cmd} = MyRobot.long_running_command()

Later, if needed
BB.Robot.Runtime.cancel(MyRobot)

The command's result/1 is called and awaiting callers receive the result
What's Next?
You now understand the command system and robot state machine. In the next tutorial, we'll:
	Export your robot to URDF format
	Visualise it in external tools
	Understand URDF limitations

Continue to Exporting to URDF.
For more advanced state management, see Custom States and Command Categories to learn about:
	Defining custom operational modes beyond :idle (e.g., :recording, :reacting)
	Running multiple commands concurrently with category-based concurrency
	Mid-execution state transitions

 Exporting to URDF

In this tutorial, you'll learn how to export your Beam Bots robot definition to URDF format for use with external tools.
Prerequisites
Complete Your First Robot. You should have a robot module defined.
What is URDF?
For Elixirists: URDF (Unified Robot Description Format) is an XML format for describing robots. It's the standard in the ROS ecosystem and supported by visualisation tools like RViz and simulators like Gazebo.

URDF describes:
	Links (rigid bodies) with visual and collision geometry
	Joints connecting links with motion constraints
	Physical properties (mass, inertia)
	Materials and colours

Exporting to URDF lets you visualise your Beam Bots robots in established tools.
Using the Mix Task
Export your robot with the bb.to_urdf mix task:
Print URDF to stdout
mix bb.to_urdf MyRobot

Write to a file
mix bb.to_urdf MyRobot --output robot.urdf

Short form
mix bb.to_urdf MyRobot -o robot.urdf

Example Output
For a simple two-joint robot, the output looks like:
<?xml version="1.0" encoding="UTF-8"?>
<robot name="MyRobot">
 <link name="base">
 <visual>
 <geometry>
 <cylinder radius="0.04" length="0.05"/>
 </geometry>
 <material name="base_material">
 <color rgba="0.2 0.2 0.2 1.0"/>
 </material>
 </visual>
 </link>

 <link name="pan_link">
 <visual>
 <geometry>
 <box size="0.03 0.03 0.03"/>
 </geometry>
 </visual>
 </link>

 <joint name="pan_joint" type="revolute">
 <parent link="base"/>
 <child link="pan_link"/>
 <origin xyz="0.0 0.0 0.05" rpy="0.0 0.0 0.0"/>
 <axis xyz="0.0 0.0 1.0"/>
 <limit lower="-1.5708" upper="1.5708" effort="5.0" velocity="1.0472"/>
 </joint>

 <!-- ... more links and joints ... -->
</robot>
Programmatic Export
You can also export from Elixir code:
alias BB.Urdf.Exporter

From a module
{:ok, xml} = Exporter.export(MyRobot)

From a robot struct
robot = MyRobot.robot()
{:ok, xml} = Exporter.export_robot(robot)

Write to file
File.write!("robot.urdf", xml)
Viewing in RViz
If you have ROS installed, view your robot:
Export the robot
mix bb.to_urdf MyRobot -o robot.urdf

View in RViz (requires ROS)
roslaunch urdf_tutorial display.launch model:=robot.urdf

Loading in Gazebo
For simulation in Gazebo:
Export
mix bb.to_urdf MyRobot -o robot.urdf

Launch Gazebo with the model
gazebo --verbose robot.urdf

Note: Gazebo may require additional tags for physics simulation (like <inertial> on all links).
What Gets Exported
The exporter converts these Beam Bots elements to URDF:
	Beam Bots	URDF
	link	<link>
	joint (revolute, prismatic, etc.)	<joint>
	visual with geometry	<visual>
	collision	<collision>
	inertial (mass, inertia)	<inertial>
	material and color	<material>
	origin	<origin>
	axis	<axis>
	limit	<limit>
	dynamics	<dynamics>

Working with Meshes
If your robot uses mesh geometry:
visual do
 mesh do
 filename "meshes/arm_link.stl"
 scale 0.001 # Convert mm to metres
 end
end
The URDF will reference the same path:
<geometry>
 <mesh filename="meshes/arm_link.stl" scale="0.001"/>
</geometry>
Make sure the mesh files are available relative to where you'll use the URDF.
Limitations
Some Beam Bots features don't map directly to URDF:
	Feature	Status
	Sensors	Not exported (URDF extension)
	Actuators	Not exported (URDF extension)
	Commands	Not exported (Beam Bots-specific)
	Controllers	Not exported (Beam Bots-specific)
	floating joints	Exported but limited support
	planar joints	Exported but limited support

URDF is primarily a static description format. Dynamic elements like sensors and controllers are typically added through separate configuration in tools like ROS.
Unit Conversion
Beam Bots automatically converts units to URDF conventions:
	Quantity	URDF Unit
	Position	metres
	Angle	radians
	Mass	kilograms
	Force	newtons
	Torque	newton-metres

Your ~u() values are converted automatically:
In Beam Bots
limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
end

In URDF
<limit lower="-1.5708" upper="1.5708" .../>
Validation Tips
After exporting, validate your URDF:
Using ROS tools
check_urdf robot.urdf

Or view the structure
urdf_to_graphiz robot.urdf

Common issues:
	Missing <inertial> on links (required for simulation)
	Mesh file paths not found
	Joint limits in wrong order (lower > upper)

Round-Trip Workflow
A typical development workflow:
	Define robot in Beam Bots (Elixir DSL)
	Export to URDF for visualisation
	Test kinematics in RViz
	Run runtime in Beam Bots (supervision, sensors, commands)
	Re-export after changes

The URDF serves as a visualisation and validation tool, while Beam Bots handles the runtime.
Summary
You now know how to export your robot to URDF for use with external tools like RViz and Gazebo.
What's Next?
In the next tutorial, we'll learn how to:
	Define runtime-adjustable parameters
	Tune your robot while it's running
	Subscribe to parameter changes

Continue to Parameters.

 Parameters

In this tutorial, you'll learn how to define runtime-adjustable parameters for your robot and modify them while the robot is running.
Prerequisites
Complete Commands. You should understand how BB manages robot state and processes.
What Are Parameters?
Parameters are configuration values that can be changed at runtime without recompiling your code. They're useful for:
	Tuning controllers - Adjust PID gains while testing
	Configuring behaviour - Change speed limits or safety thresholds
	Adapting to conditions - Modify settings based on environment

For Roboticists: Parameters work similarly to ROS2 parameters or ArduPilot's parameter system. You define schemas, get/set values at runtime, and receive change notifications.

For Elixirists: Parameters are validated key-value pairs stored in ETS with PubSub change notifications. Think of them as a typed, observable configuration system.

Defining Parameters in the DSL
Add a parameters section to your robot definition:
defmodule MyRobot do
 use BB

 parameters do
 param :max_speed, type: :float, default: 1.0,
 min: 0.0, max: 10.0, doc: "Maximum velocity in m/s"

 param :safety_enabled, type: :boolean, default: true,
 doc: "Enable collision avoidance"
 end

 topology do
 link :base
 end
end
Each param declaration takes:
	A name (atom)
	type - The value type (:float, :integer, :boolean, :string, :atom, or {:unit, unit_type} for physical quantities)
	default - Initial value (required)
	min/max - Optional bounds for numeric types
	doc - Description for documentation

Organising Parameters with Groups
Use group to organise related parameters:
parameters do
 group :motion do
 param :max_linear_speed, type: :float, default: 1.0,
 min: 0.0, max: 5.0

 param :max_angular_speed, type: :float, default: 0.5,
 min: 0.0, max: 2.0
 end

 group :safety do
 param :collision_distance, type: :float, default: 0.3,
 min: 0.1, max: 2.0

 param :emergency_stop_enabled, type: :boolean, default: true
 end
end
Groups create hierarchical paths: [:motion, :max_linear_speed], [:safety, :collision_distance].
Groups can be nested:
parameters do
 group :controller do
 group :pid do
 param :kp, type: :float, default: 1.0
 param :ki, type: :float, default: 0.1
 param :kd, type: :float, default: 0.01
 end
 end
end
This creates paths like [:controller, :pid, :kp].
Passing Parameters at Startup
You can override default values when starting the robot by passing a params option. The format is a nested keyword list matching your group structure:
Override a single parameter
{:ok, _} = BB.Supervisor.start_link(MyRobot, params: [
 motion: [max_linear_speed: 2.0]
])

Override multiple parameters
{:ok, _} = BB.Supervisor.start_link(MyRobot, params: [
 motion: [max_linear_speed: 2.0, max_angular_speed: 1.0],
 safety: [enabled: false]
])

Nested groups use nested keyword lists
{:ok, _} = BB.Supervisor.start_link(MyRobot, params: [
 controller: [pid: [kp: 2.5, ki: 0.2]]
])
Startup parameters are validated against the schema. Invalid values or unknown parameter names cause the robot to fail to start:
Type mismatch - fails immediately
{:error, _} = BB.Supervisor.start_link(MyRobot, params: [
 motion: [max_linear_speed: "fast"] # Expected float
])

Unknown parameter - fails immediately
{:error, _} = BB.Supervisor.start_link(MyRobot, params: [
 motion: [unknown_param: 1.0]
])
The precedence for parameter values is:
	DSL defaults - Applied first from your param declarations
	Persisted values - If using a parameter store, these override defaults
	Startup params - The params option overrides everything else

This lets you define sensible defaults in the DSL, persist tuned values across restarts, and still override specific values for testing or special configurations.
Reading Parameters
Start your robot and read parameter values:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)
iex> BB.Parameter.get(MyRobot, [:motion, :max_linear_speed])
{:ok, 1.0}

iex> BB.Parameter.get(MyRobot, [:safety, :collision_distance])
{:ok, 0.3}
Use get!/2 if you want to raise on missing parameters:
iex> BB.Parameter.get!(MyRobot, [:motion, :max_linear_speed])
1.0
Listing Parameters
Enumerate all parameters or filter by prefix:
iex> BB.Parameter.list(MyRobot)
[
 {[:motion, :max_linear_speed], %{value: 1.0, type: :float, ...}},
 {[:motion, :max_angular_speed], %{value: 0.5, type: :float, ...}},
 {[:safety, :collision_distance], %{value: 0.3, type: :float, ...}},
 ...
]

iex> BB.Parameter.list(MyRobot, prefix: [:motion])
[
 {[:motion, :max_linear_speed], %{value: 1.0, type: :float, ...}},
 {[:motion, :max_angular_speed], %{value: 0.5, type: :float, ...}}
]
Writing Parameters
Change parameter values at runtime:
iex> BB.Parameter.set(MyRobot, [:motion, :max_linear_speed], 2.0)
:ok

iex> BB.Parameter.get(MyRobot, [:motion, :max_linear_speed])
{:ok, 2.0}
Values are validated against the schema. Invalid values are rejected:
iex> BB.Parameter.set(MyRobot, [:motion, :max_linear_speed], -1.0)
{:error, "must be at least 0.0"}

iex> BB.Parameter.set(MyRobot, [:motion, :max_linear_speed], "fast")
{:error, "expected float, got \"fast\""}
Atomic Batch Updates
Update multiple parameters atomically with set_many/2:
iex> BB.Parameter.set_many(MyRobot, [
...> {[:controller, :pid, :kp], 2.0},
...> {[:controller, :pid, :ki], 0.2},
...> {[:controller, :pid, :kd], 0.05}
...>])
:ok
If any parameter fails validation, none are changed:
iex> BB.Parameter.set_many(MyRobot, [
...> {[:controller, :pid, :kp], 2.0},
...> {[:controller, :pid, :ki], -0.5} # Invalid: negative
...>])
{:error, [{[:controller, :pid, :ki], "must be at least 0.0"}]}
Subscribing to Parameter Changes
Parameter changes are published via PubSub. Subscribe to receive notifications:
iex> BB.PubSub.subscribe(MyRobot, [:param])
{:ok, #PID<0.234.0>}

iex> BB.Parameter.set(MyRobot, [:motion, :max_linear_speed], 3.0)
:ok

iex> flush()
{:bb, [:param, :motion, :max_linear_speed], %BB.Message{
 payload: %BB.Parameter.Changed{
 path: [:motion, :max_linear_speed],
 old_value: 2.0,
 new_value: 3.0,
 source: :local
 }
}}
Subscribe to specific parameter paths:
All motion parameters
BB.PubSub.subscribe(MyRobot, [:param, :motion])

Just the max speed
BB.PubSub.subscribe(MyRobot, [:param, :motion, :max_linear_speed])
Parameters in Components
Controllers, sensors, and actuators can define inline parameters:
topology do
 link :base do
 joint :shoulder, type: :revolute do
 controller :position, {MyPIDController, []} do
 param :kp, type: :float, default: 1.0, min: 0.0
 param :ki, type: :float, default: 0.1, min: 0.0
 param :kd, type: :float, default: 0.01, min: 0.0
 end
 end
 end
end
These parameters are accessible via their full path:
BB.Parameter.get(MyRobot, [:base, :shoulder, :position, :kp])
Implementing a Parameterised Controller
Here's a complete PID controller that uses parameters:
defmodule MyPIDController do
 use GenServer
 @behaviour BB.Parameter

 # Define the parameter schema
 @impl BB.Parameter
 def param_schema do
 Spark.Options.new!(
 kp: [type: :float, required: true, doc: "Proportional gain"],
 ki: [type: :float, default: 0.0, doc: "Integral gain"],
 kd: [type: :float, default: 0.0, doc: "Derivative gain"]
)
 end

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts)
 end

 @impl GenServer
 def init(opts) do
 %{robot: robot, path: path} = Keyword.fetch!(opts, :bb)

 # Register our parameters with the runtime
 BB.Parameter.register(robot, path, __MODULE__)

 # Subscribe to parameter changes for our path
 BB.PubSub.subscribe(robot, [:param | path])

 {:ok, %{robot: robot, path: path, integral: 0.0, last_error: 0.0}}
 end

 @impl GenServer
 def handle_info({:bb, [:param | _], _message}, state) do
 # Parameters changed - gains will be read fresh on next compute
 {:noreply, state}
 end

 def compute(pid, setpoint, measurement) do
 GenServer.call(pid, {:compute, setpoint, measurement})
 end

 @impl GenServer
 def handle_call({:compute, setpoint, measurement}, _from, state) do
 # Read current gains
 {:ok, kp} = BB.Parameter.get(state.robot, state.path ++ [:kp])
 {:ok, ki} = BB.Parameter.get(state.robot, state.path ++ [:ki])
 {:ok, kd} = BB.Parameter.get(state.robot, state.path ++ [:kd])

 error = setpoint - measurement
 integral = state.integral + error
 derivative = error - state.last_error

 output = kp * error + ki * integral + kd * derivative

 {:reply, output, %{state | integral: integral, last_error: error}}
 end
end
Key points:
	Implement BB.Parameter behaviour with param_schema/0
	Call BB.Parameter.register/3 in init/1 to register the schema
	Subscribe to [:param | path] for change notifications

	Read parameters when needed (they're fast ETS lookups)

Unit-Typed Parameters
Parameters can use physical units:
parameters do
 group :motion do
 param :max_speed, type: {:unit, :meter_per_second}, default: ~u(1.0 meter_per_second),
 min: ~u(0 m/s), max: ~u(10 m/s)

 param :acceleration, type: {:unit, :meter_per_second_squared},
 default: ~u(0.5 meter_per_second_squared)
 end
end
Unit parameters are validated and can be converted:
iex> BB.Parameter.set(MyRobot, [:motion, :max_speed], ~u(2.0 m/s))
:ok

Units are converted to SI base for storage
iex> BB.Parameter.get(MyRobot, [:motion, :max_speed])
{:ok, 2.0} # metres per second
Complete Example
Here's a robot with a tuneable motion system:
defmodule TuneableRobot do
 use BB

 parameters do
 group :motion do
 param :max_linear_speed, type: :float, default: 1.0,
 min: 0.0, max: 5.0, doc: "Maximum forward velocity"

 param :max_angular_speed, type: :float, default: 0.5,
 min: 0.0, max: 2.0, doc: "Maximum rotation rate"

 param :acceleration_limit, type: :float, default: 0.5,
 min: 0.1, max: 2.0, doc: "Acceleration ramp rate"
 end

 group :safety do
 param :obstacle_distance, type: :float, default: 0.5,
 min: 0.1, max: 2.0, doc: "Minimum obstacle clearance"

 param :enabled, type: :boolean, default: true,
 doc: "Enable safety systems"
 end
 end

 topology do
 link :base do
 sensor :lidar, MyLidarSensor

 joint :left_wheel, type: :continuous do
 actuator :motor, MyMotor
 end

 joint :right_wheel, type: :continuous do
 actuator :motor, MyMotor
 end
 end
 end
end
Tune it from IEx:
iex> {:ok, _} = BB.Supervisor.start_link(TuneableRobot)

Check current settings
iex> BB.Parameter.list(TuneableRobot, prefix: [:motion])
[
 {[:motion, :max_linear_speed], %{value: 1.0, ...}},
 {[:motion, :max_angular_speed], %{value: 0.5, ...}},
 {[:motion, :acceleration_limit], %{value: 0.5, ...}}
]

Increase speed limit
iex> BB.Parameter.set(TuneableRobot, [:motion, :max_linear_speed], 2.0)
:ok

Disable safety for testing (carefully!)
iex> BB.Parameter.set(TuneableRobot, [:safety, :enabled], false)
:ok
What's Next?
You can now configure robots at runtime with validated parameters. In the next tutorial, we'll:
	Connect to remote systems via parameter bridges
	Access parameters from ground control stations
	Implement bidirectional parameter sync

Continue to Parameter Bridges.

 Parameter Bridges

In this tutorial, you'll learn how to connect your robot's parameters to remote systems using parameter bridges.
Prerequisites
Complete Parameters. You should understand how to define and access parameters at runtime.
What Are Parameter Bridges?
Parameter bridges provide bidirectional access between BB and remote systems:
	Outbound (local → remote): Expose BB's parameters to ground control stations, web UIs, or debugging tools
	Inbound (remote → local): Access parameters from flight controllers, external sensors, or other systems

For Roboticists: Bridges work like MAVLink's parameter protocol or ROS2's parameter services. They let you enumerate, read, write, and subscribe to parameters over any transport.

For Elixirists: Bridges are GenServers that implement the BB.Bridge behaviour. They're supervised by the robot and integrate with PubSub for change notifications.

Defining Bridges in the DSL
Add bridges to your parameters section:
defmodule MyRobot do
 use BB

 parameters do
 param :max_speed, type: :float, default: 1.0

 bridge :debug, {MyDebugBridge, port: 4000}
 end

 topology do
 link :base
 end
end
Each bridge takes:
	A name (atom) - used to identify the bridge
	A child spec - module or {module, options} tuple

Bridges are started as part of the robot's supervision tree.
The Bridge Behaviour
Bridges implement BB.Bridge. There are two directions:
Outbound Callback
Handle local parameter changes and notify remote clients:
@callback handle_change(robot :: module(), changed :: BB.Parameter.Changed.t(), state) ::
 {:ok, state}
Bridges should also subscribe to [:param] via BB.PubSub in their GenServer init/1.
Inbound Callbacks (Optional)
Access parameters on a remote system:
@callback list_remote(state) ::
 {:ok, [remote_param()], state} | {:error, term(), state}

@callback get_remote(param_id, state) ::
 {:ok, term(), state} | {:error, term(), state}

@callback set_remote(param_id, value :: term(), state) ::
 {:ok, state} | {:error, term(), state}

@callback subscribe_remote(param_id, state) ::
 {:ok, state} | {:error, term(), state}
Implementing a Simple Bridge
Here's a bridge that logs parameter changes:
defmodule MyDebugBridge do
 use BB.Bridge

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts)
 end

 # GenServer init - extract robot, subscribe to param changes
 @impl GenServer
 def init(opts) do
 %{robot: robot} = Keyword.fetch!(opts, :bb)
 BB.PubSub.subscribe(robot, [:param])

 {:ok, %{
 robot: robot,
 port: Keyword.get(opts, :port, 4000)
 }}
 end

 # Handle local parameter changes
 @impl BB.Bridge
 def handle_change(_robot, changed, state) do
 IO.puts("[DEBUG] Parameter #{inspect(changed.path)} changed:")
 IO.puts(" Old: #{inspect(changed.old_value)}")
 IO.puts(" New: #{inspect(changed.new_value)}")

 {:ok, state}
 end

 # Receive PubSub messages and dispatch to handle_change
 @impl GenServer
 def handle_info({:bb, [:param | _path], message}, state) do
 {:ok, new_state} = handle_change(state.robot, message.payload, state)
 {:noreply, new_state}
 end

 def handle_info(_msg, state) do
 {:noreply, state}
 end
end
Now when parameters change, you'll see debug output:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)
iex> BB.Parameter.set(MyRobot, [:max_speed], 2.0)
[DEBUG] Parameter [:max_speed] changed:
 Old: 1.0
 New: 2.0
:ok
Accessing Remote Parameters
Bridges can also expose parameters from remote systems. This is useful when your robot communicates with a flight controller that has its own parameters.
Implementing Inbound Access
Add the inbound callbacks to your bridge:
defmodule MyFlightControllerBridge do
 use BB.Bridge

 # Define a message type for remote param changes
 defmodule ParamValue do
 defstruct [:value]

 use BB.Message,
 schema: [value: [type: :any, required: true]]
 end

 def start_link(opts), do: GenServer.start_link(__MODULE__, opts)

 @impl GenServer
 def init(opts) do
 %{robot: robot} = Keyword.fetch!(opts, :bb)
 BB.PubSub.subscribe(robot, [:param])
 conn = connect_to_fc(opts[:device])

 {:ok, %{
 robot: robot,
 conn: conn,
 subscriptions: MapSet.new()
 }}
 end

 @impl BB.Bridge
 def handle_change(_robot, changed, state) do
 # Optionally sync local changes to FC
 send_param_to_fc(state.conn, changed)
 {:ok, state}
 end

 # List all parameters on the flight controller
 @impl BB.Bridge
 def list_remote(state) do
 params = fetch_all_fc_params(state.conn)
 |> Enum.map(fn {id, value} ->
 %{
 id: id,
 value: value,
 type: nil,
 doc: nil,
 path: param_id_to_path(id)
 }
 end)

 {:ok, params, state}
 end

 # Get a specific parameter from the FC
 @impl BB.Bridge
 def get_remote(param_id, state) do
 case fetch_fc_param(state.conn, param_id) do
 {:ok, value} -> {:ok, value, state}
 :error -> {:error, :not_found, state}
 end
 end

 # Set a parameter on the FC
 @impl BB.Bridge
 def set_remote(param_id, value, state) do
 :ok = send_fc_param_set(state.conn, param_id, value)
 {:ok, state}
 end

 # Subscribe to FC parameter changes
 @impl BB.Bridge
 def subscribe_remote(param_id, state) do
 state = %{state | subscriptions: MapSet.put(state.subscriptions, param_id)}
 {:ok, state}
 end

 # When FC sends a param update, publish via PubSub
 @impl GenServer
 def handle_info({:fc_param_changed, param_id, value}, state) do
 if MapSet.member?(state.subscriptions, param_id) do
 path = param_id_to_path(param_id)
 message = BB.Message.new!(ParamValue, :remote, value: value)
 BB.PubSub.publish(state.robot, path, message)
 end
 {:noreply, state}
 end

 def handle_info({:bb, [:param | _], message}, state) do
 {:ok, new_state} = handle_change(state.robot, message.payload, state)
 {:noreply, new_state}
 end

 def handle_info(_msg, state), do: {:noreply, state}

 # Convert "PITCH_RATE_P" to [:fc, :pitch, :rate, :p]
 defp param_id_to_path(param_id) do
 atoms = param_id
 |> String.downcase()
 |> String.split("_")
 |> Enum.map(&String.to_atom/1)

 [:fc | atoms]
 end

 # Placeholder - implement actual FC communication
 defp connect_to_fc(_device), do: :connected
 defp fetch_all_fc_params(_conn), do: [{"PITCH_RATE_P", 0.1}, {"ROLL_RATE_P", 0.15}]
 defp fetch_fc_param(_conn, _id), do: {:ok, 0.1}
 defp send_fc_param_set(_conn, _id, _value), do: :ok
 defp send_param_to_fc(_conn, _changed), do: :ok
end
Using Remote Parameters from IEx
Access remote parameters through the BB.Parameter API:
iex> {:ok, _} = BB.Supervisor.start_link(MyRobot)

List parameters on the flight controller
iex> {:ok, params} = BB.Parameter.list_remote(MyRobot, :fc)
{:ok, [
 %{id: "PITCH_RATE_P", value: 0.1, path: [:fc, :pitch, :rate, :p], ...},
 %{id: "ROLL_RATE_P", value: 0.15, path: [:fc, :roll, :rate, :p], ...}
]}

Get a specific parameter
iex> {:ok, value} = BB.Parameter.get_remote(MyRobot, :fc, "PITCH_RATE_P")
{:ok, 0.1}

Set a parameter on the FC
iex> :ok = BB.Parameter.set_remote(MyRobot, :fc, "PITCH_RATE_P", 0.12)
:ok

Subscribe to changes
iex> :ok = BB.Parameter.subscribe_remote(MyRobot, :fc, "PITCH_RATE_P")
:ok

Subscribe to PubSub using the path from list_remote
iex> BB.PubSub.subscribe(MyRobot, [:fc, :pitch, :rate, :p])
{:ok, #PID<0.234.0>}
Multiple Bridges
A robot can have multiple bridges for different purposes:
parameters do
 group :motion do
 param :max_speed, type: :float, default: 1.0
 end

 # Expose params to web UI
 bridge :web, {MyPhoenixBridge, url: "ws://localhost:4000/socket"}

 # Connect to flight controller
 bridge :fc, {MyMavlinkBridge, device: "/dev/ttyACM0"}

 # Debug logging
 bridge :debug, MyDebugBridge
end
Each bridge operates independently:
	Changes to local params notify all bridges
	Remote params are accessed by bridge name

Bridge Supervision
Bridges are supervised with fault isolation. If a bridge crashes:
	Other bridges continue operating
	The crashed bridge is restarted
	Local parameters remain accessible

This is handled by BB.BridgeSupervisor, which is separate from sensor and controller supervisors.
Complete Example: Mock Flight Controller
Here's a complete example with a simulated flight controller:
defmodule MockFCBridge do
 @moduledoc "Simulates a flight controller with tunable parameters."

 use BB.Bridge

 defmodule ParamValue do
 defstruct [:value]

 use BB.Message,
 schema: [value: [type: :any, required: true]]
 end

 # Simulated FC parameters
 @fc_params %{
 "PITCH_RATE_P" => 0.1,
 "PITCH_RATE_I" => 0.01,
 "PITCH_RATE_D" => 0.005,
 "ROLL_RATE_P" => 0.1,
 "ROLL_RATE_I" => 0.01,
 "ROLL_RATE_D" => 0.005,
 "YAW_RATE_P" => 0.15,
 "THR_HOVER" => 0.5
 }

 def start_link(opts), do: GenServer.start_link(__MODULE__, opts)

 @impl GenServer
 def init(opts) do
 %{robot: robot} = Keyword.fetch!(opts, :bb)
 BB.PubSub.subscribe(robot, [:param])

 {:ok, %{
 robot: robot,
 params: @fc_params,
 subscriptions: MapSet.new()
 }}
 end

 @impl BB.Bridge
 def handle_change(_robot, _changed, state), do: {:ok, state}

 @impl BB.Bridge
 def list_remote(state) do
 params = Enum.map(state.params, fn {id, value} ->
 %{id: id, value: value, type: :float, doc: nil, path: id_to_path(id)}
 end)
 {:ok, params, state}
 end

 @impl BB.Bridge
 def get_remote(param_id, state) do
 case Map.fetch(state.params, param_id) do
 {:ok, value} -> {:ok, value, state}
 :error -> {:error, :not_found, state}
 end
 end

 @impl BB.Bridge
 def set_remote(param_id, value, state) do
 if Map.has_key?(state.params, param_id) do
 state = %{state | params: Map.put(state.params, param_id, value)}

 # Notify subscribers
 if MapSet.member?(state.subscriptions, param_id) do
 path = id_to_path(param_id)
 message = BB.Message.new!(ParamValue, :fc, value: value)
 BB.PubSub.publish(state.robot, path, message)
 end

 {:ok, state}
 else
 {:error, :not_found, state}
 end
 end

 @impl BB.Bridge
 def subscribe_remote(param_id, state) do
 {:ok, %{state | subscriptions: MapSet.put(state.subscriptions, param_id)}}
 end

 @impl GenServer
 def handle_info({:bb, [:param | _], message}, state) do
 {:ok, new_state} = handle_change(state.robot, message.payload, state)
 {:noreply, new_state}
 end

 def handle_info(_msg, state), do: {:noreply, state}

 defp id_to_path(param_id) do
 atoms = param_id |> String.downcase() |> String.split("_") |> Enum.map(&String.to_atom/1)
 [:fc | atoms]
 end
end
Use it in your robot:
defmodule TestRobot do
 use BB

 parameters do
 param :armed, type: :boolean, default: false

 bridge :fc, MockFCBridge
 end

 topology do
 link :base
 end
end
Try it out:
iex> {:ok, _} = BB.Supervisor.start_link(TestRobot)

iex> {:ok, params} = BB.Parameter.list_remote(TestRobot, :fc)
iex> Enum.map(params, & &1.id)
["PITCH_RATE_P", "PITCH_RATE_I", "PITCH_RATE_D", "ROLL_RATE_P", ...]

iex> BB.Parameter.get_remote(TestRobot, :fc, "PITCH_RATE_P")
{:ok, 0.1}

iex> BB.Parameter.set_remote(TestRobot, :fc, "PITCH_RATE_P", 0.15)
:ok

iex> BB.Parameter.get_remote(TestRobot, :fc, "PITCH_RATE_P")
{:ok, 0.15}
Summary
Parameter bridges enable:
	Local → Remote: Expose BB parameters to external tools
	Remote → Local: Access parameters from connected systems
	Bidirectional sync: Keep parameters in sync across systems

Key points:
	Bridges implement BB.Bridge
	Use init/2 and handle_change/3 for outbound (local changes)
	Use list_remote/1, get_remote/2, set_remote/3 for inbound (remote access)
	Each bridge is supervised independently for fault isolation
	Access remote params via BB.Parameter.{list,get,set}_remote

What's Next?
You've now learned the complete parameter system. You can:
	Define parameters in the DSL
	Read and write them at runtime
	Subscribe to changes via PubSub
	Connect to remote systems via bridges

For reference documentation on all parameter options, see the DSL Reference.

 Inverse Kinematics

In this tutorial, you'll learn how to compute joint angles from target positions using the FABRIK inverse kinematics solver.
Prerequisites
Complete Forward Kinematics. You should understand how joint angles map to link positions.
What is Inverse Kinematics?
For Elixirists: Inverse kinematics is the opposite of forward kinematics. Instead of asking "where is my end-effector given these joint angles?", we ask "what joint angles do I need to reach this target position?"

Inverse kinematics (IK) is fundamental for robot control:
	Input: Target position in 3D space (x, y, z)
	Output: Joint angles that position the end-effector at that target

This is harder than forward kinematics because:
	There may be multiple solutions (or none)
	The equations are often non-linear
	Joint limits must be respected

Installing bb_ik_fabrik
Add the FABRIK solver to your dependencies:
def deps do
 [
 {:bb, "~> 0.1.0"},
 {:bb_ik_fabrik, "~> 0.1.0"}
]
end
FABRIK (Forward And Backward Reaching Inverse Kinematics) is an iterative algorithm that works well for serial chains like robot arms.
Basic Usage
alias BB.IK.FABRIK
alias BB.Robot.State

Get your robot
robot = MyRobot.robot()
{:ok, state} = State.new(robot)

Define where you want the end-effector to go
target = {0.3, 0.2, 0.1}

Solve for joint angles
case FABRIK.solve(robot, state, :end_effector_link, target) do
 {:ok, positions, meta} ->
 IO.puts("Solved in #{meta.iterations} iterations")
 IO.puts("Distance to target: #{Float.round(meta.residual * 1000, 2)}mm")
 IO.inspect(positions, label: "Joint angles")

 {:error, :unreachable, meta} ->
 IO.puts("Target is out of reach")
 IO.puts("Best distance achieved: #{Float.round(meta.residual * 1000, 2)}mm")
end
Note: This example just solves for joint angles. To actually move the robot, see the Motion Integration section below.

Understanding the Result
The solver returns a meta map with useful information:
	Field	Description
	iterations	Number of FABRIK iterations performed
	residual	Distance from end-effector to target (metres)
	reached	Boolean - did we converge within tolerance?
	reason	:converged, :unreachable, :max_iterations, etc.

On error, meta also contains :positions with the best-effort joint values.
Practical Example: Validating Reachability
Here's a complete example that solves IK and verifies the result with forward kinematics:
defmodule IKDemo do
 alias BB.IK.FABRIK
 alias BB.Robot.Kinematics

 def check_reachability(robot, state, target_link, target) do
 # Solve IK
 case FABRIK.solve(robot, state, target_link, target) do
 {:ok, positions, meta} ->
 # Verify with forward kinematics
 {x, y, z} = Kinematics.link_position(robot, positions, target_link)

 IO.puts("Target: #{format_point(target)}")
 IO.puts("Achieved: #{format_point({x, y, z})}")
 IO.puts("Error: #{Float.round(meta.residual * 1000, 2)}mm")

 {:ok, positions}

 {:error, reason, _meta} ->
 {:error, reason}
 end
 end

 defp format_point({x, y, z}) do
 "(#{Float.round(x, 3)}, #{Float.round(y, 3)}, #{Float.round(z, 3)})"
 end
end

Usage
robot = MyRobot.robot()
{:ok, state} = BB.Robot.State.new(robot)
IKDemo.check_reachability(robot, state, :tip, {0.3, 0.2, 0.0})
Note: This validates reachability without moving the robot. To actually move, use BB.Motion.move_to/4 as shown in Motion Integration.

Solver Options
Fine-tune the solver behaviour with options:
FABRIK.solve(robot, state, :end_effector, target,
 max_iterations: 100, # Default: 50
 tolerance: 0.001, # Default: 1.0e-4 (0.1mm)
 respect_limits: true # Default: true
)
When to Adjust Options
	Increase max_iterations if the solver returns :max_iterations but is getting close
	Increase tolerance if you don't need sub-millimetre precision
	Set respect_limits: false to see what the "ideal" solution would be (useful for debugging)

Handling Unreachable Targets
Not all targets can be reached. The solver handles this gracefully:
Target way beyond the robot's reach
target = {10.0, 0.0, 0.0}

case FABRIK.solve(robot, state, :tip, target) do
 {:error, :unreachable, meta} ->
 # The solver stretched the arm as far as possible
 # meta.positions contains the best-effort joint angles
 IO.puts("Target unreachable")
 IO.puts("Best distance: #{meta.residual}m")
 IO.inspect(meta.positions, label: "Best effort angles")

 # If you want to move to the best-effort position,
 # use BB.Motion.send_positions(MyRobot, meta.positions)
end
Target Formats
The solver accepts several target formats:
Position tuple (most common)
target = {0.3, 0.2, 0.1}

Nx tensor
target = Nx.tensor([0.3, 0.2, 0.1])

4x4 homogeneous transform (position extracted)
target = BB.Math.Transform.translation(0.3, 0.2, 0.1)
Note: FABRIK currently solves for position only. Orientation in transforms is ignored.

Using solve_and_update/5
For convenience, solve_and_update/5 solves and updates the state in one call:
case FABRIK.solve_and_update(robot, state, :tip, target) do
 {:ok, positions, meta} ->
 # State has already been updated
 IO.puts("Solved and updated state")

 {:error, reason, _meta} ->
 # State is unchanged on error
 IO.puts("Failed: #{reason}")
end
Note: This updates BB.Robot.State but doesn't send actuator commands. Use BB.Motion.move_to/4 to actually move the robot.

Motion Integration
The BB.Motion module bridges IK solving with actuator commands, making it easy to move your robot to target positions. Use it directly or through BB.IK.FABRIK.Motion for FABRIK-specific convenience.
Moving to a Target
alias BB.Motion

Start your robot
{:ok, _pid} = MyRobot.start_link([])

Move the end-effector to a target position
case Motion.move_to(MyRobot, :tip, {0.3, 0.2, 0.1}, solver: BB.IK.FABRIK) do
 {:ok, meta} ->
 IO.puts("Moved in #{meta.iterations} iterations")

 {:error, reason, meta} ->
 IO.puts("Failed: #{reason}, best residual: #{meta.residual}")
end
This solves IK, updates the robot state, and sends position commands to all actuators.
Using FABRIK Convenience Functions
BB.IK.FABRIK.Motion provides defaults for common options:
alias BB.IK.FABRIK.Motion

Same as above but pre-configured for FABRIK
case Motion.move_to(MyRobot, :tip, {0.3, 0.2, 0.1}) do
 {:ok, meta} -> :moved
 {:error, _, _} -> :failed
end

Just solve without moving (for validation)
case Motion.solve(MyRobot, :tip, {0.3, 0.2, 0.1}) do
 {:ok, positions, _meta} -> IO.inspect(positions, label: "Would set")
 {:error, _, _} -> :unreachable
end
Multi-Target Motion
For coordinated motion (like walking gaits), solve multiple targets simultaneously:
targets = %{
 left_foot: {0.1, 0.0, 0.0},
 right_foot: {-0.1, 0.0, 0.0}
}

case Motion.move_to_multi(MyRobot, targets, solver: BB.IK.FABRIK) do
 {:ok, results} ->
 Enum.each(results, fn {link, {:ok, _pos, meta}} ->
 IO.puts("#{link}: #{meta.iterations} iterations")
 end)

 {:error, failed_link, reason, _results} ->
 IO.puts("#{failed_link} failed: #{reason}")
end
Targets are solved in parallel using Task.async_stream for efficiency.
Continuous Tracking
For following moving targets (e.g., visual tracking), use BB.IK.FABRIK.Tracker:
alias BB.IK.FABRIK.Tracker

Start tracking
{:ok, tracker} = Tracker.start_link(
 robot: MyRobot,
 target_link: :gripper,
 initial_target: {0.3, 0.2, 0.1},
 update_rate: 30 # Hz
)

Update target (from vision callback, etc.)
Tracker.update_target(tracker, {0.35, 0.25, 0.15})

Check status
%{residual: residual, tracking: true} = Tracker.status(tracker)

Stop when done
{:ok, final_positions} = Tracker.stop(tracker)
The tracker runs a continuous solve loop at the specified rate, sending actuator commands on each successful solve.
In Custom Commands
When implementing custom commands, use Motion with the command context:
defmodule MyRobot.Commands.Reach do
 @behaviour BB.Command

 @impl true
 def handle_command(%{target: target}, context) do
 case BB.Motion.move_to(context, :gripper, target, solver: BB.IK.FABRIK) do
 {:ok, meta} ->
 {:ok, %{residual: meta.residual, iterations: meta.iterations}}

 {:error, reason, _meta} ->
 {:error, {:ik_failed, reason}}
 end
 end
end
Working with Joint Limits
By default, the solver respects joint limits defined in your robot:
topology do
 link :base do
 joint :shoulder do
 type(:revolute)
 limit do
 lower(~u(-90 degree))
 upper(~u(90 degree))
 end
 # ...
 end
 end
end
The solver will clamp joint values to these limits, which may prevent reaching some targets even if they're geometrically possible.
To see the unconstrained solution:
{:ok, unconstrained, _} = FABRIK.solve(robot, state, :tip, target, respect_limits: false)
{:ok, constrained, _} = FABRIK.solve(robot, state, :tip, target, respect_limits: true)

Compare the solutions
IO.inspect(unconstrained, label: "Without limits")
IO.inspect(constrained, label: "With limits")
Limitations
FABRIK works well for many use cases but has some limitations:
	Position only - It solves for end-effector position, not orientation
	Serial chains - It assumes a single chain from base to end-effector (no branching)
	Collinear targets - Can struggle when the target is directly in line with a straight chain

For more complex requirements, consider implementing a different solver using the BB.IK.Solver behaviour.
What's Next?
You now know how to:
	Compute joint angles for target positions
	Handle unreachable targets gracefully
	Fine-tune solver parameters
	Work with joint limits
	Use the Motion API to send actuator commands
	Track moving targets with the Tracker

Inverse kinematics combined with Motion provides a complete solution for position-based robot control. Use these primitives to build higher-level behaviours like gait generators, pick-and-place routines, or visual servoing systems.

 Simulation Mode

Beam Bots supports running robots in simulation mode, allowing you to develop and test robot behaviour without physical hardware. A single robot definition works for both hardware and simulation - you just change how you start it.
Prerequisites
Complete Your First Robot and Starting and Stopping first.
Starting in Simulation Mode
Start your robot in kinematic simulation mode by passing the simulation option:
iex> {:ok, pid} = MyRobot.start_link(simulation: :kinematic)
{:ok, #PID<0.234.0>}
The robot is now running entirely in software. Actuators receive commands and publish motion messages, but no hardware communication occurs.
Checking Simulation Mode
You can check whether a robot is running in simulation mode:
iex> BB.Robot.Runtime.simulation_mode(MyRobot)
:kinematic

Hardware mode returns nil
iex> BB.Robot.Runtime.simulation_mode(MyRobot)
nil
How Simulation Works
In simulation mode:
	Actuators are replaced - Real actuator modules are swapped for BB.Sim.Actuator
	Controllers are omitted - By default, hardware controllers don't start
	Messages flow normally - Commands, BeginMotion, and JointState messages work as usual
	Safety system is active - You must still arm the robot before sending commands

The simulated actuator:
	Receives position commands via the normal API
	Calculates motion timing from joint velocity limits in your DSL
	Publishes BeginMotion messages with realistic timing
	Clamps positions to joint limits

The existing OpenLoopPositionEstimator sensor works unchanged, estimating position from BeginMotion messages.
Example: Testing Motion
Start in simulation
{:ok, _pid} = MyRobot.start_link(simulation: :kinematic)

Arm the robot (required even in simulation)
:ok = BB.Safety.arm(MyRobot)

Send a position command
BB.Actuator.set_position!(MyRobot, :shoulder_motor, 1.57)

The OpenLoopPositionEstimator will estimate position over time
Process.sleep(500)
position = BB.Robot.Runtime.joint_position(MyRobot, :shoulder)
Controller Behaviour in Simulation
By default, controllers are omitted in simulation mode. You can customise this per-controller using the simulation option in the DSL:
controllers do
 # Won't start in simulation (default)
 controller :pca9685, {BB.Servo.PCA9685.Controller, bus: "i2c-1"},
 simulation: :omit

 # Starts a mock controller that accepts but ignores commands
 controller :dynamixel, {BB.Servo.Robotis.Controller, port: "/dev/ttyUSB0"},
 simulation: :mock

 # Starts the real controller (for external simulator integration)
 controller :gazebo_bridge, {MyApp.GazeboBridge, url: "localhost:11345"},
 simulation: :start
end
The three options are:
	Option	Behaviour
	:omit	Controller not started (default)
	:mock	Mock controller started - accepts commands but does nothing
	:start	Real controller started

When to Use Each Option
	:omit - Most hardware controllers (I2C, serial, GPIO). The simulated actuator doesn't need them.
	:mock - When actuators query the controller for state during initialisation.
	:start - For external simulator bridges (Gazebo, MuJoCo) that need to run in simulation.

Bridge Behaviour in Simulation
Parameter bridges also support the simulation option, with the same three modes:
parameters do
 # Won't start in simulation (default)
 bridge :mavlink, {BBMavLink.ParameterBridge, conn: "/dev/ttyACM0"},
 simulation: :omit

 # Starts a mock bridge that accepts but ignores operations
 bridge :gcs, {MyApp.GCSBridge, url: "ws://gcs.local/socket"},
 simulation: :mock

 # Starts the real bridge (for external system integration)
 bridge :phoenix, {BBPhoenix.ParameterBridge, url: "ws://localhost:4000/socket"},
 simulation: :start
end
	Option	Behaviour
	:omit	Bridge not started (default)
	:mock	Mock bridge started - accepts operations but does nothing
	:start	Real bridge started

Kinematic Simulation
The :kinematic simulation mode provides position/velocity interpolation without physics:
	Positions are clamped to joint limits (lower, upper)
	Travel time is calculated from velocity limits
	No acceleration, inertia, or gravity simulation

This is sufficient for:
	Testing control logic and state machines
	Verifying command sequences
	UI development without hardware
	Integration testing

Future Simulation Modes
The simulation option is an atom to allow future expansion:
Current: kinematic simulation
MyRobot.start_link(simulation: :kinematic)

Future: external physics engine
MyRobot.start_link(simulation: :external)

Future: built-in physics
MyRobot.start_link(simulation: :physics)
Environment-Based Mode Selection
To switch between hardware and simulation based on environment:
In your application.ex
defmodule MyApp.Application do
 use Application

 @impl true
 def start(_type, _args) do
 simulation_mode =
 if Application.get_env(:my_app, :simulate, false) do
 :kinematic
 else
 nil
 end

 children = [
 {MyRobot, simulation: simulation_mode}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
Then in your config:
config/dev.exs
config :my_app, simulate: true

config/prod.exs (or target.exs for Nerves)
config :my_app, simulate: false
Testing with Simulation
Simulation mode is useful for integration tests:
defmodule MyRobotTest do
 use ExUnit.Case

 test "robot moves to home position" do
 {:ok, pid} = MyRobot.start_link(simulation: :kinematic)

 :ok = BB.Safety.arm(MyRobot)
 :ok = BB.Command.execute(MyRobot, :home)

 # Verify the robot reached home position
 assert_eventually fn ->
 pos = BB.Robot.Runtime.joint_position(MyRobot, :shoulder)
 abs(pos - 0.0) < 0.01
 end

 Supervisor.stop(pid)
 end
end
Subscribing to Simulated Motion
You can subscribe to motion messages from simulated actuators:
Subscribe to actuator messages
BB.PubSub.subscribe(MyRobot, [:actuator, :base, :shoulder, :motor])

Send a command
BB.Actuator.set_position!(MyRobot, :motor, 1.0)

Receive the BeginMotion message
receive do
 {:bb, _path, %BB.Message{payload: %BB.Message.Actuator.BeginMotion{} = motion}} ->
 IO.puts("Moving from #{motion.initial_position} to #{motion.target_position}")
 IO.puts("Expected arrival: #{motion.expected_arrival}ms")
end
Limitations
Kinematic simulation doesn't model:
	Physics (gravity, inertia, friction, collisions)
	Sensor noise or latency
	Hardware-specific behaviour
	External disturbances

For high-fidelity simulation, consider integrating with an external physics engine like Gazebo or MuJoCo using simulation: :start controllers.
What's Next?
You now know how to:
	Run robots in simulation mode
	Configure controller behaviour in simulation
	Use simulation for development and testing

For more advanced topics, see:
	Custom States and Command Categories - Define operational modes and concurrent commands
	Safety - Understanding the safety system
	Parameters - Runtime-adjustable configuration

 Custom States and Command Categories

In this tutorial, you'll learn how to define custom operational states and use command categories to run multiple commands concurrently.
Prerequisites
Complete Commands and State Machine. You should understand the basic state machine and how to define commands.
Beyond Idle
The default state machine has just two operational states: :disarmed and :idle. This works well for simple robots, but real applications often need more operational modes:
	A data collection robot might have a recording mode
	A reactive robot might have a reacting mode where it responds to stimuli
	A robot running learned behaviours might switch between inference and training modes

Beam Bots lets you define custom operational states that represent these modes.
Defining Custom States
Add a states section to your robot:
defmodule DataCollectionRobot do
 use BB

 states do
 initial_state :idle # Default, can be omitted

 state :recording do
 doc "Recording sensor data for dataset collection"
 end

 state :processing do
 doc "Processing recorded data"
 end
 end

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle, :recording, :processing]
 cancel :* # Can cancel any running commands
 end
 end

 topology do
 link :base_link
 end
end
The built-in states (:idle, :disarmed) are always available. Your custom states extend what's possible.
Transitioning Between States
States can only change via commands - there's no direct API to set the state. This ensures all state transitions are tracked, auditable, and follow the command lifecycle.
Simple State Transitions with SetState
For straightforward state changes, use the built-in BB.Command.SetState handler:
commands do
 command :enter_recording do
 handler {BB.Command.SetState, to: :recording}
 allowed_states [:idle]
 end

 command :exit_recording do
 handler {BB.Command.SetState, to: :idle}
 allowed_states [:recording]
 end

 command :start_processing do
 handler {BB.Command.SetState, to: :processing}
 allowed_states [:recording] # Can only process after recording
 end
end
Use these commands like any other:
iex> {:ok, _} = BB.Supervisor.start_link(DataCollectionRobot)
iex> {:ok, cmd} = DataCollectionRobot.arm()
iex> {:ok, :armed, _} = BB.Command.await(cmd)

iex> BB.Robot.Runtime.state(DataCollectionRobot)
:idle

iex> {:ok, cmd} = DataCollectionRobot.enter_recording()
iex> {:ok, :recording, _} = BB.Command.await(cmd)

iex> BB.Robot.Runtime.state(DataCollectionRobot)
:recording
State Transitions During Command Execution
Commands that do work over time can transition through multiple states using BB.Command.transition_state/2:
defmodule DataPipelineCommand do
 use BB.Command

 @impl BB.Command
 def handle_command(_goal, context, state) do
 # Start in :recording state
 :ok = BB.Command.transition_state(context, :recording)

 # Begin recording
 send(self(), :start_recording)
 {:noreply, Map.put(state, :context, context)}
 end

 @impl BB.Command
 def handle_info(:start_recording, state) do
 # ... record data ...
 Process.send_after(self(), :finish_recording, 5000)
 {:noreply, state}
 end

 def handle_info(:finish_recording, state) do
 # Transition to processing
 :ok = BB.Command.transition_state(state.context, :processing)

 # Process the data
 send(self(), :process_data)
 {:noreply, state}
 end

 def handle_info(:process_data, state) do
 # ... process data ...
 {:stop, :normal, Map.put(state, :result, {:ok, :pipeline_complete})}
 end

 @impl BB.Command
 def result(%{result: result}) do
 # Return to :idle when complete
 {:ok, result, next_state: :idle}
 end

 def result(_state), do: {:error, :cancelled}
end
Querying State
Use BB.Robot.Runtime to query the current state:
Get the operational state (what mode the robot is in)
BB.Robot.Runtime.operational_state(MyRobot)
=> :idle | :recording | :processing | ...

Get the "classic" state (backwards compatible)
BB.Robot.Runtime.state(MyRobot)
=> :disarmed | :idle | :executing | :recording | ...
The difference between state/1 and operational_state/1:
	operational_state/1 returns the actual operational mode
	state/1 returns :executing when in :idle with commands running (for backwards compatibility)

For custom states, both return the actual state regardless of whether commands are running.
Command Categories
By default, only one command runs at a time. But some robots need concurrent operations:
	Move the arm while recording sensor data
	Blink an LED while executing a motion
	Run multiple sensing operations in parallel

Command categories let you define groups of commands with independent concurrency.
Defining Categories
Add categories to your commands section:
commands do
 category :motion do
 doc "Physical movement commands"
 concurrency_limit 1 # Only one motion at a time (default)
 end

 category :sensing do
 doc "Sensor and recording commands"
 concurrency_limit 2 # Up to 2 concurrent sensing operations
 end

 category :auxiliary do
 doc "LEDs, sounds, indicators"
 concurrency_limit 3 # Multiple concurrent auxiliary commands
 end

 # Commands specify their category
 command :move_to do
 handler MyMoveCommand
 category :motion
 allowed_states [:idle]
 cancel [:motion] # Can cancel previous motion commands
 end

 command :record_frame do
 handler MyRecordCommand
 category :sensing
 allowed_states [:idle]
 # No cancel - concurrent sensing up to limit
 end

 command :set_led do
 handler MyLedCommand
 category :auxiliary
 allowed_states [:idle]
 # No cancel - concurrent auxiliary up to limit
 end
end
How Categories Work
	Each category has a concurrency_limit (default: 1)
	Commands in a category run concurrently up to that limit
	Commands in different categories can run concurrently
	Commands without an explicit category use the :default category (limit: 1)

Start a motion command
{:ok, move_cmd} = MyRobot.move_to(target: position)

While moving, start recording (different category - runs concurrently)
{:ok, record_cmd} = MyRobot.record_frame(sensor: :camera)

Both commands are now running
BB.Robot.Runtime.executing_commands(MyRobot)
=> [
%{name: :move_to, category: :motion, pid: #PID<...>},
%{name: :record_frame, category: :sensing, pid: #PID<...>}
]
Category Full Behaviour
When a category is at capacity, the behaviour depends on the cancel option:
	If the command has cancel that includes the full category, it cancels commands to make room
	Otherwise, the new command is rejected with {:error, %BB.Error.Category.Full{}}

Start a motion command
{:ok, cmd1} = MyRobot.move_to(target: pos1)

Start another motion (same category, at limit)
{:ok, cmd2} = MyRobot.move_to(target: pos2)

cmd1 is cancelled, cmd2 runs
Because :move_to has cancel: [:motion]
The cancel option accepts:
	:* - cancels all categories
	[:motion, :sensing] - cancels specific categories
	[] (default) - cannot cancel, errors if category is full

Introspection APIs
Query the execution state:
Is anything executing?
BB.Robot.Runtime.executing?(MyRobot)
=> true | false

Is a specific category occupied?
BB.Robot.Runtime.executing?(MyRobot, :motion)
=> true | false

List all running commands
BB.Robot.Runtime.executing_commands(MyRobot)
=> [%{name: :move_to, category: :motion, pid: #PID<...>, ...}]

Get category availability
BB.Robot.Runtime.category_availability(MyRobot)
=> %{motion: {1, 1}, sensing: {0, 2}, default: {0, 1}}
Format: {current_count, limit}
Compile-Time Validation
The DSL validates your state and category references at compile time:
This will produce a warning:
command :bad_cmd do
 handler MyHandler
 allowed_states [:nonexistent_state] # Warning: undefined state
end

This will also produce a warning:
command :bad_cmd do
 handler MyHandler
 category :nonexistent_category # Warning: undefined category
end
A Complete Example
Here's a robot that collects data while moving:
defmodule DataCollectorArm do
 use BB

 states do
 state :recording do
 doc "Actively recording sensor data"
 end
 end

 commands do
 category :motion do
 concurrency_limit 1
 end

 category :data do
 concurrency_limit 1
 end

 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle, :recording]
 cancel :* # Can cancel any running commands
 end

 command :enter_recording do
 handler {BB.Command.SetState, to: :recording}
 allowed_states [:idle]
 end

 command :exit_recording do
 handler {BB.Command.SetState, to: :idle}
 allowed_states [:recording]
 end

 command :move_to do
 handler MoveToCommand
 category :motion
 allowed_states [:idle, :recording]
 cancel [:motion] # Can cancel previous motion commands
 end

 command :capture_frame do
 handler CaptureFrameCommand
 category :data
 allowed_states [:recording]
 cancel [:data] # Can cancel previous capture commands
 end
 end

 topology do
 link :base do
 joint :shoulder do
 type :revolute
 axis do
 end
 limit do
 effort(~u(50 newton_meter))
 velocity(~u(2 radian_per_second))
 end
 link :arm
 end
 end
 end
end
Using it:
Start and arm
{:ok, _} = BB.Supervisor.start_link(DataCollectorArm)
{:ok, cmd} = DataCollectorArm.arm()
{:ok, :armed, _} = BB.Command.await(cmd)

Enter recording mode
{:ok, cmd} = DataCollectorArm.enter_recording()
{:ok, :recording, _} = BB.Command.await(cmd)

Now we can move AND capture frames concurrently
{:ok, move_cmd} = DataCollectorArm.move_to(position: 0.5)
{:ok, capture_cmd} = DataCollectorArm.capture_frame(sensor: :camera)

Both commands run in parallel (different categories)
BB.Robot.Runtime.executing_commands(DataCollectorArm)
=> [%{name: :move_to, category: :motion}, %{name: :capture_frame, category: :data}]

Wait for both
BB.Command.await(move_cmd)
BB.Command.await(capture_cmd)

Exit recording mode
{:ok, cmd} = DataCollectorArm.exit_recording()
{:ok, :idle, _} = BB.Command.await(cmd)
Best Practices
	Use states for operational modes, not for tracking progress. A state like :recording is good; a state like :step_3_of_5 is probably better handled inside a command.

	Keep category limits low. High concurrency limits can make reasoning about robot behaviour difficult. Most categories should have limit 1.

	Validate state transitions. Use allowed_states to ensure commands can only run in appropriate modes.

	Consider safety implications. Can your robot safely run concurrent motions? Usually not - keep motion commands in a single category with limit 1.

	Use SetState for simple transitions. Only implement custom command handlers when you need to do work during the transition.

What's Next?
You now understand custom states and command categories. Continue exploring:
	Parameters for runtime-adjustable configuration
	Safety for implementing safe hardware control

 How to Add a Custom Command

Create a command handler that integrates with the robot state machine and provides structured feedback.
Prerequisites
	Familiarity with the BB DSL (see First Robot)
	Understanding of the command system (see Commands and State Machine)

Step 1: Define the Command in DSL
Add the command to your robot's commands block:
defmodule MyRobot do
 use BB

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end

 command :move_to do
 handler MyRobot.MoveToCommand
 allowed_states [:idle]

 argument :target, {:map, :atom, :float} do
 required true
 doc "Target joint positions in radians"
 end

 argument :velocity, :float do
 required false
 default 1.0
 doc "Movement velocity multiplier"
 end
 end
 end

 topology do
 # ... your robot topology
 end
end
Step 2: Create the Handler Module
Create a module using BB.Command:
defmodule MyRobot.MoveToCommand do
 use BB.Command

 alias BB.Message.Sensor.JointCommand
 alias BB.PubSub

 @impl BB.Command
 def handle_command(goal, context, state) do
 target = Map.fetch!(goal, :target)
 velocity = Map.get(goal, :velocity, 1.0)

 # Subscribe to sensor feedback
 for {joint_name, _position} <- target do
 PubSub.subscribe(context.robot_module, [:sensor, joint_name])
 end

 # Send commands to actuators
 for {joint_name, position} <- target do
 command = JointCommand.new!(name: joint_name, target: position)
 PubSub.publish(context.robot_module, [:actuator, joint_name], command)
 end

 # Store target and wait for completion
 {:noreply, Map.merge(state, %{
 target: target,
 velocity: velocity,
 positions: %{}
 })}
 end

 @impl BB.Command
 def handle_info({:bb, [:sensor, joint_name], %{payload: joint_state}}, state) do
 current = hd(joint_state.positions)
 target = Map.get(state.target, joint_name)

 if target && close_enough?(current, target) do
 new_positions = Map.put(state.positions, joint_name, current)

 if all_complete?(new_positions, state.target) do
 {:stop, :normal, %{state | result: {:ok, new_positions}}}
 else
 {:noreply, %{state | positions: new_positions}}
 end
 else
 {:noreply, state}
 end
 end

 def handle_info(_msg, state), do: {:noreply, state}

 @impl BB.Command
 def result(%{result: result}), do: result

 defp close_enough?(current, target), do: abs(current - target) < 0.01

 defp all_complete?(positions, target) do
 Enum.all?(target, fn {joint, _} -> Map.has_key?(positions, joint) end)
 end
end
Step 3: Use the Command
The DSL generates a convenience function on your robot module:
Start the robot
{:ok, _} = BB.Supervisor.start_link(MyRobot)

Arm first (commands need :idle state)
{:ok, cmd} = MyRobot.arm()
{:ok, :armed, _} = BB.Command.await(cmd)

Execute your command
{:ok, cmd} = MyRobot.move_to(target: %{shoulder: 0.5, elbow: 1.0})

Wait for completion
case BB.Command.await(cmd, 10_000) do
 {:ok, positions} ->
 IO.puts("Moved to: #{inspect(positions)}")

 {:error, reason} ->
 IO.puts("Movement failed: #{inspect(reason)}")
end
Adding Timeout Handling
For commands that might hang, add timeout logic:
defmodule MyRobot.MoveToCommand do
 use BB.Command

 @timeout_ms 5000

 @impl BB.Command
 def handle_command(goal, context, state) do
 # ... setup code ...

 # Schedule timeout
 timer_ref = Process.send_after(self(), :timeout, @timeout_ms)

 {:noreply, Map.put(state, :timer_ref, timer_ref)}
 end

 @impl BB.Command
 def handle_info(:timeout, state) do
 {:stop, :normal, %{state | result: {:error, :timeout}}}
 end

 def handle_info({:bb, [:sensor, _], _} = msg, state) do
 # Cancel timeout on any progress
 if state[:timer_ref] do
 Process.cancel_timer(state.timer_ref)
 end

 # ... existing sensor handling ...

 {:noreply, Map.put(state, :timer_ref, new_timer_ref)}
 end
end
Handling Safety State Changes
React to safety transitions during execution:
@impl BB.Command
def handle_safety_state_change(:disarming, state) do
 # Robot is being disarmed - stop gracefully
 {:stop, :disarmed, %{state | result: {:error, :disarmed}}}
end

def handle_safety_state_change(_new_state, state) do
 # Continue execution (use with care!)
 {:continue, state}
end
The default implementation stops with :disarmed on any safety state change.
Command Cancellation
Allow your command to be cancelled by other commands:
command :move_to do
 handler MyRobot.MoveToCommand
 allowed_states [:idle]
 cancel [:default] # Can be cancelled by other :default commands
end

command :emergency_stop do
 handler MyRobot.EmergencyStopCommand
 allowed_states :* # Run in any state
 cancel :* # Cancel all running commands
end
When cancelled, awaiting callers receive {:error, :cancelled}.
State Transitions
Commands can transition the robot to a new state:
@impl BB.Command
def result(%{result: {:ok, value}, next_state: next_state}) do
 {:ok, value, next_state: next_state}
end
This is how BB.Command.Arm and BB.Command.Disarm work - they set next_state to :idle and :disarmed respectively.
Structured Errors
Return structured errors from BB.Error:
alias BB.Error.State.NotAllowed

@impl BB.Command
def handle_command(goal, context, state) do
 case validate_goal(goal, context) do
 :ok ->
 # proceed
 {:noreply, state}

 {:error, reason} ->
 {:stop, :normal, %{state | result: {:error, reason}}}
 end
end

defp validate_goal(goal, context) do
 target = goal[:target] || %{}
 joints = Map.keys(context.robot.joints)

 invalid = Map.keys(target) -- joints
 if invalid == [] do
 :ok
 else
 {:error, BB.Error.Invalid.UnknownJoints.exception(joints: invalid)}
 end
end
Testing Commands
Test command handlers with the robot in simulation mode:
defmodule MyRobot.MoveToCommandTest do
 use ExUnit.Case

 setup do
 {:ok, _} = BB.Supervisor.start_link(MyRobot, simulation: :kinematic)
 {:ok, cmd} = MyRobot.arm()
 {:ok, :armed, _} = BB.Command.await(cmd)
 :ok
 end

 test "moves to target positions" do
 {:ok, cmd} = MyRobot.move_to(target: %{shoulder: 0.5})
 assert {:ok, %{shoulder: position}} = BB.Command.await(cmd, 5000)
 assert_in_delta position, 0.5, 0.02
 end

 test "returns error for invalid joints" do
 {:ok, cmd} = MyRobot.move_to(target: %{nonexistent: 0.5})
 assert {:error, %BB.Error.Invalid.UnknownJoints{}} = BB.Command.await(cmd)
 end
end
Common Issues
Command not starting
Check that:
	The robot is in one of the allowed_states for the command
	The command handler module is compiled and available

Command hangs forever
Ensure you:
	Call {:stop, reason, state} when complete
	Handle timeout cases
	Subscribe to the correct PubSub paths for feedback

State transition not working
The result/1 callback must return {:ok, value, next_state: state} - the third element must be a keyword list with :next_state.
Next Steps
	Learn about Custom States and Command Categories for advanced state machines
	Understand the Command System architecture

 How to Deploy to Nerves

Deploy your Beam Bots robot to embedded hardware using Nerves.
Prerequisites
	Nerves tooling installed (see Nerves Installation)
	Supported hardware (Raspberry Pi, BeagleBone, etc.)

Step 1: Create a Nerves Project
Generate a new Nerves project:
mix nerves.new my_robot_firmware
cd my_robot_firmware

Step 2: Install Beam Bots with Igniter
Use the Igniter installer to add Beam Bots:
mix igniter.install bb

This will:
	Add bb to your dependencies
	Create a MyRobotFirmware.Robot module with arm/disarm commands and a base link
	Add the robot to your application supervision tree
	Configure the formatter for the BB DSL

Step 3: Add Hardware Drivers
Add servo driver dependencies for your hardware. For example, with a PCA9685 PWM controller:
mix igniter.install bb_servo_pca9685

Or manually add to mix.exs:
defp deps do
 [
 # ... existing deps ...
 {:bb_servo_pca9685, "~> 0.1"}
]
end
Then run mix deps.get.
Step 4: Configure Your Robot
Edit the generated robot module to add your hardware configuration:
lib/my_robot_firmware/robot.ex
defmodule MyRobotFirmware.Robot do
 use BB

 # Add controller for your servo driver
 controllers do
 controller :pca9685, {BB.Servo.PCA9685.Controller, bus: "i2c-1", address: 0x40}
 end

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end
 end

 topology do
 link :base do
 joint :pan, type: :revolute do
 limit lower: ~u(-90 degree), upper: ~u(90 degree), velocity: ~u(60 degree_per_second)

 # Add actuator and sensor for each joint
 actuator :servo, {BB.Servo.PCA9685.Actuator, channel: 0, controller: :pca9685}
 sensor :position, {BB.Sensor.OpenLoopPositionEstimator, actuator: :servo}
 end

 joint :tilt, type: :revolute do
 limit lower: ~u(-45 degree), upper: ~u(45 degree), velocity: ~u(60 degree_per_second)

 actuator :servo, {BB.Servo.PCA9685.Actuator, channel: 1, controller: :pca9685}
 sensor :position, {BB.Sensor.OpenLoopPositionEstimator, actuator: :servo}
 end
 end
 end
end
Step 5: Configure Hardware
Set up hardware-specific configuration in your Nerves config:
config/target.exs
config :nerves, :firmware, rootfs_overlay: "rootfs_overlay"
If using GPIO (e.g., for bb_servo_pigpio):
config :pigpiox,
 gpio_port: 8888
Step 6: Build and Deploy
Build the firmware:
export MIX_TARGET=rpi4 # or your target
mix deps.get
mix firmware

Deploy to device:
First time (burn to SD card)
mix burn

Updates over network
mix upload my_robot.local

Step 7: Connect and Control
SSH into the device:
ssh my_robot.local

In IEx:
alias MyRobotFirmware.Robot

Arm the robot
{:ok, cmd} = Robot.arm()
{:ok, :armed, _} = BB.Command.await(cmd)

Move joints
BB.Actuator.set_position!(Robot, :servo, 0.5)
Network Control
With bb_liveview
Add the LiveView dashboard for web-based control:
mix igniter.install bb_liveview

Then configure your router:
In router
import BB.LiveView.Router
scope "/" do
 pipe_through :browser
 bb_dashboard "/", MyRobotFirmware.Robot
end
Access at http://my_robot.local/.
With Custom GenServer
Create a TCP/UDP server for remote control:
defmodule MyRobotFirmware.RemoteControl do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 {:ok, socket} = :gen_tcp.listen(4000, [:binary, active: true, reuseaddr: true])
 {:ok, %{socket: socket}}
 end

 def handle_info({:tcp, _socket, data}, state) do
 case Jason.decode(data) do
 {:ok, %{"command" => "move", "joint" => joint, "position" => pos}} ->
 BB.Actuator.set_position!(MyRobotFirmware.Robot, String.to_atom(joint), pos)

 _ ->
 :ok
 end

 {:noreply, state}
 end
end
Hardware Watchdog
For safety-critical applications, add a hardware watchdog:
defmodule MyRobotFirmware.Watchdog do
 use GenServer

 @heartbeat_pin 18
 @interval_ms 100

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 {:ok, gpio} = Circuits.GPIO.open(@heartbeat_pin, :output)
 schedule_heartbeat()
 {:ok, %{gpio: gpio}}
 end

 def handle_info(:heartbeat, state) do
 Circuits.GPIO.write(state.gpio, 1)
 Process.sleep(1)
 Circuits.GPIO.write(state.gpio, 0)
 schedule_heartbeat()
 {:noreply, state}
 end

 defp schedule_heartbeat do
 Process.send_after(self(), :heartbeat, @interval_ms)
 end
end
Common Issues
I2C Device Not Found
Check the bus name matches your hardware:
	Raspberry Pi: Usually "i2c-1"
	BeagleBone: May be "i2c-2"

Verify with:
Circuits.I2C.detect_devices("i2c-1")
GPIO Permissions
Ensure GPIO is accessible. On some targets, add udev rules or use the nerves_runtime GPIO interface.
Network Not Available on Boot
The robot may start before network is ready. If using network control, handle connection failures gracefully:
def init(_opts) do
 # Wait for network
 VintageNet.subscribe(["interface", "eth0", "connection"])
 {:ok, :waiting_for_network}
end

def handle_info({VintageNet, ["interface", "eth0", "connection"], _, :internet, _}, state) do
 # Network ready, start accepting connections
 {:noreply, start_server(state)}
end
Testing Locally
Test your robot code on your development machine before deploying:
Start in simulation mode
{:ok, _} = BB.Supervisor.start_link(MyRobotFirmware.Robot, simulation: :kinematic)
Adding More Robots
To add additional robots to the same firmware:
mix bb.add_robot --robot MyRobotFirmware.Robots.SecondRobot

Next Steps
	Add bb_liveview for web-based control
	Implement hardware safety with watchdog
	Consider OTA updates with NervesHub

 How to Implement Safety Callbacks

Implement disarm/1 callbacks for actuators and controllers that control physical hardware.
Prerequisites
	Understanding of the BB safety system (see Understanding Safety)
	An actuator or controller that controls physical hardware

The Core Requirement
The disarm/1 callback must make hardware safe without access to GenServer state. This is critical because the callback may be invoked after your process has crashed.
Step 1: Register with the Safety Controller
In your init/1, register with the safety controller and provide all options needed for stateless disarm:
defmodule MyActuator do
 use GenServer
 use BB.Actuator

 @impl GenServer
 def init({bb, opts}) do
 # Register with safety controller
 BB.Safety.register(__MODULE__,
 robot: bb.robot_module,
 path: bb.path,
 opts: [
 # Include everything disarm/1 needs
 pin: opts[:pin],
 bus: opts[:bus],
 address: opts[:address]
]
)

 {:ok, %{bb: bb, opts: opts}}
 end
end
Step 2: Implement the disarm/1 Callback
The callback receives only the options you provided at registration:
@impl BB.Actuator
def disarm(opts) do
 # opts contains: :robot, :path, and your custom :opts
 pin = opts[:opts][:pin]
 bus = opts[:opts][:bus]

 # Make hardware safe - this must work even if the actuator process is dead
 case connect_and_disable(bus, pin) do
 :ok -> :ok
 {:error, reason} -> {:error, reason}
 end
end

defp connect_and_disable(bus, pin) do
 # Open a fresh connection - don't rely on cached references
 {:ok, device} = SomeHardware.open(bus)
 SomeHardware.set_output(device, pin, 0)
 SomeHardware.close(device)
 :ok
end
Common Patterns
GPIO-based servos (e.g., pigpio)
@impl BB.Actuator
def disarm(opts) do
 pin = opts[:opts][:pin]

 # Open fresh GPIO connection
 {:ok, gpio} = Pigpio.connect()
 Pigpio.set_servo_pulsewidth(gpio, pin, 0)
 :ok
rescue
 _ -> {:error, :gpio_connection_failed}
end
I2C-based controllers (e.g., PCA9685)
@impl BB.Actuator
def disarm(opts) do
 channel = opts[:opts][:channel]
 controller_name = opts[:opts][:controller]

 # Get controller process (it might still be alive)
 case BB.Process.whereis(opts[:robot], controller_name) do
 {:ok, pid} ->
 # Use controller to disable channel
 GenServer.call(pid, {:disable_channel, channel})

 {:error, _} ->
 # Controller is dead - connect directly to hardware
 bus = opts[:opts][:bus]
 address = opts[:opts][:address]
 direct_disable(bus, address, channel)
 end
end

defp direct_disable(bus, address, channel) do
 {:ok, ref} = Circuits.I2C.open(bus)
 # Write directly to PCA9685 registers to disable channel
 Circuits.I2C.write(ref, address, <<0x06 + channel * 4, 0, 0, 0, 0>>)
 Circuits.I2C.close(ref)
 :ok
end
Serial-based servos (e.g., Dynamixel)
@impl BB.Actuator
def disarm(opts) do
 servo_id = opts[:opts][:servo_id]
 port = opts[:opts][:port]
 baud = opts[:opts][:baud]

 # Open fresh serial connection
 {:ok, uart} = Circuits.UART.start_link()
 :ok = Circuits.UART.open(uart, port, speed: baud)

 # Send torque disable command
 packet = Robotis.Protocol.V2.write_packet(servo_id, 64, <<0>>)
 Circuits.UART.write(uart, packet)

 Circuits.UART.close(uart)
 GenServer.stop(uart)
 :ok
end
Step 3: Handle Registration Options
Pass all hardware-specific options needed for disarm:
For an I2C servo
BB.Safety.register(__MODULE__,
 robot: bb.robot_module,
 path: bb.path,
 opts: [
 channel: opts[:channel],
 controller: opts[:controller],
 # Fallback for direct hardware access
 bus: opts[:bus] || "i2c-1",
 address: opts[:address] || 0x40
]
)

For a GPIO servo
BB.Safety.register(__MODULE__,
 robot: bb.robot_module,
 path: bb.path,
 opts: [
 pin: opts[:pin],
 gpio_host: opts[:gpio_host] || "localhost"
]
)
Testing Safety Callbacks
Test that disarm works after process crash:
defmodule MyActuator.SafetyTest do
 use ExUnit.Case
 use Mimic

 setup :verify_on_exit!

 test "disarm works after actuator crash" do
 # Start robot
 {:ok, sup} = BB.Supervisor.start_link(MyRobot)
 {:ok, cmd} = MyRobot.arm()
 BB.Command.await(cmd)

 # Get actuator pid
 {:ok, actuator_pid} = BB.Process.whereis(MyRobot, [:joint, :servo])

 # Expect disarm to be called
 expect(SomeHardware, :set_output, fn _device, _pin, 0 -> :ok end)

 # Kill the actuator
 Process.exit(actuator_pid, :kill)

 # Disarm should still work
 assert :ok = BB.Safety.disarm(MyRobot)
 end

 test "disarm callback can access hardware directly" do
 # Test the callback in isolation
 opts = %{
 robot: MyRobot,
 path: [:joint, :servo],
 opts: [pin: 18, bus: "i2c-1"]
 }

 expect(SomeHardware, :open, fn "i2c-1" -> {:ok, :mock_device} end)
 expect(SomeHardware, :set_output, fn :mock_device, 18, 0 -> :ok end)
 expect(SomeHardware, :close, fn :mock_device -> :ok end)

 assert :ok = MyActuator.disarm(opts)
 end
end
Error Handling
If disarm fails, the robot enters :error state:
@impl BB.Actuator
def disarm(opts) do
 case attempt_disarm(opts) do
 :ok ->
 :ok

 {:error, reason} ->
 # Log the failure - operator will need to manually intervene
 Logger.error("Failed to disarm #{inspect(opts[:path])}: #{inspect(reason)}")
 {:error, reason}
 end
end
Recovery from :error state requires manual intervention:
After fixing the hardware issue
BB.Safety.force_disarm(MyRobot)
Common Mistakes
Relying on process state
BAD - state is not available in disarm/1
def disarm(_opts) do
 Pigpio.set_servo_pulsewidth(@gpio_ref, @pin, 0) # Module attributes won't help
end

GOOD - use only opts
def disarm(opts) do
 {:ok, gpio} = Pigpio.connect()
 Pigpio.set_servo_pulsewidth(gpio, opts[:opts][:pin], 0)
end
Caching hardware references
BAD - cached reference may be stale
def init(opts) do
 {:ok, gpio} = Pigpio.connect()
 BB.Safety.register(__MODULE__, ..., opts: [gpio: gpio]) # Reference won't survive crash
end

GOOD - open fresh connection in disarm
def disarm(opts) do
 {:ok, gpio} = Pigpio.connect(opts[:opts][:host])
 # ...
end
Not handling connection failures
BAD - crash on connection failure
def disarm(opts) do
 {:ok, device} = SomeHardware.open(opts[:opts][:bus])
 # ...
end

GOOD - handle failures gracefully
def disarm(opts) do
 case SomeHardware.open(opts[:opts][:bus]) do
 {:ok, device} ->
 SomeHardware.disable(device)
 :ok

 {:error, reason} ->
 {:error, {:connection_failed, reason}}
 end
end
Verification Checklist
Before deploying your actuator:
	[] disarm/1 works without GenServer state
	[] disarm/1 opens fresh hardware connections
	[] disarm/1 handles connection failures gracefully
	[] Test passes after killing actuator process
	[] All hardware-specific options are passed at registration
	[] Timeout is considered (5 second limit per callback)

Next Steps
	Understand the full safety system in Understanding Safety
	Learn about Hardware Error Reporting

 How to Integrate a Servo Driver

Create a servo driver package that integrates with Beam Bots' supervision tree and message system.
Prerequisites
	Familiarity with the BB DSL (see First Robot)
	Understanding of GenServer
	Access to your servo's communication protocol (I2C, serial, SPI, etc.)

