

 Bindable

 v1.1.0

 Table of contents

 	Bindable

 	Modules

 	Bindable

 	Bindable.Empty

 	Bindable.FlatMap

 	Bindable.ForComprehension

 	Bindable.Maybe

 	Bindable.Pure

Bindable

[image: Elixir CI]
Elixir for-comprehension that goes beyond the Lists.
import Bindable.ForComprehension
import Bindable.Maybe

bindable for x <- just(1),
 y <- just(2),
 x + y > 4,
 z <- just(3),
 do: x + y + z
nothing()
For-comprehension
For-comprehension is a common syntax construct in functional programming languages,
that allows you to express complex operations on collections and monadic contexts in a concise and expressive way.
More formally, it is a way to construct monadic value by describing it as a sequence of effectful computations.
To do so, it provides following constructs to combine such computations into new monadic value:
	Generator (commonly known as iterator for lists): extracts value from the monadic context.
	Guard (or filter): filters generated values based on a predicate (see Bindable.Empty).
	Assign: aliases any expression inside current scope.
	Yield: defines resulting value to return inside the monadic context.

import Bindable.ForComprehension

xs = [[10, 20], [30]]
bindable for x <- xs, # generator
 length(x) > 1, # guard
 y <- x, # next generator
 z = y + 1, # assign
 y + z > 21, # another guard
 do: {y, z} # yield
[{20, 21}]
Usage
Elixir's kernel provides for-comprehension only for lists.
It works with any Enumerable, however it always (eagerly) yields List
(so you can't describe Stream using Kernel.SpecialForms.for/1).
Bindable already comes with for-comprehension batteries for:
	List,
	Maybe,
	Stream.

"Minimal complete definition" for you data type to be compliant with for-comprehension includes:
	Bindable.FlatMap implementation to chain sequential generators;
	Bindable.Pure implementation to yield resulting value (design decision, see Bindable.ForComprehension).

If you want to use guards/filters inside for-comprehension with your data type,
you should also provide an implementation for Bindable.Empty, so it is optional,
e.g. when your data type does not provide any meaningful semantics for empty/filtered value effect.
The main goal of the library is to provide for-comprehension beyond lists with the least amount of overhead.
So it doesn't aim to provide a principled way to define type classes (required by for-context),
e.g. it doesn't provide any sensible way to enforce type class properties on implementations.
To stick with "the least amount of overhead" paradigm type classes implemented atop of Elixir protocols.
Installation
The package can be installed by adding bindable to your list of dependencies in mix.exs:
def deps do
 [
 {:bindable, "~> 1.1.0"}
]
end
The docs can be found at https://hexdocs.pm/bindable.

Bindable

Elixir for-comprehension that goes beyond the Lists.
 iex> import Bindable.ForComprehension
 ...> import Bindable.Maybe
 ...>
 ...> bindable for x <- just(1),
 ...> y <- just(2),
 ...> x + y > 4,
 ...> z <- just(3),
 ...> do: x + y + z
 nothing()
For-comprehension is a common syntax construct in functional programming languages,
that allows you to express complex operations on collections and monadic contexts in a concise and expressive way.
More formally, it is a way to construct monadic value by describing it as a sequence of effectful computations.
To do so, it provides following constructs to combine such computations into new monadic value:
	Generator (commonly known as iterator for lists): extracts value from the monadic context.
	Guard (or filter): filters generated values based on a predicate (see Bindable.Empty).
	Assign: aliases any expression inside current scope.
	Yield: defines resulting value to return inside the monadic context.

Here comes an example of them:
 iex> import Bindable.ForComprehension
 ...>
 ...> xs = [[10, 20], [30]]
 ...> bindable for x <- xs, # generator
 ...> length(x) > 1, # guard
 ...> y <- x, # next generator
 ...> z = y + 1, # assign
 ...> y + z > 21, # another guard
 ...> do: {y, z} # yield
 [{20, 21}]
Elixir's kernel provides for-comprehension only for lists.
It works with any Enumerable, however it always (eagerly) yields List
(so you can't describe Stream using Kernel.SpecialForms.for/1).
Bindable already comes with for-comprehension batteries for:
	List
	Bindable.Maybe
	Stream

