

 bb_liveview

 v0.2.4

 Table of contents

 	README

 	Change Log

 	Tutorials

 	Your First Dashboard

 	How-to Guides

 	How to Customise Dashboard Layout

 	
 Modules

 	BB.LiveView

 	BB.LiveView.Components

 	BB.LiveView.Components.Command

 	BB.LiveView.Components.EventStream

 	BB.LiveView.Components.JointControl

 	BB.LiveView.Components.Parameters

 	BB.LiveView.Components.Safety

 	BB.LiveView.Components.Visualisation

 	BB.LiveView.ConnCase

 	BB.LiveView.DashboardLive

 	BB.LiveView.FeatureCase

 	BB.LiveView.Hooks.AssignRobot

 	BB.LiveView.Layouts

 	BB.LiveView.Plugs.Static

 	BB.LiveView.Router

 	BB.LiveView.TestEndpoint

 	BB.LiveView.TestRobot

 	BB.LiveView.TestRouter

 	Dev.TestRobot

 README

[image: Beam Bots Logo]BB.LiveView
[image: CI]
[image: License: Apache 2.0]
[image: Hex version badge]
[image: REUSE status]
Interactive LiveView dashboard for Beam Bots robots. Mount a fully-featured control interface into any Phoenix application with a single line of code.
Features
	Safety Controls - Arm/disarm robot with visual state indicators
	Joint Control - Real-time sliders for all movable joints with position feedback
	3D Visualisation - Interactive Three.js view with orbit controls showing live robot pose
	Event Stream - Monitor PubSub messages with filtering and pause/resume
	Command Execution - Dynamic forms for robot commands based on DSL definitions
	Parameter Editor - View and modify runtime parameters with type-specific controls

Installation
Add bb_liveview to your dependencies in mix.exs:
def deps do
 [
 {:bb_liveview, "~> 0.2.4"}
]
end
Quick Start
1. Add the dashboard route
In your Phoenix router, import the macro and mount the dashboard:
defmodule MyAppWeb.Router do
 use MyAppWeb, :router
 import BB.LiveView.Router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {MyAppWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 scope "/" do
 pipe_through :browser
 bb_dashboard "/robot", robot: MyApp.Robot
 end
end
2. Serve the bundled assets
Add the static plug to your endpoint, before Plug.Session:
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 # ... other plugs ...

 # Add this BEFORE Plug.Session
 plug Plug.Static,
 at: "/__bb_assets__",
 from: {:bb_liveview, "priv/static"},
 gzip: false

 plug Plug.Session, ...
 plug MyAppWeb.Router
end
3. Start your robot supervisor
Ensure your robot's supervision tree is started in your application:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # ... other children ...
 %{
 id: BB.Supervisor,
 start: {BB.Supervisor, :start_link, [MyApp.Robot]}
 },
 MyAppWeb.Endpoint
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
4. Visit the dashboard
Navigate to http://localhost:4000/robot to see your robot dashboard.
Multiple Robots
Mount multiple dashboards for different robots:
scope "/" do
 pipe_through :browser
 bb_dashboard "/arm", robot: MyApp.ArmRobot
 bb_dashboard "/base", robot: MyApp.MobileBase
end
Configuration Options
The bb_dashboard/2 macro accepts the following options:
	Option	Required	Description
	:robot	Yes	The robot module (must use BB)

Dashboard Components
Safety Widget
Displays the robot's safety state and provides arm/disarm controls:
	Disarmed (grey) - Robot is safe, no motion possible
	Armed (green) - Robot is ready to accept commands
	Error (red) - Safety system detected an issue, requires force disarm

Joint Control
Shows all movable joints with:
	Current position (degrees for revolute, mm for prismatic)
	Target slider with min/max limits from joint definition
	"SIM" badge for joints without hardware actuators
	Controls disabled when robot is disarmed

