

 Beacon

 v0.2.1

 [image: Logo]

 Table of contents

 	Changelog

 	Introduction

 	Installation

 	Tailwind Setup

 	Your First Site

 	Recipes

 	Access Page Info

 	Add Custom Page Fields

 	Create a Blog

 	Custom Repo

 	Customize Markdown Rendering

 	Deploy to Fly.io

 	Embed tweets

 	Heroicons

 	Multiple Domains/Tenants

 	Notify Page Published

 	Handle async and continuous updates with handle_info and on_mount

 	Protect Pages with Basic Auth

 	Reuse app.css

 	Testing

 	Upgrading

 	Upgrading from pre v0.1.0 to v0.1.0-rc.0

 	Upgrading to v0.1.0-rc.1

 	Upgrading to v0.1.0-rc.2

 	Upgrading to v0.1.0

 	

 	Modules

 	Beacon

 	Beacon.Test

 	Beacon.Test.Fixtures

 	Beacon.Web.Layouts

 	Execution

 	Beacon.Migration

 	Beacon.Router

 	Content

 	Beacon.Content

 	Beacon.Content.Component

 	Beacon.Content.ComponentAttr

 	Beacon.Content.ComponentSlot

 	Beacon.Content.ComponentSlotAttr

 	Beacon.Content.ErrorPage

 	Beacon.Content.EventHandler

 	Beacon.Content.InfoHandler

 	Beacon.Content.Layout

 	Beacon.Content.LayoutEvent

 	Beacon.Content.LayoutSnapshot

 	Beacon.Content.LiveData

 	Beacon.Content.LiveDataAssign

 	Beacon.Content.Page

 	Beacon.Content.PageEvent

 	Beacon.Content.PageSnapshot

 	Beacon.Content.PageVariant

 	Beacon.Content.Snippets.Helper

 	Beacon.Content.Stylesheet

 	Beacon.Template

 	Beacon.Template.HEEx

 	Beacon.Template.Markdown

 	Media Library

 	Beacon.MediaLibrary

 	Beacon.MediaLibrary.Asset

 	Beacon.MediaLibrary.Provider

 	Beacon.MediaLibrary.Provider.Repo

 	Beacon.MediaLibrary.Provider.S3

 	Beacon.MediaLibrary.UploadMetadata

 	Web

 	Beacon.RuntimeCSS

 	Beacon.RuntimeCSS.TailwindCompiler

 	Beacon.Web.BeaconAssigns

 	Extensibility

 	Beacon.Config

 	Beacon.Content.PageField

 	Beacon.Lifecycle

 	Beacon.MediaLibrary.AssetField

 	Beacon.Template.LoadMetadata

 	Beacon.Template.RenderMetadata

 	Types

 	Beacon.Types.JsonArrayMap

 	Beacon.Types.Site

 	Exceptions

 	Beacon.ConfigError

 	Beacon.LoaderError

 	Beacon.ParserError

 	Beacon.RuntimeError

 	Beacon.SnippetError

 	Beacon.Web.NotFoundError

 	Beacon.Web.ServerError

 	Mix Tasks

 	mix beacon.gen.site

 	mix beacon.gen.tailwind_config

 	mix beacon.install

Changelog

 0.2.1 (2024-11-14)

 Fixes

	Fix site scoping for media asset path/url
	Serve media library assets inside aliased scopes
	Only reset cache and route table for published pages

 Documentation

	Fix identation on install guide
	Add upgrade guide from pre-rc to v0.1

 Chores

	Rename asset URL from __beacon_assets__ to __beacon_media__ to avoid conflicts
	Expose option :root_layout in beacon_site

 0.2.0 (2024-11-08)

 Enhancements

	Introduce Beacon.ErrorHandler to load resources and dependencies
	Add beacon.gen.tailwind_config task to generate a custom Tailwind config
	Add beacon.gen.site task to generate new sites
	Rework beacon.install with Igniter to be composable
	Introduce config :tailwind_css

 Documentation

	Create recipe Protect Pages with Basic Auth
	Update docs to use the new tasks created with Igniter
	Update Deploy to Fly.io guide to use a release step to copy files into the release
	Create recipe Reuse app.css

 Chore

	Only subscribe to page changes on :live sites

 0.1.4 (2024-10-31)

 Fixes

	Fix Page and Layout publish on cluster environments
	Skip dependency :vix v0.31.0 due to a bug to open files
	Fix page title not updating on page patch

 Chores

	TailwindCompiler - increase timeout to 4 minutes when waiting to generate template files

 0.1.3 (2024-10-29)

 Enhancements

	Auto populate Media beacon.webp to be used on components

 Fixes

	Exclude the node modules from Tailwind content #622 by @anu788
	Allow to patch (navigate patching the content) to another site

 0.1.2 (2024-10-23)

 Fixes

	[Content/Component] - Validate attr opts and slot opts to avoid invalid state and compilation errors

 0.1.1 (2024-10-22)

 Enhancements

	Support Phoenix LiveView v1.0.0-rc.7

 Documentation

	Link to latest version
	Guide for on_mount and handle_info - #599 by @djcarpe

 0.1.0 (2024-10-09)

 Breaking Changes

	Require minimum Elixir v1.14.0
	Require minimun :mdex v0.2.0
	Removed config :skip_boot? in favor of :mode which can be :live, :testing, and :manual (defaults to :live) - the major difference between then is that live loads all modules and broadcasts all messages, testing only does that when it makes sense for tests (for example it does reload modules on fixtures), and manual does pretty much nothing, it's useful to seed data or to test specific scenarios where you need total control over Beacon.Loader

 Enhancements

	Add Beacon.Test that provides testing utilities to use on host apps
	Add Beacon.Test.Fixtures to expose fixtures to seed test data, the same used by Beacon itself
	Reload modules synchronously on testing mode
	Leverage :manual mode during boot to avoid unnecessary calls to Tailwind compiler, speeding up the whole process to start sites
	Enable Markdown options: :footnotes, :multiline_block_quotes, :shortcodes (emojis), :underline, :relaxed_tasklist_matching, and :relaxed_autolinks.
See https://docs.rs/comrak/latest/comrak/struct.ExtensionOptions.html and https://docs.rs/comrak/latest/comrak/struct.ParseOptions.html for more info.
	Added Shared Info Handlers (info_handle callbacks) - 578 by @ddink

 Fixes

	Remove unnecessary :plug_cowboy dependency
	[Heroicons] Namespace the vendorized module as Beacon.Heroicons to avoid conflicts

 Documentation

	Added "Testing" recipe to demonstrate usage of Beacon.Test
	Added guide to customize the Markdown options
	Added guide on how to embed tweets using the Twitter JS api

 0.1.0-rc.2 (2024-09-20)

 Breaking Changes

	Renamed component .icon to .heroicon to make it explicit that it's rendering Heroicons and also to avoid future conflicts
	Require minimum Gettext v0.26 to use the new backend module
	Default :sort option value in Content.list_pages/2 changed from :title to :path

 Fixes

	[Components] Bring back the .icon (heroicon) component using https://hex.pm/packages/heroicons instead of a Tailwind plugin that depends on the unavailable fs API
	[Media Library] Guard against invalid values for :sort option in MediaLibrary.list_assets/2
	[Content] Guard against invalid values for :sort option in Content.list_layouts/2
	[Content] Guard against invalid values for :sort option in Content.list_pages/2
	[HEEx Decoder] Handle attr values with nil values, for example the defer in script tags

 Documentation

	Updated Heroicons recipes to reflect changes on configuration and naming

 0.1.0-rc.1 (2024-08-27)

 Enhancements

	Added Shared Event Handlers which are global event handlers shared among all pages.
That's a simple model to work with where a layout, component, or multiple pages may share the same event handler,
for example a newsletter subscription form in a component called in a layout doesn't need to duplicate the same
event handler in all pages.

 Breaking Changes

	Removed Page Event Handlers in favor of Shared Event Handlers.
With Shared Event Handlers, it doesn't make sense to have page event handlers unless overriding becomes a neccessity.
The data is automatically migrated in a best-effort way, duplicated event handler names (from multiple pages) are
consolidated into a single shared event handler. See the migration V002 for more info.
	Removed "page event handlers" in Content API in favor of "event handlers" (removed the prefix page),
for example: update_event_handler_for_page -> create_event_handler and change_page_event_handler -> change_event_handler.

 Fixes

	Display parsed page title on live renders

 0.1.0-rc.0 (2024-08-02)

 Enhancements

	Loader to fetch resources from DB and compile modules
	Media Library to upload and serve images and other media	Built-in Repo (DB) and S3 storage
	Post-process images to optimized .webp format

	Error Page to handle failures and display custom pages	Pre-defined 404 and 500 pages

	Components	Pre-defined set of default components
	Support attrs and slots
	Support for Elixir and HEEx parts

	Layouts	Pre-defined default layout
	Meta tags
	Resource links
	Revisions

	Pages	Pre-defined default home page
	Meta tags
	Schema.org support
	Events (handle_event)
	Revisions

	Snippets (liquid template)	Page title
	Meta tags

	Stylesheets
	Live Data to define and manage assigns at runtime	Support Elixir and text content

	Custom Page fields to extend the Page schema
	Router helper ~p to generate paths with site prefixes
	Content management through the Beacon.Content API
	A/B Variants
	TailwindCSS compiler
	@beacon read-only assign
	mix task beacon.install to bootstrap a new Beacon site
	Lifecycle hooks to inject custom logic into multiple layers of the process

Installation

 Objective

Install Beacon and Beacon LiveAdmin in a new Phoenix LiveView application to enable running and managing sites.

