

 Bingex

 v0.1.9

 Table of contents

 	
 Modules

 	Bingex

 	Types

 	Bingex.Types

 	Common Models

 	Bingex.Model.Order

 	User API

 	Bingex.User

 	User Models

 	Bingex.User.Model.ReferralInfo

 	User API Data

 	Bingex.User.Data.GenerateListenKey

 	Bingex.User.Data.GetReferral

 	Bingex.User.Data.GetReferrals

 	Swap API

 	Bingex.Swap

 	Bingex.Swap.EventSocket

 	Bingex.Swap.PriceSocket

 	Swap Models

 	Bingex.Swap.Model.BalanceInfo

 	Bingex.Swap.Model.ContractInfo

 	Bingex.Swap.Model.DetailedOrderInfo

 	Bingex.Swap.Model.DetailedPositionUpdate

 	Bingex.Swap.Model.OrderInfo

 	Bingex.Swap.Model.PositionInfo

 	Bingex.Swap.Model.PositionUpdate

 	Bingex.Swap.Model.QuoteInfo

 	Bingex.Swap.Model.WalletUpdate

 	Swap API Data

 	Bingex.Swap.Data.CancelAllOrders

 	Bingex.Swap.Data.CloseAllPositions

 	Bingex.Swap.Data.GetBalance

 	Bingex.Swap.Data.GetContracts

 	Bingex.Swap.Data.GetLeverage

 	Bingex.Swap.Data.GetOrdersHistory

 	Bingex.Swap.Data.GetPositions

 	Bingex.Swap.Data.GetPositionsHistory

 	Bingex.Swap.Data.GetQuotes

 	Bingex.Swap.Data.GetServerTime

 	Bingex.Swap.Data.PlaceOrder

 	Bingex.Swap.Data.PlaceOrders

 	Bingex.Swap.Data.PlaceTestOrder

 	Bingex.Swap.Data.SetLeverage

 	Swap Socket Events

 	Bingex.Swap.Model.AccountEvent

 	Bingex.Swap.Model.ConfigEvent

 	Bingex.Swap.Model.PriceEvent

 	Bingex.Swap.Model.TradeEvent

 	API

 	Bingex.API.Error

 	Bingex.API.Reply

 	Bingex.Socket

 	HTTP

 	Bingex.HTTP.Error

 	Bingex.HTTP.Request

 	Bingex.HTTP.Response

Bingex

Bingex is an Elixir library for interacting with the BingX exchange, providing a transparent and reliable API interface.
This library offers:
	HTTP API support for Swap and User scopes.
	Sockets for real-time WebSocket price updates and event streaming.
	Validated models to ensure data reliability.
	Transparent request-response handling, exposing full exchange responses for independent interpretation.

 Placing an Order

To place an order on the BingX Swap market:
alias Bingex.{Order, Swap}

api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"

order = %Order{
 symbol: "BTC-USDT",
 side: :buy,
 type: :market,
 price: 65000,
 quantity: 0.01
}

case Swap.create_order(order, api_key, secret_key) do
 {:ok, response, _meta} -> IO.inspect(response, label: "Order Placed")
 {:error, error, _meta} -> IO.inspect(error, label: "Order Failed")
end

 Fetching SWAP Balance

To retrieve user balances:
alias Bingex.Swap

case Swap.get_balance(api_key, secret_key) do
 {:ok, balance, _meta} -> IO.inspect(balance, label: "Account Balance")
 {:error, error, _meta} -> IO.inspect(error, label: "Balance Fetch Failed")
end

 Sockets

Define and start your WebSocket using Socket implementation (e.g. Bingex.Swap.PriceSocket):
defmodule PriceSource do
 use Bingex.Swap.PriceSocket
 alias Bingex.Swap.PriceSocket

 def start_link(_args \\ []) do
 PriceSocket.start_link(__MODULE__, :state)
 end

 @impl true
 def handle_connect(state) do
 PriceSocket.subscribe(%{symbol: "BTC-USDT", type: :last})
 {:ok, state}
 end

 @impl true
 def handle_event(type, event, state) do
 IO.inspect({type, event, state})
 {:ok, state}
 end
end

PriceSource.start_link()

 Transparency and Reliability

Bingex ensures that all API responses remain fully accessible with a really tiny abstraction,
allowing users to interpret and validate responses as needed. The library follows a simple but
pragmatic approach, ensuring secure and predictable request handling.

