

 bc_gitops

 v0.7.0

 Table of contents

 	Overview

 	Getting Started (Erlang)

 	Getting Started (Elixir)

 	API Reference

 	Runtime Implementation

 	Changelog

 	Contributing

 	License

 	
 Modules

 	bc_gitops

 	bc_gitops_app

 	bc_gitops_cluster

 	bc_gitops_git

 	bc_gitops_hot_reload

 	bc_gitops_identicon

 	bc_gitops_parser

 	bc_gitops_reconciler

 	bc_gitops_runtime

 	bc_gitops_runtime_default

 	bc_gitops_runtime_isolated

 	bc_gitops_sup

 	bc_gitops_vm_spawner

 	bc_gitops_workspace

 bc_gitops

[image: Hex.pm]
[image: Hex Docs]
[image: License]
[image: Buy Me A Coffee]
BEAM-native GitOps reconciler for OTP applications.
bc_gitops brings the GitOps pattern to the BEAM ecosystem. It monitors a Git repository for application specifications and automatically reconciles the running system to match the desired state—deploying new applications, upgrading versions, and removing deprecated ones.
Why bc_gitops?
Traditional GitOps tools like Flux and ArgoCD are built for Kubernetes. But what if you're running a BEAM cluster without Kubernetes? Or you want tighter integration with OTP's powerful release and hot code upgrade capabilities?
bc_gitops provides:
	Works out of the box - Default runtime fetches packages from hex.pm and git, compiles, and starts them
	Native BEAM integration - Works directly with OTP applications, releases, and supervision trees
	Hot code upgrades - Automatic module reloading with process suspension/resumption
	Erlang & Elixir support - Fetches and compiles both Erlang (rebar3) and Elixir (mix) packages
	Flexible runtimes - Pluggable backend for custom deployment strategies
	Observable - Built-in telemetry events for monitoring and alerting
	Minimal dependencies - Only requires telemetry, no external services needed

Installation
Add bc_gitops to your list of dependencies in rebar.config:
{deps, [
 {bc_gitops, "0.2.0"}
]}.
Or for Elixir projects in mix.exs:
def deps do
 [
 {:bc_gitops, "~> 0.2.0"}
]
end
Quick Start
1. Create a GitOps Repository
Create a git repository with your application specifications:
my-gitops-repo/
├── apps/
│ ├── my_web_app/
│ │ └── app.config
│ └── my_worker/
│ └── app.config
└── README.md
Each application has a configuration file:
%% apps/my_web_app/app.config
#{
 name => my_web_app,
 version => <<"1.0.0">>,
 source => #{
 type => hex
 },
 env => #{
 port => 8080,
 pool_size => 10
 },
 health => #{
 type => http,
 port => 8080,
 path => <<"/health">>
 },
 depends_on => []
}.
2. Configure bc_gitops
Add configuration to your sys.config:
{bc_gitops, [
 {repo_url, "https://github.com/myorg/my-gitops-repo.git"},
 {branch, "main"},
 {reconcile_interval, 60000}, %% 1 minute
 {runtime_module, my_app_runtime}
]}
3. Start the Application
The default runtime (bc_gitops_runtime_default) handles everything:
	Fetches packages from hex.pm using rebar3 (Erlang) or mix (Elixir)
	Clones and compiles git repositories
	Performs hot code reloading during upgrades
	Manages code paths automatically

application:start(bc_gitops).
bc_gitops will:
	Clone/pull the repository
	Parse application specifications
	Compare desired state with current state
	Deploy, upgrade, or remove applications as needed
	Repeat on the configured interval

Configuration Options
	Option	Type	Default	Description
	repo_url	string	required	Git repository URL
	local_path	string	/var/lib/bc_gitops	Local clone path
	branch	string	"main"	Git branch to track
	apps_dir	string	"apps"	Directory containing app specs
	reconcile_interval	integer	60000	Reconcile interval (ms)
	runtime_module	atom	bc_gitops_runtime_default	Runtime implementation

Application Specification Format
Erlang Format (.config)
#{
 name => my_app,
 version => <<"1.2.3">>,
 source => #{
 type => hex, %% hex | git | release
 url => <<"...">>, %% For git/release
 ref => <<"main">>, %% For git (branch/tag/commit)
 sha256 => <<"...">> %% For release (integrity check)
 },
 env => #{
 key => value
 },
 depends_on => [other_app],
 health => #{
 type => http, %% http | tcp | custom
 port => 8080,
 path => <<"/health">>,
 interval => 30000,
 timeout => 5000
 }
}.
JSON Format (.json)
{
 "name": "my_app",
 "version": "1.2.3",
 "source": {
 "type": "hex"
 },
 "env": {
 "key": "value"
 },
 "depends_on": [],
 "health": {
 "type": "http",
 "port": 8080,
 "path": "/health"
 }
}
API
Manual Operations
%% Trigger immediate reconciliation
bc_gitops:reconcile().
bc_gitops:sync(). %% alias

%% Get status
{ok, Status} = bc_gitops:status().
%% #{status => synced, last_commit => <<"abc123">>, app_count => 5, healthy_count => 5}

%% Get state
{ok, DesiredState} = bc_gitops:get_desired_state().
{ok, CurrentState} = bc_gitops:get_current_state().

%% Check specific app
{ok, AppState} = bc_gitops:get_app_status(my_app).
Manual Deployment
%% Deploy manually (bypasses git)
AppSpec = #app_spec{name = my_app, version = <<"1.0.0">>, ...},
bc_gitops:deploy(AppSpec).

%% Remove an app
bc_gitops:remove(my_app).

%% Upgrade to specific version
bc_gitops:upgrade(my_app, <<"2.0.0">>).
Programmatic Start
%% Start reconciler with custom config
bc_gitops:start_reconciler(#{
 repo_url => <<"https://github.com/myorg/gitops.git">>,
 runtime_module => my_runtime
}).

%% Stop reconciler
bc_gitops:stop_reconciler().
Telemetry Events
bc_gitops emits the following telemetry events:
	Event	Measurements	Metadata
	[bc_gitops, reconcile, start]	-	-
	[bc_gitops, reconcile, stop]	duration	status
	[bc_gitops, reconcile, error]	duration	error
	[bc_gitops, deploy, start]	-	app
	[bc_gitops, deploy, stop]	-	app, result
	[bc_gitops, upgrade, start]	-	app, from_version, to_version
	[bc_gitops, upgrade, stop]	-	app, result
	[bc_gitops, git, pull]	-	repo, branch

Example handler:
telemetry:attach(
 <<"gitops-logger">>,
 [bc_gitops, reconcile, stop],
 fun(_Event, Measurements, Metadata, _Config) ->
 logger:info("Reconcile completed in ~p ms: ~p",
 [Measurements, Metadata])
 end,
 []
).
Default Runtime Features
The default runtime (bc_gitops_runtime_default) is fully functional out of the box:
Package Fetching
	Hex packages: Automatically fetched via rebar3 or mix
	Git repositories: Cloned, compiled, and loaded
	Code path management: Adds compiled ebin directories to the VM

Hot Code Reloading
During upgrades, bc_gitops:
	Suspends processes using sys:suspend/1
	Reloads changed modules with code:soft_purge/1 + code:load_file/1
	Resumes processes (triggering code_change/3 callbacks)
	Falls back to restart if hot reload fails

Supported Project Types
	rebar3 - Erlang projects with rebar.config
	mix - Elixir projects with mix.exs
	erlang.mk - Projects using Makefile

Implementing Custom Runtimes
For production deployments with specific requirements, implement the bc_gitops_runtime behaviour:
-module(my_app_runtime).
-behaviour(bc_gitops_runtime).

-export([deploy/1, remove/1, upgrade/2, reconfigure/1, get_current_state/0]).

deploy(AppSpec) ->
 %% Download from private artifact repository
 %% Integrate with service discovery
 %% Handle secrets injection
 {ok, AppState}.

remove(AppName) ->
 %% Deregister from service discovery
 %% Clean up resources
 ok.

upgrade(AppSpec, OldVersion) ->
 %% Use release_handler for OTP releases
 %% Or custom upgrade logic
 {ok, AppState}.

reconfigure(AppSpec) ->
 %% Hot config reload
 {ok, AppState}.

get_current_state() ->
 %% Return current state of all managed apps
 {ok, #{}}.
See the Runtime Guide for detailed examples.
Git Authentication
bc_gitops uses the system git command, so authentication works through standard git mechanisms:
	SSH keys: Add your deploy key to ~/.ssh/ or use ssh-agent
	HTTPS: Use git credential helpers or embed credentials in URL (not recommended)
	GitHub Actions: Use $GITHUB_TOKEN with credential helper

For private repositories, we recommend SSH deploy keys with read-only access.
Architecture
[image: bc_gitops Architecture]
Hot Code Reload Flow
During upgrades, bc_gitops can perform hot code reloading:
[image: Hot Reload Flow]
The reconciler follows a continuous loop:
	Pull - Fetch latest changes from git repository
	Parse - Read application specifications from apps/ directory
	Diff - Compare desired state (git) with current state (runtime)
	Apply - Execute actions: deploy, upgrade, remove, or reconfigure

Contributing
Contributions are welcome! Please read our Contributing Guide before submitting a PR.
License
MIT License - see LICENSE for details.
Acknowledgments
	Inspired by Flux and ArgoCD
	Built on the rock-solid foundation of OTP
	Thanks to the BEAM community for their continuous inspiration

 Getting Started with bc_gitops

This guide walks you through setting up bc_gitops to manage OTP applications using GitOps principles.
What is GitOps?
GitOps is an operational framework where:
	Git is the source of truth - The desired state of your system is stored in a Git repository
	Declarative configuration - You describe what you want, not how to achieve it
	Automatic reconciliation - The system continuously compares desired vs actual state and takes corrective actions

bc_gitops brings this pattern to the BEAM ecosystem, allowing you to manage OTP applications the same way Flux or ArgoCD manage Kubernetes workloads.
Prerequisites
	Erlang/OTP 25+ or Elixir 1.14+
	Git installed and accessible in PATH
	A Git repository for storing application specifications

Installation
For Erlang (rebar3)
Add to your rebar.config:
{deps, [
 {bc_gitops, "0.4.0"}
]}.
For Elixir (Mix)
Add to your mix.exs:
def deps do
 [
 {:bc_gitops, "~> 0.4.0"}
]
end
Step 1: Create Your GitOps Repository
Create a new Git repository to store your application specifications:
mkdir my-gitops-repo
cd my-gitops-repo
git init
mkdir apps

Step 2: Define an Application
Create a specification file for each application you want to manage. Let's create one for a hypothetical my_web_app:
mkdir apps/my_web_app

bc_gitops supports three configuration formats. Choose the one you prefer:
Option A: Erlang Terms (app.config)
Create apps/my_web_app/app.config:
#{
 %% Application name (must match the OTP application name)
 name => my_web_app,

 %% Version to deploy
 version => <<"1.0.0">>,

 %% Where to get the application from
 source => #{
 type => hex %% From hex.pm
 %% Or for git:
 %% type => git,
 %% url => <<"https://github.com/myorg/my_web_app.git">>,
 %% ref => <<"v1.0.0">>
 },

 %% Application environment (passed to application:set_env)
 env => #{
 port => 8080,
 pool_size => 10
 },

 %% Health check configuration (optional)
 health => #{
 type => http,
 port => 8080,
 path => <<"/health">>,
 interval => 30000, %% Check every 30 seconds
 timeout => 5000 %% Timeout after 5 seconds
 },

 %% Dependencies (other managed apps that must start first)
 depends_on => []
}.
Option B: YAML (app.yaml)
Note: Requires yamerl dependency. Add {yamerl, "0.10.0"} to your deps.

Create apps/my_web_app/app.yaml:
name: my_web_app
version: "1.0.0"

source:
 type: hex
 # Or for git:
 # type: git
 # url: https://github.com/myorg/my_web_app.git
 # ref: v1.0.0

env:
 port: 8080
 pool_size: 10

health:
 type: http
 port: 8080
 path: /health
 interval: 30000
 timeout: 5000

depends_on: []
Option C: JSON (app.json)
Note: Requires OTP 27+ for native JSON support. For older versions, add jsx or jiffy to your deps.