 Notes

	If you already have a Phoenix LiveView application that meets the minimum requirements for Beacon and Beacon LiveAdmin, you can skip to "Install in an existing application".
	Beacon LiveAdmin can be installed in a separate application in a cluster environment but such advanced setup is not covered in this guide.

 Steps

	Setup a PostgreSQL database server

Make sure it's installed and running.
Currently, only PostgreSQL is supported.
	Install Elixir v1.14 or later

Check out the official Elixir install guide for more info.

 Install as a new application

If you're starting a new project, you can follow these steps to generate a new Phoenix application with Beacon and Beacon LiveAdmin installed.
Otherwise, skip to the next section to install Beacon in an existing application.
	Update Hex

mix local.hex

	Install or update Phoenix and Igniter Installers

mix archive.install hex phx_new
mix archive.install hex igniter_new

Check out the official Phoenix install guide for more info.
	Generate the new application

mix igniter.new my_app --install beacon,beacon_live_admin --with phx.new

Replace my_app with the name of your application and follow the prompts.

 Install in an existing application

Follow these steps to install Beacon and Beacon LiveAdmin in an existing Phoenix application.
	Add the Igniter dependency in your project mix.exs file:

defp deps do
 [
 {:igniter, "~> 0.4"}
]
end
	Install dependencies

mix deps.get

	Install Beacon and Beacon LiveAdmin

mix igniter.install beacon,beacon_live_admin

 Next Steps

Beacon is installed but you have no sites yet. Follow the Your First Site guide to set up one and get familiar with Beacon.

Tailwind Setup

Beacon has built-in TailwindCSS support, any page can use its classes out of the box and a stylesheet will be automatically generated and served.
That default configuration is already bundled in the Beacon package, so you can skip this guide if that suits your needs.
Otherwise, keep reading to learn how to set up a custom configuration with more advanced features such as custom plugins, themes, and more.
Note that the Tailwind configuration must respect some constraints to work properly with Beacon,
so if you want to reuse an existing configuration make sure to follow the steps below and make the necessary adjustments.
It might be a good idea to keep separate configs, one for your application and another one for Beacon sites, and reuse
parts that are common between them.

 Objective

Make sure the proper Tailwind version is installed, create a valid Tailwind config in the ESM format, and bundle everything together into a single package.

 Prerequisites

A site must be already configured. Otherwise, follow the Your First Site guide first.

 Constraints

Since Beacon uses the same configuration to generate stylesheets for your sites and also to preview pages on the Visual Editor in the browser,
that configuration must respect some constraints to work properly in both environments:
	Use the ESM format
	Can't call node APIs such as require("fs") and require("path")

 Steps

 Tailwind v3.3.0 or higher

Any recent Phoenix application should have the tailwind library already installed and updated but let's double check, execute:
mix run -e "IO.inspect Tailwind.bin_version()"

If it fails or the version is lower than 3.3.0 then follow the tailwind install guide
to get it installed or updated. It's required to install a recent Tailwind version higher than 3.3.0

 Esbuild

Similar to Tailwind, any recent Phoenix application should have it installed already but let's check by executing:
mix run -e "IO.inspect Esbuild.bin_version()"

If it fails then follow the esbuild install guide to get it installed.
Any recent version that is installed should work just fine.

 Install plugins

The config we'll generate imports the plugins @tailwindcss/forms and @tailwindcss/typography so they must be installed before we can actually generate the bundle file.
Execute at the root of your project:
npm install --prefix assets --save @tailwindcss/forms @tailwindcss/typography

 Create a new valid config file and update site config

Beacon provides a generator that will create and change the files needed to set up a custom Tailwind configuration.
Execute at the root of your project and follow the prompts:
mix beacon.gen.tailwind_config --site my_site

Replace my_site with the name of the site you want to install the custom Tailwind configuration.
The generated config file is in the ESM format, ie: it exports the config as default export instead of module.exports,
and it doesn't use node APIs like fs or path, so it can't bundle heroicons as the default Phoenix config does,
but Beacon provides a component to render such icons, see the Heroicons guide for more information.

Your First Site

 Objective

Create your first site to get familiar with Beacon resources and the most common operations to manage your site.

 Prerequisites

In order to create and serve sites, you'll need a Phoenix LiveView application with both Beacon and Beacon LiveAdmin installed.
Follow the Beacon installation guide to set up the environment before proceeding with this guide.

 Setup

Beacon provides a command to get your site up and running quickly. Open a terminal and run the following command:
mix beacon.gen.site --site my_site --path /

Routing is an important aspect of the site configuration, especially the order the routes are defined.
Inspect the generated changes in the router.ex file and see Beacon.Router for more info.

 Starting the application

Firstly execute the following to install all dependencies:
mix setup

And now start your Phoenix app:
mix phx.server

Visit http://localhost:4000 to see the default home page created by Beacon.

 Accessing LiveAdmin to manage your site

Let's customize the home page. Visit http://localhost:4000/admin and you should see the my_site that you just created listed on the admin interface.
Now let's create the resources for our first site, and we'll starting by creating the resources used by the home page before we customize its template.

 Live Data

We want to display the current year at the footer of the home page as the assign <%= @current_year %>. In Beacon we use Live Data to create and modify assigns at runtime, let's do it.
Go to http://localhost:4000/admin/my_site/live_data to create a new path / and then create a new assign named current_year using the elixir format with the following value:
Date.utc_today().year
Save the changes.

 Handle the form submission event

Besides displaying some data, we will have a form to subscribe people to our newsletter, so we need to react to that event. Let's create an event handler for that.
Go to http://localhost:4000/admin/my_site/events and create a new event handler named join with the following content:
%{"waitlist" => %{"email" => email}} = event_params
IO.puts("#{email} joined the waitlist")
{:noreply, assign(socket, :joined, true)}

 Upload an image

The last resource we want in our home is an image. Beacon provides a Media Library to upload and serve images, so first find an image and rename it to image.jpg (or the extension you prefer). Or use one of the images in https://github.com/BeaconCMS/beacon/tree/main/assets/images
Go to http://localhost:4000/admin/my_site/media_library and upload that image.

 Update the home page template

Finally, let's update the home page template to make use of the live data, the event handler, and the image we just uploaded.
Go to http://localhost:4000/admin/my_site/pages and you should see a page already created for the / path. We're going to change it.
Edit the template to replace with this content:
<div class="relative flex min-h-[100dvh] flex-col overflow-hidden bg-gradient-to-br from-[#0077b6] to-[#00a8e8] text-white">
 <div class="absolute inset-0 z-[-1] bg-cover bg-center opacity-30 blur-[100px]"></div>
 <header class="container mx-auto flex items-center justify-between py-6 px-4 md:px-6">
 <div class="flex items-center gap-2">
 <.link patch="/" class="flex items-center gap-2">
 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-8 w-8"
 >
 <path d="M4 15s1-1 4-1 5 2 8 2 4-1 4-1V3s-1 1-4 1-5-2-8-2-4 1-4 1z"></path>
 <line x1="4" x2="4" y1="22" y2="15"></line>
 </svg>
 CMS Platform
 </.link>
 </div>
 <div class="flex items-center gap-4">
 <.link patch="/blog" class="hidden md:inline-flex text-sm font-medium hover:underline">
 Blog
 </.link>
 <button class="items-center justify-center whitespace-nowrap rounded-md text-sm font-medium ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 bg-secondary text-secondary-foreground hover:bg-secondary/80 h-10 px-4 py-2 hidden md:inline-flex">
 Sign In
 </button>
 </div>
 </header>
 <main class="container mx-auto flex-1 px-4 md:px-6">
 <div class="mx-auto max-w-6xl space-y-6 py-12 md:py-24 lg:py-32">
 <div class="grid grid-cols-1 md:grid-cols-2 gap-8">
 <div class="space-y-6">
 <h1 class="text-4xl font-bold leading-tight md:text-5xl lg:text-6xl">

 Unlock the power

 of your content with our CMS platform
 </h1>
 <p class="text-lg text-gray-300 md:text-xl">
 Streamline your content management with our intuitive, high-performance CMS built on Phoenix LiveView.
 </p>
 <Phoenix.Component.form :let={f} for={%{}} as={:waitlist} phx-submit="join">
 <div class="flex w-full max-w-2xl items-center space-x-2">
 <input
 id={Phoenix.HTML.Form.input_id(f, :email)}
 name={Phoenix.HTML.Form.input_name(f, :email)}
 class="flex h-10 w-full border border-input text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 flex-1 rounded-md border-none bg-white/10 py-3 px-4 text-white placeholder:text-gray-300 focus:ring-2 focus:ring-[#00a8e8]"
 placeholder="Enter your email"
 type="email"
 />
 <button
 class="inline-flex items-center justify-center whitespace-nowrap text-sm ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 text-primary-foreground h-10 rounded-md bg-[#00a8e8] py-3 px-6 font-medium transition-colors hover:bg-[#0077b6]"
 type="submit"
 >
 Join Waitlist
 </button>
 </div>
 </Phoenix.Component.form>

 Congrats! You joined the watchlist.