Bingex.Types

 Summary

 Types

 failed_request_metadata()

 request_metadata()

 Types

 failed_request_metadata()

 @type failed_request_metadata() :: Bingex.HTTP.Request.t()

 request_metadata()

 @type request_metadata() :: {Bingex.HTTP.Request.t(), Bingex.HTTP.Response.t()}

Bingex.Model.Order

Defines the structure and types for orders in BingX.

 Summary

 Types

 execution_type()

 margin_mode()

 position_side()

 side()

 status()

 t()

 type()

 working_type()

 Functions

 new(params)

 Types

 execution_type()

 @type execution_type() :: :placed | :canceled | :calculated | :expired | :trade

 margin_mode()

 @type margin_mode() :: :isolated | :crossed

 position_side()

 @type position_side() :: :long | :short | :both

 side()

 @type side() :: :buy | :sell

 status()

 @type status() ::
 :placed
 | :triggered
 | :filled
 | :partially_filled
 | :canceled
 | :canceled
 | :expired

 t()

 @type t() :: %Bingex.Model.Order{
 position_side: position_side(),
 price: nil | float(),
 quantity: float(),
 side: side(),
 stop_price: nil | float(),
 symbol: binary(),
 type: type(),
 working_type: nil | working_type()
}

 type()

 @type type() ::
 :market
 | :trigger_market
 | :stop_loss
 | :take_profit
 | :limit
 | :stop_loss_market
 | :take_profit_market

 working_type()

 @type working_type() :: :mark_price | :index_price | :contract_price

 Functions

 new(params)

Bingex.User

Provides an interface to interact with the BingX User API.

 Summary

 Functions

 extend_listen_key(listen_key, api_key)

 generate_listen_key(api_key)

 get_referral(user_id, api_key, secret_key)

 get_referrals(page_index \\ 0, page_size \\ 200, start_time \\ nil, end_time \\ nil, api_key, secret_key)

 Functions

 extend_listen_key(listen_key, api_key)

 @spec extend_listen_key(listen_key :: binary(), api_key :: binary()) ::
 {:ok, Bingex.API.Reply.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

 generate_listen_key(api_key)

 @spec generate_listen_key(api_key :: binary()) ::
 {:ok, Bingex.API.Reply.t(Bingex.User.Data.GenerateListenKey.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

 get_referral(user_id, api_key, secret_key)

 @spec get_referral(
 user_id :: binary(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.User.Data.GetReferral.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

 get_referrals(page_index \\ 0, page_size \\ 200, start_time \\ nil, end_time \\ nil, api_key, secret_key)

 @spec get_referrals(
 page_index :: non_neg_integer(),
 page_size :: non_neg_integer(),
 start_time :: nil | non_neg_integer(),
 end_time :: nil | non_neg_integer(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.User.Data.GetReferrals.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Bingex.User.Model.ReferralInfo

Represents referral information for a user in BingX.

 Summary

 Types

 t()

 Referral information for a user.

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.User.Model.ReferralInfo{
 balance: float(),
 benefit_expiration: integer(),
 benefit_ratio: integer(),
 current_benefit: integer(),
 deposit?: boolean(),
 direct_referral?: boolean(),
 fee_ratio: integer(),
 has_trades?: boolean(),
 invite_code: binary(),
 invite_result: boolean(),
 inviter_sid: binary(),
 own_invite_code: binary(),
 registration_date: integer(),
 uid: binary(),
 user_level: binary(),
 verified_kyc?: boolean()
}

Referral information for a user.

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Bingex.User.Data.GenerateListenKey

Represents the listen key data for user authentication in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.User.Data.GenerateListenKey{listen_key: binary()}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.User.Data.GetReferral

Retrieves and structures referral data for a user in BingX.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.User.Data.GetReferral{
 referral: Bingex.User.Model.ReferralInfo.t()
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.User.Data.GetReferrals

Retrieves and structures a list of referral data for a user in BingX.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.User.Data.GetReferrals{
 referrals: [Bingex.User.Model.ReferralInfo.t()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap

Provides an interface to interact with the BingX Swap API.