Overview
A servo driver package consists of two main components:
	Controller - A GenServer managing hardware communication (shared by multiple actuators)
	Actuator - A GenServer per joint that converts position commands to hardware signals

Controller (GenServer)
 |
 v wraps
Hardware Driver (I2C/Serial/SPI)
 ^
 | used by
Actuator (GenServer) --publishes--> BeginMotion --> OpenLoopPositionEstimator
 |
 v publishes
 JointState
Step 1: Create the Package
Create a new Elixir package with bb as a dependency:
mix.exs
defp deps do
 [
 {:bb, "~> 0.12"}
]
end
Step 2: Implement the Controller
The controller manages the hardware connection. Multiple actuators share one controller.
defmodule MyServo.Controller do
 use GenServer, restart: :permanent

 @moduledoc """
 Manages hardware communication for MyServo devices.
 """

 @schema [
 bus: [
 type: :string,
 required: true,
 doc: "Hardware bus identifier (e.g., \"i2c-1\", \"/dev/ttyUSB0\")"
],
 address: [
 type: :integer,
 required: false,
 doc: "Device address (for I2C devices)"
]
]

 def schema, do: @schema

 def start_link(init_arg) do
 opts = Spark.Options.validate!(init_arg, @schema)
 GenServer.start_link(__MODULE__, opts)
 end

 @impl GenServer
 def init(opts) do
 case connect_to_hardware(opts) do
 {:ok, device} ->
 {:ok, %{device: device, opts: opts}}

 {:error, reason} ->
 {:stop, reason}
 end
 end

 @doc """
 Set servo position. Called by Actuator processes.
 """
 def set_position(controller, channel, pulse_width) do
 GenServer.call(controller, {:set_position, channel, pulse_width})
 end

 @impl GenServer
 def handle_call({:set_position, channel, pulse_width}, _from, state) do
 result = write_to_hardware(state.device, channel, pulse_width)
 {:reply, result, state}
 end

 defp connect_to_hardware(opts) do
 # Implement your hardware connection logic
 # Return {:ok, device} or {:error, reason}
 end

 defp write_to_hardware(device, channel, pulse_width) do
 # Implement your hardware write logic
 # Return :ok or {:error, reason}
 end
end
Step 3: Implement the Actuator
The actuator receives position commands (in radians), converts them to hardware values, and publishes motion events.
defmodule MyServo.Actuator do
 use GenServer, restart: :permanent
 use BB.Actuator

 alias BB.Message.Actuator.BeginMotion
 alias BB.Message.Sensor.JointCommand

 @schema [
 channel: [
 type: :non_neg_integer,
 required: true,
 doc: "Servo channel (0-15)"
],
 controller: [
 type: :atom,
 required: true,
 doc: "Name of the controller process"
],
 min_pulse: [
 type: :non_neg_integer,
 default: 500,
 doc: "Minimum pulse width in microseconds"
],
 max_pulse: [
 type: :non_neg_integer,
 default: 2500,
 doc: "Maximum pulse width in microseconds"
]
]

 def schema, do: @schema

 def start_link(init_arg) do
 {bb, init_arg} = Keyword.pop!(init_arg, :bb)
 opts = Spark.Options.validate!(init_arg, @schema)
 GenServer.start_link(__MODULE__, {bb, opts})
 end

 @impl GenServer
 def init({bb, opts}) do
 # Get joint limits from the robot topology
 joint = BB.Robot.joint(bb.robot, bb.path)

 # Register with the safety controller
 BB.Safety.register(__MODULE__,
 robot: bb.robot_module,
 path: bb.path,
 opts: [channel: opts[:channel], controller: opts[:controller]]
)

 {:ok, %{
 bb: bb,
 opts: opts,
 joint: joint,
 current_position: 0.0
 }}
 end

 # Handle position commands via PubSub (BB.Actuator.set_position/4)
 @impl GenServer
 def handle_info({:bb, _path, %{payload: %JointCommand{} = cmd}}, state) do
 {:noreply, execute_move(cmd.target, state)}
 end

 def handle_info(_msg, state), do: {:noreply, state}

 # Handle direct commands (BB.Actuator.set_position!/4)
 @impl GenServer
 def handle_cast({:set_position, position}, state) do
 {:noreply, execute_move(position, state)}
 end

 # Handle synchronous commands (BB.Actuator.set_position_sync/5)
 @impl GenServer
 def handle_call({:set_position, position}, _from, state) do
 {:reply, {:ok, :accepted}, execute_move(position, state)}
 end

 defp execute_move(target_position, state) do
 # Convert radians to pulse width
 pulse = position_to_pulse(target_position, state)

 # Get the controller process
 {:ok, controller} = BB.Process.whereis(state.bb.robot_module, state.opts[:controller])

 # Send to hardware
 :ok = MyServo.Controller.set_position(controller, state.opts[:channel], pulse)

 # Publish BeginMotion for position estimation
 velocity = state.joint.limit.velocity
 motion = BeginMotion.new!(
 name: state.joint.name,
 initial: state.current_position,
 target: target_position,
 velocity: velocity
)
 BB.publish(state.bb.robot_module, state.bb.path, motion)

 %{state | current_position: target_position}
 end

 defp position_to_pulse(position, state) do
 # Map position (radians) to pulse width (microseconds)
 lower = state.joint.limit.lower
 upper = state.joint.limit.upper
 range = upper - lower

 normalised = (position - lower) / range
 pulse_range = state.opts[:max_pulse] - state.opts[:min_pulse]

 round(state.opts[:min_pulse] + normalised * pulse_range)
 end

 # Safety callback - must work without GenServer state
 @impl BB.Actuator
 def disarm(opts) do
 # Set servo to neutral position
 {:ok, controller} = BB.Process.whereis(opts[:robot], opts[:controller])
 MyServo.Controller.set_position(controller, opts[:channel], 1500)
 end
end
Step 4: Use in Robot Definition
Wire up the controller and actuator in your robot's DSL:
defmodule MyRobot do
 use BB

 controllers do
 controller :my_servo, {MyServo.Controller, bus: "i2c-1", address: 0x40}
 end

 topology do
 link :base do
 joint :shoulder, type: :revolute do
 limit lower: ~u(-90 degree), upper: ~u(90 degree), velocity: ~u(60 degree_per_second)

 actuator :servo, {MyServo.Actuator, channel: 0, controller: :my_servo}
 sensor :feedback, {BB.Sensor.OpenLoopPositionEstimator, actuator: :servo}
 end
 end
 end
end
Step 5: Test the Integration
Create tests using Mimic to mock hardware interactions:
defmodule MyServo.ActuatorTest do
 use ExUnit.Case
 use Mimic

 setup :verify_on_exit!

 test "converts position to pulse width" do
 # Mock hardware interactions
 expect(MyServo.Controller, :set_position, fn _controller, 0, pulse ->
 assert pulse >= 500 and pulse <= 2500
 :ok
 end)

 # Start robot in simulation
 {:ok, _} = BB.Supervisor.start_link(MyRobot, simulation: :kinematic)

 # Send position command
 BB.Actuator.set_position!(MyRobot, :servo, 0.0)
 end
end
Common Issues
Actuator not receiving commands
Ensure the actuator is subscribed to its command path. The BB.Actuator behaviour handles this, but check that:
	The actuator's :bb option contains the correct path
	The controller is registered with the same name used in the actuator config

Position estimation drift
If OpenLoopPositionEstimator shows incorrect positions:
	Verify the velocity in BeginMotion matches the actual servo speed
	Check that joint limits in the DSL match the physical servo range

Safety disarm not working
The disarm/1 callback must work without GenServer state:
	Don't rely on self() or process state
	Use only the options passed to BB.Safety.register/2
	Test disarm after crashing the actuator process

Next Steps
	Implement BB.Safety callbacks properly (see Implement Safety Callbacks)
	Add support for reading servo position if your hardware supports it
	Consider implementing velocity control for smoother motion

 How to Troubleshoot PubSub

Diagnose and fix common issues with BB's publish-subscribe system.
Prerequisites
	Understanding of BB PubSub (see Understanding the PubSub System)
	A running BB robot

Common Symptoms
	Symptom	Likely Cause
	No messages received	Wrong path, not subscribed, publisher not running
	Messages delayed	Slow subscriber, mailbox backlog
	Duplicate messages	Multiple subscriptions, multiple publishers
	Messages stop	Publisher crashed, unsubscribed

Diagnostic Tools
See All Messages
Subscribe to the root path to see everything:
BB.subscribe(MyRobot, [])

Messages will print in IEx
{:bb, [:sensor, :shoulder], %BB.Message{...}}
{:bb, [:state_machine], %BB.Message{...}}
Count Messages by Path
defmodule MessageCounter do
 use GenServer

 def start_link(robot) do
 GenServer.start_link(__MODULE__, robot, name: __MODULE__)
 end

 def init(robot) do
 BB.subscribe(robot, [])
 {:ok, %{counts: %{}, robot: robot}}
 end

 def get_counts, do: GenServer.call(__MODULE__, :get_counts)
 def reset, do: GenServer.cast(__MODULE__, :reset)

 def handle_call(:get_counts, _from, state) do
 {:reply, state.counts, state}
 end

 def handle_cast(:reset, state) do
 {:noreply, %{state | counts: %{}}}
 end

 def handle_info({:bb, path, _msg}, state) do
 key = Enum.take(path, 2) |> Enum.join(".")
 counts = Map.update(state.counts, key, 1, &(&1 + 1))
 {:noreply, %{state | counts: counts}}
 end
end

Usage
MessageCounter.start_link(MyRobot)
Process.sleep(5000)
MessageCounter.get_counts()
=> %{"sensor.shoulder" => 50, "state_machine" => 2}
Use Event Stream Widget
In Livebook with bb_kino:
BB.Kino.events(MyRobot)
Or with bb_liveview dashboard - the event stream component shows all messages.
Issue: Messages Not Received
Check 1: Is the Publisher Running?
List all processes for the robot
Registry.select(BB.Registry, [{{MyRobot, :"$1", :"$2"}, [], [{{:"$1", :"$2"}}]}])
=> [{[:sensor, :shoulder], #PID<0.456.0>}, ...]
If the expected process isn't listed, check:
	Robot topology includes the sensor/actuator
	Process hasn't crashed (check logs)

Check 2: Correct Path?
Paths are hierarchical. Common mistakes:
WRONG - extra nesting
BB.subscribe(MyRobot, [:joint, :shoulder, :sensor, :encoder])

RIGHT - sensors are at joint level
BB.subscribe(MyRobot, [:sensor, :encoder])
Check what path the publisher uses:
Subscribe to everything, look at actual paths
BB.subscribe(MyRobot, [])
Check 3: Subscription Active?
Subscriptions are process-linked. If your process restarted, you need to resubscribe:
In GenServer init
def init(opts) do
 BB.subscribe(MyRobot, [:sensor])
 {:ok, %{}}
end

Also resubscribe after reconnection in LiveView
def handle_info(:reconnected, socket) do
 BB.subscribe(socket.assigns.robot, [:sensor])
 {:noreply, socket}
end
Check 4: Message Type Matches?
Ensure you're pattern matching correctly:
This won't match if payload is different type
def handle_info({:bb, [:sensor, _], %{payload: %JointState{}}}, state)

More permissive
def handle_info({:bb, [:sensor, _], %{payload: payload}}, state) do
 IO.inspect(payload, label: "Received")
 {:noreply, state}
end
Issue: Messages Delayed
Check 1: Mailbox Size
{:message_queue_len, len} = Process.info(self(), :message_queue_len)
IO.puts("Mailbox has #{len} messages")
If mailbox is growing:
	Process messages faster
	Add selective receive
	Consider sampling/throttling

Check 2: Slow Handler
Profile your handler:
def handle_info({:bb, path, msg}, state) do
 {time, result} = :timer.tc(fn -> process_message(msg, state) end)

 if time > 10_000 do # > 10ms
 Logger.warning("Slow message processing: #{time}µs for #{inspect(path)}")
 end

 result
end
Check 3: High-Frequency Publisher
If a sensor publishes too fast:
Throttle in subscriber
def handle_info({:bb, [:sensor, _], msg}, state) do
 now = System.monotonic_time(:millisecond)

 if now - state.last_processed > 50 do # Max 20Hz
 process_message(msg)
 {:noreply, %{state | last_processed: now}}
 else
 {:noreply, state} # Skip this message
 end
end
Issue: Duplicate Messages
Check 1: Multiple Subscriptions
BAD - subscribes twice
def init(opts) do
 BB.subscribe(MyRobot, [:sensor])
 BB.subscribe(MyRobot, [:sensor, :shoulder]) # Also matches!
 {:ok, %{}}
end

GOOD - subscribe to most specific path
def init(opts) do
 BB.subscribe(MyRobot, [:sensor, :shoulder])
 {:ok, %{}}
end
Check 2: Multiple Publishers
Check if multiple processes publish to the same path:
Find all processes that might publish to [:sensor, :shoulder]
Registry.select(BB.Registry, [{{MyRobot, :"$1", :"$2"}, [], [{{:"$1", :"$2"}}]}])
|> Enum.filter(fn {path, _pid} ->
 List.starts_with?(path, [:sensor, :shoulder])
end)
Issue: Messages Stop
Check 1: Publisher Crashed
Check if process is alive
case BB.Process.whereis(MyRobot, [:sensor, :shoulder]) do
 {:ok, pid} ->
 if Process.alive?(pid), do: :running, else: :dead

 {:error, _} ->
 :not_found
end
Check supervisor logs for crash reasons.
Check 2: Unsubscribed
If your process called BB.unsubscribe/2 or restarted without resubscribing.
Check 3: Robot Stopped
Check if robot supervisor is running
case Process.whereis(MyRobot.Supervisor) do
 nil -> :stopped
 pid -> if Process.alive?(pid), do: :running, else: :stopping
end
Debugging Techniques
Add Logging
def handle_info({:bb, path, msg}, state) do
 Logger.debug("Received: #{inspect(path)} - #{inspect(msg.payload.__struct__)}")
 # ... handle message
end
Trace Publications
Wrap BB.publish temporarily
defmodule DebugPublish do
 def publish(robot, path, msg) do
 IO.puts("PUBLISH: #{inspect(path)}")
 BB.publish(robot, path, msg)
 end
end
Check Registry State
All subscriptions for a robot
Registry.lookup(BB.PubSub.Registry, {MyRobot, []})
=> [{pid, path_prefix}, ...]
Performance Tuning
Reduce Message Volume
Only publish on significant change
defp maybe_publish(new_value, state) do
 if abs(new_value - state.last_published) > 0.01 do
 BB.publish(...)
 %{state | last_published: new_value}
 else
 state
 end
end
Batch Messages
Collect readings, publish batch
def handle_info(:flush, state) do
 if length(state.buffer) > 0 do
 message = JointState.new!(
 names: Enum.map(state.buffer, & &1.name),
 positions: Enum.map(state.buffer, & &1.position)
)
 BB.publish(state.robot, [:sensor, :batch], message)
 end

 schedule_flush()
 {:noreply, %{state | buffer: []}}
end
Use Direct Delivery for Low Latency
For actuator commands where PubSub overhead matters:
Instead of
BB.Actuator.set_position(MyRobot, [:actuator, :servo], position)

Use direct
BB.Actuator.set_position!(MyRobot, :servo, position)
Quick Reference
	Problem	First Check	Solution
	No messages	Path correct?	Subscribe to [], check paths
	Delayed	Mailbox size?	Profile handler, throttle
	Duplicates	Multiple subs?	Use most specific path
	Stopped	Process alive?	Check supervisor, logs

Related Documentation
	Understanding the PubSub System - Architecture explanation
	Sensors and PubSub - Tutorial
	Reference: Message Types - All message types

 How to Use URDF with ROS Tools

Export your BB robot to URDF format for use with ROS visualisation and simulation tools.
Prerequisites
	A BB robot module (see First Robot)
	ROS 2 installed (for RViz, Gazebo)
	Understanding of the URDF Export Tutorial

Step 1: Export to URDF
Use the mix task to export:
Print to stdout
mix bb.to_urdf MyRobot

Write to file
mix bb.to_urdf MyRobot -o robot.urdf

Or programmatically:
urdf = BB.URDF.Exporter.export(MyRobot)
File.write!("robot.urdf", urdf)
Step 2: Validate the URDF
Use check_urdf from ROS:
check_urdf robot.urdf

Expected output:
robot name is: MyRobot
---------- Successfully Parsed XML ---------------
root Link: base has 1 child(ren)
 child(1): link_1
 child(1): link_2
Step 3: View in RViz
Create a Launch File
robot_display.launch.py
from launch import LaunchDescription
from launch_ros.actions import Node
from launch.substitutions import Command
import os

def generate_launch_description():
 urdf_path = os.path.join(
 os.path.dirname(__file__), '..', 'urdf', 'robot.urdf'
)

 return LaunchDescription([
 Node(
 package='robot_state_publisher',
 executable='robot_state_publisher',
 parameters=[{'robot_description': open(urdf_path).read()}]
),
 Node(
 package='rviz2',
 executable='rviz2',
 arguments=['-d', 'config/robot.rviz']
)
])
Run RViz
ros2 launch my_robot_pkg robot_display.launch.py

In RViz:
	Add a RobotModel display
	Set the Description Topic to /robot_description
	Set Fixed Frame to your base link

Step 4: Publish Joint States from BB
Bridge BB joint states to ROS:
defmodule MyRobot.ROSBridge do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(opts) do
 robot_module = opts[:robot]
 BB.subscribe(robot_module, [:sensor])

 # Connect to ROS (using your preferred ROS Elixir bridge)
 {:ok, ros} = ROS.connect()

 {:ok, %{robot: robot_module, ros: ros}}
 end

 def handle_info({:bb, [:sensor, _joint], %{payload: joint_state}}, state) do
 # Convert to ROS JointState message
 ros_msg = %{
 header: %{stamp: ROS.now(), frame_id: ""},
 name: Enum.map(joint_state.names, &Atom.to_string/1),
 position: joint_state.positions,
 velocity: joint_state.velocities,
 effort: joint_state.efforts
 }

 ROS.publish(state.ros, "/joint_states", ros_msg)
 {:noreply, state}
 end
end
Step 5: Use with Gazebo
Add Gazebo Plugins
BB's URDF export creates basic structure. For Gazebo simulation, add plugins:
<!-- Add to robot.urdf -->
<gazebo>
 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
 <robotNamespace>/my_robot</robotNamespace>
 </plugin>
</gazebo>

<gazebo reference="shoulder">
 <material>Gazebo/Orange</material>
</gazebo>
Launch in Gazebo
ros2 launch gazebo_ros gazebo.launch.py
ros2 run gazebo_ros spawn_entity.py -file robot.urdf -entity my_robot

Step 6: Bidirectional Control
BB → ROS (Publish States)
In your ROS bridge
def handle_info({:bb, [:sensor, _], %{payload: js}}, state) do
 ROS.publish(state.ros, "/joint_states", to_ros_joint_state(js))
 {:noreply, state}
end
ROS → BB (Receive Commands)
def init(opts) do
 # ...
 ROS.subscribe(state.ros, "/joint_commands", &handle_ros_command/1)
 {:ok, state}
end

defp handle_ros_command(msg) do
 for {name, position} <- Enum.zip(msg.name, msg.position) do
 joint = String.to_atom(name)
 BB.Actuator.set_position!(MyRobot, joint, position)
 end
end
URDF Limitations
BB's URDF export has limitations compared to hand-written URDF:
	Feature	BB Support	Notes
	Links	✓	Position from transforms
	Joints	✓	Type, limits, axis
	Visual geometry	✓	Basic shapes only
	Collision geometry	✓	Same as visual
	Inertial	✓	Mass and inertia tensor
	Transmissions	✗	Add manually for ros_control
	Gazebo plugins	✗	Add manually
	Materials	✗	Gazebo materials need manual addition

Adding Missing Elements
For features BB doesn't export, post-process the URDF:
defmodule URDFEnhancer do
 def add_gazebo_materials(urdf) do
 urdf
 |> String.replace(
 "</robot>",
 """
 <gazebo reference="base">
 <material>Gazebo/Grey</material>
 </gazebo>
 </robot>
 """
)
 end

 def add_transmission(urdf, joint_name) do
 transmission = """
 <transmission name="#{joint_name}_transmission">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="#{joint_name}">
 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
 </joint>
 <actuator name="#{joint_name}_motor">
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
 </transmission>
 """

 String.replace(urdf, "</robot>", transmission <> "</robot>")
 end
end
MoveIt Integration
For motion planning with MoveIt:
	Export URDF from BB
	Create MoveIt config package:ros2 run moveit_setup_assistant moveit_setup_assistant

	Load your URDF in the assistant
	Configure:	Planning groups
	End effectors
	Self-collision matrix

	Generate the config package

Common Issues
Joint Names Don't Match
BB uses atoms for joint names. Ensure ROS messages use the string version:
Atom.to_string(:shoulder) #=> "shoulder"
Frame ID Mismatch
BB uses frame_id in messages. Map to ROS TF frame names:
def to_ros_frame(bb_frame_id) do
 "#{@robot_name}/#{bb_frame_id}"
end
Units
BB uses SI units (radians, metres). ROS also uses SI, so no conversion needed.
Next Steps
	Add visual meshes for realistic rendering
	Configure ros_control for hardware interface
	Set up MoveIt for motion planning

 How to Write a Custom Sensor

Create a sensor module that publishes data to BB's PubSub system.
Prerequisites
	Familiarity with the BB DSL (see First Robot)
	Understanding of BB PubSub (see Sensors and PubSub)
	GenServer knowledge

Step 1: Create the Sensor Module
A sensor is a GenServer that reads data and publishes messages:
defmodule MySensor do
 use GenServer, restart: :permanent

 alias BB.Message.Sensor.Range

 @schema [
 pin: [
 type: :non_neg_integer,
 required: true,
 doc: "GPIO pin for the sensor"
],
 poll_interval: [
 type: :pos_integer,
 default: 100,
 doc: "Polling interval in milliseconds"
]
]

 def schema, do: @schema

 def start_link(init_arg) do
 {bb, init_arg} = Keyword.pop!(init_arg, :bb)
 opts = Spark.Options.validate!(init_arg, @schema)
 GenServer.start_link(__MODULE__, {bb, opts})
 end

 @impl GenServer
 def init({bb, opts}) do
 # Store BB context for publishing
 state = %{
 bb: bb,
 opts: opts,
 last_reading: nil
 }

 # Start polling
 schedule_poll(opts[:poll_interval])

 {:ok, state}
 end

 @impl GenServer
 def handle_info(:poll, state) do
 reading = read_sensor(state.opts[:pin])

 # Publish if changed (optional - can publish every time)
 if reading != state.last_reading do
 publish_reading(reading, state)
 end

 schedule_poll(state.opts[:poll_interval])
 {:noreply, %{state | last_reading: reading}}
 end

 defp schedule_poll(interval) do
 Process.send_after(self(), :poll, interval)
 end

 defp read_sensor(pin) do
 # Your hardware reading logic
 # Returns distance in metres
 0.5
 end

 defp publish_reading(distance, state) do
 message = Range.new!(
 range: distance,
 min_range: 0.02,
 max_range: 4.0,
 radiation_type: :ultrasound
)

 BB.publish(state.bb.robot_module, state.bb.path, message)
 end
end
Step 2: Use in Robot Definition
Add the sensor to your robot:
defmodule MyRobot do
 use BB

 topology do
 link :base do
 sensor :distance, {MySensor, pin: 18, poll_interval: 50}
 end
 end
end
Step 3: Subscribe to Sensor Data
Consume the sensor data elsewhere:
In another process
BB.subscribe(MyRobot, [:sensor, :distance])

In handle_info
def handle_info({:bb, [:sensor, :distance], %{payload: range}}, state) do
 IO.puts("Distance: #{range.range}m")
 {:noreply, state}
end
Event-Driven Sensors
For sensors with hardware interrupts (not polling):
defmodule InterruptSensor do
 use GenServer, restart: :permanent

 def start_link(init_arg) do
 {bb, init_arg} = Keyword.pop!(init_arg, :bb)
 GenServer.start_link(__MODULE__, {bb, init_arg})
 end

 @impl GenServer
 def init({bb, opts}) do
 # Set up interrupt handler
 {:ok, gpio} = Circuits.GPIO.open(opts[:pin], :input)
 Circuits.GPIO.set_interrupts(gpio, :both)

 {:ok, %{bb: bb, gpio: gpio}}
 end

 @impl GenServer
 def handle_info({:circuits_gpio, _pin, _timestamp, value}, state) do
 # Publish on interrupt
 message = create_message(value)
 BB.publish(state.bb.robot_module, state.bb.path, message)

 {:noreply, state}
 end
end
Publishing Different Message Types
Joint State (Position Feedback)
alias BB.Message.Sensor.JointState

def publish_position(position, velocity, state) do
 message = JointState.new!(
 names: [state.joint_name],
 positions: [position],
 velocities: [velocity]
)

 BB.publish(state.bb.robot_module, state.bb.path, message)
end
IMU Data
alias BB.Message.Sensor.IMU

def publish_imu(orientation, angular_vel, linear_accel, state) do
 message = IMU.new!(
 orientation: orientation,
 angular_velocity: angular_vel,
 linear_acceleration: linear_accel
)

 BB.publish(state.bb.robot_module, state.bb.path, message)
end
Battery State
alias BB.Message.Sensor.BatteryState

def publish_battery(voltage, current, percentage, state) do
 message = BatteryState.new!(
 voltage: voltage,
 current: current,
 percentage: percentage
)

 BB.publish(state.bb.robot_module, [:sensor, :battery], message)
end
Sensor with Calibration
Store calibration data and apply during reading:
defmodule CalibratedSensor do
 use GenServer, restart: :permanent

 @schema [
 pin: [type: :non_neg_integer, required: true],
 calibration: [
 type: :map,
 default: %{offset: 0.0, scale: 1.0}
]
]

 def start_link(init_arg) do
 {bb, init_arg} = Keyword.pop!(init_arg, :bb)
 opts = Spark.Options.validate!(init_arg, @schema)
 GenServer.start_link(__MODULE__, {bb, opts})
 end

 @impl GenServer
 def init({bb, opts}) do
 {:ok, %{bb: bb, opts: opts}}
 end

 defp read_and_calibrate(state) do
 raw = read_raw(state.opts[:pin])
 cal = state.opts[:calibration]

 raw * cal.scale + cal.offset
 end
end
Robot-Level vs Joint-Level Sensors
Joint-Level (Inside Topology)
topology do
 link :arm do
 joint :shoulder do
 sensor :encoder, {EncoderSensor, channel: 0}
 end
 end
end
Path: [:sensor, :encoder] (relative to joint)
Robot-Level (Outside Topology)
sensors do
 sensor :battery, {BatterySensor, adc_channel: 0}
 sensor :imu, {IMUSensor, bus: "i2c-1", address: 0x68}
end

topology do
 # ...
end
Path: [:sensor, :battery], [:sensor, :imu]
Testing Sensors
defmodule MySensorTest do
 use ExUnit.Case

 test "publishes range messages" do
 {:ok, _} = BB.Supervisor.start_link(TestRobot, simulation: :kinematic)

 # Subscribe to sensor
 BB.subscribe(TestRobot, [:sensor, :distance])

 # Wait for message
 assert_receive {:bb, [:sensor, :distance], %{payload: %Range{} = range}}, 1000
 assert range.range >= 0.02
 assert range.range <= 4.0
 end
end
Safety Considerations
For sensors that might affect safety decisions:
def handle_info(:poll, state) do
 case read_sensor(state.opts[:pin]) do
 {:ok, reading} ->
 publish_reading(reading, state)
 {:noreply, %{state | last_reading: reading, errors: 0}}

 {:error, reason} ->
 new_errors = state.errors + 1

 if new_errors >= 3 do
 # Report persistent error
 BB.Safety.report_error(
 state.bb.robot_module,
 state.bb.path,
 {:sensor_failure, reason}
)
 end

 {:noreply, %{state | errors: new_errors}}
 end
end
Common Issues
Messages Not Received
Check that:
	The sensor is started (part of supervision tree)
	Subscribers use the correct path
	The message type is valid

High CPU Usage
For high-frequency sensors:
	Batch readings before publishing
	Use longer poll intervals if acceptable
	Consider hardware filtering

Stale Data
If data seems delayed:
	Check poll interval
	Verify no blocking operations in read function
	Consider event-driven approach

Next Steps
	Add calibration UI with bb_kino
	Implement sensor fusion for multiple inputs
	Add telemetry for monitoring sensor health

 Understanding the Command System

This document explains the design of Beam Bots' command system - why commands are short-lived processes, how they integrate with the state machine, and the patterns they enable.
The Core Model
Commands in BB are short-lived GenServers that execute discrete operations. They're not background services - they start, do something, and stop.
execute command
 │
 ▼
┌─────────────────┐
│ Command Process │ ─── receives messages, updates state
│ (GenServer) │ ─── decides when complete
└─────────────────┘
 │
 ▼
 return result
This model is borrowed from action servers in ROS, but adapted for Erlang/OTP semantics.
Why Processes?
Commands could be simple function calls. Why make them processes?
Async by Default
Commands can take time. A movement command might wait for motors to reach position. Making commands processes means:
	Callers don't block
	Multiple commands can (potentially) run concurrently
	Timeouts are handled naturally

Message-Driven
Commands often need to react to external events:
	Sensor feedback (reached position?)
	Hardware errors (servo overheating?)
	User cancellation

As processes, commands can subscribe to PubSub and receive messages.
Supervision
Command processes are supervised. If a command crashes:
	The robot returns to a safe state
	Awaiting callers receive an error
	Resources are cleaned up

State Machine Integration
Commands interact with the robot state machine. Being processes lets them:
	Check state before executing
	Hold the robot in a state while running
	Transition state on completion

The State Machine
Every robot has an operational state:
:disarmed ─arm─→ :idle ─disarm─→ :disarmed
Commands declare which states they can run in:
command :move_to do
 handler MoveCommand
 allowed_states [:idle]
end

command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
end
The Runtime enforces these constraints:
BB.Robot.Runtime.state(MyRobot) #=> :disarmed
MyRobot.move_to(position: 1.0) #=> {:error, %NotAllowed{}}
Custom States
For complex robots, you can define custom states beyond :idle using the states DSL section:
states do
 state :recording do
 doc "Recording trajectory data"
 end

 state :playback do
 doc "Playing back recorded trajectory"
 end

 state :calibrating do
 doc "Running calibration routine"
 end
end

commands do
 command :start_recording do
 handler {BB.Command.SetState, to: :recording}
 allowed_states [:idle]
 end

 command :start_playback do
 allowed_states [:recording]
 end
end
The built-in states (:idle, :disarmed) are always available. Your custom states extend what's possible. See the Custom States and Categories tutorial for comprehensive coverage.
Command Lifecycle
1. Execution Request
{:ok, cmd_pid} = MyRobot.move_to(target: %{shoulder: 0.5})
The DSL generates this function. It calls BB.Robot.Runtime.execute/3.
2. State Validation
Runtime checks:
	Robot is in an allowed state
	Command category has capacity (for concurrent commands)

3. Process Start
A GenServer starts under the Runtime's DynamicSupervisor:
DynamicSupervisor.start_child(supervisor, {CommandServer, opts})
4. Handler Invocation
The CommandServer calls your handler's handle_command/3:
@impl BB.Command
def handle_command(goal, context, state) do
 # goal: arguments from the execute call
 # context: robot module, struct, state handle
 # state: command's internal state (includes :result)

 # Return GenServer-style tuple
 {:noreply, updated_state}
end
5. Execution
The command runs as a GenServer:
	Receives messages via handle_info/2
	Can make calls with handle_call/3
	Subscribes to PubSub for sensor feedback

6. Completion
When done, return {:stop, reason, state}:
def handle_info(:done, state) do
 {:stop, :normal, %{state | result: {:ok, :completed}}}
end
7. Result Extraction
On termination, result/1 is called:
@impl BB.Command
def result(%{result: result}), do: result
The result goes to awaiting callers.
Awaiting Results
Callers have options:
Blocking Wait
{:ok, cmd} = MyRobot.move_to(target: %{shoulder: 0.5})
{:ok, result} = BB.Command.await(cmd) # blocks until done
Timeout
case BB.Command.await(cmd, 5000) do
 {:ok, result} -> handle_result(result)
 {:error, :timeout} -> handle_timeout()
end
Non-Blocking Check
case BB.Command.yield(cmd, 0) do
 {:ok, result} -> done(result)
 nil -> still_running()
end
Fire and Forget
{:ok, _cmd} = MyRobot.move_to(target: %{shoulder: 0.5})
Don't await - let it run
Command Categories
By default, only one command runs at a time. Categories enable concurrency:
commands do
 category :motion do
 doc "Physical movement commands"
 concurrency_limit 1
 end

 category :sensing do
 doc "Sensor and data collection commands"
 concurrency_limit 2 # Allow concurrent sensing
 end

 command :move_to do
 category :motion
 allowed_states [:idle]
 end

 command :read_sensor do
 category :sensing
 allowed_states [:idle]
 end
end
Each category has a concurrency_limit (default: 1). Commands in different categories can run concurrently. Commands in the same category are limited by that category's concurrency limit.
Cancellation
Commands can declare they cancel others:
command :move_to do
 cancel [:motion] # Cancels running motion commands
end

command :emergency_stop do
 cancel :* # Cancels everything
end
When cancelled, the command process terminates and result/1 is called with the current state. Awaiting callers receive whatever result/1 returns. Commands should handle cancellation with a fallback clause:
@impl BB.Command
def result(%{result: result}) do
 {:ok, result}
end

def result(_state), do: {:error, :cancelled}
State Transitions
Commands can change robot state:
@impl BB.Command
def result(%{result: {:ok, value}}) do
 {:ok, value, next_state: :recording}
end
This is how BB.Command.Arm works - it returns {:ok, :armed, next_state: :idle}.
Safety Integration
Commands receive safety state changes:
@impl BB.Command
def handle_safety_state_change(:disarming, state) do
 # Robot is being disarmed - stop gracefully
 {:stop, :disarmed, %{state | result: {:error, :disarmed}}}
end
The default implementation stops on any safety change. Override for commands that should continue (use with care).
Design Patterns
Request-Feedback-Result
The canonical pattern for motion commands:
	Request: Send target to actuators
	Feedback: Subscribe to sensors, monitor progress
	Result: Complete when target reached or timeout

def handle_command(goal, context, state) do
 # Request
 publish_targets(goal.target, context)
 subscribe_to_sensors(goal.target, context)

 {:noreply, %{state | target: goal.target}}
end

def handle_info({:bb, [:sensor, _], msg}, state) do
 if reached_target?(msg, state.target) do
 # Result
 {:stop, :normal, %{state | result: {:ok, :reached}}}
 else
 # Feedback (continue waiting)
 {:noreply, state}
 end
end
Coordination
For commands coordinating multiple subsystems:
def handle_command(goal, context, state) do
 # Start multiple operations
 start_arm_motion(goal, context)
 start_gripper_action(goal, context)

 {:noreply, %{state | arm_done: false, gripper_done: false}}
end

def handle_info({:arm_complete, _}, state) do
 check_completion(%{state | arm_done: true})
end

def handle_info({:gripper_complete, _}, state) do
 check_completion(%{state | gripper_done: true})
end

defp check_completion(%{arm_done: true, gripper_done: true} = state) do
 {:stop, :normal, %{state | result: {:ok, :complete}}}
end

defp check_completion(state), do: {:noreply, state}
Timeout with Progress
For commands that might hang:
def handle_command(goal, _context, state) do
 schedule_timeout(5000)
 {:noreply, %{state | last_progress: now()}}
end

def handle_info(:timeout, state) do
 if stale?(state.last_progress) do
 {:stop, :normal, %{state | result: {:error, :timeout}}}
 else
 schedule_timeout(5000)
 {:noreply, state}
 end
end

def handle_info({:progress, _}, state) do
 {:noreply, %{state | last_progress: now()}}
end
Related Documentation
	Commands and State Machine - Tutorial
	Custom States and Categories - Advanced usage
	How to Add a Custom Command - Step-by-step guide

 Understanding the PubSub System

This document explains Beam Bots' hierarchical publish-subscribe system - how it addresses messages, routes them efficiently, and enables loose coupling between components.
The Core Idea
BB's PubSub uses hierarchical paths for addressing. Messages are published to paths, and subscribers can match exact paths or entire subtrees:
Publish to a specific path
BB.publish(MyRobot, [:sensor, :shoulder], joint_state)

Subscribe to exact path
BB.subscribe(MyRobot, [:sensor, :shoulder])

Subscribe to all sensors (subtree)
BB.subscribe(MyRobot, [:sensor])
Why Hierarchical Addressing?
Mirrors Robot Structure
Robot components naturally form hierarchies:
	Sensors grouped by type or location
	Actuators organised by kinematic chain
	Controllers managing multiple devices

Hierarchical paths capture this structure:
[:sensor, :shoulder] # Shoulder position sensor
[:sensor, :elbow] # Elbow position sensor
[:actuator, :shoulder] # Shoulder servo
[:actuator, :elbow] # Elbow servo
[:controller, :pca9685] # PWM controller
[:state_machine] # State transitions
[:safety] # Safety events
[:safety, :error] # Hardware errors
Flexible Subscription
Different consumers need different granularity:
	Runtime: Subscribes to [:sensor] - needs all sensor data
	Logger: Subscribes to [:safety] - only safety events
	Dashboard: Subscribes to [] (root) - everything
	Actuator: Subscribes to [:actuator, :shoulder] - just its commands

Topic Discovery
New components can publish without coordinating with subscribers. The hierarchy provides natural namespacing:
New sensor added - just publish to its path
BB.publish(MyRobot, [:sensor, :wrist], wrist_data)

Existing [:sensor] subscribers automatically receive it
Message Format
All messages are wrapped in BB.Message:
%BB.Message{
 payload: %BB.Message.Sensor.JointState{...},
 timestamp: ~U[2025-01-18 12:00:00Z],
 frame_id: "shoulder"
}
Subscribers receive:
{:bb, path, %BB.Message{} = message}
The tuple format lets you pattern match on path:
def handle_info({:bb, [:sensor, joint_name], %{payload: joint_state}}, state) do
 # Handle sensor data for any joint
end

def handle_info({:bb, [:safety, :error], %{payload: error}}, state) do
 # Handle safety errors specifically
end
Publishing
Basic Publishing
Messages are created using the payload module's new!/2 function, which returns a BB.Message struct:
Create a message (returns %BB.Message{payload: %JointState{...}, ...})
message = JointState.new!(:shoulder, name: :shoulder, positions: [0.5])

Publish the message
BB.publish(MyRobot, [:sensor, :shoulder], message)
The first argument to new!/2 is the frame_id (typically the joint or link name), and the second is a keyword list of payload attributes.
Publish Patterns
Common publishing patterns:
Sensor publishing its readings
BB.publish(robot_module, bb.path, sensor_message)

Actuator publishing motion start
BB.publish(robot_module, bb.path, begin_motion_message)

Command publishing events
BB.publish(robot_module, [:command, command_name], progress_message)

Controller publishing status
BB.publish(robot_module, [:controller, controller_name], status_message)
Subscribing
Exact Path
BB.subscribe(MyRobot, [:sensor, :shoulder])
Receives: [:sensor, :shoulder] only
Subtree (Prefix)
BB.subscribe(MyRobot, [:sensor])
Receives: [:sensor, :shoulder], [:sensor, :elbow], [:sensor, :wrist], etc.
Root (Everything)
BB.subscribe(MyRobot, [])
Receives: all messages for this robot
Filtering by Message Type
By default, subscriptions receive all message types published to matching paths. Use the :message_types option to filter by payload type:
Only receive JointState messages from sensors
BB.subscribe(MyRobot, [:sensor], message_types: [BB.Message.Sensor.JointState])

Only receive IMU data from a specific sensor
BB.subscribe(MyRobot, [:sensor, :imu], message_types: [BB.Message.Sensor.Imu])

Multiple types
BB.subscribe(MyRobot, [:sensor], message_types: [
 BB.Message.Sensor.JointState,
 BB.Message.Sensor.Imu
])
An empty list (the default) means no filtering - receive all message types at matching paths.
Unsubscribing
BB.unsubscribe(MyRobot, [:sensor, :shoulder])
Routing Mechanics
Under the hood, BB uses Elixir's Registry with keys: :duplicate:
	Each robot has its own Registry (started with duplicate keys mode)
	Subscriptions register the calling process with a path
	On publish, Registry.dispatch/3 sends to all processes registered at matching paths
	BB publishes to the exact path and all ancestor paths (prefix matching)

This is efficient:
	O(1) dispatch per path (Registry handles fan-out)
	No central broker process
	Messages delivered directly to subscribers

Common Paths
BB uses consistent paths for standard message types:
	Path Pattern	Purpose
	[:sensor, name]	Sensor readings
	[:actuator, name]	Actuator commands
	[:controller, name]	Controller events
	[:state_machine]	State transitions
	[:safety]	Safety events
	[:safety, :error]	Hardware errors
	[:param]	Parameter updates
	[:param, name]	Specific parameter

Message Types
BB provides typed message payloads. Key types:
Sensor Messages
%BB.Message.Sensor.JointState{
 name: :shoulder,
 positions: [0.5],
 velocities: [0.1],
 efforts: [0.0]
}
Actuator Messages
%BB.Message.Sensor.JointCommand{
 name: :shoulder,
 target: 0.5
}

%BB.Message.Actuator.BeginMotion{
 name: :shoulder,
 initial: 0.0,
 target: 0.5,
 velocity: 1.0
}
Safety Messages
%BB.Safety.HardwareError{
 path: [:actuator, :shoulder],
 error: {:overheating, 85.0}
}
State Machine Messages
%BB.StateMachine.Transition{
 from: :disarmed,
 to: :idle
}
Design Patterns
Sensor → Runtime → State
The standard flow for position feedback:
Sensor ──publish──→ [:sensor, :name] ──subscribe──→ Runtime
 │
 ▼
 Update joint state
Actuator → Sensor (via OpenLoop)
For servos without feedback:
Command ──publish──→ [:actuator, :name] ──subscribe──→ Actuator
 │
 send to hardware
 │
 publish BeginMotion ─────────────┘
 │
 ▼
 OpenLoopPositionEstimator
 │
 publish JointState ──→ [:sensor, :name]
Dashboard Aggregation
Dashboards subscribe broadly:
def mount(_params, _session, socket) do
 BB.subscribe(robot_module, [:sensor])
 BB.subscribe(robot_module, [:state_machine])
 BB.subscribe(robot_module, [:safety])
 ...
end
Command Feedback
Commands subscribe to relevant sensors:
def handle_command(goal, context, state) do
 BB.subscribe(context.robot_module, [:sensor, goal.joint])
 ...
end

def handle_info({:bb, [:sensor, _joint], %{payload: joint_state}}, state) do
 # Check if target reached
end
Performance Considerations
High-Frequency Messages
Sensors might publish at 100Hz+. Subscribers should:
	Process quickly or buffer
	Consider throttling if display-only
	Use async handling if processing is slow

Many Subscribers
With many processes subscribing to the same path:
	Each gets a copy of the message
	Consider a single aggregator if processing is identical
	Registry dispatch is efficient but not free

Large Messages
The PubSub system copies messages to each subscriber. For large payloads:
	Consider reference-passing (ETS, :persistent_term)
	Publish only changed data
	Compress if over network

Debugging
See All Messages
BB.subscribe(MyRobot, [])
In iex, you'll see all {:bb, path, message} tuples
Message Counts
In a GenServer
def init(_) do
 BB.subscribe(MyRobot, [])
 {:ok, %{counts: %{}}}
end

def handle_info({:bb, path, _msg}, %{counts: counts} = state) do
 key = Enum.take(path, 2) |> Enum.join(".")
 {:noreply, %{state | counts: Map.update(counts, key, 1, &(&1 + 1))}}
end
Path Discovery
List all paths that have been published (requires custom tracking)
Or use the Event Stream widget in bb_liveview/bb_kino
Related Documentation
	Sensors and PubSub - Tutorial
	Reference: Message Types - All message types

 Reactive Controllers

Overview
Reactive controllers monitor PubSub messages and trigger actions when conditions are met. They provide a declarative way to implement common reactive patterns like threshold monitoring and event-driven responses without writing custom controller code.
Controller Types
BB provides two reactive controller types:
	Controller	Purpose
	BB.Controller.PatternMatch	Triggers when a message matches a predicate function
	BB.Controller.Threshold	Triggers when a numeric field exceeds min/max bounds

Threshold is a convenience wrapper around PatternMatch - internally it generates a match function from the field and bounds configuration.
Actions
When a condition is met, the controller executes an action. Two action types are available:
Command Action
Invokes a robot command:
action: command(:disarm)
action: command(:move_to, target: :home)
Callback Action
Calls an arbitrary function with the triggering message and context:
action: handle_event(fn msg, ctx ->
 Logger.warning("Threshold exceeded: #{inspect(msg.payload)}")
 # ctx contains: robot_module, robot, robot_state, controller_name
 :ok
end)
The callback receives:
	msg - The BB.Message that triggered the action
	ctx - A BB.Controller.Action.Context struct with robot references

Configuration
PatternMatch Options
	Option	Type	Required	Description
	:topic	[atom]	Yes	PubSub topic path to subscribe to
	:match	fn msg -> boolean	Yes	Predicate that returns true when action should trigger
	:action	action	Yes	Action to execute (see Actions above)
	:cooldown_ms	integer	No	Minimum ms between triggers (default: 1000)

Threshold Options
	Option	Type	Required	Description
	:topic	[atom]	Yes	PubSub topic path to subscribe to
	:field	atom or [atom]	Yes	Field path to extract from message payload
	:min	float	One required	Minimum acceptable value
	:max	float	One required	Maximum acceptable value
	:action	action	Yes	Action to execute when threshold exceeded
	:cooldown_ms	integer	No	Minimum ms between triggers (default: 1000)

At least one of :min or :max must be provided for Threshold.
Examples
Current Limiting
Disarm the robot if servo current exceeds safe limits:
defmodule MyRobot do
 use BB

 controllers do
 controller :over_current, {BB.Controller.Threshold,
 topic: [:sensor, :servo_status],
 field: :current,
 max: 1.21,
 action: command(:disarm)
 }
 end
end
Collision Detection
React to proximity sensor readings:
controllers do
 controller :collision, {BB.Controller.PatternMatch,
 topic: [:sensor, :proximity],
 match: fn msg -> msg.payload.distance < 0.05 end,
 action: command(:disarm)
 }
end
Temperature Monitoring with Callback
Log warnings when temperature is outside safe range:
controllers do
 controller :temp_monitor, {BB.Controller.Threshold,
 topic: [:sensor, :temperature],
 field: :value,
 min: 10.0,
 max: 45.0,
 cooldown_ms: 5000,
 action: handle_event(fn msg, ctx ->
 Logger.warning("[#{ctx.controller_name}] Temperature out of range: #{msg.payload.value}°C")
 :ok
 end)
 }
end
Nested Field Access
Access nested fields in message payloads:
controllers do
 controller :voltage_monitor, {BB.Controller.Threshold,
 topic: [:sensor, :power],
 field: [:battery, :voltage], # Accesses msg.payload.battery.voltage
 min: 11.0,
 action: command(:disarm)
 }
end
Cooldown Behaviour
The :cooldown_ms option prevents rapid repeated triggering. After an action executes, the controller ignores matching messages until the cooldown period elapses. This is useful for:
	Preventing command spam from noisy sensors
	Allowing time for the triggered action to take effect
	Reducing log noise from callback actions

The first matching message always triggers immediately (no initial delay).
Integration with Commands
Reactive controllers work alongside the command system. When a controller triggers command(:disarm), it's equivalent to calling MyRobot.disarm([]) - the command goes through the normal command execution flow with state machine validation.
This means:
	Commands are logged via telemetry
	State machine rules apply (can't disarm if already disarmed)
	Command results are returned (but typically ignored by the controller)

When to Use Reactive Controllers
Good use cases:
	Safety limits (current, temperature, force thresholds)
	Event-driven responses (collision detection, limit switches)
	Monitoring and alerting (logging unusual conditions)

Consider alternatives when:
	You need complex logic spanning multiple messages (use a custom controller)
	You need to modify robot state directly (use a custom controller with handle_info)
	You need request/response patterns (use commands instead)

 Understanding the Supervision Architecture

This document explains why Beam Bots generates supervision trees that mirror physical robot topology, and what benefits this architecture provides.
The Core Idea
A robot's supervision tree structure mirrors its physical structure. When you define a robot with links and joints, the generated supervision tree has the same hierarchy:
Physical Structure Supervision Tree
================ =================
Base BaseSupervisor
 └── Shoulder Joint └── ShoulderSupervisor
 └── Upper Arm ├── ShoulderActuator
 └── Elbow Joint ├── ShoulderSensor
 └── Forearm └── UpperArmSupervisor
 └── ElbowSupervisor
 ├── ElbowActuator
 └── ElbowSensor
This isn't accidental - it's a deliberate design choice with significant implications.
Why Mirror Physical Structure?
Fault Isolation
Physical robots have natural failure boundaries. If an elbow servo fails, it shouldn't affect the shoulder. The supervision tree enforces this:
	Crashes propagate only within affected subtrees
	Unaffected parts of the robot continue operating
	Recovery attempts are localised to the failed component

Consider what happens when an elbow actuator crashes:
 RobotSupervisor
 │
 BaseSupervisor
 │
 ShoulderSupervisor
 / \
 ShoulderActuator UpperArmSupervisor
 ShoulderSensor │
 ElbowSupervisor
 / \
 [ElbowActuator] ElbowSensor
 ↑
 (crash!)
The crash stays within ElbowSupervisor. Shoulder components keep running. The robot can potentially continue operating with reduced capability.
Restart Strategies
Each supervisor can have its own restart strategy. BB uses :one_for_one by default, meaning sibling processes restart independently. But the hierarchy means:
	If an actuator keeps crashing, eventually its supervisor restarts
	When a supervisor restarts, all its children restart
	This cascades up only as far as necessary

A problematic elbow doesn't restart the entire robot - just the elbow subtree.
Resource Management
Physical components often share resources within their kinematic chain:
	Controllers managing multiple servos on one bus
	Sensors reading from the same joint
	Coordination between actuator and sensor for position feedback

The supervision tree keeps related processes close together, supervised by the same parent.
How the Tree is Generated
The BB.Supervisor.SupervisorTransformer processes the DSL at compile time:
	Walks the topology tree (links, joints)
	Collects sensors, actuators, and controllers at each level
	Generates supervisor specifications that match the structure
	Stores the spec in the compiled robot struct

When you call BB.Supervisor.start_link/2, it reads the pre-generated spec and starts the tree.
Robot-Level vs Topology-Level Processes
Some processes belong to the robot as a whole, not specific links:
defmodule MyRobot do
 use BB

 # Robot-level controller (manages I2C bus)
 controllers do
 controller :pca9685, {BB.Servo.PCA9685.Controller, bus: "i2c-1"}
 end

 # Robot-level sensor (battery monitor)
 sensors do
 sensor :battery, {BatteryMonitor, pin: 0}
 end

 topology do
 # Joint-level processes
 link :base do
 joint :shoulder do
 actuator :servo, {...}
 sensor :position, {...}
 end
 end
 end
end
Robot-level processes are supervised directly under the main robot supervisor, parallel to the topology subtree.
The Runtime Process
BB.Robot.Runtime is special - it's the coordinator for the entire robot:
	Manages operational state (disarmed, idle, executing)
	Subscribes to sensor messages and updates joint positions
	Spawns and monitors command processes
	Lives at the root level, sibling to the topology

RobotSupervisor
├── Runtime
├── SafetyController (if safety enabled)
├── PCA9685Controller (robot-level controller)
├── BatteryMonitor (robot-level sensor)
└── TopologySupervisor
 └── ...
If the Runtime crashes, it doesn't take down the topology. Hardware processes keep running while Runtime restarts and resubscribes.
Process Registration
Every process in the tree registers with a unique name based on its path:
	[:joint, :shoulder, :servo] - shoulder servo actuator
	[:joint, :elbow, :position] - elbow position sensor
	[:controller, :pca9685] - robot-level controller

This enables:
	Looking up any process by path
	Addressing messages to specific components
	Debugging which process is which

Registration uses Elixir's Registry with the robot module as the key namespace.
Starting with Options
BB.Supervisor.start_link/2 accepts options that affect the tree:
Normal start - all hardware processes
BB.Supervisor.start_link(MyRobot)

Simulation mode - actuators replaced with simulators
BB.Supervisor.start_link(MyRobot, simulation: :kinematic)
In simulation mode:
	Real actuators are replaced with BB.Sim.Actuator
	Controllers can be omitted, mocked, or started normally
	The tree structure remains the same

Implications for Design
Understanding the supervision architecture helps you design better robots:
Co-locate Related Processes
Put actuators and sensors for the same joint at the same level:
joint :shoulder do
 actuator :servo, {...} # Same supervisor
 sensor :position, {...} # Same supervisor
end
They restart together if the joint supervisor restarts.
Separate Independent Subsystems
Put independent subsystems under different parents:
sensors do
 sensor :battery, {...} # Robot-level, independent
end

topology do
 link :base do
 joint :pan do ... end # Camera pan
 joint :tilt do ... end # Camera tilt
 end
end
Battery monitoring doesn't need to restart when camera joints fail.
Consider Restart Impact
If a process might crash frequently:
	Put it deep in the tree (affects fewer siblings)
	Give it its own supervisor with appropriate strategy
	Consider whether siblings should restart with it

Comparison with Alternatives
Flat Supervision
Some systems use a flat supervisor for all processes:
FlatSupervisor
├── Process1
├── Process2
├── Process3
└── ...
Problems:
	No fault isolation
	All-or-nothing restart
	Hard to reason about dependencies

Manual Hierarchies
You could define supervision manually, but:
	Must keep it in sync with physical structure
	Easy to get wrong
	More boilerplate

BB's approach derives the tree automatically from the DSL, ensuring consistency.
Related Documentation
	First Robot - Defining topology
	Starting and Stopping - Working with the supervision tree
	Understanding Safety - How safety interacts with supervision

 Understanding Safety in Beam Bots

This document explains the design and limitations of Beam Bots' safety system - what it does, why it works the way it does, and when you should rely on it.
Overview
Beam Bots provides a software safety system through the BB.Safety module and BB.Safety.Controller. The system coordinates disarm operations across all hardware-controlling processes in a robot.
Why Software Safety Exists
Physical robots need a way to quickly disable actuators when something goes wrong. Common scenarios include:
	Process crashes - An actuator process dies while hardware is active
	Application shutdown - The entire system is stopping
	Emergency stop - User or code triggers immediate halt
	Error conditions - Hardware reports faults that require shutdown

The software safety system provides a centralised way to handle all these cases with consistent behaviour.
The Safety State Machine
Every robot has a safety state managed by BB.Safety.Controller:
:disarmed ──arm──→ :armed
 ↑ │
 │ │ disarm
 │ ↓
 └───────────── :disarming
 │
 │ (on failure)
 ↓
 :error
	State	Description
	:disarmed	Robot is safe, all disarm callbacks succeeded
	:armed	Robot is ready to operate
	:disarming	Disarm in progress, callbacks running concurrently
	:error	Disarm attempted but callbacks failed; hardware may not be safe

Commands are rejected while in :disarming state. The :error state prevents re-arming until an operator acknowledges the failure with BB.Safety.force_disarm/1.
Why Stateless Disarm Callbacks?
The disarm/1 callback receives only options, not GenServer state. This design choice exists because:
	Process may be dead - When a supervisor detects a crash, the process state is gone
	Speed matters - Opening fresh hardware connections is slower but reliable
	Isolation - Each callback can fail independently without affecting others

The trade-off: you must pass all hardware access information at registration time.
Concurrent Execution with Timeouts
Disarm callbacks run concurrently with a 5-second timeout per callback. This design reflects practical constraints:
	Why concurrent? - Waiting for slow hardware sequentially could take too long
	Why 5 seconds? - Long enough for most I2C/serial operations, short enough to be useful
	Why timeout? - Hung hardware shouldn't block system shutdown forever

If any callback fails, times out, or raises, the robot transitions to :error rather than :disarmed.
Hardware Error Reporting
Controllers and actuators can report hardware errors using BB.Safety.report_error/3. The default behaviour is automatic disarm, which is safe but conservative.
When to disable auto-disarm:
	Transient errors - Brief communication glitches that self-resolve
	Partial failures - One servo overheating shouldn't stop the whole robot
	Custom recovery - You want to try recovery before disarming

Disabling auto-disarm requires implementing your own error handling via PubSub subscription to [:safety, :error].
The Safety Hierarchy
Software safety is one layer in a multi-layered approach:
1. Physical E-stop (fastest, most reliable)
 ├── Manual button or switch
 ├── Directly interrupts power
 └── No software dependency

2. Hardware watchdog (fails safe on software crash)
 ├── Monitors heartbeat from Beam Bots
 ├── Automatic power cutoff if heartbeat stops
 └── Independent of BEAM VM

3. BB.Safety controller (software-managed, best effort)
 ├── Centralised arm/disarm state
 ├── Calls registered disarm callbacks
 └── Handles robot supervisor crashes

4. Individual process state (application-level)
 ├── Per-actuator enable/disable
 ├── Command validation
 └── Motion limits
Each layer handles failures that slip through the layer above.
BEAM is Soft Real-Time
The BEAM virtual machine provides soft real-time guarantees, not hard real-time. This fundamental limitation shapes what the safety system can promise:
What "soft real-time" means:
	Processes get fair scheduling, but no guaranteed response times
	Garbage collection can pause any process
	Scheduler load affects message delivery timing
	The VM itself can crash (segfault, OOM, etc.)

Implications for safety:
	Disarm callbacks may be delayed by milliseconds to seconds
	If the VM crashes, no callbacks run
	High CPU load can delay safety responses

When Software Safety is Sufficient
The software safety system is appropriate for:
	Hobby projects and prototypes - Where delayed shutdown is acceptable
	Research platforms - With human supervision during operation
	Low-power systems - Where uncontrolled motion causes no harm
	Development and testing - Before hardware safety is installed

When to Add Hardware Safety
Add hardware-level safety for:
	Systems that could cause injury - Any robot near humans
	Unattended operation - No human to hit the stop button
	High-power actuators - Where runaway motion is dangerous
	Production deployments - Where reliability is critical

Hardware Safety Options
Watchdog heartbeat: Beam Bots sends periodic pulses to a microcontroller. If pulses stop, hardware cuts power automatically. This catches VM crashes and hangs.
Manual E-stop: Physical button that immediately disconnects actuator power. Independent of all software.
Dual-channel enable: Both software command AND heartbeat required to enable actuators. Defense in depth.
Shutdown Behaviour
When the safety controller terminates (e.g., during application shutdown), it attempts to disarm all armed robots. This is best-effort:
	Normal shutdown - Callbacks have time to complete
	Quick shutdown - Callbacks may be interrupted
	VM crash - No callbacks run

Always design physical systems assuming software may not execute cleanup.
Quick Reference
	Question	Answer
	Can Beam Bots guarantee actuators stop within X ms?	No
	Is the software safety system enough for hobby projects?	Yes
	Should I use hardware safety for research robots?	Recommended
	Is software safety enough for unattended operation?	No
	Can disarm callbacks run if my actuator process crashed?	Yes
	Will disarm callbacks run if the BEAM VM crashes?	No
	What happens if a disarm callback fails?	Robot enters :error state
	Can I arm a robot in :error state?	No, use force_disarm/1 first
	Do disarm callbacks run concurrently?	Yes, with 5 second timeout
	Can commands execute while disarming?	No, rejected with :disarming error
	Are robots disarmed on shutdown?	Yes, best-effort during controller terminate
	What happens when a hardware error is reported?	Auto-disarm (default) or custom handling
	How do I disable auto-disarm on error?	Set auto_disarm_on_error false in settings

Related Documentation
	How to Implement Safety Callbacks - Step-by-step implementation guide
	How to Integrate a Servo Driver - Includes safety registration patterns

 Error Types Reference

Structured error types in BB. All errors implement the BB.Error.Severity protocol.
Severity Levels
	Level	Description
	:critical	Immediate safety response required
	:error	Operation failed, may retry or degrade
	:warning	Unusual condition, operation continues

Hardware Errors
Communication failures with physical devices.
Class: :hardware
BusError
Communication bus failure.
Module: BB.Error.Hardware.BusError
Fields:
	Field	Type	Description
	bus	string	Bus identifier (e.g., "i2c-1")
	reason	term	Underlying error

Severity: :error
DeviceError
Device-level failure.
Module: BB.Error.Hardware.DeviceError
Fields:
	Field	Type	Description
	device	term	Device identifier
	reason	term	Error details

Severity: :error
Disconnected
Device unexpectedly disconnected.
Module: BB.Error.Hardware.Disconnected
Fields:
	Field	Type	Description
	device	term	Device identifier

Severity: :error
Timeout
Hardware communication timeout.
Module: BB.Error.Hardware.Timeout
Fields:
	Field	Type	Description
	device	term	Device identifier
	operation	atom	Operation that timed out

Severity: :error
Safety Errors
Safety system violations.
Class: :safety
All safety errors have severity :critical.
CollisionRisk
Collision detected or imminent.
Module: BB.Error.Safety.CollisionRisk
Fields:
	Field	Type	Description
	link	atom	Link at risk
	obstacle	term	Obstacle description

DisarmFailed
Disarm callback failed.
Module: BB.Error.Safety.DisarmFailed
Fields:
	Field	Type	Description
	path	[atom]	Process path
	reason	term	Failure reason

EmergencyStop
Emergency stop triggered.
Module: BB.Error.Safety.EmergencyStop
Fields:
	Field	Type	Description
	source	term	What triggered the stop

LimitExceeded
Joint limit exceeded.
Module: BB.Error.Safety.LimitExceeded
Fields:
	Field	Type	Description
	joint	atom	Joint name
	limit	atom	:position, :velocity, or :effort
	value	float	Actual value
	max	float	Maximum allowed

Kinematics Errors
Motion planning failures.
Class: :kinematics
NoDofs
No degrees of freedom available.
Module: BB.Error.Kinematics.NoDofs
Fields:
	Field	Type	Description
	chain	[atom]	Kinematic chain

Severity: :error
NoSolution
Inverse kinematics found no solution.
Module: BB.Error.Kinematics.NoSolution
Fields:
	Field	Type	Description
	target	Transform	Requested pose
	reason	term	Why no solution exists

Severity: :error
MultiFailed
Multiple IK attempts failed.
Module: BB.Error.Kinematics.MultiFailed
Fields:
	Field	Type	Description
	attempts	integer	Number of attempts
	errors	[term]	Individual errors

Severity: :error
SelfCollision
Motion would cause self-collision.
Module: BB.Error.Kinematics.SelfCollision
Fields:
	Field	Type	Description
	link_a	atom	First colliding link
	link_b	atom	Second colliding link

Severity: :warning
Singularity
Near kinematic singularity.
Module: BB.Error.Kinematics.Singularity
Fields:
	Field	Type	Description
	joint	atom	Joint near singularity
	manipulability	float	Manipulability measure

Severity: :warning
UnknownLink
Referenced link not found.
Module: BB.Error.Kinematics.UnknownLink
Fields:
	Field	Type	Description
	link	atom	Unknown link name

Severity: :error
Unreachable
Target is outside workspace.
Module: BB.Error.Kinematics.Unreachable
Fields:
	Field	Type	Description
	target	Transform	Requested pose
	distance	float	Distance outside workspace

Severity: :error
Invalid Errors
Configuration and validation errors.
Class: :invalid
Command
Invalid command definition.
Module: BB.Error.Invalid.Command
Fields:
	Field	Type	Description
	command	atom	Command name
	reason	term	Validation failure

Severity: :error
JointConfig
Invalid joint configuration.
Module: BB.Error.Invalid.JointConfig
Fields:
	Field	Type	Description
	joint	atom	Joint name
	field	atom	Invalid field
	reason	term	Why invalid

Severity: :error
Parameter
Invalid parameter value.
Module: BB.Error.Invalid.Parameter
Fields:
	Field	Type	Description
	name	atom	Parameter name
	value	term	Invalid value
	expected	term	Expected type/range

Severity: :error
Topology
Invalid topology definition.
Module: BB.Error.Invalid.Topology
Fields:
	Field	Type	Description
	path	[atom]	Location in topology
	reason	term	Validation failure

Severity: :error
State Errors
State machine violations.
Class: :state
NotAllowed
Command not allowed in current state.
Module: BB.Error.State.NotAllowed
Fields:
	Field	Type	Description
	current_state	atom	Current robot state
	allowed_states	[atom]	States where command is allowed

Severity: :error
Invalid
Invalid state transition.
Module: BB.Error.State.Invalid
Fields:
	Field	Type	Description
	from	atom	Current state
	to	atom	Requested state

Severity: :error
Preempted
Command was preempted by another.
Module: BB.Error.State.Preempted
Fields:
	Field	Type	Description
	command	atom	Original command
	preempted_by	atom	Preempting command

Severity: :warning
Timeout
Command execution timeout.
Module: BB.Error.State.Timeout
Fields:
	Field	Type	Description
	command	atom	Command that timed out
	elapsed	integer	Time elapsed (ms)

Severity: :error
CommandCrashed
Command process crashed.
Module: BB.Error.State.CommandCrashed
Fields:
	Field	Type	Description
	command	atom	Command that crashed
	reason	term	Crash reason

Severity: :error
Category Errors
Command category errors.
Class: :category
Full
Command category is at capacity.
Module: BB.Error.Category.Full
Fields:
	Field	Type	Description
	category	atom	Category name
	capacity	integer	Maximum concurrent commands
	running	integer	Currently running

Severity: :error
Protocol Errors
Low-level protocol failures.
Class: :protocol
Used by driver packages (e.g., Robotis Dynamixel protocol errors).
Creating Errors
Always use exception/1 to create errors so that Splode can capture backtraces:
Create error with exception/1 (captures backtrace)
error = BB.Error.State.NotAllowed.exception(
 current_state: :disarmed,
 allowed_states: [:idle]
)

Check severity
BB.Error.Severity.severity(error) #=> :error

Get message
BB.Error.message(error) #=> "Command not allowed in state :disarmed..."
Do not create error structs directly - this bypasses Splode's backtrace capture:
Avoid - no backtrace captured
error = %BB.Error.State.NotAllowed{
 current_state: :disarmed,
 allowed_states: [:idle]
}
Returning Errors
Prefer structured errors over tuples:
Good - use exception/1
{:error, BB.Error.State.NotAllowed.exception(current_state: :disarmed, allowed_states: [:idle])}

Avoid - tuple-based errors
{:error, {:not_allowed, :disarmed}}

 Message Types Reference

All message payloads in BB PubSub. Messages are wrapped in BB.Message:
%BB.Message{
 timestamp: integer(), # System.monotonic_time(:nanosecond)
 frame_id: atom(), # Coordinate frame (typically joint/link name)
 payload: struct() # One of the message types below
}
Note on timestamps: The timestamp is monotonic time in nanoseconds (System.monotonic_time(:nanosecond)), not wall-clock time. This means:
	Timestamps are suitable for ordering events and measuring durations
	They cannot be converted to wall-clock/UTC time
	They are only meaningful within a single BEAM VM instance

Sensor Messages
JointState
State of one or more joints.
Module: BB.Message.Sensor.JointState
Fields:
	Field	Type	Required	Description
	names	[atom]	Yes	Joint names
	positions	[float]	No	Positions in radians (revolute) or metres (prismatic)
	velocities	[float]	No	Velocities in rad/s or m/s
	efforts	[float]	No	Efforts in Nm or N

Published to: [:sensor, joint_name]
Example:
JointState.new!(
 names: [:shoulder, :elbow],
 positions: [0.5, 1.2],
 velocities: [0.1, 0.0]
)
BatteryState
Battery status information.
Module: BB.Message.Sensor.BatteryState
Fields:
	Field	Type	Required	Description
	voltage	float	Yes	Battery voltage in volts
	current	float	No	Current draw in amps
	percentage	float	No	Charge percentage (0.0-1.0)
	present	boolean	No	Whether battery is present

Published to: [:sensor, :battery] or custom path
IMU
Inertial measurement unit data.
Module: BB.Message.Sensor.IMU
Fields:
	Field	Type	Required	Description
	orientation	Quaternion	No	Orientation quaternion
	angular_velocity	Vec3	No	Angular velocity in rad/s
	linear_acceleration	Vec3	No	Linear acceleration in m/s²

Published to: [:sensor, :imu] or custom path
LaserScan
2D laser range finder data.
Module: BB.Message.Sensor.LaserScan
Fields:
	Field	Type	Required	Description
	angle_min	float	Yes	Start angle in radians
	angle_max	float	Yes	End angle in radians
	angle_increment	float	Yes	Angle between measurements
	ranges	[float]	Yes	Range measurements in metres
	intensities	[float]	No	Intensity values

Published to: [:sensor, :lidar] or custom path
Range
Single distance measurement.
Module: BB.Message.Sensor.Range
Fields:
	Field	Type	Required	Description
	range	float	Yes	Measured distance in metres
	min_range	float	No	Minimum valid range
	max_range	float	No	Maximum valid range
	radiation_type	atom	No	:ultrasound or :infrared

Published to: [:sensor, sensor_name]
Image
Camera image data.
Module: BB.Message.Sensor.Image
Fields:
	Field	Type	Required	Description
	height	integer	Yes	Image height in pixels
	width	integer	Yes	Image width in pixels
	encoding	string	Yes	Pixel encoding (e.g., "rgb8", "mono8")
	data	binary	Yes	Raw image data