 </div>
 <div class="flex items-center justify-center">
 <.image
 site={@beacon.site}
 name="image.webp"
 alt="My Page Image"
 width="600"
 height="600"
 style="aspect-ratio: 600 / 600; object-fit: cover;"
 />
 </div>
 </div>
 </div>
 </main>
 <footer class="container mx-auto border-t border-white/20 py-6 px-4 text-sm text-gray-300 md:px-6">
 <div class="flex items-center justify-between">
 <p>© <%= @current_year %> CMS Platform. All rights reserved.</p>
 <div class="flex space-x-4 items-center">

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M18 2h-3a5 5 0 0 0-5 5v3H7v4h3v8h4v-8h3l1-4h-4V7a1 1 0 0 1 1-1h3z"></path>
 </svg>
 Facebook

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M22 4s-.7 2.1-2 3.4c1.6 10-9.4 17.3-18 11.6 2.2.1 4.4-.6 6-2C3 15.5.5 9.6 3 5c2.2 2.6 5.6 4.1 9 4-.9-4.2 4-6.6 7-3.8 1.1 0 3-1.2 3-1.2z">
 </path>
 </svg>
 Twitter

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <rect width="20" height="20" x="2" y="2" rx="5" ry="5"></rect>
 <path d="M16 11.37A4 4 0 1 1 12.63 8 4 4 0 0 1 16 11.37z"></path>
 <line x1="17.5" x2="17.51" y1="6.5" y2="6.5"></line>
 </svg>
 Instagram

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M16 8a6 6 0 0 1 6 6v7h-4v-7a2 2 0 0 0-2-2 2 2 0 0 0-2 2v7h-4v-7a6 6 0 0 1 6-6z">
 </path>
 <rect width="4" height="12" x="2" y="9"></rect>
 <circle cx="4" cy="4" r="2"></circle>
 </svg>
 LinkedIn

 Privacy

 Terms

 Contact

 </div>
 </div>
 </footer>
</div>
Save the changes and Publish the page. Go to http://localhost:4000 to check the final result!
You should see the image you uploaded, the current year on the footer, and a message after joining the waitlist.

Congratulations! You have a site up and running.
Check out all available recipes to learn how to deploy your site, customize it even further, and more.

Access Page Info

In order to build pages you might need to access the current site or page information, as query params, path, and so on.
Beacon provides a read-only assign @beacon that is available on all templates and also on Elixir code blocks as event handlers.
For example, to access the current page title in a template:
<h1><%= @beacon.page.title %></h1>
See the module Beacon.Web.BeaconAssigns for more info.

Add Custom Page Fields

Every Beacon page contains a set of pre-defined fields which behave the same way across all pages. For example, the Title and Description fields are used to fill meta tags for SEO purposes; that's the same behavior regardless of whether the page is your homepage, a blog post, or something else.
However, you often need to store custom data, perform some logic on that data, or display extra information on the page. Some examples include tags for blog posts, authors, links, and so on.
In this recipe we'll add a custom page field Type to allow users identify the type of the page on the admin interface and use that data to list recent blog posts.

 Add a module that implements the Beacon.Content.PageField behavior

In this module we'll define how the data is stored and validated, and how the field is displayed on the admin interface. Create a file with this content:
defmodule MyApp.Beacon.PageFields.Type do
 @moduledoc false
 @behaviour Beacon.Content.PageField

 use Phoenix.Component
 import Beacon.Web.CoreComponents
 import Ecto.Changeset

 @impl true
 def name, do: :type

 @impl true
 def type, do: :string

 @impl true
 def default, do: "page"

 @impl true
 def changeset(data, attrs, %{page_changeset: _page_changeset}) do
 cast(data, attrs, [:type])
 end

 @impl true
 def render(assigns) do
 assigns = Map.put(assigns, :opts, [{"Page", "page"}, {"Blog Post", "blog_post"}])

 ~H"""
 <.input type="select" label="Type" prompt="Choose type" options={@opts} field={@field} />
 """
 end
end
Let's break down each part of the module:
	name/0 - can be any atom that represents the field name, for example :tags for a lists of tags or :author_id to store a reference to the page author.
	type/0 - any valid Ecto Schema type
	default/0 - the value with which to pre-populate the field
	changeset/3 - this is where you can add your own validation logic to that field (note: page_changeset is the changeset for the %Beacon.Content.Page{} itself)
	render/1 - the template to display the field on the page editor in Beacon LiveAdmin

 Add the field to Beacon.Config

Next we'll configure Beacon to include this type for your pages. In application.ex add to your
existing Beacon config:
sites: [
 [
 name: :my_site,
 ...
 extra_page_fields: [
 ...
 MyApp.Beacon.PageFields.Type
]
]
]

 Access the field content

Now, when a page is created or updated with your custom field, the content will be stored in the :extra field of the %Beacon.Content.Page{} record, under the name of the custom field.
With the example code above, a page with type blog_post will look like this:
%Beacon.Content.Page{
 # ...
 extra: %{"type" => "blog_post"},
}
You can make use of this field to filter pages on the backend or display that extra information in the page template!

Create a Blog

 Objective

Create blog posts with custom fields (type and tags), render each one using the tailwind typography plugin, and list the most recent posts on an index page.

 Prerequisites

This guide will skip initial setup steps that are already covered in the your first site guide,
so if that's the first site in your application, or you're not familiar with Beacon, please follow that guide first to make sure
both Beacon and BeaconLiveAdmin are correctly installed and configured.

 Create the blog site

Now that we have fulfilled the requirements, let's create the blog site mounted at /blog. Go ahead and execute:
mix beacon.gen.site --site blog --path /blog

Review the changes applied to your project router.ex file to make sure the order of routes is correct,
for example, if you already have a site mounted at the root / it should be placed after the /blog route.
See Beacon.Router for more info.
A basic site was just created but we have some work to do before executing the Phoenix server.

 Custom Fields

Every Beacon page has some essential fields like title, path, description, and others. But since Beacon can be used to build any kind of site, from small to big,
we can't include all possible fields to accommodate all kinds of pages that might exist. The solution to this problem is allowing users to create their own custom fields,
which are displayed in the Beacon LiveAdmin editor, stored in the page record in the database, and can be used in queries and templates.
For our blog we'll create 2 custom fields: type and tags. Type to allow us to distinguish between a regular page and a blog post, and tags to allow us to categorize our posts.
Those custom fields are modules that implement the Beacon.Content.PageField behaviour. Let's create them.

 Custom field type

Create a new file lib/my_app/beacon/page_fields/type.ex with the following content:
defmodule MyApp.Beacon.PageFields.Type do
 @moduledoc """
 Custom beacon page field to distinguish between a regular page and a blog post.
 """

 use Phoenix.Component
 import Beacon.Web.CoreComponents
 import Ecto.Changeset

 @behaviour Beacon.Content.PageField

 @impl true
 def name, do: :type

 @impl true
 def type, do: :string

 @impl true
 def default, do: "page"

 @impl true
 def render(assigns) do
 assigns = Map.put(assigns, :opts, [{"Page", "page"}, {"Blog Post", "blog_post"}])

 ~H"""
 <.input type="select" label="Type" prompt="Choose type" options={@opts} field={@field} />
 """
 end

 @impl true
 def changeset(data, attrs, %{page_changeset: _page_changeset}) do
 cast(data, attrs, [:type])
 end
end
Note that the file location and the module name don't need to follow any special convention, it's up to you to organize your code as you see fit.

 Custom field tags

A blog post without tags is like a cake without icing, so let's create a custom field to store a list of tags for each post.
Create a new file lib/my_app/beacon/page_fields/tags.ex with the following content:
defmodule MyApp.Beacon.PageFields.Tags do
 @moduledoc """
 Custom beacon page field to store tags for a blog post.

 Tags are separated by commas.
 """

 use Phoenix.Component
 import Beacon.Web.CoreComponents
 import Ecto.Changeset

 @behaviour Beacon.Content.PageField

 @impl true
 def name, do: :tags

 @impl true
 def type, do: :string

 @impl true
 def default, do: "2024"

 @impl true
 def render(assigns) do
 ~H"""
 <.input type="text" label="Tags" field={@field} />
 """
 end

 @impl true
 def changeset(data, attrs, _metadata) do
 cast(data, attrs, [:tags])
 end
end
Great, now we need to tell Beacon to use those custom page fields. Open the file lib/my_app/application.ex and add the following to your site configuration:
extra_page_fields: [
 MyApp.Beacon.PageFields.Type,
 MyApp.Beacon.PageFields.Tags
]
It should look like this:
{Beacon,
 sites: [
 [
 site: :blog,
 repo: MyApp.Repo,
 endpoint: MyAppWeb.Endpoint,
 router: MyAppWeb.Router,
 extra_page_fields: [
 MyApp.Beacon.PageFields.Type,
 MyApp.Beacon.PageFields.Tags
]
]
]}

 Create the layout

It's time to spin up the server, access the admin interface, and create the resources of our site. Execute:
mix phx.server

Visit http://localhost:4000/admin/blog/layouts, edit the Default layout, and change the template to:
<div>
 <header class="bg-background border-b">
 <div class="container mx-auto flex items-center justify-between h-16 px-4 md:px-6">
 <.page_link path={~p"/"} class="text-2xl font-bold">My Blog</.page_link>
 <nav class="hidden md:flex space-x-4">
 <.page_link path={~p"/"} class="text-muted-foreground hover:text-foreground transition-colors">Blog</.page_link>
 <.page_link path={~p"/about"} class="text-muted-foreground hover:text-foreground transition-colors">About</.page_link>
 <.page_link path={~p"/contact"} class="text-muted-foreground hover:text-foreground transition-colors">Contact</.page_link>
 </nav>
 </div>
 </header>
 <div :if={@beacon.page.path == "/"} class="container mx-auto px-4 py-12 md:px-6 lg:py-16">
 <%= @inner_content %>
 </div>

 <div :if={@beacon.page.path != "/" } class="container mx-auto px-4 py-12 md:px-6 lg:py-16 prose lg:prose-lg prose-slate">
 <%= @inner_content %>
 </div>
</div>
Save and publish the changes.
Some notes about this layout:
	The prose classes are defined by the Tailwind typography plugin and are responsible for improving the look & feel of the pages.
	Conditionally apply the prose classes only to the blog posts, not to the home page.