Create apps/my_web_app/app.json:
{
 "name": "my_web_app",
 "version": "1.0.0",
 "source": {
 "type": "hex"
 },
 "env": {
 "port": 8080,
 "pool_size": 10
 },
 "health": {
 "type": "http",
 "port": 8080,
 "path": "/health",
 "interval": 30000,
 "timeout": 5000
 },
 "depends_on": []
}
Config File Priority
bc_gitops looks for config files in this order:
	app.config (Erlang terms)
	app.yaml / app.yml (YAML)
	app.json (JSON)
	config.yaml / config.yml / config.json / config

Commit and push:
git add .
git commit -m "Add my_web_app specification"
git remote add origin https://github.com/myorg/my-gitops-repo.git
git push -u origin main

Step 3: Choose a Runtime Module
bc_gitops needs to know how to deploy applications. As of v0.3.0, the built-in bc_gitops_runtime_default is fully functional:
	Fetches packages from hex.pm (Erlang via rebar3, Elixir via mix)
	Clones git repositories and compiles them
	Clean restarts on version upgrades (ensures routes, supervisors, and app metadata are fresh)
	Code path management - automatically adds compiled modules to the VM

Note: Hot code reload is available via bc_gitops_hot_reload module for same-version code changes (e.g., branch tracking during development).

Why Restart on Upgrade?
Version upgrades restart the application rather than hot-reloading because several things in OTP cannot be updated at runtime:
	Application metadata - application:get_key/2 reads from a cache populated at app start. Hot reload doesn't refresh this cache, so vsn, description, and custom keys return stale values.

	Cowboy/HTTP routes - Routes are compiled into the dispatch table when cowboy:start_clear/3 is called. New routes added in an upgrade won't be registered without restarting the listener.

	Supervision trees - New child specs, changed restart strategies, or restructured supervisors require the supervisor to restart.

	Application environment - While application:set_env/3 can update values, many applications read config only at startup.

For same-version code changes (e.g., tracking a master branch during development), hot reload works well because you're only updating module bytecode, not structural changes.
For most use cases, the default runtime works out of the box. For custom requirements, implement the bc_gitops_runtime behaviour.
Create src/my_app_runtime.erl:
-module(my_app_runtime).
-behaviour(bc_gitops_runtime).

-include_lib("bc_gitops/include/bc_gitops.hrl").

-export([deploy/1, remove/1, upgrade/2, reconfigure/1, get_current_state/0]).

%% @doc Deploy a new application
deploy(#app_spec{name = Name, version = Version, env = Env}) ->
 %% 1. Download/fetch the application (if needed)
 %% 2. Set environment variables
 set_env(Name, Env),

 %% 3. Start the application
 case application:ensure_all_started(Name) of
 {ok, _} ->
 {ok, #app_state{
 name = Name,
 version = Version,
 status = running,
 started_at = calendar:universal_time(),
 health = unknown,
 env = Env
 }};
 {error, Reason} ->
 {error, {start_failed, Reason}}
 end.

%% @doc Remove (stop) an application
remove(Name) ->
 case application:stop(Name) of
 ok -> ok;
 {error, {not_started, _}} -> ok;
 {error, Reason} -> {error, Reason}
 end.

%% @doc Upgrade an application to a new version
upgrade(AppSpec, _OldVersion) ->
 %% Simple strategy: stop and redeploy
 %% For zero-downtime, implement hot code upgrades
 remove(AppSpec#app_spec.name),
 deploy(AppSpec).

%% @doc Update application configuration without restart
reconfigure(#app_spec{name = Name, version = Version, env = NewEnv}) ->
 set_env(Name, NewEnv),
 {ok, #app_state{
 name = Name,
 version = Version,
 status = running,
 started_at = calendar:universal_time(),
 health = unknown,
 env = NewEnv
 }}.

%% @doc Get the current state of all managed applications
get_current_state() ->
 %% Query your application registry/supervisor
 {ok, #{}}.

%% Internal helper
set_env(App, Env) ->
 maps:foreach(fun(K, V) ->
 application:set_env(App, K, V)
 end, Env).
Step 4: Configure bc_gitops
Add configuration to your sys.config (or config/config.exs for Elixir):
Erlang (sys.config)
[
 {bc_gitops, [
 %% Required: Git repository URL
 {repo_url, "https://github.com/myorg/my-gitops-repo.git"},

 %% Optional: Local clone path (default: /var/lib/bc_gitops)
 {local_path, "/var/lib/bc_gitops"},

 %% Optional: Branch to track (default: main)
 {branch, "main"},

 %% Optional: Reconcile interval in ms (default: 60000)
 {reconcile_interval, 60000},

 %% Optional: Directory containing app specs (default: apps)
 {apps_dir, "apps"},

 %% Required: Your runtime implementation
 {runtime_module, my_app_runtime}
]}
].
Elixir (config.exs)
config :bc_gitops,
 repo_url: "https://github.com/myorg/my-gitops-repo.git",
 local_path: "/var/lib/bc_gitops",
 branch: "main",
 reconcile_interval: 60_000,
 apps_dir: "apps",
 runtime_module: MyAppRuntime
Step 5: Start the Application
Add bc_gitops to your application's dependencies and start it:
application:ensure_all_started(bc_gitops).
bc_gitops will:
	Clone the repository (or pull if already cloned)
	Parse all application specifications in apps/
	Compare desired state with current state
	Deploy/upgrade/remove applications as needed
	Repeat every reconcile_interval milliseconds

Step 6: Monitor and Operate
Check Status
{ok, Status} = bc_gitops:status().
%% #{status => synced,
%% last_commit => <<"abc123...">>,
%% app_count => 5,
%% healthy_count => 5}
Trigger Manual Reconciliation
bc_gitops:reconcile().
View States
%% Desired state (from git)
{ok, Desired} = bc_gitops:get_desired_state().

%% Current state (running)
{ok, Current} = bc_gitops:get_current_state().

%% Specific app
{ok, AppState} = bc_gitops:get_app_status(my_web_app).
Deployment Workflow
Once bc_gitops is running, your deployment workflow becomes:
	Make changes to your application specifications in git
	Commit and push to the tracked branch
	Wait for bc_gitops to detect changes (or trigger manually)
	Verify the deployment via status API or telemetry

Update version in apps/my_web_app/app.config
Change: version => <<"1.0.0">> to version => <<"1.1.0">>

git add .
git commit -m "Upgrade my_web_app to 1.1.0"
git push

bc_gitops will automatically detect the change and upgrade the application.
Next Steps
	Read the Runtime Implementation Guide for advanced deployment strategies
	Set up Telemetry handlers for monitoring
	Configure Git authentication for private repositories

 Getting Started with bc_gitops (Elixir)

This guide walks you through setting up bc_gitops to manage OTP applications from an Elixir project.
What is GitOps?
GitOps is an operational framework where:
	Git is the source of truth - The desired state of your system is stored in a Git repository
	Declarative configuration - You describe what you want, not how to achieve it
	Automatic reconciliation - The system continuously compares desired vs actual state and takes corrective actions

bc_gitops brings this pattern to the BEAM ecosystem, allowing you to manage OTP applications the same way Flux or ArgoCD manage Kubernetes workloads.
Prerequisites
	Elixir 1.14+ / Erlang/OTP 25+
	Git installed and accessible in PATH
	A Git repository for storing application specifications

Installation
Add to your mix.exs:
def deps do
 [
 {:bc_gitops, "~> 0.4.0"}
]
end
Add bc_gitops to your applications:
def application do
 [
 extra_applications: [:logger, :bc_gitops]
]
end
Step 1: Create Your GitOps Repository
Create a new Git repository to store your application specifications:
mkdir my-gitops-repo
cd my-gitops-repo
git init
mkdir apps

Step 2: Define an Application
Create a specification file for each application you want to manage. Let's create one for a hypothetical my_web_app:
mkdir apps/my_web_app

bc_gitops supports three configuration formats. For Elixir projects, YAML is recommended for its clean syntax:
Option A: YAML (app.yaml) - Recommended for Elixir
Note: Requires yamerl dependency. Add {:yamerl, "~> 0.10.0"} to your deps.

Create apps/my_web_app/app.yaml:
name: my_web_app
version: "1.0.0"

source:
 type: hex
 # Or for git:
 # type: git
 # url: https://github.com/myorg/my_web_app.git
 # ref: v1.0.0

env:
 port: 8080
 pool_size: 10

health:
 type: http
 port: 8080
 path: /health
 interval: 30000
 timeout: 5000

depends_on: []
Option B: JSON (app.json)
Note: Requires OTP 27+ for native JSON support.

Create apps/my_web_app/app.json:
{
 "name": "my_web_app",
 "version": "1.0.0",
 "source": {
 "type": "hex"
 },
 "env": {
 "port": 8080,
 "pool_size": 10
 },
 "health": {
 "type": "http",
 "port": 8080,
 "path": "/health",
 "interval": 30000,
 "timeout": 5000
 },
 "depends_on": []
}
Option C: Erlang Terms (app.config)
Create apps/my_web_app/app.config:
#{
 name => my_web_app,
 version => <<"1.0.0">>,
 source => #{type => hex},
 env => #{port => 8080, pool_size => 10},
 health => #{
 type => http,
 port => 8080,
 path => <<"/health">>,
 interval => 30000,
 timeout => 5000
 },
 depends_on => []
}.
Config File Priority
bc_gitops looks for config files in this order:
	app.config (Erlang terms)
	app.yaml / app.yml (YAML)
	app.json (JSON)
	config.yaml / config.yml / config.json / config

Commit and push:
git add .
git commit -m "Add my_web_app specification"
git remote add origin https://github.com/myorg/my-gitops-repo.git
git push -u origin main

Step 3: Configure bc_gitops
Add configuration to your config/config.exs:
config :bc_gitops,
 repo_url: "https://github.com/myorg/my-gitops-repo.git",
 local_path: "/var/lib/bc_gitops",
 branch: "main",
 reconcile_interval: 60_000,
 apps_dir: "apps",
 runtime_module: :bc_gitops_runtime_default
For development, you might want a shorter interval and local path:
config/dev.exs
config :bc_gitops,
 local_path: "_bc_gitops",
 reconcile_interval: 10_000
Step 4: Start the Application
bc_gitops starts automatically when your application starts. It will:
	Clone the repository (or pull if already cloned)
	Parse all application specifications in apps/
	Compare desired state with current state
	Deploy/upgrade/remove applications as needed
	Repeat every reconcile_interval milliseconds

Step 5: Monitor and Operate
Check Status
{:ok, status} = :bc_gitops.status()
%{status: :synced, last_commit: "abc123...", app_count: 5, healthy_count: 5}
Trigger Manual Reconciliation
:ok = :bc_gitops.reconcile()
View States
Desired state (from git)
{:ok, desired} = :bc_gitops.get_desired_state()

Current state (running)
{:ok, current} = :bc_gitops.get_current_state()

Specific app
{:ok, app_state} = :bc_gitops.get_app_status(:my_web_app)
Understanding Upgrades
Why Restart on Upgrade?
Version upgrades restart the application rather than hot-reloading because several things in OTP cannot be updated at runtime:
	Application metadata - Application.get_key/2 reads from a cache populated at app start. Hot reload doesn't refresh this cache, so :vsn, :description, and custom keys return stale values.

	Plug/Phoenix routes - Routes are compiled into the router module. New routes added in an upgrade won't be available without restarting.

	Supervision trees - New child specs, changed restart strategies, or restructured supervisors require the supervisor to restart.

	Application config - While Application.put_env/3 can update values, many applications read config only at startup (e.g., in start/2).