Published to: [:sensor, :camera] or custom path
Actuator Messages
BeginMotion
Published when an actuator starts moving.
Module: BB.Message.Actuator.BeginMotion
Fields:
	Field	Type	Required	Description
	initial_position	float	Yes	Starting position
	target_position	float	Yes	Target position
	expected_arrival	integer	Yes	Expected completion time (monotonic ms)
	command_id	reference	No	Correlation ID
	command_type	atom	No	:position, :velocity, :effort, :trajectory

Published to: [:actuator, actuator_name]
Used by: OpenLoopPositionEstimator for position feedback without encoders.
EndMotion
Published when an actuator completes a motion.
Module: BB.Message.Actuator.EndMotion
Fields:
	Field	Type	Required	Description
	final_position	float	Yes	Achieved position
	command_id	reference	No	Correlation ID

Published to: [:actuator, actuator_name]
Actuator Command Messages
Commands sent to actuators.
Command.Position
Position target command.
Module: BB.Message.Actuator.Command.Position
Fields:
	Field	Type	Required	Description
	target	float	Yes	Target position

Published to: [:actuator, actuator_name]
Command.Velocity
Velocity command.
Module: BB.Message.Actuator.Command.Velocity
Fields:
	Field	Type	Required	Description
	velocity	float	Yes	Target velocity

Command.Effort
Effort (torque/force) command.
Module: BB.Message.Actuator.Command.Effort
Fields:
	Field	Type	Required	Description
	effort	float	Yes	Target effort

Command.Trajectory
Multi-point trajectory command.
Module: BB.Message.Actuator.Command.Trajectory
Fields:
	Field	Type	Required	Description
	points	[TrajectoryPoint]	Yes	Trajectory waypoints

Command.Hold
Hold current position.
Module: BB.Message.Actuator.Command.Hold
No additional fields.
Command.Stop
Stop motion immediately.
Module: BB.Message.Actuator.Command.Stop
No additional fields.
Geometry Messages
Geometric primitives used as components in other messages.
Point3D
3D point.
Module: BB.Message.Geometry.Point3D
Fields:
	Field	Type	Required	Description
	x	float	Yes	X coordinate
	y	float	Yes	Y coordinate
	z	float	Yes	Z coordinate

Pose
Position and orientation.
Module: BB.Message.Geometry.Pose
Fields:
	Field	Type	Required	Description
	position	Point3D	Yes	Position
	orientation	Quaternion	Yes	Orientation

Twist
Linear and angular velocity.
Module: BB.Message.Geometry.Twist
Fields:
	Field	Type	Required	Description
	linear	Vec3	Yes	Linear velocity (m/s)
	angular	Vec3	Yes	Angular velocity (rad/s)

Accel
Linear and angular acceleration.
Module: BB.Message.Geometry.Accel
Fields:
	Field	Type	Required	Description
	linear	Vec3	Yes	Linear acceleration (m/s²)
	angular	Vec3	Yes	Angular acceleration (rad/s²)

Wrench
Force and torque.
Module: BB.Message.Geometry.Wrench
Fields:
	Field	Type	Required	Description
	force	Vec3	Yes	Force (N)
	torque	Vec3	Yes	Torque (Nm)

System Messages
StateMachine.Transition
Robot state machine transition.
Published to: [:state_machine]
Fields:
	Field	Type	Description
	from	atom	Previous state
	to	atom	New state

Safety.HardwareError
Hardware error report.
Published to: [:safety, :error]
Fields:
	Field	Type	Description
	path	[atom]	Path to component
	error	term	Error details

Creating Messages
All message types support new/1 and new!/1:
Returns {:ok, message} or {:error, reason}
{:ok, msg} = JointState.new(names: [:shoulder], positions: [0.5])

Raises on validation error
msg = JointState.new!(names: [:shoulder], positions: [0.5])
Message Wrapper
Messages are wrapped in BB.Message:
%BB.Message{
 payload: %JointState{...},
 timestamp: ~U[2025-01-18 12:00:00Z],
 frame_id: "shoulder"
}
Create wrapped messages:
BB.Message.new(JointState, :shoulder, names: [:shoulder], positions: [0.5])

 Telemetry Events Reference

BB emits :telemetry events for performance monitoring and diagnostics.
Event Types
Span Events
Span events use :telemetry.span/3 which automatically emits:
	[:prefix, :start] - When operation begins
	[:prefix, :stop] - When operation completes successfully
	[:prefix, :exception] - When operation raises

Diagnostic Events
Single events emitted for component health reporting.
Motion Events
[:bb, :motion, :solve]
IK solver execution.
Start Measurements:
	Key	Type	Description
	system_time	integer	System time at start

Stop Measurements:
	Key	Type	Description
	duration	native_time	Execution duration
	monotonic_time	integer	Monotonic time at completion

Metadata:
	Key	Type	Description
	robot	atom	Robot module
	target_link	atom	End-effector link
	solver	module	IK solver module used

Stop Metadata (additional):
	Key	Type	Description
	iterations	integer	Solver iterations
	residual	float	Final position error
	reached	boolean	Whether target was reached

[:bb, :motion, :move_to]
Full move operation (solve + send positions).
Stop Measurements:
	Key	Type	Description
	duration	native_time	Total operation duration

Metadata:
	Key	Type	Description
	robot	atom	Robot module
	target_link	atom	End-effector link

[:bb, :motion, :send_positions]
Sending positions to actuators.
Stop Measurements:
	Key	Type	Description
	duration	native_time	Send duration

Metadata:
	Key	Type	Description
	robot	atom	Robot module
	joint_count	integer	Number of joints updated
	delivery	atom	:pubsub, :direct, or :sync

Kinematics Events
[:bb, :kinematics, :forward]
Forward kinematics computation.
Stop Measurements:
	Key	Type	Description
	duration	native_time	Computation duration

Metadata:
	Key	Type	Description
	robot	atom	Robot module
	target_link	atom	Link to compute pose for

Command Events
[:bb, :command, :execute]
Command execution span.
Stop Measurements:
	Key	Type	Description
	duration	native_time	Total command duration

Metadata:
	Key	Type	Description
	robot	atom	Robot module
	command	atom	Command name
	execution_id	reference	Unique execution ID

Diagnostic Events
[:bb, :diagnostic]
Component health diagnostic.
Measurements: Empty (%{})
Metadata: BB.Diagnostic struct
See BB.Diagnostic module for diagnostic event details.
Subscribing to Events
Single Event
:telemetry.attach(
 "my-handler",
 [:bb, :motion, :solve, :stop],
 &MyApp.handle_solve_complete/4,
 nil
)
Multiple Events
:telemetry.attach_many(
 "my-perf-handler",
 [
 [:bb, :motion, :solve, :stop],
 [:bb, :motion, :move_to, :stop],
 [:bb, :command, :execute, :stop]
],
 &MyApp.handle_perf_event/4,
 nil
)
Handler Example
defmodule MyApp.TelemetryHandler do
 require Logger

 def handle_event([:bb, :motion, :solve, :stop], measurements, metadata, _config) do
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)

 Logger.info(
 "IK solve for #{metadata.robot} completed in #{duration_ms}ms " <>
 "(#{metadata.iterations} iterations, residual: #{metadata.residual})"
)
 end

 def handle_event([:bb, :motion, :solve, :exception], _measurements, metadata, _config) do
 Logger.error("IK solve for #{metadata.robot} failed")
 end
end
Converting Duration
Durations are in native time units. Convert for display:
To milliseconds
duration_ms = System.convert_time_unit(duration, :native, :millisecond)

To microseconds (for high-precision)
duration_us = System.convert_time_unit(duration, :native, :microsecond)
Emitting Custom Events
Use BB.Telemetry helpers:
Span (start/stop automatically)
BB.Telemetry.span([:bb, :custom, :operation], %{robot: MyRobot}, fn ->
 result = do_work()
 {result, %{items_processed: 10}}
end)

Single event
BB.Telemetry.emit([:bb, :custom, :event], %{count: 1}, %{robot: MyRobot})
Metrics Collection
Example with telemetry_metrics and telemetry_poller:
In your application supervision tree
children = [
 {Telemetry.Metrics.ConsoleReporter, metrics: metrics()}
]

defp metrics do
 [
 Telemetry.Metrics.distribution(
 "bb.motion.solve.duration",
 event_name: [:bb, :motion, :solve, :stop],
 measurement: :duration,
 unit: {:native, :millisecond},
 tags: [:robot, :solver]
),
 Telemetry.Metrics.counter(
 "bb.command.execute.count",
 event_name: [:bb, :command, :execute, :stop],
 tags: [:robot, :command]
)
]
end
Event Naming Convention
BB follows the telemetry naming convention:
[:bb, :subsystem, :operation]
[:bb, :subsystem, :operation, :start]
[:bb, :subsystem, :operation, :stop]
[:bb, :subsystem, :operation, :exception]
Subsystems:
	motion - Motion planning and execution
	kinematics - Kinematic computations
	command - Command system
	diagnostic - Health diagnostics

 BB

The DSL extension for describing robot properties and topologies.
topology
Robot topology
Nested DSLs
	link	inertial	origin
	inertia

	visual	box
	cylinder
	sphere
	capsule
	mesh
	material	color
	texture

	origin

	collision	origin
	box
	cylinder
	sphere
	capsule
	mesh

	sensor

	joint	origin
	axis
	dynamics
	limit
	sensor
	actuator

topology.link
link name
A kinematic link (ie solid body).
Nested DSLs
	inertial	origin
	inertia

	visual	box
	cylinder
	sphere
	capsule
	mesh
	material	color
	texture

	origin

	collision	origin
	box
	cylinder
	sphere
	capsule
	mesh

	sensor

Arguments
	Name	Type	Default	Docs
	name	atom		The name of the link

topology.link.inertial
A link's mass, position of it's center of mass and it's central inertia properties
Nested DSLs
	origin
	inertia

Options
	Name	Type	Default	Docs
	mass	any		The mass of the link

topology.link.inertial.origin
Specifies where the link's center of mass is located, relative to the link's reference frame
Options
	Name	Type	Default	Docs
	roll	any	Cldr.Unit.new!(:degree, 0)	rotation around the x axis
	pitch	any	Cldr.Unit.new!(:degree, 0)	rotation around the y axis
	yaw	any	Cldr.Unit.new!(:degree, 0)	rotation around the z axis
	x	any	Cldr.Unit.new!(:meter, 0)	translation along the x axis
	y	any	Cldr.Unit.new!(:meter, 0)	translation along the y axis
	z	any	Cldr.Unit.new!(:meter, 0)	translation along the z axis

Introspection
Target: BB.Dsl.Origin
topology.link.inertial.inertia
How the link resists rotational motion.
Options
	Name	Type	Default	Docs
	ixx	any		Resistance to rotation around the x-axis
	iyy	any		Resistance to rotation around the y-axis
	izz	any		Resistance to rotation around the z-axis
	ixy	any		Coupling between the x and y axes
	ixz	any		Coupling between the x and z axes
	iyz	any		Coupling between the y and z axes

Introspection
Target: BB.Dsl.Inertia
Introspection
Target: BB.Dsl.Inertial
topology.link.visual
Visual attributes for a link.
Nested DSLs
	box
	cylinder
	sphere
	capsule
	mesh
	material	color
	texture

	origin

topology.link.visual.box
Box geometry
Options
	Name	Type	Default	Docs
	x	any		The length of the X axis side
	y	any		The length of the Y axis side
	z	any		The length of the Z axis side

Introspection
Target: BB.Dsl.Box
topology.link.visual.cylinder
A cylindrical geometry
The origin of the cylinder is the center.
Options
	Name	Type	Default	Docs
	radius	any		The distance from the center to the circumference
	height	any		The height of the cylinder

Introspection
Target: BB.Dsl.Cylinder
topology.link.visual.sphere
A spherical geometry
The origin of the sphere is its center.
Options
	Name	Type	Default	Docs
	radius	any		The distance from the center of the sphere to your edge

Introspection
Target: BB.Dsl.Sphere
topology.link.visual.capsule
A capsule geometry (cylinder with hemispherical caps).
The origin of the capsule is the centre of the cylindrical portion.
The height is the distance between the centres of the hemispherical caps.
Total extent is height + 2 * radius.
Options
	Name	Type	Default	Docs
	radius	any		The radius of the capsule (cylinder and hemispherical caps)
	height	any		The height of the cylindrical portion (between cap centres)

Introspection
Target: BB.Dsl.Capsule
topology.link.visual.mesh
A mesh object specified by a filename
Options
	Name	Type	Default	Docs
	filename	String.t		The path to the 3D model
	scale	number	1	A scale factor for the mest

Introspection
Target: BB.Dsl.Mesh
topology.link.visual.material
The material of the visual element
Nested DSLs
	color
	texture

Options
	Name	Type	Default	Docs
	name	atom		The name of the material

topology.link.visual.material.color
The color of the meterial
Options
	Name	Type	Default	Docs
	red	any		The red element of the color
	green	any		The green element of the color
	blue	any		The blue element of the color
	alpha	any	1	The alpha element of the color

Introspection
Target: BB.Dsl.Color
topology.link.visual.material.texture
A texture to apply to the material
Options
	Name	Type	Default	Docs
	filename	String.t		The image file to use

Introspection
Target: BB.Dsl.Texture
Introspection
Target: BB.Dsl.Material
topology.link.visual.origin
The refrence frame of the visual element with respect to the reference frame of the link
Options
	Name	Type	Default	Docs
	roll	any	Cldr.Unit.new!(:degree, 0)	rotation around the x axis
	pitch	any	Cldr.Unit.new!(:degree, 0)	rotation around the y axis
	yaw	any	Cldr.Unit.new!(:degree, 0)	rotation around the z axis
	x	any	Cldr.Unit.new!(:meter, 0)	translation along the x axis
	y	any	Cldr.Unit.new!(:meter, 0)	translation along the y axis
	z	any	Cldr.Unit.new!(:meter, 0)	translation along the z axis

Introspection
Target: BB.Dsl.Origin
Introspection
Target: BB.Dsl.Visual
topology.link.collision
The collision properties of a link.
Nested DSLs
	origin
	box
	cylinder
	sphere
	capsule
	mesh

Options
	Name	Type	Default	Docs
	name	atom		An optional name of the link geometry

topology.link.collision.origin
The refrence frame of the collision element, relative to the reference frame of the link
Options
	Name	Type	Default	Docs
	roll	any	Cldr.Unit.new!(:degree, 0)	rotation around the x axis
	pitch	any	Cldr.Unit.new!(:degree, 0)	rotation around the y axis
	yaw	any	Cldr.Unit.new!(:degree, 0)	rotation around the z axis
	x	any	Cldr.Unit.new!(:meter, 0)	translation along the x axis
	y	any	Cldr.Unit.new!(:meter, 0)	translation along the y axis
	z	any	Cldr.Unit.new!(:meter, 0)	translation along the z axis

Introspection
Target: BB.Dsl.Origin
topology.link.collision.box
Box geometry
Options
	Name	Type	Default	Docs
	x	any		The length of the X axis side
	y	any		The length of the Y axis side
	z	any		The length of the Z axis side

Introspection
Target: BB.Dsl.Box
topology.link.collision.cylinder
A cylindrical geometry
The origin of the cylinder is the center.
Options
	Name	Type	Default	Docs
	radius	any		The distance from the center to the circumference
	height	any		The height of the cylinder

Introspection
Target: BB.Dsl.Cylinder
topology.link.collision.sphere
A spherical geometry
The origin of the sphere is its center.
Options
	Name	Type	Default	Docs
	radius	any		The distance from the center of the sphere to your edge

Introspection
Target: BB.Dsl.Sphere
topology.link.collision.capsule
A capsule geometry (cylinder with hemispherical caps).
The origin of the capsule is the centre of the cylindrical portion.
The height is the distance between the centres of the hemispherical caps.
Total extent is height + 2 * radius.
Options
	Name	Type	Default	Docs
	radius	any		The radius of the capsule (cylinder and hemispherical caps)
	height	any		The height of the cylindrical portion (between cap centres)

Introspection
Target: BB.Dsl.Capsule
topology.link.collision.mesh
A mesh object specified by a filename
Options
	Name	Type	Default	Docs
	filename	String.t		The path to the 3D model
	scale	number	1	A scale factor for the mest

Introspection
Target: BB.Dsl.Mesh
Introspection
Target: BB.Dsl.Collision
topology.link.sensor
sensor name, child_spec
A sensor attached to the robot, a link, or a joint.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the sensor
	child_spec	module | {module, keyword}		The child specification for the sensor process. Either a module or {module, keyword_list}

Introspection
Target: BB.Dsl.Sensor
Introspection
Target: BB.Dsl.Link
topology.joint
joint name
A kinematic joint between a parent link and a child link.
Nested DSLs
	origin
	axis
	dynamics
	limit
	sensor
	actuator

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the joint

Options
	Name	Type	Default	Docs
	type	:revolute | :continuous | :prismatic | :fixed | :floating | :planar		Specifies the type of joint

topology.joint.origin
This is the transform from the parent link to the child link. The joint is located at the origin of the child link, as shown in the figure above
Options
	Name	Type	Default	Docs
	roll	any	Cldr.Unit.new!(:degree, 0)	rotation around the x axis
	pitch	any	Cldr.Unit.new!(:degree, 0)	rotation around the y axis
	yaw	any	Cldr.Unit.new!(:degree, 0)	rotation around the z axis
	x	any	Cldr.Unit.new!(:meter, 0)	translation along the x axis
	y	any	Cldr.Unit.new!(:meter, 0)	translation along the y axis
	z	any	Cldr.Unit.new!(:meter, 0)	translation along the z axis

Introspection
Target: BB.Dsl.Origin
topology.joint.axis
The joint axis specified in the joint frame. This is the axis of rotation for revolute joints, the axis of translation for prismatic joints, and the surface normal for planar joints. The axis is specified in the joint frame of reference. Fixed and floating joints do not use the axis field
Options
	Name	Type	Default	Docs
	roll	any	Cldr.Unit.new!(:degree, 0)	rotation around the X axis
	pitch	any	Cldr.Unit.new!(:degree, 0)	rotation around the Y axis
	yaw	any	Cldr.Unit.new!(:degree, 0)	rotation around the Z axis

Introspection
Target: BB.Dsl.Axis
topology.joint.dynamics
An element specifying physical properties of the joint. These values are used to specify modeling properties of the joint, particularly useful for simulation.
Options
	Name	Type	Default	Docs
	damping	any		The physical damping value of the joint
	friction	any		The physical static friction value of the joint

Introspection
Target: BB.Dsl.Dynamics
topology.joint.limit
Limits applied to joint movement
Options
	Name	Type	Default	Docs
	effort	any		The maximum effort - both positive and negative - that can be commanded to the joint
	velocity	any		Maximum velocity - both positive and negative - that can be commanded to the joint
	lower	any		The lower joint limit
	upper	any		The upper joint limit

Introspection
Target: BB.Dsl.Limit
topology.joint.sensor
sensor name, child_spec
A sensor attached to the robot, a link, or a joint.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the sensor
	child_spec	module | {module, keyword}		The child specification for the sensor process. Either a module or {module, keyword_list}

Introspection
Target: BB.Dsl.Sensor
topology.joint.actuator
actuator name, child_spec
An actuator attached to a joint.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the actuator
	child_spec	module | {module, keyword}		The child specification for the actuator process. Either a module or {module, keyword_list}

Introspection
Target: BB.Dsl.Actuator
Introspection
Target: BB.Dsl.Joint
settings
System-wide settings
Options
	Name	Type	Default	Docs
	name	atom		The name of the robot, defaults to the name of the defining module
	registry_module	module	Registry	The registry module to use
	registry_options	keyword		Options passed to Registry.start_link/1. Defaults to [partitions: System.schedulers_online()] at runtime.
	supervisor_module	module	Supervisor	The supervisor module to use
	parameter_store	module | {module, keyword}		Optional parameter persistence backend. Use a module or {Module, opts} tuple.
	auto_disarm_on_error	boolean	true	Automatically disarm the robot when a hardware error is reported. Defaults to true.

sensors
Robot-level sensors
Nested DSLs
	sensor

sensors.sensor
sensor name, child_spec
A sensor attached to the robot, a link, or a joint.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the sensor
	child_spec	module | {module, keyword}		The child specification for the sensor process. Either a module or {module, keyword_list}

Introspection
Target: BB.Dsl.Sensor
controllers
Robot-level controllers
Nested DSLs
	controller

controllers.controller
controller name, child_spec
A controller process at the robot level.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the controller
	child_spec	module | {module, keyword}		The child specification for the controller process. Either a module or {module, keyword_list}

Options
	Name	Type	Default	Docs
	simulation	:omit | :mock | :start	:omit	Behaviour in simulation mode: :omit (don't start), :mock (start no-op mock), :start (start real controller)

Introspection
Target: BB.Dsl.Controller
commands
Robot commands with Goal → Feedback → Result semantics
Nested DSLs
	category
	command	argument

commands.category
category name
A command category for grouping commands with concurrent execution limits.
Categories define logical groups of commands (e.g., :motion, :sensing,
:auxiliary) with configurable concurrency limits. Commands in different
categories can run concurrently, while commands in the same category are
limited to the category's concurrency_limit.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the category

Options
	Name	Type	Default	Docs
	doc	String.t		Documentation describing this category
	concurrency_limit	pos_integer	1	Maximum number of commands in this category that can run concurrently

Introspection
Target: BB.Dsl.Category
commands.command
command name
A command that can be executed on the robot.
Commands follow the Goal → Feedback → Result pattern and integrate with
the robot's state machine to control when they can run.
Nested DSLs
	argument

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the command

Options
	Name	Type	Default	Docs
	handler	module | {module, keyword}		The handler module implementing the BB.Command behaviour. Either a module or {module, keyword_list} for parameterised options
	timeout	pos_integer | :infinity	:infinity	Timeout for command execution in milliseconds
	allowed_states	atom | list(atom)	[:idle]	Robot states in which this command can run. Use :* for all states (except :disarmed). Use :disarmed explicitly if the command should run when disarmed.
	category	atom	:default	The command category for concurrency control. Commands in the same category are limited by that category's concurrency_limit.
	cancel	atom | list(atom)	[]	Categories of commands this command can cancel when starting. Use :* to cancel all running commands, or a list of specific categories. Empty list (default) means the command will error if its category is at capacity.

commands.command.argument
argument name, type
An argument for the command.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the argument
	type	any		The type of the argument

Options
	Name	Type	Default	Docs
	required	boolean	false	Whether this argument is required
	default	any		Default value if not provided
	doc	String.t		Documentation for the argument

Introspection
Target: BB.Dsl.Command.Argument
Introspection
Target: BB.Dsl.Command
parameters
Runtime-adjustable parameters for the robot.
Parameters provide a way to configure robot behaviour at runtime without
recompilation. They support validation, change notifications via PubSub,
and optional persistence.
Example
parameters do
group :motion do
param :max_linear_speed, type: :float, default: 1.0,
min: 0.0, max: 10.0, doc: "Max velocity in m/s"
param :max_angular_speed, type: :float, default: 0.5
end
group :safety do
param :collision_distance, type: :float, default: 0.3
end
end
Nested DSLs
	group	param

	param
	bridge

parameters.group
group name
A group of runtime-adjustable parameters.
Nested DSLs
	param

Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the parameter group

Options
	Name	Type	Default	Docs
	doc	String.t		Documentation for the parameter group

parameters.group.param
param name
A runtime-adjustable parameter.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the parameter

Options
	Name	Type	Default	Docs
	type	any		The parameter value type (:float, :integer, :boolean, :string, :atom, or {:unit, unit_type})
	default	any		Default value for the parameter
	min	number		Minimum value for numeric parameters
	max	number		Maximum value for numeric parameters
	doc	String.t		Documentation for the parameter

Introspection
Target: BB.Dsl.Param
Introspection
Target: BB.Dsl.ParamGroup
parameters.param
param name
A runtime-adjustable parameter.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the parameter

Options
	Name	Type	Default	Docs
	type	any		The parameter value type (:float, :integer, :boolean, :string, :atom, or {:unit, unit_type})
	default	any		Default value for the parameter
	min	number		Minimum value for numeric parameters
	max	number		Maximum value for numeric parameters
	doc	String.t		Documentation for the parameter

Introspection
Target: BB.Dsl.Param
parameters.bridge
bridge name, child_spec
A parameter protocol bridge for remote access.
Bridges expose robot parameters to remote clients (GCS, web UI, etc.)
and receive parameter updates from them. They implement BB.Bridge.
Example
parameters do
bridge :mavlink, {BBMavLink.ParameterBridge, conn: "/dev/ttyACM0"}
bridge :phoenix, {BBPhoenix.ParameterBridge, url: "ws://gcs.local/socket"}
end
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the bridge
	child_spec	module | {module, keyword}		The child specification for the bridge process. Either a module or {module, keyword_list}

Options
	Name	Type	Default	Docs
	simulation	:omit | :mock | :start	:omit	Behaviour in simulation mode: :omit (don't start), :mock (start no-op mock), :start (start real bridge)

Introspection
Target: BB.Dsl.Bridge
states
Custom operational states for the robot.
The built-in :idle state is always available. Define additional states
here and use commands to transition between them. Commands can specify
which states they're allowed to run in via allowed_states.
Nested DSLs
	state

Options
	Name	Type	Default	Docs
	initial_state	atom	:idle	The initial operational state when the robot starts

states.state
state name
A custom operational state for the robot.
States define the operational context the robot can be in. Commands specify
which states they can run in via allowed_states, and can transition to new
states via next_state: in their result.
Arguments
	Name	Type	Default	Docs
	name	atom		A unique name for the state

Options
	Name	Type	Default	Docs
	doc	String.t		Documentation describing this state

Introspection
Target: BB.Dsl.State

BB

Documentation for BB (Beam Bots).
Options
	:extensions (list of module that adopts Spark.Dsl.Extension) - A list of DSL extensions to add to the Spark.Dsl

	:otp_app (atom/0) - The otp_app to use for any application configurable options

	:fragments (list of module/0) - Fragments to include in the Spark.Dsl. See the fragments guide for more.

 Summary

 Functions

 call(module, name, message, timeout \\ 5000)

 See BB.Process.call/4.

 cast(module, name, message)

 See BB.Process.cast/3.

 publish(module, path, message)

 See BB.PubSub.publish/3.

 send(module, name, message)

 See BB.Process.send/3.

 subscribe(module, path, opts \\ [])

 See BB.PubSub.subscribe/3.

 unsubscribe(module, path)

 See BB.PubSub.unsubscribe/2.

 Functions

 call(module, name, message, timeout \\ 5000)

See BB.Process.call/4.

 cast(module, name, message)

See BB.Process.cast/3.

 publish(module, path, message)

See BB.PubSub.publish/3.

 send(module, name, message)

See BB.Process.send/3.

 subscribe(module, path, opts \\ [])

See BB.PubSub.subscribe/3.

 unsubscribe(module, path)

See BB.PubSub.unsubscribe/2.

BB.PubSub

Hierarchical pubsub system for robot component messages.
Allows processes to subscribe to messages by path with optional message type
filtering. Paths are prefixed with a source type atom (:sensor, :actuator,
etc.) followed by the location path through the robot topology.
Path Format
[:sensor, :base_link, :joint1, :imu1] # specific sensor
[:actuator, :base_link, :joint1, :motor1] # specific actuator
Subscription Patterns
Exact match - only messages from this specific sensor
subscribe(MyRobot, [:sensor, :base_link, :joint1, :imu1])

Subtree - all sensors under joint1
subscribe(MyRobot, [:sensor, :base_link, :joint1])

All of type - all sensors anywhere
subscribe(MyRobot, [:sensor])

All messages
subscribe(MyRobot, [])
Message Format
Subscribers receive messages as:
{:bb, source_path, %BB.Message{}}
Where source_path is the full path of the publisher.
Message Type Filtering
Subscribe with message_types option to filter by payload type:
subscribe(MyRobot, [:sensor], message_types: [BB.Message.Sensor.Imu])
Empty list (default) means no filtering - receive all message types.

 Summary

 Functions

 publish(robot, path, message)

 Publish a message to all matching subscribers.

 registry_name(robot_module)

 Returns the pubsub registry name for a robot module.

 subscribe(robot, path, opts \\ [])

 Subscribe the calling process to messages matching the given path.

 subscribers(robot, path)

 List subscribers registered at a specific path.

 unsubscribe(robot, path)

 Unsubscribe the calling process from the given path.

 Functions

 publish(robot, path, message)

 @spec publish(module(), [atom()], BB.Message.t()) :: :ok

Publish a message to all matching subscribers.
The message is dispatched to subscribers registered at the exact path and all
ancestor paths. At each level, subscribers are filtered by their registered
message_types (if any).
Examples
From a sensor process
path = [:sensor | state.bb.path]
publish(state.bb.robot, path, message)

 registry_name(robot_module)

 @spec registry_name(module()) :: atom()

Returns the pubsub registry name for a robot module.

 subscribe(robot, path, opts \\ [])

 @spec subscribe(module(), [atom()], keyword()) :: {:ok, pid()} | {:error, term()}

Subscribe the calling process to messages matching the given path.
Options
	:message_types - List of message payload modules to receive. Empty list
(default) means receive all message types.

Examples
All IMU messages from sensors under joint1
subscribe(MyRobot, [:sensor, :base_link, :joint1],
 message_types: [BB.Message.Sensor.Imu])

All sensor messages (no type filter)
subscribe(MyRobot, [:sensor])

All messages from anywhere
subscribe(MyRobot, [])

 subscribers(robot, path)

 @spec subscribers(module(), [atom()]) :: [{pid(), [module()]}]

List subscribers registered at a specific path.
Returns a list of {pid, message_types} tuples. Useful for debugging.

 unsubscribe(robot, path)

 @spec unsubscribe(module(), [atom()]) :: :ok

Unsubscribe the calling process from the given path.

BB.Robot

An optimised robot representation for kinematic computations.
This struct is built from the Spark DSL at compile-time and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators by name
	Pre-computed topology metadata for efficient traversal
	Bidirectional parent/child references

Structure
The robot is organised as flat maps indexed by name:
	links - all links in the robot, keyed by atom name
	joints - all joints in the robot, keyed by atom name
	sensors - all sensors (at any level), keyed by atom name
	actuators - all actuators, keyed by atom name

Unit Conventions
All physical quantities are stored as native floats in SI base units:
	Length: meters
	Angle: radians
	Mass: kilograms
	Moment of inertia: kg·m²
	Force: newtons
	Torque: newton-meters
	Linear velocity: m/s
	Angular velocity: rad/s

 Summary

 Types

 actuator_info()

 param_location()

 sensor_info()

 t()

 Functions

 child_joints(robot, link_name)

 Get the child joints of a link.

 get_joint(robot, name)

 Get a joint by name.

 get_link(robot, name)

 Get a link by name.

 joints_in_order(robot)

 Get all joints in traversal order.

 links_in_order(robot)

 Get all links in topological order (root first).

 parent_joint(robot, link_name)

 Get the parent joint of a link (nil for root link).

 path_to(robot, name)

 Get the path from root to a given link or joint.

 Types

 actuator_info()

 @type actuator_info() :: %{name: atom(), joint: atom()}

 param_location()

 @type param_location() :: {:joint, atom(), [atom()]}

 sensor_info()

 @type sensor_info() :: %{
 name: atom(),
 attached_to: {:link, atom()} | {:joint, atom()} | :robot
}

 t()

 @type t() :: %BB.Robot{
 actuators: %{required(atom()) => actuator_info()},
 joints: %{required(atom()) => BB.Robot.Joint.t()},
 links: %{required(atom()) => BB.Robot.Link.t()},
 name: atom(),
 param_subscriptions: %{required([atom()]) => [param_location()]},
 root_link: atom(),
 sensors: %{required(atom()) => sensor_info()},
 topology: BB.Robot.Topology.t()
}

 Functions

 child_joints(robot, link_name)

 @spec child_joints(t(), atom()) :: [BB.Robot.Joint.t()]

Get the child joints of a link.

 get_joint(robot, name)

 @spec get_joint(t(), atom()) :: BB.Robot.Joint.t() | nil

Get a joint by name.

 get_link(robot, name)

 @spec get_link(t(), atom()) :: BB.Robot.Link.t() | nil

Get a link by name.

 joints_in_order(robot)

 @spec joints_in_order(t()) :: [BB.Robot.Joint.t()]

Get all joints in traversal order.

 links_in_order(robot)

 @spec links_in_order(t()) :: [BB.Robot.Link.t()]

Get all links in topological order (root first).

 parent_joint(robot, link_name)

 @spec parent_joint(t(), atom()) :: BB.Robot.Joint.t() | nil

Get the parent joint of a link (nil for root link).

 path_to(robot, name)

 @spec path_to(t(), atom()) :: [atom()] | nil

Get the path from root to a given link or joint.

BB.Supervisor

Root supervisor for a BB robot.
Builds a supervision tree that mirrors the robot topology for fault isolation.
A crash in an actuator at the end of a limb only affects that limb's subtree.
Supervision Tree Structure
BB.Supervisor (root, :one_for_one)
├── Registry (named {MyRobot, :registry})
├── PubSub Registry (named {MyRobot, :pubsub})
├── Task.Supervisor (for general async tasks)
├── DynamicSupervisor (for command GenServers, temporary restart)
├── Runtime (robot state, state machine, command execution)
├── BB.SensorSupervisor (:one_for_one)
│ └── RobotSensor1, RobotSensor2...
├── BB.ControllerSupervisor (:one_for_one)
│ └── Controller1, Controller2...
├── BB.BridgeSupervisor (:one_for_one)
│ └── MavlinkBridge, PhoenixBridge...
└── BB.LinkSupervisor(:base_link, :one_for_one)
 ├── LinkSensor (link sensors)
 └── BB.JointSupervisor(:shoulder, :one_for_one)
 ├── JointSensor
 ├── JointActuator
 └── BB.LinkSupervisor(:arm, :one_for_one)
 └── ...
Each subsystem supervisor (sensors, controllers, bridges) has its own restart
budget, so a flapping process in one won't exhaust the root supervisor's
budget and bring down the entire robot.

 Summary

 Functions

 start_link(robot_module, opts \\ [])

 Starts the supervisor tree for a robot module.

 Functions

 start_link(robot_module, opts \\ [])

 @spec start_link(module(), Keyword.t()) :: Supervisor.on_start()

Starts the supervisor tree for a robot module.
Options
	:params - Initial parameter values as a nested keyword list matching
the parameter group structure. Overrides DSL defaults and persisted values.
BB.Supervisor.start_link(MyRobot, params: [
 motion: [max_speed: 5.0, acceleration: 2.0],
 debug_mode: true
])

	:simulation - Simulation mode (:kinematic or :external). When set,
actuators are replaced with simulated versions and controllers may be
omitted.

All options are also passed through to sensor, actuator, and controller
child processes via the :bb key in their start options.

BB.Telemetry

Telemetry events emitted by the BB framework.
BB uses :telemetry for both performance monitoring and diagnostics.
This module documents all events and provides helper functions for
instrumentation.
Performance Events (Spans)
Performance events use :telemetry.span/3 which emits :start, :stop,
and :exception events automatically.
Motion Events
	[:bb, :motion, :solve] - IK solver execution
	Start measurements: %{system_time: integer}
	Stop measurements: %{duration: native_time, monotonic_time: integer}
	Metadata: %{robot: atom, target_link: atom, solver: module}
	Stop metadata adds: %{iterations: integer, residual: float, reached: boolean}

	[:bb, :motion, :move_to] - Full move operation (solve + send)
	Start measurements: %{system_time: integer}
	Stop measurements: %{duration: native_time}
	Metadata: %{robot: atom, target_link: atom}

	[:bb, :motion, :send_positions] - Sending positions to actuators
	Start measurements: %{system_time: integer}
	Stop measurements: %{duration: native_time}
	Metadata: %{robot: atom, joint_count: integer, delivery: atom}

Kinematics Events
	[:bb, :kinematics, :forward] - Forward kinematics computation	Start measurements: %{system_time: integer}
	Stop measurements: %{duration: native_time}
	Metadata: %{robot: atom, target_link: atom}

Command Events
	[:bb, :command, :execute] - Command execution	Start measurements: %{system_time: integer}
	Stop measurements: %{duration: native_time}
	Metadata: %{robot: atom, command: atom, execution_id: reference}

Diagnostic Events
	[:bb, :diagnostic] - Component health diagnostics	Measurements: %{}
	Metadata: %BB.Diagnostic{} struct

See BB.Diagnostic for details on diagnostic events.
Subscribing to Events
Use :telemetry.attach/4 or :telemetry.attach_many/4:
:telemetry.attach_many(
 "my-perf-handler",
 [
 [:bb, :motion, :solve, :stop],
 [:bb, :motion, :move_to, :stop]
],
 &MyApp.handle_perf_event/4,
 nil
)
Converting Duration
Durations are in native time units. Convert to milliseconds:
duration_ms = System.convert_time_unit(duration, :native, :millisecond)
Or to microseconds for high-precision timing:
duration_us = System.convert_time_unit(duration, :native, :microsecond)

 Summary

 Functions

 emit(event, measurements, metadata)

 Emits a telemetry event.

 span(event, metadata, fun)

 Wraps a function in a telemetry span.

 Functions

 emit(event, measurements, metadata)

 @spec emit([atom()], map(), map()) :: :ok

Emits a telemetry event.
Convenience wrapper around :telemetry.execute/3.
Examples
BB.Telemetry.emit([:bb, :custom, :event], %{count: 1}, %{robot: :my_robot})

 span(event, metadata, fun)

 @spec span([atom()], map(), (-> {any(), map()})) :: any()

Wraps a function in a telemetry span.
This is a convenience wrapper around :telemetry.span/3 that handles
the common pattern of extracting metadata from the result.
Parameters
	event - The event name prefix (e.g., [:bb, :motion, :solve])
	metadata - Initial metadata map
	fun - Function to execute, should return {result, extra_metadata}

Examples
BB.Telemetry.span([:bb, :motion, :solve], %{robot: :my_robot}, fn ->
 result = do_solve()
 {result, %{iterations: 10, residual: 0.001}}
end)

BB.Dsl

The DSL extension for describing robot properties and topologies.

 Summary

 Functions

 commands(body)

 controllers(body)

 parameters(body)

 sensors(body)

 settings(body)

 states(body)

 topology(body)

 Functions

 commands(body)

 (macro)

 controllers(body)

 (macro)

 parameters(body)

 (macro)

 sensors(body)

 (macro)

 settings(body)

 (macro)

 states(body)

 (macro)

 topology(body)

 (macro)

BB.Dsl.Actuator

An actuator attached to a joint.

 Summary

 Types

 child_spec()

 t()

 Types

 child_spec()

 @type child_spec() :: module() | {module(), Keyword.t()}

 t()

 @type t() :: %BB.Dsl.Actuator{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 child_spec: child_spec(),
 name: atom()
}

BB.Dsl.Axis

Joint axis orientation specified as Euler angles.
The axis defines the direction of rotation (for revolute joints) or
translation (for prismatic joints). By default, the axis points along
the Z direction. Use roll, pitch, and yaw to rotate it to the desired
orientation.
Examples
Default Z-axis (no rotation needed)
axis do
end

Y-axis (pitch by 90°)
axis do
 pitch(~u(90 degree))
end

X-axis (pitch by 90°, then roll by 90°)
axis do
 pitch(~u(90 degree))
 roll(~u(90 degree))
end

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Axis{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 pitch: Cldr.Unit.t(),
 roll: Cldr.Unit.t(),
 yaw: Cldr.Unit.t()
}

BB.Dsl.Box

A box geometry

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Box{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 x: Cldr.Unit.t(),
 y: Cldr.Unit.t(),
 z: Cldr.Unit.t()
}

BB.Dsl.Bridge

A parameter protocol bridge for remote access.

 Summary

 Types

 child_spec()

 simulation_mode()

 t()

 Types

 child_spec()

 @type child_spec() :: module() | {module(), keyword()}

 simulation_mode()

 @type simulation_mode() :: :omit | :mock | :start

 t()

 @type t() :: %BB.Dsl.Bridge{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 child_spec: child_spec(),
 name: atom(),
 simulation: simulation_mode()
}

BB.Dsl.Capsule

A capsule geometry (cylinder with hemispherical caps).
Capsules are defined by a radius and height. The height is the distance
between the centres of the two hemispherical caps (i.e., the length of
the cylindrical portion). The total extent is height + 2 * radius.
Capsules are commonly used for collision detection because they have
simpler intersection algorithms than cylinders and better approximate
robot limbs.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Capsule{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 height: Cldr.Unit.t(),
 radius: Cldr.Unit.t()
}

BB.Dsl.Category

A command category for grouping commands with concurrent execution limits.
Categories define logical groups of commands (e.g., :motion, :sensing,
:auxiliary) with configurable concurrency limits. Commands in different
categories can run concurrently, while commands in the same category are
limited to the category's concurrency_limit.
The :default category is always implicitly available with a concurrency
limit of 1, matching the current single-command behaviour.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Category{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 concurrency_limit: pos_integer(),
 doc: String.t() | nil,
 name: atom()
}

BB.Dsl.CategoryTransformer

Collects category definitions and injects category-related functions.
This transformer:
	Collects all categories defined in the commands section
	Adds the built-in :default category if not explicitly defined
	Injects __bb_categories__/0 and __bb_category_limits__/0 functions

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Collision

Collision information

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Collision{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 geometry:
 nil
 | BB.Dsl.Box.t()
 | BB.Dsl.Cylinder.t()
 | BB.Dsl.Sphere.t()
 | BB.Dsl.Mesh.t(),
 name: atom(),
 origin: nil | BB.Dsl.Origin.t()
}

BB.Dsl.Color

A color

 Summary

 Types

 t()

 Functions

 validate(value)

 Validate a color channel value (must be between 0 and 1)

 Types

 t()

 @type t() :: %BB.Dsl.Color{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 alpha: number(),
 blue: number(),
 green: number(),
 red: number()
}

 Functions

 validate(value)

 @spec validate(any()) :: {:ok, number()} | {:error, String.t()}

Validate a color channel value (must be between 0 and 1)

BB.Dsl.Command

A command that can be executed on the robot.
Commands follow the Goal → Feedback → Result pattern, supporting:
	Arguments with types and defaults
	State machine integration via allowed_states
	Configurable timeout
	A handler module implementing the BB.Command behaviour

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Command{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 allowed_states: [atom()],
 arguments: [BB.Dsl.Command.Argument.t()],
 cancel: [atom()],
 category: atom() | nil,
 handler: module(),
 name: atom(),
 timeout: timeout()
}

BB.Dsl.Command.Argument

An argument for a command.
Arguments define the parameters that can be passed when executing a command.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Command.Argument{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 default: any(),
 doc: String.t() | nil,
 name: atom(),
 required: boolean(),
 type: atom() | module()
}

BB.Dsl.CommandTransformer

Generates convenience functions for commands on the robot module.
For each command defined in the DSL, this transformer generates a function
on the robot module that calls BB.Robot.Runtime.execute/3.
Example
Given a command definition:
commands do
 command :navigate_to_pose do
 handler NavigateToPoseHandler
 argument :target_pose, BB.Pose, required: true
 argument :tolerance, :float, default: 0.1
 end
end
This transformer generates:
@spec navigate_to_pose(keyword()) :: {:ok, pid()} | {:error, term()}
def navigate_to_pose(goal \\ []) do
 BB.Robot.Runtime.execute(__MODULE__, :navigate_to_pose, Map.new(goal))
end
The caller can then await the command to get the result:
{:ok, cmd} = MyRobot.navigate_to_pose(target_pose: pose)
{:ok, result} = BB.Command.await(cmd)

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Controller

A controller process at the robot level.

 Summary

 Types

 child_spec()

 simulation_mode()

 t()

 Types

 child_spec()

 @type child_spec() :: module() | {module(), Keyword.t()}

 simulation_mode()

 @type simulation_mode() :: :omit | :mock | :start

 t()

 @type t() :: %BB.Dsl.Controller{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 child_spec: child_spec(),
 name: atom(),
 simulation: simulation_mode()
}

BB.Dsl.Cylinder

A cylindrical geometry

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Cylinder{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 height: Cldr.Unit.t(),
 radius: Cldr.Unit.t()
}

BB.Dsl.DefaultNameTransformer

Ensures that the default robot name is present

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Dynamics

Specifies physical properties of the joint. These values are used to specify modeling properties of the joint, particularly useful for simulation

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Dynamics{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 damping: nil | Cldr.Unit.t(),
 friction: nil | Cldr.Unit.t()
}

BB.Dsl.Inertia

Inertial information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Inertia{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 ixx: Cldr.Unit.t(),
 ixy: Cldr.Unit.t(),
 ixz: Cldr.Unit.t(),
 iyy: Cldr.Unit.t(),
 iyz: Cldr.Unit.t(),
 izz: Cldr.Unit.t()
}

BB.Dsl.Inertial

Inertial information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Inertial{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 inertia: BB.Dsl.Inertia.t(),
 mass: Cldr.Unit.t(),
 origin: nil | BB.Dsl.Origin.t()
}

BB.Dsl.Joint

A joint in the robot topology chain.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Joint{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 actuators: [BB.Dsl.Actuator.t()],
 axis: nil | BB.Dsl.Axis.t(),
 dynamics: nil | BB.Dsl.Dynamics.t(),
 limit: nil | BB.Dsl.Limit.t(),
 link: BB.Dsl.Link.t(),
 name: atom(),
 origin: nil | BB.Dsl.Origin.t(),
 sensors: [BB.Dsl.Sensor.t()],
 type: :revolute | :continuous | :prismatic | :fixed | :floating | :planar
}

BB.Dsl.Limit

Joint limits

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Limit{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 effort: Cldr.Unit.t(),
 lower: nil | Cldr.Unit.t(),
 upper: nil | Cldr.Unit.t(),
 velocity: Cldr.Unit.t()
}

BB.Dsl.Link

A kinematic link aka a solid body in a kinematic chain.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Link{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 collisions: [BB.Dsl.Collision.t()],
 inertial: nil | BB.Dsl.Inertial.t(),
 joints: [BB.Dsl.Joint.t()],
 name: atom(),
 sensors: [BB.Dsl.Sensor.t()],
 visual: BB.Dsl.Visual.t()
}

BB.Dsl.Material

A material

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Material{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 color: nil | BB.Dsl.Color.t(),
 name: atom(),
 texture: nil | BB.Dsl.Texture.t()
}

BB.Dsl.Mesh

A 3D model (mesh)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Mesh{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 filename: String.t(),
 scale: number()
}

BB.Dsl.Origin

An origin location.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Origin{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 pitch: Cldr.Unit.t(),
 roll: Cldr.Unit.t(),
 x: Cldr.Unit.t(),
 y: Cldr.Unit.t(),
 yaw: Cldr.Unit.t(),
 z: Cldr.Unit.t()
}

BB.Dsl.Param

A runtime-adjustable parameter.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Param{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 default: term(),
 doc: String.t() | nil,
 max: number() | nil,
 min: number() | nil,
 name: atom(),
 type: atom() | {:unit, atom()}
}

BB.Dsl.ParamGroup

A group of runtime-adjustable parameters.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.ParamGroup{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 doc: String.t() | nil,
 groups: [t()],
 name: atom(),
 params: [BB.Dsl.Param.t()]
}

BB.Dsl.ParamRef

A reference to a parameter for use in DSL fields.
Instead of providing a literal unit value in the DSL, users can reference
a parameter that will be resolved at runtime. This enables runtime-adjustable
configuration for values that would otherwise be compile-time constants.
Usage
parameters do
 group :motion do
 param :max_effort, type: {:unit, :newton_meter}, default: ~u(10 newton_meter)
 end
end

topology do
 link :base do
 joint :shoulder do
 limit do
 effort(param([:motion, :max_effort]))
 end
 end
 end
end
The param/1 function creates a reference that:
	Is validated at compile-time to ensure the parameter exists
	Is resolved at robot startup to get the current parameter value
	Subscribes to parameter changes to keep the robot struct updated

 Summary

 Types

 t()

 Functions

 param(path)

 Create a parameter reference for DSL fields.

 Types

 t()

 @type t() :: %BB.Dsl.ParamRef{expected_unit_type: atom() | nil, path: [atom()]}

 Functions

 param(path)

 @spec param([atom()]) :: t()

Create a parameter reference for DSL fields.
The path should match a parameter defined in the parameters section of
the robot DSL.
Examples
param([:motion, :max_speed])
param([:limits, :shoulder, :effort])

BB.Dsl.ParameterTransformer

Generates parameter schema and default values from DSL definitions.
This transformer processes the parameters section, generating:
	__bb_parameter_schema__/0 - Returns the Spark.Options schema for validation
	__bb_default_parameters__/0 - Returns default values as {path, value} tuples

At runtime, these are used by BB.Robot.Runtime to register parameters with
proper validation schemas.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.RobotTransformer

Builds and persists the optimised Robot struct at compile-time.
This transformer runs after the TopologyTransformer and UniquenessTransformer to
ensure the DSL is fully validated, then builds the optimised BB.Robot
struct and injects an accessor function into the robot module.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Sensor

A sensor attached to the robot or a specific link.

 Summary

 Types

 child_spec()

 t()

 Types

 child_spec()

 @type child_spec() :: module() | {module(), Keyword.t()}

 t()

 @type t() :: %BB.Dsl.Sensor{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 child_spec: child_spec(),
 name: atom()
}

BB.Dsl.Sphere

A spherical geometry

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Sphere{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 radius: Cldr.Unit.t()
}

BB.Dsl.State

A custom operational state for the robot.
States define the operational context the robot can be in (beyond the
built-in :idle). Commands specify which states they can run in via
allowed_states, and can transition the robot to new states via
next_state: in their result.
The :idle state is always implicitly available and is the default
initial state.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.State{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 doc: String.t() | nil,
 name: atom()
}

BB.Dsl.StateTransformer

Collects state definitions and injects state-related functions.
This transformer:
	Collects all states defined in the states section
	Adds the built-in :idle state if not explicitly defined
	Injects __bb_states__/0 and __bb_initial_state__/0 functions

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.SupervisorTransformer

Injects start_link/1 and child_spec/1 into robot modules.
This allows robot modules to be started directly with MyRobot.start_link()
and to be used as child specs in supervision trees.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Texture

A 2D texture

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Texture{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 filename: String.t()
}

BB.Dsl.TopologyTransformer

Validate and transform links as required.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.UniquenessTransformer

Validates that all entity names are globally unique across the robot.
This includes links, joints, sensors, actuators, controllers, and bridges - all
entities that get registered in the process registry. Commands are not included
since they're not registered processes.

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Dsl.Verifiers.ValidateCategoryRefs

Validates that category references in commands are valid.
This verifier checks that all commands referencing a category
reference one that is defined in the commands section (or :default).

BB.Dsl.Verifiers.ValidateChildSpecs

Validates that child_spec options match the module's schema.
Behaviour validation is handled by Spark's schema types (e.g., {:behaviour, BB.Sensor}).
This verifier handles the additional validation:
	If options are provided in the DSL (as {Module, opts} tuple),
the module must define options_schema/0
	If options_schema/0 is defined, the provided options are validated
against that schema

Options containing param() references are skipped from validation as they
will be resolved at runtime.

BB.Dsl.Verifiers.ValidateParamRefs

Validates that parameter references in the DSL refer to valid parameters.
For each param([:path, :to, :param]) in the topology, this verifier checks:
	The parameter path exists in the parameters section
	The parameter's unit type is compatible with the expected type at that DSL location

BB.Dsl.Verifiers.ValidateStateRefs

Validates that state references in commands are valid.
This verifier checks:
	All states in allowed_states are defined in the states section (or :idle)
	The initial_state setting references a defined state
	Commands using {BB.Command.SetState, to: state} reference valid states

BB.Dsl.Visual

A material

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Dsl.Visual{
 __identifier__: any(),
 __spark_metadata__: Spark.Dsl.Entity.spark_meta(),
 geometry:
 nil
 | BB.Dsl.Box.t()
 | BB.Dsl.Cylinder.t()
 | BB.Dsl.Sphere.t()
 | BB.Dsl.Mesh.t()
 | BB.Dsl.Material.t(),
 material: nil | BB.Dsl.Material.t(),
 origin: nil | BB.Dsl.Origin.t()
}

BB.Dsl.WildcardExpansionTransformer

Expands :* wildcards in command allowed_states and cancel options.
This transformer:
	Expands :* in allowed_states to all defined states (including :idle, :disarmed)
	Expands :* in cancel to all defined categories (including :default)
	Runs after StateTransformer and CategoryTransformer so state/category lists are available

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

BB.Command behaviour

Behaviour for implementing robot commands.
Commands are short-lived GenServers that can react to safety state changes
and other messages during execution. The handle_command/3 callback is the
entry point, returning GenServer-style tuples.
Example
defmodule NavigateToPose do
 use BB.Command

 @impl BB.Command
 def handle_command(%{target_pose: pose}, context, state) do
 # Subscribe to position updates
 BB.PubSub.subscribe(context.robot_module, [:sensor, :position])

 # Start navigation
 send_navigation_command(pose)

 {:noreply, %{state | target: pose}}
 end

 @impl BB.Command
 def handle_info({:bb, [:sensor, :position], msg}, state) do
 if close_enough?(msg.payload.position, state.target) do
 {:stop, :normal, %{state | final_pose: msg.payload.position}}
 else
 {:noreply, state}
 end
 end

 @impl BB.Command
 def result(state) do
 {:ok, %{final_pose: state.final_pose}}
 end
end
State Transitions
By default, when a command completes successfully, the robot transitions to
:idle. Commands can override this by returning a next_state option from
result/1:
def result(state) do
 {:ok, :armed, next_state: :idle}
end
This is useful for commands like Arm and Disarm that need to control
the robot's state machine.
Execution Model
Commands run as supervised GenServers spawned by the Runtime. The caller
receives the command's pid and can use BB.Command.await/2 or
BB.Command.yield/2 to get the result.
Safety Handling
Commands automatically subscribe to safety state changes. When the robot
begins disarming, handle_safety_state_change/2 is called. The default
implementation stops the command with :disarmed reason. Override this
callback to implement graceful shutdown or to continue execution during
safety transitions.
Parameterised Options
Commands can receive options via child_spec format in the DSL:
commands do
 command :move_joint do
 handler {MyMoveJointCommand, max_velocity: param([:motion, :max_velocity])}
 end
end
ParamRefs are resolved before init/1 is called. When parameters change,
handle_options/2 is called with the new resolved options.

 Summary

 Types

 goal()

 options()

 result()

 state()

 Callbacks

 handle_call(request, from, state)

 Handle synchronous calls.

 handle_cast(request, state)

 Handle asynchronous casts.

 handle_command(goal, t, state)

 Execute the command with the given goal.

 handle_continue(continue, state)

 Handle continue instructions.

 handle_info(msg, state)

 Handle other messages.

 handle_options(new_opts, state)

 Handle parameter changes.

 handle_safety_state_change(new_state, state)

 Handle safety state changes.

 init(opts)

 Initialise the command state.

 options_schema()

 Define the options schema for this command.

 result(state)

 Extract the result when the command completes.

 terminate(reason, state)

 Clean up when the command terminates.

 Functions

 await(pid, timeout \\ 5000)

 Await the command result, blocking until completion or timeout.

 cancel(pid)

 Cancel a running command.

 transition_state(context, target_state)

 Transition to a new operational state during command execution.

 yield(pid, timeout \\ 0)

 Non-blocking check for command completion.

 Types

 goal()

 @type goal() :: map()

 options()

 @type options() :: [{:next_state, BB.Robot.Runtime.robot_state()}]

 result()

 @type result() :: term()

 state()

 @type state() :: term()

 Callbacks

 handle_call(request, from, state)

 @callback handle_call(request :: term(), from :: GenServer.from(), state()) ::
 {:reply, term(), state()}
 | {:reply, term(), state(), timeout() | :hibernate | {:continue, term()}}
 | {:noreply, state()}
 | {:noreply, state(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, term(), state()}
 | {:stop, term(), term(), state()}

Handle synchronous calls.
Standard GenServer callback. The default implementation returns
{:reply, {:error, :not_implemented}, state}.

 handle_cast(request, state)

 @callback handle_cast(request :: term(), state()) ::
 {:noreply, state()}
 | {:noreply, state(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, term(), state()}

Handle asynchronous casts.
Standard GenServer callback. The default implementation returns
{:noreply, state}.

 handle_command(goal, t, state)

 @callback handle_command(goal(), BB.Command.Context.t(), state()) ::
 {:noreply, state()}
 | {:noreply, state(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, term(), state()}

Execute the command with the given goal.
Called via handle_continue(:execute) immediately after init/1. This is
the main entry point for command execution.
The handler can:
	Return {:noreply, state} to continue running (waiting for messages)
	Return {:stop, reason, state} to complete immediately

For commands that complete immediately, simply return {:stop, :normal, state}
with the result stored in state.

 handle_continue(continue, state)

 @callback handle_continue(continue :: term(), state()) ::
 {:noreply, state()}
 | {:noreply, state(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, term(), state()}

Handle continue instructions.
Standard GenServer callback. The default implementation returns
{:noreply, state}.

 handle_info(msg, state)

 @callback handle_info(msg :: term(), state()) ::
 {:noreply, state()}
 | {:noreply, state(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, term(), state()}

Handle other messages.
Standard GenServer callback. The default implementation returns
{:noreply, state}.

 handle_options(new_opts, state)

 @callback handle_options(new_opts :: keyword(), state()) ::
 {:ok, state()} | {:stop, term()}

Handle parameter changes.
Called when a parameter that this command depends on changes. The new
resolved options are passed in. The default implementation returns
{:ok, state} unchanged.

 handle_safety_state_change(new_state, state)

 @callback handle_safety_state_change(
 new_state :: :disarming | :disarmed | :error,
 state()
) :: {:continue, state()} | {:stop, term(), state()}

Handle safety state changes.
Called when the robot's safety state transitions to :disarming, :disarmed,
or :error. The default implementation stops the command with :disarmed
reason.
Return {:continue, state} to keep the command running during safety
transitions (use with care).

 init(opts)

 @callback init(opts :: keyword()) :: {:ok, state()} | {:stop, term()}

Initialise the command state.
Called when the command server starts. Receives resolved options including:
	:bb - Map with :robot (robot module)
	:goal - The command goal (arguments)
	:context - The command context

The default implementation returns {:ok, Map.new(opts)}.

 options_schema()

 (optional)

 @callback options_schema() :: Spark.Options.schema()

Define the options schema for this command.
Optional. If defined, options passed to the command handler will be
validated against this schema.

 result(state)

 @callback result(state()) ::
 {:ok, result()} | {:ok, result(), options()} | {:error, term()}

Extract the result when the command completes.
Called in terminate/2 to get the result to return to awaiting callers.
Return Values
	{:ok, result} - Command succeeded, robot transitions to :idle
	{:ok, result, options} - Command succeeded with options:	next_state: state - Robot transitions to specified state instead of :idle

	{:error, reason} - Command failed, robot transitions to :idle

 terminate(reason, state)

 @callback terminate(reason :: term(), state()) :: term()

Clean up when the command terminates.
Standard GenServer callback. Called after the result has been extracted
and sent to awaiting callers.

 Functions

 await(pid, timeout \\ 5000)

 @spec await(pid(), timeout()) ::
 {:ok, term()} | {:ok, term(), options()} | {:error, term()}

Await the command result, blocking until completion or timeout.
Uses GenServer.call internally, so standard timeout semantics apply.
If the command crashes, returns {:error, {:command_failed, reason}}.
Examples
{:ok, cmd} = MyRobot.navigate(target: pose)
{:ok, result} = BB.Command.await(cmd)

With custom timeout
{:ok, result} = BB.Command.await(cmd, 30_000)

 cancel(pid)

 @spec cancel(pid()) :: :ok

Cancel a running command.
Stops the command server with :cancelled reason. Awaiting callers will
receive {:error, :cancelled} (depending on how result/1 handles this).

 transition_state(context, target_state)

 @spec transition_state(BB.Command.Context.t(), atom()) :: :ok | {:error, term()}

Transition to a new operational state during command execution.
This function allows a command to change the robot's operational state
mid-execution. This is useful for multi-phase commands where different
phases require different contexts.
Arguments
	context - The command context (passed to handle_command/3)
	target_state - The state to transition to (must be defined in DSL)

Returns
	:ok - Transition successful
	{:error, reason} - Transition failed

Example
def handle_command(_goal, context, state) do
 # Start in processing state
 :ok = BB.Command.transition_state(context, :processing)
 # Do work...
 send(self(), :start_phase_two)
 {:noreply, state}
end

def handle_info(:start_phase_two, context, state) do
 # Move to finalising state
 :ok = BB.Command.transition_state(context, :finalising)
 # Do more work...
 {:stop, :normal, state}
end

 yield(pid, timeout \\ 0)

 @spec yield(pid(), timeout()) ::
 {:ok, term()} | {:ok, term(), options()} | {:error, term()} | nil

Non-blocking check for command completion.
Returns nil if the command is still running (timeout), otherwise returns
the result. Use this for polling-style waiting.
Examples
{:ok, cmd} = MyRobot.navigate(target: pose)

case BB.Command.yield(cmd, 100) do
 nil -> IO.puts("Still running...")
 {:ok, result} -> IO.puts("Done!")
 {:error, reason} -> IO.puts("Failed: #{inspect(reason)}")
end

BB.Command.Arm

Standard command handler for arming a robot.
When executed from the :disarmed state, this command arms the robot
via BB.Safety.Controller, making it ready to accept motion commands.
Usage
Add to your robot's command definitions:
commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end
end
Then execute:
{:ok, cmd} = MyRobot.arm()
{:ok, :armed} = BB.Command.await(cmd)

BB.Command.Context

Context provided to command handlers during execution.
Contains references to the robot module, static topology, dynamic state,
and the unique execution identifier.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Command.Context{
 execution_id: reference(),
 robot: BB.Robot.t(),
 robot_module: module(),
 robot_state: BB.Robot.State.t()
}

BB.Command.Disarm

Standard command handler for disarming a robot.
When executed from the :idle state, this command disarms the robot
via BB.Safety.Controller, which calls all registered BB.Safety.disarm/1
callbacks to ensure hardware is made safe.
Usage
Add to your robot's command definitions:
commands do
 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end
end
Then execute:
{:ok, cmd} = MyRobot.disarm()
{:ok, :disarmed} = BB.Command.await(cmd)

BB.Command.Event

Payload type for command execution events.
Published to [:command, command_name, execution_id] path during command lifecycle.

 Summary

 Types

 status()

 t()

 Functions

 new(frame_id, attrs)

 Types

 status()

 @type status() :: :started | :succeeded | :failed | :cancelled

 t()

 @type t() :: %BB.Command.Event{data: map(), status: status()}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Command.MoveTo

Standard command handler for moving end-effectors to target positions.
This command uses inverse kinematics to compute joint angles and sends
position commands to all actuators controlling the affected joints.
Supports both single-target and multi-target modes for coordinated motion.
Goal Parameters
Single Target Mode
Required:
	target - Target position as BB.Vec3.t() in metres
	target_link - Name of the link to move (end-effector)
	solver - Module implementing BB.IK.Solver behaviour

Multi-Target Mode
Required:
	targets - Map of link names to target positions: %{link: BB.Vec3.t()}
	solver - Module implementing BB.IK.Solver behaviour

Optional (both modes)
	max_iterations - Maximum solver iterations (default: 50)
	tolerance - Convergence tolerance in metres (default: 1.0e-4)
	respect_limits - Whether to clamp to joint limits (default: true)
	delivery - Actuator command delivery: :pubsub (default), :direct, or :sync

Usage
Single Target
alias BB.Vec3

{:ok, cmd} = MyRobot.move_to(%{
 target: Vec3.new(0.3, 0.2, 0.1),
 target_link: :gripper,
 solver: BB.IK.FABRIK
})
{:ok, meta} = BB.Command.await(cmd)
Multiple Targets (for gait, coordinated motion)
{:ok, cmd} = MyRobot.move_to(%{
 targets: %{
 left_foot: Vec3.new(0.1, 0.0, 0.0),
 right_foot: Vec3.new(-0.1, 0.0, 0.0)
 },
 solver: BB.IK.FABRIK
})
{:ok, results} = BB.Command.await(cmd)
Return Value
Single Target
On success, returns metadata from the IK solver:
%{
 iterations: 12,
 residual: 0.00003,
 reached: true,
 reason: :converged
}
Multiple Targets
On success, returns a map of link → result:
%{
 left_foot: {:ok, %{joint1: 0.5}, %{iterations: 10, ...}},
 right_foot: {:ok, %{joint2: 0.3}, %{iterations: 8, ...}}
}

BB.Command.ResultCache

Caches command results for retrieval after the command process terminates.
This handles the race condition where a fast command completes before
await/2 is called. The Command.Server stores its result here before
terminating, and await/2 can retrieve it if the process is already dead.
Results are automatically cleaned up after a configurable TTL.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 fetch_and_delete(pid)

 Fetches and removes a cached result for the given pid.

 start_link(opts \\ [])

 Starts the result cache.

 store(pid, result)

 Stores a command result, keyed by the command process pid.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 fetch_and_delete(pid)

 @spec fetch_and_delete(pid()) :: {:ok, term()} | :error

Fetches and removes a cached result for the given pid.
Returns {:ok, result} if found, :error if not cached.

 start_link(opts \\ [])

Starts the result cache.

 store(pid, result)

 @spec store(pid(), term()) :: :ok

Stores a command result, keyed by the command process pid.
Called by Command.Server in terminate/2 before the process exits.

BB.Command.Server

GenServer wrapper for command callback modules.
This module manages the lifecycle of user-defined command modules, handling:
	Parameter reference resolution at startup
	Subscription to parameter changes
	Safety state change notifications
	Delegation of GenServer callbacks to user module
	Result extraction and delivery to awaiting callers

Command servers are temporary - they are not restarted on crash.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 t()

 @type t() :: %BB.Command.Server{
 awaiting: [GenServer.from()],
 callback_module: module(),
 context: BB.Command.Context.t(),
 execution_id: reference(),
 goal: BB.Command.goal(),
 param_subscriptions: %{required([atom()]) => atom()},
 raw_opts: keyword(),
 resolved_opts: keyword(),
 runtime_pid: pid(),
 timeout_ref: reference() | nil,
 user_state: term()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Command.SetState

Reusable command handler for transitioning between operational states.
Use this handler to define simple state transition commands without
implementing a custom handler. The target state is specified in the
handler options.
Usage
commands do
 command :enter_recording do
 handler {BB.Command.SetState, to: :recording}
 allowed_states [:idle]
 end

 command :exit_recording do
 handler {BB.Command.SetState, to: :idle}
 allowed_states [:recording]
 end
end
Then execute:
{:ok, cmd} = MyRobot.enter_recording()
{:ok, :recording} = BB.Command.await(cmd)
BB.Robot.Runtime.state(MyRobot) # => :recording
Handler Options
	:to (required) - The target state to transition to. Must be defined
in the robot's states section.

BB.Controller behaviour

Behaviour for controllers in the BB framework.
Controllers manage hardware communication (I2C buses, serial ports, etc.)
and are typically shared by multiple actuators. They run at the robot level
and are supervised by BB.ControllerSupervisor.
Usage
The use BB.Controller macro sets up your module as a controller callback module.
Your module is NOT a GenServer - the framework provides a wrapper GenServer
(BB.Controller.Server) that delegates to your callbacks.
Required Callbacks
	init/1 - Initialise controller state from resolved options

Optional Callbacks
	disarm/1 - Make hardware safe (only for controllers with active hardware)
	handle_options/2 - React to parameter changes at runtime
	handle_call/3, handle_cast/2, handle_info/2 - Standard GenServer-style callbacks
	handle_continue/2, terminate/2 - Lifecycle callbacks
	options_schema/0 - Define accepted configuration options

Options Schema
If your controller accepts configuration options, pass them via :options_schema:
defmodule MyI2CController do
 use BB.Controller,
 options_schema: [
 bus: [type: :string, required: true, doc: "I2C bus name"],
 address: [type: :integer, required: true, doc: "I2C device address"]
]

 @impl BB.Controller
 def init(opts) do
 bus = Keyword.fetch!(opts, :bus)
 address = Keyword.fetch!(opts, :address)
 bb = Keyword.fetch!(opts, :bb)
 {:ok, %{bus: bus, address: address, bb: bb}}
 end
end
For controllers that don't need configuration, omit :options_schema:
defmodule SimpleController do
 use BB.Controller

 @impl BB.Controller
 def init(opts) do
 {:ok, %{bb: opts[:bb]}}
 end
end
Parameter References
Options can reference parameters for runtime-adjustable configuration:
controller :i2c, {MyI2CController, bus: param([:hardware, :i2c_bus])}
When the parameter changes, handle_options/2 is called with the new resolved
options. Override it to update your state accordingly.
Auto-injected Options
The :bb option is automatically provided and should NOT be included in your
options_schema. It contains %{robot: module, path: [atom]}.
Safety Registration
If your controller manages hardware that needs to be made safe when disarmed,
implement the optional disarm/1 callback:
defmodule MyController do
 use BB.Controller, options_schema: [bus: [type: :string, required: true]]

 @impl BB.Controller
 def init(opts), do: {:ok, %{}}

 @impl BB.Controller
 def disarm(opts), do: disable_hardware(opts[:bus])
end
When disarm/1 is implemented, the framework automatically registers your
controller with BB.Safety.

 Summary

 Callbacks

 disarm(opts)

 Make the hardware safe.

 handle_call(request, from, state)

 Handle synchronous calls.

 handle_cast(request, state)

 Handle asynchronous casts.

 handle_continue(continue_arg, state)

 Handle continue instructions.

 handle_info(msg, state)

 Handle all other messages.

 handle_options(new_opts, state)

 Handle parameter changes at runtime.

 init(opts)

 Initialise controller state from resolved options.

 options_schema()

 Returns the options schema for this controller.

 terminate(reason, state)

 Clean up before termination.

 Callbacks

 disarm(opts)

 (optional)

 @callback disarm(opts :: keyword()) :: :ok | {:error, term()}

Make the hardware safe.
Called with the opts provided at registration. Must work without GenServer state.
Only implement this if your controller manages hardware that needs to be disabled
when the robot is disarmed or crashes.

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from :: GenServer.from(), state :: term()) ::
 {:reply, reply :: term(), new_state :: term()}
 | {:reply, reply :: term(), new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}
 | {:stop, reason :: term(), reply :: term(), new_state :: term()}

Handle synchronous calls.
Same semantics as GenServer.handle_call/3.

 handle_cast(request, state)

 (optional)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle asynchronous casts.
Same semantics as GenServer.handle_cast/2.

 handle_continue(continue_arg, state)

 (optional)

 @callback handle_continue(continue_arg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle continue instructions.
Same semantics as GenServer.handle_continue/2.

 handle_info(msg, state)

 (optional)

 @callback handle_info(msg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle all other messages.
Same semantics as GenServer.handle_info/2.

 handle_options(new_opts, state)

 (optional)

 @callback handle_options(new_opts :: keyword(), state :: term()) ::
 {:ok, new_state :: term()} | {:stop, reason :: term()}

Handle parameter changes at runtime.
Called when a referenced parameter changes. The new_opts contain all options
with the updated parameter value(s) resolved.
Return {:ok, new_state} to update state, or {:stop, reason} to shut down.

 init(opts)

 @callback init(opts :: keyword()) ::
 {:ok, state :: term()}
 | {:ok, state :: term(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term()}
 | :ignore

Initialise controller state from resolved options.
Called with options after parameter references have been resolved.
The :bb key contains %{robot: module, path: [atom]}.
Return {:ok, state} or {:ok, state, timeout_or_continue} on success,
{:stop, reason} to abort startup, or :ignore to skip this controller.

 options_schema()

 (optional)

 @callback options_schema() :: Spark.Options.t()

Returns the options schema for this controller.
The schema should NOT include the :bb option - it is auto-injected.
If this callback is not implemented, the module cannot accept options
in the DSL (must be used as a bare module).

 terminate(reason, state)

 (optional)

 @callback terminate(reason :: term(), state :: term()) :: term()

Clean up before termination.
Same semantics as GenServer.terminate/2.

BB.Controller.Action

Action builders and executor for reactive controllers.
Provides two action types:
	Command - invokes a robot command
	Callback - calls an arbitrary function with the message and context

DSL Builders
These functions are imported into the controller entity scope:
controller :over_current, {BB.Controller.Threshold,
 topic: [:sensor, :servo_status],
 field: :current,
 max: 1.21,
 action: command(:disarm)
}

controller :collision, {BB.Controller.PatternMatch,
 topic: [:sensor, :proximity],
 match: fn msg -> msg.payload.distance < 0.05 end,
 action: handle_event(fn msg, ctx ->
 Logger.warning("Collision detected")
 :ok
 end)
}

 Summary

 Types

 t()

 Functions

 command(name)

 Build a command action that invokes the named robot command.

 command(name, args)

 execute(arg1, message, context)

 Execute an action with the given message and context.

 handle_event(fun)

 Build a callback action that calls the given function.