 Create the first blog post

Visit http://localhost:4000/admin/blog/pages and create a new page with the following data:
	Path: /the-elixir-language
	Title: The Elixir language
	Description: What's Elixir, and how and where it can be used.
	Format: Markdown
	Type: Blog Post
	Tags: 2024,eng,elixir

And the following template:
The Elixir language

In the ever-evolving world of web development, Elixir has emerged as a powerful and innovative language that is transforming the way we build web applications. This blog post explores the unique features and benefits of Elixir, and how it can revolutionize your web development workflow.

The Rise of Elixir

Elixir is a dynamic, functional programming language that runs on the Erlang Virtual Machine (BEAM). Inspired by Erlang, Elixir inherits its robust concurrency model, fault tolerance, and scalability, making it an excellent choice for building highly available and scalable web applications.

One of the key features of Elixir is its focus on functional programming principles. By embracing immutable data structures and concise syntax, Elixir enables developers to write more expressive and maintainable code. This, combined with Elixir's powerful metaprogramming capabilities, allows for the creation of domain-specific languages (DSLs) that can greatly enhance developer productivity.

Elixir and Web Development

Elixir's strengths make it an excellent choice for web development. The Phoenix framework, which is often compared to Ruby on Rails, provides a robust and scalable foundation for building web applications. With its focus on real-time communication and fault-tolerance, Elixir and Phoenix are well-suited for building applications that require high availability and low latency, such as chat applications, real-time dashboards, and IoT platforms.

Here's an example of a simple Elixir web application using the Phoenix framework:

```elixir
# lib/my_app_web/controllers/page_controller.ex
defmodule MyAppWeb.PageController do
  use MyAppWeb, :controller

  def index(conn, _params) do
    render(conn, "index.html", message: "Welcome to Elixir!")
  end
```

The Future of Elixir in Web Development

As Elixir and the Phoenix framework continue to evolve, we can expect to see even more exciting developments in the world of web development. Advancements in areas like real-time data processing, distributed systems, and seamless integration with other technologies will further enhance the capabilities of Elixir-based web applications.

By embracing Elixir, web developers can unlock new levels of scalability, fault-tolerance, and developer productivity, paving the way for a future where the focus is on building innovative and user-centric web experiences, rather than managing complex infrastructure.
Click on Create Draft Page and Publish. Now visit http://localhost:4000/blog/the-elixir-language to see the result. There is your first blog post!

 Create the blog index

Now that we have a blog post, let's create an index page to list published posts.
First, we need to fetch published posts, so let's create a live data assign that exposes data to pages. Visit http://localhost:4000/admin/blog/live_data,
create a new live data for the path /, and then create a new assign most_recent_posts with the following code:
import Ecto.Query

Beacon.Content.list_published_pages(
 :blog,
 search: fn -> dynamic([q], fragment("extra->>'type' = 'blog_post'"))
end)
Visit http://localhost:4000/admin/blog/pages and edit the "My Home Page" with the following data:
	Title: My Blog
	Type: Page
	Tags: leave empty (no tags)

And the following template:
<div class="mb-8">
 <h2 class="text-lg font-medium text-muted-foreground">
 Welcome to My Blog
 </h2>
 <p class="text-muted-foreground">
 Discover the latest insights and trends in web development, design, and technology.
 </p>
</div>

<h1 class="text-3xl font-bold mb-8 md:text-4xl text-primary">Latest Blog Posts</h1>

<div class="grid grid-cols-1 gap-8 sm:grid-cols-2 lg:grid-cols-3">
 <div :for={post <- @most_recent_posts} class="bg-background rounded-lg overflow-hidden shadow-sm transition-all hover:shadow-lg">
 <div class="p-6">
 <.page_link path={~p"/#{post}"} class="text-xl font-bold mb-2 block text-primary">
 <%= post.title %>
 </.page_link>
 <div class="flex flex-wrap gap-2 mb-2">
 <div
 :for={tag <- String.split(post.extra["tags"], ",")}
 class="inline-flex w-fit items-center whitespace-nowrap rounded-full border px-2.5 py-0.5 text-xs font-semibold transition-colors focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2 border-transparent bg-secondary text-secondary-foreground hover:bg-secondary/80">
 <%= tag %>
 </div>
 </div>
 <p class="text-muted-foreground">
 <%= post.description %>
 </p>
 </div>
 </div>
</div>
Save the changes and publish the page. Visit http://localhost:4000/blog to see the result!

Custom Repo

Repo is the layer of communication with databases and Beacon requires one to store and fetch data.
By default, the Beacon installer will infer the repo name and add it to your site configuration. But you may use a custom repo that connects
to a different database and/or is fine-tuned for your sites.
Open the file application.ex, find the :repo option in the site configuration and replace the default repo with your custom repo:
children = [
 ...
 {Beacon: sites: [[... repo: YourCustomRepo, ...]]}
]

Customize Markdown Rendering

Markdown pages are rendered using the Beacon.Template.Markdown module with a set of default options that works for most cases,
but you might want to change how some features work or enable more features. For example, let's suppose you want to generate an ID for every header of the page with the suffix "topic-".
You can do that by changing the :load_template lifecycle of :markdown in your site configuration as the example below:
[
 site: :my_site,
 lifecycle: [
 load_template: [
 {:markdown,
 [
 markdown_with_header_ids: &markdown_with_header_ids/2
]
 }
]
]
 # rest ommited for brevity...
]

def markdown_with_header_ids(template, _metadata) do
 template = MDEx.to_html!(markdown, extension: [header_ids: "topic-"])
 {:cont, template}
end
But keep in mind this operation will replace the default markdown rendering with the one you provided,
so the only features enabled will be the one you set and the others will take the default value.
For example with this configuration the :header_ids extension is enabled but others like tables and autolinks would be turned off.
You can inspect the actual configuration in the Beacon.Template.Markdown module and also check the MDEx docs for more info.

Deploy to Fly.io

Once you have a Beacon site up and running locally, you can deploy it on Fly.io by following this guide.

 Fly.io CLI

First, install the fly cli tool, as described at Install flyctl. You'll need it to deploy your site.

 Sign in or sign up

Don't have an account yet? Sign up by running:
fly auth signup

Or sign in to your existing account:
fly auth login

 Dockerfile

Fly applications run in containers. Let's generate a Dockerfile and make a couple of changes:
Run:
mix phx.gen.release --docker

Edit the generated Dockerfile and make some changes:
	Install npm by adding it to the apt-get install list

It should look like this:
RUN apt-get update -y && apt-get install -y build-essential git npm \
	Add the following code before RUN mix assets.deploy:

RUN npm install --prefix assets

 Copy files into the release

Open the file mix.exs and locate the project/0 function. Add a new :releases config that contains a custom step to copy Beacon files:
releases: [
 my_app: [
 steps: [:assemble, ©_beacon_files/1]
]
]
Replace my_app with your actual app name. The whole function will look similar to this:
def project do
 [
 app: :my_app,
 version: "0.1.0",
 elixir: "~> 1.14",
 elixirc_paths: elixirc_paths(Mix.env()),
 start_permanent: Mix.env() == :prod,
 consolidate_protocols: Mix.env() != :dev,
 aliases: aliases(),
 deps: deps(),
 releases: [
 my_app: [
 steps: [:assemble, ©_beacon_files/1]
]
]
]
end
Now create a new function copy_beacon_files/1 at any place in the mix.exs file:
defp copy_beacon_files(%{path: path} = release) do
 case Path.wildcard("_build/tailwind-*") do
 [] ->
 raise """
 tailwind-cli not found

 Execute the following command to install it before proceeding:

 mix tailwind.install

 """

 tailwind_bin_path ->
 build_path = Path.join([path, "bin", "_build"])
 File.mkdir_p!(build_path)

 for file <- tailwind_bin_path do
 File.cp!(file, Path.join(build_path, Path.basename(file)))
 end
 end

 File.cp!(Path.join(["assets", "css", "app.css"]), Path.join(path, "app.css"))

 release
end
Essentially this function will copy the tailwind-cli binary and the app.css files into the release.
The tailwind-cli binary is required but app.css is only used if you actually reuse it on your sites.
See https://hexdocs.pm/mix/Mix.Tasks.Release.html for more info about releases configuration.

 Launch

With your account in place and all files updated, it's time to launch your application. Run:
fly launch

When asked if you would like to set up a PostgreSQL database, answer YES and choose the most appropriate configuration for your site.
When asked if you would like to deploy, answer YES or run fly deploy afterward when you're ready to deploy.

 Deploy

Beacon is designed to minimize deployments as much as possible, but eventually, you can trigger new deployments by running:
fly deploy

 Open

Finally, if you followed the guides to set up your site, run the following command to see it live:
fly open /

If you have created a custom page, simply replace / in the above command to match its prefix.

 More commands

You can find all available commands in the Fly.io docs and also find more tips on the official Phoenix Deploying on Fly.io guide.