For same-version code changes (e.g., tracking a master branch during development), hot reload works well because you're only updating module bytecode, not structural changes. Use :bc_gitops_hot_reload directly for this:
Reload changed modules only
{:ok, modules} = :bc_gitops_hot_reload.reload_changed_modules(:my_app)
Deployment Workflow
Once bc_gitops is running, your deployment workflow becomes:
	Make changes to your application specifications in git
	Commit and push to the tracked branch
	Wait for bc_gitops to detect changes (or trigger manually)
	Verify the deployment via status API or telemetry

Update version in apps/my_web_app/app.config
Change: version => <<"1.0.0">> to version => <<"1.1.0">>

git add .
git commit -m "Upgrade my_web_app to 1.1.0"
git push

bc_gitops will automatically detect the change and upgrade the application.
Telemetry Integration
bc_gitops emits telemetry events that you can subscribe to. Add this to your application supervisor:
defmodule MyApp.GitOpsTelemetry do
 require Logger

 def setup do
 :telemetry.attach_many(
 "gitops-logger",
 [
 [:bc_gitops, :reconcile, :stop],
 [:bc_gitops, :deploy, :stop],
 [:bc_gitops, :upgrade, :stop],
 [:bc_gitops, :remove, :stop]
],
 &handle_event/4,
 nil
)
 end

 def handle_event([:bc_gitops, action, :stop], measurements, metadata, _config) do
 Logger.info("GitOps #{action}: #{inspect(metadata)} (#{measurements[:duration]}ms)")
 end
end
Call MyApp.GitOpsTelemetry.setup() in your application start.
Custom Runtime (Optional)
For most use cases, the default runtime works out of the box. If you need custom deployment logic, implement the bc_gitops_runtime behaviour:
defmodule MyApp.GitOpsRuntime do
 @behaviour :bc_gitops_runtime

 @impl true
 def deploy(app_spec) do
 # Custom deployment logic
 :bc_gitops_runtime_default.deploy(app_spec)
 end

 @impl true
 def remove(app_name) do
 :bc_gitops_runtime_default.remove(app_name)
 end

 @impl true
 def upgrade(app_spec, old_version) do
 # Custom upgrade logic (e.g., blue-green)
 :bc_gitops_runtime_default.upgrade(app_spec, old_version)
 end

 @impl true
 def reconfigure(app_spec) do
 :bc_gitops_runtime_default.reconfigure(app_spec)
 end

 @impl true
 def get_current_state do
 :bc_gitops_runtime_default.get_current_state()
 end
end
Then configure it:
config :bc_gitops, runtime_module: MyApp.GitOpsRuntime
Next Steps
	Read the API Reference for the full API
	Read the Runtime Implementation Guide for advanced deployment strategies
	Configure Git authentication for private repositories

 API Reference

This guide provides a quick reference for the bc_gitops public API.
Core Module: bc_gitops
The bc_gitops module is the main facade for interacting with the GitOps reconciler.
Status & State
%% Get overall status
{ok, Status} = bc_gitops:status().
%% #{status => synced | out_of_sync | error,
%% last_commit => <<"abc123...">>,
%% app_count => 5,
%% healthy_count => 5}

%% Get desired state (from Git repository)
{ok, DesiredState} = bc_gitops:get_desired_state().
%% #{app_name => #app_spec{...}, ...}

%% Get current state (running applications)
{ok, CurrentState} = bc_gitops:get_current_state().
%% #{app_name => #app_state{...}, ...}

%% Get specific application status
{ok, AppState} = bc_gitops:get_app_status(my_app).
%% #app_state{name, version, status, started_at, health, env}
Manual Operations
%% Trigger immediate reconciliation
ok = bc_gitops:reconcile().
ok = bc_gitops:sync(). % alias for reconcile/0

%% Deploy an application manually (bypasses Git)
AppSpec = #app_spec{name = my_app, version = <<"1.0.0">>, ...},
{ok, AppState} = bc_gitops:deploy(AppSpec).

%% Remove a managed application
ok = bc_gitops:remove(my_app).

%% Upgrade to a specific version
{ok, AppState} = bc_gitops:upgrade(my_app, <<"2.0.0">>).
Reconciler Control
%% Start reconciler with custom config
ok = bc_gitops:start_reconciler(#{
 repo_url => <<"https://github.com/myorg/gitops.git">>,
 branch => <<"main">>,
 reconcile_interval => 60000,
 runtime_module => my_app_runtime
}).

%% Stop the reconciler
ok = bc_gitops:stop_reconciler().
Runtime Module API
Implement the bc_gitops_runtime behaviour for custom deployment strategies.
Required Callbacks
-callback deploy(AppSpec :: #app_spec{}) ->
 {ok, #app_state{}} | {error, term()}.

-callback remove(AppName :: atom()) ->
 ok | {error, term()}.

-callback upgrade(AppSpec :: #app_spec{}, OldVersion :: binary()) ->
 {ok, #app_state{}} | {error, term()}.

-callback reconfigure(AppSpec :: #app_spec{}) ->
 {ok, #app_state{}} | {error, term()}.

-callback get_current_state() ->
 {ok, #{atom() => #app_state{}}} | {error, term()}.
Default Runtime
The bc_gitops_runtime_default module provides a fully functional implementation:
	Fetches packages from hex.pm (rebar3/mix)
	Clones and compiles git repositories
	Clean restarts on version upgrades (v0.3.0+)
	Automatic code path management

Workspace API (v0.2.0+)
The bc_gitops_workspace module handles package fetching and compilation.
%% Initialize workspace (creates temp directories)
ok = bc_gitops_workspace:init().

%% Fetch a package from hex.pm
{ok, EbinPath} = bc_gitops_workspace:fetch_package(recon, #source_spec{
 type = hex,
 ref = <<"2.5.3">>
}).

%% Fetch from git
{ok, EbinPath} = bc_gitops_workspace:fetch_package(my_lib, #source_spec{
 type = git,
 url = <<"https://github.com/myorg/my_lib.git">>,
 ref = <<"v1.0.0">>
}).

%% Add ebin directory to code path
ok = bc_gitops_workspace:add_code_path(EbinPath).

%% Clean up workspace
ok = bc_gitops_workspace:cleanup().
Hot Reload API (v0.2.0+)
The bc_gitops_hot_reload module provides hot code upgrade utilities.
%% Reload a single module
{ok, ModuleName} = bc_gitops_hot_reload:reload_module(my_module).

%% Reload multiple modules
{ok, ReloadedModules} = bc_gitops_hot_reload:reload_modules([mod1, mod2]).

%% Reload only changed modules for an application
{ok, ChangedModules} = bc_gitops_hot_reload:reload_changed_modules(my_app).

%% Check if a module has changed (beam file MD5)
true | false = bc_gitops_hot_reload:module_changed(my_module).

%% Full application upgrade with process suspension
ok = bc_gitops_hot_reload:upgrade_app(my_app, <<"1.0.0">>, <<"2.0.0">>).
Record Definitions
Include the header file to use record definitions:
-include_lib("bc_gitops/include/bc_gitops.hrl").
app_spec
-record(app_spec, {
 name :: atom(), % Application name
 version :: binary(), % Version string
 source :: #source_spec{}, % Where to get the app
 env :: map(), % Application environment
 depends_on :: [atom()], % Dependencies (other apps)
 health :: #health_spec{} | undefined
}).
source_spec
-record(source_spec, {
 type :: hex | git | release,
 url :: binary() | undefined, % For git/release
 ref :: binary() | undefined, % Version/branch/tag/commit
 sha256 :: binary() | undefined % Integrity check for releases
}).
app_state
-record(app_state, {
 name :: atom(),
 version :: binary(),
 status :: running | stopped | failed,
 started_at :: calendar:datetime(),
 health :: healthy | unhealthy | unknown,
 env :: map()
}).
health_spec
-record(health_spec, {
 type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined, % For http
 interval :: pos_integer(), % Check interval (ms)
 timeout :: pos_integer() % Check timeout (ms)
}).
Telemetry Events
bc_gitops emits telemetry events for observability. Attach handlers to monitor operations:
telemetry:attach(
 <<"gitops-logger">>,
 [bc_gitops, reconcile, stop],
 fun(_Event, Measurements, Metadata, _Config) ->
 logger:info("Reconcile: ~p ~p", [Measurements, Metadata])
 end,
 []
).
Available Events
	Event	Measurements	Metadata
	[bc_gitops, reconcile, start]	-	-
	[bc_gitops, reconcile, stop]	duration	status
	[bc_gitops, reconcile, error]	duration	error
	[bc_gitops, deploy, start]	-	app
	[bc_gitops, deploy, stop]	-	app, result
	[bc_gitops, upgrade, start]	-	app, from_version, to_version
	[bc_gitops, upgrade, stop]	-	app, result
	[bc_gitops, remove, start]	-	app
	[bc_gitops, remove, stop]	-	app, result
	[bc_gitops, git, pull]	-	repo, branch

Configuration Options
Configure via sys.config or application:set_env/3:
	Option	Type	Default	Description
	repo_url	string	required	Git repository URL
	local_path	string	/var/lib/bc_gitops	Local clone path
	branch	string	"main"	Git branch to track
	apps_dir	string	"apps"	Directory containing app specs
	reconcile_interval	integer	60000	Reconcile interval (ms)
	runtime_module	atom	bc_gitops_runtime_default	Runtime implementation

App Config File Formats
bc_gitops supports three configuration formats for app specs:
	Format	Extension	Requirements
	Erlang terms	.config	None (built-in)
	YAML	.yaml, .yml	yamerl dependency
	JSON	.json	OTP 27+ or jsx/jiffy

File search order: app.config → app.yaml → app.yml → app.json → config.*
Optional Dependencies
%% For YAML support:
{yamerl, "0.10.0"}

%% For JSON on OTP < 27:
{jsx, "3.1.0"}
%% or
{jiffy, "1.1.1"}
Example configuration:
[
 {bc_gitops, [
 {repo_url, "https://github.com/myorg/gitops.git"},
 {branch, "main"},
 {reconcile_interval, 30000},
 {runtime_module, bc_gitops_runtime_default}
]}
].

 Runtime Implementation Guide

The runtime module is the heart of bc_gitops customization. It defines how applications are deployed, upgraded, and removed. This guide covers different implementation strategies from simple to advanced.
Note (v0.3.0+): The default runtime (bc_gitops_runtime_default) now restarts applications on version upgrades rather than hot-reloading. This ensures clean initialization of routes, supervisors, and application metadata. For same-version code changes (e.g., tracking a branch), you can still use bc_gitops_hot_reload directly.

The bc_gitops_runtime Behaviour
Every runtime must implement the bc_gitops_runtime behaviour:
-callback deploy(AppSpec :: #app_spec{}) ->
 {ok, #app_state{}} | {error, term()}.

-callback remove(AppName :: atom()) ->
 ok | {error, term()}.

-callback upgrade(AppSpec :: #app_spec{}, OldVersion :: binary()) ->
 {ok, #app_state{}} | {error, term()}.

-callback reconfigure(AppSpec :: #app_spec{}) ->
 {ok, #app_state{}} | {error, term()}.

%% Optional
-callback get_current_state() ->
 {ok, #{atom() => #app_state{}}} | {error, term()}.
Strategy 1: Simple Start/Stop (Default)
The simplest strategy stops the old version and starts the new one. This is what bc_gitops_runtime_default does for version upgrades (v0.3.0+):
-module(simple_runtime).
-behaviour(bc_gitops_runtime).

-include_lib("bc_gitops/include/bc_gitops.hrl").

-export([deploy/1, remove/1, upgrade/2, reconfigure/1]).

deploy(#app_spec{name = Name, version = Version, env = Env}) ->
 set_env(Name, Env),
 case application:ensure_all_started(Name) of
 {ok, _} ->
 {ok, make_state(Name, Version, Env)};
 {error, Reason} ->
 {error, {start_failed, Reason}}
 end.

remove(Name) ->
 application:stop(Name).

upgrade(AppSpec, _OldVersion) ->
 %% Stop old, start new
 remove(AppSpec#app_spec.name),
 deploy(AppSpec).

reconfigure(#app_spec{name = Name, version = Version, env = Env}) ->
 set_env(Name, Env),
 {ok, make_state(Name, Version, Env)}.

