

 bb_kino

 v0.3.3

 Table of contents

 	README

 	Change Log

 	Tutorials

 	Interactive Control in Livebook

 	How-to Guides

 	How to Create Combined Widget Layouts

 	
 Modules

 	BB.Kino

 	BB.Kino.Command

 	BB.Kino.EventStream

 	BB.Kino.Examples.TestRobot

 	BB.Kino.JointControl

 	BB.Kino.ManageRobotCell

 	BB.Kino.Parameters

 	BB.Kino.Safety

 	BB.Kino.Shared.PubSubHandler

 	BB.Kino.Shared.RobotContext

 	BB.Kino.Visualisation

 README

[image: Beam Bots Logo]BB Kino
[image: CI]
[image: License: Apache 2.0]
[image: Hex version badge]
[image: REUSE status]
Interactive Livebook widgets for controlling and monitoring BB robots.
[image: BB Kino Demo]
Features
BB Kino provides a suite of interactive widgets for working with BB robots in Livebook:
	Safety Widget - Arm/disarm controls with real-time state indicators
	Joint Control Widget - Sliders for controlling joint positions with limit enforcement
	Event Stream Widget - Real-time message monitoring with path filtering and pause/resume
	Command Widget - Dynamic forms for executing robot commands with argument validation
	3D Visualisation Widget - Interactive Three.js rendering with real-time joint updates
	Manage Robot Smart Cell - Unified dashboard combining all widgets

Installation
Add bb_kino to your dependencies in mix.exs:
def deps do
 [
 {:bb_kino, "~> 0.1"}
]
end
Usage
In Livebook
The easiest way to use BB Kino is with the Manage Robot smart cell:
	Click + Smart in your Livebook notebook
	Select Manage robot
	Enter your robot module name (e.g., MyRobot)
	Select which widgets to display
	Evaluate the cell

Individual Widgets
You can also use widgets individually:
Safety controls (arm/disarm)
BB.Kino.safety(MyRobot)

Joint position control with sliders
BB.Kino.joints(MyRobot)

Real-time event stream
BB.Kino.events(MyRobot)

Command execution forms
BB.Kino.commands(MyRobot)

3D visualisation
BB.Kino.visualisation(MyRobot)
Combined Layout
Create a custom dashboard layout:
Kino.Layout.grid([
 Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot),
 BB.Kino.events(MyRobot)
], columns: 1),
 Kino.Layout.grid([
 BB.Kino.visualisation(MyRobot),
 BB.Kino.commands(MyRobot)
], columns: 1)
], columns: 2)
Widget Details
Safety Widget
Displays the current robot state (disarmed, idle, executing, error) and provides buttons to arm and disarm the robot. The disarm button is only enabled when the robot is in the idle state.
Joint Control Widget
Shows all robot joints with:
	Current position display (in degrees for revolute joints)
	Target position sliders respecting joint limits
	Visual indication of simulation mode vs real actuators
	Sliders are disabled when the robot is not armed

Event Stream Widget
Real-time display of BB PubSub messages with:
	Path-based filtering (e.g., sensor.joint1)
	Pause/resume functionality
	Message count display
	Expandable message details
	Automatic scrolling with newest messages

Command Widget
Dynamically generates forms for robot commands:
	Tab-based navigation between commands
	Automatic form fields based on argument types
	State-aware execution (commands only available in allowed states)
	Result/error display

3D Visualisation Widget
Interactive Three.js-based robot visualisation:
	Real-time joint position updates
	Orbit camera controls (rotate, pan, zoom)
	Support for box, cylinder, and sphere geometries
	Reset view button

Requirements
	Elixir ~> 1.19
	BB framework ~> 0.4
	Kino ~> 0.18

Documentation
	Interactive Control in Livebook - getting started tutorial
	Create Combined Widget Layout - custom layouts

Full API documentation is available at HexDocs.