 Summary

 Functions

 cancel_all_orders(symbol, api_key, secret_key)

 Requests to cancel all orders by their market symbol (ex. BTC-USDT) with account credentials.

 close_all_positions(symbol, api_key, secret_key)

 Request to close all positions by market symbol (ex. BTC-USDT) with account credentials.

 get_balance(api_key, secret_key)

 Requests to get current swap balance.

 get_contracts(symbol \\ nil)

 get_leverage(symbol, api_key, secret_key)

 Request the opening leverage and available positions of the user in the specified symbol contract.

 get_orders_history(symbol, start_time \\ nil, end_time \\ nil, limit \\ 50, api_key, secret_key)

 Request to get all user's orders (pending, active, ...) by an optional
period (start_time, end_time) and an optional limit of returned amount
of orders with account credentials.

 get_positions(symbol, api_key, secret_key)

 Request to the positions state of perpetual contracts by with account credentials.

 get_positions_history(symbol, start_time, end_time, api_key, secret_key)

 Request to the position history of perpetual contracts by an optional
period (start_time, end_time) with account credentials.

 get_quotes(symbol \\ nil)

 get_server_time()

 Requests to get current server time.

 place_order(order, api_key, secret_key)

 Requests to place an order using order data with account credentials.

 place_orders(orders, api_key, secret_key)

 Requests to place bunch of orders using list of order data with account credentials.

 place_test_order(order, api_key, secret_key)

 Requests to place a test order using order data with account credentials.

 set_leverage(symbol, position_side, leverage, api_key, secret_key)

 Request to set user's leverage amount by market symbol, position side and account credentials.
Position side can be either :crossed or :isolated.
Currently, BingX allows leverage from 1 to 125.

 set_margin_mode(symbol, margin_mode, api_key, secret_key)

 Request to set user's margin mode by market symbol and account credentials.
Margin mode can be either :crossed or :isolated.

 Functions

 cancel_all_orders(symbol, api_key, secret_key)

 @spec cancel_all_orders(
 symbol :: binary(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.CancelAllOrders.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to cancel all orders by their market symbol (ex. BTC-USDT) with account credentials.

 close_all_positions(symbol, api_key, secret_key)

 @spec close_all_positions(
 symbol :: binary(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.CloseAllPositions.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to close all positions by market symbol (ex. BTC-USDT) with account credentials.

 get_balance(api_key, secret_key)

 @spec get_balance(api_key :: binary(), secret_key :: binary()) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.GetBalance.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to get current swap balance.

 get_contracts(symbol \\ nil)

 get_leverage(symbol, api_key, secret_key)

 @spec get_leverage(
 symbol :: binary(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(nil), Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request the opening leverage and available positions of the user in the specified symbol contract.

 get_orders_history(symbol, start_time \\ nil, end_time \\ nil, limit \\ 50, api_key, secret_key)

 @spec get_orders_history(
 symbol :: binary(),
 start_time :: nil | non_neg_integer(),
 end_time :: nil | non_neg_integer(),
 limit :: non_neg_integer(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.GetOrdersHistory.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to get all user's orders (pending, active, ...) by an optional
period (start_time, end_time) and an optional limit of returned amount
of orders with account credentials.

 get_positions(symbol, api_key, secret_key)

 @spec get_positions(
 symbol :: binary(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to the positions state of perpetual contracts by with account credentials.

 get_positions_history(symbol, start_time, end_time, api_key, secret_key)

 @spec get_positions_history(
 symbol :: binary(),
 start_time :: non_neg_integer(),
 end_time :: non_neg_integer(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to the position history of perpetual contracts by an optional
period (start_time, end_time) with account credentials.

 get_quotes(symbol \\ nil)

 get_server_time()

 @spec get_server_time() ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.GetServerTime.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to get current server time.

 place_order(order, api_key, secret_key)

 @spec place_order(Bingex.Model.Order.t(), api_key :: binary(), secret_key :: binary()) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.PlaceOrder.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to place an order using order data with account credentials.

 place_orders(orders, api_key, secret_key)