%% Helpers
set_env(App, Env) ->
 maps:foreach(fun(K, V) -> application:set_env(App, K, V) end, Env).

make_state(Name, Version, Env) ->
 #app_state{
 name = Name,
 version = Version,
 status = running,
 started_at = calendar:universal_time(),
 health = unknown,
 env = Env
 }.
Pros:
	Simple to implement
	Works with any OTP application
	Clean initialization (routes, supervisors, metadata all fresh)

Cons:
	Brief downtime during upgrades
	Connections are dropped

For same-version code changes where you want zero-downtime, use bc_gitops_hot_reload directly.

Strategy 2: Hot Code Upgrade
OTP's release handler enables zero-downtime upgrades. This requires proper .appup files.
-module(hot_upgrade_runtime).
-behaviour(bc_gitops_runtime).

-include_lib("bc_gitops/include/bc_gitops.hrl").

-export([deploy/1, remove/1, upgrade/2, reconfigure/1]).

deploy(AppSpec) ->
 %% For new deployments, use standard start
 simple_runtime:deploy(AppSpec).

remove(Name) ->
 simple_runtime:remove(Name).

upgrade(#app_spec{name = Name, version = NewVersion} = AppSpec, OldVersion) ->
 %% Try hot upgrade first
 case attempt_hot_upgrade(Name, OldVersion, NewVersion) of
 ok ->
 {ok, make_state(AppSpec)};
 {error, no_appup} ->
 %% Fall back to restart
 logger:warning("No appup for ~p, falling back to restart", [Name]),
 simple_runtime:upgrade(AppSpec, OldVersion);
 {error, Reason} ->
 {error, {hot_upgrade_failed, Reason}}
 end.

reconfigure(AppSpec) ->
 simple_runtime:reconfigure(AppSpec).

%% Hot upgrade using release_handler
attempt_hot_upgrade(Name, OldVsn, NewVsn) ->
 RelDir = code:lib_dir(Name),
 AppupFile = filename:join([RelDir, "ebin", atom_to_list(Name) ++ ".appup"]),

 case filelib:is_file(AppupFile) of
 false ->
 {error, no_appup};
 true ->
 %% Load the new version
 case release_handler:upgrade_app(Name, RelDir) of
 {ok, _} -> ok;
 Error -> Error
 end
 end.

make_state(#app_spec{name = N, version = V, env = E}) ->
 #app_state{name = N, version = V, status = running,
 started_at = calendar:universal_time(),
 health = unknown, env = E}.
Pros:
	Zero downtime
	Connections preserved
	State preserved

Cons:
	Requires .appup files
	Complex to test
	Not all changes can be hot-upgraded

Strategy 3: Blue-Green Deployment
Run both versions simultaneously, then switch traffic:
-module(blue_green_runtime).
-behaviour(bc_gitops_runtime).

-include_lib("bc_gitops/include/bc_gitops.hrl").

-export([deploy/1, remove/1, upgrade/2, reconfigure/1]).

%% State tracking for blue/green slots
-define(REGISTRY, blue_green_registry).

deploy(#app_spec{name = Name} = AppSpec) ->
 %% Deploy to "blue" slot
 case deploy_to_slot(AppSpec, blue) of
 {ok, State} ->
 %% Register as active
 register_active(Name, blue),
 {ok, State};
 Error ->
 Error
 end.

remove(Name) ->
 %% Remove from both slots
 remove_from_slot(Name, blue),
 remove_from_slot(Name, green),
 unregister_active(Name),
 ok.

upgrade(#app_spec{name = Name} = AppSpec, OldVersion) ->
 %% Get current active slot
 CurrentSlot = get_active_slot(Name),
 NewSlot = other_slot(CurrentSlot),

 %% Deploy new version to inactive slot
 case deploy_to_slot(AppSpec, NewSlot) of
 {ok, State} ->
 %% Health check the new deployment
 case health_check(Name, NewSlot) of
 healthy ->
 %% Switch traffic
 switch_traffic(Name, NewSlot),
 register_active(Name, NewSlot),
 %% Drain and stop old slot
 drain_slot(Name, CurrentSlot),
 remove_from_slot(Name, CurrentSlot),
 {ok, State};
 unhealthy ->
 %% Rollback - remove failed deployment
 remove_from_slot(Name, NewSlot),
 {error, {health_check_failed, NewSlot}}
 end;
 Error ->
 Error
 end.

reconfigure(AppSpec) ->
 %% Reconfigure active slot
 Name = AppSpec#app_spec.name,
 Slot = get_active_slot(Name),
 reconfigure_slot(AppSpec, Slot).

%% Slot management (simplified - use proper supervision in production)
deploy_to_slot(#app_spec{name = Name} = AppSpec, Slot) ->
 SlotName = slot_name(Name, Slot),
 %% Start under a slot-specific supervisor
 %% This is simplified - real implementation needs proper supervision
 simple_runtime:deploy(AppSpec#app_spec{name = SlotName}).

remove_from_slot(Name, Slot) ->
 SlotName = slot_name(Name, Slot),
 simple_runtime:remove(SlotName).

slot_name(Name, Slot) ->
 list_to_atom(atom_to_list(Name) ++ "_" ++ atom_to_list(Slot)).

other_slot(blue) -> green;
other_slot(green) -> blue.

%% Registry operations (use ETS or persistent_term in production)
register_active(Name, Slot) ->
 persistent_term:put({?REGISTRY, Name}, Slot).

get_active_slot(Name) ->
 persistent_term:get({?REGISTRY, Name}, blue).

unregister_active(Name) ->
 persistent_term:erase({?REGISTRY, Name}).

%% These would integrate with your load balancer / service mesh
switch_traffic(_Name, _Slot) -> ok.
drain_slot(_Name, _Slot) -> timer:sleep(5000). %% Wait for connections to drain
health_check(_Name, _Slot) -> healthy.
reconfigure_slot(AppSpec, _Slot) -> simple_runtime:reconfigure(AppSpec).
Pros:
	Zero downtime
	Easy rollback
	Can verify before switching

Cons:
	Requires 2x resources during upgrade
	Complex state management
	Need load balancer integration

Strategy 4: Release-Based Deployment
For applications distributed as OTP releases:
-module(release_runtime).
-behaviour(bc_gitops_runtime).

-include_lib("bc_gitops/include/bc_gitops.hrl").

-export([deploy/1, remove/1, upgrade/2, reconfigure/1]).

-define(RELEASES_DIR, "/opt/releases").

deploy(#app_spec{name = Name, version = Version, source = Source} = AppSpec) ->
 %% Download release tarball
 case download_release(Name, Version, Source) of
 {ok, TarPath} ->
 %% Extract and install
 case install_release(Name, Version, TarPath) of
 ok ->
 %% Start the release
 start_release(Name, Version, AppSpec);
 Error ->
 Error
 end;
 Error ->
 Error
 end.

remove(Name) ->
 %% Stop and uninstall
 stop_release(Name),
 uninstall_release(Name).

upgrade(#app_spec{name = Name, version = NewVersion, source = Source} = AppSpec, OldVersion) ->
 %% Download new release
 case download_release(Name, NewVersion, Source) of
 {ok, TarPath} ->
 %% Install alongside old version
 case install_release(Name, NewVersion, TarPath) of
 ok ->
 %% Perform relup if available, otherwise restart
 case has_relup(Name, OldVersion, NewVersion) of
 true ->
 upgrade_release(Name, NewVersion, AppSpec);
 false ->
 stop_release(Name),
 start_release(Name, NewVersion, AppSpec)
 end;
 Error ->
 Error
 end;
 Error ->
 Error
 end.

reconfigure(AppSpec) ->
 %% Update sys.config and signal reload
 update_sys_config(AppSpec),
 reload_config(AppSpec#app_spec.name).

%% Implementation details (simplified)
download_release(Name, Version, #source_spec{type = release, url = Url, sha256 = Sha256}) ->
 TarPath = filename:join([?RELEASES_DIR, Name, Version ++ ".tar.gz"]),
 filelib:ensure_dir(TarPath),
 %% Download and verify
 case httpc:request(get, {binary_to_list(Url), []}, [], [{stream, TarPath}]) of
 {ok, saved_to_file} ->
 case verify_checksum(TarPath, Sha256) of
 ok -> {ok, TarPath};
 Error -> Error
 end;
 Error ->
 Error
 end;
download_release(_Name, _Version, _Source) ->
 {error, unsupported_source}.

install_release(_Name, _Version, _TarPath) ->
 %% Extract tarball to releases directory
 ok.

start_release(Name, Version, #app_spec{env = Env}) ->
 %% Start using release script
 RelDir = filename:join([?RELEASES_DIR, Name, Version]),
 Script = filename:join([RelDir, "bin", atom_to_list(Name)]),
 case os:cmd(Script ++ " start") of
 "ok\n" ->
 {ok, #app_state{
 name = Name,
 version = Version,
 status = running,
 path = RelDir,
 started_at = calendar:universal_time(),
 health = unknown,
 env = Env
 }};
 Error ->
 {error, {start_failed, Error}}
 end.

stop_release(Name) ->
 %% Stop using release script
 ok.

uninstall_release(_Name) ->
 ok.

has_relup(_Name, _OldVersion, _NewVersion) ->
 false.

upgrade_release(_Name, _Version, _AppSpec) ->
 ok.

update_sys_config(_AppSpec) ->
 ok.

reload_config(_Name) ->
 ok.

verify_checksum(_Path, undefined) ->
 ok;
verify_checksum(Path, ExpectedSha256) ->
 {ok, Data} = file:read_file(Path),
 Actual = crypto:hash(sha256, Data),
 case Actual =:= base64:decode(ExpectedSha256) of
 true -> ok;
 false -> {error, checksum_mismatch}
 end.
Choosing a Strategy
	Scenario	Recommended Strategy
	Development/Testing	Simple Start/Stop
	Stateless services	Blue-Green
	Stateful services	Hot Code Upgrade
	Microservices with load balancer	Blue-Green
	Monolithic applications	Hot Code Upgrade or Release-Based
	Edge/IoT devices	Release-Based

Health Checks
Implement health checks to verify deployments:
check_health(#app_spec{name = Name, health = undefined}) ->
 %% No health check configured - assume healthy if running
 case lists:keyfind(Name, 1, application:which_applications()) of
 {Name, _, _} -> healthy;
 false -> unhealthy
 end;

check_health(#app_spec{name = Name, health = #health_spec{type = http, port = Port, path = Path, timeout = Timeout}}) ->
 Url = "http://localhost:" ++ integer_to_list(Port) ++ binary_to_list(Path),
 case httpc:request(get, {Url, []}, [{timeout, Timeout}], []) of
 {ok, {{_, 200, _}, _, _}} -> healthy;
 _ -> unhealthy
 end;

check_health(#app_spec{health = #health_spec{type = tcp, port = Port, timeout = Timeout}}) ->
 case gen_tcp:connect("localhost", Port, [], Timeout) of
 {ok, Socket} ->
 gen_tcp:close(Socket),
 healthy;
 _ ->
 unhealthy
 end;

check_health(#app_spec{health = #health_spec{type = custom, module = Module}}) ->
 Module:check().
State Tracking
Track application state for accurate reconciliation:
-module(state_tracker).