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.3.3 (2026-01-18)
Documentation
	add Diataxis-structured documentation (#16) by James Harton

v0.3.2 (2026-01-11)
Bug Fixes:
	filter out omitted bridges in simulation mode by James Harton

v0.3.1 (2026-01-09)
Bug Fixes:
	use BB.Actuator.set_position! for direct actuator commands by James Harton

v0.3.0 (2026-01-04)
Breaking Changes:
	update command handlers to new GenServer-based API (#9) by James Harton

Features:
	add Parameters widget for viewing and editing robot parameters (#2) by James Harton

Bug Fixes:
	colour serialisation by James Harton

Improvements:
	enhance command and joint control widgets (#1) by James Harton

v0.2.0 (2025-12-14)
Features:
	add Kino widgets for BB robot control in Livebook by James Harton

 Interactive Control in Livebook

In this tutorial, you'll create an interactive Livebook notebook for controlling and monitoring a Beam Bots robot.
What We're Building
A Livebook notebook with:
	Safety controls to arm/disarm the robot
	Joint position sliders
	Real-time 3D visualisation
	Event stream monitoring
	Command execution

Prerequisites
	Livebook installed
	Basic familiarity with Livebook notebooks
	A BB robot module (or use the example in this tutorial)

Step 1: Create a New Notebook
Open Livebook and create a new notebook. Add a setup cell with dependencies:
Mix.install([
 {:bb, "~> 0.12"},
 {:bb_kino, "~> 0.1"}
])
Step 2: Define a Robot
If you don't have a robot module, create a simple one:
defmodule DemoRobot do
 use BB

 commands do
 command :arm do
 handler BB.Command.Arm
 allowed_states [:disarmed]
 end

 command :disarm do
 handler BB.Command.Disarm
 allowed_states [:idle]
 end
 end

 topology do
 link :base do
 joint :shoulder, type: :revolute do
 limit lower: ~u(-90 degree), upper: ~u(90 degree), velocity: ~u(60 degree_per_second)
 end

 joint :elbow, type: :revolute do
 limit lower: ~u(-120 degree), upper: ~u(120 degree), velocity: ~u(90 degree_per_second)
 end
 end
 end
end
Step 3: Start the Robot
Start the robot in simulation mode:
{:ok, _pid} = BB.Supervisor.start_link(DemoRobot, simulation: :kinematic)
Step 4: Add the Safety Widget
The safety widget shows robot state and provides arm/disarm controls:
BB.Kino.safety(DemoRobot)
You'll see:
	Current state indicator (Disarmed, Idle, Executing, Error)
	Arm button (enabled when disarmed)
	Disarm button (enabled when idle)

Click Arm to enable robot control.
Step 5: Add Joint Control
Add sliders for controlling joint positions:
BB.Kino.joints(DemoRobot)
With the robot armed, drag the sliders to move joints. The sliders:
	Respect joint limits from the DSL
	Show current position in degrees
	Send commands via BB.Actuator.set_position/4
	Are disabled when the robot is disarmed

Step 6: Add 3D Visualisation
See the robot in 3D:
BB.Kino.visualisation(DemoRobot)
The visualisation:
	Renders links and joints from the topology
	Updates in real-time as joints move
	Supports orbit controls (drag to rotate, scroll to zoom)

Step 7: Add Event Stream
Monitor PubSub messages in real-time:
BB.Kino.events(DemoRobot)
Features:
	Filter by path (e.g., sensor.shoulder)
	Pause/resume
	Expandable message details
	Automatic scrolling

Step 8: Add Commands
Execute robot commands through forms:
BB.Kino.commands(DemoRobot)
Commands defined in the DSL appear as tabs with auto-generated forms. Fill in arguments and click execute.
Using the Manage Robot Smart Cell
For a unified dashboard, use the smart cell:
	Click + Smart in your notebook
	Select Manage robot
	Enter your robot module name
	Check which widgets to display
	Evaluate the cell

The smart cell generates code that combines all selected widgets in a grid layout.
Combined Widget Layouts
Create custom layouts using Kino.Layout:
Kino.Layout.grid([
 Kino.Layout.grid([
 BB.Kino.safety(DemoRobot),
 BB.Kino.joints(DemoRobot)
], columns: 1),
 BB.Kino.visualisation(DemoRobot)
], columns: 2)
See Create Combined Widget Layout for more layout options.
Controlling Real Hardware
For real hardware:
	Remove the :simulation option when starting
	Ensure hardware drivers are properly configured
	The widgets work identically

Real hardware
{:ok, _} = BB.Supervisor.start_link(MyRealRobot)

Same widgets
BB.Kino.safety(MyRealRobot)
BB.Kino.joints(MyRealRobot)
Understanding Widget Behaviour
Safety Widget
	Subscribes to [:state_machine] and [:safety] channels
	Updates state display in real-time
	Buttons are state-aware (arm only when disarmed, etc.)