3D Visualisation
Interactive Three.js renderer showing:
	Robot geometry from visual definitions (boxes, cylinders, spheres)
	Real-time joint position updates via forward kinematics
	Orbit controls (drag to rotate, scroll to zoom, right-drag to pan)
	Reset View button to restore default camera position

Event Stream
Real-time PubSub message monitor:
	Timestamp, path, message type, and payload preview
	Pause/Resume to freeze the stream
	Clear button to reset the message list
	Auto-scrolls to show newest messages

Command Panel
Execute robot commands defined in the DSL:
	Tab navigation for multiple commands
	Dynamic form generation based on command arguments
	State-aware availability (respects allowed states)
	Result/error display after execution

Parameters
View and edit runtime parameters:
	Grouped by parameter path
	Type-specific controls (toggles, sliders, text inputs)
	Real-time updates via PubSub
	Support for remote bridge parameters

Styling
The dashboard uses bundled CSS with CSS custom properties for theming. The default theme uses neutral greys with accent colours for status indicators.
To customise, you can override the CSS custom properties in your own stylesheet:
:root {
 --bb-primary: #your-color;
 --bb-success: #your-success-color;
 --bb-danger: #your-danger-color;
}
Development
To run the development server with the test robot:
cd bb_liveview
mix deps.get
cd assets && npm install && cd ..
mix phx.server

Visit http://localhost:4000 to see the dashboard with a simulated WidowX-200 style robot arm.
Requirements
	Elixir ~> 1.19
	Phoenix LiveView ~> 1.0
	A robot module using the BB DSL

Documentation
	Your First Dashboard - getting started tutorial
	Customise Dashboard Layout - creating custom layouts

Full API documentation is available at HexDocs.

 Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.
v0.2.4 (2026-01-18)
Documentation:
	 add Diataxis-structured documentation (#10) by James Harton

v0.2.3 (2026-01-11)
Bug Fixes:
	handle simulation mode and command completion in dashboard by James Harton

v0.2.2 (2026-01-09)
Bug Fixes:
	use BB.Actuator.set_position! for direct actuator commands by James Harton

v0.2.1 (2026-01-09)
Bug Fixes:
	update to support BB 0.13+ command API (#8) by James Harton

	sometimes crash parsing floats by James Harton

v0.2.0 (2025-12-20)
Features:
	implement BB LiveView dashboard with 3D robot visualisation by James Harton

 Your First Dashboard

In this tutorial, you'll add a real-time control dashboard to a Phoenix application with a Beam Bots robot.
What We're Building
A browser-based dashboard that provides:
	Safety controls (arm/disarm)
	Joint position sliders
	3D robot visualisation
	Real-time event stream
	Command execution forms
	Parameter editor

Prerequisites
	A Phoenix application
	A BB robot module (see First Robot)
	Basic familiarity with Phoenix routing

Step 1: Add the Dependency
Add bb_liveview to your mix.exs:
defp deps do
 [
 {:bb, "~> 0.12"},
 {:bb_liveview, "~> 0.1"},
 # ... other deps
]
end
Run mix deps.get.
Step 2: Configure the Router
Import the router helpers and mount the dashboard at a path:
lib/my_app_web/router.ex
defmodule MyAppWeb.Router do
 use MyAppWeb, :router
 import BB.LiveView.Router

 # ... existing pipelines ...

 scope "/" do
 pipe_through :browser
 bb_dashboard "/robot", MyRobot
 end
end
The bb_dashboard/2 macro generates:
	Asset routes at /__bb_assets__/*
	LiveView route at your specified path

Step 3: Start the Robot
Ensure your robot starts with your application. In your application supervisor:
lib/my_app/application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # Start robot in simulation mode (or without :simulation for real hardware)
 {BB.Supervisor, {MyRobot, simulation: :kinematic}},
 MyAppWeb.Endpoint,
 # ... other children
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Step 4: View the Dashboard
Start your Phoenix server:
mix phx.server