-define(STATE_TABLE, bc_gitops_app_state).

init() ->
 ets:new(?STATE_TABLE, [named_table, public, {keypos, 2}]).

store(#app_state{} = State) ->
 ets:insert(?STATE_TABLE, State).

get(Name) ->
 case ets:lookup(?STATE_TABLE, Name) of
 [State] -> {ok, State};
 [] -> {error, not_found}
 end.

get_all() ->
 {ok, maps:from_list([{S#app_state.name, S} || S <- ets:tab2list(?STATE_TABLE)])}.

remove(Name) ->
 ets:delete(?STATE_TABLE, Name).
Error Handling and Rollback
Always plan for failures:
safe_upgrade(AppSpec, OldVersion, Runtime) ->
 %% Take snapshot before upgrade
 {ok, OldState} = Runtime:get_current_state(),

 case Runtime:upgrade(AppSpec, OldVersion) of
 {ok, NewState} ->
 %% Verify health after upgrade
 case check_health(AppSpec) of
 healthy ->
 {ok, NewState};
 unhealthy ->
 %% Rollback
 logger:error("Health check failed after upgrade, rolling back"),
 OldSpec = AppSpec#app_spec{version = OldVersion},
 Runtime:upgrade(OldSpec, AppSpec#app_spec.version)
 end;
 {error, Reason} ->
 logger:error("Upgrade failed: ~p", [Reason]),
 {error, Reason}
 end.
Testing Your Runtime
-module(my_runtime_tests).
-include_lib("eunit/include/eunit.hrl").
-include_lib("bc_gitops/include/bc_gitops.hrl").

deploy_and_remove_test() ->
 Spec = #app_spec{
 name = test_app,
 version = <<"1.0.0">>,
 source = #source_spec{type = hex},
 env = #{},
 depends_on = []
 },

 %% Deploy
 {ok, State} = my_runtime:deploy(Spec),
 ?assertEqual(running, State#app_state.status),

 %% Remove
 ok = my_runtime:remove(test_app).

upgrade_preserves_state_test() ->
 %% Test that upgrades don't lose application state
 ok.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.7.0 - 2026-01-14
Added
	Mesh source type - Fetch OTP releases from the Macula mesh via MCID (Macula Content Identifier)
	New mesh source type alongside release, git, hex
	New mcid field in source_spec record for content identifier
	Integration with macula_content:fetch/1 when macula is available
	Graceful fallback when macula is not present

	New telemetry events for mesh fetching:
	[:bc_gitops, :mesh, :fetch_start] - Mesh fetch begins
	[:bc_gitops, :mesh, :fetch_stop] - Mesh fetch completes (success or failure)

Example Configuration
#{
 name => demo_app,
 version => <<"1.0.0">>,
 source => #{
 type => mesh,
 mcid => <<"mcid1-manifest-blake3-5d41402abc4b2a76b9719d911017c592">>
 }
}.
Changed
	bc_gitops.hrl: Added mesh to source type union, added mcid field to source_spec record
	bc_gitops_parser: Parses mcid field from source configuration
	bc_gitops_workspace: Added fetch_mesh_package/2 for mesh source handling

0.6.3 - 2026-01-13
Changed
	Documentation: Updated guides/isolated_vm_deployment.md with Macula Platform Integration section	Explains automatic delegation to macula when available
	Documents delegated functions table
	Links to Macula Cluster API Guide

0.6.2 - 2026-01-13
Added
	Node monitoring for isolated VMs (Phase 3)	Reconciler subscribes to net_kernel:monitor_nodes/1 on startup
	Handles nodeup and nodedown messages automatically
	Updates app states when their node disconnects
	Emits [:bc_gitops, :cluster, :node_up] and [:bc_gitops, :cluster, :node_down] telemetry

Changed
	bc_gitops_reconciler:
	Now monitors cluster node events for isolated VMs
	Apps on disconnected nodes are marked as stopped/unhealthy
	Apps on reconnected nodes have their status re-verified via RPC

	bc_gitops_cluster: Macula integration (optional dependency)
	Delegates to macula module when available for clustering operations
	Falls back to local implementation when macula is not present
	Delegated functions: ensure_distributed/0, get_cookie/0, set_cookie/1, monitor_nodes/0, unmonitor_nodes/0
	bc_gitops remains usable standalone without macula

0.6.1 - 2026-01-13
Added
	Reconciler integration for isolated VMs (Phase 2)	Runtime selection based on isolation field in app_spec
	Automatic dispatch to bc_gitops_runtime_isolated for isolation => vm
	State merging from both embedded and isolated runtimes
	Telemetry events now include isolation mode and selected runtime

Changed
	bc_gitops_reconciler:	apply_action/2 now selects runtime based on isolation field
	get_runtime_state/2 merges states from default and isolated runtimes
	Manual operations (do_deploy, do_remove, do_upgrade) respect isolation mode

Fixed
	bc_gitops_runtime_default: Added missing isolation = embedded field to app_state records
	bc_gitops_cluster: Fixed extra_args default value in vm_config record
	bc_gitops_runtime_isolated: Changed unreachable degraded status to failed
	bc_gitops_vm_spawner: Simplified shell_escape/1 spec to match actual usage

0.6.0 - 2026-01-13
Added
	Isolated VM deployment - Run guest applications in separate BEAM VMs
	New isolation field in app_spec: embedded (default) or vm
	New vm_config record for resource limits (memory, schedulers)
	Crash isolation: guest crashes don't affect host
	Auto-clustering via Erlang distribution
	Phoenix.PubSub works automatically across nodes

	New modules:
	bc_gitops_cluster - Erlang distribution and cookie management
	bc_gitops_vm_spawner - Spawn and manage separate BEAM VM processes
	bc_gitops_runtime_isolated - Runtime behaviour for isolated VMs

	New telemetry events:
	[:bc_gitops, :vm, :spawn_start] / [:bc_gitops, :vm, :spawn_stop]
	[:bc_gitops, :vm, :stop_start] / [:bc_gitops, :vm, :stop_stop]
	[:bc_gitops, :cluster, :node_up] / [:bc_gitops, :cluster, :node_down]

	Documentation:
	guides/isolated_vm_deployment.md - Comprehensive operator guide
	assets/isolated_vm_architecture.svg - Architecture diagram

Changed
	app_spec record: Added isolation and vm_config fields
	app_state record: Added isolation, node, and os_pid fields for tracking isolated VMs
	Parser: Now handles isolation and vm_config configuration

Example Configuration
#{
 name => demo_uptime,
 version => <<"0.3.0">>,
 source => #{type => hex},
 isolation => vm, %% Run in separate VM
 vm_config => #{
 memory_limit => 512, %% 512 MB max
 scheduler_limit => 2 %% 2 schedulers
 },
 env => #{http_port => 8083}
}.
0.5.0 - 2026-01-13
Added
	Icon and description fields in app config schema
	Apps can specify icon (url, base64, or identicon type) and description
	Auto-generated identicons based on app name when icon not specified
	bc_gitops_identicon module generates deterministic SVG identicons
	to_data_uri/1,2 for embedding icons directly in HTML

	Module purging on upgrade (bc_gitops_workspace)
	Properly purges old modules before removing code paths
	Prevents stale code from persisting after hot upgrades
	New telemetry event: [:bc_gitops, :code, :purge]

Fixed
	Hex package version fetching: Now uses app version as package ref	Previously always fetched ">= 0.0.0" (latest version)
	Now fetches exact version specified in app config

0.4.1 - 2026-01-13
Fixed
	Git package fetching: Handle existing directories during fetch	Previously, fetch_git_package always attempted git clone, failing when
the target directory already existed (e.g., after server restart)
	Now checks if directory exists and is a git repo:	If git repo exists: does git fetch + git checkout to update
	If directory exists but not git repo: removes and clones fresh
	If directory doesn't exist: clones normally

	Fixes "destination path already exists" errors during reconciliation

0.4.0 - 2026-01-13
Added
	YAML config file support (.yaml, .yml)
	Requires optional yamerl dependency
	Full support for all app spec fields
	Automatic conversion of YAML keys to atoms

	Enhanced JSON support
	Uses OTP 27+ native json module
	Clear error messages for older OTP versions

Changed
	Config file search order now includes YAML:
	app.config (Erlang terms)
	app.yaml / app.yml (YAML)
	app.json (JSON)
	config.* variants

	Documentation updates:
	Added YAML and JSON examples to getting started guides
	Added "App Config File Formats" section to API reference
	Documented optional dependencies for YAML/JSON

0.3.1 - 2026-01-13
Added
	Elixir Getting Started Guide (guides/getting_started_elixir.md)	Full walkthrough for Elixir users
	Elixir-specific configuration examples
	Telemetry setup with Elixir module
	Custom runtime implementation in Elixir

Changed
	Documentation improvements:	Added "Why Restart on Upgrade?" section to getting started guides
	Updated architecture.svg to v0.3.0
	Clarified hot_reload_flow.svg is for same-version changes
	Updated runtime_implementation.md with v0.3.0+ notes
	Renamed "Getting Started" to "Getting Started (Erlang)" in navigation

0.3.0 - 2026-01-12
Changed
	bc_gitops_runtime_default: Version upgrades now restart the application
	Ensures clean initialization (routes, supervisors, app metadata)
	Fixes issue where application:get_key/2 returned stale cached values
	Hot code reload still available for same-version code changes via bc_gitops_hot_reload

	Upgrade flow: Always fetches fresh code for upgrades
	Deletes existing workspace before fetching new version
	Ensures clean build with correct ref/tag

Added
	Detailed telemetry events for build pipeline visibility:	[:bc_gitops, :git, :clone_start] / [:bc_gitops, :git, :clone_stop]
	[:bc_gitops, :deps, :start] / [:bc_gitops, :deps, :stop]
	[:bc_gitops, :build, :start] / [:bc_gitops, :build, :stop]
	[:bc_gitops, :code, :load]
	All events include app name, tool used, and success/failure status

Fixed
	Handle timeout gracefully in bc_gitops:status/0 call

0.2.1 - 2026-01-12
Added
	guides/api.md: Complete API quick-reference guide	Core module API (status, state, manual operations)
	Runtime module callbacks
	Workspace and hot reload APIs
	Record definitions and telemetry events

Changed
	assets/architecture.svg: Updated to show v0.2.0 modules
	Added bc_gitops_workspace and bc_gitops_hot_reload
	Added hex.pm external source and build tools

	assets/hot_reload_flow.svg: New diagram showing upgrade flow
	Suspend -> reload -> resume sequence
	MD5 comparison for change detection
	Fallback to restart on failure

0.2.0 - 2026-01-12
Added
	bc_gitops_workspace: Package fetching and compilation workspace
	Fetches packages from hex.pm via rebar3 (Erlang) or mix (Elixir)
	Clones and compiles git repositories
	Manages code paths automatically
	Supports rebar3, mix, and erlang.mk project types

	bc_gitops_hot_reload: Hot code reloading utilities
	Module reloading with code:soft_purge/1 + code:load_file/1
	Process suspension/resumption for stateful upgrades
	Change detection via beam file MD5 comparison
	Coordinated upgrade across application modules

Changed
	bc_gitops_runtime_default: Now fully functional out of the box	Actually fetches and compiles packages (was just a stub before)
	Supports hot code upgrades with fallback to restart
	Properly manages application environment and state

0.1.0 - 2026-01-12
Added
	Initial release of bc_gitops
	Core reconciler (bc_gitops_reconciler) with configurable interval
	Git operations (bc_gitops_git) for clone, pull, and commit queries
	Configuration parser (bc_gitops_parser) supporting Erlang term and JSON formats
	Runtime behaviour (bc_gitops_runtime) for pluggable deployment strategies
	Default runtime implementation (bc_gitops_runtime_default) using OTP application management
	Telemetry events for reconciliation, deployment, and upgrade operations
	Comprehensive API (bc_gitops) for status queries and manual operations
	Full documentation with examples

 Contributing to bc_gitops

Thank you for your interest in contributing to bc_gitops! This document provides guidelines and instructions for contributing.
Code of Conduct
By participating in this project, you agree to maintain a respectful and inclusive environment. Be kind to others, welcome newcomers, and focus on constructive feedback.
How to Contribute
Reporting Bugs
Before reporting a bug:
	Check the existing issues to avoid duplicates
	Ensure you're using the latest version
	Collect relevant information:	Erlang/OTP version (erl -version)
	bc_gitops version
	Operating system
	Steps to reproduce
	Expected vs actual behavior

Create a new issue with the Bug Report template.
Suggesting Features
We welcome feature suggestions! Before submitting:
	Check existing issues for similar suggestions
	Consider if the feature fits the project's scope (BEAM-native GitOps)
	Think about backwards compatibility

Create a new issue with the Feature Request template.
Pull Requests
Setting Up Development Environment
	Fork the repository
	Clone your fork:git clone https://github.com/YOUR_USERNAME/bc-gitops.git
cd bc-gitops

	Install dependencies:rebar3 deps

	Run tests to ensure everything works:rebar3 eunit

Making Changes
	Create a feature branch:
git checkout -b feature/my-feature
or
git checkout -b fix/bug-description

	Make your changes, following the coding standards below

	Add tests for new functionality

	Run the full test suite:
rebar3 eunit

	Run static analysis:
rebar3 dialyzer
rebar3 xref

	Commit your changes:
git commit -m "feat: add new feature X"

	Push and create a PR:
git push origin feature/my-feature

Commit Message Format
We follow Conventional Commits:
<type>(<scope>): <description>

[optional body]

[optional footer]
Types:
	feat: New feature
	fix: Bug fix
	docs: Documentation only
	style: Code style (formatting, etc.)
	refactor: Code change that neither fixes a bug nor adds a feature
	test: Adding or updating tests
	chore: Maintenance tasks

Examples:
feat(reconciler): add topological sort for dependencies
fix(git): handle authentication failures gracefully
docs(readme): add telemetry event documentation
test(parser): add JSON config parsing tests
Coding Standards
Erlang Style
	Use 4-space indentation
	Maximum line length: 100 characters
	Follow OTP design principles
	Add type specs (-spec) for all exported functions
	Add documentation (@doc) for all exported functions

Module Structure
%%% @doc Module description.
%%%
%%% Detailed explanation of what this module does.
%%% @end
-module(module_name).