Joint Widget
	Reads joint definitions from robot struct
	Sliders use joint limits
	Position updates come from sensor messages
	Disabled when robot is not armed

Visualisation Widget
	Builds Three.js model from topology
	Receives position updates via Kino channels
	Supports standard orbit controls

Event Widget
	Subscribes to all robot messages
	Buffers recent messages for display
	Filter applies to message paths

Command Widget
	Generates forms from command DSL definitions
	Validates argument types
	Shows command results inline

Troubleshooting
Widget not updating
Check that:
	The robot is started
	You're using the correct robot module
	Livebook cell is connected

Sliders disabled
The robot must be armed. Click the Arm button in the safety widget.
Visualisation blank
Ensure:
	WebGL is enabled in your browser
	The robot has a topology with links

Next Steps
	Create Combined Widget Layout - Advanced layout techniques
	Connect to real hardware
	Add custom widgets for your specific robot

 How to Create Combined Widget Layouts

Arrange BB Kino widgets in custom layouts for different use cases.
Prerequisites
	Completed Interactive Control in Livebook
	Robot started in Livebook

Using Kino.Layout
BB Kino widgets are standard Kino outputs. Combine them with Kino.Layout.grid/2:
Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot),
 BB.Kino.visualisation(MyRobot)
], columns: 3)
Common Layout Patterns
Control Panel (Left) + Visualisation (Right)
Kino.Layout.grid([
 Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot),
 BB.Kino.commands(MyRobot)
], columns: 1),
 BB.Kino.visualisation(MyRobot)
], columns: 2)
Full Dashboard
Kino.Layout.grid([
 # Top row: safety and joints
 Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot)
], columns: 2),

 # Middle row: visualisation and events
 Kino.Layout.grid([
 BB.Kino.visualisation(MyRobot),
 BB.Kino.events(MyRobot)
], columns: 2),

 # Bottom row: commands
 BB.Kino.commands(MyRobot)
], columns: 1)
Monitoring Only (No Control)
Kino.Layout.grid([
 BB.Kino.visualisation(MyRobot),
 BB.Kino.events(MyRobot)
], columns: 2)
Minimal Control
Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot)
], columns: 1)
Nested Layouts
Create complex arrangements with nested grids:
left_panel = Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot)
], columns: 1)

right_panel = Kino.Layout.grid([
 BB.Kino.visualisation(MyRobot),
 BB.Kino.events(MyRobot)
], columns: 1)

Kino.Layout.grid([left_panel, right_panel], columns: 2)
Adding Labels
Use Kino.Markdown for section headers:
Kino.Layout.grid([
 Kino.Markdown.new("## Control"),
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot),
 Kino.Markdown.new("## Monitoring"),
 BB.Kino.events(MyRobot)
], columns: 1)
Conditional Widgets
Show different widgets based on conditions:
widgets = [BB.Kino.safety(MyRobot)]

widgets =
 if has_joints?(MyRobot) do
 widgets ++ [BB.Kino.joints(MyRobot)]
 else
 widgets
 end

widgets =
 if has_commands?(MyRobot) do
 widgets ++ [BB.Kino.commands(MyRobot)]
 else
 widgets
 end

Kino.Layout.grid(widgets, columns: 1)
Using Tabs
Organise widgets in tabs with Kino.Layout.tabs/1:
Kino.Layout.tabs([
 Control: Kino.Layout.grid([
 BB.Kino.safety(MyRobot),
 BB.Kino.joints(MyRobot)
], columns: 1),
 Visualisation: BB.Kino.visualisation(MyRobot),
 Events: BB.Kino.events(MyRobot),
 Commands: BB.Kino.commands(MyRobot)
])
Multiple Robots
Control multiple robots in one notebook:
Kino.Layout.grid([
 Kino.Markdown.new("## Robot 1"),
 Kino.Layout.grid([
 BB.Kino.safety(Robot1),
 BB.Kino.joints(Robot1)
], columns: 2),