So you can lazily create new stream out of provided ones:
 iex> import Bindable.ForComprehension
 ...>
 ...> lazy_xs = Stream.take(1..5, 2)
 ...> lazy_ys = Stream.take(5..9, 2)
 ...> lazy_xys = bindable for x <- lazy_xs,
 ...> y <- lazy_ys,
 ...> do: {x, y}
 ...>
 ...> {is_list(lazy_xys), Enum.to_list(lazy_xys)}
 {false, [{1, 5}, {1, 6}, {2, 5}, {2, 6}]}
The main goal of the library is to provide for-comprehension beyond lists with the least amount of overhead.
So it doesn't aim to provide a principled way to define type classes (required by for-context),
e.g. it doesn't provide any sensible way to enforce type class properties on implementations.
To stick with "the least amount of overhead" paradigm type classes implemented atop of Elixir protocols.
"Minimal complete definition" for you data type to be compliant with for-comprehension includes:
	Bindable.FlatMap implementation to chain sequential generators;
	Bindable.Pure implementation to yield resulting value (design decision, see Bindable.ForComprehension).

If you want to use guards/filters inside for-comprehension with your data type
(or you want to pattern match on the generated values like Kernel.SpecialForms.for/1 does,
as in this case pattern matching has filtering semantics),
you should also provide an implementation for Bindable.Empty, so it is optional,
e.g. when your data type does not provide any meaningful semantics for empty/filtered value effect:
 iex> import Bindable.ForComprehension
 ...>
 ...> xs = [[], [2, 2], [3], [4]]
 ...> xys = [[1, 1], [2, 2], [3, 3], [4, 4]]
 ...> bindable for [x] <- xs, # pattern matching guard
 ...> [^x, y] <- xys, # pattern matching guard with ^ operator
 ...> y > 0, # "conventional" guard
 ...> do: [x, y]
 [[3, 3], [4, 4]]

Bindable.Empty protocol

"Type class" to represent a failed or empty computation.
Informally, it defines "filtering" semantics for your type.
By implementing it you enable guards inside for-comprehension for your type.
Inspired by Alternative's empty.

 Anchor for this section

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 of(ma)

 Provides a default or fallback value in cases where a computation fails or has no result.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Anchor for this section

Functions

 Link to this function

 of(ma)

 View Source

 @spec of(example :: m(a)) :: empty_value :: m(a)

Provides a default or fallback value in cases where a computation fails or has no result.
Returns an "empty"-value of the type provided by example.

Bindable.FlatMap protocol

"Type class" to chain together computations that have a context or effect.
Required to enable for-comprehension for your type.
Inspired by Monad's bind (also known as flatMap or >>=).

 Anchor for this section

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 flat_map(ma, f)

 Takes a computation that produces a value of type a and a function,
that takes that value and produces a new computation, that produces a value of type b.
The key feature is that it allows the function to access the value produced by the first computation
and use it to construct the second computation (in contrast with Applicative's <|>).

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Anchor for this section

Functions

 Link to this function

 flat_map(ma, f)

 View Source

 @spec flat_map(m(a), (a -> m(b))) :: m(b) when a: var

Takes a computation that produces a value of type a and a function,
that takes that value and produces a new computation, that produces a value of type b.
The key feature is that it allows the function to access the value produced by the first computation
and use it to construct the second computation (in contrast with Applicative's <|>).