-behaviour(gen_server). %% If applicable

%% API exports
-export([public_function/1]).

%% Callback exports
-export([init/1, handle_call/3]).

%% Internal exports (if needed for testing)
-ifdef(TEST).
-export([internal_function/1]).
-endif.

%% Macros and records
-define(TIMEOUT, 5000).
-record(state, {field :: type()}).

%% Type exports
-export_type([my_type/0]).

-type my_type() :: term().

%%% ==
%%% API
%%% ==

%% @doc Description of what this function does.
-spec public_function(Arg :: term()) -> {ok, Result :: term()} | {error, Reason :: term()}.
public_function(Arg) ->
 internal_function(Arg).

%%% ==
%%% Internal functions
%%% ==

-spec internal_function(term()) -> term().
internal_function(Arg) ->
 Arg.
Testing
	Place tests in test/ directory
	Name test modules *_tests.erl
	Use EUnit for unit tests
	Mock external dependencies with meck
	Aim for high coverage of public APIs

Example test structure:
-module(my_module_tests).

-include_lib("eunit/include/eunit.hrl").

%% Test fixtures
setup() ->
 %% Setup code
 ok.

cleanup(_) ->
 %% Cleanup code
 ok.

%% Individual tests
my_function_returns_ok_test() ->
 ?assertEqual(ok, my_module:my_function()).

%% Test generators for setup/cleanup
my_test_() ->
 {setup,
 fun setup/0,
 fun cleanup/1,
 [
 ?_assertEqual(expected, actual)
]
 }.
Documentation
	Document all exported functions with @doc
	Use @since for version tracking
	Include examples in documentation
	Keep README.md up to date
	Add guides for complex features

Review Process
	All PRs require at least one approval
	CI must pass (tests, dialyzer, xref)
	Documentation must be updated for user-facing changes
	CHANGELOG.md must be updated for notable changes

Release Process
Releases are managed by maintainers:
	Update version in src/bc_gitops.app.src
	Update CHANGELOG.md
	Create a git tag: git tag v0.1.0
	Push: git push && git push --tags
	Publish to hex.pm: rebar3 hex publish

Getting Help
	Open a Discussion for questions
	Join the BEAM community on Slack or Discord
	Check the documentation

License
By contributing to bc_gitops, you agree that your contributions will be licensed under the MIT License.

 License

MIT License

Copyright (c) 2026 BEAM Campus

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

bc_gitops

Main API module for bc_gitops.
bc_gitops is a BEAM-native GitOps reconciler for OTP applications. It monitors a Git repository and automatically deploys, upgrades, or removes applications based on the desired state defined in the repo.
[bookmark: Quick_Start]Quick Start
1. Configure the application in your sys.config:
 {bc_gitops, [
 {repo_url, "https://github.com/myorg/gitops-repo.git"},
 {runtime_module, my_app_runtime}
]}
   ```
  
   2. Implement the `bc_gitops_runtime' behaviour in your runtime module.
  
   3. Start the application:
   ```
 application:start(bc_gitops).
[bookmark: Configuration]Configuration
- repo_url: Git repository URL (required) - local_path: Local clone path (default: /var/lib/bc_gitops) - branch: Git branch to track (default: main) - apps_dir: Directory within repo containing app specs (default: apps) - reconcile_interval: Interval between reconciliations in ms (default: 60000) - runtime_module: Module implementing bc_gitops_runtime behaviour

 Summary

 Types

 action/0

 app_spec/0

 app_state/0

 health_spec/0

 action() type is defined in bc_gitops.hrl

 isolation_mode/0

 source_spec/0

 Functions

 deploy(AppSpec)

 Manually deploy an application.

 get_app_status(AppName)

 Get the status of a specific application.

 get_current_state()

 Get the current running state.

 get_desired_state()

 Get the desired state (from git repository).

 reconcile()

 Trigger an immediate reconciliation.

 remove(AppName)

 Manually remove an application.

 start_reconciler(Config)

 Start the reconciler with the given configuration.

 status()

 Get the current reconciler status.

 stop_reconciler()

 Stop the running reconciler.

 sync()

 Alias for reconcile/0.

 upgrade(AppName, NewVersion)

 Manually upgrade an application to a new version.

 Types

 action/0

 -type action() ::
 {deploy,
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}} |
 {remove,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {upgrade,
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined},
 OldVersion :: binary()} |
 {reconfigure,
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}}.

 app_spec/0

 -type app_spec() ::
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}.

 app_state/0

 -type app_state() ::
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}.

 health_spec/0

 -type health_spec() ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined}.

action() type is defined in bc_gitops.hrl

 isolation_mode/0

 -type isolation_mode() :: embedded | vm.

 source_spec/0

 -type source_spec() ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined}.

 Functions

 deploy(AppSpec)

 -spec deploy(app_spec()) -> ok | {error, term()}.

Manually deploy an application.
This bypasses the git repository and deploys an application directly from the provided spec. The deployment will be overwritten on the next reconciliation if the app is not defined in the git repository.

 get_app_status(AppName)

 -spec get_app_status(atom()) -> {ok, app_state()} | {error, not_found}.

Get the status of a specific application.

 get_current_state()

 -spec get_current_state() -> {ok, #{atom() => app_state()}} | {error, term()}.

Get the current running state.

 get_desired_state()

 -spec get_desired_state() -> {ok, #{atom() => app_spec()}} | {error, term()}.

Get the desired state (from git repository).

 reconcile()

 -spec reconcile() -> ok | {error, term()}.

Trigger an immediate reconciliation.
This pulls the latest changes from git and reconciles the current state with the desired state.

 remove(AppName)

 -spec remove(atom()) -> ok | {error, term()}.

Manually remove an application.
This removes an application regardless of the desired state. The application will be redeployed on the next reconciliation if it's defined in the git repository.

 start_reconciler(Config)

 -spec start_reconciler(map()) -> {ok, pid()} | {error, term()}.

Start the reconciler with the given configuration.
This is useful when you want to start the reconciler programmatically instead of through application configuration.
[bookmark: Example]Example
 bc_gitops:start_reconciler(#{
 repo_url => <<"https://github.com/myorg/gitops.git">>,
 runtime_module => my_runtime
 }).

 status()

 -spec status() -> {ok, map()} | {error, not_running}.

Get the current reconciler status.
Returns a map containing: - status: Current reconciler status (initializing | ready | synced | degraded | error) - last_commit: SHA of the last processed commit - app_count: Number of managed applications - healthy_count: Number of healthy applications

 stop_reconciler()

 -spec stop_reconciler() -> ok | {error, term()}.

Stop the running reconciler.

 sync()

 -spec sync() -> ok | {error, term()}.

Alias for reconcile/0.

 upgrade(AppName, NewVersion)

 -spec upgrade(atom(), binary()) -> ok | {error, term()}.

Manually upgrade an application to a new version.

bc_gitops_app

Application callback module for bc_gitops.
This module implements the OTP application behaviour, starting the supervision tree when the application starts.

 Summary

 Functions

 start(StartType, StartArgs)

 stop(State)

 Functions

 start(StartType, StartArgs)

 -spec start(application:start_type(), term()) -> {ok, pid()} | {error, term()}.

 stop(State)

 -spec stop(term()) -> ok.

bc_gitops_cluster

Cluster management for bc_gitops isolated VM deployment.
This module handles Erlang distribution setup and node management for running guest applications in separate BEAM VMs.
[bookmark: Macula_Integration]Macula Integration
When the macula application is available, this module delegates clustering operations to it. This allows macula to own the cluster infrastructure while bc_gitops remains usable standalone.
Delegated functions (when macula is available): - ensure_distributed/0 -> macula:ensure_distributed/0 - get_cookie/0 -> macula:get_cookie/0 - set_cookie/1 -> macula:set_cookie/1 - monitor_nodes/0 -> macula:monitor_nodes/0 - unmonitor_nodes/0 -> macula:unmonitor_nodes/0
[bookmark: Cookie_Management_(Fallback)]Cookie Management (Fallback)
When macula is not available, cookies are resolved in this order: 1. Application env: {bc_gitops, [{cookie, <<"secret">>}]} 2. Environment variable: RELEASE_COOKIE or ERLANG_COOKIE 3. User's ~/.erlang.cookie file 4. Auto-generated (persisted to ~/.erlang.cookie)
[bookmark: Node_Naming]Node Naming
Guest nodes are named using the pattern: {prefix}{app_name}{hostname}
Default prefix is empty, configurable via vm_config.node_prefix.

 Summary

 Functions

 ensure_distributed()

 Ensure this node is running in distributed mode. Delegates to macula:ensure_distributed/0 when available.

 generate_node_name(AppName, Vm_config)

 Generate a node name for a guest application.

 get_cookie()

 Get the Erlang cookie for the cluster. Delegates to macula:get_cookie/0 when available.

 get_hostname()

 Get the short hostname of this machine.

 is_node_connected(Node)

 Check if a node is currently connected.

 macula_available()

 Check if macula module is available.

 monitor_nodes()

 Subscribe to node up/down events. Delegates to macula:monitor_nodes/0 when available.

 read_cookie_file()

 resolve_cookie()

 Resolve the cookie from various sources.

 rpc_check_app(Node, AppName)

 Check if an application is running on a remote node via RPC.

 set_cookie(Cookie)

 Set the Erlang cookie for this node and persist it. Delegates to macula:set_cookie/1 when available.

 unmonitor_nodes()

 Unsubscribe from node up/down events. Delegates to macula:unmonitor_nodes/0 when available.

 wait_for_node(Node, Timeout)

 Wait for a node to appear in the cluster. Returns ok when node is connected, or {error, timeout} after timeout.

 Functions

 ensure_distributed()

 -spec ensure_distributed() -> ok | {error, term()}.

Ensure this node is running in distributed mode. Delegates to macula:ensure_distributed/0 when available.

 generate_node_name(AppName, Vm_config)

 -spec generate_node_name(atom(),
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined) ->
 node().

Generate a node name for a guest application.
Format: {prefix}{app_name}{hostname}
If vm_config has a node_prefix, it's prepended to the app name.

 get_cookie()

 -spec get_cookie() -> atom().

Get the Erlang cookie for the cluster. Delegates to macula:get_cookie/0 when available.

 get_hostname()

 -spec get_hostname() -> string().

Get the short hostname of this machine.

 is_node_connected(Node)

 -spec is_node_connected(node()) -> boolean().

Check if a node is currently connected.

 macula_available()

 -spec macula_available() -> boolean().

Check if macula module is available.

 monitor_nodes()

 -spec monitor_nodes() -> ok.

Subscribe to node up/down events. Delegates to macula:monitor_nodes/0 when available.

 read_cookie_file()

 -spec read_cookie_file() -> {ok, atom()} | {error, term()}.

 resolve_cookie()

 -spec resolve_cookie() -> {ok, atom()} | {error, not_found}.