Navigate to http://localhost:4000/robot in your browser.
You'll see the dashboard with all components:
	Safety panel (top left) - Shows current state, arm/disarm buttons
	Joint control (left) - Sliders for each joint
	3D visualisation (centre) - Interactive robot view
	Event stream (right) - Real-time PubSub messages
	Commands (bottom) - Forms for executing commands
	Parameters (bottom right) - Runtime parameter editor

Step 5: Interact with the Robot
Arm the Robot
Click the Arm button in the safety panel. The status changes from "Disarmed" to "Idle".
Move Joints
With the robot armed, drag the joint sliders. The 3D visualisation updates in real-time, and you'll see JointState messages in the event stream.
Execute Commands
If your robot defines commands (like move_to), fill in the form fields and click execute. Results appear below the form.
Monitor Events
The event stream shows all PubSub messages. Use the filter input to narrow by path (e.g., sensor.shoulder).
Disarm
Click Disarm to safely stop the robot. Joint sliders become disabled.
Understanding the Components
Safety Component
Subscribes to [:state_machine] and [:safety] channels. Displays:
	Current operational state
	Arm/disarm buttons (enabled based on state)
	Error messages if disarm fails

Joint Control Component
Reads joint definitions from the robot struct. For each joint:
	Shows current position (degrees for revolute, mm for prismatic)
	Provides a slider respecting joint limits
	Sends position commands via BB.Actuator.set_position/4

3D Visualisation Component
Uses Three.js to render the robot:
	Builds model from robot topology (links, joints, visuals)
	Updates joint positions in real-time via WebSocket
	Supports orbit controls (rotate, pan, zoom)

Event Stream Component
Subscribes to all robot PubSub channels. Features:
	Path-based filtering
	Pause/resume
	Expandable message details
	Auto-scroll

Command Component
Generates forms from command definitions:
	Reads arguments from DSL
	Validates input types
	Shows execution results

Parameters Component
Displays runtime parameters from BB.Parameter:
	Grouped by category
	Editable values
	Real-time updates

Simulation vs Real Hardware
In simulation mode (simulation: :kinematic):
	No hardware drivers are started
	Actuators use BB.Sim.Actuator with timing based on velocity limits
	Position feedback comes from OpenLoopPositionEstimator
	Safety system still requires arming

For real hardware:
	Remove the :simulation option
	Ensure hardware drivers (controllers, actuators) are properly configured
	The dashboard works identically

Next Steps
	Customise Dashboard Layout - Create a custom layout
	Add authentication to protect the dashboard
	Deploy to production with proper asset compilation

 How to Customise Dashboard Layout

Create a custom LiveView that uses BB.LiveView components with your own layout.
Prerequisites
	Completed Your First Dashboard
	Understanding of Phoenix LiveView

Step 1: Create a Custom LiveView
Instead of using the built-in dashboard, create your own LiveView that uses individual components:
lib/my_app_web/live/robot_live.ex
defmodule MyAppWeb.RobotLive do
 use MyAppWeb, :live_view

 alias BB.LiveView.Components.{Safety, JointControl, Visualisation, EventStream}

 @impl true
 def mount(_params, _session, socket) do
 robot_module = MyRobot
 robot = robot_module.robot()

 # Subscribe to robot events
 if connected?(socket) do
 BB.subscribe(robot_module, [:state_machine])
 BB.subscribe(robot_module, [:safety])
 BB.subscribe(robot_module, [:sensor])
 end

 {:ok, assign(socket,
 robot_module: robot_module,
 robot: robot,
 positions: initial_positions(robot)
)}
 end

 @impl true
 def render(assigns) do
 ~H"""
 <div class="grid grid-cols-3 gap-4 p-4">
 <div class="col-span-1">
 <.live_component
 module={Safety}
 id="safety"
 robot_module={@robot_module}
 robot={@robot}
 />
 </div>