 Troubleshooting

The default config file fly.toml created by fly launch defines min_machines_running = 0 so Fly will auto-stop machines
that receive no traffic for a period of time. You might want to change this value to 1 otherwise it will look like your app
is not working, when in fact it's just Fly proxy doing its job.

Embed tweets

You'll notice that embedded tweets generated by https://publish.twitter.com usually won't render correctly on your pages,
and that's due to the fact that the client JavaScript used to load such tweets is executed asyncly along with the LiveView rendering process,
causing it to be executed too early. To fix this, we need to load the tweets after LiveView has finished rendering the page.

 Steps

 1. Load the Twitter JS script

Find the Layout you're using on the pages where you're embedding tweets, then edit its template to include the following script:
<script>
window.twttr = (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0],
 t = window.twttr || {};
 if (d.getElementById(id)) return t;
 js = d.createElement(s);
 js.id = id;
 js.src = "https://platform.twitter.com/widgets.js";
 fjs.parentNode.insertBefore(js, fjs);

 t._e = [];
 t.ready = function(f) {
 t._e.push(f);
 };

 return t;
}(document, "script", "twitter-wjs"));

window.addEventListener("phx:page-loading-stop", function(info){
 twttr.widgets.load()
});
</script>
This will first include the global twttr object and then load the tweets as soon as LiveView has finished rendering the page.
Visit https://developer.x.com/en/docs/x-for-websites/javascript-api/guides/set-up-twitter-for-websites for more info.

 2. Embed tweets

Now you can embed tweets on your pages but remember to remove the <script> that's included at the end of the embedded code,
as we're already loading the Twitter JS script in the Layout template.
Usually it looks like this:
<blockquote class="twitter-tweet" data-theme="dark">><!-- content omitted --></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
Remove the <script> tag at the end of the embedded tweet to look like this:
<blockquote class="twitter-tweet" data-theme="dark">><!-- content omitted --></blockquote>

Heroicons

Heroicons is a popular icon library added by default in new Phoenix applications and also available in Beacon as a component.
The component heroicon is added by default in new Beacon sites without extra configuration to let you render icons in your pages.
For example, to render a light-bulb icon in the solid style:
<.heroicon name="light-bulb" solid />

Multiple Domains/Tenants

You can host multiple domains or subdomains with Phoenix by using the :host option of the scope function in your router:
:host - a string or list of strings containing the host scope, or prefix host scope (e.g. "foo.bar.com", "foo.")
match admin. subdomain
scope "/", MyAppWeb, host: "admin." do
 live "/", AdminLive, :new
end

match example.com, and "example2.com"
scope "/", MyAppWeb, host: ["example.com", "example2.com"] do
 live "/", LandingLive, :new
end

match my-example.org
scope "/", MyAppWeb, host: "my-example.org" do
 live "/", HomeLive, :new
end

 Multiple Domains/Tenants hosting with BeaconCMS

If you need to host multiple domains or subdomains with Beacon, you can still use the same :host option described above!
Here's another example, but now using Beacon:
serve the `:demo` site at demo.org/demo
scope "/", host: "demo.org" do
 pipe_through :browser

 beacon_site "/demo", site: :demo
end

serve the `:blog` site at blog.com
scope "/", host: "blog.com" do
 pipe_through :browser

 beacon_site "/", site: :blog
end

serve the admin interface at the prefix /admin on the root domain
scope "/admin" do
 pipe_through :browser
 beacon_live_admin "/"
end
You also need to pass the :check_origin option when configuring your endpoint, in order to explicitly outline which origins are allowed.
In config/runtime.exs edit the following config to include your domains:
config :my_app, MyAppWeb.Endpoint,
 ...
 check_origin: [
 "https://beacon-demo.com/",
 "https://demo.org",
 "https://blog.com"
],
 ...

Notify Page Published

Let's suppose you want to notify a group of people via email when a page is published and your Phoenix application is already integrated with a mailer.
Beacon provides some lifecycle hooks that you can use to inject custom logic when something happens, in this case, when a page is published the hook :after_publish_page is triggered.
You can check out the full documentation and the list of available in the Beacon.Config module. This is the spec for the :after_publish_page hook:
{:after_publish_page, [{identifier :: atom(), fun :: (Content.Page.t() -> {:cont, Content.Page.t()} | {:halt, Exception.t()})}]}
It may look a bit complex, but it's quite simple. You need to define a function that receives a Content.Page.t() struct and returns either
{:cont, Content.Page.t()} to continue the process or {:halt, Exception.t()} to stop it. And the identifier is just a unique name for your custom logic.
For our example, the site config would look like:
lifecycle: [
 after_publish_page: [
 notify_page_published: &MyApp.CMS.notify_page_published/1
]
]
And the corresponding function in MyApp.CMS module:
defmodule MyApp.CMS do
 def notify_page_published(%Beacon.Content.Page{path: path} = page) do
 email = MyApp.CMS.notify_email(%{path: path})

 case MyApp.Mailer.deliver(email) do
 {:ok, _} ->
 {:cont, page}

 {:error, reason} ->
 message = """
 failed to notify that page #{path} was published

 Got:

 #{inspect(reason)}
 """

 # or use a custom exception
 {:halt, %RuntimeError{message: message}}
 end
 end
end

Handle async and continuous updates with handle_info and on_mount

Using Live Data assigns, on_mount callbacks, and corresponding handle_info handlers is a pattern that you can leverage to achieve optimistic UI for your pages.
Suppose you're displaying a Weather widget on your page but fetching the data takes a second, delaying the whole page, even though that widget is not critical to your page and could display dummy data (or no data at all) while the rest of the page is loaded. In this scenario, a Live Data assign would provide the initial dummy data, the on_mount hook request the data to be loaded asyncly, and finally the handle_info loads the data and update that assign.
For this example, we'll build a similar scenario but also add a continuous monitor to update the assign frequently.
In this example we're going to update a DateTime every 1_000 milliseconds from the server, starting that loop on_mount, then continuously looping over a handle_info.

 Creating the On Mount Handler Module

After completing your first site guide, create a module to handle
your on_mount callbacks. This is an example, so find a place that works best
for your project structure. Here, we're creating a my_site_on_mount.ex file
in our web path.
├── lib
│ ├── my_site
│ ├── my_site_web
│ │ ├── components
│ │ │ ├── core_components.ex
│ │ │ ├── layouts
│ │ │ │ ├── app.html.heex
│ │ │ │ └── root.html.heex
│ │ │ ├── callbacks
│ │ │ │ └── my_site_on_mount.ex
│ │ │ └── layouts.ex
│ │ ├── controllers
│ │ │ ├── error_html.ex
│ │ │ ├── error_json.ex
│ │ │ ├── page_controller.ex
│ │ │ ├── page_html
│ │ │ │ └── home.html.heex
│ │ │ └── page_html.ex
│ │ ├── endpoint.ex
│ │ ├── gettext.ex
│ │ ├── router.ex
│ │ └── telemetry.ex
│ └── my_site_web.ex

When the socket is connected, we will send a message to self() in 1_000 milliseconds
to :update_current_time.
defmodule MySiteWeb.OnMount do
 use MySiteWeb, :live_view

 def on_mount(_path, _params, _session, socket) do
 if connected?(socket) do
 Process.send_after(self(), :update_current_time, 1_000)
 end

 {:cont, socket}
 end
end

 Updating the Live Session

In your router.ex file, add the on_mount option to your my_site route so it is handled in the live session.
scope "/" do
 pipe_through :browser
 beacon_site "/",
 site: :my_site,
 on_mount: {MySiteWeb.OnMount, []}
 end

 Accessing LiveAdmin to manage your site

Let's customize the home page. Visit http://localhost:4000/admin and you should see the my_site that you just created listed on the admin interface.
Now let's create the resources for our first site, and we'll starting by creating the resources used by the home page before we customize its template.

 Live Data

We want to display the current time on the home page as the assign <%= @current_time %>. In Beacon we use Live Data to create and modify assigns at runtime, let's do it.
Go to http://localhost:4000/admin/my_site/live_data and navigate to the "/" path and create a new assign named current_time using the elixir format with the following value:
DateTime.now!("Etc/UTC")
Save the changes.

