

 bcrypt

 v1.2.2

 Table of contents

 	Overview

 	License

 	Modules

 	bcrypt

 	bcrypt_nif_worker

 	bcrypt_pool

 	bcrypt_port

bcrypt

[image: Test]
[image: Hex pm]
erlang-bcrypt is a wrapper around the OpenBSD Blowfish password hashing
algorithm, as described in
A Future-Adaptable Password Scheme
by Niels Provos and David Mazieres.
This bcrypt repository at erlangpack is in active maintainance and used
as the basis of the Hex package.
OTP Compatibility
erlang-bcrypt is compatible with OTP 21.3 to 23.
Use version 1.0.3 on OTP versions before 21.3
In version 1.1.0 support for OTP 21.2 and earlier is removed
due to the removal of erl_interface in OTP 23.
Rebar.config
erlang-bcrypt is on Hex:
 {deps, [
 {bcrypt, "1.1.3"}
]}.
To use the master branch:
 {deps, [
 {bcrypt, {git, ".*", {git, "https://github.com/erlangpack/bcrypt.git", {branch, "master"}}}
]}.
Basic build instructions
	Build it (project uses rebar3, a Makefile is included):
 make

	Run it (simple way, starting sasl, crypto and bcrypt):
 $./rebar3 shell
 ===> Verifying dependencies...
 ===> Compiling bcrypt
 make: Nothing to be done for `all'.
 Erlang/OTP 23 [erts-11.0] [source] [64-bit] [smp:12:12] [ds:12:12:10] [async-threads:1] [hipe]

 Eshell V11.0 (abort with ^G)
 1> application:ensure_all_started(bcrypt).
 {ok,[bcrypt]}
 2>

Basic usage instructions
Hash a password using a salt with the default number of rounds:
1> {ok, Salt} = bcrypt:gen_salt().
{ok,"$2a$12$sSS8Eg.ovVzaHzi1nUHYK."}
2> {ok, Hash} = bcrypt:hashpw("foo", Salt).
{ok,"$2a$12$sSS8Eg.ovVzaHzi1nUHYK.HbUIOdlQI0iS22Q5rd5z.JVVYH6sfm6"}
Verify the password:
3> {ok, Hash} =:= bcrypt:hashpw("foo", Hash).
true
4> {ok, Hash} =:= bcrypt:hashpw("bar", Hash).
false
Configuration
The bcrypt application is configured by changing values in the
application's environment:
default_log_rounds
 Sets the default number of rounds which define the complexity of the
 hash function. Defaults to 12.
mechanism
 Specifies whether to use the NIF implementation ('nif') or a
 pool of port programs ('port'). Defaults to 'nif'.
 Note: the NIF implementation no longer blocks the Erlang VM scheduler threads
pool_size
 Specifies the size of the port program pool. Defaults to 4.
nif_pool_size
 Specifies the size of the nif program pool. Defaults to 4.
nif_pool_max_overflow
 Specifies the max workers to overflow of the nif program pool. Defaults to 10.
Run tests
To run the eunit and proper tests use:
make tests

To test all exported function of a module use:
$./rebar3 as test shell
===> Verifying dependencies...
===> Compiling bcrypt
make: Nothing to be done for all.
Erlang/OTP 23 [erts-11.0] [source] [64-bit] [smp:12:12] [ds:12:12:10] [async-threads:1] [hipe]

Eshell V11.0 (abort with ^G)
1> application:ensure_all_started(bcrypt).
{ok,[bcrypt]}
2>proper:check_specs(bcrypt).
Testing bcrypt:gen_salt/0
..
OK: Passed 100 test(s).

Testing bcrypt:hashpw/2
..
OK: Passed 100 test(s).

Testing bcrypt:gen_salt/1
..
OK: Passed 100 test(s).

Testing bcrypt:mechanism/0
..
OK: Passed 100 test(s).

[]
4>

Documentation generation
Edoc
Generate public API
rebar3 edoc
Generate private API
rebar3 as edoc_private edoc
ExDoc
rebar3 ex_doc --output edoc
Both the port and the NIF version of bcrypt are tested.
All tests should pass.
Original authors
Hunter Morris & Mrinal Wadhwa.

License

The Erlang code is subject to this license:

%% Copyright (c) 2011 Hunter Morris <hunter.morris@smarkets.com>

%% Permission to use, copy, modify, and distribute this software for any
%% purpose with or without fee is hereby granted, provided that the above
%% copyright notice and this permission notice appear in all copies.

%% THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
%% WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
%% MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
%% ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
%% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
%% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
%% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The underlying blowfish code is derived from OpenBSD libc and is
subject to the following license:

/*
 * Blowfish block cipher for OpenBSD
 * Copyright 1997 Niels Provos <provos@physnet.uni-hamburg.de>
 * All rights reserved.
 *
 * Implementation advice by David Mazieres <dm@lcs.mit.edu>.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by Niels Provos.
 * 4. The name of the author may not be used to endorse or promote products
 * derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

The underlying bcrypt (hashing) code is derived from OpenBSD libc and is
subject to the following license:

/*
 * Copyright 1997 Niels Provos <provos@physnet.uni-hamburg.de>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by Niels Provos.
 * 4. The name of the author may not be used to endorse or promote products
 * derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

The asynchronous queue code (c_src/async_queue.c and
c_src/async_queue.h) is from the esnappy project, copyright 2011
Konstantin V. Sorokin. It is subject to the following license:

Copyright (c) 2011 Konstantin V. Sorokin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

bcrypt

The OpenBSD Blowfish password hashing algorithm wrapper module.

 Anchor for this section

 Summary

 Types

 mechanism/0

 pwerr/0

 rounds/0

 Functions

 gen_salt()

 Returns a random string data.

 gen_salt(Rounds)

 Generate a random string data.

 hashpw(Password, Salt)

 Make hash string based on Password and Salt.

 is_worker_available()

 Is at least one bcrypt worker currently available for work?

 mechanism()

 Get environment setting of hash generation.

 start()

 Starts Applicationbcrypt. See also:application:start/1.

 stop()

 Stops Applicationbcrypt. See also:application:stop/1.

 Anchor for this section

Types

 Link to this type

 mechanism/0

 View Source

 -type mechanism() :: nif | port.

 Link to this type

 pwerr/0

 View Source

 -type pwerr() :: invalid_salt | invalid_salt_length | invalid_rounds.

 Link to this type

 rounds/0

 View Source

 -type rounds() :: 4..31.

 Anchor for this section

Functions

 Link to this function

 gen_salt()

 View Source

 -spec gen_salt() -> Result when Result :: {ok, Salt}, Salt :: [byte()].

Returns a random string data.

 Link to this function

 gen_salt(Rounds)

 View Source

 -spec gen_salt(Rounds) -> Result when Rounds :: rounds(), Result :: {ok, Salt}, Salt :: [byte()].

Generate a random string data.

 Link to this function

 hashpw(Password, Salt)

 View Source

 -spec hashpw(Password, Salt) -> Result
 when
 Password :: [byte()] | binary(),
 Salt :: [byte()] | binary(),
 Result :: {ok, Hash} | {error, ErrorDescription},
 Hash :: [byte()],
 ErrorDescription :: pwerr().

Make hash string based on Password and Salt.

 Link to this function

 is_worker_available()

 View Source

 -spec is_worker_available() -> Result when Result :: boolean().

Is at least one bcrypt worker currently available for work?

 Link to this function

 mechanism()

 View Source

 -spec mechanism() -> mechanism().

Get environment setting of hash generation.

 Link to this function

 start()

 View Source

Starts Applicationbcrypt. See also:application:start/1.

 Link to this function

 stop()

 View Source

Stops Applicationbcrypt. See also:application:stop/1.

bcrypt_nif_worker

Implementation of gen_server behaviour.

 Anchor for this section

 Summary

 Types

 state/0

 Functions

 gen_salt()

 Returns bcrypt salt.

 gen_salt(Rounds)

 Returns bcrypt salt.

 hashpw(Password, Salt)

 Make hash string based on Password and Salt.

 is_worker_available()

 Is at least one bcrypt worker currently available for work?

 start_link(Args)

 Creates a gen_server process as part of a supervision tree.

 Anchor for this section

Types

 Link to this type

 state/0

 View Source

 -type state() :: #state{default_log_rounds :: integer(), context :: term()}.

 Anchor for this section

Functions

 Link to this function

 gen_salt()

 View Source

 -spec gen_salt() -> Result when Result :: [byte()].

Returns bcrypt salt.

 Link to this function

 gen_salt(Rounds)

 View Source

 -spec gen_salt(Rounds) -> Result when Rounds :: bcrypt:rounds(), Result :: [byte()].

Returns bcrypt salt.