 <div class="col-span-2">
 <.live_component
 module={Visualisation}
 id="visualisation"
 robot_module={@robot_module}
 robot={@robot}
 />
 </div>

 <div class="col-span-3">
 <.live_component
 module={JointControl}
 id="joints"
 robot_module={@robot_module}
 robot={@robot}
 />
 </div>
 </div>
 """
 end

 @impl true
 def handle_info({:bb, [:sensor | path], %{payload: joint_state}}, socket) do
 joint_name = List.last(path)
 positions = Map.put(socket.assigns.positions, joint_name, hd(joint_state.positions))

 send_update(Visualisation, id: "visualisation", event: {:positions_updated, positions})
 send_update(JointControl, id: "joints", event: {:positions_updated, positions})

 {:noreply, assign(socket, positions: positions)}
 end

 def handle_info({:bb, [:state_machine], %{payload: transition}}, socket) do
 send_update(Safety, id: "safety", event: {:state_changed, transition.to})
 {:noreply, socket}
 end

 def handle_info(_msg, socket), do: {:noreply, socket}

 defp initial_positions(robot) do
 robot.joints
 |> Map.keys()
 |> Map.new(fn name -> {name, 0.0} end)
 end
end
Step 2: Route to Your LiveView
Add a route to your custom LiveView:
lib/my_app_web/router.ex
scope "/", MyAppWeb do
 pipe_through :browser
 live "/robot", RobotLive
end

Still need asset routes for JS/CSS
import BB.LiveView.Router
scope "/" do
 bb_dashboard "/__bb_dashboard__", MyRobot # Hidden route just for assets
end
Alternatively, serve assets manually by adding the static plug:
lib/my_app_web/endpoint.ex
plug BB.LiveView.Plugs.Static
Step 3: Handle Component Events
Components communicate through events. Handle them in your LiveView:
@impl true
def handle_info({:joint_position_changed, positions}, socket) do
 # Slider was moved - update visualisation immediately
 send_update(Visualisation, id: "visualisation", event: {:positions_updated, positions})
 {:noreply, socket}
end

def handle_info({:command_result, result}, socket) do
 # Command completed - show notification
 {:noreply, put_flash(socket, :info, "Command result: #{inspect(result)}")}
end
Step 4: Select Components
Use only the components you need:
Minimal control interface
def render(assigns) do
 ~H"""
 <div class="flex gap-4">
 <.live_component module={Safety} id="safety" robot_module={@robot_module} robot={@robot} />
 <.live_component module={JointControl} id="joints" robot_module={@robot_module} robot={@robot} />
 </div>
 """
end

Monitoring only (no control)
def render(assigns) do
 ~H"""
 <div class="grid grid-cols-2 gap-4">
 <.live_component module={Visualisation} id="vis" robot_module={@robot_module} robot={@robot} />
 <.live_component module={EventStream} id="events" robot_module={@robot_module} />
 </div>
 """
end
Available Components
	Component	Module	Purpose
	Safety	BB.LiveView.Components.Safety	Arm/disarm controls
	JointControl	BB.LiveView.Components.JointControl	Position sliders
	Visualisation	BB.LiveView.Components.Visualisation	3D view
	EventStream	BB.LiveView.Components.EventStream	Message monitor
	Command	BB.LiveView.Components.Command	Command forms
	Parameters	BB.LiveView.Components.Parameters	Parameter editor

Component Props
All components require:
	id - Unique identifier for LiveComponent
	robot_module - Your robot module (e.g., MyRobot)
	robot - The compiled robot struct from robot_module.robot()

Styling
Components use Tailwind CSS classes. Override styles by:
	Adding custom CSS after the BB assets
	Using CSS specificity to override defaults
	Wrapping components in custom containers