 Handle the :update_current_time info callback

Besides displaying some data, we will have a form to subscribe people to our newsletter, so we need to react to that event. Let's create an event handler for that.
Go to http://localhost:4000/admin/my_site/info_handlers and create a new event handler named update_current_time with the following content:
Process.send_after(self(), :update_current_time, 1000)

{:noreply, assign(socket, current_time: DateTime.now!("Etc/UTC"))}

 Update the home page template

Finally, let's update the home page template to make use of the info handler we created.
Go to http://localhost:4000/admin/my_site/pages and you should see a page already created for the / path. We're going to change it.
Edit the template to replace with this content:
<div class="relative flex min-h-[100dvh] flex-col overflow-hidden bg-gradient-to-br from-[#0077b6] to-[#00a8e8] text-white">
 <div class="absolute inset-0 z-[-1] bg-cover bg-center opacity-30 blur-[100px]"></div>
 <header class="container mx-auto flex items-center justify-between py-6 px-4 md:px-6">
 <div class="flex items-center gap-2">
 <.link patch="/" class="flex items-center gap-2">
 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-8 w-8"
 >
 <path d="M4 15s1-1 4-1 5 2 8 2 4-1 4-1V3s-1 1-4 1-5-2-8-2-4 1-4 1z"></path>
 <line x1="4" x2="4" y1="22" y2="15"></line>
 </svg>
 CMS Platform
 </.link>
 </div>
 <div class="flex items-center gap-4">
 <.link patch="/blog" class="hidden md:inline-flex text-sm font-medium hover:underline">
 Blog
 </.link>
 <button class="items-center justify-center whitespace-nowrap rounded-md text-sm font-medium ring-offset-background transition-colors focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 bg-secondary text-secondary-foreground hover:bg-secondary/80 h-10 px-4 py-2 hidden md:inline-flex">
 Sign In
 </button>
 </div>
 </header>
 <main class="container mx-auto flex-1 px-4 md:px-6">
 <div class="mx-auto max-w-6xl space-y-6 py-12 md:py-24 lg:py-32">
 <div class="grid grid-cols-1 md:grid-cols-2 gap-8">
 <div class="space-y-6">
 <h1 class="text-4xl font-bold leading-tight md:text-5xl lg:text-6xl">

 Unlock the power

 of your content with our CMS platform
 </h1>
 <p class="text-lg text-gray-300 md:text-xl">
 Streamline your content management with our intuitive, high-performance CMS built on Phoenix LiveView.
 </p>
 <Phoenix.Component.form :let={f} for={%{}} as={:waitlist} phx-submit="join">
 <div class="flex w-full max-w-2xl items-center space-x-2">
 <input
 id={Phoenix.HTML.Form.input_id(f, :email)}
 name={Phoenix.HTML.Form.input_name(f, :email)}
 class="flex h-10 w-full border border-input text-sm ring-offset-background file:border-0 file:bg-transparent file:text-sm file:font-medium focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50 flex-1 rounded-md border-none bg-white/10 py-3 px-4 text-white placeholder:text-gray-300 focus:ring-2 focus:ring-[#00a8e8]"
 placeholder="Enter your email"
 type="email"
 />
 <button
 class="inline-flex items-center justify-center whitespace-nowrap text-sm ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 text-primary-foreground h-10 rounded-md bg-[#00a8e8] py-3 px-6 font-medium transition-colors hover:bg-[#0077b6]"
 type="submit"
 >
 Join Waitlist
 </button>
 </div>
 </Phoenix.Component.form>

 Congrats! You joined the watchlist.

 </div>
 <div class="flex items-center justify-center">
 <.image
 site={@beacon.site}
 name="image.webp"
 alt="My Page Image"
 width="600"
 height="600"
 style="aspect-ratio: 600 / 600; object-fit: cover;"
 />
 </div>
 </div>
 </div>
 </main>
 <footer class="container mx-auto border-t border-white/20 py-6 px-4 text-sm text-gray-300 md:px-6">
 <div class="flex items-center justify-between">
 <p>©<%= @current_time %> <%= @current_year %> CMS Platform. All rights reserved.</p>
 <div class="flex space-x-4 items-center">

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M18 2h-3a5 5 0 0 0-5 5v3H7v4h3v8h4v-8h3l1-4h-4V7a1 1 0 0 1 1-1h3z"></path>
 </svg>
 Facebook

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M22 4s-.7 2.1-2 3.4c1.6 10-9.4 17.3-18 11.6 2.2.1 4.4-.6 6-2C3 15.5.5 9.6 3 5c2.2 2.6 5.6 4.1 9 4-.9-4.2 4-6.6 7-3.8 1.1 0 3-1.2 3-1.2z">
 </path>
 </svg>
 Twitter

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <rect width="20" height="20" x="2" y="2" rx="5" ry="5"></rect>
 <path d="M16 11.37A4 4 0 1 1 12.63 8 4 4 0 0 1 16 11.37z"></path>
 <line x1="17.5" x2="17.51" y1="6.5" y2="6.5"></line>
 </svg>
 Instagram

 <svg
 xmlns="http://www.w3.org/2000/svg"
 width="24"
 height="24"
 viewBox="0 0 24 24"
 fill="none"
 stroke="currentColor"
 stroke-width="2"
 stroke-linecap="round"
 stroke-linejoin="round"
 class="h-5 w-5"
 >
 <path d="M16 8a6 6 0 0 1 6 6v7h-4v-7a2 2 0 0 0-2-2 2 2 0 0 0-2 2v7h-4v-7a6 6 0 0 1 6-6z">
 </path>
 <rect width="4" height="12" x="2" y="9"></rect>
 <circle cx="4" cy="4" r="2"></circle>
 </svg>
 LinkedIn

 Privacy

 Terms

 Contact

 </div>
 </div>
 </footer>
</div>
Save the changes and Publish the page. Go to http://localhost:4000 to check the final result!
You should see DateTime updating every 1_000 milliseconds from the server.

Protect Pages with Basic Auth

If you want to protect your app with a basic username and password protection, you can easily do so by using the Plug.BasicAuth plug.
Plugs in Phoenix are basically functions that get a Plug.Conn instance (which is basically the whole universe of your app's request) on any web request and returns a slightly modified instance.
Because every request goes through these sequence of plugs, it's a great place to set up authentication, and possibly avoid any requests to pass through if not authenticated.

 Create an authentication plug

You can build your own module plug that gets the conn, verifies for authentication with Plug.BasicAuth, and then returns the transformed conn.
defmodule MyWebApp.Plugs.SiteBasicAuth do
 @moduledoc false
 @behaviour Plug

 def init(opts), do: opts

 def call(conn, _opts) do
 Plug.BasicAuth.basic_auth(conn, username: "admin", password: "protected123")
 end
end
This is as easy as it could be. Let's break it down:
	We've created a module plug
	A plug always needs a init and a call definition
	We don't want to do anything on initialization, so we just make init a passthrough function
	On call, we let the Plug.BasicAuth.basic_auth do it's thing, which means it will check for existing authentication and otherwise popup a prompt to authenticate. It will return the (transformed) conn, so nothing we need to do there ourselves

 Use the plug in your router

To use the plug we just created, we have to implement it in our router file, so it will be invoked on each request.
If you want to add this authentication to any part of your app, add it to the pipeline of the scope that covers your Beacon app:
scope "/" do
 pipe_through [:browser, MyWebApp.Plugs.SiteBasicAuth]
 beacon_site "/", site: :my_site
end
And that's it! Run your app and go to any page. It should popup a username and password prompt in order to see your app.
Specific pages authentication
The previous example protects your whole app. In some cases you might only want to protect a few specific pages of your app.
As Beacon is handling all routing of a scope, we cannot just add a router's scope to cover this, because it will always go through the default scope where you define the beacon_site as a "catch-all".
You can change your existing plug (or create a separate one) to do a check on what page is being requested (we're using conn.request_path).
For hardcoded paths, we can use a guard to only match when it's one of your protected pages, and keep a fallback / default call definition for all the other pages that shouldn't do anything.
defmodule MyWebApp.Plugs.ProtectedPages do
 @moduledoc false
 @behaviour Plug

 @protected_pages [
 "/your/protected/page",
 "/another/secret"
]

 def init(opts), do: opts

 def call(conn, _opts) when conn.request_path in @protected_pages do
 Plug.BasicAuth.basic_auth(conn, username: "admin", password: "protected123")
 end

 def call(conn, _opts), do: conn
end
Note: this example is just for easy hardcoded authentication. For more advanced authentication you could extend this approach in many ways, for example by setting an environment variable for the username and password, or even setting up a database with users.
Same for the protected pages which could be stored somewhere else, or might be more dynamic or having a more complicated check on what the path looks like.

Reuse app.css

Your Phoenix application has an app.css that you might want to use to generate styles for your site,
and in this guide, we'll see how to configure your site to reuse the same styles for your application and sites.
In your site config, usually located at runtime.exs, you should add a new config :tailwind_css
to let Beacon know where to find the app.css file:
tailwind_css =
 if config_env() == :prod do
 Path.expand("../../app.css", __DIR__)
 else
 Path.expand("../assets/css/app.css", __DIR__)
 end

config :beacon,
 my_site: [
 site: :my_site,
 repo: MyApp.Repo,
 endpoint: MyAppWeb.Endpoint,
 router: MyAppWeb.Router,
 tailwind_css: tailwind_css
]
Note the path is different for development and production environments because deployment usually are packed as releases.

Testing

Integrating your app with Beacon might require testing some parts of that integration,
so in this recipe let's suppose you have added a hook in the publish page lifecycle as described in the Notify Page Published recipe,
and now you want to make sure the email is being sent when a page is published, as it was defined in the hook.

 Config

First you should enable the :testing mode for each site you want to test:
Assuming your site configuration looks like:
@impl Application
def start(_type, _args) do
 children = [
 # ... omitted for brevity
 {Beacon, sites: [Application.fetch_env!(:my_app, :my_site)]}
]
 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Then open the file config/test.exs and add the following config to change the Beacon mode:
config/test.exs
config :my_app, :my_site, mode: :testing

 Test

And the actual test would look like the example below.
First we create and publish a page by calling the fixture beacon_published_page_fixture/0,
then we build and assert the correct email was delivered, using assert_delivered_email/1
from the Bamboo library.
defmodule MyApp.CMS.NotificationEmailTest do
 use ExUnit.Case
 use Bamboo.Test
 use Beacon.Test, site: :my_site # <- use this module to enable testing utilities

 test "notify via email when a page is published" do
 page = beacon_published_page_fixture()
 expected_email = MyApp.CMS.notify_email(page)
 assert_delivered_email expected_email
 end
end

Upgrading from pre v0.1.0 to v0.1.0-rc.0

This guide applies to instances of Beacon that started before the v0.1.0-rc.0 release,
and need to migrate to latest version by migrating the database schema and data, and making changes to the codebase.
For this guide, we'll assume your Beacon dependency is set to 1d8d2fd636a40c107d47d0a87869930fdd0f82d0
from Oct 11, 2023, but it should apply to any revision.