 Types

 t()

 @type t() :: BB.Controller.Action.Command.t() | BB.Controller.Action.Callback.t()

 Functions

 command(name)

 @spec command(atom()) :: BB.Controller.Action.Command.t()

Build a command action that invokes the named robot command.
Examples
command(:disarm)
command(:move_to, target: pose)

 command(name, args)

 @spec command(
 atom(),
 keyword()
) :: BB.Controller.Action.Command.t()

 execute(arg1, message, context)

 @spec execute(t(), BB.Message.t(), BB.Controller.Action.Context.t()) :: any()

Execute an action with the given message and context.

 handle_event(fun)

 @spec handle_event((BB.Message.t(), BB.Controller.Action.Context.t() -> any())) ::
 BB.Controller.Action.Callback.t()

Build a callback action that calls the given function.
The function receives the triggering message and a context struct.
Examples
handle_event(fn msg, ctx ->
 Logger.info("Received: #{inspect(msg)}")
 :ok
end)

BB.Controller.Action.Callback

Action that calls an arbitrary function.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Controller.Action.Callback{
 handler: (BB.Message.t(), BB.Controller.Action.Context.t() -> any())
}

BB.Controller.Action.Command

Action that invokes a robot command.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Controller.Action.Command{args: keyword(), command: atom()}

BB.Controller.Action.Context

Context provided to action callbacks.
Contains references to the robot module, static topology, dynamic state,
and the controller name that triggered the action.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Controller.Action.Context{
 controller_name: atom(),
 robot: BB.Robot.t(),
 robot_module: module(),
 robot_state: BB.Robot.Runtime.robot_state()
}

BB.Controller.PatternMatch

Controller that triggers an action when a message matches a predicate.
This is the base reactive controller implementation. Other reactive controllers
like BB.Controller.Threshold are convenience wrappers around this module.
Options
	:topic - PubSub topic path to subscribe to (required)
	:match - Predicate function fn msg -> boolean end (required)
	:action - Action to trigger on match (required)
	:cooldown_ms - Minimum ms between triggers (default: 1000)

Example
controller :collision, {BB.Controller.PatternMatch,
 topic: [:sensor, :proximity],
 match: fn msg -> msg.payload.distance < 0.05 end,
 action: command(:disarm)
}

BB.Controller.Server

Wrapper GenServer for controller callback modules.
This module manages the lifecycle of user-defined controller modules, handling:
	Parameter reference resolution at startup
	Subscription to parameter changes
	Delegation of GenServer callbacks to user module
	Optional safety registration (only if controller implements disarm/1)

User modules implement the BB.Controller behaviour and define callbacks.
This server wraps them, providing the actual GenServer implementation.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 t()

 @type t() :: %BB.Controller.Server{
 bb: %{robot: module(), path: [atom()]},
 callback_module: module(),
 param_subscriptions: %{required([atom()]) => atom()},
 raw_opts: keyword(),
 resolved_opts: keyword(),
 user_state: term()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Controller.Threshold

Convenience wrapper around PatternMatch for threshold monitoring.
Transforms threshold options into a PatternMatch configuration and
delegates all message handling to PatternMatch.
Options
	:topic - PubSub topic path to subscribe to (required)
	:field - Field path to extract from message payload (required)
	:min - Minimum acceptable value (at least one of min/max required)
	:max - Maximum acceptable value (at least one of min/max required)
	:action - Action to trigger when threshold exceeded (required)
	:cooldown_ms - Minimum ms between triggers (default: 1000)

Example
controller :over_current, {BB.Controller.Threshold,
 topic: [:sensor, :servo_status],
 field: :current,
 max: 1.21,
 action: command(:disarm)
}
This is equivalent to:
controller :over_current, {BB.Controller.PatternMatch,
 topic: [:sensor, :servo_status],
 match: fn msg -> Map.get(msg.payload, :current) > 1.21 end,
 action: command(:disarm)
}

BB.Sensor behaviour

Behaviour and API for sensors in the BB framework.
This module serves two purposes:
	Behaviour - Defines callbacks for sensor implementations
	API - Provides functions for working with sensors

Behaviour
Sensors read from hardware or other sources and publish messages. They can
be attached at the robot level, to links, or to joints.
Usage
The use BB.Sensor macro sets up your module as a sensor callback module.
Your module is NOT a GenServer - the framework provides a wrapper GenServer
(BB.Sensor.Server) that delegates to your callbacks.
Required Callbacks
	init/1 - Initialise sensor state from resolved options

Optional Callbacks
	disarm/1 - Make hardware safe (only for sensors with active hardware)
	handle_options/2 - React to parameter changes at runtime
	handle_call/3, handle_cast/2, handle_info/2 - Standard GenServer-style callbacks
	handle_continue/2, terminate/2 - Lifecycle callbacks
	options_schema/0 - Define accepted configuration options

Options Schema
If your sensor accepts configuration options, pass them via :options_schema:
defmodule MyTemperatureSensor do
 use BB.Sensor,
 options_schema: [
 bus: [type: :string, required: true, doc: "I2C bus name"],
 address: [type: :integer, required: true, doc: "I2C device address"],
 poll_interval_ms: [type: :pos_integer, default: 1000, doc: "Poll interval"]
]

 @impl BB.Sensor
 def init(opts) do
 bus = Keyword.fetch!(opts, :bus)
 address = Keyword.fetch!(opts, :address)
 bb = Keyword.fetch!(opts, :bb)
 {:ok, %{bus: bus, address: address, bb: bb}}
 end
end
For sensors that don't need configuration, omit :options_schema:
defmodule SimpleSensor do
 use BB.Sensor

 @impl BB.Sensor
 def init(opts) do
 {:ok, %{bb: opts[:bb]}}
 end
end
Parameter References
Options can reference parameters for runtime-adjustable configuration:
sensor :temp, {MyTempSensor, poll_interval: param([:sensors, :poll_rate])}
When the parameter changes, handle_options/2 is called with the new resolved
options. Override it to update your state accordingly.
Auto-injected Options
The :bb option is automatically provided and should NOT be included in your
options_schema. It contains %{robot: module, path: [atom]}.
Safety Registration
Most sensors don't require safety callbacks since they only read data.
If your sensor controls hardware that needs to be disabled on disarm
(e.g., a spinning LIDAR), implement the optional disarm/1 callback:
defmodule MyHardwareSensor do
 use BB.Sensor

 @impl BB.Sensor
 def init(opts), do: {:ok, %{}}

 @impl BB.Sensor
 def disarm(opts), do: stop_hardware(opts)
end
When disarm/1 is implemented, the framework automatically registers your
sensor with BB.Safety.

 Summary

 Callbacks

 disarm(opts)

 Make the hardware safe.

 handle_call(request, from, state)

 Handle synchronous calls.

 handle_cast(request, state)

 Handle asynchronous casts.

 handle_continue(continue_arg, state)

 Handle continue instructions.

 handle_info(msg, state)

 Handle all other messages.

 handle_options(new_opts, state)

 Handle parameter changes at runtime.

 init(opts)

 Initialise sensor state from resolved options.

 options_schema()

 Returns the options schema for this sensor.

 terminate(reason, state)

 Clean up before termination.

 Callbacks

 disarm(opts)

 (optional)

 @callback disarm(opts :: keyword()) :: :ok | {:error, term()}

Make the hardware safe.
Called with the opts provided at registration. Must work without GenServer state.
This callback is optional for sensors - only implement it if your sensor
controls hardware that needs to be disabled on disarm (e.g., a spinning LIDAR).

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from :: GenServer.from(), state :: term()) ::
 {:reply, reply :: term(), new_state :: term()}
 | {:reply, reply :: term(), new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}
 | {:stop, reason :: term(), reply :: term(), new_state :: term()}

Handle synchronous calls.
Same semantics as GenServer.handle_call/3.

 handle_cast(request, state)

 (optional)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle asynchronous casts.
Same semantics as GenServer.handle_cast/2.

 handle_continue(continue_arg, state)

 (optional)

 @callback handle_continue(continue_arg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle continue instructions.
Same semantics as GenServer.handle_continue/2.

 handle_info(msg, state)

 (optional)

 @callback handle_info(msg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle all other messages.
Same semantics as GenServer.handle_info/2.

 handle_options(new_opts, state)

 (optional)

 @callback handle_options(new_opts :: keyword(), state :: term()) ::
 {:ok, new_state :: term()} | {:stop, reason :: term()}

Handle parameter changes at runtime.
Called when a referenced parameter changes. The new_opts contain all options
with the updated parameter value(s) resolved.
Return {:ok, new_state} to update state, or {:stop, reason} to shut down.

 init(opts)

 @callback init(opts :: keyword()) ::
 {:ok, state :: term()}
 | {:ok, state :: term(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term()}
 | :ignore

Initialise sensor state from resolved options.
Called with options after parameter references have been resolved.
The :bb key contains %{robot: module, path: [atom]}.
Return {:ok, state} or {:ok, state, timeout_or_continue} on success,
{:stop, reason} to abort startup, or :ignore to skip this sensor.

 options_schema()

 (optional)

 @callback options_schema() :: Spark.Options.t()

Returns the options schema for this sensor.
The schema should NOT include the :bb option - it is auto-injected.
If this callback is not implemented, the module cannot accept options
in the DSL (must be used as a bare module).

 terminate(reason, state)

 (optional)

 @callback terminate(reason :: term(), state :: term()) :: term()

Clean up before termination.
Same semantics as GenServer.terminate/2.

BB.Sensor.Mimic

A sensor that derives joint state from another joint.
Subscribes to sensor messages from a source joint and re-publishes
transformed messages for the mimic joint. This is useful for modelling
parallel jaw grippers and other mechanically-linked joint pairs.
Options
	:source - (required) The name of the source joint to follow
	:multiplier - (optional, default 1.0) Scale factor applied to position values
	:offset - (optional, default 0.0) Constant offset added after scaling
	:message_types - (optional, default [JointState]) List of message types to forward

For JointState messages: mimic_position = source_position * multiplier + offset
Example
joint :right_finger do
 type(:prismatic)
 sensor(:mimic, {BB.Sensor.Mimic,
 source: :left_finger,
 multiplier: 1.0,
 message_types: [JointState]
 })
end
URDF Mimic Joints
This sensor implements the equivalent of URDF mimic joints:
<joint name="right_finger_joint" type="prismatic">
 <mimic joint="left_finger_joint" multiplier="1" offset="0"/>
</joint>
Forward kinematics and visualisation automatically work since they
consume JointState messages published by this sensor.

BB.Sensor.OpenLoopPositionEstimator

A "sensor" that estimates joint position for open-loop control systems.
This sensor subscribes to BB.Message.Actuator.BeginMotion messages from a
paired actuator and uses easing functions to estimate the current joint
position during motion. It publishes BB.Message.Sensor.JointState messages
at a configurable rate.
Use this sensor with actuators that don't provide position feedback (e.g.,
RC servos, open-loop stepper motors). The estimator works with any joint
type (revolute, prismatic, etc.) as it operates on raw position values.
Options
	actuator - Name of the actuator to subscribe to (required)
	easing - Easing function for position interpolation (default: :linear)
	publish_rate - Rate to publish position updates during motion (default: 50 Hz)
	max_silence - Maximum time between publishes when idle (default: 5 seconds)

Easing Functions
The following easing functions are available (see easings.net
for visualisations):
	:linear - Constant velocity (default)
	:ease_in_sine, :ease_out_sine, :ease_in_out_sine - Sinusoidal
	:ease_in_quad, :ease_out_quad, :ease_in_out_quad - Quadratic
	:ease_in_cubic, :ease_out_cubic, :ease_in_out_cubic - Cubic
	:ease_in_quartic, :ease_out_quartic, :ease_in_out_quartic - Quartic
	:ease_in_quintic, :ease_out_quintic, :ease_in_out_quintic - Quintic
	:ease_in_expo, :ease_out_expo, :ease_in_out_expo - Exponential
	:ease_in_circular, :ease_out_circular, :ease_in_out_circular - Circular

Example DSL Usage
joint :shoulder, type: :revolute do
 limit lower: ~u(-45 degree), upper: ~u(45 degree), velocity: ~u(60 degree_per_second)

 actuator :servo, {BB.Servo.Pigpio.Actuator, pin: 17}
 sensor :feedback, {BB.Sensor.OpenLoopPositionEstimator,
 actuator: :servo,
 easing: :ease_in_out_quad
 }
end
How It Works
	Subscribes to BeginMotion messages from the named actuator
	When motion begins, captures initial position, target, and expected arrival time
	Ticks at publish_rate during animation, interpolating position with easing
	Uses GenServer timeout for heartbeat publishes when idle
	Ensures final position is published even under system load

BB.Sensor.Server

Wrapper GenServer for sensor callback modules.
This module manages the lifecycle of user-defined sensor modules, handling:
	Parameter reference resolution at startup
	Subscription to parameter changes
	Delegation of GenServer callbacks to user module
	Optional safety registration (only if sensor implements disarm/1)

User modules implement the BB.Sensor behaviour and define callbacks.
This server wraps them, providing the actual GenServer implementation.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 t()

 @type t() :: %BB.Sensor.Server{
 bb: %{robot: module(), path: [atom()]},
 callback_module: module(),
 param_subscriptions: %{required([atom()]) => atom()},
 raw_opts: keyword(),
 resolved_opts: keyword(),
 user_state: term()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Actuator behaviour

Behaviour and API for actuators in the BB framework.
This module serves two purposes:
	Behaviour - Defines callbacks for actuator implementations
	API - Provides functions for sending commands to actuators

Behaviour
Actuators receive position/velocity/effort commands and drive hardware.
They must implement the init/1 and disarm/1 callbacks.
Usage
The use BB.Actuator macro sets up your module as an actuator callback module.
Your module is NOT a GenServer - the framework provides a wrapper GenServer
(BB.Actuator.Server) that delegates to your callbacks.
Required Callbacks
	init/1 - Initialise actuator state from resolved options
	disarm/1 - Make hardware safe (called without GenServer state)

Optional Callbacks
	handle_options/2 - React to parameter changes at runtime
	handle_call/3, handle_cast/2, handle_info/2 - Standard GenServer-style callbacks
	handle_continue/2, terminate/2 - Lifecycle callbacks
	options_schema/0 - Define accepted configuration options

Options Schema
If your actuator accepts configuration options, pass them via :options_schema:
defmodule MyServoActuator do
 use BB.Actuator,
 options_schema: [
 channel: [type: {:in, 0..15}, required: true, doc: "PWM channel"],
 controller: [type: :atom, required: true, doc: "Controller name"]
]

 @impl BB.Actuator
 def init(opts) do
 channel = Keyword.fetch!(opts, :channel)
 bb = Keyword.fetch!(opts, :bb)
 {:ok, %{channel: channel, bb: bb}}
 end

 @impl BB.Actuator
 def disarm(opts) do
 MyHardware.disable(opts[:controller], opts[:channel])
 :ok
 end

 @impl BB.Actuator
 def handle_cast({:command, msg}, state) do
 # Handle actuator commands
 {:noreply, state}
 end
end
For actuators that don't need configuration, omit :options_schema:
defmodule SimpleActuator do
 use BB.Actuator

 @impl BB.Actuator
 def init(opts) do
 {:ok, %{bb: opts[:bb]}}
 end

 @impl BB.Actuator
 def disarm(_opts), do: :ok
end
Parameter References
Options can reference parameters for runtime-adjustable configuration:
actuator :motor, {MyMotor, max_effort: param([:motion, :max_effort])}
When the parameter changes, handle_options/2 is called with the new resolved
options. Override it to update your state accordingly.
Auto-injected Options
The :bb option is automatically provided and should NOT be included in your
options_schema. It contains %{robot: module, path: [atom]}.
Safety Registration
Safety registration is automatic - the framework registers your module with
BB.Safety using the resolved options. You don't need to call BB.Safety.register
manually.
API
Supports both pubsub delivery (for orchestration, logging, replay) and
direct GenServer delivery (for time-critical control paths).
Delivery Methods
	Pubsub (set_position/4, etc.) - Commands published to [:actuator | path].
Enables logging, replay, and multi-subscriber patterns. Actuators receive
commands via handle_info/2.

	Direct (set_position!/4, etc.) - Commands sent directly via BB.Process.cast.
Lower latency for time-critical control. Actuators receive via handle_cast/2.

	Synchronous (set_position_sync/5, etc.) - Commands sent via BB.Process.call.
Returns acknowledgement or error. Actuators respond via handle_call/3.

Examples
Pubsub delivery (for kinematics/orchestration)
BB.Actuator.set_position(MyRobot, [:base_link, :shoulder, :servo], 1.57)

Direct delivery (for time-critical control)
BB.Actuator.set_position!(MyRobot, :shoulder_servo, 1.57)

Synchronous with acknowledgement
{:ok, :accepted} = BB.Actuator.set_position_sync(MyRobot, :shoulder_servo, 1.57)

 Summary

 Callbacks

 disarm(opts)

 Make the hardware safe.

 handle_call(request, from, state)

 Handle synchronous calls.

 handle_cast(request, state)

 Handle asynchronous casts.

 handle_continue(continue_arg, state)

 Handle continue instructions.

 handle_info(msg, state)

 Handle all other messages.

 handle_options(new_opts, state)

 Handle parameter changes at runtime.

 init(opts)

 Initialise actuator state from resolved options.

 options_schema()

 Returns the options schema for this actuator.

 terminate(reason, state)

 Clean up before termination.

 Functions

 follow_trajectory(robot, path, waypoints, opts \\ [])

 Send a trajectory command via pubsub.

 follow_trajectory!(robot, actuator_name, waypoints, opts \\ [])

 Send a trajectory command directly to an actuator (bypasses pubsub).

 follow_trajectory_sync(robot, actuator_name, waypoints, opts \\ [], timeout \\ 5000)

 Send a trajectory command and wait for acknowledgement.

 hold(robot, path, opts \\ [])

 Send a hold command via pubsub.

 hold!(robot, actuator_name, opts \\ [])

 Send a hold command directly to an actuator (bypasses pubsub).

 hold_sync(robot, actuator_name, opts \\ [], timeout \\ 5000)

 Send a hold command and wait for acknowledgement.

 set_effort(robot, path, effort, opts \\ [])

 Send an effort (torque/force) command via pubsub.

 set_effort!(robot, actuator_name, effort, opts \\ [])

 Send an effort command directly to an actuator (bypasses pubsub).

 set_effort_sync(robot, actuator_name, effort, opts \\ [], timeout \\ 5000)

 Send an effort command and wait for acknowledgement.

 set_position(robot, path, position, opts \\ [])

 Send a position command via pubsub.

 set_position!(robot, actuator_name, position, opts \\ [])

 Send a position command directly to an actuator (bypasses pubsub).

 set_position_sync(robot, actuator_name, position, opts \\ [], timeout \\ 5000)

 Send a position command and wait for acknowledgement.

 set_velocity(robot, path, velocity, opts \\ [])

 Send a velocity command via pubsub.

 set_velocity!(robot, actuator_name, velocity, opts \\ [])

 Send a velocity command directly to an actuator (bypasses pubsub).

 set_velocity_sync(robot, actuator_name, velocity, opts \\ [], timeout \\ 5000)

 Send a velocity command and wait for acknowledgement.

 stop(robot, path, opts \\ [])

 Send a stop command via pubsub.

 stop!(robot, actuator_name, opts \\ [])

 Send a stop command directly to an actuator (bypasses pubsub).

 stop_sync(robot, actuator_name, opts \\ [], timeout \\ 5000)

 Send a stop command and wait for acknowledgement.

 Callbacks

 disarm(opts)

 @callback disarm(opts :: keyword()) :: :ok | {:error, term()}

Make the hardware safe.
Called with the opts provided at registration. Must work without GenServer state.
This callback is required for actuators since they control physical hardware.

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from :: GenServer.from(), state :: term()) ::
 {:reply, reply :: term(), new_state :: term()}
 | {:reply, reply :: term(), new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}
 | {:stop, reason :: term(), reply :: term(), new_state :: term()}

Handle synchronous calls.
Same semantics as GenServer.handle_call/3.

 handle_cast(request, state)

 (optional)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle asynchronous casts.
Same semantics as GenServer.handle_cast/2.

 handle_continue(continue_arg, state)

 (optional)

 @callback handle_continue(continue_arg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle continue instructions.
Same semantics as GenServer.handle_continue/2.

 handle_info(msg, state)

 (optional)

 @callback handle_info(msg :: term(), state :: term()) ::
 {:noreply, new_state :: term()}
 | {:noreply, new_state :: term(),
 timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state :: term()}

Handle all other messages.
Same semantics as GenServer.handle_info/2.

 handle_options(new_opts, state)

 (optional)

 @callback handle_options(new_opts :: keyword(), state :: term()) ::
 {:ok, new_state :: term()} | {:stop, reason :: term()}

Handle parameter changes at runtime.
Called when a referenced parameter changes. The new_opts contain all options
with the updated parameter value(s) resolved.
Return {:ok, new_state} to update state, or {:stop, reason} to shut down.

 init(opts)

 @callback init(opts :: keyword()) ::
 {:ok, state :: term()}
 | {:ok, state :: term(), timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term()}
 | :ignore

Initialise actuator state from resolved options.
Called with options after parameter references have been resolved.
The :bb key contains %{robot: module, path: [atom]}.
Return {:ok, state} or {:ok, state, timeout_or_continue} on success,
{:stop, reason} to abort startup, or :ignore to skip this actuator.

 options_schema()

 (optional)

 @callback options_schema() :: Spark.Options.t()

Returns the options schema for this actuator.
The schema should NOT include the :bb option - it is auto-injected.
If this callback is not implemented, the module cannot accept options
in the DSL (must be used as a bare module).

 terminate(reason, state)

 (optional)

 @callback terminate(reason :: term(), state :: term()) :: term()

Clean up before termination.
Same semantics as GenServer.terminate/2.

 Functions

 follow_trajectory(robot, path, waypoints, opts \\ [])

 @spec follow_trajectory(module(), [atom()], [keyword() | map()], keyword()) :: :ok

Send a trajectory command via pubsub.
Waypoint Structure
Each waypoint should be a keyword list or map with:
	position - Position (radians or metres)
	velocity - Velocity (rad/s or m/s)
	acceleration - Acceleration (rad/s² or m/s²)
	time_from_start - Time from trajectory start (milliseconds)

Options
	:repeat - Number of repetitions: positive integer or :forever (default 1)
	:command_id - Correlation ID for feedback tracking

 follow_trajectory!(robot, actuator_name, waypoints, opts \\ [])

 @spec follow_trajectory!(module(), atom(), [keyword() | map()], keyword()) :: :ok

Send a trajectory command directly to an actuator (bypasses pubsub).

 follow_trajectory_sync(robot, actuator_name, waypoints, opts \\ [], timeout \\ 5000)

 @spec follow_trajectory_sync(
 module(),
 atom(),
 [keyword() | map()],
 keyword(),
 timeout()
) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send a trajectory command and wait for acknowledgement.

 hold(robot, path, opts \\ [])

 @spec hold(module(), [atom()], keyword()) :: :ok

Send a hold command via pubsub.
Instructs the actuator to actively maintain its current position.
Options
	:command_id - Correlation ID for feedback tracking

 hold!(robot, actuator_name, opts \\ [])

 @spec hold!(module(), atom(), keyword()) :: :ok

Send a hold command directly to an actuator (bypasses pubsub).

 hold_sync(robot, actuator_name, opts \\ [], timeout \\ 5000)

 @spec hold_sync(module(), atom(), keyword(), timeout()) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send a hold command and wait for acknowledgement.

 set_effort(robot, path, effort, opts \\ [])

 @spec set_effort(module(), [atom()], number(), keyword()) :: :ok

Send an effort (torque/force) command via pubsub.
Options
	:duration - Duration (milliseconds), nil = until stopped
	:command_id - Correlation ID for feedback tracking

 set_effort!(robot, actuator_name, effort, opts \\ [])

 @spec set_effort!(module(), atom(), number(), keyword()) :: :ok

Send an effort command directly to an actuator (bypasses pubsub).

 set_effort_sync(robot, actuator_name, effort, opts \\ [], timeout \\ 5000)

 @spec set_effort_sync(module(), atom(), number(), keyword(), timeout()) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send an effort command and wait for acknowledgement.

 set_position(robot, path, position, opts \\ [])

 @spec set_position(module(), [atom()], number(), keyword()) :: :ok

Send a position command via pubsub.
The command is published to [:actuator | path] where subscribers can
receive it via handle_info({:bb, path, message}, state).
Options
	:velocity - Velocity hint (rad/s or m/s)
	:duration - Duration hint (milliseconds)
	:command_id - Correlation ID for feedback tracking

Examples
BB.Actuator.set_position(MyRobot, [:base_link, :shoulder, :servo], 1.57)
BB.Actuator.set_position(MyRobot, [:shoulder, :servo], 1.57, velocity: 0.5)

 set_position!(robot, actuator_name, position, opts \\ [])

 @spec set_position!(module(), atom(), number(), keyword()) :: :ok

Send a position command directly to an actuator (bypasses pubsub).
Uses BB.Process.cast for fire-and-forget delivery. The actuator receives
the command via handle_cast({:command, message}, state).
Options
Same as set_position/4.

 set_position_sync(robot, actuator_name, position, opts \\ [], timeout \\ 5000)

 @spec set_position_sync(module(), atom(), number(), keyword(), timeout()) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send a position command and wait for acknowledgement.
Uses BB.Process.call for synchronous delivery. Returns the actuator's
response or raises on timeout.
Options
Same as set_position/4, plus:
	Fifth argument is timeout in milliseconds (default 5000)

Returns
	{:ok, :accepted} - Command accepted
	{:ok, :accepted, map()} - Command accepted with additional info
	{:error, reason} - Command rejected

 set_velocity(robot, path, velocity, opts \\ [])

 @spec set_velocity(module(), [atom()], number(), keyword()) :: :ok

Send a velocity command via pubsub.
Options
	:duration - Duration (milliseconds), nil = until stopped
	:command_id - Correlation ID for feedback tracking

 set_velocity!(robot, actuator_name, velocity, opts \\ [])

 @spec set_velocity!(module(), atom(), number(), keyword()) :: :ok

Send a velocity command directly to an actuator (bypasses pubsub).

 set_velocity_sync(robot, actuator_name, velocity, opts \\ [], timeout \\ 5000)

 @spec set_velocity_sync(module(), atom(), number(), keyword(), timeout()) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send a velocity command and wait for acknowledgement.

 stop(robot, path, opts \\ [])

 @spec stop(module(), [atom()], keyword()) :: :ok

Send a stop command via pubsub.
Options
	:mode - :immediate (default) or :decelerate
	:command_id - Correlation ID for feedback tracking

 stop!(robot, actuator_name, opts \\ [])

 @spec stop!(module(), atom(), keyword()) :: :ok

Send a stop command directly to an actuator (bypasses pubsub).

 stop_sync(robot, actuator_name, opts \\ [], timeout \\ 5000)

 @spec stop_sync(module(), atom(), keyword(), timeout()) ::
 {:ok, :accepted | {:accepted, map()}} | {:error, term()}

Send a stop command and wait for acknowledgement.

BB.Actuator.Server

Wrapper GenServer for actuator callback modules.
This module manages the lifecycle of user-defined actuator modules, handling:
	Parameter reference resolution at startup
	Subscription to parameter changes
	Delegation of GenServer callbacks to user module
	Automatic safety registration

User modules implement the BB.Actuator behaviour and define callbacks.
This server wraps them, providing the actual GenServer implementation.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 t()

 @type t() :: %BB.Actuator.Server{
 bb: %{robot: module(), path: [atom()]},
 callback_module: module(),
 param_subscriptions: %{required([atom()]) => atom()},
 raw_opts: keyword(),
 resolved_opts: keyword(),
 user_state: term()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Message behaviour

Message envelope and behaviour for payload types.
Messages in BB are wrapped in a standard envelope containing timing,
coordinate frame, and payload data.
Usage
Use the use BB.Message macro to define a payload type:
defmodule MyPayload do
 defstruct [:value]

 use BB.Message,
 schema: [
 value: [type: :float, required: true]
]
end

{:ok, msg} = MyPayload.new(:base_link, value: 1.5)
The macro will:
	Validate struct fields match schema keys at compile time
	Implement the schema/0 callback
	Generate a new/2 helper function

Note: defstruct must be defined before use BB.Message.

 Summary

 Types

 t()

 Callbacks

 schema()

 Returns a compiled Spark.Options schema for this payload type

 Functions

 new(payload_module, frame_id, attrs)

 Create a new message with validated payload.

 new!(payload_module, frame_id, attrs)

 Like new/3 but raises on validation error.

 schema(message)

 Get the payload schema from a message.

 Types

 t()

 @type t() :: %BB.Message{frame_id: atom(), payload: struct(), timestamp: integer()}

 Callbacks

 schema()

 @callback schema() :: Spark.Options.t()

Returns a compiled Spark.Options schema for this payload type

 Functions

 new(payload_module, frame_id, attrs)

 @spec new(module(), atom(), keyword()) :: {:ok, t()} | {:error, term()}

Create a new message with validated payload.
Validates the attributes against the payload module's schema, then wraps
the resulting struct in a message envelope with a fresh timestamp.
Examples
alias BB.Message.Geometry.Pose
alias BB.Math.Transform

{:ok, msg} = BB.Message.new(Pose, :end_effector, [
 transform: Transform.identity()
])

 new!(payload_module, frame_id, attrs)

 @spec new!(module(), atom(), keyword()) :: t()

Like new/3 but raises on validation error.
Examples
msg = BB.Message.new!(Pose, :end_effector, [
 transform: Transform.identity()
])

 schema(message)

 @spec schema(t()) :: Spark.Options.t()

Get the payload schema from a message.
Examples
BB.Message.schema(msg) #=> %Spark.Options{...}

BB.Message.Actuator.BeginMotion

Message published by actuators when beginning a motion.
Used by BB.Sensor.OpenLoopPositionEstimator to estimate current position
during open-loop control (actuators without position feedback).
Fields
	initial_position - Position before motion begins (radians or metres)
	target_position - Target position (radians or metres)
	expected_arrival - When motion should complete (monotonic milliseconds)
	command_id - Optional correlation ID from the originating command
	command_type - Optional type of command that initiated this motion

Example
alias BB.Message
alias BB.Message.Actuator.BeginMotion

expected_arrival = System.monotonic_time(:millisecond) + 500

{:ok, msg} = Message.new(BeginMotion, :shoulder,
 initial_position: 0.0,
 target_position: 1.57,
 expected_arrival: expected_arrival
)

 Summary

 Types

 command_type()

 t()

 Functions

 new(frame_id, attrs)

 Types

 command_type()

 @type command_type() :: :position | :velocity | :effort | :trajectory

 t()

 @type t() :: %BB.Message.Actuator.BeginMotion{
 command_id: reference() | nil,
 command_type: command_type() | nil,
 expected_arrival: integer(),
 initial_position: float(),
 target_position: float()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Effort

Command to apply a specific effort (torque/force) to an actuator.
The actuator will apply the specified effort until stopped, a new
command is received, or the optional duration expires.
Fields
	effort - Target effort (Nm for revolute, N for prismatic)
	duration - Optional duration (milliseconds), nil = until stopped
	command_id - Optional reference for correlating with feedback messages

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Effort

Apply torque
{:ok, msg} = Message.new(Effort, :gripper,
 effort: 0.5
)

Apply torque for fixed duration
{:ok, msg} = Message.new(Effort, :gripper,
 effort: 0.5,
 duration: 1000
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Actuator.Command.Effort{
 command_id: reference() | nil,
 duration: pos_integer() | nil,
 effort: float()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Hold

Command an actuator to actively maintain its current position.
Unlike Stop, the actuator will actively resist external forces to
stay at its current position. This consumes power but provides rigidity.
Fields
	command_id - Optional reference for correlating with feedback messages

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Hold

{:ok, msg} = Message.new(Hold, :shoulder, [])

With correlation ID
{:ok, msg} = Message.new(Hold, :shoulder,
 command_id: make_ref()
)
Notes
Not all actuators distinguish between stop and hold. RC servos, for example,
always hold their position when given a command. This command is most relevant
for motors with encoders or steppers where passive vs active holding differs.

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Actuator.Command.Hold{command_id: reference() | nil}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Position

Command to move an actuator to a target position.
Fields
	position - Target position (radians for revolute, metres for prismatic)
	velocity - Optional velocity hint (rad/s or m/s)
	duration - Optional duration hint (milliseconds)
	command_id - Optional reference for correlating with feedback messages

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Position

Simple position command
{:ok, msg} = Message.new(Position, :shoulder,
 position: 1.57
)

With velocity hint
{:ok, msg} = Message.new(Position, :shoulder,
 position: 1.57,
 velocity: 0.5
)

With correlation ID for tracking
{:ok, msg} = Message.new(Position, :shoulder,
 position: 1.57,
 command_id: make_ref()
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Actuator.Command.Position{
 command_id: reference() | nil,
 duration: pos_integer() | nil,
 position: float(),
 velocity: float() | nil
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Stop

Command to stop an actuator's motion.
After stopping, the actuator becomes passive and will not actively resist
external forces. Use Hold if you need the actuator to maintain position.
Fields
	mode - Stop mode: :immediate (default) or :decelerate
	command_id - Optional reference for correlating with feedback messages

Modes
	:immediate - Stop as quickly as possible (may be abrupt)
	:decelerate - Slow down smoothly before stopping

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Stop

Immediate stop
{:ok, msg} = Message.new(Stop, :shoulder, [])

Decelerate to stop
{:ok, msg} = Message.new(Stop, :shoulder,
 mode: :decelerate
)

 Summary

 Types

 mode()

 t()

 Functions

 new(frame_id, attrs)

 Types

 mode()

 @type mode() :: :immediate | :decelerate

 t()

 @type t() :: %BB.Message.Actuator.Command.Stop{
 command_id: reference() | nil,
 mode: mode()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Trajectory

Command an actuator to follow a trajectory defined by waypoints.
A trajectory specifies exact position, velocity, and acceleration at
each point in time, enabling smooth coordinated motion.
Fields
	waypoints - List of waypoint maps defining the trajectory
	repeat - Number of times to repeat: positive integer or :forever (default 1)
	command_id - Optional reference for correlating with feedback messages

Waypoint Structure
Each waypoint is a map with:
	position - Position at this waypoint (radians or metres)
	velocity - Velocity at this waypoint (rad/s or m/s)
	acceleration - Acceleration at this waypoint (rad/s² or m/s²)
	time_from_start - Time from trajectory start (milliseconds)

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Trajectory

waypoints = [
 %{position: 0.0, velocity: 0.0, acceleration: 0.5, time_from_start: 0},
 %{position: 0.1, velocity: 0.3, acceleration: 0.2, time_from_start: 100},
 %{position: 0.3, velocity: 0.4, acceleration: 0.0, time_from_start: 200},
 %{position: 0.5, velocity: 0.3, acceleration: -0.2, time_from_start: 300},
 %{position: 0.6, velocity: 0.0, acceleration: -0.5, time_from_start: 400}
]

{:ok, msg} = Message.new(Trajectory, :shoulder,
 waypoints: waypoints
)

Repeat 5 times
{:ok, msg} = Message.new(Trajectory, :shoulder,
 waypoints: waypoints,
 repeat: 5
)

Repeat forever (until stopped)
{:ok, msg} = Message.new(Trajectory, :shoulder,
 waypoints: waypoints,
 repeat: :forever
)

 Summary

 Types

 t()

 waypoint()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Actuator.Command.Trajectory{
 command_id: reference() | nil,
 repeat: pos_integer() | :forever,
 waypoints: [waypoint()]
}

 waypoint()

 @type waypoint() :: %{
 position: float(),
 velocity: float(),
 acceleration: float(),
 time_from_start: non_neg_integer()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.Command.Velocity

Command to set an actuator's velocity.
The actuator will move at the specified velocity until stopped, a new
command is received, or the optional duration expires.
Fields
	velocity - Target velocity (rad/s for revolute, m/s for prismatic)
	duration - Optional duration (milliseconds), nil = until stopped
	command_id - Optional reference for correlating with feedback messages

Examples
alias BB.Message
alias BB.Message.Actuator.Command.Velocity

Continuous velocity
{:ok, msg} = Message.new(Velocity, :wheel,
 velocity: 1.0
)

Velocity for fixed duration
{:ok, msg} = Message.new(Velocity, :wheel,
 velocity: 1.0,
 duration: 500
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Actuator.Command.Velocity{
 command_id: reference() | nil,
 duration: pos_integer() | nil,
 velocity: float()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Actuator.EndMotion

Message published by actuators when motion ends.
Optional counterpart to BeginMotion. Useful for actuators with partial
feedback (limit switches, stall detection) that can report when motion
completes but may not have continuous position sensing.
Fields
	position - Position when motion ended (radians or metres)
	reason - Why motion ended (:completed, :cancelled, :limit_reached, :fault)
	detail - Optional atom with additional context (e.g. :end_stop, :stall)
	message - Optional human-readable information for operators
	command_id - Optional correlation ID from the originating command

Examples
alias BB.Message
alias BB.Message.Actuator.EndMotion

Simple completion
{:ok, msg} = Message.new(EndMotion, :shoulder,
 position: 1.57,
 reason: :completed
)

Limit reached with detail
{:ok, msg} = Message.new(EndMotion, :shoulder,
 position: 0.0,
 reason: :limit_reached,
 detail: :end_stop
)

Fault with message
{:ok, msg} = Message.new(EndMotion, :shoulder,
 position: 0.52,
 reason: :fault,
 detail: :stall,
 message: "Motor stall detected at 30% travel"
)

 Summary

 Types

 reason()

 t()

 Functions

 new(frame_id, attrs)

 Types

 reason()

 @type reason() :: :completed | :cancelled | :limit_reached | :fault

 t()

 @type t() :: %BB.Message.Actuator.EndMotion{
 command_id: reference() | nil,
 detail: atom() | nil,
 message: String.t() | nil,
 position: float(),
 reason: reason()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Geometry.Accel

Linear and angular acceleration in 3D space.
Fields
	linear - Linear acceleration as BB.Vec3.t() in m/s²
	angular - Angular acceleration as BB.Vec3.t() in rad/s²

Examples
alias BB.Message.Geometry.Accel
alias BB.Math.Vec3

{:ok, msg} = Accel.new(:base_link, Vec3.new(0.0, 0.0, 9.81), Vec3.zero())

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 new(frame_id, linear, angular)

 Create a new Accel message.

 Types

 t()

 @type t() :: %BB.Message.Geometry.Accel{
 angular: BB.Math.Vec3.t(),
 linear: BB.Math.Vec3.t()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

 new(frame_id, linear, angular)

 @spec new(atom(), BB.Math.Vec3.t(), BB.Math.Vec3.t()) ::
 {:ok, BB.Message.t()} | {:error, term()}

Create a new Accel message.
Returns {:ok, %BB.Message{}} with the acceleration as payload.
Examples
alias BB.Math.Vec3

{:ok, msg} = Accel.new(:base_link, Vec3.new(0.0, 0.0, 9.81), Vec3.zero())

BB.Message.Geometry.Point3D

A 3D point in space.
Wraps a BB.Math.Vec3 for use as a message payload.
Fields
	vec - The point as BB.Math.Vec3.t() in metres

Examples
alias BB.Message.Geometry.Point3D
alias BB.Math.Vec3

{:ok, msg} = Point3D.new(:base_link, Vec3.new(0.3, 0.2, 0.1))

Access coordinates
point = msg.payload
Point3D.x(point) # => 0.3
Point3D.to_vec3(point) # => %Vec3{}

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Create a new Point3D message from a Vec3.

 to_vec3(point3_d)

 Get the underlying Vec3.

 x(point3_d)

 Get the X coordinate.

 y(point3_d)

 Get the Y coordinate.

 z(point3_d)

 Get the Z coordinate.

 Types

 t()

 @type t() :: %BB.Message.Geometry.Point3D{vec: BB.Math.Vec3.t()}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

 @spec new(atom(), BB.Math.Vec3.t()) :: {:ok, BB.Message.t()} | {:error, term()}

Create a new Point3D message from a Vec3.
Examples
alias BB.Math.Vec3

{:ok, msg} = Point3D.new(:base_link, Vec3.new(0.3, 0.2, 0.1))

 to_vec3(point3_d)

 @spec to_vec3(t()) :: BB.Math.Vec3.t()

Get the underlying Vec3.

 x(point3_d)

 @spec x(t()) :: float()

Get the X coordinate.

 y(point3_d)

 @spec y(t()) :: float()

Get the Y coordinate.

 z(point3_d)

 @spec z(t()) :: float()

Get the Z coordinate.

BB.Message.Geometry.Pose

A position and orientation in 3D space.
Wraps a BB.Math.Transform for use as a message payload.
Fields
	transform - The pose as BB.Math.Transform.t()

Examples
alias BB.Message.Geometry.Pose
alias BB.Math.{Vec3, Quaternion, Transform}

Create from Transform
transform = Transform.from_position_quaternion(Vec3.new(1.0, 0.0, 0.5), Quaternion.identity())
{:ok, msg} = Pose.new(:end_effector, transform)

Or from position and orientation
{:ok, msg} = Pose.new(:end_effector, Vec3.new(1.0, 0.0, 0.5), Quaternion.identity())

Access components
pose = msg.payload
Pose.position(pose) # => %Vec3{}
Pose.orientation(pose) # => %Quaternion{}
Pose.to_transform(pose) # => %Transform{}

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Create a new Pose message from a Transform.

 new(frame_id, position, orientation)

 Create a new Pose message from position and orientation.

 orientation(pose)

 Get the orientation component as Quaternion.

 position(pose)

 Get the position component as Vec3.

 to_transform(pose)

 Get the underlying Transform.

 Types

 t()

 @type t() :: %BB.Message.Geometry.Pose{transform: BB.Math.Transform.t()}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

 @spec new(atom(), BB.Math.Transform.t()) :: {:ok, BB.Message.t()} | {:error, term()}

Create a new Pose message from a Transform.
Examples
alias BB.Math.Transform

{:ok, msg} = Pose.new(:base_link, Transform.identity())

 new(frame_id, position, orientation)

 @spec new(atom(), BB.Math.Vec3.t(), BB.Math.Quaternion.t()) ::
 {:ok, BB.Message.t()} | {:error, term()}

Create a new Pose message from position and orientation.
Examples
alias BB.Math.{Vec3, Quaternion}

{:ok, msg} = Pose.new(:base_link, Vec3.new(1.0, 2.0, 3.0), Quaternion.identity())

 orientation(pose)

 @spec orientation(t()) :: BB.Math.Quaternion.t()

Get the orientation component as Quaternion.

 position(pose)

 @spec position(t()) :: BB.Math.Vec3.t()

Get the position component as Vec3.

 to_transform(pose)

 @spec to_transform(t()) :: BB.Math.Transform.t()

Get the underlying Transform.

BB.Message.Geometry.Twist

Linear and angular velocity in 3D space.
Fields
	linear - Linear velocity as BB.Vec3.t() in m/s
	angular - Angular velocity as BB.Vec3.t() in rad/s

Examples
alias BB.Message.Geometry.Twist
alias BB.Math.Vec3

{:ok, msg} = Twist.new(:base_link, Vec3.new(1.0, 0.0, 0.0), Vec3.zero())

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 new(frame_id, linear, angular)

 Create a new Twist message.

 Types

 t()

 @type t() :: %BB.Message.Geometry.Twist{
 angular: BB.Math.Vec3.t(),
 linear: BB.Math.Vec3.t()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

 new(frame_id, linear, angular)

 @spec new(atom(), BB.Math.Vec3.t(), BB.Math.Vec3.t()) ::
 {:ok, BB.Message.t()} | {:error, term()}

Create a new Twist message.
Returns {:ok, %BB.Message{}} with the twist as payload.
Examples
alias BB.Math.Vec3

{:ok, msg} = Twist.new(:base_link, Vec3.new(1.0, 0.0, 0.0), Vec3.zero())

BB.Message.Geometry.Wrench

Force and torque in 3D space.
Fields
	force - Force as BB.Vec3.t() in Newtons
	torque - Torque as BB.Vec3.t() in Newton-metres

Examples
alias BB.Message.Geometry.Wrench
alias BB.Math.Vec3

{:ok, msg} = Wrench.new(:end_effector, Vec3.new(0.0, 0.0, -10.0), Vec3.zero())

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 new(frame_id, force, torque)

 Create a new Wrench message.

 Types

 t()

 @type t() :: %BB.Message.Geometry.Wrench{
 force: BB.Math.Vec3.t(),
 torque: BB.Math.Vec3.t()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

 new(frame_id, force, torque)

 @spec new(atom(), BB.Math.Vec3.t(), BB.Math.Vec3.t()) ::
 {:ok, BB.Message.t()} | {:error, term()}

Create a new Wrench message.
Returns {:ok, %BB.Message{}} with the wrench as payload.
Examples
alias BB.Math.Vec3

{:ok, msg} = Wrench.new(:end_effector, Vec3.new(0.0, 0.0, -10.0), Vec3.zero())

BB.Message.Option

Custom Spark.Options types for message primitives.
Provides type functions for use in payload schemas to validate
BB.Math.Vec3.t(), BB.Math.Quaternion.t(), and BB.Math.Transform.t() types.
Usage
import BB.Message.Option

@schema Spark.Options.new!([
 position: [type: vec3_type(), required: true],
 orientation: [type: quaternion_type(), required: true],
 pose: [type: transform_type(), required: true]
])

 Summary

 Functions

 quaternion_type()

 Returns a Spark.Options type for validating BB.Quaternion.t().

 transform_type()

 Returns a Spark.Options type for validating BB.Math.Transform.t().

 validate_quaternion(quat, opts)

 Validates a BB.Quaternion struct.

 validate_transform(transform, opts)

 Validates a BB.Math.Transform struct.

 validate_vec3(vec, opts)

 Validates a BB.Vec3 struct.

 vec3_type()

 Returns a Spark.Options type for validating BB.Vec3.t().

 Functions

 quaternion_type()

 @spec quaternion_type() :: {:custom, module(), atom(), list()}

Returns a Spark.Options type for validating BB.Quaternion.t().
Examples
iex> BB.Message.Option.quaternion_type()
{:custom, BB.Message.Option, :validate_quaternion, [[]]}

 transform_type()

 @spec transform_type() :: {:custom, module(), atom(), list()}

Returns a Spark.Options type for validating BB.Math.Transform.t().
Examples
iex> BB.Message.Option.transform_type()
{:custom, BB.Message.Option, :validate_transform, [[]]}

 validate_quaternion(quat, opts)

 @spec validate_quaternion(
 term(),
 keyword()
) :: {:ok, BB.Math.Quaternion.t()} | {:error, String.t()}

Validates a BB.Quaternion struct.
Examples
iex> BB.Message.Option.validate_quaternion(BB.Quaternion.identity(), [])
{:ok, %BB.Quaternion{}}

iex> BB.Message.Option.validate_quaternion("not a quaternion", [])
{:error, "expected BB.Quaternion.t(), got: \"not a quaternion\""}

 validate_transform(transform, opts)

 @spec validate_transform(
 term(),
 keyword()
) :: {:ok, BB.Math.Transform.t()} | {:error, String.t()}

Validates a BB.Math.Transform struct.
Examples
iex> BB.Message.Option.validate_transform(BB.Math.Transform.identity(), [])
{:ok, %BB.Math.Transform{}}

iex> BB.Message.Option.validate_transform("not a transform", [])
{:error, "expected BB.Math.Transform.t(), got: \"not a transform\""}

 validate_vec3(vec, opts)

 @spec validate_vec3(
 term(),
 keyword()
) :: {:ok, BB.Math.Vec3.t()} | {:error, String.t()}

Validates a BB.Vec3 struct.
Examples
iex> BB.Message.Option.validate_vec3(BB.Vec3.new(1.0, 2.0, 3.0), [])
{:ok, %BB.Vec3{}}

iex> BB.Message.Option.validate_vec3("not a vec3", [])
{:error, "expected BB.Vec3.t(), got: \"not a vec3\""}

 vec3_type()

 @spec vec3_type() :: {:custom, module(), atom(), list()}

Returns a Spark.Options type for validating BB.Vec3.t().
Examples
iex> BB.Message.Option.vec3_type()
{:custom, BB.Message.Option, :validate_vec3, [[]]}

BB.Message.Sensor.BatteryState

Battery state information.
Fields
	voltage - Voltage in Volts
	current - Current in Amperes (negative when discharging)
	charge - Charge in Ampere-hours (0 if not measured)
	capacity - Capacity in Ampere-hours (full charge, 0 if not measured)
	percentage - Charge percentage (0.0 to 1.0, or nil if not measured)
	power_supply_status - Status of the power supply
	power_supply_health - Health of the power supply
	present - Whether battery is present

Power Supply Status
	:unknown - Cannot determine status
	:charging - Battery is charging
	:discharging - Battery is discharging
	:not_charging - Not charging (full or error)
	:full - Battery is full

Power Supply Health
	:unknown - Cannot determine health
	:good - Battery is healthy
	:overheat - Battery is overheating
	:dead - Battery is dead
	:overvoltage - Voltage too high
	:cold - Battery is too cold

Examples
alias BB.Message.Sensor.BatteryState

{:ok, msg} = BatteryState.new(:battery,
 voltage: 12.6,
 current: -0.5,
 percentage: 0.85,
 power_supply_status: :discharging,
 power_supply_health: :good,
 present: true
)

 Summary

 Types

 power_supply_health()

 power_supply_status()

 t()

 Functions

 new(frame_id, attrs)

 Types

 power_supply_health()

 @type power_supply_health() ::
 :unknown | :good | :overheat | :dead | :overvoltage | :cold

 power_supply_status()

 @type power_supply_status() ::
 :unknown | :charging | :discharging | :not_charging | :full

 t()

 @type t() :: %BB.Message.Sensor.BatteryState{
 capacity: float(),
 charge: float(),
 current: float(),
 percentage: float() | nil,
 power_supply_health: power_supply_health(),
 power_supply_status: power_supply_status(),
 present: boolean(),
 voltage: float()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Sensor.Image

Raw image data from a camera sensor.
Fields
	height - Image height in pixels
	width - Image width in pixels
	encoding - Pixel encoding format
	is_bigendian - Whether data is big-endian
	step - Full row length in bytes
	data - Actual image data as binary

Encodings
Common encodings include:
	:rgb8 - RGB 8-bit per channel
	:rgba8 - RGBA 8-bit per channel
	:bgr8 - BGR 8-bit per channel
	:bgra8 - BGRA 8-bit per channel
	:mono8 - Grayscale 8-bit
	:mono16 - Grayscale 16-bit

Examples
alias BB.Message.Sensor.Image

{:ok, msg} = Image.new(:camera,
 height: 480,
 width: 640,
 encoding: :rgb8,
 is_bigendian: false,
 step: 1920,
 data: <<0, 0, 0, ...>>
)

 Summary

 Types

 encoding()

 t()

 Functions

 new(frame_id, attrs)

 Types

 encoding()

 @type encoding() ::
 :rgb8
 | :rgba8
 | :rgb16
 | :rgba16
 | :bgr8
 | :bgra8
 | :bgr16
 | :bgra16
 | :mono8
 | :mono16
 | :bayer_rggb8
 | :bayer_bggr8
 | :bayer_gbrg8
 | :bayer_grbg8

 t()

 @type t() :: %BB.Message.Sensor.Image{
 data: binary(),
 encoding: encoding(),
 height: non_neg_integer(),
 is_bigendian: boolean(),
 step: non_neg_integer(),
 width: non_neg_integer()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Sensor.Imu

Inertial Measurement Unit data.
Fields
	orientation - Orientation as BB.Quaternion.t()
	angular_velocity - Angular velocity as BB.Vec3.t() in rad/s
	linear_acceleration - Linear acceleration as BB.Vec3.t() in m/s²

Examples
alias BB.Message.Sensor.Imu
alias BB.{Vec3, Quaternion}

{:ok, msg} = Imu.new(:imu_link,
 orientation: Quaternion.identity(),
 angular_velocity: Vec3.zero(),
 linear_acceleration: Vec3.new(0.0, 0.0, 9.81)
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Sensor.Imu{
 angular_velocity: BB.Math.Vec3.t(),
 linear_acceleration: BB.Math.Vec3.t(),
 orientation: BB.Math.Quaternion.t()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Sensor.JointState

State of a set of joints.
Fields
	names - List of joint names as atoms
	positions - Joint positions in radians (revolute) or metres (prismatic)
	velocities - Joint velocities in rad/s or m/s
	efforts - Joint efforts in Nm or N

All lists must have the same length. Missing values can be represented
as empty lists.
Examples
alias BB.Message.Sensor.JointState

{:ok, msg} = JointState.new(:arm,
 names: [:joint1, :joint2],
 positions: [0.0, 1.57],
 velocities: [0.1, 0.0],
 efforts: [0.5, 0.2]
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Sensor.JointState{
 efforts: [float()],
 names: [atom()],
 positions: [float()],
 velocities: [float()]
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Sensor.LaserScan

Single scan from a planar laser range-finder.
Fields
	angle_min - Start angle of scan in radians
	angle_max - End angle of scan in radians
	angle_increment - Angular distance between measurements in radians
	time_increment - Time between measurements in seconds
	scan_time - Time between scans in seconds
	range_min - Minimum range value in metres
	range_max - Maximum range value in metres
	ranges - Range data in metres (values < range_min or > range_max are invalid)
	intensities - Intensity data (device-specific units, optional)

Examples
alias BB.Message.Sensor.LaserScan

{:ok, msg} = LaserScan.new(:laser_frame,
 angle_min: -1.57,
 angle_max: 1.57,
 angle_increment: 0.01,
 time_increment: 0.0001,
 scan_time: 0.1,
 range_min: 0.1,
 range_max: 10.0,
 ranges: [1.0, 1.1, 1.2, 1.3]
)

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Message.Sensor.LaserScan{
 angle_increment: float(),
 angle_max: float(),
 angle_min: float(),
 intensities: [float()],
 range_max: float(),
 range_min: float(),
 ranges: [float()],
 scan_time: float(),
 time_increment: float()
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Message.Sensor.Range

Single range reading from a distance sensor.
Fields
	radiation_type - Type of radiation (:ultrasound or :infrared)
	field_of_view - Size of the arc that the sensor covers in radians
	min_range - Minimum range in metres
	max_range - Maximum range in metres
	range - Measured range in metres

Values less than min_range or greater than max_range should be discarded.
A range of :infinity indicates no object was detected.
Examples
alias BB.Message.Sensor.Range

{:ok, msg} = Range.new(:ultrasonic_sensor,
 radiation_type: :ultrasound,
 field_of_view: 0.26,
 min_range: 0.02,
 max_range: 4.0,
 range: 1.5
)

 Summary

 Types

 radiation_type()

 t()

 Functions

 new(frame_id, attrs)

 Types

 radiation_type()

 @type radiation_type() :: :ultrasound | :infrared

 t()

 @type t() :: %BB.Message.Sensor.Range{
 field_of_view: float(),
 max_range: float(),
 min_range: float(),
 radiation_type: radiation_type(),
 range: float() | :infinity
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Safety

Safety system API.
This module provides the API for arming/disarming robots and managing safety state.
The disarm/1 callback that components implement is now defined in BB.Controller
and BB.Actuator behaviours.
Safety States
	:disarmed - Robot is safely disarmed, all disarm callbacks succeeded
	:armed - Robot is armed and ready to operate
	:disarming - Disarm in progress, callbacks running concurrently
	:error - Disarm attempted but one or more callbacks failed; hardware may not be safe

When in :error state, the robot cannot be armed until force_disarm/1 is called
to acknowledge the error and reset to :disarmed.
Disarm callbacks run concurrently with a timeout. If any callback fails or times out,
the robot transitions to :error state.
Implementing Disarm Callbacks
Controllers and actuators implement the disarm/1 callback via their behaviours:
defmodule MyActuator do
 use GenServer
 use BB.Actuator

 @impl BB.Actuator
 def disarm(opts) do
 pin = Keyword.fetch!(opts, :pin)
 MyHardware.disable(pin)
 :ok
 end

 def init(opts) do
 BB.Safety.register(__MODULE__,
 robot: opts[:bb].robot,
 path: opts[:bb].path,
 opts: [pin: opts[:pin]]
)
 # ...
 end
end
If your actuator doesn't need special disarm logic, you can implement a no-op:
@impl BB.Actuator
def disarm(_opts), do: :ok
Important Limitations
The BEAM virtual machine provides soft real-time guarantees, not hard real-time.
Disarm callbacks may be delayed by garbage collection, scheduler load, or other
system activity. For safety-critical applications, always implement hardware-level
safety controls as your primary protection.
See the Safety documentation topic for detailed recommendations.

 Summary

 Functions

 arm(robot_module)

 Arm the robot.

 armed?(robot_module)

 Check if a robot is armed.

 disarm(robot_module, opts \\ [])

 Disarm the robot.

 disarming?(robot_module)

 Check if a robot is currently disarming.

 force_disarm(robot_module)

 Force disarm from error state.

 in_error?(robot_module)

 Check if a robot is in error state.

 register(module, opts)

 Register a safety handler (actuator/sensor/controller).

 report_error(robot_module, path, error)

 Report a hardware error from a component.

 state(robot_module)

 Get current safety state for a robot.

 Functions

 arm(robot_module)

Arm the robot.
Goes through the safety controller GenServer to ensure proper state transitions.
Cannot arm if robot is in :error state - must call force_disarm/1 first.
Returns :ok or {:error, :already_armed | :in_error | :not_registered}.

 armed?(robot_module)

Check if a robot is armed.
Fast ETS read - does not go through GenServer.

 disarm(robot_module, opts \\ [])

Disarm the robot.
Goes through the safety controller GenServer. Calls all registered disarm/1
callbacks before updating state. If any callback fails, the robot transitions
to :error state instead of :disarmed.
Options
	:timeout - timeout in milliseconds for each disarm callback.
Defaults to 5000ms.

Returns :ok or {:error, :already_disarmed | {:disarm_failed, failures}}.

 disarming?(robot_module)

Check if a robot is currently disarming.
Returns true while disarm callbacks are running.
Fast ETS read - does not go through GenServer.

 force_disarm(robot_module)

Force disarm from error state.
Use this function to acknowledge a failed disarm operation and reset the
robot to :disarmed state. This should only be called after manually
verifying that hardware is in a safe state.
WARNING: This bypasses safety checks. Only use when you have manually
verified that all actuators are disabled and the robot is safe.
Returns :ok or {:error, :not_in_error | :not_registered}.

 in_error?(robot_module)

Check if a robot is in error state.
Returns true if a disarm operation failed and the robot requires
manual intervention via force_disarm/1.
Fast ETS read - does not go through GenServer.

 register(module, opts)

Register a safety handler (actuator/sensor/controller).
Called by processes in their init/1. The opts should contain all
hardware-specific parameters needed to call disarm/1 without GenServer state.
Writes directly to ETS to avoid blocking on the Controller's mailbox.
Options
	:robot (required) - The robot module
	:path (required) - The path to this component (for logging)
	:opts - Hardware-specific options passed to disarm/1

Example
BB.Safety.register(__MODULE__,
 robot: MyRobot,
 path: [:arm, :shoulder_joint, :servo],
 opts: [pin: 18]
)

 report_error(robot_module, path, error)

Report a hardware error from a component.
This function should be called by controllers, actuators, or sensors when
they detect a hardware error condition. The behaviour depends on the robot's
auto_disarm_on_error setting:
	If true (default): The robot is automatically disarmed
	If false: The error is published but no automatic action is taken

In both cases, a BB.Safety.HardwareError message is published to
[:safety, :error] for subscribers to handle.
Parameters
	robot_module - The robot module
	path - Path to the component reporting the error (e.g., [:dynamixel, :servo_1])
	error - Component-specific error details

Example
In a controller detecting servo overheating:
BB.Safety.report_error(MyRobot, [:dynamixel, :servo_1], {:hardware_error, 0x04})
Customising Error Handling
To implement custom error handling instead of auto-disarm:
defmodule MyRobot do
 use BB

 settings do
 auto_disarm_on_error false
 end
end

Then subscribe to error events:
BB.subscribe(MyRobot, [:safety, :error])

 state(robot_module)

Get current safety state for a robot.
Fast ETS read - does not go through GenServer.
Returns :armed, :disarmed, :disarming, or :error.

BB.Safety.Controller

Global safety controller that owns arm/disarm state for all robots.
Part of BB's application supervision tree (not per-robot), so it survives
robot crashes and maintains safety state. Runs at high scheduler priority.
Uses two ETS tables:
	Robots table (protected set) - safety state per robot, writes only via GenServer
	Handlers table (public bag) - direct writes for registration

Monitors robot supervisors and cleans up state when they terminate.
Safety States
	:disarmed - Robot is safely disarmed, all disarm callbacks succeeded
	:armed - Robot is armed and ready to operate
	:disarming - Disarm in progress, callbacks running concurrently
	:error - Disarm attempted but one or more callbacks failed; hardware may not be safe

When in :error state, the robot cannot be armed until force_disarm/1 is called
to acknowledge the error and reset to :disarmed.
Disarm callbacks run concurrently with a timeout. If any callback fails or times out,
the robot transitions to :error state.
Note: The executing/idle distinction is handled by Runtime as it's not safety-critical.

 Summary

 Types

 safety_state()

 Functions

 arm(robot_module)

 Arm the robot.

 armed?(robot_module)

 Check if a robot is armed.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disarm(robot_module, opts \\ [])

 Disarm the robot.

 disarming?(robot_module)

 Check if a robot is currently disarming.

 force_disarm(robot_module)

 Force disarm from error state.

 in_error?(robot_module)

 Check if a robot is in error state.

 register(module, opts)

 Register a safety handler (actuator/sensor/controller).

 register_robot(robot_module)

 Register a robot when it starts.

 registered_handlers(robot_module)

 Get list of registered handler modules for a robot.

 report_error(robot_module, path, error)

 Report a hardware error from a component.

 state(robot_module)

 Get current safety state for a robot.

 Types

 safety_state()

 @type safety_state() :: :disarmed | :armed | :disarming | :error

 Functions

 arm(robot_module)

 @spec arm(module()) :: :ok | {:error, :already_armed | :in_error | :not_registered}

Arm the robot.
Goes through GenServer to ensure proper state transitions and event publishing.
Cannot arm if robot is in :error state - must call force_disarm/1 first.

 armed?(robot_module)

 @spec armed?(module()) :: boolean()

Check if a robot is armed.
Fast ETS read - does not go through GenServer.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 disarm(robot_module, opts \\ [])

 @spec disarm(
 module(),
 keyword()
) ::
 :ok | {:error, :already_disarmed | :not_registered | {:disarm_failed, list()}}

Disarm the robot.
Goes through GenServer. Calls all registered disarm/1 callbacks before
updating state. If any callback fails, the robot transitions to :error
state instead of :disarmed, and this function returns an error with
details of the failures.
When in :error state, the robot cannot be armed until force_disarm/1
is called to acknowledge the failure and reset to :disarmed.
Options
	:timeout - timeout in milliseconds for each disarm callback.
Defaults to 5000ms. The GenServer call timeout
is set to timeout + 5000 to allow for processing overhead.

 disarming?(robot_module)

 @spec disarming?(module()) :: boolean()

Check if a robot is currently disarming.
Returns true while disarm callbacks are running.
Fast ETS read - does not go through GenServer.

 force_disarm(robot_module)

 @spec force_disarm(module()) :: :ok | {:error, :not_in_error | :not_registered}

Force disarm from error state.
Use this function to acknowledge a failed disarm operation and reset the
robot to :disarmed state. This should only be called after manually
verifying that hardware is in a safe state.
WARNING: This bypasses safety checks. Only use when you have manually
verified that all actuators are disabled and the robot is safe.

 in_error?(robot_module)

 @spec in_error?(module()) :: boolean()

Check if a robot is in error state.
Returns true if a disarm operation failed and the robot requires
manual intervention via force_disarm/1.
Fast ETS read - does not go through GenServer.

 register(module, opts)

 @spec register(
 module(),
 keyword()
) :: :ok

Register a safety handler (actuator/sensor/controller).
Called by processes in their init/1. The opts should contain all
hardware-specific parameters needed to call disarm/1 without GenServer state.
Writes directly to ETS to avoid blocking on the Controller's mailbox.
Uses a cast to set up process monitoring for cleanup on handler restart.

 register_robot(robot_module)

 @spec register_robot(module()) :: :ok | {:error, term()}

Register a robot when it starts.
Called by BB.Supervisor during robot startup. Sets up monitoring of the
robot's supervision tree for automatic cleanup on crash.

 registered_handlers(robot_module)

 @spec registered_handlers(module()) :: [module()]

Get list of registered handler modules for a robot.
Used by Runtime to verify all safety handlers have registered on startup.

 report_error(robot_module, path, error)

 @spec report_error(module(), [atom()], term()) :: :ok

Report a hardware error from a component.
Publishes a HardwareError message and optionally triggers disarm based on
the robot's auto_disarm_on_error setting.

 state(robot_module)

 @spec state(module()) :: safety_state()

Get current safety state for a robot.
Fast ETS read - does not go through GenServer.
Returns :armed, :disarmed, or :error.

BB.Safety.HardwareError

Payload type for hardware error events.
Published to [:safety, :error] when a component reports a hardware error.
Subscribe to receive notifications of hardware failures.
Example
BB.subscribe(MyRobot, [:safety, :error])

Receive:
{:bb, [:safety, :error], %BB.Message{payload: %BB.Safety.HardwareError{...}}}

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Safety.HardwareError{error: term(), path: [atom()]}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Parameter behaviour

Runtime-adjustable parameters for robot components.
Parameters provide a way to configure robot behaviour at runtime without
recompilation. They support validation, change notifications via PubSub,
and optional persistence.
Behaviour
Components that expose parameters implement the BB.Parameter behaviour:
defmodule MyController do
 use GenServer
 @behaviour BB.Parameter

 @impl BB.Parameter
 def param_schema do
 Spark.Options.new!(
 kp: [type: :float, required: true, doc: "Proportional gain"],
 ki: [type: :float, default: 0.0, doc: "Integral gain"],
 kd: [type: :float, default: 0.0, doc: "Derivative gain"]
)
 end
end
Path-Based Identification
Parameters are identified by hierarchical paths that match the PubSub
convention:
	[:robot, :max_velocity] - Robot-level parameter
	[:controller, :pid, :kp] - Component parameter
	[:sensor, :imu, :sample_rate] - Sensor configuration

Usage
Read a parameter (fast, direct ETS access)
{:ok, value} = BB.Parameter.get(MyRobot, [:motion, :max_speed])

Write a parameter (validated, publishes change)
:ok = BB.Parameter.set(MyRobot, [:motion, :max_speed], 2.0)

Atomic batch update
:ok = BB.Parameter.set_many(MyRobot, [
 {[:controller, :pid, :kp], 2.0},
 {[:controller, :pid, :ki], 0.2}
])

List parameters
params = BB.Parameter.list(MyRobot, prefix: [:controller])
Change Notifications
Parameter changes are published via BB.PubSub with the :param prefix:
BB.PubSub.subscribe(MyRobot, [:param, :controller, :pid])
Receives: {:bb, [:param, :controller, :pid, :kp], %BB.Message{}}

 Summary

 Callbacks

 param_schema()

 Returns a compiled Spark.Options schema for this component's parameters.

 Functions

 get(robot_module, path)

 Get a parameter value.

 get!(robot_module, path)

 Get a parameter value, raising if not found.

 get_remote(robot_module, bridge_name, param_id)

 Get a parameter value from a remote system via a bridge.

 implements?(module)

 Check if a module implements the BB.Parameter behaviour.

 list(robot_module, opts \\ [])

 List all parameters, optionally filtered by path prefix.

 list_remote(robot_module, bridge_name)

 List parameters available on a remote system via a bridge.

 register(robot_module, path, component_module)

 Register a component's parameters with the robot.

 set(robot_module, path, value)

 Set a parameter value.

 set_many(robot_module, params)

 Set multiple parameters atomically.

 set_remote(robot_module, bridge_name, param_id, value)

 Set a parameter value on a remote system via a bridge.

 subscribe_remote(robot_module, bridge_name, param_id)

 Subscribe to changes for a remote parameter via a bridge.

 Callbacks

 param_schema()

 @callback param_schema() :: Spark.Options.t()

Returns a compiled Spark.Options schema for this component's parameters.
The schema defines parameter names, types, defaults, and constraints.

 Functions

 get(robot_module, path)

 @spec get(module(), [atom()]) :: {:ok, term()} | {:error, :not_found}

Get a parameter value.
Returns {:ok, value} if the parameter exists, {:error, :not_found} otherwise.
This is a fast operation - it reads directly from ETS.
Examples
{:ok, 1.5} = BB.Parameter.get(MyRobot, [:motion, :max_speed])
{:error, :not_found} = BB.Parameter.get(MyRobot, [:nonexistent])

 get!(robot_module, path)

 @spec get!(module(), [atom()]) :: term()

Get a parameter value, raising if not found.
Examples
1.5 = BB.Parameter.get!(MyRobot, [:motion, :max_speed])

 get_remote(robot_module, bridge_name, param_id)

 @spec get_remote(module(), atom(), BB.Bridge.param_id()) ::
 {:ok, term()} | {:error, term()}

Get a parameter value from a remote system via a bridge.
The bridge must implement get_remote/2.
Examples
{:ok, 0.15} = BB.Parameter.get_remote(MyRobot, :mavlink, "PITCH_RATE_P")

 implements?(module)

 @spec implements?(module()) :: boolean()

Check if a module implements the BB.Parameter behaviour.

 list(robot_module, opts \\ [])

 @spec list(
 module(),
 keyword()
) :: [{[atom()], map()}]

List all parameters, optionally filtered by path prefix.
Returns a list of {path, metadata} tuples where metadata includes
the current value, type, and other schema information.
Options
	:prefix - Only return parameters under this path prefix (default: [])

Examples
All parameters
params = BB.Parameter.list(MyRobot)

Parameters under [:controller]
params = BB.Parameter.list(MyRobot, prefix: [:controller])

 list_remote(robot_module, bridge_name)

 @spec list_remote(module(), atom()) :: {:ok, [map()]} | {:error, term()}

List parameters available on a remote system via a bridge.
Returns a list of parameter info from the remote (e.g., flight controller).
The bridge must implement list_remote/1.
Examples
{:ok, params} = BB.Parameter.list_remote(MyRobot, :mavlink)
=> [{id: "PITCH_RATE_P", value: 0.1, type: :float, doc: "..."}, ...]

 register(robot_module, path, component_module)

 @spec register(module(), [atom()], module()) :: :ok | {:error, term()}

Register a component's parameters with the robot.
Called by components during init to register their parameter schema.
Parameters are initialised with default values from the schema.
Examples
def init(opts) do
 bb = Keyword.fetch!(opts, :bb)
 BB.Parameter.register(bb.robot, bb.path, __MODULE__)
 {:ok, %{bb: bb}}
end

 set(robot_module, path, value)

 @spec set(module(), [atom()], term()) :: :ok | {:error, term()}

Set a parameter value.
The value is validated against the registered schema (if any) before being
stored. On success, a change notification is published via PubSub.
Returns :ok on success, {:error, reason} on validation failure.
Examples
:ok = BB.Parameter.set(MyRobot, [:motion, :max_speed], 2.0)
{:error, reason} = BB.Parameter.set(MyRobot, [:motion, :max_speed], -1.0)

 set_many(robot_module, params)

 @spec set_many(module(), [{[atom()], term()}]) :: :ok | {:error, [{[atom()], term()}]}

Set multiple parameters atomically.
All parameters are validated before any are written. If any validation fails,
no parameters are changed.
Examples
:ok = BB.Parameter.set_many(MyRobot, [
 {[:controller, :pid, :kp], 2.0},
 {[:controller, :pid, :ki], 0.2}
])

 set_remote(robot_module, bridge_name, param_id, value)

 @spec set_remote(module(), atom(), BB.Bridge.param_id(), term()) ::
 :ok | {:error, term()}

Set a parameter value on a remote system via a bridge.
The bridge must implement set_remote/3.
Examples
:ok = BB.Parameter.set_remote(MyRobot, :mavlink, "PITCH_RATE_P", 0.15)

 subscribe_remote(robot_module, bridge_name, param_id)

 @spec subscribe_remote(module(), atom(), BB.Bridge.param_id()) ::
 :ok | {:error, term()}

Subscribe to changes for a remote parameter via a bridge.
When the remote parameter changes, the bridge publishes via BB.PubSub.
The path structure is determined by the bridge implementation.
The bridge must implement subscribe_remote/2.
Examples
:ok = BB.Parameter.subscribe_remote(MyRobot, :mavlink, "PITCH_RATE_P")

BB.Parameter.Changed

Payload type for parameter change events.
Published via PubSub when a parameter value changes.

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.Parameter.Changed{
 new_value: term(),
 old_value: term(),
 path: [atom()],
 source: :local | :remote | :init | :persisted | :startup
}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

BB.Parameter.Schema

Builds nested Spark.Options schemas from flat parameter definitions.
This module converts the flat [{path, opts}] format from
__bb_parameter_schema__/0 into nested keyword lists suitable for
validating start_link options.
Example
iex> flat = [
...> {[:motion, :max_speed], [type: :float, default: 1.0]},
...> {[:motion, :acceleration], [type: :float, default: 0.5]},
...> {[:debug_mode], [type: :boolean, default: false]}
...>]
iex> BB.Parameter.Schema.build_nested_schema(flat)
[
 debug_mode: [type: :boolean],
 motion: [type: :keyword_list, keys: [
 acceleration: [type: :float],
 max_speed: [type: :float]
]]
]

 Summary

 Functions

 build_nested_schema(flat_schema)

 Builds a nested Spark.Options schema from flat [{path, opts}] list.

 flatten_params(nested_params)

 Flattens nested keyword params to [{path, value}] format.