<div class="my-custom-wrapper">
 <.live_component module={Safety} id="safety" ... />
</div>
Common Patterns
Responsive Layout
<div class="flex flex-col lg:flex-row gap-4">
 <div class="lg:w-1/3">
 <.live_component module={Safety} ... />
 <.live_component module={JointControl} ... />
 </div>
 <div class="lg:w-2/3">
 <.live_component module={Visualisation} ... />
 </div>
</div>
Tabbed Interface
<div>
 <div class="tabs">
 <button phx-click="tab" phx-value-tab="control">Control</button>
 <button phx-click="tab" phx-value-tab="monitor">Monitor</button>
 </div>

 <%= case @tab do %>
 <% "control" -> %>
 <.live_component module={JointControl} ... />
 <% "monitor" -> %>
 <.live_component module={EventStream} ... />
 <% end %>
</div>
Troubleshooting
Components not updating
Ensure you're:
	Subscribed to the correct PubSub channels
	Forwarding events with send_update/3
	Using unique component IDs

3D visualisation not rendering
Check that:
	The Three.js assets are being served
	The component has a container with height
	WebGL is available in the browser

BB.LiveView

Interactive LiveView-based dashboard for Beam Bots-powered robots.
BB.LiveView provides a self-contained dashboard that can be mounted into any
Phoenix application with a single router macro.
Quick Start
	Add bb_liveview to your dependencies in mix.exs:
 def deps do
 [
 {:bb_liveview, "~> 0.1"}
]
 end

	Mount the dashboard in your router:
 import BB.LiveView.Router

 scope "/" do
 pipe_through :browser
 bb_dashboard "/robot", robot: MyRobot
 end

	Visit /robot in your browser.

Features
The dashboard provides:
	Safety Controls: Arm/disarm the robot with real-time status
	Joint Control: Slider controls for all movable joints
	Event Stream: Real-time PubSub message monitoring
	Command Execution: Execute robot commands with dynamic forms
	3D Visualisation: Interactive Three.js robot viewer
	Parameters: Edit robot parameters with type-aware inputs

Multiple Robots
You can mount multiple dashboards for different robots:
bb_dashboard "/arm", robot: ArmRobot
bb_dashboard "/base", robot: BaseRobot
Authentication
Protect the dashboard using standard Phoenix pipelines:
pipeline :admin do
 plug MyApp.RequireAdmin
end

scope "/admin" do
 pipe_through [:browser, :admin]
 bb_dashboard "/robot", robot: MyRobot
end

BB.LiveView.Components

Shared UI components for the BB Dashboard.
Provides reusable function components for building the dashboard interface.

 Summary

 Functions

 badge(assigns)

 Renders a status badge.

 button(assigns)

 Renders a button.

 empty_state(assigns)

 Renders an empty state message.

 error_message(assigns)

 Renders an error message.

 spinner(assigns)

 Renders a loading spinner.

 widget(assigns)

 Renders a widget card with header and body.

 Functions

 badge(assigns)

Renders a status badge.
Examples
<.badge variant="success">Armed</.badge>
<.badge variant="danger">Error</.badge>
Attributes
	variant (:string) - Defaults to "muted". Must be one of "success", "warning", "danger", or "muted".

Slots
	inner_block (required)

 button(assigns)

Renders a button.
Examples
<.button>Click me</.button>
<.button variant="primary" disabled={true}>Submit</.button>
Attributes
	type (:string) - Defaults to "button".
	variant (:string) - Defaults to "outline". Must be one of "primary", "danger", or "outline".
	disabled (:boolean) - Defaults to false.
	class (:string) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 empty_state(assigns)

Renders an empty state message.
Examples
<.empty_state message="No events yet" />
Attributes
	message (:string) (required)
	icon (:string) - Defaults to nil.

 error_message(assigns)

Renders an error message.
Examples
<.error_message message="Failed to load robot data" />
Attributes
	message (:string) (required)

 spinner(assigns)

Renders a loading spinner.

 widget(assigns)

Renders a widget card with header and body.
Examples
<.widget title="Safety">
 <p>Widget content here</p>
</.widget>

<.widget title="Joints" loading={true}>
 <p>Loading...</p>
</.widget>
Attributes
	title (:string) (required)
	loading (:boolean) - Defaults to false.
	class (:string) - Defaults to nil.