 Backup

Before proceeding make sure you have a backup of your database and the current codebase.

 Migrate the database schema and data

Before v0.1.0-rc.0 we used to keep the list of migrations in the priv/repo/migrations directory,
but eventually we merged all those files into a single migration for the v0.1.0-rc.0 release.
So before we can bump Beacon to the latest version, we need to execute the remaining migrations up to v0.1.0-rc.0
You can see that list of migrations before the merge in
https://github.com/BeaconCMS/beacon/tree/c87777d8559378502188a19a696ac465e1618424/priv/repo/migrations
So let's update the Beacon dependency to that specific revision to execute all pending migrations.
Open the file mix.exs and update the Beacon dependency along with the other required dependencies:
[
 {:beacon, github: "BeaconCMS/beacon", ref: "c87777d8559378502188a19a696ac465e1618424", override: true},
 {:beacon_live_admin, github: "BeaconCMS/beacon_live_admin", ref: "9e31e0e307cf5ad44be50c689a472905c976bff3"},
 {:phoenix_html, "~> 4.0"},
 {:phoenix_live_view, "~> 0.20"},
]
Now execute mix deps.update --all to resolve all conflicts.
Before executing the migrations, we need to fix the breaking changes.

 Phoenix HTML

Phoenix HTML 4.0 has introduced breaking changes, so make sure to follow these instructions
to fix your application.

 beacon_api

The macro beacon_api has been removed. Open the file router.ex and remove any call to that macro.

 First site config change

Some changes are required in your site configuration for this intermediate Beacon revision.
	Add a :router key pointing to your app router module.
	Remove the :data_source key.

Edit your site(s) configuration, usually in the file application.ex to make the changes. It will look like this:
{Beacon,
 sites: [
 [
 site: :my_site,
 endpoint: BeaconDemoWeb.Endpoint,
 router: BeaconDemoWeb.Router
 # ...
]
]},

 Check for errors

Execute mix compile --all-warnings and check for errors and warnings, other than the missing Beacon.DataSource.Behaviour module (we will cover this later).
It should compile without errors and with no extra warnings, otherwise, fix them before proceeding.

 Execute the migrations

Execute mix ecto.migrate to run the remaining migrations.
If you have seeds files or some sort of automation, it will require changes to work with the updated schema.

 Bump Beacon to latest version

Replace both :beacon and :beacon_live_admin to use the latest version, which at this moment is in the 0.1.x series,
and add :igniter which is now used to execute generators for Beacon.
[
 {:beacon, "~> 0.1.0"},
 {:beacon_live_admin, "~> 0.1.0"},
 {:igniter, "~> 0.4"},
]
Now execute mix deps.update --all to resolve all conflicts.

 Site config for v0.1

To make it easier to manage sites configuration, we're now defining them in the config/runtime.exs file.
Open the file application.ex, usually where sites are defined, and replace with:
{Beacon, [sites: [
 Application.fetch_env!(:beacon, :my_site)
]]}
Replace :my_site with your site name or add more sites if needed.
Now open the file config/runtime.exs and copy the configuration you had in application.ex to this file.
Note that we have added the new required key :repo in the site configuration, so make sure you have one as well.
It should look like this:
config :beacon, :my_site,
 site: :my_site,
 repo: MyApp.Repo,
 endpoint: MyAppWeb.Endpoint,
 router: MyAppWeb.Router
 # ... omitted other keys
Those are the minimum required keys.
You can add other sites as config :beacon, :other_site, ... if needed and reference them in application.ex.

 Remove Beacon.Repo

The module Beacon.Repo has been removed, so search for that module in your project and remove any mention of it,
which usually is in the config files.

 Update Esbuild and Tailwind

Open the file config/config.exs, find the configs :esbuild and :tailwind, and change the :version to the latest release.
config :esbuild,
 version: "0.24.0",
 # ...

