

 bcrypt_elixir

 v3.0.0

 Table of contents

 	Changelog

 	Bcrypt

 	Modules

 	Bcrypt

 	Bcrypt.Base

 	Bcrypt.Stats

Changelog

v3.0.0 (2022-01-20)
	Changes	moved gen_salt to the Base module

v2.3.1 (2022-01-19)
	Changes	Updated documentation

v2.3.0 (2021-01-07)
	Enhancements	Updated Makefile to be more robust, especially for Nerves users

v2.2.0 (2020-03-01)
	Changes	Using Comeonin v5.3, which changes add_hash so that it does NOT set the password to nil

v2.1.0 (2020-01-20)
	Enhancements	Updated documentation - in line with updates to Comeonin v5.2

v2.0.0 (2019-02-12)
	Enhancements	Updated to use the Comeonin and Comeonin.PasswordHash behaviours (Comeonin v5.0)

v1.0.0 (2019-01-17)
	Enhancements	Updated C NIF code to use dirty schedulers

v0.12.0 (2017-08-06)
	Changes	Created separate Bcrypt library

Bcrypt

[image: Build Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
Bcrypt password hashing library for Elixir.
Bcrypt is a well-tested password-based key derivation function that
can be configured to remain slow and resistant to brute-force attacks
even as computational power increases.
Compatibility with other Bcrypt libraries
This version is based on the OpenBSD version of Bcrypt and supports
the $2b$ and $2a$ prefixes. For advice on how to use hashes with
the $2y$ prefix, see this issue.
Installation
	 Add :bcrypt_elixir to the deps section of your mix.exs file:
If you are using Erlang >20:
def deps do
 [
 {:bcrypt_elixir, "~> 3.0"}
]
end
If you are using Erlang 19 or below:
def deps do
 [
 {:bcrypt_elixir, "~> 0.12"}
]
end

	 Make sure you have a C compiler installed.
See the Comeonin wiki for details.

	 Optional: during tests (and tests only), you may want to reduce the number of rounds
so it does not slow down your test suite. If you have a config/test.exs, you should
add:
config :bcrypt_elixir, :log_rounds, 4

Comeonin wiki
See the Comeonin wiki for more
information on the following topics:
	Algorithms
	Requirements
	Deployment	Including information about using Docker

	References

Contributing
There are many ways you can contribute to the development of this library, including:
	Reporting issues
	Improving documentation
	Sharing your experiences with others

Documentation
http://hexdocs.pm/bcrypt_elixir
License
BSD. For full details, please read the LICENSE file.

Bcrypt

Elixir wrapper for the Bcrypt password hashing function.
For a lower-level API, see Bcrypt.Base.
Configuration
The following parameter can be set in the config file:
	:log_rounds - the computational cost as number of log rounds	the default is 12 (2^12 rounds)

If you are hashing passwords in your tests, it can be useful to add
the following to the config/test.exs file:
Note: Do not use this value in production
config :bcrypt_elixir, log_rounds: 4
Bcrypt
Bcrypt is a key derivation function for passwords designed by Niels Provos
and David Mazières. Bcrypt is an adaptive function, which means that it can
be configured to remain slow and resistant to brute-force attacks even as
computational power increases.
Bcrypt versions
This bcrypt implementation is based on the latest OpenBSD version, which
fixed a small issue that affected some passwords longer than 72 characters.
By default, it produces hashes with the prefix $2b$, and it can check
hashes with either the $2b$ prefix or the older $2a$ prefix.
It is also possible to generate hashes with the $2a$ prefix by running
the following command:
Bcrypt.Base.hash_password("hard to guess", Bcrypt.Base.gen_salt(12, true))
This option should only be used if you need to generate hashes that are
then checked by older libraries.
The $2y$ prefix is not supported. For advice on how to use hashes with the
$2y$ prefix, see this issue.
Hash the password with a salt which is randomly generated.

 Anchor for this section

 Summary

 Functions

 add_hash(password, opts \\ [])

 Hashes a password, using hash_pwd_salt/2, and returns the password hash in a map.

 check_pass(user, password, opts \\ [])

 Checks the password, using verify_pass/2, by comparing the hash with
the password hash found in a user struct, or map.

 hash_pwd_salt(password, opts \\ [])

 Hashes a password with a randomly generated salt.

 no_user_verify(opts \\ [])

 Runs the password hash function, but always returns false.

 verify_pass(password, stored_hash)

 Verifies a password by hashing the password and comparing the hashed value
with a stored hash.

 Anchor for this section

Functions

 Link to this function

 add_hash(password, opts \\ [])

 View Source

Hashes a password, using hash_pwd_salt/2, and returns the password hash in a map.
This is a convenience function that is especially useful when used with
Ecto changesets.

 options

 Options

In addition to the :hash_key option show below, this function also takes
options that are then passed on to the hash_pwd_salt/2 function in this
module.
See the documentation for hash_pwd_salt/2 for further details.
	:hash_key - the password hash identifier	the default is :password_hash

 example-with-ecto

 Example with Ecto

The put_pass_hash function below is an example of how you can use
add_hash to add the password hash to the Ecto changeset.
defp put_pass_hash(%Ecto.Changeset{valid?: true, changes:
 %{password: password}} = changeset) do
 change(changeset, add_hash(password))
end

defp put_pass_hash(changeset), do: changeset
This function will return a changeset with %{password_hash: password_hash}
added to the changes map.