Slots
	inner_block (required)
	actions

BB.LiveView.Components.Command

LiveComponent for executing robot commands.
Displays available commands in tabs with:
	Dynamic form for each command's arguments
	Execute button with loading state
	Result/error display
	State-aware command availability

BB.LiveView.Components.EventStream

LiveComponent for displaying a live stream of BB messages.
Shows real-time messages from the robot's PubSub with:
	Timestamps and path information
	Message type and summary
	Pause/Resume functionality
	Clear messages
	Click to expand message details

BB.LiveView.Components.JointControl

LiveComponent for controlling robot joint positions.
Displays a table of all movable joints with:
	Joint name and type
	Current position (updated in real-time)
	Position limits (min/max)
	Slider for setting target position

Controls are only enabled when the robot is armed.

BB.LiveView.Components.Parameters

LiveComponent for viewing and editing robot parameters.
Displays parameters in a tab-based interface with:
	Local parameter groups as tabs
	Remote bridge parameters in separate tabs
	Appropriate input controls based on parameter type
	Real-time updates via PubSub

BB.LiveView.Components.Safety

LiveComponent for displaying and controlling robot arming state.
Shows the current safety state with colour-coded indicators:
	Green: Armed (ready for operation)
	Grey: Disarmed (safe state)
	Yellow: Disarming (transitioning to safe state)
	Red: Error (disarm failed, may not be safe)

Provides:
	Arm/Disarm toggle buttons
	Force Disarm button (only in error state)
	Real-time state updates via PubSub

BB.LiveView.Components.Visualisation

LiveComponent for 3D robot visualisation using Three.js.
Displays an interactive 3D view of the robot with:
	Real-time joint position updates
	Orbit camera controls (pan, zoom, rotate)
	Visual geometry rendering (boxes, cylinders, spheres)

BB.LiveView.ConnCase

Test case for connection-based tests.
Provides helpers for testing controllers and plugs.

BB.LiveView.DashboardLive

Main LiveView for the BB Dashboard.
Displays robot status and control widgets including:
	Safety status and controls
	Joint positions and sliders
	Event stream monitor
	Command execution
	3D visualisation
	Parameter editor

BB.LiveView.FeatureCase

Test case for feature tests using phoenix_test.
Provides a unified testing interface for both LiveView and static pages.
Example
defmodule BB.LiveView.DashboardTest do
 use BB.LiveView.FeatureCase

 test "shows robot name", %{conn: conn} do
 conn
 |> visit("/robot")
 |> assert_has("h1", text: "TestRobot")
 end
end

BB.LiveView.Hooks.AssignRobot

LiveView on_mount hook that assigns the robot module to the socket.
This hook is automatically applied by the bb_dashboard/2 router macro.
It validates that the robot module exists and has a robot/0 function,
then assigns it to the socket for use by dashboard components.

 Summary

 Functions

 on_mount(robot_module, params, session, socket)

 Mounts the robot module into the socket assigns.

 Functions

 on_mount(robot_module, params, session, socket)

Mounts the robot module into the socket assigns.
The robot module is passed as the second argument from the live_session configuration.

BB.LiveView.Layouts

Layout components for the BB Dashboard.
Provides root and app layouts with bundled CSS and JavaScript.

 Summary

 Functions

 app(assigns)

 App layout for dashboard content.

 root(assigns)

 Root layout that wraps all dashboard pages.

 Functions

 app(assigns)

App layout for dashboard content.
This is the inner layout that wraps the LiveView content.

 root(assigns)

Root layout that wraps all dashboard pages.
Includes the bundled CSS and JavaScript assets.