 Link to this function

 hashpw(Password, Salt)

 View Source

 -spec hashpw(Password, Salt) -> Result
 when
 Password :: [byte()] | binary(),
 Salt :: [byte()] | binary(),
 Result :: {ok, Hash} | {error, ErrorDescription},
 Hash :: [byte()],
 ErrorDescription :: bcrypt:pwerr().

Make hash string based on Password and Salt.

 Link to this function

 is_worker_available()

 View Source

 -spec is_worker_available() -> Result when Result :: boolean().

Is at least one bcrypt worker currently available for work?

 Link to this function

 start_link(Args)

 View Source

 -spec start_link(Args) -> Result
 when
 Args :: term(),
 Result :: {ok, Pid} | ignore | {error, Error},
 Pid :: pid(),
 Error :: {already_started, Pid} | term().

Creates a gen_server process as part of a supervision tree.

bcrypt_pool

Implementation of gen_server behaviour.

 Anchor for this section

 Summary

 Types

 state/0

 Functions

 available(Pid)

 Asynchronously check if Pid in #state:requests queue or not.

 gen_salt()

 Generate a random text salt.

 gen_salt(Rounds)

 Generate a random text salt. Rounds defines the complexity of the hashing, increasing the cost as 2^log_rounds.

 hashpw(Password, Salt)

 Hash the specified password and the salt.

 is_worker_available()

 Is at least one bcrypt worker currently available for work?

 start_link()

 Creates a gen_server process as part of a supervision tree.

 Anchor for this section

Types

 Link to this type

 state/0

 View Source

 -type state() :: #state{size :: 0, busy :: 0, requests :: queue:queue(), ports :: queue:queue()}.

 Anchor for this section

Functions

 Link to this function

 available(Pid)

 View Source

 -spec available(Pid) -> Result when Pid :: pid(), Result :: ok.

Asynchronously check if Pid in #state:requests queue or not.

 Link to this function

 gen_salt()

 View Source

 -spec gen_salt() -> Result when Result :: {ok, Salt}, Salt :: [byte()].

Generate a random text salt.

 Link to this function

 gen_salt(Rounds)

 View Source

 -spec gen_salt(Rounds) -> Result when Rounds :: bcrypt:rounds(), Result :: {ok, Salt}, Salt :: [byte()].

Generate a random text salt. Rounds defines the complexity of the hashing, increasing the cost as 2^log_rounds.

 Link to this function

 hashpw(Password, Salt)

 View Source

Hash the specified password and the salt.

 Link to this function

 is_worker_available()

 View Source

 -spec is_worker_available() -> Result when Result :: boolean().

Is at least one bcrypt worker currently available for work?

 Link to this function

 start_link()

 View Source

 -spec start_link() -> Result
 when
 Result :: {ok, Pid} | ignore | {error, Error},
 Pid :: pid(),
 Error :: {already_started, Pid} | term().

Creates a gen_server process as part of a supervision tree.

bcrypt_port

Implementation of gen_server behaviour.

 Anchor for this section

 Summary

 Types

 state/0

 Functions

 code_change(OldVsn, State, Extra)

 gen_salt(Pid)

 gen_salt(Pid, LogRounds)

 handle_cast(Msg, State)

 handle_info(Msg, State)

 hashpw(Pid, Password, Salt)

 start_link()

 stop()

 Anchor for this section

Types

 Link to this type

 state/0

 View Source

 -type state() ::
 #state{port :: port(),
 default_log_rounds :: non_neg_integer(),
 cmd_from :: {pid(), term()} | undefined}.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 gen_salt(Pid)

 View Source

 -spec gen_salt(Pid) -> Result when Pid :: pid(), Result :: {ok, Salt}, Salt :: [byte()].

 Link to this function

 gen_salt(Pid, LogRounds)

 View Source

 -spec gen_salt(Pid, LogRounds) -> Result
 when
 Pid :: pid(), LogRounds :: bcrypt:rounds(), Result :: {ok, Salt}, Salt :: [byte()].

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State)

 View Source

 Link to this function

 hashpw(Pid, Password, Salt)

 View Source

 -spec hashpw(Pid, Password, Salt) -> Result
 when Pid :: pid(), Password :: [byte()], Salt :: [byte()], Result :: [byte()].

 Link to this function

 start_link()

 View Source

 -spec start_link() -> Result
 when
 Result :: {ok, Pid} | ignore | {error, Error},
 Pid :: pid(),
 Error :: {already_started, Pid} | term(),
 Pid :: pid().

 Link to this function

 stop()

 View Source

 -spec stop() -> Result when Result :: {stop, normal, ok, state()}.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