 Link to this function

 check_pass(user, password, opts \\ [])

 View Source

Checks the password, using verify_pass/2, by comparing the hash with
the password hash found in a user struct, or map.
This is a convenience function that takes a user struct, or map, as input
and seamlessly handles the cases where no user is found.

 options

 Options

	:hash_key - the password hash identifier	this does not need to be set if the key is :password_hash or :encrypted_password

	:hide_user - run the no_user_verify/1 function if no user is found	the default is true

 example

 Example

The following is an example of using this function to verify a user's
password:
def verify_user(%{"password" => password} = params) do
 params
 |> Accounts.get_by()
 |> check_pass(password)
end
The Accounts.get_by function in this example takes the user parameters
(for example, email and password) as input and returns a user struct or nil.

 Link to this function

 hash_pwd_salt(password, opts \\ [])

 View Source

Hashes a password with a randomly generated salt.

 option

 Option

	:log_rounds - the computational cost as number of log rounds	the default is 12 (2^12 rounds)
	this can be used to override the value set in the config

 examples

 Examples

The following examples show how to hash a password with a randomly-generated
salt and then verify a password:
iex> hash = Bcrypt.hash_pwd_salt("password")
...> Bcrypt.verify_pass("password", hash)
true

iex> hash = Bcrypt.hash_pwd_salt("password")
...> Bcrypt.verify_pass("incorrect", hash)
false

 Link to this function

 no_user_verify(opts \\ [])

 View Source

Runs the password hash function, but always returns false.
This function is intended to make it more difficult for any potential
attacker to find valid usernames by using timing attacks. This function
is only useful if it is used as part of a policy of hiding usernames.

 options

 Options

This function should be called with the same options as those used by
hash_pwd_salt/2.

 hiding-usernames

 Hiding usernames

In addition to keeping passwords secret, hiding the precise username
can help make online attacks more difficult. An attacker would then
have to guess a username / password combination, rather than just
a password, to gain access.
This does not mean that the username should be kept completely secret.
Adding a short numerical suffix to a user's name, for example, would be
sufficient to increase the attacker's work considerably.
If you are implementing a policy of hiding usernames, it is important
to make sure that the username is not revealed by any other part of
your application.

 Link to this function

 verify_pass(password, stored_hash)

 View Source

Verifies a password by hashing the password and comparing the hashed value
with a stored hash.
See the documentation for hash_pwd_salt/2 for examples of using this function.

Bcrypt.Base

Base module for the Bcrypt password hashing library.

 Anchor for this section

 Summary

 Functions

 checkpass_nif(password, stored_hash)

 Verify the password by comparing it with the stored hash.

 gen_salt(log_rounds \\ 12, legacy \\ false)

 Generate a salt for use with the hash_password function.

 gensalt_nif(random, log_rounds, minor)

 Generate a salt for use with Bcrypt.

 hash_nif(password, salt)

 Hash the password and salt with the Bcrypt hashing algorithm.

 hash_password(password, salt)

 Hash a password using Bcrypt.

 init()

 Anchor for this section

Functions

 Link to this function

 checkpass_nif(password, stored_hash)

 View Source

Verify the password by comparing it with the stored hash.

 Link to this function

 gen_salt(log_rounds \\ 12, legacy \\ false)

 View Source

Generate a salt for use with the hash_password function.
The :log_rounds parameter determines the computational complexity
of the generation of the password hash. Its default is 12, the minimum is 4,
and the maximum is 31.
The :legacy option is for generating salts with the old $2a$ prefix.
Only use this option if you need to generate hashes that are then checked
by older libraries.

 Link to this function

 gensalt_nif(random, log_rounds, minor)

 View Source

Generate a salt for use with Bcrypt.

 Link to this function

 hash_nif(password, salt)

 View Source

Hash the password and salt with the Bcrypt hashing algorithm.

 Link to this function

 hash_password(password, salt)

 View Source

Hash a password using Bcrypt.

 Link to this function

 init()

 View Source

Bcrypt.Stats

Module to provide statistics for the Bcrypt password hashing function.
The report/1 function in this module can be used to help you configure
Bcrypt.
Configuration
There is one configuration option for Bcrypt - :log_rounds.
Increasing this value will increase the complexity, and time
taken, of the Bcrypt function.
Increasing the time that a password hash function takes makes it more
difficult for an attacker to find the correct password. However, the
amount of time a valid user has to wait also needs to be taken into
consideration when setting the number of log rounds.
The correct number of log rounds depends on circumstances specific to your
use case, such as what level of security you want, how often the user
has to log in, and the hardware you are using. However, for password
hashing, we do not recommend setting the number of log rounds to anything
less than 12.

 Anchor for this section

 Summary

 Functions

 report(opts \\ [])

 Hash a password with Bcrypt and print out a report.

 Anchor for this section

Functions

 Link to this function

 report(opts \\ [])

 View Source

Hash a password with Bcrypt and print out a report.
This function hashes a password, and salt, with Bcrypt.Base.hash_password/2
and prints out statistics which can help you choose how many to configure
Bcrypt.

 options

 Options

There are three options:
	:log_rounds - the number of log rounds	the default is 12

	:password - the password used	the default is "password"

	:salt - the salt used	the default is the output of Bcrypt.Base.gen_salt

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