BB.LiveView.Plugs.Static

Serves static assets bundled with the BB LiveView library.
Assets are served from the library's priv/static directory with appropriate
cache headers based on content hashing.

 Summary

 Functions

 asset_path(file)

 Returns the path to an asset file for use in templates.

 Functions

 asset_path(file)

 @spec asset_path(String.t()) :: String.t()

Returns the path to an asset file for use in templates.
The path includes a hash of the file contents for cache busting.

BB.LiveView.Router

Provides router helpers for mounting the BB Dashboard.
Usage
In your Phoenix router:
import BB.LiveView.Router

scope "/" do
 pipe_through :browser
 bb_dashboard "/robot", robot: MyRobot
end
The dashboard can be mounted multiple times at different paths for different robots:
bb_dashboard "/arm", robot: ArmRobot
bb_dashboard "/base", robot: BaseRobot
Options
	:robot - Required. The robot module to control. Must define a robot/0 function.

Authentication
Protect the dashboard using standard Phoenix pipelines:
pipeline :admin do
 plug MyAppWeb.RequireAdmin
end

scope "/admin" do
 pipe_through [:browser, :admin]
 bb_dashboard "/robot", robot: MyRobot
end

 Summary

 Functions

 bb_dashboard(path, opts)

 Defines routes for mounting the BB Dashboard at the given path.

 Functions

 bb_dashboard(path, opts)

 (macro)

Defines routes for mounting the BB Dashboard at the given path.
See the module documentation for usage examples.

BB.LiveView.TestEndpoint

Test endpoint for BB Dashboard integration tests.

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

Callback implementation for Plug.call/2.

 child_spec(opts)

Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

Returns the endpoint configuration for key
Returns default if the key does not exist.

 config_change(changed, removed)

Reloads the configuration given the application environment changes.

 host()

Returns the host for the given endpoint.

 init(opts)

Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

Generates the path information when routing to this endpoint.

 script_name()

Generates the script name.

 server_info(scheme)

Returns the address and port that the server is running on

 start_link(opts \\ [])

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 static_integrity(path)

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

Generates a route to a static file in priv/static.

 static_url()

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 struct_url()

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 subscribe(topic, opts \\ [])

Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

BB.LiveView.TestRobot

A mock robot module for testing the BB Dashboard.

 Summary

 Functions

 robot()

 Functions

 robot()

BB.LiveView.TestRouter

Test router for BB Dashboard integration tests.

 Summary

 Functions

 browser(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 formatted_routes(_)

 Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 verified_route?(_, split_path)

 Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

 Functions

 browser(conn, _)

 call(conn, opts)

Callback invoked by Plug on every request.

 formatted_routes(_)

Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

Callback required by Plug that initializes the router
for serving web requests.

 verified_route?(_, split_path)

Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

Dev.TestRobot

A simulated WidowX-200 style robot arm for development and testing.
Based on the WidowX-200 5-DOF robot arm kinematic structure but without
any hardware controllers - purely for UI testing and visualization.

 Summary

 Functions

 child_spec(opts \\ [])

 Returns a child specification for starting this robot under a supervisor.

 robot()

 Returns the optimised robot representation.

 start_link(opts \\ [])

 Starts the robot's supervision tree.

 Functions

 child_spec(opts \\ [])

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

Returns a child specification for starting this robot under a supervisor.

 robot()

 @spec robot() :: BB.Robot.t()

Returns the optimised robot representation.
This struct is built at compile-time from the DSL definition and contains:
	All physical values converted to SI base units (floats)
	Flat maps for O(1) lookup of links, joints, sensors, and actuators
	Pre-computed topology metadata for efficient traversal

Examples
robot = Elixir.Dev.TestRobot.robot()
link = BB.Robot.get_link(robot, :base_link)
joint = BB.Robot.get_joint(robot, :shoulder)

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the robot's supervision tree.
Options
All options are passed through to sensor and actuator child processes.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

