

 beam_notify

 v1.1.0

 Table of contents

 	BEAMNotify

 	Changelog

 	Modules

 	BEAMNotify

BEAMNotify

[image: Hex version]
[image: API docs]
[image: CircleCI]
Send a message to the BEAM from a shell script
This is one solution sending notifications from non-BEAM programs into Elixir.
BEAMNotify lets you set up a GenServer that listens for notifications from
shell scripts or anything that can invoke an OS process. Communication is via a
Unix Domain socket. Messages are limited to strings that passed via commandline
arguments or the environment to the beam_notify binary.
There are, of course, other ways of solving this problem. Some non-Elixir
programs already expose Unix domain or TCP socket interfaces for communication.
This might be a better choice. You could also use
erl_call or write a C
node
and communicate over distributed Erlang.
Overview
BEAMNotify would typically be added to a supervision tree in your program.
Options to BEAMNotify specify things like its name, a dispatch function to
call, and other things.
The shell script (or any program) needs to call the beam_notify program
supplied by this library. The message is passed via commandline arguments or
environment variables (see :report_env option).
Since beam_notify needs to know how to connect to the appropriate
BEAMNotify GenServer (there may be more than one), the shell script must pass
some options. To make this easy, BEAMNotify provides two environment
variables by calling BEAMNotify.env/1:
	$BEAM_NOTIFY - the absolute path to the beam_notify executable
	$BEAM_NOTIFY_OPTIONS - how beam_notify should connect

In the shell script, run $BEAM_NOTIFY and pass it any arguments that you want
send up. BEAMNotify reports environment variables too.
If it is not possible to pass the $BEAM_NOTIFY* environment variables through
to your script due to a restricted shell environment, see the restricted shell
section below.
Back in Elixir, whenever a proper message is received, BEAMNotify will call
the dispatch function. The dispatch function is responsible for forwarding on
messages however makes sense in your application. If handling is simple, you can
process them in the dispatch function. You could also publish them through
Phoenix.PubSub or another pubsub service. BEAMNotify only handles strings,
so if you want to be fancier with your messages or filter them, you'll have to
add that to your dispatcher function.
It is important to keep in mind that the amount of data that can be sent in a
notification is limited by the transport and by OS limits on commandline
arguments. Suffice it to say that this is not intended for file transfer.
Example
What we're going to do is create a script that sends a message to Elixir.
First, make sure that you have :beam_notify by either cloning this project or
creating a test Elixir project (mix new ...) and adding it to the mix.exs:
def deps do
 [
 {:beam_notify, "~> 0.2.0"}
]
end
Now open an editor and create simple.sh with the following contents:
#!/bin/sh

echo "This is simple.sh"

$BEAM_NOTIFY Hello world

Start up Elixir with iex -S mix:
Get the PID that's running the IEx console
iex> us = self()
#PID<0.204.0>

Start a BEAMNotify GenServer. The dispatcher function sends a tuple with the
arguments and environment passed in from the shell script.
iex> BEAMNotify.start_link(name: "sulu", report_env: true, dispatcher: &send(us, {&1, &2}))
{:ok, #PID<0.211.0>}

Run the shell script. We're doing this from Elixir, but you
can also grab the environment by calling `BEAMNotify.env/1` and run it
in another terminal window.
iex> System.cmd("/bin/sh", ["simple.sh"], env: BEAMNotify.env("sulu"))
{"This is simple.sh\n", 0}

See what was sent
iex> flush
{["Hello", "world"], %{...}}
Supervision example
Here's a code snippet of starting a hypothetical non-Elixir program that needs
to send messages back to Elixir. This code is part of a module-based
supervisor,
but this isn't necessary. Two GenServers are started: one for BEAMNotify and
one to start and monitor the non-Elixir program using
MuonTrap.Daemon.
Note how BEAMNotify.env/1 is used to pass the proper environment to the
program.
 @impl Supervisor
 def init(_) do
 beam_notify_options = [name: "my_beam", dispatcher: &Some.function/2]
 children = [
 {BEAMNotify, beam_notify_options},
 {MuonTrap.Daemon,
 [
 "/path/to/program",
 ["-s", "script_calling_beam_notify.sh"],
 [log_output: :debug, env: BEAMNotify.env(beam_notify_options)]
]}
]

 opts = [strategy: :one_for_one]
 Supervisor.start_link(children, opts)
 end
If you're lucky, it might be sufficient to call BEAMNotify.bin_path/0 to get
the path to the beam_notify program and pass that directly to the non-Elixir
program. You'll still need to set the environment for beam_notify to work. On
the bright side, this will skip out having your system start bash on each
notification.
Restricted shell environments
Some programs clear the OS environment before running programs as a security
precaution. It's still possible send messages to Elixir.
You'll need to know the path to the beam_notify binary and have a place to put
the communications socket that both Elixir and the beam_notify binary can
open. In this example, the socket will be created as
/tmp/my_beam_notify_socket. In Elixir, the BEAMNotify child_spec might look
like this:
{BEAMNotify, name: "any name", path: "/tmp/my_beam_notify_socket", dispatcher: &Some.function/2}
For the script, here's a sample for Nerves devices where code is installed under
/srv/erlang.
#!/bin/sh