Resolve the cookie from various sources.

 rpc_check_app(Node, AppName)

 -spec rpc_check_app(node(), atom()) -> {ok, running} | {ok, not_running} | {error, term()}.

Check if an application is running on a remote node via RPC.

 set_cookie(Cookie)

 -spec set_cookie(atom() | binary()) -> ok.

Set the Erlang cookie for this node and persist it. Delegates to macula:set_cookie/1 when available.

 unmonitor_nodes()

 -spec unmonitor_nodes() -> ok.

Unsubscribe from node up/down events. Delegates to macula:unmonitor_nodes/0 when available.

 wait_for_node(Node, Timeout)

 -spec wait_for_node(node(), pos_integer()) -> ok | {error, timeout}.

Wait for a node to appear in the cluster. Returns ok when node is connected, or {error, timeout} after timeout.

bc_gitops_git

Git operations for bc_gitops.
This module wraps git commands for cloning, pulling, and querying repository state. It uses the system git command for maximum compatibility.
Git authentication is handled through standard git mechanisms: SSH keys, credential helpers, or inline URL credentials. For CI/CD environments, SSH deploy keys are recommended.

 Summary

 Functions

 checkout(LocalPath, Ref)

 Checkout a specific ref (branch, tag, or commit).

 clone(RepoUrl, LocalPath, Branch)

 Clone a repository to the local path.

 ensure_repo(RepoUrl, LocalPath, Branch)

 Ensure the repository exists locally, cloning if necessary.

 get_commit_log(LocalPath, Count)

 Get the commit log for the last N commits.

 get_head_commit(LocalPath)

 Get the current HEAD commit SHA.

 is_repo(Path)

 Check if a path is a git repository.

 pull(LocalPath, Branch)

 Pull the latest changes from the remote repository.

 Functions

 checkout(LocalPath, Ref)

 -spec checkout(binary(), binary()) -> ok | {error, term()}.

Checkout a specific ref (branch, tag, or commit).

 clone(RepoUrl, LocalPath, Branch)

 -spec clone(binary(), binary(), binary()) -> ok | {error, term()}.

Clone a repository to the local path.

 ensure_repo(RepoUrl, LocalPath, Branch)

 -spec ensure_repo(binary(), binary(), binary()) -> ok | {error, term()}.

Ensure the repository exists locally, cloning if necessary.
If the local path exists and is a git repository, this does nothing. Otherwise, it clones the repository.

 get_commit_log(LocalPath, Count)

 -spec get_commit_log(binary(), pos_integer()) -> {ok, [map()]} | {error, term()}.

Get the commit log for the last N commits.
Returns a list of maps with commit info.

 get_head_commit(LocalPath)

 -spec get_head_commit(binary()) -> {ok, binary()} | {error, term()}.

Get the current HEAD commit SHA.

 is_repo(Path)

 -spec is_repo(file:filename()) -> boolean().

Check if a path is a git repository.

 pull(LocalPath, Branch)

 -spec pull(binary(), binary()) -> {ok, binary()} | {error, term()}.

Pull the latest changes from the remote repository.
Returns the commit SHA after pulling.

bc_gitops_hot_reload

Hot code reload utilities for bc_gitops.
This module provides hot code reloading capabilities for OTP applications. It supports both simple module reloads and coordinated upgrades that properly handle stateful processes via sys:suspend/resume.
[bookmark: Simple_Reload]Simple Reload
For stateless modules or when state migration isn't needed:
 bc_gitops_hot_reload:reload_modules([my_module]).
[bookmark: Coordinated_Upgrade]Coordinated Upgrade
For stateful gen_servers that implement code_change/3:
 bc_gitops_hot_reload:upgrade_app(my_app, "1.0.0", "1.1.0").
This will suspend processes, load new code, and resume them, triggering code_change/3 callbacks.

 Summary

 Functions

 get_app_modules(App)

 Get all modules belonging to an application.

 get_module_beam_hash(Module)

 Get the MD5 hash of a module's beam file.

 reload_changed_modules(App)

 Reload only modules that have changed on disk.

 reload_module(Module)

 Reload a single module.

 reload_modules(Modules)

 Reload multiple modules.

 upgrade_app(App, OldVsn, NewVsn)

 Perform a coordinated upgrade of an application.

 Functions

 get_app_modules(App)

 -spec get_app_modules(atom()) -> {ok, [module()]} | {error, term()}.

Get all modules belonging to an application.

 get_module_beam_hash(Module)

 -spec get_module_beam_hash(module()) -> {ok, binary()} | {error, term()}.

Get the MD5 hash of a module's beam file.

 reload_changed_modules(App)

 -spec reload_changed_modules(atom()) -> {ok, [module()]} | {error, term()}.

Reload only modules that have changed on disk.
Compares the MD5 hash of loaded modules with their beam files.

 reload_module(Module)

 -spec reload_module(module()) -> {ok, module()} | {error, term()}.

Reload a single module.
Uses soft_purge to avoid killing processes using old code, then loads the new version.

 reload_modules(Modules)

 -spec reload_modules([module()]) -> {ok, [module()]} | {error, term()}.

Reload multiple modules.

 upgrade_app(App, OldVsn, NewVsn)

 -spec upgrade_app(atom(), binary(), binary()) -> ok | {error, term()}.

Perform a coordinated upgrade of an application.
This function: 1. Identifies all processes belonging to the application 2. Suspends gen_server/gen_statem processes 3. Reloads changed modules 4. Resumes processes (triggering code_change/3)
For this to work properly, your gen_servers must implement code_change/3.

bc_gitops_identicon

Identicon generator for bc_gitops applications.
Generates unique, deterministic SVG identicons based on app names. The algorithm creates a 5x5 symmetric grid pattern with colors derived from a hash of the input.
[bookmark: Usage]Usage
 %% Generate SVG as binary
 Svg = bc_gitops_identicon:generate(demo_uptime).

 %% Generate as data URI for embedding in HTML
 DataUri = bc_gitops_identicon:to_data_uri(demo_uptime).

 Summary

 Functions

 generate(Input)

 Generate an SVG identicon for the given input. Input can be an atom, binary, or string.

 generate(Input, Size)

 Generate an SVG identicon with custom size.

 to_data_uri(Input)

 Generate identicon as a data URI for HTML embedding.

 to_data_uri(Input, Size)

 Generate identicon as a data URI with custom size.

 Functions

 generate(Input)

 -spec generate(atom() | binary() | string()) -> binary().

Generate an SVG identicon for the given input. Input can be an atom, binary, or string.

 generate(Input, Size)

 -spec generate(atom() | binary() | string(), pos_integer()) -> binary().

Generate an SVG identicon with custom size.

 to_data_uri(Input)

 -spec to_data_uri(atom() | binary() | string()) -> binary().

Generate identicon as a data URI for HTML embedding.

 to_data_uri(Input, Size)

 -spec to_data_uri(atom() | binary() | string(), pos_integer()) -> binary().

Generate identicon as a data URI with custom size.

bc_gitops_parser

Configuration parser for bc_gitops.
This module parses application specifications from the git repository. It supports multiple configuration formats:
- Erlang term files (.app.config, .config) - JSON files (.json) - requires OTP 27+ or jsx/jiffy - YAML files (.yaml, .yml) - requires yamerl dependency

 Summary

 Types

 isolation_mode/0

 Functions

 parse_app_config(Config)

 Parse a single application configuration from a map.

 parse_app_config_file(FilePath)

 Parse an application configuration from a file.

 parse_apps_dir(AppsDir)

 Parse all application configs from an apps directory.

 Types

 isolation_mode/0

 -type isolation_mode() :: embedded | vm.

 Functions

 parse_app_config(Config)

 -spec parse_app_config(map()) ->
 {ok,
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}} |
 {error, term()}.

Parse a single application configuration from a map.

 parse_app_config_file(FilePath)

 -spec parse_app_config_file(file:filename()) ->
 {ok,
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}} |
 {error, term()}.

Parse an application configuration from a file.
Supports: - .config, .app.config (Erlang terms) - .json (JSON - requires OTP 27+ or jsx/jiffy) - .yaml, .yml (YAML - requires yamerl dependency)

 parse_apps_dir(AppsDir)

 -spec parse_apps_dir(file:filename()) ->
 {ok,
 #{atom() =>
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}}} |
 {error, term()}.

Parse all application configs from an apps directory.
Returns a map of app_name => app_spec.

bc_gitops_reconciler

Core reconciliation loop for bc_gitops.
This gen_server implements the GitOps reconciliation pattern: 1. Pull latest changes from git 2. Parse desired state from repository 3. Compare with current state 4. Apply necessary changes (deploy, upgrade, remove)
The reconciler runs on a configurable interval and emits telemetry events for observability.

 Summary

 Types

 isolation_mode/0

 Functions

 deploy(App_spec)

 get_current_state()

 get_desired_state()

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 reconcile()

 remove(AppName)

 start_link(Config)

 status()

 terminate(Reason, State)

 upgrade(AppName, NewVersion)

 Types

 isolation_mode/0

 -type isolation_mode() :: embedded | vm.

 Functions

 deploy(App_spec)

 -spec deploy(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 ok | {error, term()}.

 get_current_state()

 -spec get_current_state() -> {ok, map()} | {error, term()}.

 get_desired_state()

 -spec get_desired_state() -> {ok, map()} | {error, term()}.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 reconcile()

 -spec reconcile() -> ok | {error, term()}.

 remove(AppName)

 -spec remove(atom()) -> ok | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 status()

 -spec status() -> {ok, map()} | {error, not_running | busy}.

 terminate(Reason, State)

 upgrade(AppName, NewVersion)

 -spec upgrade(atom(), binary()) -> ok | {error, term()}.

bc_gitops_runtime behaviour

Runtime behaviour for bc_gitops.
This behaviour defines the interface that runtime modules must implement to handle application lifecycle operations.
[bookmark: Implementing_a_Runtime]Implementing a Runtime
 -module(my_runtime).
 -behaviour(bc_gitops_runtime).

 -export([deploy/1, remove/1, upgrade/2, reconfigure/1, get_current_state/0]).

 deploy(AppSpec) ->
 %% Download and start the application
 {ok, AppState}.

 remove(AppName) ->
 %% Stop and remove the application
 ok.

 upgrade(AppSpec, OldVersion) ->
 %% Perform hot upgrade or restart with new version
 {ok, AppState}.

 reconfigure(AppSpec) ->
 %% Update application environment without restart
 {ok, AppState}.

 get_current_state() ->
 %% Return map of currently running apps
 {ok, #{}}.
[bookmark: Deployment_Strategies]Deployment Strategies
The runtime can implement different deployment strategies:
	Hot code upgrade - Use OTP release_handler for zero-downtime upgrades
	Rolling restart - Stop old version, start new version
	Blue-green - Start new version alongside old, then switch

 Summary

 Callbacks

 deploy/1

 get_current_state/0

 reconfigure/1

 remove/1

 upgrade/2

 Callbacks

 deploy/1

 -callback deploy(AppSpec ::
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

 get_current_state/0

 (optional)

 -callback get_current_state() ->
 {ok,
 #{atom() =>
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status ::
 pending | starting | running | stopped | failed |
 upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}}} |
 {error, term()}.

 reconfigure/1

 -callback reconfigure(AppSpec ::
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

 remove/1

 -callback remove(AppName :: atom()) -> ok | {error, term()}.

 upgrade/2

 -callback upgrade(AppSpec ::
 #app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined},
 OldVersion :: binary()) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

bc_gitops_runtime_default

Default runtime implementation for bc_gitops.
This is a fully functional runtime that can deploy, upgrade, and manage OTP applications at runtime. It supports both Erlang and Elixir packages from hex.pm and git sources.
[bookmark: Features]Features
- Fetches packages from hex.pm (rebar3 for Erlang, mix for Elixir) - Clones and compiles git repositories - Hot code reloading for upgrades - Proper code path management - Health monitoring via application status
[bookmark: Usage]Usage
This module is used automatically by bc_gitops_reconciler when no custom runtime is specified:
 bc_gitops:start_link(#{
 repo_url => <<"https://github.com/myorg/gitops-config">>,
 local_path => <<"/var/lib/bc_gitops/config">>
 }).
[bookmark: Custom_Runtime]Custom Runtime
For production deployments with specific requirements, implement the bc_gitops_runtime behaviour with your own logic.