 Kino.Markdown.new("## Robot 2"),
 Kino.Layout.grid([
 BB.Kino.safety(Robot2),
 BB.Kino.joints(Robot2)
], columns: 2)
], columns: 1)
Responsive Considerations
Livebook cells have a fixed width. For complex layouts:
	Use 2-3 columns maximum
	Place controls on the left
	Put visualisation in a wider column
	Test at different zoom levels

Performance Tips
	Events widget can be resource-intensive with high message rates - add path filters
	Visualisation updates are throttled by default
	For many joints, consider a more compact layout

Saving Layouts as Functions
Create reusable layout functions:
defmodule MyLayouts do
 def control_panel(robot) do
 Kino.Layout.grid([
 BB.Kino.safety(robot),
 BB.Kino.joints(robot)
], columns: 1)
 end

 def full_dashboard(robot) do
 Kino.Layout.grid([
 control_panel(robot),
 Kino.Layout.grid([
 BB.Kino.visualisation(robot),
 BB.Kino.events(robot)
], columns: 1)
], columns: 2)
 end
end

MyLayouts.full_dashboard(MyRobot)

BB.Kino

Livebook widgets for the Beam Bots robotics framework.
This library provides interactive Kino widgets for working with BB robots
in Livebook notebooks.
Smart Cell
The easiest way to get started is using the "Manage robot" Smart Cell:
	Click "+ Smart" in Livebook
	Select "Manage robot"
	Enter your robot module name
	Evaluate the cell

This gives you a complete dashboard with all widgets in a grid layout.
Available Widgets
	BB.Kino.Safety - Display and control robot arming state
	BB.Kino.JointControl - Control joint positions with live feedback
	BB.Kino.EventStream - Live stream of robot messages
	BB.Kino.Command - Execute robot commands with forms
	BB.Kino.Visualisation - Interactive 3D robot visualisation
	BB.Kino.Parameters - View and edit robot parameters

Quick Start
Display safety controls
BB.Kino.safety(MyRobot)

Control joints (only works when armed)
BB.Kino.joints(MyRobot)

Watch all robot messages
BB.Kino.events(MyRobot)

Execute commands
BB.Kino.commands(MyRobot)

3D visualisation with live position updates
BB.Kino.visualisation(MyRobot)

View and edit parameters
BB.Kino.parameters(MyRobot)
Usage with Real Robots
Make sure your robot supervisor is started before creating widgets:
{:ok, _pid} = MyRobot.start_link()

BB.Kino.safety(MyRobot)

 Summary

 Functions

 commands(robot_module)

 Creates a command widget for the robot.

 events(robot_module, opts \\ [])

 Creates an event stream widget for the robot.

 joints(robot_module)

 Creates a joint control widget for the robot.

 parameters(robot_module)

 Creates a parameters widget for the robot.

 safety(robot_module)

 Creates a safety status widget for the robot.

 visualisation(robot_module)

 Creates a 3D visualisation widget for the robot.

 Functions

 commands(robot_module)

 @spec commands(module()) :: Kino.JS.Live.t()

Creates a command widget for the robot.
Displays available commands in tabs with dynamic forms for arguments.
Example
BB.Kino.commands(MyRobot)

 events(robot_module, opts \\ [])

 @spec events(
 module(),
 keyword()
) :: Kino.JS.Live.t()

Creates an event stream widget for the robot.
Shows a live stream of BB messages with filtering and pause/resume.
Options
	:path_filter - filter by path (e.g., [:sensor])
	:message_types - filter by message types
	:max_messages - max messages to display (default: 100)

Examples
All messages
BB.Kino.events(MyRobot)

Only sensor messages
BB.Kino.events(MyRobot, path_filter: [:sensor])

 joints(robot_module)

 @spec joints(module()) :: Kino.JS.Live.t()

Creates a joint control widget for the robot.
Displays all movable joints with position sliders.
Controls are disabled when the robot is not armed.
Example
BB.Kino.joints(MyRobot)

 parameters(robot_module)