 @spec place_orders(
 [Bingex.Model.Order.t()],
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.PlaceOrders.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to place bunch of orders using list of order data with account credentials.

 place_test_order(order, api_key, secret_key)

 @spec place_test_order(
 Bingex.Model.Order.t(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.PlaceOrder.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Requests to place a test order using order data with account credentials.

 set_leverage(symbol, position_side, leverage, api_key, secret_key)

 @spec set_leverage(
 symbol :: binary(),
 Bingex.Model.Order.position_side(),
 leverage :: non_neg_integer(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(Bingex.Swap.Data.SetLeverage.t()),
 Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to set user's leverage amount by market symbol, position side and account credentials.
Position side can be either :crossed or :isolated.
Currently, BingX allows leverage from 1 to 125.

 set_margin_mode(symbol, margin_mode, api_key, secret_key)

 @spec set_margin_mode(
 symbol :: binary(),
 Bingex.Model.Order.margin_mode(),
 api_key :: binary(),
 secret_key :: binary()
) ::
 {:ok, Bingex.API.Reply.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.API.Error.t(), Bingex.Types.request_metadata()}
 | {:error, Bingex.HTTP.Error.t(), Bingex.Types.failed_request_metadata()}

Request to set user's margin mode by market symbol and account credentials.
Margin mode can be either :crossed or :isolated.

Bingex.Swap.EventSocket behaviour

defmodule EventSource do
 use Bingex.Swap.EventSocket
 require Logger
 alias Bingex.Swap.EventSocket

 def start_link(listen_key) do
 EventSocket.start_link(listen_key, __MODULE__, :state)
 end

 @impl true
 def handle_event(type, event, state) do
 Logger.info(%{ type: type, event: event, state: state })
 {:ok, state}
 end
end

 Summary

 Callbacks

 handle_event(type, event, state)

 Functions

 call(pid, message, delay)

 cast(pid, message)

 start(listen_key, module, state, options \\ [])

 start_link(listen_key, module, state, options \\ [])

 Callbacks

 handle_event(type, event, state)

 @callback handle_event(
 type :: :config | :account | :trade,
 event ::
 Bingex.Swap.Model.ConfigEvent.t()
 | Bingex.Swap.Model.AccountEvent.t()
 | Bingex.Swap.Model.TradeEvent.t(),
 state :: term()
) :: {:ok, state :: term()} | {:close, state :: term()}

 Functions

 call(pid, message, delay)

 cast(pid, message)

 start(listen_key, module, state, options \\ [])

 start_link(listen_key, module, state, options \\ [])

Bingex.Swap.PriceSocket behaviour

defmodule PriceSource do
 use Bingex.Swap.PriceSocket
 alias Bingex.Swap.PriceSocket

 def start_link(_args \\ []) do
 PriceSocket.start_link(__MODULE__, :state)
 end

 @impl true
 def handle_connect(state) do
 PriceSocket.subscribe(symbol: "BTC-USDT", type: :last)
 {:ok, state}
 end

 @impl true
 def handle_event(type, event, state) do
 IO.inspect({type, event, state})
 {:ok, state}
 end
end

 Summary

 Callbacks

 handle_event(type, event, state)

 Functions

 call(pid, message, delay)

 cast(pid, message)

 start(module, state, options \\ [])

 start_link(module, state, options \\ [])

 subscribe(pid \\ self(), params)

 Callbacks

 handle_event(type, event, state)

 @callback handle_event(
 type :: :price,
 event :: Bingex.Swap.Model.PriceEvent.t(),
 state :: term()
) :: {:ok, state :: term()} | {:close, state :: term()}

 Functions

 call(pid, message, delay)

 cast(pid, message)

 start(module, state, options \\ [])

 start_link(module, state, options \\ [])

 subscribe(pid \\ self(), params)

Bingex.Swap.Model.BalanceInfo

Represents balance information for a BingX swap account.
This module provides structured details about a user's account balance, including margin availability,
equity, and profit/loss metrics.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.BalanceInfo{
 asset: binary(),
 available_margin: float(),
 balance: float(),
 equity: float(),
 freezed_margin: float(),
 realized_profit: float(),
 uid: binary(),
 unrealized_profit: float(),
 used_margin: float(),
 user_id: binary()
}

 Functions

 decode(data)

 @spec decode(any()) :: {:ok, t()} | :error

Bingex.Swap.Model.ContractInfo

Represents contract information for a swap contract in BingX.