 Summary

 Types

 isolation_mode/0

 Functions

 deploy(App_spec)

 Deploy an application.

 get_current_state()

 Get the current state of all managed applications.

 reconfigure(App_spec)

 Reconfigure an application.

 remove(AppName)

 Remove (stop and unload) an application.

 upgrade(App_spec, OldVersion)

 Upgrade an application by restarting it.

 Types

 isolation_mode/0

 -type isolation_mode() :: embedded | vm.

 Functions

 deploy(App_spec)

 -spec deploy(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Deploy an application.
This function: 1. Initializes the workspace (if needed) 2. Fetches the package from hex.pm or git 3. Adds compiled code to the VM's code path 4. Sets application environment 5. Starts the application

 get_current_state()

 -spec get_current_state() ->
 {ok,
 #{atom() =>
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status ::
 pending | starting | running | stopped | failed |
 upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}}}.

Get the current state of all managed applications.

 reconfigure(App_spec)

 -spec reconfigure(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Reconfigure an application.
Updates the application environment. Some applications may need to be notified of config changes (e.g., via a config_change callback).

 remove(AppName)

 -spec remove(atom()) -> ok | {error, term()}.

Remove (stop and unload) an application.

 upgrade(App_spec, OldVersion)

 -spec upgrade(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined},
 binary()) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Upgrade an application by restarting it.
Version upgrades always restart the application because: - Application metadata (routes, supervisors, config) may have changed - application:get_key/2 caches values that hot reload doesn't update - Clean restart ensures all initialization code runs
Hot code reload is still available for same-version code changes (e.g., tracking a branch) via bc_gitops_hot_reload module.
This function: 1. Stops the running application 2. Removes old code paths 3. Fetches the new version 4. Deploys fresh (starts application with new code)

bc_gitops_runtime_isolated

Isolated VM runtime for bc_gitops.
This runtime module deploys applications in separate BEAM VMs that auto-cluster with the host. Provides crash isolation, resource limits, and security boundaries.
[bookmark: Usage]Usage
This module is used automatically when an app.config specifies:
 #{
 name => my_app,
 isolation => vm,
 vm_config => #{memory_limit => 512, scheduler_limit => 2}
 }
[bookmark: Architecture]Architecture
Guest apps run in separate OS processes with their own BEAM runtime. They connect to the host via Erlang distribution, enabling: - Phoenix.PubSub broadcasts across nodes - RPC for health checks and lifecycle management - Process isolation (guest crash doesn't affect host)

 Summary

 Types

 isolation_mode/0

 Functions

 deploy(App_spec)

 Deploy an application in a separate VM.

 get_all_states()

 Get all stored states.

 get_current_state()

 Get current state of all isolated VM applications.

 get_state(Name)

 Get state for a specific application.

 reconfigure(App_spec)

 Reconfigure an isolated VM application.

 remove(AppName)

 Remove an isolated VM application.

 remove_state(Name)

 Remove state for an application.

 store_state(App_state)

 Store application state in persistent_term.

 upgrade(App_spec, OldVersion)

 Upgrade an isolated VM application.

 Types

 isolation_mode/0

 -type isolation_mode() :: embedded | vm.

 Functions

 deploy(App_spec)

 -spec deploy(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Deploy an application in a separate VM.
Steps: 1. Fetch and compile the application (via bc_gitops_workspace) 2. Ensure distribution is running 3. Generate node name for the guest 4. Spawn the VM 5. Wait for node to join cluster 6. Verify application is running

 get_all_states()

 -spec get_all_states() ->
 #{atom() =>
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status ::
 pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}}.

Get all stored states.

 get_current_state()

 -spec get_current_state() ->
 {ok,
 #{atom() =>
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status ::
 pending | starting | running | stopped | failed |
 upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}}} |
 {error, term()}.

Get current state of all isolated VM applications.

 get_state(Name)

 -spec get_state(atom()) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, not_found}.

Get state for a specific application.

 reconfigure(App_spec)

 -spec reconfigure(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined}) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Reconfigure an isolated VM application.
Updates the application environment on the remote node via RPC.

 remove(AppName)

 -spec remove(atom()) -> ok | {error, term()}.

Remove an isolated VM application.
Gracefully stops the VM and removes state.

 remove_state(Name)

 -spec remove_state(atom()) -> ok.

Remove state for an application.

 store_state(App_state)

 -spec store_state(#app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}) ->
 ok.

Store application state in persistent_term.

 upgrade(App_spec, OldVersion)

 -spec upgrade(#app_spec{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 source ::
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined},
 env :: #{atom() => term()},
 health ::
 #health_spec{type :: http | tcp | custom,
 port :: pos_integer(),
 path :: binary() | undefined,
 interval :: pos_integer(),
 timeout :: pos_integer(),
 module :: module() | undefined} |
 undefined,
 depends_on :: [atom()],
 isolation :: isolation_mode(),
 vm_config ::
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined},
 binary()) ->
 {ok,
 #app_state{name :: atom(),
 version :: binary(),
 description :: binary() | undefined,
 icon ::
 #icon_spec{type :: url | base64 | identicon,
 value :: binary() | undefined,
 mime_type :: binary() | undefined} |
 undefined,
 status :: pending | starting | running | stopped | failed | upgrading,
 path :: file:filename() | undefined,
 pid :: pid() | undefined,
 started_at :: calendar:datetime() | undefined,
 health :: healthy | unhealthy | unknown,
 env :: #{atom() => term()},
 isolation :: isolation_mode(),
 node :: node() | undefined,
 os_pid :: pos_integer() | undefined}} |
 {error, term()}.

Upgrade an isolated VM application.
For isolated VMs, we do a rolling restart: 1. Stop the old VM 2. Deploy the new version

bc_gitops_sup

Top-level supervisor for bc_gitops.
This supervisor manages the reconciler process. The reconciler is started only if the required configuration is present.

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 -spec init([]) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

bc_gitops_vm_spawner

VM spawner for bc_gitops isolated deployment.
This module handles spawning guest applications as separate BEAM VM processes and managing their lifecycle.
[bookmark: Spawn_Strategies]Spawn Strategies
[bookmark: Mix_Projects_(Elixir)]Mix Projects (Elixir)
 elixir --sname {node} --cookie {cookie} \
 --erl "+S {schedulers}" \
 -S mix run --no-halt
[bookmark: Mix_Release]Mix Release
 RELEASE_NODE={node} RELEASE_COOKIE={cookie} \
 ./_build/prod/rel/{app}/bin/{app} start
[bookmark: Rebar3_Release_(Erlang)]Rebar3 Release (Erlang)
 ERL_FLAGS="-sname {node} -setcookie {cookie}" \
 ./_build/default/rel/{app}/bin/{app} foreground

 Summary

 Types

 vm_handle/0

 Functions

 get_os_pid(Vm_handle)

 Get the OS PID from a VM handle.

 is_vm_alive(Vm_handle)

 Check if a VM handle is still alive.

 kill_vm(OsPid)

 Force kill a VM by its OS process ID.

 spawn_vm(AppName, NodeName, WorkDir, VmConfig)

 Spawn a new BEAM VM for an application.

 stop_vm(Node)

 Gracefully stop a VM via RPC to :init.stop().

 Types

 vm_handle/0

 -type vm_handle() ::
 #vm_handle{node :: node(),
 os_pid :: pos_integer() | undefined,
 port :: port() | undefined,
 app_name :: atom(),
 work_dir :: file:filename()}.

 Functions

 get_os_pid(Vm_handle)

 -spec get_os_pid(vm_handle()) -> pos_integer() | undefined.

Get the OS PID from a VM handle.

 is_vm_alive(Vm_handle)

 -spec is_vm_alive(vm_handle()) -> boolean().

Check if a VM handle is still alive.

 kill_vm(OsPid)

 -spec kill_vm(pos_integer()) -> ok | {error, term()}.

Force kill a VM by its OS process ID.

 spawn_vm(AppName, NodeName, WorkDir, VmConfig)

 -spec spawn_vm(atom(),
 node(),
 file:filename(),
 #vm_config{memory_limit :: pos_integer() | undefined,
 scheduler_limit :: pos_integer() | undefined,
 node_prefix :: binary() | undefined,
 extra_args :: [binary()]} |
 undefined) ->
 {ok, vm_handle()} | {error, term()}.

Spawn a new BEAM VM for an application.
Detects the build tool (mix or rebar3) and spawns appropriately. Returns a handle for managing the VM lifecycle.

 stop_vm(Node)

 -spec stop_vm(node()) -> ok | {error, term()}.

Gracefully stop a VM via RPC to :init.stop().

bc_gitops_workspace

Workspace management for bc_gitops package operations.
This module handles fetching, compiling, and managing packages in a dedicated workspace directory. It supports both Erlang (rebar3) and Elixir (mix) packages from hex.pm and git sources.

 Summary

 Functions

 cleanup()

 Clean up the entire workspace.

 delete_package(Name)

 Delete a package's workspace directory without removing code paths. Used during upgrades - we need to delete the old workspace to fetch the new version, but keep old code paths until hot reload completes.

 detect_project_type(Dir)

 fetch_package(Name, Source_spec)

 Fetch and compile a package.

 get_ebin_paths(Name)

 Get all ebin paths for a package and its dependencies.

 get_package_path(Name)

 Get the path to a package's directory.

 init()

 Initialize the workspace with default path.

 init(WorkspacePath)

 Initialize the workspace with a custom path.

 purge_package_modules(Name)

 Purge all modules loaded from a package's ebin directories. This is necessary for proper hot code reloading - removing code paths alone doesn't unload already-loaded modules from memory.

 remove_package(Name)

 Remove a package from the workspace. Purges loaded modules, removes code paths, and deletes the directory.

 run_cmd(Dir, Cmd)

 Functions

 cleanup()

 -spec cleanup() -> ok | {error, term()}.

Clean up the entire workspace.

 delete_package(Name)

 -spec delete_package(atom()) -> ok | {error, term()}.

Delete a package's workspace directory without removing code paths. Used during upgrades - we need to delete the old workspace to fetch the new version, but keep old code paths until hot reload completes.

 detect_project_type(Dir)

 -spec detect_project_type(file:filename()) -> rebar3 | mix | erlang_mk | unknown.

 fetch_package(Name, Source_spec)

 -spec fetch_package(atom(),
 #source_spec{type :: release | git | hex | mesh,
 url :: binary() | undefined,
 sha256 :: binary() | undefined,
 ref :: binary() | undefined,
 mcid :: binary() | undefined}) ->
 {ok, file:filename()} | {error, term()}.

Fetch and compile a package.
Returns the path to the compiled package directory.

 get_ebin_paths(Name)

 -spec get_ebin_paths(atom()) -> [file:filename()].

Get all ebin paths for a package and its dependencies.

 get_package_path(Name)

 -spec get_package_path(atom()) -> {ok, file:filename()} | {error, not_found}.

Get the path to a package's directory.

 init()

 -spec init() -> ok | {error, term()}.

Initialize the workspace with default path.

 init(WorkspacePath)

 -spec init(file:filename()) -> ok | {error, term()}.

Initialize the workspace with a custom path.

 purge_package_modules(Name)

 -spec purge_package_modules(atom()) -> ok.

Purge all modules loaded from a package's ebin directories. This is necessary for proper hot code reloading - removing code paths alone doesn't unload already-loaded modules from memory.

 remove_package(Name)

 -spec remove_package(atom()) -> ok | {error, term()}.

Remove a package from the workspace. Purges loaded modules, removes code paths, and deletes the directory.

 run_cmd(Dir, Cmd)

 -spec run_cmd(file:filename(), string()) -> {ok, string()} | {error, term()}.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