 Functions

 build_nested_schema(flat_schema)

 @spec build_nested_schema([{[atom()], keyword()}]) :: keyword()

Builds a nested Spark.Options schema from flat [{path, opts}] list.
The resulting schema can be passed to Spark.Options.validate/2 to validate
nested keyword lists like [motion: [max_speed: 2.0]].
All parameters are optional (no :required flag) since we're validating
partial overrides. The :default key is removed from each parameter's opts
since defaults are handled separately by the DSL.

 flatten_params(nested_params)

 @spec flatten_params(keyword()) :: [{[atom()], term()}]

Flattens nested keyword params to [{path, value}] format.
This is the inverse of the nesting - it takes validated params like
[motion: [max_speed: 2.0]] and returns [{[:motion, :max_speed], 2.0}].

BB.Parameter.Store behaviour

Behaviour for parameter persistence backends.
Implementations handle loading and saving parameter values to durable storage.
The store is initialized when a robot starts and closed when it stops.
Lifecycle
	init/2 - Called during robot startup with module name and options
	load/1 - Called to retrieve all persisted parameters
	save/3 - Called after each successful parameter change
	close/1 - Called during robot shutdown

Built-in Implementations
	BB.Parameter.Store.Dets - Disk-backed storage using OTP's :dets

Example Implementation
defmodule MyApp.ParameterStore do
 @behaviour BB.Parameter.Store

 @impl true
 def init(robot_module, opts) do
 # Initialize storage connection
 {:ok, %{robot: robot_module, conn: connect(opts)}}
 end

 @impl true
 def load(state) do
 # Return all stored parameters
 {:ok, fetch_all(state.conn)}
 end

 @impl true
 def save(state, path, value) do
 # Persist a parameter change
 :ok = write(state.conn, path, value)
 :ok
 end

 @impl true
 def close(state) do
 # Clean up resources
 disconnect(state.conn)
 :ok
 end
end

 Summary

 Types

 path()

 state()

 value()

 Callbacks

 close(state)

 Close the parameter store.

 init(robot_module, opts)

 Initialize the parameter store.

 load(state)

 Load all persisted parameters.

 save(state, path, value)

 Save a parameter value.

 Types

 path()

 @type path() :: [atom()]

 state()

 @type state() :: term()

 value()

 @type value() :: term()

 Callbacks

 close(state)

 @callback close(state()) :: :ok

Close the parameter store.
Called during robot shutdown. Implementations should release any
resources (file handles, connections, etc.).

 init(robot_module, opts)

 @callback init(robot_module :: module(), opts :: keyword()) ::
 {:ok, state()} | {:error, term()}

Initialize the parameter store.
Called during robot startup. The robot_module identifies which robot
this store is for (useful for multi-robot setups). Options come from
the DSL configuration.
Returns {:ok, state} where state is passed to subsequent callbacks,
or {:error, reason} if initialization fails.

 load(state)

 @callback load(state()) :: {:ok, [{path(), value()}]} | {:error, term()}

Load all persisted parameters.
Called after initialization to retrieve previously saved parameter values.
Returns a list of {path, value} tuples.
These values are applied after DSL defaults, so persisted values take
precedence over defaults.

 save(state, path, value)

 @callback save(state(), path(), value()) :: :ok | {:error, term()}

Save a parameter value.
Called after each successful BB.Parameter.set/3 operation.
The implementation should persist the value durably.

BB.Parameter.Store.Dets

DETS-backed parameter persistence.
Uses OTP's :dets module for disk-backed term storage. Parameters are
persisted automatically on each change and restored on robot startup.
Options
	:path - (required) Path to the DETS file
	:auto_save - Auto-save interval in milliseconds. Defaults to :infinity (sync on each write)

Example
settings do
 parameter_store {BB.Parameter.Store.Dets, path: "/var/lib/robot/params.dets"}
end
File Location
For production deployments, use an absolute path in a persistent location.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Parameter.Store.Dets{path: String.t(), table: :dets.tab_name()}

BB.Parameter.Type

Validation for parameter type definitions in the DSL.
Parameters can have simple types (:float, :integer, etc.) or unit types
like {:unit, :meter}.

 Summary

 Functions

 validate(type)

 Validates a parameter type specification.

 Functions

 validate(type)

 @spec validate(term()) :: {:ok, atom() | {:unit, atom()}} | {:error, String.t()}

Validates a parameter type specification.
Returns {:ok, type} for valid types or {:error, message} for invalid ones.
Valid Types
	Simple types: :float, :integer, :boolean, :string, :atom
	Unit types: {:unit, unit_type} where unit_type is a valid CLDR unit

Examples
iex> BB.Parameter.Type.validate(:float)
{:ok, :float}

iex> BB.Parameter.Type.validate({:unit, :meter})
{:ok, {:unit, :meter}}

iex> BB.Parameter.Type.validate(:invalid)
{:error, "Expected one of [:float, :integer, :boolean, :string, :atom] or {:unit, unit_type}, got: :invalid"}

BB.IK.Solver behaviour

Behaviour for inverse kinematics solvers in the BB ecosystem.
This behaviour defines a common interface for IK solvers, allowing
different algorithms (FABRIK, Jacobian, analytical, etc.) to be
used interchangeably.
Implementing a Solver
defmodule MyApp.IK.CustomSolver do
 @behaviour BB.IK.Solver

 @impl true
 def solve(robot, state_or_positions, target_link, target, opts) do
 # Your implementation here
 {:ok, positions, meta}
 end
end
Target Types
Solvers accept targets as:
	Vec3.t() - Position only
	{Vec3.t(), orientation} - Position with orientation constraint
	Transform.t() - 4x4 homogeneous transform (extracts position and quaternion)

Orientation can be specified as:
	:none - Position only (default)
	{:axis, Vec3.t()} - Tool pointing direction (end-effector Z-axis alignment)
	{:quaternion, Quaternion.t()} - Full 6-DOF orientation

Options
Common options that solvers should support:
	:max_iterations - Maximum solver iterations (default: 50)
	:tolerance - Position convergence tolerance in metres (default: 1.0e-4)
	:orientation_tolerance - Angular convergence tolerance in radians (default: 0.01)
	:strict_orientation - If true, error when orientation unsatisfiable; if false, best-effort (default: false)
	:respect_limits - Whether to clamp to joint limits (default: true)
	:initial_positions - Starting joint positions (default: from state)

Error Types
Solvers return structured errors from BB.Error.Kinematics:
	%BB.Error.Kinematics.UnknownLink{} - Target link not found in robot topology
	%BB.Error.Kinematics.NoDofs{} - Chain has no movable joints
	%BB.Error.Kinematics.Unreachable{} - Target outside workspace
	%BB.Error.Kinematics.NoSolution{} - Solver failed to converge

 Summary

 Types

 kinematics_error()

 meta()

 opts()

 orientation_target()

 Orientation target for IK solving.

 positions()

 solve_result()

 target()

 Target for IK solving.

 Callbacks

 solve(robot, state_or_positions, target_link, target, opts)

 Solve inverse kinematics for a target link to reach a target position/pose.

 Types

 kinematics_error()

 @type kinematics_error() ::
 BB.Error.Kinematics.UnknownLink.t()
 | BB.Error.Kinematics.NoDofs.t()
 | BB.Error.Kinematics.Unreachable.t()
 | BB.Error.Kinematics.NoSolution.t()

 meta()

 @type meta() :: %{
 iterations: non_neg_integer(),
 residual: float(),
 orientation_residual: float() | nil,
 reached: boolean()
}

 opts()

 @type opts() :: [
 max_iterations: pos_integer(),
 tolerance: float(),
 orientation_tolerance: float(),
 strict_orientation: boolean(),
 respect_limits: boolean(),
 initial_positions: positions() | nil
]

 orientation_target()

 @type orientation_target() ::
 :none | {:axis, BB.Math.Vec3.t()} | {:quaternion, BB.Math.Quaternion.t()}

Orientation target for IK solving.
	:none - Position only (default)
	{:axis, Vec3.t()} - Tool pointing direction (end-effector Z-axis)
	{:quaternion, Quaternion.t()} - Full 6-DOF orientation

 positions()

 @type positions() :: %{required(atom()) => float()}

 solve_result()

 @type solve_result() :: {:ok, positions(), meta()} | {:error, kinematics_error()}

 target()

 @type target() ::
 BB.Math.Vec3.t()
 | {BB.Math.Vec3.t(), orientation_target()}
 | BB.Math.Transform.t()

Target for IK solving.
	Vec3.t() - Position only
	{Vec3.t(), orientation_target()} - Position with orientation constraint
	Transform.t() - 4x4 homogeneous transform (extracts position and quaternion)

 Callbacks

 solve(robot, state_or_positions, target_link, target, opts)

 @callback solve(
 robot :: BB.Robot.t(),
 state_or_positions :: BB.Robot.State.t() | positions(),
 target_link :: atom(),
 target :: target(),
 opts :: opts()
) :: solve_result()

Solve inverse kinematics for a target link to reach a target position/pose.
Parameters
	robot - The BB.Robot struct containing topology and joint information
	state_or_positions - Either a BB.Robot.State or a map of joint positions
	target_link - The name of the link to position (end-effector)
	target - Target position {x, y, z} or 4x4 pose transform
	opts - Solver options

Returns
	{:ok, positions, meta} - Successfully solved; positions map and metadata
	{:error, error} - Failed to solve; error struct contains all metadata

Error structs include :positions with best-effort joint values when applicable.

BB.Motion

High-level motion primitives that bridge IK solving and actuator commands.
This module provides functions for moving robot end-effectors to target
positions using pluggable IK solvers. It handles the full workflow:
solving IK, updating robot state, and sending commands to actuators.
Usage
Single-target functions:
	move_to/4 - Solve IK for one target, update state, send actuator commands
	solve_only/4 - Solve IK without sending commands (for planning/validation)

Multi-target functions (for coordinated motion like gait):
	move_to_multi/3 - Solve IK for multiple targets simultaneously
	solve_only_multi/3 - Solve multiple targets without sending commands

Utility:
	send_positions/3 - Send pre-computed positions to actuators (bypasses IK)

Context Sources
Functions accept either:
	A robot module (uses Runtime to get robot and state)
	A BB.Command.Context struct (uses context fields directly)

The second form is useful when implementing custom commands that need
to perform IK-based motion.
Examples
Single target
case BB.Motion.move_to(MyRobot, :gripper, {0.3, 0.2, 0.1}, solver: BB.IK.FABRIK) do
 {:ok, meta} -> IO.puts("Reached target in #{meta.iterations} iterations")
 {:error, %{class: :kinematics} = error} -> IO.puts("Failed: #{BB.Error.message(error)}")
end

Multiple targets (for gait, coordinated motion)
targets = %{left_foot: {0.1, 0.0, 0.0}, right_foot: {-0.1, 0.0, 0.0}}
case BB.Motion.move_to_multi(MyRobot, targets, solver: BB.IK.FABRIK) do
 {:ok, results} -> IO.puts("All targets reached")
 {:error, failed_link, error, _results} -> IO.puts("Failed: #{failed_link}")
end

In a custom command handler
def handle_command(%{target: target}, context) do
 case BB.Motion.move_to(context, :gripper, target, solver: BB.IK.FABRIK) do
 {:ok, meta} -> {:ok, %{residual: meta.residual}}
 {:error, error} -> {:error, error}
 end
end

Just solve without moving (for validation)
case BB.Motion.solve_only(MyRobot, :gripper, {0.3, 0.2, 0.1}, solver: BB.IK.FABRIK) do
 {:ok, positions, meta} -> IO.inspect(positions, label: "Would set")
 {:error, %BB.Error.Kinematics.Unreachable{}} -> IO.puts("Cannot reach target")
end

Send pre-computed positions
positions = %{shoulder: 0.5, elbow: 1.2}
:ok = BB.Motion.send_positions(MyRobot, positions, delivery: :direct)

 Summary

 Types

 delivery()

 kinematics_error()

 meta()

 motion_result()

 multi_motion_result()

 multi_results()

 multi_solve_result()

 positions()

 robot_or_context()

 solve_result()

 target()

 targets()

 Functions

 move_to(robot_or_context, target_link, target, opts)

 Move an end-effector to a target position.

 move_to_multi(robot_or_context, targets, opts)

 Move multiple end-effectors to target positions simultaneously.

 send_positions(robot_or_context, positions, opts \\ [])

 Send pre-computed joint positions to actuators.

 solve_only(robot_or_context, target_link, target, opts)

 Solve IK without moving the robot.

 solve_only_multi(robot_or_context, targets, opts)

 Solve IK for multiple targets without moving the robot.

 Types

 delivery()

 @type delivery() :: :pubsub | :direct | :sync

 kinematics_error()

 @type kinematics_error() :: BB.IK.Solver.kinematics_error()

 meta()

 @type meta() :: BB.IK.Solver.meta()

 motion_result()

 @type motion_result() :: {:ok, meta()} | {:error, kinematics_error()}

 multi_motion_result()

 @type multi_motion_result() ::
 {:ok, multi_results()} | {:error, atom(), kinematics_error(), multi_results()}

 multi_results()

 @type multi_results() :: %{
 required(atom()) => {:ok, positions(), meta()} | {:error, kinematics_error()}
}

 multi_solve_result()

 @type multi_solve_result() ::
 {:ok, multi_results()} | {:error, atom(), kinematics_error(), multi_results()}

 positions()

 @type positions() :: BB.IK.Solver.positions()

 robot_or_context()

 @type robot_or_context() :: module() | BB.Command.Context.t()

 solve_result()

 @type solve_result() :: {:ok, positions(), meta()} | {:error, kinematics_error()}

 target()

 @type target() :: BB.IK.Solver.target()

 targets()

 @type targets() :: %{required(atom()) => target()}

 Functions

 move_to(robot_or_context, target_link, target, opts)

 @spec move_to(robot_or_context(), atom(), target(), keyword()) :: motion_result()

Move an end-effector to a target position.
Solves inverse kinematics for the given target, updates the robot state,
and sends position commands to all actuators controlling the affected joints.
Options
Required:
	:solver - Module implementing BB.IK.Solver behaviour

Optional:
	:delivery - How to send actuator commands: :pubsub (default), :direct, or :sync
	:max_iterations - Maximum solver iterations (passed to solver)
	:tolerance - Convergence tolerance in metres (passed to solver)
	:respect_limits - Whether to clamp to joint limits (passed to solver)

Returns
	{:ok, meta} - Successfully moved; meta contains solver info (iterations, residual, etc.)
	{:error, error} - Failed; error is a struct from BB.Error.Kinematics

Examples
BB.Motion.move_to(MyRobot, :gripper, {0.3, 0.2, 0.1}, solver: BB.IK.FABRIK)

BB.Motion.move_to(context, :gripper, target,
 solver: BB.IK.FABRIK,
 delivery: :direct,
 max_iterations: 100
)

 move_to_multi(robot_or_context, targets, opts)

 @spec move_to_multi(robot_or_context(), targets(), keyword()) :: multi_motion_result()

Move multiple end-effectors to target positions simultaneously.
Useful for coordinated motion like walking gaits where multiple limbs
must move together. Each target is solved independently and all actuator
commands are sent together.
If any target fails to solve, the operation stops and returns an error
with information about which target failed. Targets solved before the
failure are included in the results.
Options
Required:
	:solver - Module implementing BB.IK.Solver behaviour

Optional:
	:delivery - How to send actuator commands: :pubsub (default), :direct, or :sync
	:max_iterations - Maximum solver iterations (passed to solver)
	:tolerance - Convergence tolerance in metres (passed to solver)
	:respect_limits - Whether to clamp to joint limits (passed to solver)

Returns
	{:ok, results} - All targets solved; results is a map of link → {:ok, positions, meta}
	{:error, failed_link, error, results} - A target failed; error is from BB.Error.Kinematics

Examples
targets = %{
 left_foot: {0.1, 0.0, 0.0},
 right_foot: {-0.1, 0.0, 0.0}
}

case BB.Motion.move_to_multi(MyRobot, targets, solver: BB.IK.FABRIK) do
 {:ok, results} ->
 IO.puts("All targets reached")

 {:error, failed_link, error, _results} ->
 IO.puts("Failed to reach #{failed_link}: #{BB.Error.message(error)}")
end

 send_positions(robot_or_context, positions, opts \\ [])

 @spec send_positions(robot_or_context(), positions(), keyword()) :: :ok

Send pre-computed joint positions to actuators.
Bypasses IK solving entirely - useful when you've already computed
positions through other means (e.g., trajectory planning, manual input).
Updates the robot state and sends commands to all actuators controlling
the specified joints.
Options
	:delivery - How to send actuator commands: :pubsub (default), :direct, or :sync
	:velocity - Velocity hint for actuators (rad/s or m/s)
	:duration - Duration hint for actuators (milliseconds)

Examples
positions = %{shoulder: 0.5, elbow: 1.2, wrist: 0.3}
:ok = BB.Motion.send_positions(MyRobot, positions)

With direct delivery for lower latency
:ok = BB.Motion.send_positions(MyRobot, positions, delivery: :direct)

 solve_only(robot_or_context, target_link, target, opts)

 @spec solve_only(robot_or_context(), atom(), target(), keyword()) :: solve_result()

Solve IK without moving the robot.
Useful for:
	Validating that a target is reachable before committing
	Planning multi-step motions
	Visualising solutions before execution

Options
Same as move_to/4 except :delivery is not used.
Returns
	{:ok, positions, meta} - Successfully solved; positions is a joint name → value map
	{:error, error} - Failed to solve; error is a struct from BB.Error.Kinematics

Examples
Check if target is reachable
case BB.Motion.solve_only(MyRobot, :gripper, target, solver: BB.IK.FABRIK) do
 {:ok, _positions, %{reached: true}} -> :reachable
 {:error, _} -> :unreachable
end

 solve_only_multi(robot_or_context, targets, opts)

 @spec solve_only_multi(robot_or_context(), targets(), keyword()) ::
 multi_solve_result()

Solve IK for multiple targets without moving the robot.
Useful for validating that a set of coordinated targets are all reachable
before committing to motion.
Options
Same as move_to_multi/3 except :delivery is not used.
Returns
	{:ok, results} - All targets solved; results is a map of link → {:ok, positions, meta}
	{:error, failed_link, error, results} - A target failed; error is from BB.Error.Kinematics

Examples
targets = %{left_foot: {0.1, 0.0, 0.0}, right_foot: {-0.1, 0.0, 0.0}}

case BB.Motion.solve_only_multi(MyRobot, targets, solver: BB.IK.FABRIK) do
 {:ok, results} ->
 Enum.each(results, fn {link, {:ok, _positions, meta}} ->
 IO.puts("#{link}: residual=#{meta.residual}")
 end)

 {:error, failed_link, error, _results} ->
 IO.puts("#{failed_link} is unreachable: #{BB.Error.message(error)}")
end

BB.Motion.Tracker behaviour

Behaviour for continuous position tracking with IK.
Trackers maintain an ongoing IK solution loop, continuously solving for
updated targets and sending actuator commands. This is useful for:
	Following a moving target (visual tracking)
	Smooth trajectory interpolation
	Real-time position control from external sources

Implementing a Tracker
Trackers are typically GenServers that:
	Run a periodic solve loop at a configurable rate
	Accept target updates via update_target/2
	Send actuator commands on each successful solve
	Report status including tracking error and solve statistics

Callbacks
	start_tracking/5 - Begin tracking a target link
	update_target/2 - Update the current target position
	status/1 - Get current tracking status
	stop_tracking/2 - Stop tracking and optionally return final positions

Example Implementation
See BB.IK.FABRIK.Tracker for a reference implementation.
Usage Pattern
Start tracking
{:ok, tracker} = BB.IK.FABRIK.Tracker.start_link(
 robot: MyRobot,
 target_link: :gripper,
 initial_target: {0.3, 0.2, 0.1},
 update_rate: 30
)

Update target from vision callback
BB.IK.FABRIK.Tracker.update_target(tracker, new_target)

Check status
%{residual: 0.001, tracking: true} = BB.IK.FABRIK.Tracker.status(tracker)

Stop and get final positions
{:ok, positions} = BB.IK.FABRIK.Tracker.stop(tracker)

 Summary

 Types

 positions()

 status()

 target()

 tracker_state()

 Callbacks

 start_tracking(robot, robot_state, target_link, initial_target, opts)

 Start tracking a target link.

 status(state)

 Get current tracking status.

 stop_tracking(state, opts)

 Stop tracking.

 update_target(state, target)

 Update the current target position.

 Types

 positions()

 @type positions() :: BB.IK.Solver.positions()

 status()

 @type status() :: %{
 tracking: boolean(),
 target: target() | nil,
 residual: float() | nil,
 iterations: non_neg_integer(),
 update_rate: pos_integer(),
 last_update: DateTime.t() | nil
}

 target()

 @type target() :: BB.IK.Solver.target()

 tracker_state()

 @type tracker_state() :: term()

 Callbacks

 start_tracking(robot, robot_state, target_link, initial_target, opts)

 @callback start_tracking(
 robot :: module() | BB.Robot.t(),
 robot_state :: BB.Robot.State.t(),
 target_link :: atom(),
 initial_target :: target(),
 opts :: keyword()
) :: {:ok, tracker_state()} | {:error, term()}

Start tracking a target link.
Options
Required:
	:robot - Robot module or struct
	:target_link - Name of the link to track
	:initial_target - Starting target position

Optional:
	:update_rate - Solve frequency in Hz (default: 20)
	:delivery - Actuator command delivery mode (default: :direct)
	:max_iterations - Maximum solver iterations per update
	:tolerance - Convergence tolerance

Returns
	{:ok, state} - Tracking started
	{:error, reason} - Failed to start

 status(state)

 @callback status(state :: tracker_state()) :: status()

Get current tracking status.
Returns
Status map containing:
	tracking - Whether actively tracking
	target - Current target position
	residual - Distance from end-effector to target
	iterations - Solver iterations on last update
	update_rate - Current update frequency
	last_update - Timestamp of last successful solve

 stop_tracking(state, opts)

 @callback stop_tracking(state :: tracker_state(), opts :: keyword()) ::
 {:ok, positions()} | {:error, term()}

Stop tracking.
Options
	:hold - Whether to send hold commands to actuators (default: false)

Returns
	{:ok, positions} - Final joint positions
	{:error, reason} - Stop failed

 update_target(state, target)

 @callback update_target(state :: tracker_state(), target :: target()) ::
 {:ok, tracker_state()} | {:error, term()}

Update the current target position.
The tracker will solve for the new target on its next update cycle.
Returns
	{:ok, state} - Target updated
	{:error, reason} - Update failed (e.g., tracker stopped)

BB.Robot.Kinematics

Kinematic computations for robot manipulators.
This module provides forward kinematics and related computations
for robots defined with the BB DSL.
Forward Kinematics
Forward kinematics computes the position and orientation of any link
given the current joint positions:
Get the transform from base to end-effector
transform = BB.Robot.Kinematics.forward_kinematics(
 robot,
 state,
 :end_effector
)

Extract position
pos = BB.Math.Transform.get_translation(transform)
{BB.Math.Vec3.x(pos), BB.Math.Vec3.y(pos), BB.Math.Vec3.z(pos)}
Conventions
	All positions are in meters
	All angles are in radians
	Transforms are 4x4 homogeneous matrices (Nx tensors)
	The base link is at the identity transform

 Summary

 Functions

 all_link_transforms(robot, state)

 Compute transforms for all links in the robot.

 compute_joint_transform(robot, positions, joint_name)

 Compute the transform for a single joint given its current position.

 forward_kinematics(robot, state, target_link)

 Compute the forward kinematics transform from base to a target link.

 link_position(robot, state_or_positions, target_link)

 Get the position of a link in the base frame.

 Functions

 all_link_transforms(robot, state)

 @spec all_link_transforms(
 BB.Robot.t(),
 BB.Robot.State.t() | %{required(atom()) => float()}
) :: %{
 required(atom()) => BB.Math.Transform.t()
}

Compute transforms for all links in the robot.
Returns a map from link name to its transform in the base frame.
Examples
transforms = BB.Robot.Kinematics.all_link_transforms(robot, state)
end_effector_transform = transforms[:end_effector]

 compute_joint_transform(robot, positions, joint_name)

 @spec compute_joint_transform(BB.Robot.t(), %{required(atom()) => float()}, atom()) ::
 BB.Math.Transform.t()

Compute the transform for a single joint given its current position.
This combines the joint's fixed origin transform with the variable
transform due to joint motion.

 forward_kinematics(robot, state, target_link)

 @spec forward_kinematics(
 BB.Robot.t(),
 BB.Robot.State.t() | %{required(atom()) => float()},
 atom()
) ::
 BB.Math.Transform.t()

Compute the forward kinematics transform from base to a target link.
Returns a 4x4 homogeneous transformation matrix representing the
position and orientation of the target link in the base frame.
Parameters
	robot: The Robot struct
	state: The current robot state (or a map of joint positions)
	target_link: The name of the link to compute the transform for

Examples
robot = MyRobot.robot()
{:ok, state} = BB.Robot.State.new(robot)
BB.Robot.State.set_joint_position(state, :shoulder, :math.pi() / 4)

transform = BB.Robot.Kinematics.forward_kinematics(robot, state, :forearm)
pos = BB.Math.Transform.get_translation(transform)

 link_position(robot, state_or_positions, target_link)

 @spec link_position(
 BB.Robot.t(),
 BB.Robot.State.t() | %{required(atom()) => float()},
 atom()
) ::
 {float(), float(), float()}

Get the position of a link in the base frame.
This is a convenience function that extracts just the translation
from the forward kinematics transform.
Examples
{x, y, z} = BB.Robot.Kinematics.link_position(robot, state, :end_effector)

BB.Math.Quaternion

Unit quaternion for 3D rotations, backed by an Nx tensor.
Quaternions are stored in WXYZ order (scalar first): [w, x, y, z].
All math operations use Nx for consistent performance and potential GPU acceleration.
All operations return normalised unit quaternions suitable for representing rotations.
The underlying tensor is always {4} shape with :f64 type.
Examples
iex> q = BB.Math.Quaternion.identity()
iex> BB.Math.Quaternion.w(q)
1.0

iex> q1 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> q2 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> q3 = BB.Math.Quaternion.multiply(q1, q2)
iex> BB.Math.Quaternion.angular_distance(q3, BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi()))
0.0

 Summary

 Types

 t()

 Functions

 angular_distance(quaternion1, quaternion2)

 Computes the angular distance between two quaternions in radians.

 conjugate(quaternion)

 Returns the conjugate of a quaternion.

 from_axis_angle(vec3, angle)

 Creates a quaternion from an axis-angle representation.

 from_euler(roll, pitch, yaw, order \\ :xyz)

 Creates a quaternion from Euler angles (roll, pitch, yaw).

 from_list(list)

 Creates from a list in WXYZ order.

 from_rotation_matrix(matrix)

 Creates a quaternion from a 3x3 rotation matrix.

 from_tensor(tensor)

 Creates a quaternion from an existing {4} tensor.

 from_two_vectors(vec31, vec32)

 Creates a quaternion representing the shortest rotation from one vector to another.

 from_xyzw_list(list)

 Creates from a list in XYZW order (for ROS/external system compatibility).

 identity()

 Returns the identity quaternion (no rotation).

 identity_tensor()

 Returns an identity quaternion as a raw tensor (for batch operations).

 inverse(q)

 Returns the inverse of a quaternion.

 multiply(quaternion1, quaternion2)

 Multiplies two quaternions (Hamilton product).

 new(w, x, y, z)

 Creates a new quaternion from w, x, y, z components.

 normalise(quaternion)

 Normalises a quaternion to unit length.

 rotate_vector(quaternion, vec3)

 Rotates a 3D vector by a quaternion.

 slerp(quaternion1, quaternion2, t)

 Spherical linear interpolation between two quaternions.

 tensor(quaternion)

 Returns the underlying {4} tensor.

 to_axis_angle(quaternion)

 Converts a quaternion to axis-angle representation.

 to_euler(q, order \\ :xyz)

 Converts a quaternion to Euler angles (roll, pitch, yaw).

 to_list(quaternion)

 Converts to a list in WXYZ order.

 to_rotation_matrix(quaternion)

 Converts a quaternion to a 3x3 rotation matrix.

 to_xyzw_list(quaternion)

 Converts to a list in XYZW order (for ROS/external system compatibility).

 w(quaternion)

 Returns the W (scalar) component.

 x(quaternion)

 Returns the X component.

 y(quaternion)

 Returns the Y component.

 z(quaternion)

 Returns the Z component.

 Types

 t()

 @type t() :: %BB.Math.Quaternion{tensor: Nx.Tensor.t()}

 Functions

 angular_distance(quaternion1, quaternion2)

 @spec angular_distance(t(), t()) :: float()

Computes the angular distance between two quaternions in radians.
Returns a value between 0 and pi.
Examples
iex> q1 = BB.Math.Quaternion.identity()
iex> q2 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> Float.round(BB.Math.Quaternion.angular_distance(q1, q2), 6)
1.570796

 conjugate(quaternion)

 @spec conjugate(t()) :: t()

Returns the conjugate of a quaternion.
For unit quaternions, the conjugate equals the inverse.
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> qc = BB.Math.Quaternion.conjugate(q)
iex> Float.round(BB.Math.Quaternion.z(qc), 6)
-0.707107

 from_axis_angle(vec3, angle)

 @spec from_axis_angle(BB.Math.Vec3.t(), number()) :: t()

Creates a quaternion from an axis-angle representation.
The axis should be a BB.Math.Vec3 unit vector (it will be normalised if not).
The angle is in radians.
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> Float.round(BB.Math.Quaternion.w(q), 6)
0.707107

 from_euler(roll, pitch, yaw, order \\ :xyz)

 @spec from_euler(number(), number(), number(), atom()) :: t()

Creates a quaternion from Euler angles (roll, pitch, yaw).
Angles are in radians. Default order is :xyz (roll around X, pitch around Y, yaw around Z).
Supported orders: :xyz, :zyx
Examples
iex> q = BB.Math.Quaternion.from_euler(0, 0, :math.pi() / 2, :xyz)
iex> Float.round(BB.Math.Quaternion.z(q), 6)
0.707107

 from_list(list)

 @spec from_list([number()]) :: t()

Creates from a list in WXYZ order.
Examples
iex> q = BB.Math.Quaternion.from_list([1.0, 0.0, 0.0, 0.0])
iex> BB.Math.Quaternion.w(q)
1.0

 from_rotation_matrix(matrix)

 @spec from_rotation_matrix(Nx.Tensor.t()) :: t()

Creates a quaternion from a 3x3 rotation matrix.
Uses the Shepperd method for numerical stability.
Examples
iex> m = Nx.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
iex> q = BB.Math.Quaternion.from_rotation_matrix(m)
iex> BB.Math.Quaternion.w(q)
1.0

 from_tensor(tensor)

 @spec from_tensor(Nx.Tensor.t()) :: t()

Creates a quaternion from an existing {4} tensor.
The tensor should be in WXYZ order. It will be normalised.

 from_two_vectors(vec31, vec32)

 @spec from_two_vectors(BB.Math.Vec3.t(), BB.Math.Vec3.t()) :: t()

Creates a quaternion representing the shortest rotation from one vector to another.
Both vectors should be unit vectors (they will be normalised if not).
Returns the quaternion that rotates from to align with to.
Handles edge cases:
	Parallel vectors (from ≈ to): returns identity quaternion
	Anti-parallel vectors (from ≈ -to): returns 180° rotation around a perpendicular axis

Examples
iex> q = BB.Math.Quaternion.from_two_vectors(BB.Math.Vec3.unit_x(), BB.Math.Vec3.unit_y())
iex> rotated = BB.Math.Quaternion.rotate_vector(q, BB.Math.Vec3.unit_x())
iex> {Float.round(BB.Math.Vec3.x(rotated), 6), Float.round(BB.Math.Vec3.y(rotated), 6)}
{0.0, 1.0}

iex> q = BB.Math.Quaternion.from_two_vectors(BB.Math.Vec3.unit_z(), BB.Math.Vec3.unit_z())
iex> BB.Math.Quaternion.w(q)
1.0

 from_xyzw_list(list)

 @spec from_xyzw_list([number()]) :: t()

Creates from a list in XYZW order (for ROS/external system compatibility).
Examples
iex> q = BB.Math.Quaternion.from_xyzw_list([0.0, 0.0, 0.0, 1.0])
iex> BB.Math.Quaternion.w(q)
1.0

 identity()

 @spec identity() :: t()

Returns the identity quaternion (no rotation).
Examples
iex> q = BB.Math.Quaternion.identity()
iex> {BB.Math.Quaternion.w(q), BB.Math.Quaternion.x(q), BB.Math.Quaternion.y(q), BB.Math.Quaternion.z(q)}
{1.0, 0.0, 0.0, 0.0}

 identity_tensor()

 @spec identity_tensor() :: Nx.Tensor.t()

Returns an identity quaternion as a raw tensor (for batch operations).

 inverse(q)

 @spec inverse(t()) :: t()

Returns the inverse of a quaternion.
For unit quaternions, this equals the conjugate.
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> qi = BB.Math.Quaternion.inverse(q)
iex> qr = BB.Math.Quaternion.multiply(q, qi)
iex> Float.round(BB.Math.Quaternion.w(qr), 6)
1.0

 multiply(quaternion1, quaternion2)

 @spec multiply(t(), t()) :: t()

Multiplies two quaternions (Hamilton product).
This composes the rotations: multiply(q1, q2) applies q2 first, then q1.
Examples
iex> q1 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> q2 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> q3 = BB.Math.Quaternion.multiply(q1, q2)
iex> {_axis, angle} = BB.Math.Quaternion.to_axis_angle(q3)
iex> Float.round(angle, 6)
3.141593

 new(w, x, y, z)

 @spec new(number(), number(), number(), number()) :: t()

Creates a new quaternion from w, x, y, z components.
The quaternion is automatically normalised.
Examples
iex> q = BB.Math.Quaternion.new(1, 0, 0, 0)
iex> BB.Math.Quaternion.w(q)
1.0

 normalise(quaternion)

 @spec normalise(t()) :: t()

Normalises a quaternion to unit length.
Examples
iex> q = %BB.Math.Quaternion{tensor: Nx.tensor([2.0, 0.0, 0.0, 0.0])}
iex> qn = BB.Math.Quaternion.normalise(q)
iex> BB.Math.Quaternion.w(qn)
1.0

 rotate_vector(quaternion, vec3)

 @spec rotate_vector(t(), BB.Math.Vec3.t()) :: BB.Math.Vec3.t()

Rotates a 3D vector by a quaternion.
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> v = BB.Math.Vec3.unit_x()
iex> rotated = BB.Math.Quaternion.rotate_vector(q, v)
iex> {Float.round(BB.Math.Vec3.x(rotated), 6), Float.round(BB.Math.Vec3.y(rotated), 6)}
{0.0, 1.0}

 slerp(quaternion1, quaternion2, t)

 @spec slerp(t(), t(), number()) :: t()

Spherical linear interpolation between two quaternions.
t should be between 0.0 and 1.0.
Examples
iex> q1 = BB.Math.Quaternion.identity()
iex> q2 = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi())
iex> q_mid = BB.Math.Quaternion.slerp(q1, q2, 0.5)
iex> {_axis, angle} = BB.Math.Quaternion.to_axis_angle(q_mid)
iex> Float.round(angle, 6)
1.570796

 tensor(quaternion)

 @spec tensor(t()) :: Nx.Tensor.t()

Returns the underlying {4} tensor.

 to_axis_angle(quaternion)

 @spec to_axis_angle(t()) :: {BB.Math.Vec3.t(), float()}

Converts a quaternion to axis-angle representation.
Returns {axis, angle} where axis is a BB.Math.Vec3 unit vector
and angle is in radians (0 to pi).
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> {axis, angle} = BB.Math.Quaternion.to_axis_angle(q)
iex> Float.round(angle, 6)
1.570796
iex> Float.round(BB.Math.Vec3.z(axis), 1)
1.0

 to_euler(q, order \\ :xyz)

 @spec to_euler(t(), atom()) :: {float(), float(), float()}

Converts a quaternion to Euler angles (roll, pitch, yaw).
Returns {roll, pitch, yaw} in radians. Default order is :xyz.
Note: Euler angles can have gimbal lock issues near pitch = ±90°.
Examples
iex> q = BB.Math.Quaternion.from_euler(0.1, 0.2, 0.3, :xyz)
iex> {roll, pitch, yaw} = BB.Math.Quaternion.to_euler(q, :xyz)
iex> Float.round(roll, 6)
0.1

 to_list(quaternion)

 @spec to_list(t()) :: [float()]

Converts to a list in WXYZ order.
Examples
iex> q = BB.Math.Quaternion.identity()
iex> BB.Math.Quaternion.to_list(q)
[1.0, 0.0, 0.0, 0.0]

 to_rotation_matrix(quaternion)

 @spec to_rotation_matrix(t()) :: Nx.Tensor.t()

Converts a quaternion to a 3x3 rotation matrix.
Examples
iex> q = BB.Math.Quaternion.identity()
iex> m = BB.Math.Quaternion.to_rotation_matrix(q)
iex> Nx.to_number(m[0][0])
1.0

 to_xyzw_list(quaternion)

 @spec to_xyzw_list(t()) :: [float()]

Converts to a list in XYZW order (for ROS/external system compatibility).
Examples
iex> q = BB.Math.Quaternion.identity()
iex> BB.Math.Quaternion.to_xyzw_list(q)
[0.0, 0.0, 0.0, 1.0]

 w(quaternion)

 @spec w(t()) :: float()

Returns the W (scalar) component.

 x(quaternion)

 @spec x(t()) :: float()

Returns the X component.

 y(quaternion)

 @spec y(t()) :: float()

Returns the Y component.

 z(quaternion)

 @spec z(t()) :: float()

Returns the Z component.

BB.Math.Transform

Homogeneous transformation matrices for 3D transformations, backed by an Nx tensor.
All transforms are represented as 4x4 matrices in row-major order:
| R11 R12 R13 Tx |
| R21 R22 R23 Ty |
| R31 R32 R33 Tz |
| 0 0 0 1 |
Where the upper-left 3x3 is the rotation matrix and the rightmost column
is the translation vector.
Conventions
	All angles are in radians
	All distances are in metres
	Rotations use XYZ Euler angles (roll-pitch-yaw)
	Coordinate frame follows right-hand rule

Examples
iex> t = BB.Math.Transform.identity()
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[0.0, 0.0, 0.0]

iex> t = BB.Math.Transform.translation(BB.Math.Vec3.new(1, 2, 3))
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 2.0, 3.0]

 Summary

 Types

 t()

 Functions

 apply_to_point(transform, vec3)

 Apply a transform to a 3D point, returning the transformed point.

 compose(transform1, transform2)

 Compose (multiply) two transformation matrices.

 compose_all(list)

 Compose a list of transforms in order.

 from_axis_angle(axis, angle)

 Create a rotation transform around an arbitrary axis using the axis-angle representation.

 from_origin(arg1)

 Create a transformation matrix from position and orientation.

 from_position_quaternion(pos, q)

 Create a 4x4 transformation matrix from position and quaternion orientation.

 from_quaternion(q)

 Create a 4x4 transformation matrix from a quaternion (rotation only).

 from_tensor(tensor)

 Creates a transform from an existing {4, 4} tensor.

 get_forward_vector(transform)

 Get the forward vector (Z-axis) from a transformation matrix.

 get_quaternion(transform)

 Extract a quaternion from a transform.

 get_right_vector(transform)

 Get the right vector (X-axis) from a transformation matrix.

 get_rotation(transform)

 Get the rotation matrix (3x3) from a transform.

 get_translation(transform)

 Get the translation component of a transform as a Vec3.

 get_up_vector(transform)

 Get the up vector (Y-axis) from a transformation matrix.

 identity()

 Create a 4x4 identity transformation matrix.

 inverse(transform)

 Compute the inverse of a transformation matrix.

 rotation_x(angle)

 Create a rotation matrix around the X axis (roll).

 rotation_y(angle)

 Create a rotation matrix around the Y axis (pitch).

 rotation_z(angle)

 Create a rotation matrix around the Z axis (yaw).

 tensor(transform)

 Returns the underlying {4, 4} tensor.

 translation(v)

 Create a pure translation matrix from a Vec3.

 translation_along(axis, distance)

 Create a translation transform along an arbitrary axis.

 Types

 t()

 @type t() :: %BB.Math.Transform{tensor: Nx.Tensor.t()}

 Functions

 apply_to_point(transform, vec3)

 @spec apply_to_point(t(), BB.Math.Vec3.t()) :: BB.Math.Vec3.t()

Apply a transform to a 3D point, returning the transformed point.
Examples
iex> t = BB.Math.Transform.translation(BB.Math.Vec3.new(1, 2, 3))
iex> p = BB.Math.Transform.apply_to_point(t, BB.Math.Vec3.zero())
iex> BB.Math.Vec3.to_list(p)
[1.0, 2.0, 3.0]

 compose(transform1, transform2)

 @spec compose(t(), t()) :: t()

Compose (multiply) two transformation matrices.
compose(a, b) returns the transform that applies a first, then b.
Examples
iex> t1 = BB.Math.Transform.translation(BB.Math.Vec3.new(1, 0, 0))
iex> t2 = BB.Math.Transform.translation(BB.Math.Vec3.new(0, 2, 0))
iex> t = BB.Math.Transform.compose(t1, t2)
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 2.0, 0.0]

 compose_all(list)

 @spec compose_all([t()]) :: t()

Compose a list of transforms in order.
Examples
iex> transforms = [
...> BB.Math.Transform.translation(BB.Math.Vec3.new(1, 0, 0)),
...> BB.Math.Transform.translation(BB.Math.Vec3.new(0, 1, 0)),
...> BB.Math.Transform.translation(BB.Math.Vec3.new(0, 0, 1))
...>]
iex> t = BB.Math.Transform.compose_all(transforms)
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 1.0, 1.0]

 from_axis_angle(axis, angle)

 @spec from_axis_angle(BB.Math.Vec3.t(), float()) :: t()

Create a rotation transform around an arbitrary axis using the axis-angle representation.
Uses Rodrigues' rotation formula to compute the rotation matrix.
Parameters
	axis: normalised axis Vec3
	angle: rotation angle in radians

Examples
iex> axis = BB.Math.Vec3.unit_z()
iex> t = BB.Math.Transform.from_axis_angle(axis, :math.pi() / 2)
iex> p = BB.Math.Transform.apply_to_point(t, BB.Math.Vec3.unit_x())
iex> {Float.round(BB.Math.Vec3.x(p), 6), Float.round(BB.Math.Vec3.y(p), 6)}
{0.0, 1.0}

 from_origin(arg1)

 @spec from_origin(%{
 position: {float(), float(), float()},
 orientation: {float(), float(), float()}
}) ::
 t()

Create a transformation matrix from position and orientation.
The origin map should have:
	position: {x, y, z} in metres
	orientation: {roll, pitch, yaw} in radians

Rotation is applied in XYZ order (roll around X, then pitch around Y,
then yaw around Z).
Examples
iex> origin = %{position: {1.0, 2.0, 3.0}, orientation: {0.0, 0.0, 0.0}}
iex> t = BB.Math.Transform.from_origin(origin)
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 2.0, 3.0]

 from_position_quaternion(pos, q)

 @spec from_position_quaternion(BB.Math.Vec3.t(), BB.Math.Quaternion.t()) :: t()

Create a 4x4 transformation matrix from position and quaternion orientation.
Examples
iex> pos = BB.Math.Vec3.new(1, 2, 3)
iex> q = BB.Math.Quaternion.identity()
iex> t = BB.Math.Transform.from_position_quaternion(pos, q)
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 2.0, 3.0]

 from_quaternion(q)

 @spec from_quaternion(BB.Math.Quaternion.t()) :: t()

Create a 4x4 transformation matrix from a quaternion (rotation only).
The resulting matrix has the quaternion's rotation in the upper-left 3x3
and zero translation.
Examples
iex> q = BB.Math.Quaternion.from_axis_angle(BB.Math.Vec3.unit_z(), :math.pi() / 2)
iex> t = BB.Math.Transform.from_quaternion(q)
iex> p = BB.Math.Transform.apply_to_point(t, BB.Math.Vec3.unit_x())
iex> {Float.round(BB.Math.Vec3.x(p), 6), Float.round(BB.Math.Vec3.y(p), 6)}
{0.0, 1.0}

 from_tensor(tensor)

 @spec from_tensor(Nx.Tensor.t()) :: t()

Creates a transform from an existing {4, 4} tensor.

 get_forward_vector(transform)

 @spec get_forward_vector(t()) :: BB.Math.Vec3.t()

Get the forward vector (Z-axis) from a transformation matrix.
The forward vector is the third column of the rotation matrix,
representing the direction the local Z-axis points in world coordinates.
Examples
iex> t = BB.Math.Transform.identity()
iex> fwd = BB.Math.Transform.get_forward_vector(t)
iex> BB.Math.Vec3.to_list(fwd)
[0.0, 0.0, 1.0]

 get_quaternion(transform)

 @spec get_quaternion(t()) :: BB.Math.Quaternion.t()

Extract a quaternion from a transform.
Extracts the 3x3 rotation portion and converts it to a unit quaternion.
Examples
iex> t = BB.Math.Transform.rotation_z(:math.pi() / 2)
iex> q = BB.Math.Transform.get_quaternion(t)
iex> {_axis, angle} = BB.Math.Quaternion.to_axis_angle(q)
iex> Float.round(angle, 6)
1.570796

 get_right_vector(transform)

 @spec get_right_vector(t()) :: BB.Math.Vec3.t()

Get the right vector (X-axis) from a transformation matrix.
The right vector is the first column of the rotation matrix,
representing the direction the local X-axis points in world coordinates.
Examples
iex> t = BB.Math.Transform.identity()
iex> right = BB.Math.Transform.get_right_vector(t)
iex> BB.Math.Vec3.to_list(right)
[1.0, 0.0, 0.0]

 get_rotation(transform)

 @spec get_rotation(t()) :: Nx.Tensor.t()

Get the rotation matrix (3x3) from a transform.

 get_translation(transform)

 @spec get_translation(t()) :: BB.Math.Vec3.t()

Get the translation component of a transform as a Vec3.

 get_up_vector(transform)

 @spec get_up_vector(t()) :: BB.Math.Vec3.t()

Get the up vector (Y-axis) from a transformation matrix.
The up vector is the second column of the rotation matrix,
representing the direction the local Y-axis points in world coordinates.
Examples
iex> t = BB.Math.Transform.identity()
iex> up = BB.Math.Transform.get_up_vector(t)
iex> BB.Math.Vec3.to_list(up)
[0.0, 1.0, 0.0]

 identity()

 @spec identity() :: t()

Create a 4x4 identity transformation matrix.
Examples
iex> t = BB.Math.Transform.identity()
iex> BB.Math.Transform.tensor(t) |> Nx.to_list()
[[1.0, 0.0, 0.0, 0.0],
 [0.0, 1.0, 0.0, 0.0],
 [0.0, 0.0, 1.0, 0.0],
 [0.0, 0.0, 0.0, 1.0]]

 inverse(transform)

 @spec inverse(t()) :: t()

Compute the inverse of a transformation matrix.
For a valid transformation matrix, this computes the inverse transform.

 rotation_x(angle)

 @spec rotation_x(float()) :: t()

Create a rotation matrix around the X axis (roll).
Examples
iex> t = BB.Math.Transform.rotation_x(:math.pi() / 2)
iex> v = BB.Math.Transform.apply_to_point(t, BB.Math.Vec3.new(0, 1, 0))
iex> Float.round(BB.Math.Vec3.z(v), 6)
1.0

 rotation_y(angle)

 @spec rotation_y(float()) :: t()

Create a rotation matrix around the Y axis (pitch).

 rotation_z(angle)

 @spec rotation_z(float()) :: t()

Create a rotation matrix around the Z axis (yaw).

 tensor(transform)

 @spec tensor(t()) :: Nx.Tensor.t()

Returns the underlying {4, 4} tensor.

 translation(v)

 @spec translation(BB.Math.Vec3.t()) :: t()

Create a pure translation matrix from a Vec3.
Examples
iex> t = BB.Math.Transform.translation(BB.Math.Vec3.new(1, 2, 3))
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[1.0, 2.0, 3.0]

 translation_along(axis, distance)

 @spec translation_along(BB.Math.Vec3.t(), float()) :: t()

Create a translation transform along an arbitrary axis.
Parameters
	axis: normalised axis Vec3
	distance: translation distance in metres

Examples
iex> axis = BB.Math.Vec3.unit_x()
iex> t = BB.Math.Transform.translation_along(axis, 2.5)
iex> BB.Math.Transform.get_translation(t) |> BB.Math.Vec3.to_list()
[2.5, 0.0, 0.0]

BB.Math.Vec3

3D vector backed by an Nx tensor.
All operations are performed using Nx for consistent performance
and potential GPU acceleration.
Examples
iex> v = BB.Math.Vec3.new(1, 2, 3)
iex> BB.Math.Vec3.x(v)
1.0

iex> a = BB.Math.Vec3.new(1, 0, 0)
iex> b = BB.Math.Vec3.new(0, 1, 0)
iex> c = BB.Math.Vec3.cross(a, b)
iex> BB.Math.Vec3.z(c)
1.0

 Summary

 Types

 t()

 Functions

 add(vec31, vec32)

 Adds two vectors.

 cross(vec31, vec32)

 Computes the cross product of two vectors.

 distance(a, b)

 Computes the distance between two points (as vectors).

 dot(vec31, vec32)

 Computes the dot product of two vectors.

 from_list(list)

 Creates a vector from a list of three numbers.

 from_tensor(tensor)

 Creates a vector from an existing {3} tensor.

 lerp(vec31, vec32, t)

 Linearly interpolates between two vectors.

 magnitude(vec3)

 Computes the magnitude (length) of a vector.

 magnitude_squared(vec3)

 Computes the squared magnitude of a vector.

 negate(vec3)

 Negates a vector.

 new(x, y, z)

 Creates a new vector from x, y, z components.

 normalise(vec3)

 Normalises a vector to unit length.

 scale(vec3, scalar)

 Scales a vector by a scalar.

 subtract(vec31, vec32)

 Subtracts vector b from vector a.

 tensor(vec3)

 Returns the underlying tensor.

 to_list(vec3)

 Returns the components as a list [x, y, z].

 unit_x()

 Returns the unit X vector (1, 0, 0).

 unit_y()

 Returns the unit Y vector (0, 1, 0).

 unit_z()

 Returns the unit Z vector (0, 0, 1).

 x(vec3)

 Returns the X component.

 y(vec3)

 Returns the Y component.

 z(vec3)

 Returns the Z component.

 zero()

 Returns the zero vector.

 Types

 t()

 @type t() :: %BB.Math.Vec3{tensor: Nx.Tensor.t()}

 Functions

 add(vec31, vec32)

 @spec add(t(), t()) :: t()

Adds two vectors.
Examples
iex> a = BB.Math.Vec3.new(1, 2, 3)
iex> b = BB.Math.Vec3.new(4, 5, 6)
iex> c = BB.Math.Vec3.add(a, b)
iex> BB.Math.Vec3.to_list(c)
[5.0, 7.0, 9.0]

 cross(vec31, vec32)

 @spec cross(t(), t()) :: t()

Computes the cross product of two vectors.
Examples
iex> a = BB.Math.Vec3.new(1, 0, 0)
iex> b = BB.Math.Vec3.new(0, 1, 0)
iex> c = BB.Math.Vec3.cross(a, b)
iex> BB.Math.Vec3.to_list(c)
[0.0, 0.0, 1.0]

 distance(a, b)

 @spec distance(t(), t()) :: float()

Computes the distance between two points (as vectors).
Examples
iex> a = BB.Math.Vec3.new(0, 0, 0)
iex> b = BB.Math.Vec3.new(3, 4, 0)
iex> BB.Math.Vec3.distance(a, b)
5.0

 dot(vec31, vec32)

 @spec dot(t(), t()) :: float()

Computes the dot product of two vectors.
Examples
iex> a = BB.Math.Vec3.new(1, 2, 3)
iex> b = BB.Math.Vec3.new(4, 5, 6)
iex> BB.Math.Vec3.dot(a, b)
32.0

 from_list(list)

 @spec from_list([number()]) :: t()

Creates a vector from a list of three numbers.
Examples
iex> v = BB.Math.Vec3.from_list([1, 2, 3])
iex> BB.Math.Vec3.to_list(v)
[1.0, 2.0, 3.0]

 from_tensor(tensor)

 @spec from_tensor(Nx.Tensor.t()) :: t()

Creates a vector from an existing {3} tensor.

 lerp(vec31, vec32, t)

 @spec lerp(t(), t(), number()) :: t()

Linearly interpolates between two vectors.
Examples
iex> a = BB.Math.Vec3.new(0, 0, 0)
iex> b = BB.Math.Vec3.new(10, 10, 10)
iex> c = BB.Math.Vec3.lerp(a, b, 0.5)
iex> BB.Math.Vec3.to_list(c)
[5.0, 5.0, 5.0]

 magnitude(vec3)

 @spec magnitude(t()) :: float()

Computes the magnitude (length) of a vector.
Examples
iex> v = BB.Math.Vec3.new(3, 4, 0)
iex> BB.Math.Vec3.magnitude(v)
5.0

 magnitude_squared(vec3)

 @spec magnitude_squared(t()) :: float()

Computes the squared magnitude of a vector.
More efficient than magnitude/1 when you only need to compare lengths.
Examples
iex> v = BB.Math.Vec3.new(3, 4, 0)
iex> BB.Math.Vec3.magnitude_squared(v)
25.0

 negate(vec3)

 @spec negate(t()) :: t()

Negates a vector.
Examples
iex> v = BB.Math.Vec3.new(1, -2, 3)
iex> n = BB.Math.Vec3.negate(v)
iex> BB.Math.Vec3.to_list(n)
[-1.0, 2.0, -3.0]

 new(x, y, z)

 @spec new(number(), number(), number()) :: t()

Creates a new vector from x, y, z components.
Examples
iex> v = BB.Math.Vec3.new(1, 2, 3)
iex> {BB.Math.Vec3.x(v), BB.Math.Vec3.y(v), BB.Math.Vec3.z(v)}
{1.0, 2.0, 3.0}

 normalise(vec3)

 @spec normalise(t()) :: t()

Normalises a vector to unit length.
Returns zero vector if input has zero magnitude.
Examples
iex> v = BB.Math.Vec3.new(3, 0, 0)
iex> n = BB.Math.Vec3.normalise(v)
iex> BB.Math.Vec3.to_list(n)
[1.0, 0.0, 0.0]

 scale(vec3, scalar)

 @spec scale(t(), number()) :: t()

Scales a vector by a scalar.
Examples
iex> v = BB.Math.Vec3.new(1, 2, 3)
iex> s = BB.Math.Vec3.scale(v, 2)
iex> BB.Math.Vec3.to_list(s)
[2.0, 4.0, 6.0]

 subtract(vec31, vec32)

 @spec subtract(t(), t()) :: t()

Subtracts vector b from vector a.
Examples
iex> a = BB.Math.Vec3.new(4, 5, 6)
iex> b = BB.Math.Vec3.new(1, 2, 3)
iex> c = BB.Math.Vec3.subtract(a, b)
iex> BB.Math.Vec3.to_list(c)
[3.0, 3.0, 3.0]

 tensor(vec3)

 @spec tensor(t()) :: Nx.Tensor.t()

Returns the underlying tensor.

 to_list(vec3)

 @spec to_list(t()) :: [float()]

Returns the components as a list [x, y, z].

 unit_x()

 @spec unit_x() :: t()

Returns the unit X vector (1, 0, 0).

 unit_y()

 @spec unit_y() :: t()

Returns the unit Y vector (0, 1, 0).

 unit_z()

 @spec unit_z() :: t()

Returns the unit Z vector (0, 0, 1).

 x(vec3)

 @spec x(t()) :: float()

Returns the X component.

 y(vec3)

 @spec y(t()) :: float()

Returns the Y component.

 z(vec3)

 @spec z(t()) :: float()

Returns the Z component.

 zero()

 @spec zero() :: t()

Returns the zero vector.
Examples
iex> v = BB.Math.Vec3.zero()
iex> {BB.Math.Vec3.x(v), BB.Math.Vec3.y(v), BB.Math.Vec3.z(v)}
{0.0, 0.0, 0.0}

BB.Error

Structured error handling for the Beam Bots ecosystem.
This module wraps Splode.Error with compile-time enforcement of the
BB.Error.Severity protocol. All error types in BB must implement this
protocol to ensure consistent severity classification.
Usage
Define error types using use BB.Error:
defmodule BB.Error.Hardware.Timeout do
 use BB.Error, class: :hardware, fields: [:device, :timeout_ms]

 defimpl BB.Error.Severity do
 def severity(_), do: :error
 end

 def message(%{device: device, timeout_ms: timeout_ms}) do
 "Hardware timeout on #{inspect(device)} after #{timeout_ms}ms"
 end
end
Error Classes
The following error classes are defined:
	:hardware - Communication failures with physical devices
	:safety - Safety system violations (always :critical severity)
	:kinematics - Motion planning failures
	:invalid - Configuration and validation errors
	:state - State machine violations
	:protocol - Low-level protocol failures (Robotis, I2C, etc.)

Severity Protocol
Each error must implement BB.Error.Severity, which returns one of:
	:critical - Immediate safety response required
	:error - Operation failed, may retry or degrade
	:warning - Unusual condition, operation continues

 Summary

 Types

 t()

 An error struct that implements BB.Error.Severity

 Functions

 __using__(opts)

 Use this macro to define error types. Wraps Splode.Error and enforces
BB.Error.Severity protocol implementation at compile time.

 critical?(error)

 Returns true if the error is critical (severity = :critical).

 severity(error)

 Returns the severity of an error.

 Types

 t()

 @type t() :: struct()

An error struct that implements BB.Error.Severity

 Functions

 __using__(opts)

 (macro)

Use this macro to define error types. Wraps Splode.Error and enforces
BB.Error.Severity protocol implementation at compile time.
Options
	:class - Required. The error class (:hardware, :safety, etc.)
	:fields - Optional. List of fields for this error type.

Example
defmodule BB.Error.Safety.LimitExceeded do
 use BB.Error,
 class: :safety,
 fields: [:joint, :limit_type, :measured, :limit]

 defimpl BB.Error.Severity do
 def severity(_), do: :critical
 end

 def message(%{joint: joint, limit_type: type, measured: measured, limit: limit}) do
 "Joint #{inspect(joint)} #{type} limit exceeded: #{measured} vs limit #{limit}"
 end
end

 critical?(error)

 @spec critical?(t()) :: boolean()

Returns true if the error is critical (severity = :critical).

 severity(error)

 @spec severity(t()) :: :critical | :error | :warning

Returns the severity of an error.
Delegates to BB.Error.Severity.severity/1.

BB.Error.Category

Error class for command category-related errors.
These errors occur when commands cannot be executed due to
category-level constraints such as concurrency limits.

BB.Error.Category.Full exception

Category is at capacity for concurrent commands.
Raised when attempting to execute a command in a category that has
reached its concurrency_limit. Either wait for existing commands
to complete, or cancel one to make room.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Category.Full without raising it.

 Types

 t()

 @type t() :: %BB.Error.Category.Full{
 __exception__: true,
 bread_crumbs: term(),
 category: atom(),
 class: term(),
 current: non_neg_integer(),
 limit: pos_integer(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Category.Full{
 __exception__: true,
 bread_crumbs: term(),
 category: term(),
 class: term(),
 current: term(),
 limit: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Category.Full without raising it.
Keys
	:category
	:limit
	:current

BB.Error.Hardware

Hardware communication error classes.
These errors represent failures in communication with physical devices
such as servos, sensors, and motor controllers.
All hardware errors have :error severity by default, meaning they don't
trigger automatic disarm. Transient hardware issues (like communication
timeouts) are common and shouldn't cause spurious safety responses.

BB.Error.Hardware.BusError exception

Communication bus error (I2C, serial, etc.).
Raised when there's a low-level bus communication failure.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Hardware.BusError without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Hardware.BusError{
 __exception__: true,
 address: term(),
 bread_crumbs: term(),
 bus: term(),
 class: term(),
 operation: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Hardware.BusError without raising it.
Keys
	:bus
	:address
	:operation
	:reason

BB.Error.Hardware.DeviceError exception

Error reported by the hardware device itself.
Raised when a device reports an error condition through its protocol.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Hardware.DeviceError without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Hardware.DeviceError{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 description: term(),
 device: term(),
 error_code: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Hardware.DeviceError without raising it.
Keys
	:device
	:error_code
	:description

BB.Error.Hardware.Disconnected exception

Hardware device is disconnected or not responding.
Raised when a device that was previously connected is no longer reachable.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Hardware.Disconnected without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Hardware.Disconnected{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 device: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Hardware.Disconnected without raising it.
Keys
	:device
	:reason

BB.Error.Hardware.Timeout exception

Communication timeout with a hardware device.
Raised when a device doesn't respond within the expected time.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Hardware.Timeout without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Hardware.Timeout{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 device: term(),
 operation: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 timeout_ms: term(),
 vars: term()
}

Create an Elixir.BB.Error.Hardware.Timeout without raising it.
Keys
	:device
	:operation
	:timeout_ms

BB.Error.Invalid

Configuration and validation error classes.
These errors represent invalid configuration, bad input, or
validation failures during DSL compilation or runtime.

BB.Error.Invalid.Command exception

Invalid command or command arguments.
Raised when a command is unknown or its arguments are invalid.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Invalid.Command without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Invalid.Command{
 __exception__: true,
 argument: term(),
 bread_crumbs: term(),
 class: term(),
 command: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

Create an Elixir.BB.Error.Invalid.Command without raising it.
Keys
	:command
	:argument
	:value
	:reason

BB.Error.Invalid.JointConfig exception

Invalid joint configuration.
Raised when joint configuration is invalid (e.g., missing limits,
invalid joint type for actuator, incompatible settings).

 Summary

 Types

 t()

 Functions

 exception(msg)

 Create an Elixir.BB.Error.Invalid.JointConfig without raising it.

 Types

 t()

 @type t() :: %BB.Error.Invalid.JointConfig{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 expected: term(),
 field: atom() | nil,
 joint: atom(),
 message: String.t() | nil,
 path: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

 Functions

 exception(msg)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Invalid.JointConfig{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 expected: term(),
 field: term(),
 joint: term(),
 message: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

Create an Elixir.BB.Error.Invalid.JointConfig without raising it.
Keys
	:joint
	:field
	:value
	:expected
	:message

BB.Error.Invalid.Parameter exception

Invalid runtime parameter.
Raised when a parameter value is invalid (e.g., out of range,
wrong type, unregistered parameter path).

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Invalid.Parameter without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Invalid.Parameter{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 param_path: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

Create an Elixir.BB.Error.Invalid.Parameter without raising it.
Keys
	:param_path
	:value
	:reason

BB.Error.Invalid.Topology exception

Robot topology configuration error.
Raised during DSL compilation when the robot topology is invalid
(e.g., circular references, missing links, invalid joint types).

 Summary

 Functions

 exception(msg)

 Create an Elixir.BB.Error.Invalid.Topology without raising it.

 Functions

 exception(msg)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Invalid.Topology{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 location: term(),
 message: term(),
 module: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Invalid.Topology without raising it.
Keys
	:module
	:location
	:message

BB.Error.Kinematics

Kinematics and motion planning error classes.
These errors represent failures in computing robot motion, including
inverse kinematics failures, unreachable targets, and singularity
conditions.
Kinematics errors have :error severity - they indicate the requested
motion cannot be achieved, but don't represent a safety hazard.

BB.Error.Kinematics.MultiFailed exception

Multi-target inverse kinematics failed.
Raised when a multi-target IK operation fails for one or more targets.
Contains the link that failed, the underlying error, and partial results
from any successful targets.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.MultiFailed without raising it.

 Types

 t()

 @type t() :: %BB.Error.Kinematics.MultiFailed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 error: term(),
 failed_link: atom(),
 partial_results: map(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.MultiFailed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 error: term(),
 failed_link: term(),
 partial_results: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.MultiFailed without raising it.
Keys
	:failed_link
	:error
	:partial_results

BB.Error.Kinematics.NoDofs exception

Kinematic chain has no degrees of freedom.
Raised when attempting to solve inverse kinematics for a chain
that contains only fixed joints and therefore cannot be moved.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.NoDofs without raising it.

 Types

 t()

 @type t() :: %BB.Error.Kinematics.NoDofs{
 __exception__: true,
 bread_crumbs: term(),
 chain_length: non_neg_integer() | nil,
 class: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 target_link: atom(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.NoDofs{
 __exception__: true,
 bread_crumbs: term(),
 chain_length: term(),
 class: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 target_link: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.NoDofs without raising it.
Keys
	:target_link
	:chain_length

BB.Error.Kinematics.NoSolution exception

Inverse kinematics solver failed to converge.
Raised when the IK solver cannot find a solution within the
maximum number of iterations.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.NoSolution without raising it.

 Types

 t()

 @type t() :: %BB.Error.Kinematics.NoSolution{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 iterations: non_neg_integer(),
 path: term(),
 positions: map() | nil,
 residual: float(),
 splode: term(),
 stacktrace: term(),
 target_link: atom(),
 target_pose: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.NoSolution{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 iterations: term(),
 path: term(),
 positions: term(),
 residual: term(),
 splode: term(),
 stacktrace: term(),
 target_link: term(),
 target_pose: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.NoSolution without raising it.
Keys
	:target_link
	:target_pose
	:iterations
	:residual
	:positions

BB.Error.Kinematics.SelfCollision exception

Motion would cause self-collision.
Raised when the planned motion trajectory would result in
collision between robot links.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.SelfCollision without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.SelfCollision{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 joint_positions: term(),
 link_a: term(),
 link_b: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.SelfCollision without raising it.
Keys
	:link_a
	:link_b
	:joint_positions

BB.Error.Kinematics.Singularity exception

Robot is near or at a kinematic singularity.
Raised when the robot configuration is near a singular point where
the Jacobian becomes ill-conditioned and motion control degrades.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.Singularity without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.Singularity{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 joint_positions: term(),
 manipulability: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 threshold: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.Singularity without raising it.
Keys
	:joint_positions
	:manipulability
	:threshold

BB.Error.Kinematics.UnknownLink exception

Target link not found in robot topology.
Raised when attempting to solve inverse kinematics for a link
that does not exist in the robot's kinematic structure.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.UnknownLink without raising it.

 Types

 t()

 @type t() :: %BB.Error.Kinematics.UnknownLink{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 robot: atom() | nil,
 splode: term(),
 stacktrace: term(),
 target_link: atom(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.UnknownLink{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 robot: term(),
 splode: term(),
 stacktrace: term(),
 target_link: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.UnknownLink without raising it.
Keys
	:target_link
	:robot

BB.Error.Kinematics.Unreachable exception

Target pose is outside the robot's workspace.
Raised when the inverse kinematics solver determines that the
target position cannot be reached by the robot.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.Kinematics.Unreachable without raising it.

 Types

 t()

 @type t() :: %BB.Error.Kinematics.Unreachable{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 iterations: non_neg_integer() | nil,
 path: term(),
 positions: map() | nil,
 reason: String.t() | nil,
 residual: float() | nil,
 splode: term(),
 stacktrace: term(),
 target_link: atom(),
 target_pose: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Kinematics.Unreachable{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 iterations: term(),
 path: term(),
 positions: term(),
 reason: term(),
 residual: term(),
 splode: term(),
 stacktrace: term(),
 target_link: term(),
 target_pose: term(),
 vars: term()
}

Create an Elixir.BB.Error.Kinematics.Unreachable without raising it.
Keys
	:target_link
	:target_pose
	:reason
	:iterations
	:residual
	:positions

BB.Error.Protocol

Low-level protocol error classes.
This namespace is for errors that wrap specific protocol errors from
device communication layers. Protocol-specific errors should be defined
in their respective packages:
	Robotis/Dynamixel errors → bb_servo_robotis
	I2C errors → bb_servo_pca9685 or similar

These packages can define errors under this namespace, e.g.:
defmodule BB.Error.Protocol.Robotis.HardwareAlert do
 use BB.Error, class: :protocol, fields: [:servo_id, :alerts]
 # ...
end

BB.Error.Safety

Safety system error classes.
These errors represent safety-critical violations that require immediate
response. All safety errors have :critical severity and trigger
automatic disarm when handled by the safety system.
Safety errors should be raised when:
	Physical limits are exceeded (position, velocity, torque)
	Collision risk is detected
	Emergency stop is triggered
	Disarm callbacks fail (hardware may be in unsafe state)

BB.Error.Safety.CollisionRisk exception

Potential collision detected.
Raised when the system detects a risk of collision between robot
components, with the environment, or with people.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Safety.CollisionRisk without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Safety.CollisionRisk{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 collision_type: term(),
 component_path: term(),
 details: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Safety.CollisionRisk without raising it.
Keys
	:component_path
	:collision_type
	:details

BB.Error.Safety.DisarmFailed exception

Disarm callback failed for a component.
Raised when a safety disarm callback fails to complete successfully.
This indicates the hardware may be in an unsafe state and requires
manual intervention.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Safety.DisarmFailed without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Safety.DisarmFailed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 component_path: term(),
 failures: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Safety.DisarmFailed without raising it.
Keys
	:component_path
	:reason
	:failures

BB.Error.Safety.EmergencyStop exception

Emergency stop triggered.
Raised when an emergency stop condition is detected, either from
hardware (e-stop button) or software safety systems.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Safety.EmergencyStop without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Safety.EmergencyStop{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 source: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.Safety.EmergencyStop without raising it.
Keys
	:source
	:reason

BB.Error.Safety.LimitExceeded exception

Physical limit exceeded on a joint or actuator.
Raised when position, velocity, or torque limits are exceeded.
This is a critical safety error that triggers automatic disarm.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.Safety.LimitExceeded without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.Safety.LimitExceeded{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 component_path: term(),
 limit_type: term(),
 limit_value: term(),
 measured_value: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 unit: term(),
 vars: term()
}

Create an Elixir.BB.Error.Safety.LimitExceeded without raising it.
Keys
	:component_path
	:limit_type
	:measured_value
	:limit_value
	:unit

BB.Error.Severity protocol

Protocol for determining error severity.
All error types in the BB ecosystem must implement this protocol.
Implementation is enforced at compile time via the use BB.Error macro.
Severity Levels
	:critical - Immediate safety response required. For :safety class errors,
this triggers automatic disarm.
	:error - Operation failed. May retry or degrade gracefully.
	:warning - Unusual condition, operation continues.

 Summary

 Types

 t()

 Functions

 severity(error)

 Returns the severity level for this error.

 Types

 t()

 @type t() :: :critical | :error | :warning

 Functions

 severity(error)

 @spec severity(t()) :: t()

Returns the severity level for this error.

BB.Error.State

State machine error classes.
These errors represent violations of the robot state machine,
such as attempting operations in invalid states or state
transition failures.

BB.Error.State.CommandCrashed exception

A command crashed during execution.
This error is returned to callers awaiting a command result when the
command's callback raises an exception.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.State.CommandCrashed without raising it.

 Types

 t()

 @type t() :: %BB.Error.State.CommandCrashed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 command: module(),
 exception: Exception.t(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.State.CommandCrashed{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 command: term(),
 exception: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.State.CommandCrashed without raising it.
Keys
	:command
	:exception

BB.Error.State.Invalid exception

Invalid state reference.
Raised when attempting to transition to or reference a state that
is not defined in the robot's DSL.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.State.Invalid without raising it.

 Types

 t()

 @type t() :: %BB.Error.State.Invalid{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 state: atom(),
 valid_states: [atom()],
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.State.Invalid{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 state: term(),
 valid_states: term(),
 vars: term()
}

Create an Elixir.BB.Error.State.Invalid without raising it.
Keys
	:state
	:valid_states

BB.Error.State.NotAllowed exception

Operation not allowed in current state.
Raised when attempting an operation that is not permitted in the
robot's current state machine state.

 Summary

 Types

 t()

 Functions

 exception(args)

 Create an Elixir.BB.Error.State.NotAllowed without raising it.

 Types

 t()

 @type t() :: %BB.Error.State.NotAllowed{
 __exception__: true,
 allowed_states: [atom()],
 bread_crumbs: term(),
 class: term(),
 current_state: atom(),
 operation: atom() | nil,
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.State.NotAllowed{
 __exception__: true,
 allowed_states: term(),
 bread_crumbs: term(),
 class: term(),
 current_state: term(),
 operation: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.State.NotAllowed without raising it.
Keys
	:operation
	:current_state
	:allowed_states

BB.Error.State.Preempted exception

Operation was preempted by another operation.
Raised when an in-progress operation is cancelled because a
higher-priority operation has taken over.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.State.Preempted without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.State.Preempted{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 preempted_operation: term(),
 preempting_operation: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.BB.Error.State.Preempted without raising it.
Keys
	:preempted_operation
	:preempting_operation

BB.Error.State.Timeout exception

State transition timed out.
Raised when a state transition does not complete within the
expected time.