 @spec parameters(module()) :: Kino.JS.Live.t()

Creates a parameters widget for the robot.
Displays all robot parameters in a tab-based interface with editing controls.
Local parameter groups appear as tabs, remote bridge parameters in separate tabs.
Example
BB.Kino.parameters(MyRobot)

 safety(robot_module)

 @spec safety(module()) :: Kino.JS.Live.t()

Creates a safety status widget for the robot.
Shows the current arming state and provides arm/disarm controls.
Example
BB.Kino.safety(MyRobot)

 visualisation(robot_module)

 @spec visualisation(module()) :: Kino.JS.Live.t()

Creates a 3D visualisation widget for the robot.
Displays an interactive Three.js view with real-time joint position updates.
Supports orbit camera controls (pan, zoom, rotate).
Example
BB.Kino.visualisation(MyRobot)

BB.Kino.Command

A Kino widget for executing robot commands.
Displays available commands in a tab view with:
	Dynamic form for each command's arguments
	Execute button with loading state
	Result/error display

Usage
BB.Kino.Command.new(MyRobot)
The widget automatically:
	Discovers commands from the robot's DSL definition
	Generates form inputs based on argument types
	Executes commands via BB.Robot.Runtime.execute/3
	Displays results or errors

 Summary

 Functions

 new(robot_module)

 Creates a new command widget for the given robot.

 Functions

 new(robot_module)

 @spec new(module()) :: Kino.JS.Live.t()

Creates a new command widget for the given robot.

BB.Kino.EventStream

A Kino widget for displaying a live stream of BB messages.
Shows real-time messages from the robot's PubSub with filtering
and pause/resume capabilities.
Usage
Show all messages
BB.Kino.EventStream.new(MyRobot)

Filter to sensor messages only
BB.Kino.EventStream.new(MyRobot, path_filter: [:sensor])

Filter to specific message types
BB.Kino.EventStream.new(MyRobot,
 path_filter: [:sensor],
 message_types: [BB.Message.Sensor.JointState]
)
The widget provides:
	Real-time message display with timestamps
	Path and message type filtering
	Pause/Resume functionality
	Click to expand message details

 Summary

 Functions

 new(robot_module, opts \\ [])

 Creates a new event stream widget for the given robot.

 Functions

 new(robot_module, opts \\ [])

 @spec new(
 module(),
 keyword()
) :: Kino.JS.Live.t()

Creates a new event stream widget for the given robot.
Options
	:path_filter - list of atoms for path filtering (default: [] for all)
	:message_types - list of message type modules to filter by
	:max_messages - maximum messages to display (default: 100)

BB.Kino.Examples.TestRobot

An example robot for testing BB.Kino widgets.
This robot has a simple 2-joint arm topology with commands for:
	Arming/disarming
	Cycling joints through their range of motion
	Moving to home position

Usage in Livebook
{:ok, _pid} = BB.Kino.Examples.TestRobot.start_link()

Create the management widget
BB.Kino.safety(BB.Kino.Examples.TestRobot)

 Summary

 Functions

 arm(goal \\ [])

 Execute the arm command.

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 cycle_joint(goal \\ [])

 Execute the cycle_joint command.

 disarm(goal \\ [])

 Execute the disarm command.

 go_home(goal \\ [])

 Execute the go_home command.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 wave(goal \\ [])

 Execute the wave command.

 Functions

 arm(goal \\ [])

 @spec arm(keyword()) :: {:ok, pid()} | {:error, term()}

Execute the arm command.
Returns
	{:ok, pid()} - Command started, use BB.Command.await/2 for the result
	{:error, term()} - Command could not be started

Example
{:ok, cmd} = arm(goal_args)
{:ok, result} = BB.Command.await(cmd)

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 cycle_joint(goal \\ [])

 @spec cycle_joint(keyword()) :: {:ok, pid()} | {:error, term()}

Execute the cycle_joint command.
Arguments
	joint: :atom, default: :shoulder_joint - Joint to cycle (shoulder_joint or elbow_joint)
	duration: :integer, default: 2000 - Duration in milliseconds