config :tailwind,
 version: "3.4.13",
 # ...

````

Execute the following to update the binaries:

mix esbuild.install
mix tailwind.install --no-assets

## Beacon.Web.ErrorHTML

Error pages require a change in the endpoint configuration. Open the file `config/config.exs` and look for the `:render_errors` key in the endpoint configuration,
and replace the `:html` format with `Beacon.Web.ErrorHTML`.

It should look like

config :my_app, MyAppWeb.Endpoint,
  render_errors: [
formats: [html: Beacon.Web.ErrorHTML, json: MyAppWeb.ErrorJSON],
layout: false
  ],
  # ...

## Migrate to latest schema

The schema should be up to date now, but to make sure let's run the latest migration.

Execute `mix ecto.gen.migration create_beacon_tables` and edit the generated file to the following:

use Ecto.Migration
def up, do: Beacon.Migration.up()
def down, do: Beacon.Migration.down()

## Test the app

You should be able to execute the server now.

Make sure everything is up to date:

mix setup

Run the server:

mix phx.server

## Beacon.DataSource.Behaviour

That module has been removed if favor of LiveData, which is also a way to define data for pages but at runtime
instead of compile time. There's no automatic migration for this data, so you'll need to access the Live Data page
in the admin interface and recreate the data there _or_ automate it yourself by calling the [Content API functions](https://hexdocs.pm/beacon/Beacon.Content.html#functions-live-data).

Access the Live Data page in the admin interface, and first create the path you want to apply the assign and then create the assign itself.

For example if you used to have this live data in your data source module:

def live_data(:my_site, ["blog", "categories", category], params) do
  %{blog_posts:  MyApp.Blog.list_blog_posts(category, params)}
end

You should create a new Live Data in admin for the path `/blog/categories/:category` and then create an Assign `blog_posts` with format `elixir` with the content:

MyApp.Blog.list_blog_posts(category, params)

## Publish pages

It may be necessary to republish the pages due to changes in the schema, so if a page is not loading execute the following in the console:

site = :my_site # replace with your site name
pages = Beacon.Content.list_published_pages(site, per_page: :infinity)
Beacon.Content.publish_pages(pages)



  

    
Upgrading to v0.1.0-rc.1
    


  
    
  
  Bump your deps


Update Beacon to the specific release candidate version:
[
  {:beacon, "~> 0.1.0-rc.1"}
]
Remember to keep the option override: true if running BeaconLiveAdmin in the same project.

  
    
  
  Update Beacon tables


mix ecto.gen.migration update_beacon_v002

Within the migration module:
use Ecto.Migration
def up, do: Beacon.Migration.up()
def down, do: Beacon.Migration.down()


  

    
Upgrading to v0.1.0-rc.2
    


  
    
  
  Bump your deps


Update Beacon to the specific release candidate version:
[
  {:beacon, "~> 0.1.0-rc.2"}
]
Remember to keep the option override: true if running BeaconLiveAdmin in the same project.

  
    
  
  Update Gettext


Gettext has been updated to ~> 0.26 which requires a change,
but fortunately it's a small and beneficial one.
In your mix.exs file, update the :gettext dependency to at least ~> 0.26:
[
  {:gettext, "~> 0.26"}
]
Then change your application's Gettext module to use the new Gettext.Backend module:
defmodule MyAppWeb.Gettext do
  use Gettext.Backend, otp_app: :my_app_web
end
Change the names accordingly, the only change needed here is adding the .Backend suffix.
And now in every place you used to import MyAppWeb.Gettext, just replace with use Gettext, backend: MyAppWeb.Gettext
For more info see https://github.com/elixir-gettext/gettext/blob/main/CHANGELOG.md#v0260


  

    
Upgrading to v0.1.0
    


  
    
  
  Bump your deps


Update Beacon to v0.1.x
[
  {:beacon, "~> 0.1.0"}
]
Note that a more relaxed version like ~> 0.1  or >= 0.0.0 would install the version 1.1.0 which is not the Beacon CSM project,
ie: you have to install a version that is less than 1.0.0.
Remember to keep the option override: true if running BeaconLiveAdmin in the same project.

  
    
  
  Update sites config


Replace the option :skip_boot? with :mode if you were using it (most sites don't need to set this option).

  
    
  
  Update Elixir version


Beacon v0.1.0 requires Elixir 1.14.0 or later, please update your tools if necessary.

  
    
  
  Update mdex version (only if using :mdex directly)


Update :mdex to ~> 0.2 in your mix.exs file, and replace any calls to MDEx.to_html with MDEx.to_html/1.


  

    
Beacon 
    



      
Beacon is a Content Management System for Phoenix LiveView.
	Rendering pages fast.
	Reloading content at runtime.
	Reduced resources usage and scalability.
	Integration with existing Phoenix applications.

You can build virtually any type of website with Beacon, from a simple blog to a complex business site.
Following are the main APIs provided by Beacon. You can find out more information on the module documentation of each one of those modules:
	Beacon.Config - configuration of sites.
	Beacon.Router - mount one or more sites into the router of your Phoenix application.
	Beacon.Lifecycle - inject custom logic into Beacon lifecycle to change how pages are loaded an rendred, and more.
	Beacon.Content - manage content as layouts, pages, page variants, snippets, and more.
	Beacon.MediaLibrary - upload images, videos, and documents that can be used in your content.
	Beacon.Test - testings utilities.

Get started with your first site and check out the guides for more information.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Test - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Test 
    



      
Testing utilities to create and assert Beacon resources.

  
    
  
  Usage


First you need to activate the :testing mode in your site configuration:
# test.exs
# active testing mode for all sites under test
config :my_app, :my_site, mode: :testing
See Beacon.start_link/1 for more info on how to setup your Beacon configuration.
Then use this module either in your test module or in your test case template:
defmodule MyAppWeb.CMSTest do
  use MyAppWeb.ConnCase
  use Beacon.Test
  # ...
end
or make it available for all your tests by adding it to your test case template:
defmodule MyAppWeb.ConnCase do
  use ExUnit.CaseTemplate

  using do
    quote do
      use Beacon.Test
      # ...
    end
  end
end
With this configuration, Beacon will behave in a way that is better suited for testing:
	Do not hot-load resources during boot
	Do not broadcast events on Content changes
	Perform most operations in a synchronous way
	Reload module as fixture data is created

And all functions in Beacon.Test.Fixtures will be imported to help you create resources in your tests.

  
    
  
  Default site


Most of the functions need a site option to know which site to operate on.
If you don't provide it, the default site :my_site is used:
create_page_fixture(title: "Home")
%Beacon.Content.Page{site: :my_site, title: "Home"}
Or you can override it:
create_page_fixture(site: :blog, title: "Home")
%Beacon.Content.Page{site: :blog, title: "Home"}
But doing so every time is not efficient, so you can set a default site that will be used in all function calls:
use Beacon.Test, site: :blog

create_page_fixture(title: "Home")
%Beacon.Content.Page{site: :blog, title: "Home"}

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Test.Fixtures - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Test.Fixtures 
    



      
Fixture data for testing Beacon content.
Only use for testing
These fixtures should be used only for testing purposes,
if you are looking to run seeds or some sort of content automation
then you should use Beacon.Content functions instead.


  
    
  
  Usage


Most of the times you'll use the Beacon.Test function instead of using fixtures directly:
use Beacon.Test
Using Beacon.Test will import the fixtures for you.
But you can also use the fixtures directly for some cases:
use Beacon.Test.Fixtures

  
    
  
  Fixtures


All fixtures accept either a map or a keyword list, so these are equivalent:
beacon_page_fixture(path: "/contact")
beacon_page_fixture(%{path: "/contact"})
beacon_page_fixture(%{"path" => "/contact"})
Or no attributes at all to use the default values:
beacon_page_fixture()

  
    
  
  Default site


You can pass a default site to be used in the attrs for all fixture functions:
use Beacon.Test.Fixtures, site: :blog
Note that only one default site is permitted per test module,
if you have a test that requires asserting multiple sites
you can just override particular fixtures:
use Beacon.Test.Fixtures, site: :blog

# create a page for the default site
beacon_page_fixture()

# create a page for another site
beacon_page_fixture(site: :other)


      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Web.Layouts - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Web.Layouts 
    



      
Core layouts.
These functions are mostly used internally by Beacon but you can override the
root layout in beacon_site so you should use the functions in this
module to properly build your custom root layout to avoid breaking
Beacon functionality.
See https://github.com/BeaconCMS/beacon/blob/main/lib/beacon/web/components/layouts/runtime.html.heex for reference.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Migration - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Migration 
    



      
Functions which can be called in an Ecto migration for Beacon installation and upgrades.

  
    
  
  Usage


To install Beacon, you'll need to generate an Ecto.Migration that wraps calls to Beacon.Migration:
$ mix ecto.gen.migration create_beacon_tables

Open the generated migration in your editor and either call or delegate to up/1 and down/1:
defmodule MyApp.Repo.Migrations.CreateBeaconTables do
  use Ecto.Migration
  def up, do: Beacon.Migration.up()
  def down, do: Beacon.Migration.down()
end
Then, run the migrations for your app to create the necessary Beacon tables in your database:
$ mix ecto.migrate

By calling up() with no arguments, this will execute all migration steps from the initial version to
the latest version.  As new versions are released, you may need to repeat this process, by first
generating a new migration:
$ mix ecto.gen.migration upgrade_beacon_tables_to_v2

Then in the generated migration, you could simply call up() again, because the migrations are
idempotent, but you can be safer and more efficient by specifying the migration version to execute:
 defmodule MyApp.Repo.Migrations.UpgradeBeaconTables do
  use Ecto.Migration
  def up, do: Beacon.Migration.up(version: 2)
  def down, do: Beacon.Migration.down(version: 2)
end
Now this migration will update to v2, but if rolled back, will only roll back the v2 changes,
leaving v1 tables in-place.
To see this step within the larger context of installing Beacon, check out the your first site guide.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Router - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Router 
    



      
Controls pages routing and provides helpers to mount sites in your application router and generate links to pages.
defmodule MyAppWeb.Router do
  use Phoenix.Router
  use Beacon.Router

  scope "/", MyAppWeb do
    pipe_through :browser
    beacon_site "/blog", site: :blog
  end
end

  
    
  
  Helpers


A ~p sigil is provided to generate links to pages taking the scope and site prefix into account.
Using that sigil in a template in the :blog site defined above would result in the following links:
~p"/contact" => "/blog/contact"
~p"/posts/#{@post}" => "/blog/posts/my-post"
In this example post is a Beacon.Content.Page that implements the Phoenix.Param protocol to resolve the page path.

  
    
  
  Path


The full path of the site is calculated resolving the scope prefix plus the site prefix.
The simplest scenario is mounting a site at the root of your application:
scope "/", MyAppWeb do
  pipe_through :browser
  beacon_site "/", site: :my_site
end
In this case the site :my_site will be available at https://yourapp.com/
By mixing prefixes you have the flexibility to mount sites in different paths,
for example both declarations below will mount the site at https://yourapp.com/blog:
scope "/blog", MyAppWeb do
  pipe_through :browser
  beacon_site "/", site: :blog
end

scope "/", MyAppWeb do
  pipe_through :browser
  beacon_site "/blog", site: :blog
end
There's no difference between the two approaches, but that is important to group and organize your routes and sites,
for example a scope might be served through a different pipeline:application
scope "/marketing", MyAppWeb do
  pipe_through :browser_analytics
  beacon_site "/super-campaign", site: :marketing_super_campaign
  beacon_site "/", site: :marketing
end
Note in the last example that /super-campaign is defined before / and there's an important reason for that: router precedence.

  
    
  
  Route Precedence


Beacon pages are defined dynamically so it doesn't know which pages are availale when the router is compiled,
which means that any route after the prefix may match a published page. For example /contact may be a valid
page published under the mounted beacon_site "/, site: :marketing site.
Essentially it mounts a catch-all route like /* so if we had inverted the routes below we would end with:application
/*
/super-campaign
The second route would never match since the first one would match all requests.
As a rule of thumb, put all specific routes first.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Beacon.Content - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content 
    



      
The building blocks for composing web pages: Layouts, Pages, Components, Stylesheets, and Snippets.

  
    
  
  Templates


Layout and Pages work together as pages require a layout to display its content,
the minimal template for a layout that can exist is the following:
<%= @inner_content %>
And pages templates can be written in HEEx
or Markdown formats.

  
    
  
  Meta Tags


Meta Tags can are defined in 3 levels:
	Site - fixed meta tags displayed on all pages, see default_site_meta_tags/0
	Layouts - applies to all pages used by the template.
	Page - only applies to the specific page.


      


      
        Summary


  
    Functions: Layouts
  


    
      
        
  
    
    Beacon.Content.Component - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.Component 
    



      
Beacon's representation of Phoenix Components,
which can be used and re-used in your pages and layouts.
Do not create or edit components manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.ComponentAttr - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.ComponentAttr 
    



      
Beacon's representation of Phoenix's Component attributes.
ComponentAttrs don't exist on their own, but always belong to a Beacon.Content.Component.
Do not create or edit component attrs manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.ComponentSlot - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.ComponentSlot 
    



      
Beacon's representation of Phoenix's Slots.
ComponentSlots don't exist on their own, but always belong to a Beacon.Content.Component.
Do not create or edit component slots manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.ComponentSlotAttr - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.ComponentSlotAttr 
    



      
Beacon's representation of Phoenix's Slot attributes.
ComponentSlotAttrs don't exist on their own, but always belong to a Beacon.Content.ComponentSlot, which in turn
belongs to a Beacon.Content.Component.
Do not create or edit component slot attrs manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.ErrorPage - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.ErrorPage 
    



      
Stores a template which can be rendered for error responses.
An ErrorPage contains four main fields:
	:status - the status code for which this ErrorPage is to be used
	:template - the template to be rendered
	:site - the Beacon site which should use this page
	:layout_id - the ID of the Beacon Layout which is used for rendering

Do not create or edit ErrorPages manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.EventHandler - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.EventHandler 
    



      
Beacon's representation of a LiveView handle_event/3.
This is the Elixir code which will receive form submission or on-click events.
Do not create or edit page event handlers manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.InfoHandler - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.InfoHandler 
    



      
Beacon's representation of a LiveView handle_info/2
that applies to all of a site's pages.
This is the Elixir code which will handle messages from other Elixir processes.
Do not create or edit info handlers manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.Layout - Beacon v0.2.1
    
    

    


  
  

    
Beacon.Content.Layout 
    



      
The wrapper content for a Beacon.Content.Page.
Do not create or layouts pages manually
Use the public functions in Beacon.Content instead.
The functions in that module guarantee that all dependencies
are created correctly and all processes are updated.
Manipulating data manually will most likely result
in inconsistent behavior and crashes.


      


      
        Summary


  
    Types
  


    
      
        
  
    
    Beacon.Content.Layou