 Summary

 Functions

 exception(args)

 Create an Elixir.BB.Error.State.Timeout without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %BB.Error.State.Timeout{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 from_state: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 timeout_ms: term(),
 to_state: term(),
 vars: term()
}

Create an Elixir.BB.Error.State.Timeout without raising it.
Keys
	:from_state
	:to_state
	:timeout_ms

BB.Collision

Collision detection for BB robots.
This module provides self-collision detection and environment collision detection,
following the same architectural pattern as BB.Robot.Kinematics.
Self-Collision Detection
Self-collision checking determines if any parts of the robot are colliding with
each other. Adjacent links (connected by a joint) are automatically excluded from
collision checks since they are expected to be in contact.
Quick boolean check
BB.Collision.self_collision?(robot, positions)

Detailed collision information
BB.Collision.detect_self_collisions(robot, positions)
Environment Collision Detection
Environment collision checks if the robot collides with obstacles in the workspace.
obstacles = [
 BB.Collision.obstacle(:box, centre, half_extents),
 BB.Collision.obstacle(:sphere, centre, radius)
]

BB.Collision.collides_with?(robot, positions, obstacles)
Performance
Collision detection uses a two-phase approach:
	Broad phase: Fast AABB overlap tests to eliminate non-colliding pairs
	Narrow phase: Precise primitive intersection tests for potential collisions

For a typical 6-DOF robot, self-collision checks complete in under 1ms.

 Summary

 Types

 collision_info()

 obstacle()

 positions()

 Functions

 build_adjacency_set(robot)

 Build a set of adjacent link pairs from the robot topology.

 collides_with?(robot, positions, obstacles, opts \\ [])

 Check if the robot collides with any obstacles at the given joint positions.

 detect_collisions(robot, positions, obstacles, opts \\ [])

 Detect all collisions between the robot and environment obstacles.

 detect_self_collisions(robot, positions, opts \\ [])

 Detect all self-collisions at the given joint positions.

 obstacle(atom, centre, radius)

 Create an obstacle for environment collision detection.

 obstacle(atom, point_a, point_b, radius)

 self_collision?(robot, positions, opts \\ [])

 Check if the robot is in self-collision at the given joint positions.

 Types

 collision_info()

 @type collision_info() :: %{
 link_a: atom(),
 link_b: atom() | :environment,
 collision_a: atom() | nil,
 collision_b: atom() | nil,
 penetration_depth: float()
}

 obstacle()

 @type obstacle() :: %{
 type: :sphere | :capsule | :box,
 geometry: BB.Collision.Primitives.geometry(),
 aabb: BB.Collision.BroadPhase.aabb()
}

 positions()

 @type positions() :: %{required(atom()) => float()}

 Functions

 build_adjacency_set(robot)

 @spec build_adjacency_set(BB.Robot.t()) :: MapSet.t({atom(), atom()})

Build a set of adjacent link pairs from the robot topology.
Adjacent links are connected by a joint and should not be checked for collision.

 collides_with?(robot, positions, obstacles, opts \\ [])

 @spec collides_with?(BB.Robot.t(), positions(), [obstacle()], keyword()) :: boolean()

Check if the robot collides with any obstacles at the given joint positions.
Options
	:margin - Safety margin in metres (default: 0.0)

Examples
obstacles = [BB.Collision.obstacle(:sphere, Vec3.new(0.5, 0, 0.3), 0.1)]
BB.Collision.collides_with?(robot, positions, obstacles)

 detect_collisions(robot, positions, obstacles, opts \\ [])

 @spec detect_collisions(BB.Robot.t(), positions(), [obstacle()], keyword()) :: [
 collision_info()
]

Detect all collisions between the robot and environment obstacles.
Options
	:margin - Safety margin in metres (default: 0.0)

 detect_self_collisions(robot, positions, opts \\ [])

 @spec detect_self_collisions(BB.Robot.t(), positions(), keyword()) :: [
 collision_info()
]

Detect all self-collisions at the given joint positions.
Returns a list of collision info maps describing each collision. Adjacent links
(connected by a joint) are excluded from checks.
Options
	:margin - Safety margin in metres added to all geometries (default: 0.0)

Examples
collisions = BB.Collision.detect_self_collisions(robot, positions)
=> [%{link_a: :forearm, link_b: :base, collision_a: nil, collision_b: nil, penetration_depth: 0.02}]

 obstacle(atom, centre, radius)

 @spec obstacle(:sphere, BB.Math.Vec3.t(), float()) :: obstacle()

 @spec obstacle(:box, BB.Math.Vec3.t(), BB.Math.Vec3.t()) :: obstacle()

Create an obstacle for environment collision detection.
Sphere
obstacle = BB.Collision.obstacle(:sphere, centre, radius)
Capsule
obstacle = BB.Collision.obstacle(:capsule, point_a, point_b, radius)
Axis-Aligned Box
obstacle = BB.Collision.obstacle(:box, centre, half_extents)
Oriented Box
rotation = Quaternion.from_axis_angle(Vec3.unit_z(), :math.pi() / 4)
obstacle = BB.Collision.obstacle(:box, centre, half_extents, rotation)

 obstacle(atom, point_a, point_b, radius)

 @spec obstacle(:capsule, BB.Math.Vec3.t(), BB.Math.Vec3.t(), float()) :: obstacle()

 @spec obstacle(:box, BB.Math.Vec3.t(), BB.Math.Vec3.t(), BB.Math.Quaternion.t()) ::
 obstacle()

 self_collision?(robot, positions, opts \\ [])

 @spec self_collision?(BB.Robot.t(), positions(), keyword()) :: boolean()

Check if the robot is in self-collision at the given joint positions.
Returns true if any non-adjacent links are colliding, false otherwise.
Options
	:margin - Safety margin in metres added to all geometries (default: 0.0)

Examples
positions = %{shoulder: 0.0, elbow: 1.57, wrist: 0.0}
BB.Collision.self_collision?(robot, positions)
=> false

BB.Collision.self_collision?(robot, positions, margin: 0.01)
=> true (with 1cm safety margin)

BB.Collision.BroadPhase

Broad phase collision detection using Axis-Aligned Bounding Boxes (AABBs).
The broad phase is a fast culling step that eliminates pairs of objects that
cannot possibly be colliding. This reduces the number of expensive narrow-phase
collision tests required.
AABBs are simple boxes aligned to the world axes, making overlap tests very fast.
They may be larger than the actual geometry (especially for rotated objects),
so a positive broad phase result only indicates potential collision.

 Summary

 Types

 aabb()

 Functions

 centre(arg)

 Compute the centre point of an AABB.

 compute_aabb(arg, transform)

 Compute the AABB for a collision geometry in world space.

 contains_point?(arg, point)

 Check if a point is inside an AABB.

 expand(arg, margin)

 Expand an AABB by a margin in all directions.

 merge(arg1, arg2)

 Merge two AABBs into a single AABB that contains both.

 overlap?(arg1, arg2)

 Check if two AABBs overlap.

 size(arg)

 Compute the size (extents) of an AABB in each dimension.

 Types

 aabb()

 @type aabb() :: {min :: BB.Math.Vec3.t(), max :: BB.Math.Vec3.t()}

 Functions

 centre(arg)

 @spec centre(aabb()) :: BB.Math.Vec3.t()

Compute the centre point of an AABB.

 compute_aabb(arg, transform)

 @spec compute_aabb(BB.Robot.Link.geometry(), BB.Math.Transform.t()) :: aabb()

Compute the AABB for a collision geometry in world space.
Takes a geometry specification (as stored in Robot.Link) and a transform
representing the geometry's position and orientation in world space.
Supported Geometry Types
	{:sphere, %{radius: float()}} - Sphere
	{:capsule, %{radius: float(), length: float()}} - Capsule (cylinder with spherical caps)
	{:cylinder, %{radius: float(), height: float()}} - Cylinder (treated as capsule)
	{:box, %{x: float(), y: float(), z: float()}} - Box

Examples
iex> geometry = {:sphere, %{radius: 1.0}}
iex> transform = Transform.identity()
iex> {min, max} = BB.Collision.BroadPhase.compute_aabb(geometry, transform)
iex> {Vec3.x(min), Vec3.x(max)}
{-1.0, 1.0}

 contains_point?(arg, point)

 @spec contains_point?(aabb(), BB.Math.Vec3.t()) :: boolean()

Check if a point is inside an AABB.

 expand(arg, margin)

 @spec expand(aabb(), float()) :: aabb()

Expand an AABB by a margin in all directions.
Useful for adding safety buffers to collision checks.

 merge(arg1, arg2)

 @spec merge(aabb(), aabb()) :: aabb()

Merge two AABBs into a single AABB that contains both.

 overlap?(arg1, arg2)

 @spec overlap?(aabb(), aabb()) :: boolean()

Check if two AABBs overlap.
This is a very fast O(1) test - two AABBs overlap if and only if they overlap
on all three axes.

 size(arg)

 @spec size(aabb()) :: BB.Math.Vec3.t()

Compute the size (extents) of an AABB in each dimension.

BB.Collision.Mesh

Mesh loading and bounding geometry computation for collision detection.
This module provides basic mesh support for collision detection by computing
bounding primitives (spheres or AABBs) from mesh vertices. Triangle-level
collision detection is not supported - meshes are approximated by their
bounding geometry.
Currently supports:
	Binary STL files
	ASCII STL files

Usage
Load mesh and compute bounds
{:ok, bounds} = BB.Collision.Mesh.load_bounds("/path/to/model.stl")

bounds contains:
%{
 aabb: {min_vec3, max_vec3},
 bounding_sphere: {centre_vec3, radius}
}
Caching
Mesh bounds are cached in an ETS table to avoid repeated file parsing.
The cache key includes the file path and modification time.

 Summary

 Types

 bounds()

 Functions

 clear_cache()

 Clear the mesh bounds cache.

 compute_bounds(vertices)

 Compute bounding geometry from a list of vertices.

 load_bounds(path)

 Load mesh bounds from a file.

 load_bounds!(path)

 Load mesh bounds, raising on error.

 Types

 bounds()

 @type bounds() :: %{
 aabb: {BB.Math.Vec3.t(), BB.Math.Vec3.t()},
 bounding_sphere: {BB.Math.Vec3.t(), float()}
}

 Functions

 clear_cache()

 @spec clear_cache() :: :ok

Clear the mesh bounds cache.

 compute_bounds(vertices)

 @spec compute_bounds([{float(), float(), float()}]) ::
 {:ok, bounds()} | {:error, :empty_mesh}

Compute bounding geometry from a list of vertices.
Each vertex should be a {x, y, z} tuple of floats.

 load_bounds(path)

 @spec load_bounds(String.t()) :: {:ok, bounds()} | {:error, term()}

Load mesh bounds from a file.
Parses the mesh file, computes bounding geometry, and caches the result.
Subsequent calls with the same file (unchanged) return cached bounds.
Returns {:ok, bounds} or {:error, reason}.

 load_bounds!(path)

 @spec load_bounds!(String.t()) :: bounds()

Load mesh bounds, raising on error.

BB.Collision.Primitives

Collision detection algorithms for primitive geometry pairs.
All functions take world-space geometry (position + orientation applied)
and return either {:collision, penetration_depth} or :no_collision.
Penetration depth is the estimated overlap distance - how far the geometries
would need to be separated to no longer collide.
Supported Geometry Types
	Sphere: {:sphere, centre :: Vec3.t(), radius :: float()}
	Capsule: {:capsule, point_a :: Vec3.t(), point_b :: Vec3.t(), radius :: float()}
	Box (OBB): {:box, centre :: Vec3.t(), half_extents :: Vec3.t(), axes :: {Vec3.t(), Vec3.t(), Vec3.t()}}

Cylinders are converted to capsules internally for simpler, more conservative collision detection.

 Summary

 Types

 box()

 capsule()

 collision_result()

 geometry()

 sphere()

 Functions

 box_box(arg1, arg2)

 Test collision between two oriented bounding boxes using the Separating Axis Theorem.

 capsule_box(arg1, arg2)

 Test collision between a capsule and an oriented bounding box.

 capsule_capsule(arg1, arg2)

 Test collision between two capsules.

 closest_point_on_box(point, box_centre, half_extents, arg)

 Find the closest point on an OBB to a given point.

 closest_point_on_segment(point, seg_a, seg_b)

 Find the closest point on a line segment to a given point.

 closest_points_segments(a1, b1, a2, b2)

 Find the closest points between two line segments.

 sphere_box(arg1, arg2)

 Test collision between a sphere and an oriented bounding box.

 sphere_capsule(arg1, arg2)

 Test collision between a sphere and a capsule.

 sphere_sphere(arg1, arg2)

 Test collision between two spheres.

 test(a, b)

 Test two geometries for collision.

 test_with_margin(a, b, margin)

 Test two geometries with an additional margin/padding.

 Types

 box()

 @type box() ::
 {:box, centre :: BB.Math.Vec3.t(), half_extents :: BB.Math.Vec3.t(),
 axes :: {BB.Math.Vec3.t(), BB.Math.Vec3.t(), BB.Math.Vec3.t()}}

 capsule()

 @type capsule() ::
 {:capsule, point_a :: BB.Math.Vec3.t(), point_b :: BB.Math.Vec3.t(),
 radius :: float()}

 collision_result()

 @type collision_result() :: {:collision, penetration_depth :: float()} | :no_collision

 geometry()

 @type geometry() :: sphere() | capsule() | box()

 sphere()

 @type sphere() :: {:sphere, centre :: BB.Math.Vec3.t(), radius :: float()}

 Functions

 box_box(arg1, arg2)

 @spec box_box(box(), box()) :: collision_result()

Test collision between two oriented bounding boxes using the Separating Axis Theorem.
Two convex shapes are separated if there exists an axis along which their
projections don't overlap. For two OBBs, we need to test 15 potential
separating axes:
	3 face normals from box A
	3 face normals from box B
	9 cross products of edges from A and B

 capsule_box(arg1, arg2)

 @spec capsule_box(capsule(), box()) :: collision_result()

Test collision between a capsule and an oriented bounding box.
Finds the closest distance between the capsule's line segment and the box,
then checks if it's less than the capsule's radius.

 capsule_capsule(arg1, arg2)

 @spec capsule_capsule(capsule(), capsule()) :: collision_result()

Test collision between two capsules.
Two capsules collide if the closest distance between their line segments
is less than the sum of their radii.

 closest_point_on_box(point, box_centre, half_extents, arg)

 @spec closest_point_on_box(
 BB.Math.Vec3.t(),
 BB.Math.Vec3.t(),
 BB.Math.Vec3.t(),
 {BB.Math.Vec3.t(), BB.Math.Vec3.t(), BB.Math.Vec3.t()}
) :: {BB.Math.Vec3.t(), float()}

Find the closest point on an OBB to a given point.
Returns {closest_point, distance}.

 closest_point_on_segment(point, seg_a, seg_b)

 @spec closest_point_on_segment(BB.Math.Vec3.t(), BB.Math.Vec3.t(), BB.Math.Vec3.t()) ::
 {BB.Math.Vec3.t(), float()}

Find the closest point on a line segment to a given point.
Returns {closest_point, distance}.

 closest_points_segments(a1, b1, a2, b2)

 @spec closest_points_segments(
 BB.Math.Vec3.t(),
 BB.Math.Vec3.t(),
 BB.Math.Vec3.t(),
 BB.Math.Vec3.t()
) ::
 {BB.Math.Vec3.t(), BB.Math.Vec3.t(), float()}

Find the closest points between two line segments.
Returns {closest_on_seg1, closest_on_seg2, distance}.
Uses the algorithm from "Real-Time Collision Detection" by Christer Ericson.

 sphere_box(arg1, arg2)

 @spec sphere_box(sphere(), box()) :: collision_result()

Test collision between a sphere and an oriented bounding box.
The sphere collides with the box if the closest point on the box
to the sphere's centre is within the sphere's radius.

 sphere_capsule(arg1, arg2)

 @spec sphere_capsule(sphere(), capsule()) :: collision_result()

Test collision between a sphere and a capsule.
A sphere and capsule collide if the closest distance from the sphere's
centre to the capsule's line segment is less than the sum of their radii.

 sphere_sphere(arg1, arg2)

 @spec sphere_sphere(sphere(), sphere()) :: collision_result()

Test collision between two spheres.
Two spheres collide if the distance between their centres is less than
the sum of their radii.

 test(a, b)

 @spec test(geometry(), geometry()) :: collision_result()

Test two geometries for collision.
Dispatches to the appropriate collision test based on geometry types.
Order of arguments doesn't matter - the function handles symmetry internally.
Examples
iex> sphere1 = {:sphere, Vec3.new(0, 0, 0), 1.0}
iex> sphere2 = {:sphere, Vec3.new(1.5, 0, 0), 1.0}
iex> BB.Collision.Primitives.test(sphere1, sphere2)
{:collision, 0.5}

iex> sphere1 = {:sphere, Vec3.new(0, 0, 0), 1.0}
iex> sphere2 = {:sphere, Vec3.new(3.0, 0, 0), 1.0}
iex> BB.Collision.Primitives.test(sphere1, sphere2)
:no_collision

 test_with_margin(a, b, margin)

 @spec test_with_margin(geometry(), geometry(), margin :: float()) ::
 collision_result()

Test two geometries with an additional margin/padding.
The margin is added to both geometries, effectively expanding them.
Useful for detecting "near misses" or adding safety buffers.

BB.Urdf.Exporter

Export a BB robot definition to URDF XML format.

 Summary

 Functions

 export(robot_module)

 Export a robot module to URDF XML string.

 export_robot(robot)

 Export a Robot struct to URDF XML string.

 Functions

 export(robot_module)

 @spec export(module()) :: {:ok, String.t()} | {:error, term()}

Export a robot module to URDF XML string.
The module must use BB and have a robot/0 function.

 export_robot(robot)

 @spec export_robot(BB.Robot.t()) :: {:ok, String.t()}

Export a Robot struct to URDF XML string.

BB.Urdf.Xml

XML building utilities using Erlang's xmerl library.

 Summary

 Functions

 element(name, attrs \\ [], children \\ [])

 Build an xmerl element tuple.

 format_float(value)

 Format a float with 6 decimal places, trimming trailing zeros.

 format_xyz(arg)

 Format a 3-tuple as space-separated values.

 to_string(xml_tree)

 Convert an xmerl element tree to an XML string with declaration.

 Functions

 element(name, attrs \\ [], children \\ [])

 @spec element(atom(), keyword(), list()) :: tuple()

Build an xmerl element tuple.
Attributes are converted to charlists as required by xmerl.
Nil children are filtered out.

 format_float(value)

 @spec format_float(number()) :: String.t()

Format a float with 6 decimal places, trimming trailing zeros.

 format_xyz(arg)

 @spec format_xyz({number(), number(), number()}) :: String.t()

Format a 3-tuple as space-separated values.

 to_string(xml_tree)

 @spec to_string(tuple()) :: String.t()

Convert an xmerl element tree to an XML string with declaration.

BB.Sim.Actuator

Simulated actuator for kinematic simulation mode.
This actuator is automatically used in place of real actuators when the robot
is started with simulation: :kinematic. It:
	Receives position commands via pubsub, cast, and call
	Calculates motion timing from joint velocity limits
	Publishes BeginMotion messages for position estimation
	Clamps positions to joint limits

Works with BB.Sensor.OpenLoopPositionEstimator for position feedback.
Example
Start robot in simulation mode
MyRobot.start_link(simulation: :kinematic)

Commands work identically to hardware mode
BB.Actuator.set_position(MyRobot, [:base, :shoulder, :motor], 1.57)

BB.Sim.Bridge

Mock bridge for simulation mode.
Accepts all operations but does nothing. Useful when actuators or other
components query the bridge during initialisation in simulation mode.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Sim.Controller

Mock controller for simulation mode.
Used when a controller is configured with simulation: :mock. Accepts all
commands but does nothing with them. Useful when actuators need to call
controllers for state queries but no hardware is present.
Example
controllers do
 controller :pca9685, {BB.Servo.PCA9685.Controller, bus: "i2c-1"},
 simulation: :mock
end

BB.Bridge behaviour

Behaviour for parameter bridge GenServers in the BB framework.
Bridges provide bidirectional parameter access between BB and remote systems
(GCS, web UIs, flight controllers).
Bridges do NOT implement safety callbacks - they handle data transport,
not physical hardware control.
Two Directions
Outbound (local → remote): Expose BB's parameters to remote clients
	Subscribe to [:param] via BB.PubSub in GenServer init/1
	Implement handle_change/3 to push local changes to remote clients
	Remote clients query local params via bridge (calls BB.Parameter.list/get/set)

Inbound (remote → local): Access remote system's parameters from BB
	Implement list_remote/1 to enumerate remote parameters
	Implement get_remote/2 to read remote values
	Implement set_remote/3 to write remote values
	Implement subscribe_remote/2 to subscribe to remote changes
	Publish remote changes via PubSub (path structure up to bridge)

Usage
The use BB.Bridge macro:
	Adds use GenServer (you must implement GenServer callbacks)
	Adds @behaviour BB.Bridge
	Optionally defines options_schema/0 if you pass the :options_schema option

Options Schema
If your bridge accepts configuration options, pass them via :options_schema:
defmodule MyMavlinkBridge do
 use BB.Bridge,
 options_schema: [
 port: [type: :string, required: true, doc: "Serial port path"],
 baud_rate: [type: :pos_integer, default: 57600, doc: "Baud rate"]
]

 @impl BB.Bridge
 def handle_change(_robot, changed, state) do
 send_to_gcs(state.conn, changed)
 {:ok, state}
 end

 # ... other BB.Bridge callbacks
end
For bridges that don't need configuration, omit :options_schema:
defmodule SimpleBridge do
 use BB.Bridge

 # Must be used as bare module in DSL: bridge :simple, SimpleBridge
end
DSL Usage
parameters do
 bridge :mavlink, {MyMavlinkBridge, port: "/dev/ttyACM0", baud_rate: 115200}
 bridge :phoenix, {PhoenixBridge, url: "ws://gcs.local/socket"}
end
Auto-injected Options
The :bb option is automatically provided by the supervisor and should
NOT be included in your options_schema. It contains %{robot: module, path: [atom]}.
IEx Usage
List remote parameters (e.g., ArduPilot's params)
{:ok, params} = BB.Parameter.list_remote(MyRobot, :mavlink)
=> [%{id: "PITCH_RATE_P", value: 0.1, path: [:mavlink, :pitch, :rate, :p], ...}, ...]

Get a remote parameter
{:ok, value} = BB.Parameter.get_remote(MyRobot, :mavlink, "PITCH_RATE_P")
=> 0.1

Set a remote parameter
:ok = BB.Parameter.set_remote(MyRobot, :mavlink, "PITCH_RATE_P", 0.15)

Subscribe to remote parameter changes (tells bridge to track this param)
:ok = BB.Parameter.subscribe_remote(MyRobot, :mavlink, "PITCH_RATE_P")

Then subscribe to PubSub using the path from list_remote
BB.PubSub.subscribe(MyRobot, [:mavlink, :pitch, :rate, :p])
Example Implementation
defmodule MyMavlinkBridge do
 use BB.Bridge

 # Define a payload type for remote param change messages
 defmodule ParamValue do
 defstruct [:value]

 use BB.Message,
 schema: [value: [type: :any, required: true]]
 end

 # GenServer init - extract robot from :bb metadata, subscribe to param changes
 @impl GenServer
 def init(opts) do
 %{robot: robot} = Keyword.fetch!(opts, :bb)
 BB.PubSub.subscribe(robot, [:param])
 conn = connect_to_mavlink(opts[:conn])
 {:ok, %{robot: robot, conn: conn, subscriptions: MapSet.new()}}
 end

 # Outbound: local param changed, notify remote
 @impl BB.Bridge
 def handle_change(_robot, changed, state) do
 send_param_to_gcs(state.conn, changed)
 {:ok, state}
 end

 # Inbound: list remote params
 @impl BB.Bridge
 def list_remote(state) do
 # Return params with path for PubSub subscriptions
 params = Enum.map(fetch_all_params_from_fc(state.conn), fn {id, value} ->
 %{id: id, value: value, type: nil, doc: nil, path: param_id_to_path(id)}
 end)
 {:ok, params, state}
 end

 # Inbound: get remote param
 @impl BB.Bridge
 def get_remote(param_id, state) do
 value = fetch_param_from_fc(state.conn, param_id)
 {:ok, value, state}
 end

 # Inbound: set remote param
 @impl BB.Bridge
 def set_remote(param_id, value, state) do
 :ok = send_param_set_to_fc(state.conn, param_id, value)
 {:ok, state}
 end

 # Inbound: subscribe to remote param changes
 @impl BB.Bridge
 def subscribe_remote(param_id, state) do
 {:ok, %{state | subscriptions: MapSet.put(state.subscriptions, param_id)}}
 end

 # When FC sends param update, publish via PubSub
 @impl GenServer
 def handle_info({:mavlink_param_value, param_id, value}, state) do
 if MapSet.member?(state.subscriptions, param_id) do
 path = param_id_to_path(param_id)
 message = BB.Message.new!(ParamValue, :remote, value: value)
 BB.PubSub.publish(state.robot, path, message)
 end
 {:noreply, state}
 end

 # Convert "PITCH_RATE_P" to [:mavlink, :pitch, :rate, :p]
 defp param_id_to_path(param_id) do
 atoms = param_id |> String.downcase() |> String.split("_") |> Enum.map(&String.to_atom/1)
 [:mavlink | atoms]
 end
end

 Summary

 Types

 param_id()

 remote_param()

 robot()

 state()

 Callbacks

 get_remote(param_id, state)

 Get a parameter value from the remote system.

 handle_change(robot, changed, state)

 Handle a local parameter change.

 list_remote(state)

 List parameters available on the remote system.

 options_schema()

 Returns the options schema for this bridge.

 set_remote(param_id, value, state)

 Set a parameter value on the remote system.

 subscribe_remote(param_id, state)

 Subscribe to changes for a remote parameter.

 Types

 param_id()

 @type param_id() :: String.t() | atom()

 remote_param()

 @type remote_param() :: %{
 id: param_id(),
 value: term(),
 type: atom() | nil,
 doc: String.t() | nil,
 path: [atom()] | nil
}

 robot()

 @type robot() :: module()

 state()

 @type state() :: term()

 Callbacks

 get_remote(param_id, state)

 (optional)

 @callback get_remote(param_id(), state()) ::
 {:ok, term(), state()} | {:error, term(), state()}

Get a parameter value from the remote system.

 handle_change(robot, changed, state)

 @callback handle_change(robot(), changed :: BB.Parameter.Changed.t(), state()) ::
 {:ok, state()}

Handle a local parameter change.
Called when a BB parameter changes locally. The bridge should notify
any subscribed remote clients.

 list_remote(state)

 (optional)

 @callback list_remote(state()) ::
 {:ok, [remote_param()], state()} | {:error, term(), state()}

List parameters available on the remote system.
Returns a list of parameter info from the remote (e.g., flight controller).

 options_schema()

 (optional)

 @callback options_schema() :: Spark.Options.t()

Returns the options schema for this bridge.
The schema should NOT include the :bb option - it is auto-injected.
If this callback is not implemented, the module cannot accept options
in the DSL (must be used as a bare module).

 set_remote(param_id, value, state)

 (optional)

 @callback set_remote(param_id(), value :: term(), state()) ::
 {:ok, state()} | {:error, term(), state()}

Set a parameter value on the remote system.

 subscribe_remote(param_id, state)

 (optional)

 @callback subscribe_remote(param_id(), state()) ::
 {:ok, state()} | {:error, term(), state()}

Subscribe to changes for a remote parameter.
When the remote parameter changes, the bridge should publish via
BB.PubSub. The path structure is up to the bridge implementation.

BB.BridgeSupervisor

Supervisor for parameter protocol bridges.
Groups all bridges defined in the parameters section under a single
supervisor for fault isolation. A flapping bridge (e.g., due to network
issues) won't exhaust the root supervisor's restart budget.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(arg)

BB.Cldr

Provides the core functions to retrieve and manage
the CLDR data that supports formatting and localisation.
It provides the core functions to access formatted
CLDR data, set and retrieve a current locale and validate
certain core data types such as locales, currencies and
territories.

 Summary

 Functions

 available_locale_name?(locale_name)

 See Cldr.available_locale_name?/1.

 default_locale()

 Returns the default locale.

 default_territory()

 Returns the default territory when a locale
does not specify one and none can be inferred.

 ellipsis(string, options \\ [])

 Add locale-specific ellipsis to a string.

 get_locale()

 Return the current locale to be used for Cldr functions that
take an optional locale parameter for which a locale is not supplied.

 known_calendars()

 See Cldr.known_calendars/0.

 known_currencies()

 See Cldr.known_currencies/0.

 known_gettext_locale_name(locale_name)

 Returns either the Gettext locale_name in Cldr format or
false based upon whether the locale name is configured in
Gettext.

 known_gettext_locale_name?(locale_name)

 Returns a boolean indicating if the specified locale
name is configured and available in Gettext.

 known_gettext_locale_names()

 Returns a list of Gettext locale names but in CLDR format with
underscore replaced by hyphen in order to facilitate comparisons
with Cldr locale names.

 known_locale_name(locale_name)

 Returns either the locale_name or false based upon
whether the locale name is configured in Cldr.

 known_locale_name?(locale_name)

 Returns a boolean indicating if the specified locale
name is configured and available in Cldr.

 known_locale_names()

 Returns a list of the known locale names.

 known_number_system_types()

 Returns a list of atoms representing the number systems types known to Cldr.

 known_number_systems()

 See Cldr.known_number_systems/0.

 known_rbnf_locale_name(locale_name)

 Returns either the RBNF locale_name or false based upon
whether the locale name is configured in Cldr
and has RBNF rules defined.

 known_rbnf_locale_name?(locale_name)

 Returns a boolean indicating if the specified locale
name is configured and available in Cldr and supports
rules based number formats (RBNF).

 known_rbnf_locale_names()

 Returns a list of locale names which have rules-based number
formats (RBNF).

 known_territories()

 See Cldr.known_territories/0.

 normalize_lenient_parse(string, scope, locale \\ get_locale())

 Normalizes a string by applying transliteration
of common symbols in numbers, currencies and dates

 put_locale(locale_name)

 Set the current locale to be used for Cldr functions that
take an optional locale parameter for which a locale is not supplied.

 quote(string, options \\ [])

 Add locale-specific quotation marks around a string.

 unknown_locale_names()

 Returns a list of the locales names that are configured,
but not known in CLDR.

 validate_calendar(calendar)

 See Cldr.validate_calendar/1.

 validate_currency(currency)

 See Cldr.validate_currency/1.

 validate_locale(locale)

 Normalise and validate a locale name.

 validate_number_system(number_system)

 See Cldr.validate_number_system/1.

 validate_number_system_type(number_system_type)

 Normalise and validate a number system type.

 validate_territory(territory)

 See Cldr.validate_territory/1.

 with_locale(locale, fun)

 Execute a function with a locale ensuring that the
current locale is restored after the function.

 Functions

 available_locale_name?(locale_name)

See Cldr.available_locale_name?/1.

 default_locale()

 @spec default_locale() :: Cldr.LanguageTag.t() | no_return()

Returns the default locale.
Example
iex> BB.Cldr.default_locale()
%Cldr.LanguageTag{
 backend: BB.Cldr,
 canonical_locale_name: "en-001",
 cldr_locale_name: :"en-001",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: "en_GB",
 language: "en",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :en,
 requested_locale_name: "en-001",
 script: :Latn,
 territory: :"001",
 transform: %{},
 language_variants: []
}

 default_territory()

 @spec default_territory() ::
 Cldr.Locale.territory_code() | {:error, {module(), String.t()}}

Returns the default territory when a locale
does not specify one and none can be inferred.
Example
iex> BB.Cldr.default_territory()
:"001"

 ellipsis(string, options \\ [])

 @spec ellipsis(String.t() | [String.t()], Keyword.t()) ::
 String.t() | {:error, {module(), String.t()}}

Add locale-specific ellipsis to a string.
Arguments
	string is any String.t or a 2-element list
of String.t between which the ellipsis is inserted.

	backend is any module that includes use Cldr and therefore
is a Cldr backend module. The default is Cldr.default_backend!/0.
Note that Cldr.default_backend!/0 will raise an exception if
no :default_backend is configured under the :ex_cldr key in
config.exs.

	options is a keyword list of options.

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/1.
The default is Cldr.get_locale/0.

	:location determines where to place the ellipsis. The options are
:after (the default for a single string argument), :between
(the default and only valid location for an argument that is a list
of two strings) and :before.

	:format formats based upon whether the ellipsis
is inserted between words or sentences. The valid options are
:word or :sentence. The default is :sentence.

Examples
iex> BB.Cldr.ellipsis("And furthermore")
"And furthermore…"

iex> BB.Cldr.ellipsis(["And furthermore", "there is much to be done"], locale: :ja)
"And furthermore…there is much to be done"

iex> BB.Cldr.ellipsis("And furthermore", format: :word)
"And furthermore …"

iex> BB.Cldr.ellipsis(["And furthermore", "there is much to be done"], locale: :ja, format: :word)
"And furthermore … there is much to be done"

 get_locale()

 @spec get_locale() :: Cldr.LanguageTag.t()

Return the current locale to be used for Cldr functions that
take an optional locale parameter for which a locale is not supplied.
Example
iex> BB.Cldr.put_locale("pl")
iex> BB.Cldr.get_locale()
%Cldr.LanguageTag{
 backend: Elixir.BB.Cldr,
 canonical_locale_name: "pl",
 cldr_locale_name: :pl,
 extensions: %{},
 gettext_locale_name: nil,
 language: "pl",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :pl,
 territory: :PL,
 requested_locale_name: "pl",
 script: :Latn,
 transform: %{},
 language_variants: []
 }

 known_calendars()

See Cldr.known_calendars/0.

 known_currencies()

See Cldr.known_currencies/0.

 known_gettext_locale_name(locale_name)

 @spec known_gettext_locale_name(String.t()) :: String.t() | false

Returns either the Gettext locale_name in Cldr format or
false based upon whether the locale name is configured in
Gettext.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_gettext_locale_names/0

Examples
iex> BB.Cldr.known_gettext_locale_name("en")
"en"

iex> BB.Cldr.known_gettext_locale_name("en-SA")
false

 known_gettext_locale_name?(locale_name)

 @spec known_gettext_locale_name?(String.t()) :: boolean()

Returns a boolean indicating if the specified locale
name is configured and available in Gettext.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0

Examples
iex> BB.Cldr.known_gettext_locale_name?("en")
true

iex> BB.Cldr.known_gettext_locale_name?("!!")
false

 known_gettext_locale_names()

 @spec known_gettext_locale_names() :: [String.t()]

Returns a list of Gettext locale names but in CLDR format with
underscore replaced by hyphen in order to facilitate comparisons
with Cldr locale names.

 known_locale_name(locale_name)

 @spec known_locale_name(Cldr.Locale.locale_name()) :: String.t() | false

Returns either the locale_name or false based upon
whether the locale name is configured in Cldr.
This is helpful when building a list of or expressions
to return the first known locale name from a list.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0

Examples
iex> BB.Cldr.known_locale_name(:"en-AU")
:"en-AU"

iex> BB.Cldr.known_locale_name(:"en-SA")
false

 known_locale_name?(locale_name)

 @spec known_locale_name?(Cldr.Locale.locale_name()) :: boolean()

Returns a boolean indicating if the specified locale
name is configured and available in Cldr.
Arguments
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0

Examples
iex> BB.Cldr.known_locale_name?(:en)
true

iex> BB.Cldr.known_locale_name?(:"!!")
false

 known_locale_names()

Returns a list of the known locale names.
Known locales are those locales which
are the subset of all CLDR locales that
have been configured for use either
in this module or in Gettext.

 known_number_system_types()

Returns a list of atoms representing the number systems types known to Cldr.
Example
iex> BB.Cldr.known_number_system_types()
[:default, :finance, :native, :traditional]

 known_number_systems()

See Cldr.known_number_systems/0.

 known_rbnf_locale_name(locale_name)

 @spec known_rbnf_locale_name(Cldr.Locale.locale_name()) :: String.t() | false

Returns either the RBNF locale_name or false based upon
whether the locale name is configured in Cldr
and has RBNF rules defined.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0

Examples
iex> BB.Cldr.known_rbnf_locale_name(:en)
:en

iex> BB.Cldr.known_rbnf_locale_name(:"en-SA")
false

 known_rbnf_locale_name?(locale_name)

 @spec known_rbnf_locale_name?(Cldr.Locale.locale_name()) :: boolean()

Returns a boolean indicating if the specified locale
name is configured and available in Cldr and supports
rules based number formats (RBNF).
Arguments
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0

Examples
iex> BB.Cldr.known_rbnf_locale_name?(:en)
true

iex> BB.Cldr.known_rbnf_locale_name?(:"!!")
false

 known_rbnf_locale_names()

 @spec known_rbnf_locale_names() :: [Cldr.Locale.locale_name()]

Returns a list of locale names which have rules-based number
formats (RBNF).

 known_territories()

See Cldr.known_territories/0.

 normalize_lenient_parse(string, scope, locale \\ get_locale())

Normalizes a string by applying transliteration
of common symbols in numbers, currencies and dates

 put_locale(locale_name)

 @spec put_locale(Cldr.Locale.locale_reference()) ::
 {:ok, Cldr.LanguageTag.t()} | {:error, {module(), String.t()}}

Set the current locale to be used for Cldr functions that
take an optional locale parameter for which a locale is not supplied.
Arguments
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct returned by BB.Cldr.Locale.new!/1

See rfc5646 for the specification
of a language tag.
Examples
iex> BB.Cldr.put_locale("en")
{:ok,
 %Cldr.LanguageTag{
 backend: BB.Cldr,
 canonical_locale_name: "en",
 cldr_locale_name: :en,
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: "en",
 language: "en",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :en,
 requested_locale_name: "en",
 script: :Latn,
 territory: :US,
 transform: %{},
 language_variants: []
 }}

iex> BB.Cldr.put_locale("invalid-locale!")
{:error, {Cldr.LanguageTag.ParseError,
 "Expected a BCP47 language tag. Could not parse the remaining \"!\" starting at position 15"}}

 quote(string, options \\ [])

 @spec quote(String.t(), Keyword.t()) :: String.t() | {:error, {module(), String.t()}}

Add locale-specific quotation marks around a string.
Arguments
	string is any valid Elixir string

	options is a keyword list of options

Options
	locale is any valid locale name returned by Cldr.known_locale_names/1.
The default is Cldr.get_locale/0.

	:prefer is one of :default or :variant with a default of :default.
Some locales have alternative opening and closing quote marks and :prefer
allows selecting a variant should one exist.

Examples
iex> BB.Cldr.quote("Quoted String", locale: :en)
"“Quoted String”"

iex> BB.Cldr.quote("Quoted String", prefer: :variant, locale: :de)
"‚Quoted String‘"

iex> BB.Cldr.quote("Quoted String", locale: :ja)
"「Quoted String」"

 unknown_locale_names()

 @spec unknown_locale_names() :: [Cldr.Locale.locale_name()]

Returns a list of the locales names that are configured,
but not known in CLDR.
Since there is a compile-time exception raised if there are
any unknown locales this function should always
return an empty list.

 validate_calendar(calendar)

See Cldr.validate_calendar/1.

 validate_currency(currency)

See Cldr.validate_currency/1.

 validate_locale(locale)

 @spec validate_locale(Cldr.Locale.locale_name() | Cldr.LanguageTag.t() | String.t()) ::
 {:ok, Cldr.LanguageTag.t()} | {:error, {module(), String.t()}}

Normalise and validate a locale name.
Arguments
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by BB.Cldr.Locale.new!/1

Returns
	{:ok, language_tag}

	{:error, reason}

Notes
See rfc5646 for the specification
of a language tag.
Examples
iex> BB.Cldr.validate_locale(:en)
{:ok,
%Cldr.LanguageTag{
 backend: BB.Cldr,
 canonical_locale_name: "en",
 cldr_locale_name: :en,
 extensions: %{},
 gettext_locale_name: "en",
 language: "en",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :en,
 requested_locale_name: "en",
 script: :Latn,
 territory: :US,
 transform: %{},
 language_variants: []
}}

iex> BB.Cldr.validate_locale BB.Cldr.default_locale()
{:ok,
%Cldr.LanguageTag{
 backend: BB.Cldr,
 canonical_locale_name: "en-001",
 cldr_locale_name: :"en-001",
 extensions: %{},
 gettext_locale_name: "en_GB",
 language: "en",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :en,
 requested_locale_name: "en-001",
 script: :Latn,
 territory: :"001",
 transform: %{},
 language_variants: []
}}

iex> BB.Cldr.validate_locale("zzz")
{:error, {Cldr.InvalidLanguageError, "The language \"zzz\" is invalid"}}

 validate_number_system(number_system)

See Cldr.validate_number_system/1.

 validate_number_system_type(number_system_type)

 @spec validate_number_system_type(String.t() | atom()) ::
 {:ok, atom()} | {:error, {module(), String.t()}}

Normalise and validate a number system type.
Arguments
	number_system_type is any number system type returned by
Cldr.known_number_system_types/1

Returns
	{:ok, normalized_number_system_type} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.validate_number_system_type(:default)
{:ok, :default}

iex> BB.Cldr.validate_number_system_type(:traditional)
{:ok, :traditional}

iex> BB.Cldr.validate_number_system_type(:latn)
{
 :error,
 {Cldr.UnknownNumberSystemTypeError, "The number system type :latn is unknown"}
}

iex> BB.Cldr.validate_number_system_type("bork")
{
 :error,
 {Cldr.UnknownNumberSystemTypeError, "The number system type \"bork\" is invalid"}
}

 validate_territory(territory)

See Cldr.validate_territory/1.

 with_locale(locale, fun)

 (since 2.32.0)

 @spec with_locale(Cldr.Locale.locale_reference(), (-> any())) :: any()

Execute a function with a locale ensuring that the
current locale is restored after the function.
Arguments
	locale is any valid locale name returned by Cldr.known_locale_names/1.

	fun is any 0-arity function or function capture.

Returns
	The value returned by the function fun/0 or

	{:error, {exception, reason}} if the locale is invalid or

	raises an exception if the current locale cannot be
identified.

BB.Cldr.AcceptLanguage

Parses HTTP Accept-Language header values as defined in
rfc2616.
The Accept-Language request-header field is similar to Accept, but restricts
the set of natural languages that are preferred as a response to the request.
Language tags function are provided in Cldr.LanguageTag.
The format of an Accept-Language header is as follows in ABNF format:
 Accept-Language = "Accept-Language" ":"
 1#(language-range [";" "q" "=" qvalue])
 language-range = ((1*8ALPHA *("-" 1*8ALPHA)) | "*")
Each language-range MAY be given an associated quality value which represents an
estimate of the user's preference for the languages specified by that range. The
quality value defaults to "q=1". For example,
 Accept-Language: da, en-gb;q=0.8, en;q=0.7
would mean: "I prefer Danish, but will accept British English and other types of English."

 Summary

 Functions

 best_match(accept_language)

 Parse an Accept-Language string and return the best match for
a configured Cldr locale.

 parse(tokens_or_string)

 Parses an Accept-Language header value in its string
or tokenized form to return a tuple of the form
{:ok, [{quality, %Cldr.LanguageTag{}}, ...]} sorted by quality.

 parse!(accept_language)

 Parses an Accept-Language header value in its string
or tokenized form to produce a list of tuples of the form
[{quality, %Cldr.LanguageTag{}}, ...] sorted by quality
in descending order.

 Functions

 best_match(accept_language)

 @spec best_match(String.t()) ::
 {:ok, Cldr.LanguageTag.t()}
 | {:error, {Cldr.AcceptLanguageError | Cldr.NoMatchingLocale, String.t()}}

Parse an Accept-Language string and return the best match for
a configured Cldr locale.
Arguments
	accept_language is a string representing an accept language header

Returns
	{:ok, language_tag} or

	{:error, reason}

Examples
iex> BB.Cldr.AcceptLanguage.best_match("da;q=0.1,zh-TW;q=0.3", TestBackend.Cldr)
{:ok,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }}

iex> BB.Cldr.AcceptLanguage.best_match("da;q=0.1,zh-TW;q=0.3", TestBackend.Cldr)
{:ok,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }}

iex> BB.Cldr.AcceptLanguage.best_match("xx,yy;q=0.3")
{:error,
 {Cldr.NoMatchingLocale,
 "No configured locale could be matched to \"xx,yy;q=0.3\""}}

iex> BB.Cldr.AcceptLanguage.best_match("invalid_tag")
{:error, {Cldr.LanguageTag.ParseError,
 "Expected a BCP47 language tag. Could not parse the remaining \"g\" starting at position 11"}}

 parse(tokens_or_string)

 (since 2.30.0)

 @spec parse([{float(), String.t()}, ...] | String.t()) ::
 {:ok,
 [
 {float(), Cldr.LanguageTag.t()}
 | {:error, {Cldr.InvalidLanguageTag, String.t()}},
 ...
]}
 | {:error, {Cldr.AcceptLanguageError, String.t()}}

Parses an Accept-Language header value in its string
or tokenized form to return a tuple of the form
{:ok, [{quality, %Cldr.LanguageTag{}}, ...]} sorted by quality.
Arguments
	accept-language is any string in the format defined by
rfc2616

	backend is any module that includes use Cldr and therefore
is a Cldr backend module

Returns
	{:ok, [{quality, language_tag}, ...]} or

	{:error, {Cldr.AcceptLanguageError, String.t}}

If at least one valid language tag is found but errors are also
detected on one more more tags, an {ok, list} tuple is returned
with an error tuple for each invalid tag added at the end of the list.
Example
iex> Cldr.AcceptLanguage.parse("da,zh-TW;q=0.3", TestBackend.Cldr)
{:ok,
 [
 {1.0,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "da",
 cldr_locale_name: :da,
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "da",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :da,
 requested_locale_name: "da",
 script: :Latn,
 territory: :DK,
 transform: %{},
 language_variants: []
 }},
 {0.3,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }}
]}

iex> BB.Cldr.AcceptLanguage.parse("invalid_tag")
{:error,
 {Cldr.LanguageTag.ParseError,
 "Expected a BCP47 language tag. Could not parse the remaining \"g\" starting at position 11"}}

iex> BB.Cldr.AcceptLanguage.parse("da,zh-TW;q=0.3,invalid_tag")
{:ok,
 [
 {1.0,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "da",
 cldr_locale_name: :da,
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "da",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :da,
 requested_locale_name: "da",
 script: :Latn,
 territory: :DK,
 transform: %{},
 language_variants: []
 }},
 {0.3,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }},
 {:error,
 {Cldr.LanguageTag.ParseError,
 "Expected a BCP47 language tag. Could not parse the remaining \"g\" starting at position 11"}}
]}

 parse!(accept_language)

Parses an Accept-Language header value in its string
or tokenized form to produce a list of tuples of the form
[{quality, %Cldr.LanguageTag{}}, ...] sorted by quality
in descending order.
Arguments
	accept-language is any string in the format defined by rfc2616

Returns
	{:ok, [{quality, language_tag}, ...]} or

	raises a Cldr.AcceptLanguageError exception

If at least one valid language tag is found but errors are also
detected on one more more tags, an {ok, list} tuple is returned
with an error tuple for each invalid tag added at the end of the list.
Example
iex> BB.Cldr.AcceptLanguage.parse!("da,zh-TW;q=0.3")
[
 {1.0,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "da",
 cldr_locale_name: :da,
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "da",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :da,
 requested_locale_name: "da",
 script: :Latn,
 territory: :DK,
 transform: %{},
 language_variants: []
 }},
 {0.3,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }}
]

BB.Cldr.AcceptLanguage.parse! "invalid_tag"
** (Cldr.AcceptLanguageError) "Expected a BCP47 language tag. Could not parse the remaining "g" starting at position 11
 (ex_cldr) lib/cldr/accept_language.ex:304: Cldr.AcceptLanguage.parse!/1

iex> BB.Cldr.AcceptLanguage.parse!("da,zh-TW;q=0.3,invalid_tag")
[
 {1.0,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "da",
 cldr_locale_name: :da,
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "da",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :da,
 requested_locale_name: "da",
 script: :Latn,
 territory: :DK,
 transform: %{},
 language_variants: []
 }},
 {0.3,
 %Cldr.LanguageTag{
 backend: TestBackend.Cldr,
 canonical_locale_name: "zh-TW",
 cldr_locale_name: :"zh-Hant",
 language_subtags: [],
 extensions: %{},
 gettext_locale_name: nil,
 language: "zh",
 locale: %{},
 private_use: [],
 rbnf_locale_name: :"zh-Hant",
 requested_locale_name: "zh-TW",
 script: :Hant,
 territory: :TW,
 transform: %{},
 language_variants: []
 }},
 {:error,
 {Cldr.LanguageTag.ParseError,
 "Expected a BCP47 language tag. Could not parse the remaining \"g\" starting at position 11"}}
]

BB.Cldr.Currency

 Summary

 Functions

 currencies_for_locale(locale, only \\ :all, except \\ nil)

 Returns a map of the metadata for all currencies for
a given locale.

 currencies_for_locale!(locale, only \\ :all, except \\ nil)

 Returns a map of the metadata for all currencies for
a given locale and raises on error.

 currency_for_code(currency_or_currency_code, options \\ [locale: BB.Cldr.default_locale()])

 Returns the currency metadata for the requested currency code.

 currency_for_code!(currency_or_currency_code, options \\ [locale: BB.Cldr.default_locale()])

 Returns the currency metadata for the requested currency code.

 currency_from_locale(locale)

 Returns the effective currency for a given locale

 currency_history_for_locale(language_tag)

 Returns a list of historic and the current
currency for a given locale.

 currency_strings(locale, only \\ :all, except \\ nil)

 Returns a map that matches a currency string to a
currency code.

 currency_strings!(locale_name, only \\ :all, except \\ nil)

 Returns a map that matches a currency string to a
currency code or raises an exception.

 current_currency_from_locale(locale)

 Returns the current currency for a given locale.

 current_territory_currencies()

 Returns a mapping from a territory code to its
current currency code.

 known_currencies()

 See BB.Cldr.Currency.known_currency_codes/0.

 known_currency?(code)

 See BB.Cldr.Currency.known_currency_code?/1.

 known_currency_code(currency_code)

 Returns a 2-tuple indicating if the supplied currency code is known.

 known_currency_code?(currency_code)

 Returns a boolean indicating if the supplied currency code is known.

 known_currency_codes()

 Returns a list of all known currency codes.

 new(currency, options \\ [])

 Returns a Currency struct created from the arguments.

 pluralize(number, currency, options \\ [])

 Returns the appropriate currency display name for the currency, based
on the plural rules in effect for the locale.

 strings_for_currency(currency, locale)

 Returns the strings associated with a currency
in a given locale.

 Functions

 currencies_for_locale(locale, only \\ :all, except \\ nil)

 @spec currencies_for_locale(
 Cldr.Locale.locale_reference(),
 only :: Cldr.Currency.filter(),
 except :: Cldr.Currency.filter()
) :: {:ok, map()} | {:error, {module(), String.t()}}

Returns a map of the metadata for all currencies for
a given locale.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

	currency_status is :all, :current, :historic,
unannotated or :tender; or a list of one or more status.
The default is :all. See Cldr.Currency.currency_filter/2.

Returns
	{:ok, currency_map} or

	{:error, {exception, reason}}

Example
 MyApp.Cldr.Currency.currencies_for_locale("en")
 => {:ok,
 %{
 FJD: %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "FJD",
 count: %{one: "Fijian dollar", other: "Fijian dollars"},
 digits: 2,
 from: nil,
 iso_digits: 2,
 name: "Fijian Dollar",
 narrow_symbol: "$",
 rounding: 0,
 symbol: "FJD",
 tender: true,
 to: nil
 },
 SUR: %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "SUR",
 count: %{one: "Soviet rouble", other: "Soviet roubles"},
 digits: 2,
 from: nil,
 iso_digits: nil,
 name: "Soviet Rouble",
 narrow_symbol: nil,
 rounding: 0,
 symbol: "SUR",
 tender: true,
 to: nil
 },
 ...
}}

 currencies_for_locale!(locale, only \\ :all, except \\ nil)

 @spec currencies_for_locale!(
 Cldr.Locale.locale_name() | Cldr.LanguageTag.t(),
 only :: Cldr.Currency.filter(),
 except :: Cldr.Currency.filter()
) :: map() | no_return()

Returns a map of the metadata for all currencies for
a given locale and raises on error.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

	currency_status is :all, :current, :historic,
unannotated or :tender; or a list of one or more status.
The default is :all. See Cldr.Currency.currency_filter/2.

Returns
	{:ok, currency_map} or

	raises an exception

Example
 MyApp.Cldr.Currency.currencies_for_locale!("en")
 => %{
FJD: %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "FJD",
 count: %{one: "Fijian dollar", other: "Fijian dollars"},
 digits: 2,
 from: nil,
 iso_digits: 2,
 name: "Fijian Dollar",
 narrow_symbol: "$",
 rounding: 0,
 symbol: "FJD",
 tender: true,
 to: nil
},
SUR: %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "SUR",
 count: %{one: "Soviet rouble", other: "Soviet roubles"},
 digits: 2,
 from: nil,
 iso_digits: nil,
 name: "Soviet Rouble",
 narrow_symbol: nil,
 rounding: 0,
 symbol: "SUR",
 tender: true,
 to: nil
},
...
 }

 currency_for_code(currency_or_currency_code, options \\ [locale: BB.Cldr.default_locale()])

 @spec currency_for_code(Cldr.Currency.code() | Cldr.Currency.t(), Keyword.t()) ::
 {:ok, Cldr.Currency.t()} | {:error, {module(), String.t()}}

Returns the currency metadata for the requested currency code.
Arguments
	currency_or_currency_code is a binary or atom representation
 of an ISO 4217 currency code, or a %Cldr.Currency{} struct.

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2

Returns
	A {:ok, currency} or

	{:error, {exception, reason}}

Examples
iex> BB.Cldr.Currency.currency_for_code("AUD")
{:ok,
 %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "AUD",
 count: %{one: "Australian dollar", other: "Australian dollars"},
 digits: 2,
 iso_digits: 2,
 name: "Australian Dollar",
 narrow_symbol: "$",
 rounding: 0,
 symbol: "A$",
 tender: true
}}

iex> BB.Cldr.Currency.currency_for_code("THB")
{:ok,
 %Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "THB",
 count: %{one: "Thai baht", other: "Thai baht"},
 digits: 2,
 iso_digits: 2,
 name: "Thai Baht",
 narrow_symbol: "฿",
 rounding: 0,
 symbol: "THB",
 tender: true
}}

 currency_for_code!(currency_or_currency_code, options \\ [locale: BB.Cldr.default_locale()])

 (since 2.14.0)

 @spec currency_for_code!(Cldr.Currency.code() | Cldr.Currency.t(), Keyword.t()) ::
 Cldr.Currency.t() | no_return()

Returns the currency metadata for the requested currency code.
Arguments
	currency_or_currency_code is a binary or atom representation
 of an ISO 4217 currency code, or a %Cldr.Currency{} struct.

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2

Returns
	A t:Cldr.Current.t/0 or

	raises an exception

Examples
iex> BB.Cldr.Currency.currency_for_code!("AUD")
%Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "AUD",
 count: %{one: "Australian dollar", other: "Australian dollars"},
 digits: 2,
 iso_digits: 2,
 name: "Australian Dollar",
 narrow_symbol: "$",
 rounding: 0,
 symbol: "A$",
 tender: true
}

iex> BB.Cldr.Currency.currency_for_code!("THB")
%Cldr.Currency{
 cash_digits: 2,
 cash_rounding: 0,
 code: "THB",
 count: %{one: "Thai baht", other: "Thai baht"},
 digits: 2,
 iso_digits: 2,
 name: "Thai Baht",
 narrow_symbol: "฿",
 rounding: 0,
 symbol: "THB",
 tender: true
}

 currency_from_locale(locale)

Returns the effective currency for a given locale
Arguments
	locale is a Cldr.LanguageTag struct returned by
Cldr.Locale.new!/2

Returns
	A ISO 4217 currency code as an upcased atom

Examples
iex> {:ok, locale} = BB.Cldr.validate_locale("en")
iex> BB.Cldr.Currency.currency_from_locale locale
:USD

iex> {:ok, locale} = BB.Cldr.validate_locale("en-AU")
iex> BB.Cldr.Currency.currency_from_locale locale
:AUD

iex> BB.Cldr.Currency.currency_from_locale("en-GB")
:GBP

 currency_history_for_locale(language_tag)

 @spec currency_history_for_locale(Cldr.LanguageTag.t() | Cldr.Locale.locale_name()) ::
 {:ok, map()} | {:error, {module(), String.t()}}

Returns a list of historic and the current
currency for a given locale.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

Example
iex> MyApp.Cldr.Currency.currency_history_for_locale("en")
{:ok,
 %{
 USD: %{from: ~D[1792-01-01], to: nil},
 USN: %{tender: false},
 USS: %{from: nil, tender: false, to: ~D[2014-03-01]}
 }
}

 currency_strings(locale, only \\ :all, except \\ nil)

 @spec currency_strings(
 Cldr.Locale.locale_reference(),
 only :: Cldr.Currency.filter(),
 except :: Cldr.Currency.filter()
) :: {:ok, map()} | {:error, {module(), String.t()}}

Returns a map that matches a currency string to a
currency code.
A currency string is a localised name or symbol
representing a currency in a locale-specific manner.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

	currency_status is :all, :current, :historic,
unannotated or :tender; or a list of one or more status.
The default is :all. See Cldr.Currency.currency_filter/2.

Returns
	{:ok, currency_string_map} or

	{:error, {exception, reason}}

Example
MyApp.Cldr.Currency.currency_strings("en")
=> {:ok,
 %{
 "mexican silver pesos" => :MXP,
 "sudanese dinar" => :SDD,
 "bad" => :BAD,
 "rsd" => :RSD,
 "swazi lilangeni" => :SZL,
 "zairean new zaire" => :ZRN,
 "guyanaese dollars" => :GYD,
 "equatorial guinean ekwele" => :GQE,
 ...
 }}

 currency_strings!(locale_name, only \\ :all, except \\ nil)

 @spec currency_strings!(
 Cldr.LanguageTag.t() | Cldr.Locale.locale_name(),
 only :: Cldr.Currency.filter(),
 except :: Cldr.Currency.filter()
) :: map() | no_return()

Returns a map that matches a currency string to a
currency code or raises an exception.
A currency string is a localised name or symbol
representing a currency in a locale-specific manner.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

	currency_status is :all, :current, :historic,
unannotated or :tender; or a list of one or more status.
The default is :all. See Cldr.Currency.currency_filter/2.

Returns
	{:ok, currency_string_map} or

	raises an exception

Example
MyApp.Cldr.Currency.currency_strings!("en")
=> %{
 "mexican silver pesos" => :MXP,
 "sudanese dinar" => :SDD,
 "bad" => :BAD,
 "rsd" => :RSD,
 "swazi lilangeni" => :SZL,
 "zairean new zaire" => :ZRN,
 "guyanaese dollars" => :GYD,
 "equatorial guinean ekwele" => :GQE,
 ...
 }

 current_currency_from_locale(locale)

Returns the current currency for a given locale.
This function does not consider the U extenion
parameters cu or rg. It is recommended to us
Cldr.Currency.currency_from_locale/1 in most
circumstances.
Arguments
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

Example
iex> MyApp.Cldr.Currency.current_currency_from_locale("en")
:USD

iex> MyApp.Cldr.Currency.current_currency_from_locale("en-AU")
:AUD

 current_territory_currencies()

 (since 2.15.0)

 @spec current_territory_currencies() :: %{
 required(Cldr.Locale.territory_code()) => Cldr.Currency.code()
}

Returns a mapping from a territory code to its
current currency code.
If a territory has no current currency (like
Antartica, territory code :AQ) then no
mapping is returned for that territory.
Returns
	A map of {territory_code => Cldr.Currency.t}

Example
iex> BB.Cldr.Currency.current_territory_currencies()

 known_currencies()

See BB.Cldr.Currency.known_currency_codes/0.

 known_currency?(code)

See BB.Cldr.Currency.known_currency_code?/1.

 known_currency_code(currency_code)

 @spec known_currency_code(Cldr.Currency.code()) ::
 {:ok, Cldr.Currency.code()} | {:error, {module(), String.t()}}

Returns a 2-tuple indicating if the supplied currency code is known.
Arguments
	currency_code is a binary or atom representing an ISO4217
currency code

Returns
	{:ok, currency_code} or

	{:error, {exception, reason}}

Examples
iex> BB.Cldr.Currency.known_currency_code("AUD")
{:ok, :AUD}

iex> BB.Cldr.Currency.known_currency_code("GGG")
{:error, {Cldr.UnknownCurrencyError, "The currency \"GGG\" is invalid"}}

 known_currency_code?(currency_code)

 @spec known_currency_code?(Cldr.Currency.code()) :: boolean()

Returns a boolean indicating if the supplied currency code is known.
Arguments
	currency_code is a binary or atom representing an ISO4217
currency code

Returns
	true or false

Examples
iex> BB.Cldr.Currency.known_currency_code?("AUD")
true

iex> BB.Cldr.Currency.known_currency_code?("GGG")
false

iex> BB.Cldr.Currency.known_currency_code?(:XCV)
false

 known_currency_codes()

 @spec known_currency_codes() :: [Cldr.Currency.code(), ...]

Returns a list of all known currency codes.
Example
iex> BB.Cldr.Currency.known_currency_codes()

 new(currency, options \\ [])

 @spec new(Cldr.Currency.code(), map() | Keyword.t()) ::
 {:ok, Cldr.Currency.t()} | {:error, {module(), String.t()}}

Returns a Currency struct created from the arguments.
Arguments
	currency is a private use currency code in a format defined by
ISO4217
which is X followed by two alphanumeric characters.

	options is a map of options representing the optional elements of
the Cldr.Currency.t struct.

Options
	:name is the name of the currency. Required.
	:digits is the precision of the currency. Required.
	:symbol is the currency symbol. Optional.
	:narrow_symbol is an alternative narrow symbol. Optional.
	:round_nearest is the rounding precision such as 0.05. Optional.
	:alt_code is an alternative currency code for application use.
	:cash_digits is the precision of the currency when used as cash. Optional.
	:cash_rounding_nearest is the rounding precision when used as cash
such as 0.05. Optional.

Returns
	{:ok, Cldr.Currency.t} or

	{:error, {exception, message}}

Example
iex> BB.Cldr.Currency.new(:XAE, name: "Custom Name", digits: 0)
{:ok,
 %Cldr.Currency{
 alt_code: :XAE,
 cash_digits: 0,
 cash_rounding: nil,
 code: :XAE,
 count: %{other: "Custom Name"},
 digits: 0,
 from: nil,
 iso_digits: 0,
 name: "Custom Name",
 narrow_symbol: nil,
 rounding: 0,
 symbol: "XAE",
 tender: false,
 to: nil
 }}
iex> MyApp.Cldr.Currency.new(:XAH, name: "Custom Name")
{:error, "Required options are missing. Required options are [:name, :digits]"}
iex> BB.Cldr.Currency.new(:XAE, name: "XAE", digits: 0)
{:error, {Cldr.CurrencyAlreadyDefined, "Currency :XAE is already defined."}}

 pluralize(number, currency, options \\ [])

 @spec pluralize(pos_integer(), atom(), Keyword.t()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Returns the appropriate currency display name for the currency, based
on the plural rules in effect for the locale.
Arguments
	number is an integer, float or Decimal

	currency is any currency returned by Cldr.Currency.known_currencies/0

	options is a keyword list of options

Options
	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1. The
default is BB.Cldr.get_locale/0

Returns
	{:ok, plural_string} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Currency.pluralize(1, :USD)
{:ok, "US dollar"}

iex> BB.Cldr.Currency.pluralize(3, :USD)
{:ok, "US dollars"}

iex> BB.Cldr.Currency.pluralize(12, :USD, locale: "zh")
{:ok, "美元"}

iex> BB.Cldr.Currency.pluralize(12, :USD, locale: "fr")
{:ok, "dollars des États-Unis"}

iex> BB.Cldr.Currency.pluralize(1, :USD, locale: "fr")
{:ok, "dollar des États-Unis"}

 strings_for_currency(currency, locale)

Returns the strings associated with a currency
in a given locale.
Arguments
	currency is an ISO4217 currency code

	locale is any valid locale name returned by MyApp.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by MyApp.Cldr.Locale.new!/1

Returns
	A list of strings or

	{:error, {exception, reason}}

Example
iex> MyApp.Cldr.Currency.strings_for_currency(:AUD, "en")
...> |> Enum.sort()
["a$", "aud", "australian dollar", "australian dollars"]

BB.Cldr.Locale

Backend module that provides functions
to define new locales and display human-readable
locale names for presentation purposes.

 Summary

 Functions

 fallback_locale_names(locale)

 Returns the list of fallback locale names, starting
with the provided locale name.

 fallback_locales(locale)

 Returns the list of fallback locales, starting
with the provided locale name.

 locale_for_territory(territory)

 Returns the "best fit" locale for a given territory.

 locale_from_host(host, options \\ [])

 Returns a "best fit" locale for a host name.

 new(locale_name)

 new!(locale_name)

 script_direction_from_locale(locale)

 Returns the script direction for a locale.

 territory_from_host(host)

 Returns the last segment of a host that might
be a territory.

 territory_from_locale(locale)

 Returns the territory from a language tag or
locale name.

 timezone_from_locale(locale)

 Returns the time zone from a language tag or
locale name.

 Functions

 fallback_locale_names(locale)

 (since 2.26.0)

 @spec fallback_locale_names(Cldr.LanguageTag.t() | Cldr.Locale.locale_reference()) ::
 {:ok, [Cldr.Locale.locale_name(), ...]} | {:error, {module(), String.t()}}

Returns the list of fallback locale names, starting
with the provided locale name.
Fallbacks are a list of locate names which can
be used to resolve translation or other localization
data if such localised data does not exist for
this specific locale..
Arguments
	locale_name is any locale name returned by
BB.Cldr.known_locale_names/0

Returns
	{:ok, list_of_locale_names} or

	{:error, {exception, reason}}

Examples
iex> BB.Cldr.Locale.fallback_locale_names(:"fr-CA")
{:ok, [:"fr-CA", :fr, :und]}

Fallbacks are typically formed by progressively
stripping variant, territory and script from the
given locale name. But not always - there are
certain fallbacks that take a different path.

iex> BB.Cldr.Locale.fallback_locale_names(:nb)
{:ok, [:nb, :no, :und]}

 fallback_locales(locale)

 (since 2.26.0)

 @spec fallback_locales(Cldr.LanguageTag.t() | Cldr.Locale.locale_reference()) ::
 {:ok, [Cldr.LanguageTag.t(), ...]} | {:error, {module(), String.t()}}

Returns the list of fallback locales, starting
with the provided locale name.
Fallbacks are a list of locate names which can
be used to resolve translation or other localization
data if such localised data does not exist for
this specific locale.
Arguments
	locale_name is any locale name returned by
BB.Cldr.known_locale_names/0

Returns
	{:ok, list_of_locales} or

	{:error, {exception, reason}}

Examples
BB.Cldr.Locale.fallback_locales(:"fr-CA")
=> {:ok,
 [#Cldr.LanguageTag<fr-CA [validated]>, #Cldr.LanguageTag<fr [validated]>,
 #Cldr.LanguageTag<und [validated]>]}

Fallbacks are typically formed by progressively
stripping variant, territory and script from the
given locale name. But not always - there are
certain fallbacks that take a different path.

BB.Cldr.Locale.fallback_locales(:nb))
=> {:ok,
 [#Cldr.LanguageTag<nb [validated]>, #Cldr.LanguageTag<no [validated]>,
 #Cldr.LanguageTag<und [validated]>]}

 locale_for_territory(territory)

 (since 2.26.0)

 @spec locale_for_territory(Cldr.Locale.territory_code()) ::
 {:ok, Cldr.LanguageTag.t()} | {:error, {module(), String.t()}}

Returns the "best fit" locale for a given territory.
Using the population percentage data from CLDR, the
language most commonly spoken in the given territory
is used to form a locale name which is then validated
against the given backend.
First a territory-specific locale is validated and if
that fails, the base language only is validate.
For example, if the territory is AU then then the
language most spoken is "en". First, the locale "en-AU"
is validated and if that fails, "en" is validated.
Arguments
	territory is any ISO 3166 Alpha-2 territory
code that can be validated by Cldr.validate_territory/1

Returns
	{:ok, language_tag} or

	{:error, {exception, reason}}

Examples
 iex> BB.Cldr.Locale.locale_for_territory(:AU)
 Elixir.BB.Cldr.validate_locale(:"en-AU")
 iex> BB.Cldr.Locale.locale_for_territory(:US)
 Elixir.BB.Cldr.validate_locale(:"en-US")
 iex> BB.Cldr.Locale.locale_for_territory(:ZZ)
 {:error, {Cldr.UnknownTerritoryError, "The territory :ZZ is unknown"}}

 locale_from_host(host, options \\ [])

 (since 2.26.0)

 @spec locale_from_host(String.t(), Keyword.t()) ::
 {:ok, Cldr.LanguageTag.t()} | {:error, {module(), String.t()}}

Returns a "best fit" locale for a host name.
Arguments
	host is any valid host name

	options is a keyword list of options. The default
is [].

Options
	:tlds is a list of territory codes as upper-cased
atoms that are to be considered as top-level domains.
See Cldr.Locale.locale_from_host/2 for the default
list.

Returns
	{:ok, langauge_tag} or

	{:error, {exception, reason}}

Notes
Certain top-level domains have become associated with content
underlated to the territory for who the domain is registered.
Therefore Google (and perhaps others) do not associate these
TLDs as belonging to the territory but rather are considered
generic top-level domain names.
Examples
iex> BB.Cldr.Locale.locale_from_host "a.b.com.au"
Elixir.BB.Cldr.validate_locale(:"en-AU")

iex> BB.Cldr.Locale.locale_from_host("a.b.com.tv")
{:error,
 {Cldr.UnknownLocaleError, "No locale was identified for territory \"tv\""}}

iex> BB.Cldr.Locale.locale_from_host("a.b.com")
{:error,
 {Cldr.UnknownLocaleError, "No locale was identified for territory \"com\""}}

 new(locale_name)

 new!(locale_name)

 script_direction_from_locale(locale)

 (since 2.37.0)

Returns the script direction for a locale.
Arguments
	language_tag is any language tag returned by Cldr.Locale.new/2
or any locale_name returned by Cldr.known_locale_names/1.

Returns
	The script direction which is either :ltr (for left-to-right
scripts) or :rtl (for right-to-left scripts).

Examples
iex> BB.Cldr.Locale.script_direction_from_locale "en-US"
:ltr

iex> BB.Cldr.Locale.script_direction_from_locale :ar
:rtl

 territory_from_host(host)

 (since 2.26.0)

 @spec territory_from_host(String.t()) ::
 {:ok, Cldr.Locale.territory_code()} | {:error, {module(), String.t()}}

Returns the last segment of a host that might
be a territory.
Arguments
	host is any valid host name

Returns
	{:ok, territory} or

	{:error, {exception, reason}}

Examples
iex> Cldr.Locale.territory_from_host("a.b.com.au")
{:ok, :AU}

iex> Cldr.Locale.territory_from_host("a.b.com")
{:error,
 {Cldr.UnknownLocaleError, "No locale was identified for territory \"com\""}}

 territory_from_locale(locale)

 (since 2.18.2)

 @spec territory_from_locale(Cldr.LanguageTag.t() | Cldr.Locale.locale_name()) ::
 Cldr.Locale.territory_code() | {:error, {module(), String.t()}}

Returns the territory from a language tag or
locale name.
Arguments
	locale is any language tag returned by
BB.Cldr.Locale.new/1
or a locale name in the list returned by
BB.Cldr.known_locale_names/0

Returns
	A territory code as an atom

Examples
iex> BB.Cldr.Locale.territory_from_locale "en-US"
:US

iex> BB.Cldr.Locale.territory_from_locale "en-US-u-rg-GBzzzz"
:GB

 timezone_from_locale(locale)

 (since 2.19.0)

 @spec timezone_from_locale(Cldr.LanguageTag.t() | Cldr.Locale.locale_name()) ::
 String.t() | {:error, {module(), String.t()}}

Returns the time zone from a language tag or
locale name.
Arguments
	locale is any language tag returned by
BB.Cldr.Locale.new/1
or a locale name in the list returned by
BB.Cldr.known_locale_names/0

Returns
	A time zone ID as a string or

	:error if no time zone can be determined

Examples
iex> BB.Cldr.Locale.timezone_from_locale "en-US-u-tz-ausyd"
"Australia/Sydney"

BB.Cldr.Number

Formats numbers and currencies based upon CLDR's decimal formats specification.
The format specification is documentated in Unicode TR35.
There are several classes of formatting including non-scientific, scientific,
rules based (for spelling and ordinal formats), compact formats that display 1k
rather than 1,000 and so on. See Cldr.Number.to_string/2 for specific formatting
options.
Non-Scientific Notation Formatting
The following description applies to formats that do not use scientific
notation or significant digits:
	If the number of actual integer digits exceeds the maximum integer digits,
then only the least significant digits are shown. For example, 1997 is
formatted as "97" if the maximum integer digits is set to 2.

	If the number of actual integer digits is less than the minimum integer
digits, then leading zeros are added. For example, 1997 is formatted as
"01997" if the minimum integer digits is set to 5.

	If the number of actual fraction digits exceeds the maximum fraction
digits, then half-even rounding it performed to the maximum fraction
digits. For example, 0.125 is formatted as "0.12" if the maximum fraction
digits is 2. This behavior can be changed by specifying a rounding
increment and a rounding mode.