 Summary

 Types

 contract_status()

 t()

 Functions

 decode(data)

 Types

 contract_status()

 @type contract_status() :: :online | :pre_online | :offline | :forbidden

 t()

 @type t() :: %Bingex.Swap.Model.ContractInfo{
 asset: binary(),
 closing_status: binary(),
 contract_id: term(),
 currency: binary(),
 guaranteed_stop_fee_rate: binary(),
 guaranteed_stop_status: boolean(),
 launch_time: non_neg_integer(),
 maintain_time: non_neg_integer(),
 maker_fee_rate: float(),
 min_quantity: float(),
 min_quote_amount: float(),
 off_time: non_neg_integer(),
 opening_status: binary(),
 price_precision: integer(),
 quantity_precision: integer(),
 status: contract_status(),
 symbol: binary(),
 taker_fee_rate: float(),
 transactions_status: boolean()
}

 Functions

 decode(data)

 @spec decode(any()) :: {:ok, t()} | :error

Bingex.Swap.Model.DetailedOrderInfo

Represents detailed order information for a swap contract in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Complete order information.

 Types

 t()

 @type t() :: %Bingex.Swap.Model.DetailedOrderInfo{
 average_price: float(),
 client_order_id: binary(),
 executed_quantity: float(),
 executed_quote_amount: float(),
 fee: float(),
 leverage: non_neg_integer(),
 only_one_position?: boolean(),
 order_id: binary(),
 order_type: binary(),
 original_quantity: float(),
 position_id: binary(),
 position_side: Bingex.Model.Order.position_side(),
 price: float(),
 profit: float(),
 reduce_only?: boolean(),
 side: Bingex.Model.Order.side(),
 status: Bingex.Model.Order.status(),
 stop_guaranteed?: boolean(),
 stop_loss: any(),
 stop_loss_entrust_price: float(),
 stop_price: float(),
 symbol: binary(),
 take_profit: any(),
 take_profit_entrust_price: float(),
 timestamp: non_neg_integer(),
 trigger_order_id: binary(),
 type: Bingex.Model.Order.type(),
 update_time: non_neg_integer(),
 working_type: Bingex.Model.Order.working_type()
}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Complete order information.
Fields:
	order_id (binary): Unique identifier for the order.
	symbol (binary): Trading pair symbol (e.g., "BTC-USDT").
	side (Order.side()): Buy/Sell direction of the order.
	position_side (Order.position_side()): Position type (e.g., long, short).
	status (Order.status()): Current status of the order (e.g., filled, canceled).
	stop_price (float): Stop price for conditional orders.
	price (float): Price at which the order was placed.
	type (Order.type()): Order type (e.g., market, limit).
	client_order_id (binary): Custom client-provided order ID.
	trigger_order_id (binary | nil): ID of the trigger order (if applicable).

	working_type (Order.working_type()): Price type used for stop orders.
	leverage (integer): Leverage level applied to the order.
	fee (float): Trading fee incurred.
	executed_quote_amount (float): Total executed quote asset amount.
	executed_quantity (float): Total executed base asset quantity.
	only_one_position? (boolean): Whether the order allows only one position.
	order_type (binary): Additional classification of the order type.
	original_quantity (float): Initial order quantity.
	average_price (float): Average execution price of the order.
	position_id (binary | nil): Associated position ID.

	profit (float): Realized profit from the order.
	reduce_only? (boolean): Whether the order reduces an existing position.
	stop_loss (map | nil): Stop-loss details (if applicable).

	stop_loss_entrust_price (float): Price at which stop-loss is triggered.
	take_profit (map | nil): Take-profit details (if applicable).

	take_profit_entrust_price (float): Price at which take-profit is triggered.
	stop_guaranteed? (boolean): Whether stop-loss is guaranteed.
	timestamp (non_neg_integer): Order creation timestamp.
	update_time (non_neg_integer): Last update timestamp.