Returns
	{:ok, pid()} - Command started, use BB.Command.await/2 for the result
	{:error, term()} - Command could not be started

Example
{:ok, cmd} = cycle_joint(goal_args)
{:ok, result} = BB.Command.await(cmd)

 disarm(goal \\ [])

 @spec disarm(keyword()) :: {:ok, pid()} | {:error, term()}

Execute the disarm command.
Returns
	{:ok, pid()} - Command started, use BB.Command.await/2 for the result
	{:error, term()} - Command could not be started

Example
{:ok, cmd} = disarm(goal_args)
{:ok, result} = BB.Command.await(cmd)

 go_home(goal \\ [])

 @spec go_home(keyword()) :: {:ok, pid()} | {:error, term()}

Execute the go_home command.
Arguments
	duration: :integer, default: 1000 - Duration in milliseconds

Returns
	{:ok, pid()} - Command started, use BB.Command.await/2 for the result
	{:error, term()} - Command could not be started

Example
{:ok, cmd} = go_home(goal_args)
{:ok, result} = BB.Command.await(cmd)

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.BB.Kino.Examples.TestRobot.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

 wave(goal \\ [])

 @spec wave(keyword()) :: {:ok, pid()} | {:error, term()}

Execute the wave command.
Arguments
	cycles: :integer, default: 3 - Number of wave cycles
	speed: :float, default: 1.0 - Speed multiplier (0.5 = half speed, 2.0 = double speed)

Returns
	{:ok, pid()} - Command started, use BB.Command.await/2 for the result
	{:error, term()} - Command could not be started

Example
{:ok, cmd} = wave(goal_args)
{:ok, result} = BB.Command.await(cmd)

BB.Kino.JointControl

A Kino widget for controlling robot joint positions.
Displays a table of all movable joints with:
	Joint name and type
	Current position (updated in real-time)
	Position limits (min/max)
	Draggable slider for setting target position

Safety: Controls are only enabled when the robot is armed.
Position commands are not sent when the robot is disarmed.
Usage
BB.Kino.JointControl.new(MyRobot)
The widget automatically:
	Discovers all joints from the robot topology
	Subscribes to sensor messages for position updates
	Subscribes to state machine for armed/disarmed state
	Sends position commands to actuators when slider changes

 Summary

 Functions

 new(robot_module)

 Creates a new joint control widget for the given robot.

 Functions

 new(robot_module)

 @spec new(module()) :: Kino.JS.Live.t()

Creates a new joint control widget for the given robot.

BB.Kino.ManageRobotCell

A Smart Cell for managing a BB robot with all available widgets.
Provides a unified dashboard with:
	Safety controls (arm/disarm)
	Joint position control
	Event stream monitoring
	Command execution
	3D visualisation
	Parameter editing

Usage
Click "+ Smart" in Livebook and select "Manage robot" to add this cell.
Enter your robot module name and evaluate the cell.

 Summary

 Functions

 child_spec(map)

 Functions

 child_spec(map)

BB.Kino.Parameters

A Kino widget for viewing and editing robot parameters.
Displays parameters in a tab-based interface with:
	Local parameter groups as tabs
	Remote bridge parameters in separate tabs
	Appropriate input controls based on parameter type
	Real-time updates via PubSub

Usage
BB.Kino.Parameters.new(MyRobot)
The widget automatically:
	Discovers parameters from the robot's DSL definition
	Generates form inputs based on parameter types
	Subscribes to parameter changes for real-time updates
	Validates and applies parameter changes

 Summary

 Functions

 new(robot_module)

 Creates a new parameters widget for the given robot.

 Functions

 new(robot_module)

 @spec new(module()) :: Kino.JS.Live.t()

Creates a new parameters widget for the given robot.

BB.Kino.Safety

A Kino widget for displaying and controlling robot arming state.
Shows the current safety state with colour-coded indicators:
	Green: Armed (ready for operation)
	Grey: Disarmed (safe state)
	Yellow: Disarming (transitioning to safe state)
	Red: Error (disarm failed, may not be safe)

Usage
BB.Kino.Safety.new(MyRobot)
The widget provides:
	Arm/Disarm toggle button
	Force Disarm button (only in error state)
	Real-time state updates via PubSub

 Summary

 Functions

 new(robot_module)

 Creates a new safety status widget for the given robot.