	If the number of actual fraction digits is less than the minimum fraction
digits, then trailing zeros are added. For example, 0.125 is formatted as
"0.1250" if the minimum fraction digits is set to 4.

	Trailing fractional zeros are not displayed if they occur j positions after
the decimal, where j is less than the maximum fraction digits. For example,
0.10004 is formatted as "0.1" if the maximum fraction digits is four or
less.

Scientific Notation Formatting
Numbers in scientific notation are expressed as the product of a mantissa and
a power of ten, for example, 1234 can be expressed as 1.234 x 10^3. The
mantissa is typically in the half-open interval [1.0, 10.0) or sometimes
[0.0, 1.0), but it need not be. In a pattern, the exponent character
immediately followed by one or more digit characters indicates scientific
notation. Example: "0.###E0" formats the number 1234 as "1.234E3".
	The number of digit characters after the exponent character gives the
minimum exponent digit count. There is no maximum. Negative exponents are
formatted using the localized minus sign, not the prefix and suffix from
the pattern. This allows patterns such as "0.###E0 m/s". To prefix positive
exponents with a localized plus sign, specify '+' between the exponent and
the digits: "0.###E+0" will produce formats "1E+1", "1E+0", "1E-1", and so
on. (In localized patterns, use the localized plus sign rather than '+'.)

	The minimum number of integer digits is achieved by adjusting the exponent.
Example: 0.00123 formatted with "00.###E0" yields "12.3E-4". This only
happens if there is no maximum number of integer digits. If there is a
maximum, then the minimum number of integer digits is fixed at one.

	The maximum number of integer digits, if present, specifies the exponent
grouping. The most common use of this is to generate engineering notation,
in which the exponent is a multiple of three, for example, "##0.###E0". The
number 12345 is formatted using "##0.####E0" as "12.345E3".

	When using scientific notation, the formatter controls the digit counts
using significant digits logic. The maximum number of significant digits
limits the total number of integer and fraction digits that will be shown
in the mantissa; it does not affect parsing. For example, 12345 formatted
with "##0.##E0" is "12.3E3". Exponential patterns may not contain grouping
separators.

Significant Digits
There are two ways of controlling how many digits are shows: (a)
significant digits counts, or (b) integer and fraction digit counts. Integer
and fraction digit counts are described above. When a formatter is using
significant digits counts, it uses however many integer and fraction digits
are required to display the specified number of significant digits. It may
ignore min/max integer/fraction digits, or it may use them to the extent
possible.

 Summary

 Functions

 parse(string, options \\ [])

 Parse a string locale-aware manner and return
a number.

 resolve_currencies(list, options \\ [])

 Resolve curencies from strings within
a list.

 resolve_currency(string, options \\ [])

 Resolve a currency from a string

 resolve_per(string, options \\ [])

 Resolve and tokenize percent or permille
from the beginning and/or the end of a string

 resolve_pers(list, options \\ [])

 Resolve and tokenize percent and permille
sybols from strings within a list.

 scan(string, options \\ [])

 Scans a string locale-aware manner and returns
a list of strings and numbers.

 to_approx_string(number, options \\ [])

 Formats a number and applies the :approximately format for
a locale and number system.

 to_at_least_string(number, options \\ [])

 Formats a number and applies the :at_least format for
a locale and number system.

 to_at_most_string(number, options \\ [])

 Formats a number and applies the :at_most format for
a locale and number system.

 to_range_string(range, options \\ [])

 Formats the first and last numbers of a range and applies
the :range format for a locale and number system.

 to_string(number, options \\ default_options())

 Returns a number formatted into a string according to a format pattern and options.

 to_string!(number, options \\ default_options())

 Same as the execution of to_string/2 but raises an exception if an error would be
returned.

 validate_number_system(locale, number_system)

 Return a valid number system from a provided locale and number
system name or type.

 Functions

 parse(string, options \\ [])

Parse a string locale-aware manner and return
a number.
Arguments
	string is any String.t

	options is a keyword list of options

Options
	:number is one of :integer, :float,
:decimal or nil. The default is nil
meaning that the type auto-detected as either
an integer or a float.

	:locale is any locale returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag.t. The default is
BB.Cldr.get_locale/0.

Returns
	A number of the requested or default type or

	{:error, {exception, error}} if no number could be determined

Notes
This function parses a string to return a number but
in a locale-aware manner. It will normalise grouping
characters and decimal separators, different forms of
the + and - symbols that appear in Unicode and
strips any _ characters that might be used for
formatting in a string. It then parses the number
using the Elixir standard library functions.
Examples
iex> BB.Cldr.Number.parse("＋1.000,34", locale: "de")
{:ok, 1000.34}

iex> BB.Cldr.Number.parse("-1_000_000.34")
{:ok, -1000000.34}

iex> BB.Cldr.Number.parse("1.000", locale: "de", number: :integer)
{:ok, 1000}

iex> BB.Cldr.Number.parse("＋1.000,34", locale: "de", number: :integer)
{:error,
 {Cldr.Number.ParseError,
 "The string \"＋1.000,34\" could not be parsed as a number"}}

 resolve_currencies(list, options \\ [])

Resolve curencies from strings within
a list.
Arguments
	list is any list in which currency
names and symbols are expected

	options is a keyword list of options

Options
	:locale is any valid locale returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is BB.Cldr.get_locale()

	:only is an atom or list of atoms representing the
currencies or currency types to be considered for a match.
The equates to a list of acceptable currencies for parsing.
See the notes below for currency types.

	:except is an atom or list of atoms representing the
currencies or currency types to be not considered for a match.
This equates to a list of unacceptable currencies for parsing.
See the notes below for currency types.

	:fuzzy is a float greater than 0.0 and less than or
equal to 1.0 which is used as input to
String.jaro_distance/2 to determine is the provided
currency string is close enough to a known currency
string for it to identify definitively a currency code.
It is recommended to use numbers greater than 0.8 in
order to reduce false positives.

Notes
The :only and :except options accept a list of
currency codes and/or currency types. The following
types are recognised.
If both :only and :except are specified,
the :except entries take priority - that means
any entries in :except are removed from the :only
entries.
	:all, the default, considers all currencies

	:current considers those currencies that have a :to
date of nil and which also is a known ISO4217 currency

	:historic is the opposite of :current

	:tender considers currencies that are legal tender

	:unannotated considers currencies that don't have
"(some string)" in their names. These are usually
financial instruments.

Examples
iex> BB.Cldr.Number.scan("100 US dollars")
...> |> BB.Cldr.Number.resolve_currencies
[100, :USD]

iex> BB.Cldr.Number.scan("100 eurosports")
...> |> BB.Cldr.Number.resolve_currencies(fuzzy: 0.75)
[100, :EUR]

iex> BB.Cldr.Number.scan("100 dollars des États-Unis")
...> |> BB.Cldr.Number.resolve_currencies(locale: "fr")
[100, :USD]

 resolve_currency(string, options \\ [])

Resolve a currency from a string
Arguments
	list is any list in which currency
names and symbols are expected

	options is a keyword list of options

Options
	:locale is any valid locale returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is BB.Cldr.get_locale()

	:only is an atom or list of atoms representing the
currencies or currency types to be considered for a match.
The equates to a list of acceptable currencies for parsing.
See the notes below for currency types.

	:except is an atom or list of atoms representing the
currencies or currency types to be not considered for a match.
This equates to a list of unacceptable currencies for parsing.
See the notes below for currency types.

	:fuzzy is a float greater than 0.0 and less than or
equal to 1.0 which is used as input to
String.jaro_distance/2 to determine is the provided
currency string is close enough to a known currency
string for it to identify definitively a currency code.
It is recommended to use numbers greater than 0.8 in
order to reduce false positives.

Returns
	An ISO4217 currency code as an atom or

	{:error, {exception, message}}

Notes
The :only and :except options accept a list of
currency codes and/or currency types. The following
types are recognised.
If both :only and :except are specified,
the :except entries take priority - that means
any entries in :except are removed from the :only
entries.
	:all, the default, considers all currencies

	:current considers those currencies that have a :to
date of nil and which also is a known ISO4217 currency

	:historic is the opposite of :current

	:tender considers currencies that are legal tender

	:unannotated considers currencies that don't have
"(some string)" in their names. These are usually
financial instruments.

Examples
iex> BB.Cldr.Number.resolve_currency("US dollars")
[:USD]

iex> BB.Cldr.Number.resolve_currency("100 eurosports", fuzzy: 0.75)
[:EUR]

iex> BB.Cldr.Number.resolve_currency("dollars des États-Unis", locale: "fr")
[:USD]

iex> BB.Cldr.Number.resolve_currency("not a known currency", locale: "fr")
{:error,
 {Cldr.UnknownCurrencyError,
 "The currency \"not a known currency\" is unknown or not supported"}}

 resolve_per(string, options \\ [])

 (since 2.22.0)

 @spec resolve_per(String.t(), Keyword.t()) ::
 Cldr.Number.Parser.per()
 | [Cldr.Number.Parser.per() | String.t()]
 | {:error, {module(), String.t()}}

Resolve and tokenize percent or permille
from the beginning and/or the end of a string
Arguments
	list is any list in which percent
and permille symbols are expected

	options is a keyword list of options

Options
	:locale is any valid locale returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is options[:backend].get_locale()

Returns
	An :percent or permille or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Number.resolve_per "11%"
["11", :percent]

iex> BB.Cldr.Number.resolve_per "% of linguists"
[:percent, " of linguists"]

iex> BB.Cldr.Number.resolve_per "% of linguists %"
[:percent, " of linguists ", :percent]

 resolve_pers(list, options \\ [])

 (since 2.22.0)

 @spec resolve_pers([String.t(), ...], Keyword.t()) :: [
 Cldr.Number.Parser.per() | String.t()
]

Resolve and tokenize percent and permille
sybols from strings within a list.
Percent and permille symbols can be identified
at the beginning and/or the end of a string.
Arguments
	list is any list in which percent and
permille symbols are expected

	options is a keyword list of options

Options
	:locale is any valid locale returned by Cldr.known_locale_names/1
or a t:Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is options[:backend].get_locale()

Examples
iex> BB.Cldr.Number.scan("100%")
...> |> BB.Cldr.Number.resolve_pers()
[100, :percent]

 scan(string, options \\ [])

Scans a string locale-aware manner and returns
a list of strings and numbers.
Arguments
	string is any String.t

	options is a keyword list of options

Options
	:number is one of :integer, :float,
:decimal or nil. The default is nil
meaning that the type auto-detected as either
an integer or a float.

	:locale is any locale returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag.t. The default is BB.Cldr.get_locale/0.

Returns
	A list of strings and numbers

Notes
Number parsing is performed by Cldr.Number.Parser.parse/2
and any options provided are passed to that function.
Examples
iex> BB.Cldr.Number.scan("£1_000_000.34")
["£", 1000000.34]

iex> BB.Cldr.Number.scan("I want £1_000_000 dollars")
["I want £", 1000000, " dollars"]

iex> BB.Cldr.Number.scan("The prize is 23")
["The prize is ", 23]

iex> BB.Cldr.Number.scan("The lottery number is 23 for the next draw")
["The lottery number is ", 23, " for the next draw"]

iex> BB.Cldr.Number.scan("The loss is -1.000 euros", locale: "de", number: :integer)
["The loss is ", -1000, " euros"]

 to_approx_string(number, options \\ [])

 @spec to_approx_string(number() | Decimal.t(), Keyword.t() | Keyword.t() | map()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Formats a number and applies the :approximately format for
a locale and number system.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted.
See Cldr.Number.to_string/3 for a description of the available
options.

Example
iex> BB.Cldr.Number.to_approx_string 1234
{:ok, "~1,234"}

 to_at_least_string(number, options \\ [])

 @spec to_at_least_string(number() | Decimal.t(), Keyword.t() | Keyword.t() | map()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Formats a number and applies the :at_least format for
a locale and number system.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted.
See BB.Cldr.Number.to_string/2 for a description of the available
options.

Example
iex> BB.Cldr.Number.to_at_least_string 1234
{:ok, "1,234+"}

 to_at_most_string(number, options \\ [])

 @spec to_at_most_string(number() | Decimal.t(), Keyword.t() | Keyword.t() | map()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Formats a number and applies the :at_most format for
a locale and number system.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted.
See Cldr.Number.to_string/3 for a description of the available
options.

Example
iex> BB.Cldr.Number.to_at_most_string 1234
{:ok, "≤1,234"}

 to_range_string(range, options \\ [])

 @spec to_range_string(Range.t(), Keyword.t() | Keyword.t() | map()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Formats the first and last numbers of a range and applies
the :range format for a locale and number system.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted.
See Cldr.Number.to_string/3 for a description of the available
options.

Example
iex> BB.Cldr.Number.to_range_string 1234..5678
{:ok, "1,234–5,678"}

 to_string(number, options \\ default_options())

 @spec to_string(number() | Decimal.t(), Keyword.t() | map()) ::
 {:ok, String.t()} | {:error, {atom(), String.t()}}

Returns a number formatted into a string according to a format pattern and options.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted.

Options
	format: the format style or a format string defining how the number is
formatted. See Cldr.Number.Format for how format strings can be constructed.
See Cldr.Number.Format.format_styles_for/3 to return available format styles
for a locale. The default format is :standard.

	If :format is set to :long or :short then the formatting depends on
whether :currency is specified. If not specified then the number is
formatted as :decimal_long or :decimal_short. If :currency is
specified the number is formatted as :currency_long or
:currency_short and :fractional_digits is set to 0 as a default.

	:format may also be a format defined by CLDR's Rules Based Number
Formats (RBNF). Further information is found in the module Cldr.Rbnf.
The most commonly used formats in this category are to spell out the
number in a the locales language. The applicable formats are :spellout,
:spellout_year, :ordinal. A number can also be formatted as roman
numbers by using the format :roman or :roman_lower.

	currency: is the currency for which the number is formatted. For
available currencies see Cldr.Currency.known_currencies/0. This option
is required if :format is set to :currency. If currency is set
and no :format is set, :format will be set to :currency as well.

	currency_symbol: Allows overriding a currency symbol. The alternatives
are:
	:iso the ISO currency code will be used instead of the default
currency symbol.
	:narrow uses the narrow symbol defined for the locale. The same
narrow symbol can be defined for more than one currency and therefore this
should be used with care. If no narrow symbol is defined, the standard
symbol is used.
	:symbol uses the standard symbol defined in CLDR. A symbol is unique
for each currency and can be safely used.
	"string" uses string as the currency symbol
	:standard (the default and recommended) uses the CLDR-defined symbol
based upon the currency format for the locale.

	:cash: a boolean which indicates whether a number being formatted as a
:currency is to be considered a cash value or not. Currencies can be
rounded differently depending on whether :cash is true or false.
*This option is deprecated in favour of currency_digits: :cash.

	:currency_digits indicates which of the rounding and digits should be
used. The options are :accounting which is the default, :cash or
:iso

	:rounding_mode: determines how a number is rounded to meet the precision
of the format requested. The available rounding modes are :down,
:half_up, :half_even, :ceiling, :floor, :half_down, :up. The default is
:half_even.

	:number_system: determines which of the number systems for a locale
should be used to define the separators and digits for the formatted
number. If number_system is an atom then number_system is
interpreted as a number system. If the :number_system is
binary then it is interpreted as a number system name. See
Cldr.Number.System.number_system_names_for/2. The default is :default.

	:locale: determines the locale in which the number is formatted. See
Cldr.known_locale_names/0. The default isCldr.get_locale/0 which is the
locale currently in affect for this Process and which is set by
Cldr.put_locale/1.

	If :fractional_digits is set to a positive integer value then the number
will be rounded to that number of digits and displayed accordingly - overriding
settings that would be applied by default. For example, currencies have
fractional digits defined reflecting each currencies minor unit. Setting
:fractional_digits will override that setting.

	If :maximum_integer_digits is set to a positive integer value then the
number is left truncated before formatting. For example if the number 1234
is formatted with the option maximum_integer_digits: 2, the number is
truncated to 34 and formatted.

	If :round_nearest is set to a positive integer value then the number
will be rounded to nearest increment of that value - overriding
settings that would be applied by default.

	:minimum_grouping_digits overrides the CLDR definition of minimum grouping
digits. For example in the locale es the number 1234 is formatted by default
as 1345 because the locale defines the minimium_grouping_digits as 2. If
minimum_grouping_digits: 1 is set as an option the number is formatting as
1.345. The :minimum_grouping_digits is added to the grouping defined by
the number format. If the sum of these two digits is greater than the number
of digits in the integer (or fractional) part of the number then no grouping
is performed.

	:wrapper is a 2-arity function that will be called for each number component
with parameters string and tag where tag is one of :number,
:currency_symbol, :currency_space, :literal, :quote, :percent,
:permille, :minus or :plus. The function must return a string. The
function can be used to wrap format elements in HTML or other tags.

Locale extensions affecting formatting
A locale identifier can specify options that affect number formatting.
These options are:
	nu: defines the number system to be used if none is specified by the :number_system
option to to_string/2

This key is part of the u extension and
that document should be consulted for details on how to construct a locale identifier with these
extensions.
Wrapping format elements
Wrapping elements is particularly useful when formatting a number with a
currency symbol and the requirement is to have different HTML formatting
applied to the symbol than the number. For example:
iex> Cldr.Number.to_string(100, format: :currency, currency: :USD, wrapper: fn
...> string, :currency_symbol -> "" <> string <> ""
...> string, :number -> "" <> string <> ""
...> string, :currency_space -> "" <> string <> ""
...> string, _other -> string
...> end)
{:ok, "$100.00"}
It is also possible and recommended to use the Phoenix.HTML.Tag.content_tag/3
function if wrapping HTML tags since these will ensure HTML entities are
correctly encoded. For example:
iex> Cldr.Number.to_string(100, format: :currency, currency: :USD, wrapper: fn
...> string, :currency_symbol -> Phoenix.HTML.Tag.content_tag(:span, string, class: "symbol")
...> string, :number -> Phoenix.HTML.Tag.content_tag(:span, string, class: "number")
...> string, :currency_space -> Phoenix.HTML.Tag.content_tag(:span, string)
...> string, _other -> string
...> end)
{:ok, "$100.00"}
When formatting a number the format is parsed into format elements that might include
a currency symbol, a literal string, inserted text between a currency symbol and the
currency amount, a percent sign, the number itself and several other elements. In
some cases it is helpful to be apply specific formatting to each element.
This can be achieved by specifying a :wrapper option. This option takes a 2-arity
function as an argument. For each element of the format the wrapper function is called
with two parameters: the format element as a string and an atom representing the
element type. The wrapper function is required to return a string that is then
inserted in the final formatted number.
Returns
	{:ok, string} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Number.to_string 12345
{:ok, "12,345"}

iex> BB.Cldr.Number.to_string 12345, locale: "fr"
{:ok, "12 345"}

iex> BB.Cldr.Number.to_string 1345.32, currency: :EUR, locale: "es", minimum_grouping_digits: 1
{:ok, "1.345,32 €"}

iex> BB.Cldr.Number.to_string 1345.32, currency: :EUR, locale: "es"
{:ok, "1345,32 €"}

iex> BB.Cldr.Number.to_string 12345, locale: "fr", currency: "USD"
{:ok, "12 345,00 $US"}

iex> BB.Cldr.Number.to_string 12345, format: "#E0"
{:ok, "1.2345E4"}

iex> BB.Cldr.Number.to_string 12345, format: :accounting, currency: "THB"
{:ok, "THB 12,345.00"}

iex> BB.Cldr.Number.to_string -12345, format: :accounting, currency: "THB"
{:ok, "(THB 12,345.00)"}

iex> BB.Cldr.Number.to_string 12345, format: :accounting, currency: "THB",
...> locale: "th"
{:ok, "฿12,345.00"}

iex> BB.Cldr.Number.to_string 12345, format: :accounting, currency: "THB",
...> locale: "th", number_system: :native
{:ok, "฿๑๒,๓๔๕.๐๐"}

iex> BB.Cldr.Number.to_string 1244.30, format: :long
{:ok, "1 thousand"}

iex> BB.Cldr.Number.to_string 1244.30, format: :long, currency: "USD"
{:ok, "1,244 US dollars"}

iex> BB.Cldr.Number.to_string 1244.30, format: :short
{:ok, "1K"}

iex> BB.Cldr.Number.to_string 1244.30, format: :short, currency: "EUR"
{:ok, "€1K"}

iex> BB.Cldr.Number.to_string 1234, format: :spellout
{:ok, "one thousand two hundred thirty-four"}

iex> BB.Cldr.Number.to_string 1234, format: :spellout_verbose
{:ok, "one thousand two hundred and thirty-four"}

iex> BB.Cldr.Number.to_string 1989, format: :spellout_year
{:ok, "nineteen eighty-nine"}

iex> BB.Cldr.Number.to_string 123, format: :ordinal
{:ok, "123rd"}

iex> BB.Cldr.Number.to_string 123, format: :roman
{:ok, "CXXIII"}

iex> BB.Cldr.Number.to_string 123, locale: "th-u-nu-thai"
{:ok, "๑๒๓"}
Errors
An error tuple {:error, reason} will be returned if an error is detected.
The two most likely causes of an error return are:
	A format cannot be compiled. In this case the error tuple will look like:

 iex> BB.Cldr.Number.to_string(12345, format: "0#")
 {:error, {Cldr.FormatCompileError,
 "Decimal format compiler: syntax error before: \"#\""}}
	The format style requested is not defined for the locale and
number_system. This happens typically when the number system is
:algorithmic rather than the more common :numeric. In this case the error
return looks like:

 iex> BB.Cldr.Number.to_string(1234, locale: "he", number_system: "hebr", format: :percent)
 {:error, {Cldr.UnknownFormatError,
 "The locale :he with number system :hebr does not define a format :percent"}}

 to_string!(number, options \\ default_options())

 @spec to_string!(number() | Decimal.t() | String.t(), Keyword.t() | map()) ::
 String.t() | no_return()

Same as the execution of to_string/2 but raises an exception if an error would be
returned.
Arguments
	number is an integer, float or Decimal to be formatted

	options is a keyword list defining how the number is to be formatted. See
BB.Cldr.Number.to_string/2

Returns
	a formatted number as a string or

	raises an exception

Examples
iex> BB.Cldr.Number.to_string! 12345
"12,345"

iex> BB.Cldr.Number.to_string! 12345, locale: "fr"
"12 345"

 validate_number_system(locale, number_system)

 @spec validate_number_system(
 Cldr.Locale.locale_name() | Cldr.LanguageTag.t(),
 Cldr.Number.System.system_name() | Cldr.Number.System.types()
) :: {:ok, Cldr.Number.System.system_name()} | {:error, {module(), String.t()}}

Return a valid number system from a provided locale and number
system name or type.
The number system or number system type must be valid for the
given locale. If a number system type is provided, the
underlying number system is returned.
Arguments
	locale is any valid locale name returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2

	system_name is any number system name returned by
Cldr.known_number_systems/0 or a number system type
returned by Cldr.known_number_system_types/0

Examples
iex> BB.Cldr.Number.validate_number_system "en", :latn
{:ok, :latn}

iex> BB.Cldr.Number.validate_number_system "en", :default
{:ok, :latn}

iex> BB.Cldr.Number.validate_number_system "en", :unknown
{:error,
 {Cldr.UnknownNumberSystemError, "The number system :unknown is unknown"}}

iex> BB.Cldr.Number.validate_number_system "zz", :default
{:error, {Cldr.InvalidLanguageError, "The language \"zz\" is invalid"}}

BB.Cldr.Number.Cardinal

Implements cardinal plural rules for numbers.

 Summary

 Functions

 available_locale_names()

 The locale names for which plural rules are defined.

 known_locale_names()

 The configured locales for which plural rules are defined.

 plural_rule(number, locale, rounding \\ Math.default_rounding())

 Return the plural key for a given number in a given locale

 plural_rules()

 Returns all the plural rules defined in CLDR.

 plural_rules_for(locale_name)

 Return the plural rules for a locale.

 pluralize(number, locale_name, substitutions)

 Pluralize a number using cardinal plural rules
and a substitution map.

 Functions

 available_locale_names()

The locale names for which plural rules are defined.

 known_locale_names()

 @spec known_locale_names() :: [Cldr.Locale.locale_name(), ...]

The configured locales for which plural rules are defined.
Returns the intersection of BB.Cldr.known_locale_names/0 and
the locales for which Cardinal plural rules are defined.
There are many Cldr locales which don't have their own plural
rules so this list is the intersection of Cldr's configured
locales and those that have rules.

 plural_rule(number, locale, rounding \\ Math.default_rounding())

 @spec plural_rule(
 Cldr.Math.number_or_decimal(),
 Cldr.Locale.locale_name() | Cldr.LanguageTag.t(),
 atom() | pos_integer()
) :: Cldr.Number.PluralRule.plural_type() | {:error, {module(), String.t()}}

Return the plural key for a given number in a given locale
Returns which plural key (:zero, :one, :two, :few,
:many or :other) a given number fits into within the
context of a given locale.
Note that these key names should not be interpreted
literally. For example, the key returned from
Cldr.Number.Ordinal.plural_rule(0, "en") is actually
:other, not :zero.
This key can then be used to format a number, date, time, unit,
list or other content in a plural-sensitive way.
Arguments
	number is any integer, float or Decimal

	locale is any locale returned by Cldr.Locale.new!/2 or any
locale_name returned by BB.Cldr.known_locale_names/0

	rounding is one of [:down, :up, :ceiling, :floor, :half_even, :half_up, :half_down]. The
default is :half_even.

Examples
iex> BB.Cldr.Number.Cardinal.plural_rule 0, "fr"
:one

iex> BB.Cldr.Number.Cardinal.plural_rule 0, "en"
:other

 plural_rules()

 @spec plural_rules() :: %{
 required(Cldr.Locale.locale_name()) => [
 {plural_type :: Cldr.Number.PluralRule.plural_type(),
 plural_rules :: [Cldr.Number.PluralRule.plural_rule(), ...]},
 ...
]
}

Returns all the plural rules defined in CLDR.

 plural_rules_for(locale_name)

 @spec plural_rules_for(Cldr.Locale.locale_name() | Cldr.LanguageTag.t()) :: [
 {atom(), list()},
 ...
]

Return the plural rules for a locale.
Arguments
	locale is any locale returned by BB.Cldr.Locale.new!/1 or any
locale_name returned by BB.Cldr.known_locale_names/0

The rules are returned in AST form after parsing.

 pluralize(number, locale_name, substitutions)

 @spec pluralize(
 Cldr.Math.number_or_decimal() | Range.t(),
 Cldr.Locale.locale_reference(),
 %{}
) :: any()

Pluralize a number using cardinal plural rules
and a substitution map.
Arguments
	number is an integer, float or Decimal

	locale is any locale returned by BB.Cldr.Locale.new!/1 or any
locale_name returned by BB.Cldr.known_locale_names/0

	substitutions is a map that maps plural keys to a string.
The valid substitution keys are :zero, :one, :two,
:few, :many and :other.

See also BB.Cldr.Number.Cardinal.Cardinal.plural_rule/3.
Examples
iex> BB.Cldr.Number.Cardinal.pluralize 1, "en", %{one: "one"}
"one"

iex> BB.Cldr.Number.Cardinal.pluralize 2, "en", %{one: "one"}
nil

iex> BB.Cldr.Number.Cardinal.pluralize 2, "en", %{one: "one", two: "two", other: "other"}
"other"

iex> BB.Cldr.Number.Cardinal.pluralize 22, "en", %{one: "one", two: "two", other: "other"}
"other"

iex> BB.Cldr.Number.Cardinal.pluralize Decimal.new(1), "en", %{one: "one"}
"one"

iex> BB.Cldr.Number.Cardinal.pluralize Decimal.new(2), "en", %{one: "one"}
nil

iex> BB.Cldr.Number.Cardinal.pluralize Decimal.new(2), "en", %{one: "one", two: "two"}
nil

iex> BB.Cldr.Number.Cardinal.pluralize 1..10, "ar", %{one: "one", few: "few", other: "other"}
"few"

iex> BB.Cldr.Number.Cardinal.pluralize 1..10, "en", %{one: "one", few: "few", other: "other"}
"other"

BB.Cldr.Number.Format

Functions to manage the collection of number patterns defined in Cldr.
Number patterns affect how numbers are interpreted in a localized context.
Here are some examples, based on the French locale. The "." shows where the
decimal point should go. The "," shows where the thousands separator should
go. A "0" indicates zero-padding: if the number is too short, a zero (in the
locale's numeric set) will go there. A "#" indicates no padding: if the
number is too short, nothing goes there. A "¤" shows where the currency sign
will go. The following illustrates the effects of different patterns for the
French locale, with the number "1234.567". Notice how the pattern characters
',' and '.' are replaced by the characters appropriate for the locale.
Number Pattern Examples
	Pattern	Currency	Text
	#,##0.##	n/a	1 234,57
	#,##0.###	n/a	1 234,567
	###0.#####	n/a	1234,567
	###0.0000#	n/a	1234,5670
	00000.0000	n/a	01234,5670
	#,##0.00 ¤	EUR	1 234,57 €

The number of # placeholder characters before the decimal do not matter,
since no limit is placed on the maximum number of digits. There should,
however, be at least one zero some place in the pattern. In currency formats,
the number of digits after the decimal also do not matter, since the
information in the supplemental data (see Supplemental Currency Data) is used
to override the number of decimal places — and the rounding — according to
the currency that is being formatted. That can be seen in the above chart,
with the difference between Yen and Euro formatting.
Details of the number formats are described in the
Unicode documentation

 Summary

 Functions

 all_formats_for(locale \\ BB.Cldr.get_locale())

 Returns the decimal formats defined for a given locale.

 all_formats_for!(locale \\ BB.Cldr.get_locale())

 Returns the decimal formats defined for a given locale.

 currency_spacing(locale, number_system)

 Returns the currency space for a given locale and
number system.

 decimal_format_list()

 Returns the list of decimal formats in the configured locales including
the list of locales configured for precompilation in config.exs.

 decimal_format_list_for(locale \\ BB.Cldr.get_locale())

 Returns the list of decimal formats for a configured locale.

 default_grouping_for(locale \\ BB.Cldr.get_locale())

 Returns the default grouping for a locale as a map.

 default_grouping_for!(locale)

 Returns the default grouping for a locale
or raises on error.

 formats_for(locale \\ BB.Cldr.default_locale(), number_system \\ Cldr.Number.System.default_number_system_type())

 Return the predfined formats for a given locale and number_system.

 formats_for!(locale \\ BB.Cldr.default_locale(), number_system \\ Cldr.Number.System.default_number_system_type())

 minimum_grouping_digits_for(locale \\ BB.Cldr.get_locale())

 Returns the minimum grouping digits for a locale.

 minimum_grouping_digits_for!(locale)

 Returns the minimum grouping digits for a locale
or raises on error.

 Functions

 all_formats_for(locale \\ BB.Cldr.get_locale())

 @spec all_formats_for(Cldr.Locale.locale_reference()) ::
 {:ok, %{required(Cldr.Number.System.system_name()) => map()}}
 | {:error, {module(), String.t()}}

Returns the decimal formats defined for a given locale.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	{:ok, map} where map is a map of decimal formats
keyed by number system or

	{:error, {exception, message}}

 all_formats_for!(locale \\ BB.Cldr.get_locale())

 @spec all_formats_for!(Cldr.Locale.locale_reference()) ::
 %{required(Cldr.Number.System.system_name()) => map()} | no_return()

Returns the decimal formats defined for a given locale.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	{:ok, map} where map is a map of decimal formats
keyed by number system or

	raises an exception.

See BB.Cldr.Number.Format.Number.Format.all_formats_for/1 for further information.

 currency_spacing(locale, number_system)

 @spec currency_spacing(
 Cldr.LanguageTag.t() | Cldr.Locale.locale_name(),
 Cldr.Number.System.system_name()
) :: map() | {:error, {module(), String.t()}}

Returns the currency space for a given locale and
number system.

 decimal_format_list()

 @spec decimal_format_list() :: [Cldr.Number.Format.format()]

Returns the list of decimal formats in the configured locales including
the list of locales configured for precompilation in config.exs.
This function exists to allow the decimal formatter
to precompile all the known formats at compile time.
Example
#=> BB.Cldr.Number.Format.Format.decimal_format_list
["#", "#,##,##0%",
"#,##,##0.###", "#,##,##0.00¤", "#,##,##0.00¤;(#,##,##0.00¤)",
"#,##,##0 %", "#,##0%", "#,##0.###", "#,##0.00 ¤",
"#,##0.00 ¤;(#,##0.00 ¤)", "#,##0.00¤", "#,##0.00¤;(#,##0.00¤)",
"#,##0 %", "#0%", "#0.######", "#0.00 ¤", "#E0", "%#,##0", "% #,##0",
"0", "0.000000E+000", "0000 M ¤", "0000¤", "000G ¤", "000K ¤", "000M ¤",
"000T ¤", "000mM ¤", "000m ¤", "000 Bio'.' ¤", "000 Bln ¤", "000 Bn ¤",
"000 B ¤", "000 E ¤", "000 K ¤", "000 MRD ¤", "000 Md ¤", "000 Mio'.' ¤",
"000 Mio ¤", "000 Mld ¤", "000 Mln ¤", "000 Mn ¤", "000 Mrd'.' ¤",
"000 Mrd ¤", "000 Mr ¤", "000 M ¤", "000 NT ¤", "000 N ¤", "000 Tn ¤",
"000 Tr ¤", ...]

 decimal_format_list_for(locale \\ BB.Cldr.get_locale())

 @spec decimal_format_list_for(Cldr.LanguageTag.t() | Cldr.Locale.locale_name()) ::
 {:ok, [String.t()]} | {:error, {module(), String.t()}}

Returns the list of decimal formats for a configured locale.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

This function exists to allow the decimal formatter to precompile all
the known formats at compile time. Its use is not otherwise recommended.
Example
iex> BB.Cldr.Number.Format.decimal_format_list_for(:en)
{:ok, ["#,##0%", "#,##0.###", "#,##0.00", "#,##0.00;(#,##0.00)","#E0",
 "0 billion", "0 million", "0 thousand",
 "0 trillion", "00 billion", "00 million", "00 thousand", "00 trillion",
 "000 billion", "000 million", "000 thousand", "000 trillion", "000B", "000K",
 "000M", "000T", "00B", "00K", "00M", "00T", "0B", "0K", "0M", "0T",
 "¤#,##0.00", "¤#,##0.00;(¤#,##0.00)", "¤000B", "¤000K", "¤000M",
 "¤000T", "¤00B", "¤00K", "¤00M", "¤00T", "¤0B", "¤0K", "¤0M", "¤0T",
 "¤ #,##0.00", "¤ #,##0.00;(¤ #,##0.00)", "¤ 000B", "¤ 000K", "¤ 000M",
 "¤ 000T", "¤ 00B", "¤ 00K", "¤ 00M", "¤ 00T", "¤ 0B", "¤ 0K", "¤ 0M", "¤ 0T"]}

 default_grouping_for(locale \\ BB.Cldr.get_locale())

 @spec default_grouping_for(Cldr.Locale.locale_reference()) ::
 {:ok, map()} | {:error, {module(), String.t()}}

Returns the default grouping for a locale as a map.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	{:ok, grouping} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Number.Format.default_grouping_for(:en)
{:ok, %{fraction: %{first: 0, rest: 0}, integer: %{first: 3, rest: 3}}}

 default_grouping_for!(locale)

 @spec default_grouping_for!(Cldr.Locale.locale_reference()) ::
 %{
 fraction: %{first: non_neg_integer(), rest: non_neg_integer()},
 integer: %{first: non_neg_integer(), rest: non_neg_integer()}
 }
 | no_return()

Returns the default grouping for a locale
or raises on error.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	grouping as a map or

	raises an exception.

Examples
iex> BB.Cldr.Number.Format.default_grouping_for!(:en)
%{fraction: %{first: 0, rest: 0}, integer: %{first: 3, rest: 3}}

 formats_for(locale \\ BB.Cldr.default_locale(), number_system \\ Cldr.Number.System.default_number_system_type())

 @spec formats_for(Cldr.LanguageTag.t() | binary(), atom() | String.t()) ::
 {:ok, map()} | {:error, {module(), String.t()}}

Return the predfined formats for a given locale and number_system.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

	number_system is any valid number system or number system type returned
by BB.Cldr.Number.System.number_systems_for/1.

Example
BB.Cldr.Number.Format.formats_for :fr, :native
#=> %Cldr.Number.Format{
 accounting: "#,##0.00 ¤;(#,##0.00 ¤)",
 currency: "#,##0.00 ¤",
 percent: "#,##0 %",
 scientific: "#E0",
 standard: "#,##0.###"
 currency_short: [{"1000", [one: "0 k ¤", other: "0 k ¤"]},
 {"10000", [one: "00 k ¤", other: "00 k ¤"]},
 {"100000", [one: "000 k ¤", other: "000 k ¤"]},
 {"1000000", [one: "0 M ¤", other: "0 M ¤"]},
 {"10000000", [one: "00 M ¤", other: "00 M ¤"]},
 {"100000000", [one: "000 M ¤", other: "000 M ¤"]},
 {"1000000000", [one: "0 Md ¤", other: "0 Md ¤"]},
 {"10000000000", [one: "00 Md ¤", other: "00 Md ¤"]},
 {"100000000000", [one: "000 Md ¤", other: "000 Md ¤"]},
 {"1000000000000", [one: "0 Bn ¤", other: "0 Bn ¤"]},
 {"10000000000000", [one: "00 Bn ¤", other: "00 Bn ¤"]},
 {"100000000000000", [one: "000 Bn ¤", other: "000 Bn ¤"]}],
 ...
 }

 formats_for!(locale \\ BB.Cldr.default_locale(), number_system \\ Cldr.Number.System.default_number_system_type())

 @spec formats_for!(
 Cldr.LanguageTag.t() | Cldr.Locale.locale_name(),
 Cldr.Number.System.system_name()
) ::
 map() | no_return()

 minimum_grouping_digits_for(locale \\ BB.Cldr.get_locale())

 @spec minimum_grouping_digits_for(Cldr.Locale.locale_reference()) ::
 {:ok, non_neg_integer()} | {:error, {module(), String.t()}}

Returns the minimum grouping digits for a locale.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	{:ok, minumum_digits} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Number.Format.minimum_grouping_digits_for("en")
{:ok, 1}

 minimum_grouping_digits_for!(locale)

 @spec minimum_grouping_digits_for!(Cldr.Locale.locale_reference()) ::
 non_neg_integer() | no_return()

Returns the minimum grouping digits for a locale
or raises on error.
Arguments
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Returns
	minumum_digits or

	raises an exception.

Examples
iex> BB.Cldr.Number.Format.minimum_grouping_digits_for!("en")
1

BB.Cldr.Number.Formatter.Decimal

 Summary

 Functions

 metadata!(format)

 to_string(number, format, options \\ [])

 Formats a number according to a decimal format string.

 Functions

 metadata!(format)

 to_string(number, format, options \\ [])

 @spec to_string(
 Cldr.Math.number_or_decimal(),
 String.t() | Cldr.Number.Format.Meta.t(),
 Keyword.t() | Cldr.Number.Format.Options.t()
) :: {:ok, String.t()} | {:error, {module(), String.t()}}

Formats a number according to a decimal format string.
Arguments
	number is an integer, float or Decimal

	format is a format string. See BB.Cldr.Number for further information.

	options is a map of options. See BB.Cldr.Number.to_string/2
for further information.

BB.Cldr.Number.Ordinal

Implements ordinal plural rules for numbers.

 Summary

 Functions

 available_locale_names()

 The locale names for which plural rules are defined.

 known_locale_names()

 The configured locales for which plural rules are defined.

 plural_rule(number, locale, rounding \\ Math.default_rounding())

 Return the plural key for a given number in a given locale

 plural_rules()

 Returns all the plural rules defined in CLDR.

 plural_rules_for(locale_name)

 Return the plural rules for a locale.

 pluralize(number, locale_name, substitutions)

 Pluralize a number using ordinal plural rules
and a substitution map.

 Functions

 available_locale_names()

The locale names for which plural rules are defined.

 known_locale_names()

 @spec known_locale_names() :: [Cldr.Locale.locale_name(), ...]

The configured locales for which plural rules are defined.
Returns the intersection of BB.Cldr.known_locale_names/0 and
the locales for which Ordinal plural rules are defined.
There are many Cldr locales which don't have their own plural
rules so this list is the intersection of Cldr's configured
locales and those that have rules.

 plural_rule(number, locale, rounding \\ Math.default_rounding())

 @spec plural_rule(
 Cldr.Math.number_or_decimal(),
 Cldr.Locale.locale_name() | Cldr.LanguageTag.t(),
 atom() | pos_integer()
) :: Cldr.Number.PluralRule.plural_type() | {:error, {module(), String.t()}}

Return the plural key for a given number in a given locale
Returns which plural key (:zero, :one, :two, :few,
:many or :other) a given number fits into within the
context of a given locale.
Note that these key names should not be interpreted
literally. For example, the key returned from
Cldr.Number.Ordinal.plural_rule(0, "en") is actually
:other, not :zero.
This key can then be used to format a number, date, time, unit,
list or other content in a plural-sensitive way.
Arguments
	number is any integer, float or Decimal

	locale is any locale returned by Cldr.Locale.new!/2 or any
locale_name returned by BB.Cldr.known_locale_names/0

	rounding is one of [:down, :up, :ceiling, :floor, :half_even, :half_up, :half_down]. The
default is :half_even.

Examples
iex> BB.Cldr.Number.Ordinal.plural_rule 0, "fr"
:other

iex> BB.Cldr.Number.Ordinal.plural_rule 1, "en"
:one

 plural_rules()

 @spec plural_rules() :: %{
 required(Cldr.Locale.locale_name()) => [
 {plural_type :: Cldr.Number.PluralRule.plural_type(),
 plural_rules :: [Cldr.Number.PluralRule.plural_rule(), ...]},
 ...
]
}

Returns all the plural rules defined in CLDR.

 plural_rules_for(locale_name)

 @spec plural_rules_for(Cldr.Locale.locale_name() | Cldr.LanguageTag.t()) :: [
 {atom(), list()},
 ...
]

Return the plural rules for a locale.
Arguments
	locale is any locale returned by BB.Cldr.Locale.new!/1 or any
locale_name returned by BB.Cldr.known_locale_names/0

The rules are returned in AST form after parsing.

 pluralize(number, locale_name, substitutions)

 @spec pluralize(
 Cldr.Math.number_or_decimal() | Range.t(),
 Cldr.Locale.locale_reference(),
 %{}
) :: any()

Pluralize a number using ordinal plural rules
and a substitution map.
Arguments
	number is an integer, float or Decimal or a Range.t{}. When a range, The
is that in any usage, the start value is strictly less than the end value,
and that no values are negative. Results for any cases that do not meet
these criteria are undefined.

	locale is any locale returned by BB.Cldr.Locale.new!/1 or any
locale_name returned by BB.Cldr.known_locale_names/0

	substitutions is a map that maps plural keys to a string.
The valid substitution keys are :zero, :one, :two,
:few, :many and :other.

See also BB.Cldr.Number.Ordinal.Ordinal.plural_rule/3.
Examples
iex> BB.Cldr.Number.Ordinal.pluralize 1, :en, %{one: "one"}
"one"

iex> BB.Cldr.Number.Ordinal.pluralize 2, :en, %{one: "one"}
nil

iex> BB.Cldr.Number.Ordinal.pluralize 2, :en, %{one: "one", two: "two"}
"two"

iex> BB.Cldr.Number.Ordinal.pluralize 22, :en, %{one: "one", two: "two", other: "other"}
"two"

iex> BB.Cldr.Number.Ordinal.pluralize Decimal.new(1), :en, %{one: "one"}
"one"

iex> BB.Cldr.Number.Ordinal.pluralize Decimal.new(2), :en, %{one: "one"}
nil

iex> BB.Cldr.Number.Ordinal.pluralize Decimal.new(2), :en, %{one: "one", two: "two"}
"two"

iex> BB.Cldr.Number.Ordinal.pluralize 1..10, "ar", %{one: "one", few: "few", other: "other"}
"other"

iex> BB.Cldr.Number.Ordinal.pluralize 1..10, "en", %{one: "one", few: "few", other: "other"}
"other"

BB.Cldr.Number.PluralRule.Range

Implements plural rules for ranges

 Summary

 Functions

 plural_rule(first, last, locale)

 Returns a final plural type for a start-of-range plural
type, an end-of-range plural type and a locale.

 Functions

 plural_rule(first, last, locale)

 @spec plural_rule(
 first :: Cldr.Number.PluralRule.plural_type(),
 last :: Cldr.Number.PluralRule.plural_type(),
 locale :: Cldr.Locale.locale_name() | Cldr.LanguageTag.t()
) :: Cldr.Number.PluralRule.plural_type() | {:error, {module(), String.t()}}

Returns a final plural type for a start-of-range plural
type, an end-of-range plural type and a locale.
Arguments
	first is a plural type for the start of a range

	last is a plural type for the end of a range

	locale is any Cldr.LanguageTag.t or a language name
(not locale name)

Example
iex> BB.Cldr.Number.PluralRule.Range.plural_rule :other, :few, "ar"
:few

BB.Cldr.Number.Symbol

 Summary

 Functions

 all_decimal_symbols()

 Returns a list of all decimal symbols defined
by the locales configured in this backend as
a list.

 all_decimal_symbols_class()

 Returns a list of all decimal symbols defined
by the locales configured in this backend as
a string.

 all_grouping_symbols()

 Returns a list of all grouping symbols defined
by the locales configured in this backend as
a list.

 all_grouping_symbols_class()

 Returns a list of all grouping symbols defined
by the locales configured in this backend as
a string.

 number_symbols_for(locale \\ BB.Cldr.get_locale())

 Returns a map of Cldr.Number.Symbol.t structs of the number symbols for each
of the number systems of a locale.

 number_symbols_for(locale, number_system)

 Functions

 all_decimal_symbols()

Returns a list of all decimal symbols defined
by the locales configured in this backend as
a list.

 all_decimal_symbols_class()

Returns a list of all decimal symbols defined
by the locales configured in this backend as
a string.
This string can be used as a character class
when builing a regular expression.

 all_grouping_symbols()

Returns a list of all grouping symbols defined
by the locales configured in this backend as
a list.

 all_grouping_symbols_class()

Returns a list of all grouping symbols defined
by the locales configured in this backend as
a string.
This string can be used as a character class
when builing a regular expression.

 number_symbols_for(locale \\ BB.Cldr.get_locale())

 @spec number_symbols_for(Cldr.LanguageTag.t() | Cldr.Locale.locale_name()) ::
 {:ok, map()} | {:error, {module(), String.t()}}

Returns a map of Cldr.Number.Symbol.t structs of the number symbols for each
of the number systems of a locale.
Options
	locale is any valid locale name returned by
BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by
BB.Cldr.Locale.new!/1. The default
is BB.Cldr.get_locale/0.

Example:
iex> BB.Cldr.Number.Symbol.number_symbols_for(:th)
{
 :ok,
 %{
 latn: %Cldr.Number.Symbol{
 decimal: %{standard: "."},
 exponential: "E",
 group: %{standard: ","},
 infinity: "∞",
 list: ";",
 minus_sign: "-",
 nan: "NaN",
 per_mille: "‰",
 percent_sign: "%",
 plus_sign: "+",
 superscripting_exponent: "×",
 time_separator: ":"
 },
 thai: %Cldr.Number.Symbol{
 decimal: %{standard: "."},
 exponential: "E",
 group: %{standard: ","},
 infinity: "∞",
 list: ";",
 minus_sign: "-",
 nan: "NaN",
 per_mille: "‰",
 percent_sign: "%",
 plus_sign: "+",
 superscripting_exponent: "×",
 time_separator: ":"
 }
 }
}

 number_symbols_for(locale, number_system)

BB.Cldr.Number.System

 Summary

 Functions

 number_system_for(locale, system_name)

 Returns the actual number system from a number system type.

 number_system_from_locale(locale)

 Returns the number system from a language tag or
locale name.

 number_system_names_for(locale)

 Returns the number systems available for a locale
or {:error, message} if the locale is not known.

 number_system_names_for!(locale)

 number_system_types_for(locale)

 number_systems_for(locale)

 Returns the number systems available for a locale
or {:error, message} if the locale is not known.

 number_systems_for!(locale)

 number_systems_like(locale, number_system)

 system_name_from(system_name, locale)

 Returns a number system name for a given locale and number system reference.

 to_system(number, system)

 Converts a number into the representation of
a non-latin number system.

 to_system!(number, system_name)

 Converts a number into the representation of
a non-latin number system. Returns a converted
string or raises on error.

 Functions

 number_system_for(locale, system_name)

 @spec number_system_for(
 Cldr.Locale.locale_reference(),
 Cldr.Number.System.system_name()
) ::
 {:ok, [atom()]} | {:error, {module(), String.t()}}

Returns the actual number system from a number system type.
	locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2

	system_name is any number system name returned by
Cldr.known_number_systems/0 or a number system type
returned by Cldr.known_number_system_types/0

This function will decode a number system type into the actual
number system. If the number system provided can't be decoded
it is returned as is.
Examples
iex> BB.Cldr.Number.System.number_system_for "th", :latn
{:ok, %{digits: "0123456789", type: :numeric}}

iex> BB.Cldr.Number.System.number_system_for "en", :default
{:ok, %{digits: "0123456789", type: :numeric}}

iex> BB.Cldr.Number.System.number_system_for "he", :traditional
{:ok, %{rules: "hebrew", type: :algorithmic}}

iex> BB.Cldr.Number.System.number_system_for "en", :native
{:ok, %{digits: "0123456789", type: :numeric}}

iex> BB.Cldr.Number.System.number_system_for "en", :finance
{
 :error,
 {Cldr.UnknownNumberSystemError,
 "The number system :finance is unknown for the locale named :en. Valid number systems are %{default: :latn, native: :latn}"}
}

 number_system_from_locale(locale)

 @spec number_system_from_locale(Cldr.Locale.locale_reference()) ::
 Cldr.Number.System.system_name() | {:error, {module(), String.t()}}

Returns the number system from a language tag or
locale name.
Arguments
	locale is any language tag returned be Cldr.Locale.new/2
or a locale name in the list returned by Cldr.known_locale_names/1

Returns
	A number system name as an atom

Examples
iex> BB.Cldr.Number.System.number_system_from_locale "en-US-u-nu-thai"
:thai

iex> BB.Cldr.Number.System.number_system_from_locale "en-US"
:latn

 number_system_names_for(locale)

 @spec number_system_names_for(Cldr.Locale.locale_reference()) ::
 {:ok, [atom()]} | {:error, {module(), String.t()}}

Returns the number systems available for a locale
or {:error, message} if the locale is not known.
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by BB.Cldr.Locale.new!/1

Examples
iex> BB.Cldr.Number.System.number_system_names_for "en"
{:ok, [:latn]}

iex> BB.Cldr.Number.System.number_system_names_for "zz"
{:error, {Cldr.InvalidLanguageError, "The language \"zz\" is invalid"}}

 number_system_names_for!(locale)

 number_system_types_for(locale)

 number_systems_for(locale)

 @spec number_systems_for(Cldr.Locale.locale_reference()) ::
 {:ok, map()} | {:error, {module(), String.t()}}

Returns the number systems available for a locale
or {:error, message} if the locale is not known.
	locale is any valid locale name returned by BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by BB.Cldr.Locale.new!/1

Examples
iex> BB.Cldr.Number.System.number_systems_for "en"
{:ok, %{default: :latn, native: :latn}}

iex> BB.Cldr.Number.System.number_systems_for "th"
{:ok, %{default: :latn, native: :thai}}

iex> BB.Cldr.Number.System.number_systems_for "zz"
{:error, {Cldr.InvalidLanguageError, "The language \"zz\" is invalid"}}

 number_systems_for!(locale)

 number_systems_like(locale, number_system)

 @spec number_systems_like(
 Cldr.Locale.locale_reference(),
 Cldr.Number.System.system_name()
) ::
 {:ok, list()} | {:error, {module(), String.t()}}

 system_name_from(system_name, locale)

 @spec system_name_from(
 Cldr.Number.System.system_name(),
 Cldr.Locale.locale_reference()
) ::
 {:ok, Cldr.Number.System.system_name()} | {:error, {module(), String.t()}}

Returns a number system name for a given locale and number system reference.
	system_name is any number system name returned by
BB.Cldr.known_number_systems/0 or a number system type
returned by BB.Cldr.known_number_system_types/0

	locale is any valid locale name returned by BB.Cldr.known_locale_names/0
or a Cldr.LanguageTag struct returned by BB.Cldr.Locale.new!/1

Number systems can be references in one of two ways:
	As a number system type such as :default, :native, :traditional and
:finance. This allows references to a number system for a locale in a
consistent fashion for a given use

	WIth the number system name directly, such as :latn, :arab or any of the
other 70 or so

This function dereferences the supplied system_name and returns the
actual system name.
Examples
ex> BB.Cldr.Number.System.system_name_from(:default, "en")
{:ok, :latn}

iex> BB.Cldr.Number.System.system_name_from("latn", "en")
{:ok, :latn}

iex> BB.Cldr.Number.System.system_name_from(:native, "en")
{:ok, :latn}

iex> BB.Cldr.Number.System.system_name_from(:nope, "en")
{
 :error,
 {Cldr.UnknownNumberSystemError, "The number system :nope is unknown"}
}
Note that return value is not guaranteed to be a valid
number system for the given locale as demonstrated in the third example.

 to_system(number, system)

Converts a number into the representation of
a non-latin number system.
This function converts numbers to a known
number system only, it does not provide number
formatting.
	number is a float, integer or Decimal

	system_name is any number system name returned by
Cldr.known_number_systems/0 or a number system type
returned by Cldr.known_number_system_types/0

There are two types of number systems in CLDR:
	:numeric in which the number system defines
a direct mapping between the latin digits 0..9
into a the number system equivalent. In this case,
to_system/2 invokes Cldr.Number.Transliterate.transliterate_digits/3
for the given number.

	:algorithmic in which the number system
does not have the same structure as the :latn
number system and therefore the conversion is
done algorithmically. For CLDR the algorithm
is implemented through Cldr.Rbnf rulesets.
These rulesets are considered by CLDR to be
less rigorous than the :numeric number systems
and caution and testing for a specific use case
is recommended.

Examples
iex> BB.Cldr.Number.System.to_system 123456, :hebr
{:ok, "קכ״ג׳תנ״ו"}

iex> BB.Cldr.Number.System.to_system 123, :hans
{:ok, "一百二十三"}

iex> BB.Cldr.Number.System.to_system 123, :hant
{:ok, "一百二十三"}

iex> BB.Cldr.Number.System.to_system 123, :hansfin
{:ok, "壹佰贰拾叁"}

 to_system!(number, system_name)

Converts a number into the representation of
a non-latin number system. Returns a converted
string or raises on error.
	number is a float, integer or Decimal

	system_name is any number system name returned by
BB.Cldr.known_number_systems/0 or a number system type
returned by BB.Cldr.known_number_system_types/0

See BB.Cldr.Number.System.to_system/2 for further
information.
Examples
iex> BB.Cldr.Number.System.to_system! 123, :hans
"一百二十三"

iex> BB.Cldr.Number.System.to_system! 123, :hant
"一百二十三"

iex> BB.Cldr.Number.System.to_system! 123, :hansfin
"壹佰贰拾叁"

BB.Cldr.Number.Transliterate

Transliteration for digits and separators.
Transliterating a string is an expensive business. First the string has to
be exploded into its component graphemes. Then for each grapheme we have
to map to the equivalent in the other {locale, number_system}. Then we
have to reassemble the string.
Effort is made to short circuit where possible. Transliteration is not
required for any {locale, number_system} that is the same as {"en", "latn"} since the implementation uses this combination for the placeholders during
formatting already. When short circuiting is possible (typically the en-*
locales with "latn" number_system - the total number of short circuited
locales is 211 of the 537 in CLDR) the overall number formatting is twice as
fast than when formal transliteration is required.
Configuring precompilation of digit transliterations
This module includes Cldr.Number.Transliterate.transliterate_digits/3 which transliterates
digits between number systems. For example from :arabic to :latn. Since generating a
transliteration map is slow, pairs of transliterations can be configured so that the
transliteration map is created at compile time and therefore speeding up transliteration at
run time.
To configure these transliteration pairs, add the to the use Cldr configuration
in a backend module:
defmodule MyApp.Cldr do
 use Cldr,
 locale: ["en", "fr", "th"],
 default_locale: "en",
 precompile_transliterations: [{:latn, :thai}, {:arab, :thai}]
end
Where each tuple in the list configures one transliteration map. In this example, two maps are
configured: from :latn to :thai and from :arab to :thai.
A list of configurable number systems is returned by Cldr.Number.System.numeric_systems/0.
If a transliteration is requested between two number pairs that have not been configured for
precompilation, a warning is logged.

 Summary

 Functions

 transliterate(sequence, locale \\ BB.Cldr.get_locale(), number_system \\ System.default_number_system_type(), options \\ %{})

 Transliterates from latin digits to another number system's digits.

 transliterate!(sequence, locale, number_system, options)

 transliterate_digits(digits, from_system, to_system)

 Transliterates digits from one number system to another number system

 Functions

 transliterate(sequence, locale \\ BB.Cldr.get_locale(), number_system \\ System.default_number_system_type(), options \\ %{})

 @spec transliterate(
 String.t(),
 Cldr.LanguageTag.t() | Cldr.Locale.locale_name(),
 Cldr.Number.System.system_name() | Cldr.Number.System.types(),
 map() | Keyword.t()
) :: String.t() | {:error, {module(), String.t()}}

Transliterates from latin digits to another number system's digits.
Transliterates the latin digits 0..9 to their equivalents in
another number system. Also transliterates the decimal and grouping
separators as well as the plus, minus and exponent symbols. Any other character
in the string will be returned "as is".
Arguments
	sequence is the string to be transliterated.

	locale is any known locale, defaulting to BB.Cldr.get_locale/0.

	number_system is any known number system. If expressed as a string it
is the actual name of a known number system. If epressed as an atom it is
used as a key to look up a number system for the locale (the usual keys are
:default and :native but :traditional and :finance are also part of the
standard). See BB.Cldr.Number.System.number_systems_for/1 for a locale to
see what number system types are defined. The default is :default.

For available number systems see Cldr.Number.System.number_systems/0
and BB.Cldr.Number.System.number_systems_for/1. Also see
BB.Cldr.Number.Symbol.number_symbols_for/1.
Examples
iex> BB.Cldr.Number.Transliterate.transliterate("123556")
"123556"

iex> BB.Cldr.Number.Transliterate.transliterate("123,556.000", "fr", :default)
"123 556,000"

iex> BB.Cldr.Number.Transliterate.transliterate("123556", "th", :default)
"123556"

iex> BB.Cldr.Number.Transliterate.transliterate("123556", "th", "thai")
"๑๒๓๕๕๖"

iex> BB.Cldr.Number.Transliterate.transliterate("123556", "th", :native)
"๑๒๓๕๕๖"

iex> BB.Cldr.Number.Transliterate.transliterate("Some number is: 123556", "th", "thai")
"Some number is: ๑๒๓๕๕๖"

 transliterate!(sequence, locale, number_system, options)

 transliterate_digits(digits, from_system, to_system)

 @spec transliterate_digits(
 String.t(),
 Cldr.Number.System.system_name(),
 Cldr.Number.System.system_name()
) :: String.t()

Transliterates digits from one number system to another number system
	digits is binary representation of a number

	from_system and to_system are number system names in atom form. See
Cldr.Number.System.numeric_systems/0 for available number systems.

Example
iex> BB.Cldr.Number.Transliterate.transliterate_digits "٠١٢٣٤٥٦٧٨٩", :arab, :latn
"0123456789"

BB.Cldr.Rbnf.NumberSystem

Functions to implement the number system rule-based-number-format rules of CLDR.
These rules are defined only on the "und" locale and represent specialised
number formatting.
The standard public API for RBNF is via the Cldr.Number.to_string/2 function.
The functions on this module are defined at compile time based upon the RBNF rules
defined in the Unicode CLDR data repository. Available rules are identified by:
iex> BB.Cldr.Rbnf.NumberSystem.rule_sets(:und)
...> |> Enum.sort()
[
 :armenian_lower,
 :armenian_upper,
 :cyrillic_lower,
 :ethiopic,
 :georgian,
 :greek_lower,
 :greek_upper,
 :hebrew,
 :hebrew_item,
 :roman_lower,
 :roman_upper,
 :tamil,
 :zz_default
]
A rule can then be invoked on an available rule_set. For example
iex> BB.Cldr.Rbnf.NumberSystem.roman_upper(123, :und)
"CXXIII"
This particular call is equivalent to the call through the public API of:
iex> BB.Cldr.Number.to_string(123, format: :roman)
{:ok, "CXXIII"}

 Summary

 Functions

 all_rule_sets()

 armenian_lower(number)

 armenian_lower(number, locale)

 armenian_upper(number)

 armenian_upper(number, locale)

 cyrillic_lower(number)

 cyrillic_lower(number, locale)

 cyrillic_lower_1_10(number, language_tag)

 cyrillic_lower_final(number, language_tag)

 cyrillic_lower_post(number, language_tag)

 cyrillic_lower_thousands(number, language_tag)

 ethiopic(number)

 ethiopic(number, locale)

 ethiopic_p1(number, language_tag)

 ethiopic_p2(number, language_tag)

 ethiopic_p3(number, language_tag)

 ethiopic_p(number, language_tag)

 georgian(number)

 georgian(number, locale)

 greek_lower(number)

 greek_lower(number, locale)

 greek_numeral_majuscules(number, language_tag)

 greek_numeral_minuscules(number, language_tag)

 greek_upper(number)

 greek_upper(number, locale)

 hebrew(number)

 hebrew(number, locale)

 hebrew_0_99(number, language_tag)

 hebrew_item(number)

 hebrew_item(number, locale)

 hebrew_item_hundreds(number, language_tag)

 hebrew_thousands(number, language_tag)

 roman_lower(number)

 roman_lower(number, locale)

 roman_upper(number)

 roman_upper(number, locale)

 rule_sets()

 rule_sets(rbnf_locale_name)

 tamil(number)

 tamil(number, locale)

 tamil_thousands(number, language_tag)

 zz_default(number)

 zz_default(number, locale)

 Functions

 all_rule_sets()

 armenian_lower(number)

 armenian_lower(number, locale)

 armenian_upper(number)

 armenian_upper(number, locale)

 cyrillic_lower(number)

 cyrillic_lower(number, locale)

 cyrillic_lower_1_10(number, language_tag)

 cyrillic_lower_final(number, language_tag)

 cyrillic_lower_post(number, language_tag)

 cyrillic_lower_thousands(number, language_tag)

 ethiopic(number)

 ethiopic(number, locale)

 ethiopic_p1(number, language_tag)

 ethiopic_p2(number, language_tag)

 ethiopic_p3(number, language_tag)

 ethiopic_p(number, language_tag)

 georgian(number)

 georgian(number, locale)

 greek_lower(number)

 greek_lower(number, locale)

 greek_numeral_majuscules(number, language_tag)

 greek_numeral_minuscules(number, language_tag)

 greek_upper(number)

 greek_upper(number, locale)

 hebrew(number)

 hebrew(number, locale)

 hebrew_0_99(number, language_tag)

 hebrew_item(number)

 hebrew_item(number, locale)

 hebrew_item_hundreds(number, language_tag)

 hebrew_thousands(number, language_tag)

 roman_lower(number)

 roman_lower(number, locale)

 roman_upper(number)

 roman_upper(number, locale)

 rule_sets()

 rule_sets(rbnf_locale_name)

 tamil(number)

 tamil(number, locale)

 tamil_thousands(number, language_tag)

 zz_default(number)

 zz_default(number, locale)

BB.Cldr.Rbnf.Ordinal

Functions to implement the ordinal rule-based-number-format rules of CLDR.
As CLDR notes, the data is incomplete or non-existent for many languages. It
is considered complete for English however.
The standard public API for RBNF is via the Cldr.Number.to_string/2 function.
The functions on this module are defined at compile time based upon the RBNF rules
defined in the Unicode CLDR data repository. Available rules are identified by:
iex> BB.Cldr.Rbnf.Ordinal.rule_sets(:en)
[:digits_ordinal]

iex> BB.Cldr.Rbnf.Ordinal.rule_sets("fr")
...> |> Enum.sort()
[
 :digits_ordinal,
 :digits_ordinal_feminine,
 :digits_ordinal_feminine_plural,
 :digits_ordinal_masculine,
 :digits_ordinal_masculine_plural
]
A rule can then be invoked on an available rule_set. For example
iex> BB.Cldr.Rbnf.Ordinal.digits_ordinal(123, :en)
"123rd"
This call is equivalent to the call through the public API of:
iex> BB.Cldr.Number.to_string(123, format: :ordinal)
{:ok, "123rd"}

 Summary

 Functions

 all_rule_sets()

 digits_ordinal(number, locale)

 rule_sets()

 rule_sets(rbnf_locale_name)

 Functions

 all_rule_sets()

 digits_ordinal(number, locale)

 rule_sets()

 rule_sets(rbnf_locale_name)

BB.Cldr.Rbnf.Spellout

Functions to implement the spellout rule-based-number-format rules of CLDR.
As CLDR notes, the data is incomplete or non-existent for many languages. It
is considered complete for English however.
The standard public API for RBNF is via the Cldr.Number.to_string/2 function.
The functions on this module are defined at compile time based upon the RBNF rules
defined in the Unicode CLDR data repository. Available rules are identified by:
iex> BB.Cldr.Rbnf.Spellout.rule_sets("en")
...> |> Enum.sort()
[
 :spellout_cardinal,
 :spellout_cardinal_verbose,
 :spellout_numbering,
 :spellout_numbering_verbose,
 :spellout_numbering_year,
 :spellout_ordinal,
 :spellout_ordinal_verbose
]
A rule can then be invoked on an available rule_set. For example:
iex> BB.Cldr.Rbnf.Spellout.spellout_ordinal(123, "en")
"one hundred twenty-third"
This call is equivalent to the call through the public API of:
iex> BB.Cldr.Number.to_string(123, format: :spellout)
{:ok, "one hundred twenty-three"}

 Summary

 Functions

 all_rule_sets()

 number and language_tag

 and_o(number, language_tag)

 commas(number, language_tag)

 commas_o(number, language_tag)

 r2d_year(number, language_tag)

 rule_sets()

 rule_sets(rbnf_locale_name)

 spellout_cardinal(number, locale)

 spellout_cardinal_verbose(number, locale)

 spellout_numbering(number, locale)

 spellout_numbering_verbose(number, locale)

 spellout_numbering_year(number, locale)

 spellout_ordinal(number, locale)

 spellout_ordinal_verbose(number, locale)

 th(number, language_tag)

 tieth(number, language_tag)

 Functions

 all_rule_sets()

 number and language_tag

 and_o(number, language_tag)

 commas(number, language_tag)

 commas_o(number, language_tag)

 r2d_year(number, language_tag)

 rule_sets()

 rule_sets(rbnf_locale_name)

 spellout_cardinal(number, locale)

 spellout_cardinal_verbose(number, locale)

 spellout_numbering(number, locale)

 spellout_numbering_verbose(number, locale)

 spellout_numbering_year(number, locale)

 spellout_ordinal(number, locale)

 spellout_ordinal_verbose(number, locale)

 th(number, language_tag)

 tieth(number, language_tag)

BB.Cldr.Unit

Supports the CLDR Units definitions which provide for the localization of many
unit types.

 Summary

 Functions

 add(unit_1, unit_2)

 See Cldr.Unit.Math.add/2.

 add!(unit_1, unit_2)

 See Cldr.Unit.Math.add!/2.

 compatible?(unit_1, unit_2)

 See Cldr.Unit.compatible?/2.

 convert(unit_1, to_unit)

 See Cldr.Unit.Conversion.convert/2.

 convert!(unit_1, to_unit)

 See Cldr.Unit.Conversion.convert!/2.

 decompose(unit, list)

 See Cldr.Unit.decompose/2.

 default_gender(locale_name)

 default_style()

 See Cldr.Unit.default_style/0.

 display_name(unit, options \\ [])

 Returns the localized display name
for a unit.

 div(unit_1, unit_2)

 See Cldr.Unit.Math.div/2.

 div!(unit_1, unit_2)

 See Cldr.Unit.Math.div!/2.

 grammatical_features(locale_name)

 grammatical_gender(locale_name)

 known_styles()

 See Cldr.Unit.known_styles/0.

 known_unit_categories()

 See Cldr.Unit.known_unit_categories/0.

 known_units()

 See Cldr.Unit.known_units/0.

 localize(unit)

 Localizes a unit according to the current
processes locale and backend.

 localize(unit, options \\ [])

 Localizes a unit according to a territory

 measurement_system?(unit, systems)

 See Cldr.Unit.measurement_system?/2.

 measurement_system_for(territory)

 deprecated

 See Cldr.Unit.measurement_system_for_territory/1.

 measurement_system_for(territory, key)

 deprecated

 See Cldr.Unit.measurement_system_for_territory/2.

 measurement_system_for_territory(territory)

 See Cldr.Unit.measurement_system_for_territory/1.

 measurement_system_for_territory(territory, key)

 See Cldr.Unit.measurement_system_for_territory/2.

 measurement_system_from_locale(locale)

 See Cldr.Unit.measurement_system_from_locale/1.

 measurement_system_from_locale(locale, category)

 See Cldr.Unit.measurement_system_from_locale/2.

 measurement_system_from_locale(locale, backend, category)

 See Cldr.Unit.measurement_system_from_locale/3.

 measurement_systems_for_unit(unit)

 See Cldr.Unit.measurement_systems_for_unit/1.

 mult(unit_1, unit_2)

 See Cldr.Unit.Math.mult/2.

 mult!(unit_1, unit_2)

 See Cldr.Unit.Math.mult!/2.

 new(unit, value)

 See Cldr.Unit.new/2.

 new!(unit, value)

 See Cldr.Unit.new!/2.

 parse(unit_string, options \\ [])

 Parse a string to create a new unit.

 parse!(unit_string, options \\ [])

 Parse a string to create a new unit or
raises an exception.

 parse_unit_name(unit_name_string, options \\ [])

 Parse a string to find a matching unit-atom.

 parse_unit_name!(unit_name_string, options \\ [])

 Parse a string to find a matching unit-atom.

 preferred_units(unit, options \\ [])

 Returns a list of the preferred units for a given
unit, locale, use case and scope.

 preferred_units!(unit, options \\ [])

 Returns a list of the preferred units for a given
unit, locale, use case and scope.

 round(unit)

 See Cldr.Unit.Math.round/1.

 round(unit, places)

 See Cldr.Unit.Math.round/2.

 round(unit, places, mode)

 See Cldr.Unit.Math.round/3.

 styles()

 See Cldr.Unit.known_styles/0.

 sub(unit_1, unit_2)

 See Cldr.Unit.Math.sub/2.

 sub!(unit_1, unit_2)

 See Cldr.Unit.Math.sub!/2.

 to_iolist(number, options \\ [])

 Formats a number into an iolist according to a unit definition
for a locale.

 to_iolist!(number, options \\ [])

 Formats a unit using to_iolist/3 but raises if there is
an error.

 to_string(number, options \\ [])

 Formats a number into a string according to a unit definition for a locale.

 to_string!(number, options \\ [])

 Formats a list using to_string/3 but raises if there is
an error.

 unit_category(unit)

 See Cldr.Unit.unit_category/1.

 unit_strings_for(locale)

 validate_style(unit)

 See Cldr.Unit.validate_style/1.

 validate_unit(unit)

 See Cldr.Unit.validate_unit/1.

 value(unit)

 See Cldr.Unit.value/1.

 zero(unit)

 See Cldr.Unit.zero/1.

 zero?(unit)

 See Cldr.Unit.zero?/1.

 Functions

 add(unit_1, unit_2)

See Cldr.Unit.Math.add/2.

 add!(unit_1, unit_2)

See Cldr.Unit.Math.add!/2.

 compatible?(unit_1, unit_2)

See Cldr.Unit.compatible?/2.

 convert(unit_1, to_unit)

See Cldr.Unit.Conversion.convert/2.

 convert!(unit_1, to_unit)

See Cldr.Unit.Conversion.convert!/2.

 decompose(unit, list)

See Cldr.Unit.decompose/2.

 default_gender(locale_name)

 default_style()

See Cldr.Unit.default_style/0.

 display_name(unit, options \\ [])

 @spec display_name(Cldr.Unit.translatable_unit() | Cldr.Unit.t(), Keyword.t()) ::
 String.t() | {:error, {module(), binary()}}

Returns the localized display name
for a unit.
The returned text is generally suitable
for including in UI elements such as
selection boxes.
Arguments
	unit is any t:Cldr.Unit or any
unit name returned by Cldr.Unit.known_units/0.

	options is a keyword list of options.

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is Cldr.get_locale/0.

	:style is one of those returned by Cldr.Unit.known_styles/0.
The current styles are :long, :short and :narrow.
The default is style: :long.