BEAM_NOTIFY=$(ls /srv/erlang/lib/beam_notify-*/priv/beam_notify)

$BEAM_NOTIFY -p /tmp/my_beam_notify_socket -- hello

The arguments following the -- are passed. The -p /tmp/my_beam_notify_socket
part will be dropped.
Arguments are only parsed (and dropped) if $BEAM_NOTIFY_OPTIONS isn't defined.
In other words, $BEAM_NOTIFY_OPTIONS takes precedence.
License
This library is covered by the Apache 2 license.

Changelog

v1.1.0
This release fixes warnings when compiled with Elixir 1.15. It removes support
for Elixir 1.9.
v1.0.0
This release has no changes except for the version number.
v0.2.2
	New features	Add :mode option for setting socket file permissions. Thanks to Ed
Wildgoose for this feature.

v0.2.1
This release only cleans up Makefile prints and bumps dependencies. No code
changes were made.
v0.2.0
	New features	Support for explicitly passing the socket path - this enables use in
restricted environments where it's impossible or hard to pass parameters
through environment variables
	Reporting the environment is off by default. See the :report_env option
	Default socket paths are obfuscated. This also removes OS-specific
character-set issues and length limitations

v0.1.0
Initial release to hex.

BEAMNotify

Send a message to the BEAM from a shell script

 Anchor for this section

 Summary

 Types

 dispatcher()

 Callback for dispatching notifications

 options()

 BEAMNotify takes the following options

 Functions

 bin_path()

 Return the path to beam_notify

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 env(options)

 Return the OS environment needed to call $BEAM_NOTIFY

 start_link(options)

 Start the BEAMNotify message receiver

 Anchor for this section

Types

 Link to this type

 dispatcher()

 View Source

 @type dispatcher() :: ([String.t()], %{required(String.t()) => String.t()} -> :ok)

Callback for dispatching notifications
BEAMNotify calls the dispatcher function whenever a message comes in. The
first parameter is the list of arguments passed to $BEAM_NOTIFY. The
second argument is a map containing environment variables. Whether or
not the map is populated depends on the options to start_link/1.

 Link to this type

 options()

 View Source

 @type options() :: [
 name: binary() | atom(),
 path: Path.t(),
 mode: non_neg_integer(),
 dispatcher: dispatcher(),
 report_env: boolean(),
 recbuf: non_neg_integer()
]

BEAMNotify takes the following options
	:name - a unique name for this notifier. This is required if you expect
to run multiple BEAMNotify GenServers at a time.
	:dispatcher - a function to call when a notification comes in
	:path - the path to use for the named socket. A path in the system
 temporary directory is the default.
	:mode - the permissions to apply to the socket. Should be an octal number
 eg: 0o660 for read/write owner/group, no access to everyone else
	:report_env - set to true to report environment variables in addition
 to commandline argument. Defaults to false
	:recbuf - receive buffer size. If you're sending a particular large
 amount of data and getting errors from :erlang.binary_to_term(data), try
 making this bigger. Defaults to 8192.

 Anchor for this section

Functions

 Link to this function

 bin_path()

 View Source

 @spec bin_path() :: Path.t()

Return the path to beam_notify

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 env(options)

 View Source

 @spec env(pid() | binary() | atom() | keyword()) :: Enumerable.t()

Return the OS environment needed to call $BEAM_NOTIFY
This returns a map that can be passed directly to System.cmd/3 via its
:env option.
This function can be passed different things based on what's convenient.
	If you're setting up child_spec's for a supervision tree and need the
environment to pass in another child_spec, call this with the same
options that you'd pass to start_link/1. This is a very common use.

	If you called start_link/1 manually and have the pid, call it with
the pid.

	If you only have the name that was passed to start_link/1, then call
it with the name. The name alone is insufficient for returning the
$BEAM_NOTIFY_OPTIONS environment variable, so the BEAMNotify
GenServer must be running. If you're in a chicken-and-egg situation
where you're setting up a supervision tree, but it hasn't been started
yet, see option 1.

 Link to this function

 start_link(options)

 View Source

 @spec start_link(options()) :: GenServer.on_start()

Start the BEAMNotify message receiver

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