 Functions

 new(robot_module)

 @spec new(module()) :: Kino.JS.Live.t()

Creates a new safety status widget for the given robot.

BB.Kino.Shared.PubSubHandler

Common patterns for subscribing and unsubscribing from BB PubSub.
Used by widgets that need to receive real-time updates from robots.

 Summary

 Functions

 subscribe(robot, paths, opts \\ [])

 Subscribes to one or more paths on a robot's PubSub.

 subscribe_actuators(robot, opts \\ [])

 Subscribes to all actuator messages.

 subscribe_sensors(robot, opts \\ [])

 Subscribes to all sensor messages.

 subscribe_state_machine(robot)

 Subscribes to state machine transitions.

 unsubscribe(robot, paths)

 Unsubscribes from one or more paths on a robot's PubSub.

 Functions

 subscribe(robot, paths, opts \\ [])

 @spec subscribe(module(), [[atom()]], keyword()) :: :ok

Subscribes to one or more paths on a robot's PubSub.
Options
	:message_types - list of message type modules to filter by

Examples
subscribe(MyRobot, [[:sensor], [:actuator]])
subscribe(MyRobot, [[:sensor, :joint1]], message_types: [BB.Message.Sensor.JointState])

 subscribe_actuators(robot, opts \\ [])

 @spec subscribe_actuators(
 module(),
 keyword()
) :: :ok

Subscribes to all actuator messages.

 subscribe_sensors(robot, opts \\ [])

 @spec subscribe_sensors(
 module(),
 keyword()
) :: :ok

Subscribes to all sensor messages.

 subscribe_state_machine(robot)

 @spec subscribe_state_machine(module()) :: :ok

Subscribes to state machine transitions.
State transitions are published to [:state_machine] and contain
from and to states.

 unsubscribe(robot, paths)

 @spec unsubscribe(module(), [[atom()]]) :: :ok

Unsubscribes from one or more paths on a robot's PubSub.

BB.Kino.Shared.RobotContext

Shared utilities for robot validation and initial state fetching.
Used by all BB.Kino widgets to validate robot modules and fetch
initial state data.

 Summary

 Functions

 fetch_initial_state(robot_module)

 Fetches the initial state for a robot.

 fetch_safety_state(robot_module)

 Fetches just the safety-related state for a robot.

 validate_robot(robot_module)

 Validates that the given module is a BB robot.

 Functions

 fetch_initial_state(robot_module)

 @spec fetch_initial_state(module()) :: map()

Fetches the initial state for a robot.
Returns a map containing:
	:robot_struct - the robot topology struct
	:positions - current joint positions
	:velocities - current joint velocities
	:state - runtime state (:disarmed, :idle, :executing, :error, :disarming)
	:armed - boolean indicating if robot is armed

 fetch_safety_state(robot_module)

 @spec fetch_safety_state(module()) :: map()

Fetches just the safety-related state for a robot.
Returns a map containing:
	:state - safety state (:disarmed, :armed, :disarming, :error)
	:armed - boolean
	:in_error - boolean

 validate_robot(robot_module)

 @spec validate_robot(module()) :: {:ok, module()} | {:error, String.t()}

Validates that the given module is a BB robot.
Returns {:ok, robot_module} if valid, or {:error, reason} if not.

BB.Kino.Visualisation

A Kino widget for 3D robot visualisation using Three.js.
Displays an interactive 3D view of the robot with:
	Real-time joint position updates
	Orbit camera controls (pan, zoom, rotate)
	Visual geometry rendering (boxes, cylinders, spheres)

Usage
BB.Kino.Visualisation.new(MyRobot)
The widget automatically:
	Loads the robot topology and geometry
	Subscribes to sensor messages for position updates
	Updates joint transforms in real-time

 Summary

 Functions

 new(robot_module)

 Creates a new 3D visualisation widget for the given robot.

 Functions

 new(robot_module)

 @spec new(module()) :: Kino.JS.Live.t()

Creates a new 3D visualisation widget for the given robot.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