Examples
iex> BB.Cldr.Unit.display_name :liter
"liters"

iex> BB.Cldr.Unit.display_name :liter, locale: "fr"
"litres"

iex> BB.Cldr.Unit.display_name :liter, locale: "fr", style: :short
"l"

 div(unit_1, unit_2)

See Cldr.Unit.Math.div/2.

 div!(unit_1, unit_2)

See Cldr.Unit.Math.div!/2.

 grammatical_features(locale_name)

 grammatical_gender(locale_name)

 known_styles()

See Cldr.Unit.known_styles/0.

 known_unit_categories()

See Cldr.Unit.known_unit_categories/0.

 known_units()

See Cldr.Unit.known_units/0.

 localize(unit)

 @spec localize(Cldr.Unit.t()) ::
 [Cldr.Unit.t(), ...] | {:error, {module(), String.t()}}

Localizes a unit according to the current
processes locale and backend.
The current process's locale is set with
Cldr.put_locale/1.
See Cldr.Unit.localize/3 for further
details.

 localize(unit, options \\ [])

 @spec localize(Cldr.Unit.t(), Keyword.t()) ::
 [Cldr.Unit.t(), ...] | {:error, {module(), String.t()}}

Localizes a unit according to a territory
A territory can be derived from a t:Cldr.Locale.locale_name
or t:Cldr.LangaugeTag.
Use this function if you have a unit which
should be presented in a user interface using
units relevant to the audience. For example, a
unit #Cldr.Unit100, :meter> might be better
presented to a US audience as #Cldr.Unit<328, :foot>.
Arguments
	unit is any unit returned by Cldr.Unit.new/2

	options is a keyword list of options

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is backend.get_locale/0

	:territory is any valid territory code returned by
Cldr.known_territories/0. The default is the territory defined
as part of the :locale. The option :territory has a precedence
over the territory in a locale.

	:usage is the way in which the unit is intended
to be used. The available usage varyies according
to the unit category. See Cldr.Unit.preferred_units/3.

Examples
iex> unit = Cldr.Unit.new!(1.83, :meter)
iex> BB.Cldr.Unit.localize(unit, usage: :person_height, territory: :US)
[
 Cldr.Unit.new!(:foot, 6, usage: :person_height),
 Cldr.Unit.new!(:inch, "0.04724409448818897637795275598", usage: :person_height)
]

 measurement_system?(unit, systems)

See Cldr.Unit.measurement_system?/2.

 measurement_system_for(territory)

 This function is deprecated. Use BB.Cldr.Unit.measurement_system_for_territory/1.

See Cldr.Unit.measurement_system_for_territory/1.

 measurement_system_for(territory, key)

 This function is deprecated. Use BB.Cldr.Unit.measurement_system_for_territory/2.

See Cldr.Unit.measurement_system_for_territory/2.

 measurement_system_for_territory(territory)

See Cldr.Unit.measurement_system_for_territory/1.

 measurement_system_for_territory(territory, key)

See Cldr.Unit.measurement_system_for_territory/2.

 measurement_system_from_locale(locale)

See Cldr.Unit.measurement_system_from_locale/1.

 measurement_system_from_locale(locale, category)

See Cldr.Unit.measurement_system_from_locale/2.

 measurement_system_from_locale(locale, backend, category)

See Cldr.Unit.measurement_system_from_locale/3.

 measurement_systems_for_unit(unit)

See Cldr.Unit.measurement_systems_for_unit/1.

 mult(unit_1, unit_2)

See Cldr.Unit.Math.mult/2.

 mult!(unit_1, unit_2)

See Cldr.Unit.Math.mult!/2.

 new(unit, value)

See Cldr.Unit.new/2.

 new!(unit, value)

See Cldr.Unit.new!/2.

 parse(unit_string, options \\ [])

 (since 3.10.0)

Parse a string to create a new unit.
This function attempts to parse a string
into a number and unit type. If successful
it attempts to create a new unit using
Cldr.Unit.new/3.
The parsed unit type is aliased against all the
known unit names for a give locale (or the current
locale if no locale is specified). The known
aliases for unit types can be returned with
MyApp.Cldr.Unit.unit_strings_for/1 where MyApp.Cldr
is the name of a backend module.
Arguments
	unit string is any string to be parsed and if
possible used to create a new t:Cldr.Unit

	options is a keyword list of options

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0

Returns
	{:ok, unit} or

	{:error, {exception, reason}}

Examples
iex> BB.Cldr.Unit.parse "1kg"
Cldr.Unit.new(1, :kilogram)

iex> BB.Cldr.Unit.parse "1 tages", locale: "de"
Cldr.Unit.new(1, :day)

iex> BB.Cldr.Unit.parse "1 tag", locale: "de"
Cldr.Unit.new(1, :day)

iex> BB.Cldr.Unit.parse("42 millispangels")
{:error, {Cldr.UnknownUnitError, "Unknown unit was detected at \"spangels\""}}

 parse!(unit_string, options \\ [])

 (since 3.10.0)

Parse a string to create a new unit or
raises an exception.
This function attempts to parse a string
into a number and unit type. If successful
it attempts to create a new unit using
Cldr.Unit.new/3.
The parsed unit type is un-aliased against all the
known unit names for a give locale (or the current
locale if no locale is specified). The known
aliases for unit types can be returned with
MyApp.Cldr.Unit.unit_strings_for/1 where MyApp.Cldr
is the name of a backend module.
Arguments
	unit string is any string to be parsed and if
possible used to create a new t:Cldr.Unit

	options is a keyword list of options

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0

Returns
	unit or

	raises an exception

Examples
iex> BB.Cldr.Unit.parse! "1kg"
Cldr.Unit.new!(1, :kilogram)

iex> BB.Cldr.Unit.parse! "1 tages", locale: "de"
Cldr.Unit.new!(1, :day)

iex> BB.Cldr.Unit.parse!("42 candela per lux")
Cldr.Unit.new!(42, "candela per lux")

iex> BB.Cldr.Unit.parse!("42 millispangels")
** (Cldr.UnknownUnitError) Unknown unit was detected at "spangels"

 parse_unit_name(unit_name_string, options \\ [])

 (since 3.13.4)

 @spec parse_unit_name(binary(), Keyword.t()) ::
 {:ok, atom()} | {:error, {module(), binary()}}

Parse a string to find a matching unit-atom.
This function attempts to parse a string and
extract the unit type.
The parsed unit type is aliased against all the
known unit names for a give locale (or the current
locale if no locale is specified). The known
aliases for unit types can be returned with
MyApp.Cldr.Unit.unit_strings_for/1 where MyApp.Cldr
is the name of a backend module.
Arguments
	unit_name_string is any string to be parsed and converted into a unit type

	options is a keyword list of options

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:backend is any module that includes use Cldr and therefore
is a Cldr backend module. The default is Cldr.default_backend!/0.

	:only is a unit category or unit, or a list of unit categories and units.
The parsed unit must match one of the categories or units in order to
be valid. This is helpful when disambiguating parsed units. For example,
parsing "w" could be either :watt or :weeks. Specifying only: :duration
would return :weeks. Specifying only: :power would return :watt

	:except is the oppostte of :only. The parsed unit must not
match the specified unit or category, or unit categories and units.

Returns
	{:ok, unit_name} or

	{:error, {exception, reason}}

Notes
	When both :only and :except options are passed, both
conditions must be true in order to return a parsed result.

	Only units returned by Cldr.Unit.known_units/0 can be
used in the :only and :except filters.

Examples
iex> BB.Cldr.Unit.parse_unit_name "kg"
{:ok, :kilogram}

iex> BB.Cldr.Unit.parse_unit_name "w"
{:ok, :watt}

iex> BB.Cldr.Unit.parse_unit_name "w", only: :duration
{:ok, :week}

iex> BB.Cldr.Unit.parse_unit_name "m", only: [:year, :month, :day]
{:ok, :month}

iex> BB.Cldr.Unit.parse_unit_name "tages", locale: "de"
{:ok, :day}

iex> BB.Cldr.Unit.parse_unit_name "tag", locale: "de"
{:ok, :day}

iex> BB.Cldr.Unit.parse_unit_name("millispangels")
{:error, {Cldr.UnknownUnitError, "Unknown unit was detected at \"spangels\""}}

 parse_unit_name!(unit_name_string, options \\ [])

 (since 3.13.4)

Parse a string to find a matching unit-atom.
This function attempts to parse a string and
extract the unit type.
The parsed unit type is aliased against all the
known unit names for a give locale (or the current
locale if no locale is specified). The known
aliases for unit types can be returned with
MyApp.Cldr.Unit.unit_strings_for/1 where MyApp.Cldr
is the name of a backend module.
Arguments
	unit_name_string is any string to be parsed and converted into a unit type

	options is a keyword list of options

Options
	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:backend is any module that includes use Cldr and therefore
is a Cldr backend module. The default is Cldr.default_backend!/0.

	:only is a unit category or unit, or a list of unit categories and units.
The parsed unit must match one of the categories or units in order to
be valid. This is helpful when disambiguating parsed units. For example,
parsing "w" could be either watts or :week. Specifying only: :duration
would return :week. Specifying only: :power would return :watts

	:except is the oppostte of :only. The parsed unit must not
match the specified unit or category, or unit categories and units.

Returns
	unit_name or

	raises an exception

Notes
	When both :only and :except options are passed, both
conditions must be true in order to return a parsed result.

	Only units returned by Cldr.Unit.known_units/0 can be
used in the :only and :except filters.

Examples
iex> BB.Cldr.Unit.parse_unit_name! "kg"
:kilogram

iex> BB.Cldr.Unit.parse_unit_name! "w"
:watt

iex> BB.Cldr.Unit.parse_unit_name! "w", only: :duration
:week

iex> BB.Cldr.Unit.parse_unit_name! "m", only: [:year, :month, :day]
:month

iex> BB.Cldr.Unit.parse_unit_name! "tages", locale: "de"
:day

iex> BB.Cldr.Unit.parse_unit_name! "tag", locale: "de"
:day

iex> BB.Cldr.Unit.parse_unit_name!("millispangels")
** (Cldr.UnknownUnitError) Unknown unit was detected at "spangels"

 preferred_units(unit, options \\ [])

 @spec preferred_units(Cldr.Unit.t(), Keyword.t()) ::
 {:ok, [atom(), ...], Keyword.t()} | {:error, {module(), binary()}}

Returns a list of the preferred units for a given
unit, locale, use case and scope.
The units used to represent length, volume and so on
depend on a given territory, measurement system and usage.
For example, in the US, people height is most commonly
referred to in inches, or informally as feet and inches.
In most of the rest of the world it is centimeters.
Arguments
	unit is any unit returned by Cldr.Unit.new/2.

	backend is any Cldr backend module. That is, any module
that includes use Cldr. The default is Cldr.default_backend/0

	options is a keyword list of options or a
Cldr.Unit.Conversion.Options struct. The default
is [].

Options
	:usage is the unit usage. for example ;person for a unit
type of length. The available usage for a given unit category can
be seen with Cldr.Unit.unit_category_usage/0. The default is nil

	:scope is either :small or nil. In some usage, the units
used are different when the unit size is small. It is up to the
developer to determine when scope: :small is appropriate.

	:alt is either :informal or nil. Like :scope, the units
in use depend on whether they are being used in a formal or informal
context.

	:locale is any locale returned by Cldr.validate_locale/2

Returns
	{:ok, unit_list, formatting_options} or

	{:error, {exception, reason}}

Notes
formatting_options is a keyword list of options
that can be passed to Cldr.Unit.to_string/3. Its
primary intended usage is for localizing a unit that
decomposes into more than one unit (for example when
2 meters might become 6 feet 6 inches.) In such
cases, the last unit in the list (in this case the
inches) is formatted with the formatting_options.
Examples
iex> meter = Cldr.Unit.new!(:meter, 1)
iex> BB.Cldr.Unit.preferred_units meter, locale: "en-US", usage: :person_height
{:ok, [:foot, :inch], []}
iex> BB.Cldr.Unit.preferred_units meter, locale: "en-US", usage: :person
{:ok, [:inch], []}
iex> BB.Cldr.Unit.preferred_units meter, locale: "en-AU", usage: :person
{:ok, [:centimeter], []}
iex> BB.Cldr.Unit.preferred_units meter, locale: "en-US", usage: :road
{:ok, [:foot], [round_nearest: 1]}
iex> BB.Cldr.Unit.preferred_units meter, locale: "en-AU", usage: :road
{:ok, [:meter], [round_nearest: 1]}

 preferred_units!(unit, options \\ [])

Returns a list of the preferred units for a given
unit, locale, use case and scope.
The units used to represent length, volume and so on
depend on a given territory, measurement system and usage.
For example, in the US, people height is most commonly
referred to in inches, or informally as feet and inches.
In most of the rest of the world it is centimeters.
Arguments
	unit is any unit returned by Cldr.Unit.new/2.

	backend is any Cldr backend module. That is, any module
that includes use Cldr. The default is Cldr.default_backend/0

	options is a keyword list of options or a
Cldr.Unit.Conversion.Options struct. The default
is [].

Options
	:usage is the unit usage. for example ;person for a unit
type of length. The available usage for a given unit category can
be seen with Cldr.Unit.unit_category_usage/0. The default is nil

	:scope is either :small or nil. In some usage, the units
used are different when the unit size is small. It is up to the
developer to determine when scope: :small is appropriate.

	:alt is either :informal or nil. Like :scope, the units
in use depend on whether they are being used in a formal or informal
context.

	:locale is any locale returned by Cldr.validate_locale/2

Returns
	unit_list or

	raises an exception

Examples
iex> meter = Cldr.Unit.new!(:meter, 2)
iex> BB.Cldr.Unit.preferred_units! meter, locale: "en-US", usage: :person_height
[:foot, :inch]
iex> BB.Cldr.Unit.preferred_units! meter, locale: "en-AU", usage: :person
[:centimeter]
iex> BB.Cldr.Unit.preferred_units! meter, locale: "en-US", usage: :road
[:foot]
iex> BB.Cldr.Unit.preferred_units! meter, locale: "en-AU", usage: :road
[:meter]

 round(unit)

See Cldr.Unit.Math.round/1.

 round(unit, places)

See Cldr.Unit.Math.round/2.

 round(unit, places, mode)

See Cldr.Unit.Math.round/3.

 styles()

See Cldr.Unit.known_styles/0.

 sub(unit_1, unit_2)

See Cldr.Unit.Math.sub/2.

 sub!(unit_1, unit_2)

See Cldr.Unit.Math.sub!/2.

 to_iolist(number, options \\ [])

 @spec to_iolist(Cldr.Unit.value() | Cldr.Unit.t() | [Cldr.Unit.t(), ...], Keyword.t()) ::
 {:ok, list()} | {:error, {atom(), binary()}}

Formats a number into an iolist according to a unit definition
for a locale.
Arguments
	list_or_number is any number (integer, float or Decimal) or a
t:Cldr.Unit struct or a list of t:Cldr.Unit structs

	options is a keyword list

Options
	:unit is any unit returned by Cldr.Unit.known_units/0. Ignored if
the number to be formatted is a t:Cldr.Unit struct

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:style is one of those returned by Cldr.Unit.known_styles.
The current styles are :long, :short and :narrow.
The default is style: :long

	:grammatical_case indicates that a localisation for the given
locale and given grammatical case should be used. See Cldr.Unit.known_grammatical_cases/0
for the list of known grammatical cases. Note that not all locales
define all cases. However all locales do define the :nominative
case, which is also the default.

	:gender indicates that a localisation for the given
locale and given grammatical gender should be used. See Cldr.Unit.known_grammatical_genders/0
for the list of known grammatical genders. Note that not all locales
define all genders. The default gender is BB.Cldr.Unit.default_gender/1
for the given locale.

	:list_options is a keyword list of options for formatting a list
which is passed through to Cldr.List.to_string/3. This is only
applicable when formatting a list of units.

	Any other options are passed to Cldr.Number.to_string/2
which is used to format the number

Returns
	{:ok, io_list} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Unit.to_iolist Cldr.Unit.new!(:gallon, 123)
{:ok, ["123", " gallons"]}

 to_iolist!(number, options \\ [])

 @spec to_iolist!(
 Cldr.Unit.value() | Cldr.Unit.t() | [Cldr.Unit.t(), ...],
 Keyword.t()
) ::
 list() | no_return()

Formats a unit using to_iolist/3 but raises if there is
an error.
Arguments
	list_or_number is any number (integer, float or Decimal) or a
t:Cldr.Unit struct or a list of t:Cldr.Unit structs

	options is a keyword list

Options
	:unit is any unit returned by Cldr.Unit.known_units/0. Ignored if
the number to be formatted is a t:Cldr.Unit struct

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:style is one of those returned by Cldr.Unit.known_styles/0.
The current styles are :long, :short and :narrow.
The default is style: :long.

	:grammatical_case indicates that a localisation for the given
locale and given grammatical case should be used. See Cldr.Unit.known_grammatical_cases/0
for the list of known grammatical cases. Note that not all locales
define all cases. However all locales do define the :nominative
case, which is also the default.

	:gender indicates that a localisation for the given
locale and given grammatical gender should be used. See Cldr.Unit.known_grammatical_genders/0
for the list of known grammatical genders. Note that not all locales
define all genders. The default gender is BB.Cldr.Unit.default_gender/1
for the given locale.

	:list_options is a keyword list of options for formatting a list
which is passed through to Cldr.List.to_string/3. This is only
applicable when formatting a list of units.

	Any other options are passed to Cldr.Number.to_string/2
which is used to format the number

Returns
	io_list or

	raises an exception

Examples
iex> BB.Cldr.Unit.to_iolist! 123, unit: :gallon
["123", " gallons"]

 to_string(number, options \\ [])

 @spec to_string(Cldr.Unit.value() | Cldr.Unit.t() | [Cldr.Unit.t(), ...], Keyword.t()) ::
 {:ok, String.t()} | {:error, {atom(), binary()}}

Formats a number into a string according to a unit definition for a locale.
Arguments
	list_or_number is any number (integer, float or Decimal) or a
t:Cldr.Unit struct or a list of t:Cldr.Unit structs

	options is a keyword list

Options
	:unit is any unit returned by Cldr.Unit.known_units/0. Ignored if
the number to be formatted is a t:Cldr.Unit struct

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:style is one of those returned by Cldr.Unit.known_styles.
The current styles are :long, :short and :narrow.
The default is style: :long

	:grammatical_case indicates that a localisation for the given
locale and given grammatical case should be used. See Cldr.Unit.known_grammatical_cases/0
for the list of known grammatical cases. Note that not all locales
define all cases. However all locales do define the :nominative
case, which is also the default.

	:gender indicates that a localisation for the given
locale and given grammatical gender should be used. See Cldr.Unit.known_grammatical_genders/0
for the list of known grammatical genders. Note that not all locales
define all genders. The default gender is BB.Cldr.Unit.default_gender/1
for the given locale.

	:list_options is a keyword list of options for formatting a list
which is passed through to Cldr.List.to_string/3. This is only
applicable when formatting a list of units.

	Any other options are passed to Cldr.Number.to_string/2
which is used to format the number

Returns
	{:ok, formatted_string} or

	{:error, {exception, message}}

Examples
iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 123)
{:ok, "123 gallons"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1)
{:ok, "1 gallon"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1), locale: "af"
{:ok, "1 gelling"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1), locale: "af-NA"
{:ok, "1 gelling"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1), locale: "bs"
{:ok, "1 galon"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1234), format: :long
{:ok, "1 thousand gallons"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:gallon, 1234), format: :short
{:ok, "1K gallons"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:megahertz, 1234)
{:ok, "1,234 megahertz"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:megahertz, 1234), style: :narrow
{:ok, "1,234MHz"}

iex> BB.Cldr.Unit.to_string Cldr.Unit.new!(:megabyte, 1234), locale: "en", style: :unknown
{:error, {Cldr.UnknownFormatError, "The unit style :unknown is not known."}}

 to_string!(number, options \\ [])

 @spec to_string!(
 Cldr.Unit.value() | Cldr.Unit.t() | [Cldr.Unit.t(), ...],
 Keyword.t()
) ::
 String.t() | no_return()

Formats a list using to_string/3 but raises if there is
an error.
Arguments
	list_or_number is any number (integer, float or Decimal) or a
t:Cldr.Unit struct or a list of t:Cldr.Unit structs

	options is a keyword list

Options
	:unit is any unit returned by Cldr.Unit.known_units/0. Ignored if
the number to be formatted is a t:Cldr.Unit struct

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a Cldr.LanguageTag struct. The default is Cldr.get_locale/0

	:style is one of those returned by Cldr.Unit.known_styles.
The current styles are :long, :short and :narrow.
The default is style: :long

	:grammatical_case indicates that a localisation for the given
locale and given grammatical case should be used. See Cldr.Unit.known_grammatical_cases/0
for the list of known grammatical cases. Note that not all locales
define all cases. However all locales do define the :nominative
case, which is also the default.

	:gender indicates that a localisation for the given
locale and given grammatical gender should be used. See Cldr.Unit.known_grammatical_genders/0
for the list of known grammatical genders. Note that not all locales
define all genders. The default gender is BB.Cldr.Unit.default_gender/1
for the given locale.

	:list_options is a keyword list of options for formatting a list
which is passed through to Cldr.List.to_string/3. This is only
applicable when formatting a list of units.

	Any other options are passed to Cldr.Number.to_string/2
which is used to format the number

Returns
	formatted_string or

	raises an exception

Examples
iex> BB.Cldr.Unit.to_string! 123, unit: :gallon
"123 gallons"

iex> BB.Cldr.Unit.to_string! 1, unit: :gallon
"1 gallon"

iex> BB.Cldr.Unit.to_string! 1, unit: :gallon, locale: "af"
"1 gelling"

 unit_category(unit)

See Cldr.Unit.unit_category/1.

 unit_strings_for(locale)

 validate_style(unit)

See Cldr.Unit.validate_style/1.

 validate_unit(unit)

See Cldr.Unit.validate_unit/1.

 value(unit)

See Cldr.Unit.value/1.

 zero(unit)

See Cldr.Unit.zero/1.

 zero?(unit)

See Cldr.Unit.zero?/1.

BB.ExampleRobots

Example robot topologies for testing and documentation.

BB.ExampleRobots.CollisionTestArm

A simple 2-DOF arm with collision geometry for testing self-collision detection.
Structure:
	base (box)	shoulder (revolute, Z-axis)	upper_arm (capsule)	elbow (revolute, Y-axis)	forearm (capsule)

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.ExampleRobots.CollisionTestArm.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

BB.ExampleRobots.DifferentialDriveRobot

A simple two-wheeled differential drive robot with a caster.
Structure:
	base_link (main chassis)	left_wheel (continuous joint)
	right_wheel (continuous joint)
	caster_wheel (fixed)

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.ExampleRobots.DifferentialDriveRobot.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

BB.ExampleRobots.LinearActuator

A simple linear actuator (prismatic joint example).
Structure:
	base_link	slider_joint (prismatic, Z-axis)	slider_link

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.ExampleRobots.LinearActuator.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

BB.ExampleRobots.PanTiltCamera

A simple pan-tilt camera mount.
Structure:
	base_link	pan_joint (revolute, Z-axis)	pan_link	tilt_joint (revolute, Y-axis)	camera_link

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.ExampleRobots.PanTiltCamera.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

BB.ExampleRobots.SixDofArm

A 6 degree-of-freedom industrial robot arm.
Structure:
	base_link	shoulder_pan (revolute, Z-axis)	shoulder_lift (revolute, Y-axis)	elbow (revolute, Y-axis)	wrist_1 (revolute, Y-axis)	wrist_2 (revolute, Z-axis)	wrist_3 (revolute, Y-axis)	tool0 (fixed, tool mounting point)

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.ExampleRobots.SixDofArm.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

BB.Test.AsyncCommand

A test command that waits for an explicit :complete message before finishing.
Usage:
 {:ok, cmd} = Runtime.execute(Robot, :async_cmd, %{notify: self()})
 assert_receive {:executing, ^cmd}
 # ... do stuff while command is running ...
 send(cmd, :complete)
 assert {:ok, :completed} = BB.Command.await(cmd)

BB.Test.MockActuator

Minimal mock actuator for testing.

BB.Test.MockBridge

Minimal mock bridge for testing.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

BB.Test.MockController

Minimal mock controller for testing.

BB.Test.MockSolver

Mock IK solver for testing BB.Motion without real IK computations.
Configure behaviour via process dictionary:
	:mock_solver_result - the result to return from solve/5

Examples
BB.Test.MockSolver.set_result({:ok, %{joint1: 0.5}, %{iterations: 5, residual: 0.001, reached: true}})
BB.Test.MockSolver.set_result({:error, %BB.Error.Kinematics.Unreachable{target_link: :tip, residual: 0.5}})

 Summary

 Functions

 last_call()

 Get the last call arguments (for assertions).

 set_result(result)

 Set the result that solve/5 will return.

 unreachable_error(target_link, opts \\ [])

 Create an unreachable error for testing.

 Functions

 last_call()

Get the last call arguments (for assertions).

 set_result(result)

Set the result that solve/5 will return.

 unreachable_error(target_link, opts \\ [])

Create an unreachable error for testing.

BB.Test.ParameterBridge

Reference implementation of BB.Bridge for testing.
Records all calls for test assertions and provides controllable responses.
Usage
Start robot with bridge
start_supervised!(RobotWithBridge)
bridge_pid = BB.Process.whereis(RobotWithBridge, :test_bridge)

Register to receive change notifications
BB.Test.ParameterBridge.register_test_process(bridge_pid, self())

Simulate inbound requests from remote
{:ok, params} = BB.Test.ParameterBridge.list_params(bridge_pid)
{:ok, value} = BB.Test.ParameterBridge.get_param(bridge_pid, [:speed])
:ok = BB.Test.ParameterBridge.set_param(bridge_pid, [:speed], 2.0)

Receive outbound change notifications
assert_receive {:bridge_change, %BB.Parameter.Changed{}}

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_calls(pid)

 Clear recorded calls.

 get_calls(pid)

 Get all recorded calls.

 get_param(pid, path)

 Get a parameter value (simulates inbound request from remote).

 list_params(pid, prefix \\ nil)

 List all parameters (simulates inbound request from remote).

 register_test_process(pid, test_pid)

 Register a test process to receive change notifications.

 set_param(pid, path, value)

 Set a parameter value (simulates inbound request from remote).

 set_remote_params(pid, params)

 Set up fake remote parameters for testing inbound remote access.

 simulate_remote_change(pid, param_id, value)

 Simulate a remote parameter change (for testing subscriptions).

 start_link(opts)

 Types

 t()

 @type t() :: %BB.Test.ParameterBridge{
 calls: [{atom(), list()}],
 remote_params: %{required(BB.Bridge.param_id()) => term()},
 robot: module(),
 subscriptions: MapSet.t(BB.Bridge.param_id()),
 test_pid: pid() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_calls(pid)

Clear recorded calls.

 get_calls(pid)

Get all recorded calls.

 get_param(pid, path)

Get a parameter value (simulates inbound request from remote).

 list_params(pid, prefix \\ nil)

List all parameters (simulates inbound request from remote).

 register_test_process(pid, test_pid)

Register a test process to receive change notifications.

 set_param(pid, path, value)

Set a parameter value (simulates inbound request from remote).

 set_remote_params(pid, params)

Set up fake remote parameters for testing inbound remote access.

 simulate_remote_change(pid, param_id, value)

Simulate a remote parameter change (for testing subscriptions).

 start_link(opts)

BB.Unit

Helpers for working with units in BB DSLs.

 Summary

 Functions

 sigil_u(input, list)

 Parse a string input as a unit.

 Functions

 sigil_u(input, list)

 @spec sigil_u(
 binary(),
 charlist()
) :: Cldr.Unit.t() | no_return()

Parse a string input as a unit.
The input should be a magnitude (integer or float) followed by a unit name.
Whitespace between the magnitude and unit is optional.
Units are generally referred to in the singlular, even if it doesn't read as nicely, for example meter_per_second rather than meters_per_second. For a full list of supported units, see the
ex_cldr_units documentation.
Examples
Integer magnitudes:
iex> import BB.Unit
iex> ~u(5 meter)
Cldr.Unit.new!(:meter, 5)
Float magnitudes:
iex> import BB.Unit
iex> ~u(0.1 meter)
Cldr.Unit.new!(Decimal.new("0.1"), :meter)
Negative values:
iex> import BB.Unit
iex> ~u(-90 degree)
Cldr.Unit.new!(:degree, -90)
Whitespace is optional:
iex> import BB.Unit
iex> ~u(100centimeter)
Cldr.Unit.new!(:centimeter, 100)
Compound units:
iex> import BB.Unit
iex> ~u(10 meter_per_second)
Cldr.Unit.new!(:meter_per_second, 10)

BB.Unit.Option

Functions for specifying and validating units in option schemas.

 Summary

 Types

 schema_option()

 schema_options()

 Functions

 unit_type(options \\ [])

 Create a Spark.Options schema type for a unit.

 validate(value, options \\ [])

 Validate a value against a category.

 Types

 schema_option()

 @type schema_option() ::
 {:compatible, atom() | String.t()}
 | {:min, Cldr.Unit.t()}
 | {:max, Cldr.Unit.t()}
 | {:eq, Cldr.Unit.t()}

 schema_options()

 @type schema_options() :: [schema_option()]

 Functions

 unit_type(options \\ [])

 @spec unit_type(Keyword.t()) :: {:custom, BB.Unit.Option, :validate, [Keyword.t()]}

Create a Spark.Options schema type for a unit.
Examples
Basic usage returns a custom schema type tuple:
iex> BB.Unit.Option.unit_type()
{:custom, BB.Unit.Option, :validate, [[]]}
With compatible option to restrict unit category:
iex> BB.Unit.Option.unit_type(compatible: :meter)
{:custom, BB.Unit.Option, :validate, [[compatible: :meter]]}
With min constraint:
iex> BB.Unit.Option.unit_type(min: Cldr.Unit.new!(:meter, 0))
{:custom, BB.Unit.Option, :validate, [[min: Cldr.Unit.new!(:meter, 0)]]}
With max constraint:
iex> BB.Unit.Option.unit_type(max: Cldr.Unit.new!(:meter, 100))
{:custom, BB.Unit.Option, :validate, [[max: Cldr.Unit.new!(:meter, 100)]]}
Combined constraints:
iex> BB.Unit.Option.unit_type(compatible: :meter, min: Cldr.Unit.new!(:meter, 0), max: Cldr.Unit.new!(:meter, 100))
{:custom, BB.Unit.Option, :validate, [[compatible: :meter, min: Cldr.Unit.new!(:meter, 0), max: Cldr.Unit.new!(:meter, 100)]]}

 validate(value, options \\ [])

 @spec validate(any(), Keyword.t()) ::
 {:ok, Cldr.Unit.t()} | {:ok, BB.Dsl.ParamRef.t()} | {:error, String.t()}

Validate a value against a category.
Examples
Valid unit passes through:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 5))
{:ok, Cldr.Unit.new!(:meter, 5)}
Non-unit values are rejected:
iex> BB.Unit.Option.validate("not a unit")
{:error, "Value `\"not a unit\"` is not a `Cldr.Unit` struct"}
Compatible unit check passes for same category:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:centimeter, 100), compatible: :meter)
{:ok, Cldr.Unit.new!(:centimeter, 100)}
Incompatible units are rejected:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:degree, 90), compatible: :meter)
{:error, "The unit `degree` is not compatible with `meter`"}
Min constraint - value must be >= min:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 5), min: Cldr.Unit.new!(:meter, 1))
{:ok, Cldr.Unit.new!(:meter, 5)}

iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 1), min: Cldr.Unit.new!(:meter, 5))
{:error, "Expected 1m to be greater than or equal to 5m"}
Max constraint - value must be <= max:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 5), max: Cldr.Unit.new!(:meter, 10))
{:ok, Cldr.Unit.new!(:meter, 5)}

iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 15), max: Cldr.Unit.new!(:meter, 10))
{:error, "Expected 15m to be less than or equal to 10m"}
Eq constraint - value must equal exactly:
iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 5), eq: Cldr.Unit.new!(:meter, 5))
{:ok, Cldr.Unit.new!(:meter, 5)}

iex> BB.Unit.Option.validate(Cldr.Unit.new!(:meter, 5), eq: Cldr.Unit.new!(:meter, 10))
{:error, "Expected 5 m to equal 10 m"}
ParamRef values are accepted and annotated with expected unit type:
iex> ref = BB.Dsl.ParamRef.param([:motion, :max_speed])
iex> {:ok, validated} = BB.Unit.Option.validate(ref, compatible: :meter)
iex> validated.expected_unit_type
:meter

BB.ControllerSupervisor

Supervisor for robot-level controllers.
Groups all controllers defined in the controllers section under a single
supervisor for fault isolation. A flapping controller won't exhaust
the root supervisor's restart budget.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(arg)

BB.Diagnostic

Diagnostic reporting for monitoring and awareness.
Diagnostics are separate from control errors - they provide observability
into system health without affecting control flow. Following the ROS2 model,
diagnostics use four levels that indicate component health status.
Diagnostic Levels
	:ok - Component operating normally
	:warn - Unusual condition, but operation continues
	:error - Component has failed or is degraded
	:stale - No recent updates from component (timeout/disconnect)

Usage
Publish diagnostics via telemetry:
BB.Diagnostic.publish(
 component: [:robot, :arm, :elbow],
 level: :warn,
 message: "Motor temperature elevated",
 values: %{temperature: 65.2, threshold: 70.0}
)
Subscribe to diagnostics in your application:
:telemetry.attach(
 "my-diagnostic-handler",
 [:bb, :diagnostic],
 &MyApp.handle_diagnostic/4,
 nil
)
Integration with bb_liveview
The bb_liveview package provides a diagnostic dashboard that aggregates
and displays diagnostics from all robot components. It subscribes to the
[:bb, :diagnostic] telemetry event automatically.
Separation from Control Errors
Diagnostics are for awareness - they inform operators about system state
but don't halt operations. Control errors (BB.Error.*) are for control
flow - they're returned from functions and affect program execution.
	Concern	Mechanism	Purpose
	Diagnostics	Telemetry events	Monitoring dashboards
	Control errors	Return values	Program control flow

A component may publish a :warn diagnostic while continuing to operate,
or publish an :error diagnostic when it has failed. The safety system
(BB.Safety) handles critical failures independently.

 Summary

 Types

 level()

 t()

 Functions

 error(component, message, opts \\ [])

 Convenience function to publish an :error diagnostic.

 new(opts)

 Creates a new diagnostic struct.

 ok(component, message, opts \\ [])

 Convenience function to publish an :ok diagnostic.

 publish(diagnostic)

 Publishes a diagnostic event via telemetry.

 stale(component, message, opts \\ [])

 Convenience function to publish a :stale diagnostic.

 warn(component, message, opts \\ [])

 Convenience function to publish a :warn diagnostic.

 Types

 level()

 @type level() :: :ok | :warn | :error | :stale

 t()

 @type t() :: %BB.Diagnostic{
 component: [atom()],
 level: level(),
 message: String.t(),
 timestamp: DateTime.t(),
 values: map()
}

 Functions

 error(component, message, opts \\ [])

 @spec error([atom()], String.t(), keyword()) :: :ok

Convenience function to publish an :error diagnostic.
Examples
BB.Diagnostic.error([:my_robot, :sensor], "Sensor disconnected",
 values: %{last_reading: ~U[2025-01-15 10:30:00Z]}
)

 new(opts)

 @spec new(keyword()) :: t()

Creates a new diagnostic struct.
Options
	:component (required) - Path to the component, e.g. [:robot, :arm, :elbow]
	:level (required) - One of :ok, :warn, :error, :stale
	:message (required) - Human-readable description
	:values - Map of diagnostic values (default: %{})
	:timestamp - When the diagnostic was generated (default: DateTime.utc_now/0)

Examples
BB.Diagnostic.new(
 component: [:my_robot, :gripper],
 level: :ok,
 message: "Gripper operating normally"
)

BB.Diagnostic.new(
 component: [:my_robot, :arm, :shoulder],
 level: :warn,
 message: "Motor temperature elevated",
 values: %{temperature: 65.2, threshold: 70.0}
)

 ok(component, message, opts \\ [])

 @spec ok([atom()], String.t(), keyword()) :: :ok

Convenience function to publish an :ok diagnostic.
Examples
BB.Diagnostic.ok([:my_robot, :arm], "Arm calibrated successfully")

BB.Diagnostic.ok([:my_robot, :gripper], "Gripper ready",
 values: %{grip_force: 10.5}
)

 publish(diagnostic)

 @spec publish(t() | keyword()) :: :ok

Publishes a diagnostic event via telemetry.
This is the primary way to emit diagnostics. The event is published to
[:bb, :diagnostic] with the diagnostic struct as metadata.
Accepts either a BB.Diagnostic struct or keyword options (which are
passed to new/1).
Examples
With keyword options
BB.Diagnostic.publish(
 component: [:my_robot, :battery],
 level: :warn,
 message: "Battery low",
 values: %{percentage: 15, threshold: 20}
)

With struct
diagnostic = BB.Diagnostic.new(component: [:my_robot], level: :ok, message: "OK")
BB.Diagnostic.publish(diagnostic)

 stale(component, message, opts \\ [])

 @spec stale([atom()], String.t(), keyword()) :: :ok

Convenience function to publish a :stale diagnostic.
Used when a component hasn't reported recently, indicating potential
disconnect or hang.
Examples
BB.Diagnostic.stale([:my_robot, :camera], "No frames received",
 values: %{last_frame: ~U[2025-01-15 10:25:00Z], timeout_ms: 5000}
)

 warn(component, message, opts \\ [])

 @spec warn([atom()], String.t(), keyword()) :: :ok

Convenience function to publish a :warn diagnostic.
Examples
BB.Diagnostic.warn([:my_robot, :motor], "Temperature elevated",
 values: %{temperature: 65.0, threshold: 70.0}
)

BB.JointSupervisor

Supervisor for a joint and its child link.
Supervises:
	Joint sensors
	Joint actuators
	Child link supervisor (if joint has a child link)

 Summary

 Functions

 start_link(arg)

 Starts the joint supervisor.

 Functions

 start_link(arg)

 @spec start_link({module(), BB.Dsl.Joint.t(), [atom()], Keyword.t()}) ::
 Supervisor.on_start()

Starts the joint supervisor.
Arguments
	robot_module - The robot module (e.g., MyRobot)
	joint - The BB.Dsl.Joint struct
	path - The path to this joint (e.g., [:base_link])
	opts - Options passed through to child processes

BB.LinkSupervisor

Supervisor for a link and its joints.
Supervises:
	Link sensors
	Joint supervisors for each joint attached to this link

 Summary

 Functions

 start_link(arg)

 Starts the link supervisor.

 Functions

 start_link(arg)

 @spec start_link({module(), BB.Dsl.Link.t(), [atom()], Keyword.t()}) ::
 Supervisor.on_start()

Starts the link supervisor.
Arguments
	robot_module - The robot module (e.g., MyRobot)
	link - The BB.Dsl.Link struct
	path - The path to this link (e.g., [] for root, [:base_link, :shoulder] for nested)
	opts - Options passed through to child processes

BB.Process

Helper functions for building child specs and looking up processes in the robot's registry.

 Summary

 Types

 process_type()

 Functions

 bridge_child_spec(robot_module, name, user_child_spec, path)

 Build a child_spec for a bridge process.

 call(robot_module, name, message, timeout \\ 5000)

 Call a process looked up by name.

 cast(robot_module, name, message)

 Cast a message to a process looked up by name.

 child_spec(robot_module, name, user_child_spec, path, type, opts \\ [])

 Build a child_spec that registers the process in the robot's registry.

 registry_name(robot_module)

 Returns the registry name for a robot module.

 send(robot_module, name, message)

 Send a raw message to a process looked up by name.

 via(robot_module, name)

 Build a :via tuple for registry lookup by name.

 whereis(robot_module, name)

 Look up a process by name in the robot's registry.

 Types

 process_type()

 @type process_type() :: :actuator | :sensor | :controller

 Functions

 bridge_child_spec(robot_module, name, user_child_spec, path)

 @spec bridge_child_spec(module(), atom(), module() | {module(), Keyword.t()}, [atom()]) ::
 map()

Build a child_spec for a bridge process.
Bridges use GenServer directly (not a wrapper) as they implement the full
GenServer behaviour themselves.

 call(robot_module, name, message, timeout \\ 5000)

 @spec call(module(), atom(), term(), timeout()) :: term()

Call a process looked up by name.
Uses a :via tuple so the registry handles lookup atomically.
Raises if the process doesn't exist or times out.

 cast(robot_module, name, message)

 @spec cast(module(), atom(), term()) :: :ok

Cast a message to a process looked up by name.
Uses a :via tuple so the registry handles lookup atomically.
Returns :ok (GenServer.cast always returns :ok, even if process doesn't exist).

 child_spec(robot_module, name, user_child_spec, path, type, opts \\ [])

 @spec child_spec(
 module(),
 atom(),
 module() | {module(), Keyword.t()},
 [atom()],
 process_type(),
 Keyword.t()
) :: map()

Build a child_spec that registers the process in the robot's registry.
The resulting child spec uses the appropriate wrapper GenServer based on type:
	:actuator → BB.Actuator.Server (or BB.Sim.Actuator in simulation mode)
	:sensor → BB.Sensor.Server
	:controller → BB.Controller.Server

The user's callback module is passed via __callback_module__ and the wrapper
server delegates GenServer callbacks to it.
The process is registered by its name (which must be globally unique across
the robot). The full path is passed to the process in its init args for
context, but is not used for registration.
Options
	:simulation - when set (e.g., :kinematic), actuators use BB.Sim.Actuator
instead of the real actuator module

 registry_name(robot_module)

 @spec registry_name(module()) :: atom()

Returns the registry name for a robot module.

 send(robot_module, name, message)

 @spec send(module(), atom(), term()) :: :ok

Send a raw message to a process looked up by name.
Uses Registry.dispatch/3 to handle lookup atomically.
Returns :ok regardless of whether the process exists.

 via(robot_module, name)

 @spec via(module(), atom()) :: {:via, module(), {atom(), atom()}}

Build a :via tuple for registry lookup by name.

 whereis(robot_module, name)

 @spec whereis(module(), atom()) :: pid() | :undefined

Look up a process by name in the robot's registry.
Returns pid if found, :undefined otherwise.

BB.Robot.Builder

Builds an optimised BB.Robot struct from DSL output.
This module traverses the nested DSL structure and produces a flat,
optimised representation suitable for kinematic computations.

 Summary

 Functions

 build(robot_module)

 Build a Robot struct from a robot module that uses the BB DSL.

 build_from_dsl(name, root_dsl_link)

 Build a Robot struct from a DSL root link.

 Functions

 build(robot_module)

 @spec build(module()) :: BB.Robot.t()

Build a Robot struct from a robot module that uses the BB DSL.

 build_from_dsl(name, root_dsl_link)

 @spec build_from_dsl(atom(), BB.Dsl.Link.t()) :: BB.Robot.t()

Build a Robot struct from a DSL root link.

BB.Robot.CommandInfo

Information about a currently executing command.
Tracks metadata for commands running in the robot runtime.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %BB.Robot.CommandInfo{
 category: atom(),
 name: atom(),
 pid: pid(),
 ref: reference(),
 started_at: DateTime.t()
}

BB.Robot.Joint

An optimised joint representation with all units converted to SI floats.
Joints connect a parent link to a child link and define the kinematic
relationship between them.

 Summary

 Types

 axis()

 Joint axis of rotation/translation as a normalised unit vector {x, y, z}.

 dynamics()

 Joint dynamics parameters.

 joint_type()

 limits()

 Joint limits.

 origin()

 Joint origin transform from parent to child frame.

 t()

 Functions

 linear?(joint)

 Check if this joint is linear (prismatic).

 movable?(joint)

 Check if this joint has any degrees of freedom.

 rotational?(joint)

 Check if this joint is rotational (revolute or continuous).

 Types

 axis()

 @type axis() :: {float(), float(), float()}

Joint axis of rotation/translation as a normalised unit vector {x, y, z}.

 dynamics()

 @type dynamics() :: %{damping: float() | nil, friction: float() | nil}

Joint dynamics parameters.
	damping: viscous damping coefficient	For revolute: N·m·s/rad
	For prismatic: N·s/m

	friction: Coulomb friction	For revolute: N·m
	For prismatic: N

 joint_type()

 @type joint_type() ::
 :revolute | :continuous | :prismatic | :fixed | :floating | :planar

 limits()

 @type limits() :: %{
 lower: float() | nil,
 upper: float() | nil,
 velocity: float(),
 effort: float()
}

Joint limits.
For revolute/continuous joints:
	lower/upper: angle limits in radians
	velocity: max angular velocity in rad/s
	effort: max torque in N·m

For prismatic joints:
	lower/upper: position limits in meters
	velocity: max linear velocity in m/s
	effort: max effort in N·m (as defined in DSL)

 origin()

 @type origin() :: %{
 position: {float(), float(), float()},
 orientation: {float(), float(), float()}
}

Joint origin transform from parent to child frame.
	position: {x, y, z} translation in meters
	orientation: {roll, pitch, yaw} rotation in radians (XYZ Euler angles)

 t()

 @type t() :: %BB.Robot.Joint{
 actuators: [atom()],
 axis: axis() | nil,
 child_link: atom(),
 dynamics: dynamics() | nil,
 limits: limits() | nil,
 name: atom(),
 origin: origin() | nil,
 parent_link: atom(),
 sensors: [atom()],
 type: joint_type()
}

 Functions

 linear?(joint)

 @spec linear?(t()) :: boolean()

Check if this joint is linear (prismatic).

 movable?(joint)

 @spec movable?(t()) :: boolean()

Check if this joint has any degrees of freedom.

 rotational?(joint)

 @spec rotational?(t()) :: boolean()

Check if this joint is rotational (revolute or continuous).

BB.Robot.Link

An optimised link representation with all units converted to SI floats.
Links are connected to their parent via parent_joint (nil for the root link)
and to children via child_joints (list of joint names).

 Summary

 Types

 collision()

 Collision geometry information

 color()

 RGBA color (values 0-1)

 geometry()

 Geometry specification

 inertia()

 Inertia tensor components in kg·m²

 material()

 Material specification

 orientation()

 Orientation as {roll, pitch, yaw} in radians

 position()

 Position as {x, y, z} in meters

 t()

 visual()

 Visual geometry information

 Types

 collision()

 @type collision() :: %{
 name: atom() | nil,
 origin: {position(), orientation()} | nil,
 geometry: geometry() | nil
}

Collision geometry information

 color()

 @type color() :: %{red: float(), green: float(), blue: float(), alpha: float()}

RGBA color (values 0-1)

 geometry()

 @type geometry() ::
 {:box, %{x: float(), y: float(), z: float()}}
 | {:cylinder, %{radius: float(), height: float()}}
 | {:sphere, %{radius: float()}}
 | {:capsule, %{radius: float(), length: float()}}
 | {:mesh, %{filename: String.t(), scale: float()}}

Geometry specification

 inertia()

 @type inertia() :: %{
 ixx: float(),
 iyy: float(),
 izz: float(),
 ixy: float(),
 ixz: float(),
 iyz: float()
}

Inertia tensor components in kg·m²

 material()

 @type material() :: %{name: atom(), color: color() | nil, texture: String.t() | nil}

Material specification

 orientation()

 @type orientation() :: {float(), float(), float()}

Orientation as {roll, pitch, yaw} in radians

 position()

 @type position() :: {float(), float(), float()}

Position as {x, y, z} in meters

 t()

 @type t() :: %BB.Robot.Link{
 center_of_mass: position() | nil,
 child_joints: [atom()],
 collisions: [collision()],
 inertia: inertia() | nil,
 mass: float() | nil,
 name: atom(),
 parent_joint: atom() | nil,
 sensors: [atom()],
 visual: visual() | nil
}

 visual()

 @type visual() :: %{
 origin: {position(), orientation()} | nil,
 geometry: geometry() | nil,
 material: material() | nil
}

Visual geometry information

BB.Robot.ParamResolver

Resolves parameter references in robot structs.
When a robot's DSL uses param([:path, :to, :param]) instead of literal unit
values, the Builder stores nil for those fields and records subscriptions
in param_subscriptions. This module handles:
	Initial resolution - At startup, resolve all param refs using current
parameter values
	Dynamic updates - When a parameter changes, update all affected fields
in the robot struct

 Summary

 Functions

 resolve_all(robot, robot_state)

 Resolve all parameter references in a robot struct.

 update_for_param(robot, param_path, new_value, state)

 Update all fields that reference a specific parameter.

 Functions

 resolve_all(robot, robot_state)

 @spec resolve_all(BB.Robot.t(), BB.Robot.State.t()) :: BB.Robot.t()

Resolve all parameter references in a robot struct.
Iterates through robot.param_subscriptions and resolves each parameter
reference using the current value from robot_state.
Returns the updated robot struct with all param refs resolved to values.

 update_for_param(robot, param_path, new_value, state)

 @spec update_for_param(BB.Robot.t(), [atom()], term(), BB.Robot.State.t()) ::
 BB.Robot.t()

Update all fields that reference a specific parameter.
When a parameter changes, this function updates all robot struct fields
that reference that parameter path.
Returns the updated robot struct.

BB.Robot.Runtime

Runtime process for a BB robot.
Manages the robot's runtime state including:
	The BB.Robot struct (static topology)
	The BB.Robot.State ETS table (dynamic joint state)
	Robot state machine (disarmed/idle/executing)
	Command execution lifecycle
	Sensor telemetry collection (subscribes to JointState messages)

Robot States
The robot progresses through these states:
	:disarmed - Robot is not armed, commands restricted
	:idle - Robot is armed and ready for commands
	:executing - A command is currently executing

State Transitions
:disarmed ──arm──→ :idle
:idle ──execute──→ :executing
:executing ──complete──→ :idle
:executing ──disarm──→ :disarmed
:idle ──disarm──→ :disarmed
Command Execution
Commands execute as supervised GenServers. The caller receives the command
pid and can use BB.Command.await/2 or BB.Command.yield/2 to get the
result. The Runtime monitors the command server and transitions back to
:idle when it completes.

 Summary

 Types

 robot_state()

 simulation_mode()

 t()

 Functions

 cancel(robot_module)

 Cancel the currently executing command.

 category_availability(robot_module)

 Get the availability of each command category.

 check_allowed(robot_module, allowed_states)

 Check if the robot is in one of the allowed states.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(robot_module, command_name, goal)

 Execute a command with the given goal.

 executing?(robot_module)

 Check if any command is currently executing.

 executing?(robot_module, category)

 Check if a specific category has commands executing.

 executing_commands(robot_module)

 Get information about all currently executing commands.

 get_robot(robot_module)

 Get the static robot struct (topology).

 get_robot_state(robot_module)

 Get the robot state (ETS-backed joint positions/velocities).

 operational_state(robot_module)

 Get the actual operational state, without backwards compatibility translation.

 positions(robot_module)

 Get all joint positions as a map.

 simulation_mode(robot_module)

 Get the simulation mode for a robot.

 start_link(arg)

 Starts the runtime for a robot module.

 state(robot_module)

 Get the current robot state machine state.

 transition(robot_module, new_state)

 Transition the robot to a new state.

 transition_operational_state(robot_module, execution_id, target_state)

 Transition the operational state during command execution.

 velocities(robot_module)

 Get all joint velocities as a map.

 via(robot_module)

 Returns the via tuple for process registration.

 Types

 robot_state()

 @type robot_state() :: :disarmed | :disarming | :idle | :executing | :error | atom()

 simulation_mode()

 @type simulation_mode() :: nil | :kinematic | :external

 t()

 @type t() :: %BB.Robot.Runtime{
 category_counts: %{required(atom()) => non_neg_integer()},
 category_limits: %{required(atom()) => pos_integer()},
 commands: %{required(atom()) => BB.Dsl.Command.t()},
 current_command_name: atom() | nil,
 current_command_pid: pid() | nil,
 current_command_ref: reference() | nil,
 current_execution_id: reference() | nil,
 executing_commands: %{required(reference()) => BB.Robot.CommandInfo.t()},
 operational_state: atom(),
 parameter_store: module() | nil,
 parameter_store_state: term() | nil,
 robot: BB.Robot.t(),
 robot_module: module(),
 robot_state: BB.Robot.State.t(),
 simulation_mode: simulation_mode(),
 valid_states: [atom()]
}

 Functions

 cancel(robot_module)

 @spec cancel(module()) :: :ok | {:error, :no_execution}

Cancel the currently executing command.
Stops the command server with :cancelled reason. Awaiting callers
will receive the result from the command's result/1 callback.

 category_availability(robot_module)

 @spec category_availability(module()) :: %{
 required(atom()) => {non_neg_integer(), pos_integer()}
}

Get the availability of each command category.
Returns a map of category names to {current_count, limit} tuples.

 check_allowed(robot_module, allowed_states)

 @spec check_allowed(module(), [robot_state()]) ::
 :ok | {:error, BB.Error.State.NotAllowed.t()}

Check if the robot is in one of the allowed states.
Reads directly from ETS for fast concurrent access.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute(robot_module, command_name, goal)

 @spec execute(module(), atom(), map()) :: {:ok, pid()} | {:error, term()}

Execute a command with the given goal.
Returns {:ok, pid} where pid is the command server process.
Use BB.Command.await/2 or BB.Command.yield/2 to get the result.
Examples
{:ok, cmd} = Runtime.execute(MyRobot, :navigate, %{target: pose})
{:ok, result} = BB.Command.await(cmd)

Or with timeout
case BB.Command.yield(cmd, 5000) do
 nil -> still_running()
 {:ok, result} -> handle_result(result)
 {:error, reason} -> handle_error(reason)
end
Errors
	{:error, %StateError{}} - Robot not in allowed state
	{:error, {:unknown_command, name}} - Command not found
	Other errors are returned through BB.Command.await/2

 executing?(robot_module)

 @spec executing?(module()) :: boolean()

Check if any command is currently executing.
Reads directly from ETS for fast concurrent access.

 executing?(robot_module, category)

 @spec executing?(module(), atom()) :: boolean()

Check if a specific category has commands executing.

 executing_commands(robot_module)

 @spec executing_commands(module()) :: [map()]

Get information about all currently executing commands.

 get_robot(robot_module)

 @spec get_robot(module()) :: BB.Robot.t()

Get the static robot struct (topology).

 get_robot_state(robot_module)

 @spec get_robot_state(module()) :: BB.Robot.State.t()

Get the robot state (ETS-backed joint positions/velocities).

 operational_state(robot_module)

 @spec operational_state(module()) :: atom()

Get the actual operational state, without backwards compatibility translation.
Unlike state/1, this returns the actual operational state regardless of
whether commands are executing. Use this when you need to know the true
operational context (e.g., :idle, :recording, :reacting).
Reads directly from ETS for fast concurrent access.

 positions(robot_module)

 @spec positions(module()) :: %{required(atom()) => float()}

Get all joint positions as a map.
Reads directly from ETS for fast concurrent access. Returns a map of
joint names to their current positions (in radians for revolute joints,
metres for prismatic joints).
Positions are updated automatically by the Runtime when sensors publish
JointState messages.
Examples
iex> BB.Robot.Runtime.positions(MyRobot)
%{pan_joint: 0.0, tilt_joint: 0.0}

 simulation_mode(robot_module)

 @spec simulation_mode(module()) :: simulation_mode()

Get the simulation mode for a robot.
Returns nil if running in hardware mode, or the simulation mode atom
(e.g., :kinematic, :external) if running in simulation.

 start_link(arg)

Starts the runtime for a robot module.

 state(robot_module)

 @spec state(module()) :: robot_state()

Get the current robot state machine state.
Returns :disarmed if the robot is not armed (via BB.Safety),
otherwise returns the internal operational state.
For backwards compatibility:
	When operational_state is :idle but commands are executing, returns :executing
	Custom operational states (e.g., :recording) are returned directly

Reads directly from ETS for fast concurrent access.

 transition(robot_module, new_state)

 @spec transition(module(), robot_state()) :: {:ok, robot_state()} | {:error, term()}

Transition the robot to a new state.

 transition_operational_state(robot_module, execution_id, target_state)

 @spec transition_operational_state(module(), reference(), atom()) ::
 :ok | {:error, term()}

Transition the operational state during command execution.
This is called by BB.Command.transition_state/2 to change the robot's
operational state mid-execution. Only the command with the matching
execution_id can trigger a transition.

 velocities(robot_module)

 @spec velocities(module()) :: %{required(atom()) => float()}

Get all joint velocities as a map.
Reads directly from ETS for fast concurrent access. Returns a map of
joint names to their current velocities (in rad/s for revolute joints,
m/s for prismatic joints).
Velocities are updated automatically by the Runtime when sensors publish
JointState messages.
Examples
iex> BB.Robot.Runtime.velocities(MyRobot)
%{pan_joint: 0.0, tilt_joint: 0.0}

 via(robot_module)

Returns the via tuple for process registration.

BB.Robot.State

ETS-backed mutable state for robot instances.
This module manages joint positions, velocities, and computed transforms
for robot instances. Each robot instance has its own ETS table for
concurrent read access.
State Structure
For each joint, the following state is stored:
	position: current joint position (radians for revolute, meters for prismatic)
	velocity: current joint velocity (rad/s or m/s)

Usage
Create state for a robot instance
{:ok, state} = BB.Robot.State.new(robot)

Set/get joint positions
:ok = BB.Robot.State.set_joint_position(state, :shoulder, 0.5)
pos = BB.Robot.State.get_joint_position(state, :shoulder)

Get all joint positions as a map
positions = BB.Robot.State.get_all_positions(state)

Clean up when done
:ok = BB.Robot.State.delete(state)

 Summary

 Types

 t()

 Functions

 delete(state)

 Delete a state table and free resources.

 find_schema_for_parameter(state, path)

 Find the schema that applies to a given parameter path.

 get_all_positions(state)

 Get all joint positions as a map.

 get_all_velocities(state)

 Get all joint velocities as a map.

 get_chain_positions(state, target_link)

 Get the positions of joints along a path from root to a target link.

 get_joint_position(state, joint_name)

 Get the current position of a joint.

 get_joint_velocity(state, joint_name)

 Get the current velocity of a joint.

 get_parameter(state, path)

 Get a parameter value by path.

 get_parameter_schema(state, path)

 Get the registered schema for a path prefix.

 get_robot_state(state)

 Get the current robot state machine state.

 list_parameters(state, prefix \\ [])

 List all parameters, optionally filtered by path prefix.

 new(robot)

 Create a new state table for a robot.

 register_parameter_schema(state, path, schema)

 Register a parameter schema for a component path.

 reset(state)

 Reset all joints to their default positions (0.0).

 set_joint_position(state, joint_name, position)

 Set the position of a joint.

 set_joint_velocity(state, joint_name, velocity)

 Set the velocity of a joint.

 set_parameter(state, path, value)

 Set a parameter value by path.

 set_parameters(state, params)

 Set multiple parameters atomically.

 set_positions(state, positions)

 Set multiple joint positions at once.

 set_robot_state(state, state)

 Set the robot state machine state.

 set_velocities(state, velocities)

 Set multiple joint velocities at once.

 Types

 t()

 @type t() :: %BB.Robot.State{robot: BB.Robot.t(), table: :ets.table()}

 Functions

 delete(state)

 @spec delete(t()) :: :ok

Delete a state table and free resources.

 find_schema_for_parameter(state, path)

 @spec find_schema_for_parameter(t(), [atom()]) ::
 {:ok, [atom()], Spark.Options.t()} | {:error, :not_found}

Find the schema that applies to a given parameter path.
Searches for the longest matching schema prefix.

 get_all_positions(state)

 @spec get_all_positions(t()) :: %{required(atom()) => float()}

Get all joint positions as a map.
Examples
iex> positions = BB.Robot.State.get_all_positions(state)
%{shoulder: 0.0, elbow: 0.5, wrist: -0.3}

 get_all_velocities(state)

 @spec get_all_velocities(t()) :: %{required(atom()) => float()}

Get all joint velocities as a map.

 get_chain_positions(state, target_link)

 @spec get_chain_positions(t(), atom()) :: [{atom(), float()}]

Get the positions of joints along a path from root to a target link.
Returns a list of {joint_name, position} tuples in traversal order.

 get_joint_position(state, joint_name)

 @spec get_joint_position(t(), atom()) :: float() | nil

Get the current position of a joint.
Returns nil if the joint doesn't exist.

 get_joint_velocity(state, joint_name)

 @spec get_joint_velocity(t(), atom()) :: float() | nil

Get the current velocity of a joint.
Returns nil if the joint doesn't exist.

 get_parameter(state, path)

 @spec get_parameter(t(), [atom()]) :: {:ok, term()} | {:error, :not_found}

Get a parameter value by path.
Returns {:ok, value} if the parameter exists, {:error, :not_found} otherwise.

 get_parameter_schema(state, path)

 @spec get_parameter_schema(t(), [atom()]) ::
 {:ok, Spark.Options.t()} | {:error, :not_found}

Get the registered schema for a path prefix.
Returns {:ok, schema} if found, {:error, :not_found} otherwise.

 get_robot_state(state)

 @spec get_robot_state(t()) :: atom()

Get the current robot state machine state.
Returns the state atom (e.g., :disarmed, :idle, :executing).

 list_parameters(state, prefix \\ [])

 @spec list_parameters(t(), [atom()]) :: [{[atom()], map()}]

List all parameters, optionally filtered by path prefix.
Returns a list of {path, metadata} tuples where metadata includes
the current value and schema information if registered.

 new(robot)

 @spec new(BB.Robot.t()) :: {:ok, t()}

Create a new state table for a robot.
Returns {:ok, state} on success.

 register_parameter_schema(state, path, schema)

 @spec register_parameter_schema(t(), [atom()], Spark.Options.t()) :: :ok

Register a parameter schema for a component path.
The schema is stored and used for validation and metadata.

 reset(state)

 @spec reset(t()) :: :ok

Reset all joints to their default positions (0.0).

 set_joint_position(state, joint_name, position)

 @spec set_joint_position(t(), atom(), float()) :: :ok

Set the position of a joint.

 set_joint_velocity(state, joint_name, velocity)

 @spec set_joint_velocity(t(), atom(), float()) :: :ok

Set the velocity of a joint.

 set_parameter(state, path, value)

 @spec set_parameter(t(), [atom()], term()) :: :ok

Set a parameter value by path.
This is a low-level function that does not validate or notify.
Use BB.Parameter.set/3 for the validated, notifying version.

 set_parameters(state, params)

 @spec set_parameters(t(), [{[atom()], term()}]) :: :ok

Set multiple parameters atomically.
This is a low-level function that does not validate or notify.

 set_positions(state, positions)

 @spec set_positions(t(), %{required(atom()) => float()}) :: :ok

Set multiple joint positions at once.
Examples
:ok = BB.Robot.State.set_positions(state, %{
 shoulder: 0.5,
 elbow: -0.3,
 wrist: 0.0
})

 set_robot_state(state, state)

 @spec set_robot_state(t(), atom()) :: :ok

Set the robot state machine state.

 set_velocities(state, velocities)

 @spec set_velocities(t(), %{required(atom()) => float()}) :: :ok

Set multiple joint velocities at once.

BB.Robot.Topology

Pre-computed topology metadata for efficient traversal and kinematic operations.
This struct contains ordering information that allows:
	Forward kinematics to process joints in the correct order
	Path lookup from root to any node
	Depth information for tree operations

 Summary

 Types

 t()

 Functions

 depth_of(topology, name)

 Get the depth of a node in the tree.

 leaf_links(topology, robot)

 Get all leaf links (links with no child joints).

 max_depth(topology)

 Get the maximum depth of the kinematic tree.

 path_to(topology, name)

 Get the path from root to a node.

 Types

 t()

 @type t() :: %BB.Robot.Topology{
 depth: %{required(atom()) => non_neg_integer()},
 joint_order: [atom()],
 link_order: [atom()],
 paths: %{required(atom()) => [atom()]}
}

 Functions

 depth_of(topology, name)

 @spec depth_of(t(), atom()) :: non_neg_integer() | nil

Get the depth of a node in the tree.
The root link has depth 0. Each joint/link pair adds 1 to the depth.

 leaf_links(topology, robot)

 @spec leaf_links(t(), BB.Robot.t()) :: [atom()]

Get all leaf links (links with no child joints).

 max_depth(topology)

 @spec max_depth(t()) :: non_neg_integer()

Get the maximum depth of the kinematic tree.

 path_to(topology, name)

 @spec path_to(t(), atom()) :: [atom()] | nil

Get the path from root to a node.
Returns a list of link/joint names from the root to the given node.

BB.Robot.Units

Unit conversion functions for transforming Cldr.Unit values into base SI floats.
All functions in this module convert from Cldr.Unit.t() structs to native
floats in SI base units, suitable for efficient numerical computation.

 Summary

 Functions

 extract_float(unit)

 Extract the numeric value from a Cldr.Unit as a float.

 to_kilogram_square_meters(unit)

 Convert a moment of inertia unit to kg·m² (float).

 to_kilogram_square_meters_or_nil(unit)

 to_kilograms(unit)

 Convert a mass unit to kilograms (float).

 to_kilograms_or_nil(unit)

 to_linear_damping(unit)

 Convert a linear damping coefficient to N·s/m (float).

 to_linear_damping_or_nil(unit)

 to_meters(unit)

 Convert a length unit to meters (float).

 to_meters_or_nil(unit)

 Convert an optional unit value to its base SI float, or return nil.

 to_meters_per_second(unit)

 Convert a linear velocity unit to meters per second (float).

 to_meters_per_second_or_nil(unit)

 to_newton(unit)

 Convert a force unit to newtons (float).

 to_newton_meters(unit)

 Convert a torque unit to newton-meters (float).

 to_newton_meters_or_nil(unit)

 to_newtons(unit)

 Convert a force unit to newtons (float).

 to_newtons_or_nil(unit)

 to_radians(unit)

 Convert an angle unit to radians (float).

 to_radians_or_nil(unit)

 to_radians_per_second(unit)

 Convert an angular velocity unit to radians per second (float).

 to_radians_per_second_or_nil(unit)

 to_rotational_damping(unit)

 Convert a rotational damping coefficient to N·m·s/rad (float).

 to_rotational_damping_or_nil(unit)

 Functions

 extract_float(unit)

 @spec extract_float(Cldr.Unit.t()) :: float()

Extract the numeric value from a Cldr.Unit as a float.
Handles both integer and Decimal values.

 to_kilogram_square_meters(unit)

 @spec to_kilogram_square_meters(Cldr.Unit.t()) :: float()

Convert a moment of inertia unit to kg·m² (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_kilogram_square_meters(~u(0.5 kilogram_square_meter))
0.5

 to_kilogram_square_meters_or_nil(unit)

 @spec to_kilogram_square_meters_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_kilograms(unit)

 @spec to_kilograms(Cldr.Unit.t()) :: float()

Convert a mass unit to kilograms (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_kilograms(~u(1000 gram))
1.0

iex> import BB.Unit
iex> BB.Robot.Units.to_kilograms(~u(2.5 kilogram))
2.5

 to_kilograms_or_nil(unit)

 @spec to_kilograms_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_linear_damping(unit)

 @spec to_linear_damping(Cldr.Unit.t()) :: float()

Convert a linear damping coefficient to N·s/m (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_linear_damping(~u(1.5 newton_second_per_meter))
1.5

 to_linear_damping_or_nil(unit)

 @spec to_linear_damping_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_meters(unit)

 @spec to_meters(Cldr.Unit.t()) :: float()

Convert a length unit to meters (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_meters(~u(100 centimeter))
1.0

iex> import BB.Unit
iex> BB.Robot.Units.to_meters(~u(1.5 meter))
1.5

 to_meters_or_nil(unit)

 @spec to_meters_or_nil(Cldr.Unit.t() | nil) :: float() | nil

Convert an optional unit value to its base SI float, or return nil.

 to_meters_per_second(unit)

 @spec to_meters_per_second(Cldr.Unit.t()) :: float()

Convert a linear velocity unit to meters per second (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_meters_per_second(~u(10 meter_per_second))
10.0

 to_meters_per_second_or_nil(unit)

 @spec to_meters_per_second_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_newton(unit)

 @spec to_newton(Cldr.Unit.t()) :: float()

Convert a force unit to newtons (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_newton(~u(5 newton))
5.0

 to_newton_meters(unit)

 @spec to_newton_meters(Cldr.Unit.t()) :: float()

Convert a torque unit to newton-meters (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_newton_meters(~u(5 newton_meter))
5.0

 to_newton_meters_or_nil(unit)

 @spec to_newton_meters_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_newtons(unit)

 @spec to_newtons(Cldr.Unit.t()) :: float()

Convert a force unit to newtons (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_newtons(~u(10 newton))
10.0

 to_newtons_or_nil(unit)

 @spec to_newtons_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_radians(unit)

 @spec to_radians(Cldr.Unit.t()) :: float()

Convert an angle unit to radians (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_radians(~u(180 degree))
:math.pi()

iex> import BB.Unit
iex> BB.Robot.Units.to_radians(~u(0 degree))
0.0

 to_radians_or_nil(unit)

 @spec to_radians_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_radians_per_second(unit)

 @spec to_radians_per_second(Cldr.Unit.t()) :: float()

Convert an angular velocity unit to radians per second (float).
Examples
iex> import BB.Unit
iex> BB.Robot.Units.to_radians_per_second(~u(180 degree_per_second))
:math.pi()

 to_radians_per_second_or_nil(unit)

 @spec to_radians_per_second_or_nil(Cldr.Unit.t() | nil) :: float() | nil

 to_rotational_damping(unit)

 @spec to_rotational_damping(Cldr.Unit.t()) :: float()

Convert a rotational damping coefficient to N·m·s/rad (float).
Note: The DSL uses newton_meter_second_per_degree but we convert
to radians for consistency with other angular quantities.

 to_rotational_damping_or_nil(unit)

 @spec to_rotational_damping_or_nil(Cldr.Unit.t() | nil) :: float() | nil

BB.SensorSupervisor

Supervisor for robot-level sensors.
Groups all sensors defined in the sensors section under a single
supervisor for fault isolation. A flapping sensor won't exhaust
the root supervisor's restart budget.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(arg)

BB.Server.ParamResolution

Shared parameter resolution logic for wrapper servers.
This module provides functions for resolving ParamRef values in options
and subscribing to parameter change notifications. Used by:
	BB.Actuator.Server
	BB.Sensor.Server
	BB.Controller.Server
	BB.Command.Server

Usage
In your server's init/1:
{param_subscriptions, resolved_opts} =
 ParamResolution.resolve_and_subscribe(raw_opts, robot_module)
In handle_info/2 for parameter changes:
def handle_info({:bb, [:param | param_path], %{payload: %ParameterChanged{}}}, state) do
 ParamResolution.handle_param_change(
 param_path,
 state.param_subscriptions,
 state.raw_opts,
 robot_module,
 fn new_resolved ->
 # Call user's handle_options callback
 end
)
end

 Summary

 Types

 subscriptions()

 Functions

 handle_change(param_path, subscriptions, raw_opts, robot_module_or_state)

 Handle a parameter change message.

 resolve(opts, robot_module_or_state)

 Resolve ParamRefs in options without subscribing.

 resolve_and_subscribe(opts, robot_module_or_state)

 Resolve ParamRefs in options and subscribe to parameter change topics.

 subscribe(robot_module, subscriptions)

 Subscribe to parameter change topics for tracked parameters.

 Types

 subscriptions()

 @type subscriptions() :: %{required([atom()]) => atom()}

 Functions

 handle_change(param_path, subscriptions, raw_opts, robot_module_or_state)

 @spec handle_change(
 [atom()],
 subscriptions(),
 keyword(),
 module() | BB.Robot.State.t()
) ::
 {:changed, keyword()} | :ignored

Handle a parameter change message.
Checks if the changed parameter is one we're subscribed to,
re-resolves all options, and calls the provided callback with the new options.
Returns {:changed, new_resolved} if the parameter was tracked,
or :ignored if not.

 resolve(opts, robot_module_or_state)

 @spec resolve(
 keyword(),
 module() | BB.Robot.State.t()
) :: {subscriptions(), keyword()}

Resolve ParamRefs in options without subscribing.
Takes either a robot module or a BB.Robot.State struct directly.
Passing the state directly avoids a lookup and potential deadlock
during init when the Runtime is still starting.

 resolve_and_subscribe(opts, robot_module_or_state)

 @spec resolve_and_subscribe(
 keyword(),
 module() | BB.Robot.State.t()
) :: {subscriptions(), keyword()}

Resolve ParamRefs in options and subscribe to parameter change topics.
Returns {subscriptions_map, resolved_opts} where:
	subscriptions_map maps parameter paths to option keys
	resolved_opts has ParamRefs replaced with their current values

This is a convenience function that calls resolve/2 and subscribe/2.

 subscribe(robot_module, subscriptions)

 @spec subscribe(module(), subscriptions()) :: :ok

Subscribe to parameter change topics for tracked parameters.

BB.StateMachine.Transition

Payload type for state machine transition events.

 Summary

 Types

 t()

 Functions

 new(frame_id, attrs)

 Types

 t()

 @type t() :: %BB.StateMachine.Transition{from: atom(), to: atom()}

 Functions

 new(frame_id, attrs)

 @spec new(
 atom(),
 keyword()
) :: {:ok, BB.Message.t()} | {:error, term()}

mix bb.add_robot

Adds a new robot module to your project
Example
mix bb.add_robot --robot MyApp.Robots.MainRobot

Options
	--robot - The module name for the robot (defaults to {AppPrefix}.Robot)

mix bb.install

Installs BB into a project
Example
mix igniter.install bb

mix bb.to_urdf

Export a BB robot definition to URDF XML format.
Usage
mix bb.to_urdf MyApp.Robot --output robot.urdf
mix bb.to_urdf MyApp.Robot -o -
Options
	--output, -o - Output file path. Use - for stdout.
If not specified, prints to stdout.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