Bindable.ForComprehension

Elixir for-comprehension that goes beyond the Lists.
For-comprehension (its operations) could be implemented in several ways.
For example, you can desugar it into chain of flatMap + map invocation:
 iex> xs = [1, 2]
 ...> ys = [3, 4]
 ...> for(x <- xs, y <- ys, do: {x, y}) === Enum.flat_map(xs, fn x -> Enum.map(ys, fn y -> {x, y} end) end)
 true
But if you try to implement assigns using flatMap + map,
you will end up with doing something like map(ma, &{&1, assign}),
and then each guard, that doesn't utilize every variable of such tuple,
would raise an unused variable compiler warning (filter(ma, fn {a, b} -> a > 42 end)).
However, suppressing all these warning would be a bad idea.
They are useful to detect several kinds of flaws, while working with for-comprehension.
For example inefficient guards:
 iex> import Bindable.ForComprehension
 ...> bindable for x <- [1, 2], y <- [3, 4], x < 2, do: {x, y}
 [{1, 3}, {1, 4}]
In this case the guard does not refer to the last generated value,
so the expression can be refactored to apply the guard before the last generator.
It can dramatically improve performance of the whole expression in general!
 iex> import Bindable.ForComprehension
 ...> bindable for x <- [1, 2], x < 2, y <- [3, 4], do: {x, y}
 [{1, 3}, {1, 4}]
That is why flatMap + pure was used for implementation,
so assigns could be implemented in a most straightforward way,
while preserving all compiler warnings. Compiler would warn you (about unused variable),
if you try to apply the guard, which does not refer to the last generated value.

 Anchor for this section

 Summary

 Functions

 bindable(arg)

 Elixir for-comprehension that goes beyond the Lists.

 bindable(arg, list)

 do_for(reverse_ordered_assigns, reverse_ordered_guards, generated_value_pattern, generator, list)

 "Private" macro to implement for/2.

 Anchor for this section

Functions

 Link to this macro

 bindable(arg)

 View Source

 (macro)

Elixir for-comprehension that goes beyond the Lists.
Elixir does not have variadic functions or macros.
But Elixir's for-comprehension looks exactly like variadic macro:
 iex> for(x <- [1, 2], y <- [3, 4], do: {x, y})
 [{1, 3}, {1, 4}, {2, 3}, {2, 4}]
That's because it is actually a Kernel.SpecialForms.for/1, treated "specially" by compiler.
So to emulate variadic nature of for-comprehension (e.g. it can have one or many generators)
macro application was used (macro applied to Kernel.SpecialForms.for/1 expression):
 iex> import Bindable.ForComprehension
 ...> bindable for x <- [1, 2], y <- [3, 4], do: {x, y}
 [{1, 3}, {1, 4}, {2, 3}, {2, 4}]
It also supports Kernel.SpecialForms.for/1-like guards and assigns.

 Link to this macro

 bindable(arg, list)

 View Source

 (macro)

 Link to this macro

 do_for(reverse_ordered_assigns, reverse_ordered_guards, generated_value_pattern, generator, list)

 View Source

 (macro)

"Private" macro to implement for/2.
Due to Elixir's macro expand process nature you can't have this do_for macro as a "private" one.
It would require do_for import at the call-site, which is impossible for "private"-macro (defined by defmacrop).

Bindable.Maybe

Yet another Maybe implementation.
Maybe is a data type that is used to represent optional values that may or may not be present.
It is typically used as a safer alternative to using null or undefined values.

 Anchor for this section

 Summary

 Types

 just(a)

 nothing()

 t(a)

 Functions

 just(a)

 nothing()

 of_nullable(a)

 Anchor for this section

Types

 Link to this type

 just(a)

 View Source

 @type just(a) :: %Bindable.Maybe{value: %Bindable.Maybe.Just{value: a}}

 Link to this type

 nothing()

 View Source

 @type nothing() :: %Bindable.Maybe{value: %Bindable.Maybe.Nothing{}}

 Link to this type

 t(a)

 View Source

 @type t(a) :: nothing() | just(a)

 Anchor for this section

Functions

 Link to this function

 just(a)

 View Source

 @spec just(a) :: just(a) when a: var

 Link to this function

 nothing()

 View Source

 @spec nothing() :: nothing()

 Link to this function

 of_nullable(a)

 View Source

 @spec of_nullable(nil | a) :: t(a) when a: var

Bindable.Pure protocol

"Type class" to create a computation that has no effect other than to produce a value.
Required to enable for-comprehension for your type.
Inspired by Applicative's pure.

 Anchor for this section

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 of(ma, a)

 Create a computation that has no effect other than to produce a value.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Anchor for this section

Functions

 Link to this function

 of(ma, a)

 View Source

 @spec of(example :: m(a), a) :: pure_value :: m(a) when a: var

Create a computation that has no effect other than to produce a value.
Returns a "pure"-value of the type provided by example.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