Bingex.Swap.Model.DetailedPositionUpdate

Represents detailed position update information for a swap contract in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.DetailedPositionUpdate{
 average_close_price: float(),
 average_price: float(),
 close_position_quantity: float(),
 closed?: boolean(),
 isolated?: boolean(),
 leverage: pos_integer(),
 net_profit: float(),
 open_time: non_neg_integer(),
 position_fee: float(),
 position_id: binary(),
 position_quantity: float(),
 position_side: binary(),
 realised_profit: float(),
 symbol: binary(),
 total_funding: float(),
 update_time: non_neg_integer()
}

 Functions

 decode(data)

 @spec decode(term()) :: {:ok, t()} | :error

Bingex.Swap.Model.OrderInfo

Represents order information for a swap contract in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.OrderInfo{
 activation_price: float(),
 client_order_id: binary(),
 close_position?: boolean(),
 order_id: binary(),
 position_side: Bingex.Model.Order.position_side(),
 price: float(),
 price_rate: float(),
 quantity: float(),
 reduce_only?: boolean(),
 side: Bingex.Model.Order.side(),
 stop_guaranteed?: boolean(),
 stop_loss: any(),
 stop_price: float(),
 symbol: binary(),
 take_profit: any(),
 time_in_force: any(),
 type: Bingex.Model.Order.type(),
 working_type: Bingex.Model.Order.working_type()
}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Bingex.Swap.Model.PositionInfo

Decodes individual position data returned by the BingX swap API.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.PositionInfo{
 available_quantity: float(),
 average_price: float(),
 create_time: non_neg_integer(),
 initial_margin: float(),
 isolated?: boolean(),
 leverage: pos_integer(),
 liquidation_price: float(),
 margin: float(),
 mark_price: float(),
 only_one_position?: boolean(),
 pnl_ratio: float(),
 position_id: binary(),
 position_quantity: float(),
 position_side: binary(),
 position_value: float(),
 realised_profit: float(),
 risk_rate: float(),
 symbol: binary(),
 unrealised_profit: float(),
 update_time: non_neg_integer()
}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Bingex.Swap.Model.PositionUpdate

Represents position update information for a swap contract in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.PositionUpdate{
 average_price: float(),
 margin: float(),
 margin_mode: Bingex.Model.Order.margin_mode(),
 position_margin: float(),
 realized_pnl: float(),
 side: Bingex.Model.Order.position_side(),
 symbol: binary(),
 unrealized_pnl: float()
}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Bingex.Swap.Model.QuoteInfo

Represents real-time quote information for a swap contract in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.QuoteInfo{
 funding_rate: float(),
 last_price: float(),
 mark_price: float(),
 next_funding_time: float(),
 symbol: binary()
}

 Functions

 decode(data)

 @spec decode(any()) :: {:ok, t()} | :error

Bingex.Swap.Model.WalletUpdate

Represents a wallet balance update event for a swap account in BingX.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.WalletUpdate{
 asset: binary(),
 available_balance: float(),
 balance: float(),
 balance_change: float()
}

 Functions

 decode(data)

 @spec decode(map()) :: {:ok, t()} | :error

Bingex.Swap.Data.CancelAllOrders

Parses and structures response data for closing all swap positions on BingX.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.CancelAllOrders{
 failed: [binary()],
 succeeded: [binary()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.CloseAllPositions

Parses and structures response data for closing all swap positions on BingX.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.CloseAllPositions{
 failed: [binary()],
 succeeded: [binary()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetBalance

Parses and structures balance data for BingX swap accounts.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetBalance{assets: [Bingex.Swap.Model.BalanceInfo.t()]}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetContracts

Parses and structures contract data for BingX swap markets.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetContracts{
 contracts: [Bingex.Swap.Model.ContractInfo.t()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetLeverage

Processes leverage info response data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetLeverage{
 available_long_quantity: float(),
 available_long_value: float(),
 available_short_quantity: float(),
 available_short_value: float(),
 long_leverage: integer(),
 max_long_leverage: integer(),
 max_long_value: float(),
 max_short_leverage: integer(),
 max_short_value: float(),
 short_leverage: integer(),
 symbol: binary()
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetOrdersHistory

Parses and structures historical order data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetOrdersHistory{
 history: [Bingex.Swap.Model.DetailedOrderInfo.t()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetPositions

Parses and structures positions data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetPositions{
 list: [Bingex.Swap.Model.PositionInfo.t()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetPositionsHistory

Parses and structures historical positions data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetPositionsHistory{
 history: [Bingex.Swap.Model.DetailedPositionUpdate.t()]
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetQuotes

Parses and structures quote data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetQuotes{quotes: [Bingex.Swap.Model.QuoteInfo.t()]}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.GetServerTime

Parses and structures server time data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.GetServerTime{time: non_neg_integer()}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.PlaceOrder

Parses and structures order placement data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.PlaceOrder{order: Bingex.Swap.Model.OrderInfo.t()}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.PlaceOrders

Parses and structures batch order placement data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.PlaceOrders{orders: [Bingex.Swap.Model.OrderInfo.t()]}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.PlaceTestOrder

Parses and structures test order placement data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.PlaceTestOrder{order: Bingex.Swap.Model.OrderInfo.t()}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Data.SetLeverage

Processes leverage setting response data for BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(arg1)

 embed_in_reply(reply)

 Types

 t()

 @type t() :: %Bingex.Swap.Data.SetLeverage{
 available_long_quantity: float(),
 available_long_value: float(),
 available_short_quantity: float(),
 available_short_value: float(),
 max_long_value: float(),
 max_short_value: float(),
 symbol: binary()
}

 Functions

 decode(arg1)

 @spec decode(any()) :: {:ok, t()} | :error

 embed_in_reply(reply)

 @spec embed_in_reply(Bingex.API.Reply.t()) :: Bingex.API.Reply.t(t())

Bingex.Swap.Model.AccountEvent

Represents an account event in BingX swaps.

 Summary

 Types

 event_type()

 t()

 Functions

 decode(data)

 Types

 event_type()

 @type event_type() :: :order | :funding_fee | :deposit | :withdraw

 t()

 @type t() :: %Bingex.Swap.Model.AccountEvent{
 position_updates: [Bingex.Swap.Model.PositionUpdate.t()],
 symbol: binary(),
 timestamp: integer(),
 type: event_type(),
 wallet_updates: [Bingex.Swap.Model.WalletUpdate.t()]
}

 Functions

 decode(data)

 @spec decode(map()) :: t()

Bingex.Swap.Model.ConfigEvent

Represents a configuration event in BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.ConfigEvent{
 long_leverage: float() | nil,
 margin_mode: :crossed,
 short_leverage: float() | nil,
 symbol: binary() | nil,
 timestamp: integer()
}

 Functions

 decode(data)

 @spec decode(map()) :: t()

Bingex.Swap.Model.PriceEvent

Handles price events in BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.PriceEvent{
 symbol: binary() | nil,
 timestamp: integer() | nil,
 type: :last | :mark | nil,
 value: float() | nil
}

 Functions

 decode(data)

 @spec decode(map()) :: t()

Bingex.Swap.Model.TradeEvent

Processes trade events in BingX swaps.

 Summary

 Types

 t()

 Functions

 decode(data)

 Types

 t()

 @type t() :: %Bingex.Swap.Model.TradeEvent{
 accumulated_quantity: float() | nil,
 actual_price: float() | nil,
 client_order_id: term() | nil,
 execution_type: Bingex.Model.Order.execution_type() | nil,
 fee: float() | nil,
 fee_asset: binary() | nil,
 order_id: term() | nil,
 position_side: Bingex.Model.Order.position_side() | nil,
 price: float() | nil,
 quantity: float() | nil,
 side: Bingex.Model.Order.side() | nil,
 status: Bingex.Model.Order.status() | nil,
 symbol: binary() | nil,
 timestamp: integer() | nil,
 trigger_order_id: term() | nil,
 trigger_price: float() | nil,
 type: Bingex.Model.Order.type() | nil,
 working_type: Bingex.Model.Order.working_type() | nil
}

 Functions

 decode(data)

 @spec decode(map()) :: t()

Bingex.API.Error exception

Represents an error that occurs within the BingX API.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bingex.API.Error{__exception__: true, reason: term()}

Bingex.API.Reply

Represents a standardized API response from BingX.

 Summary

 Types

 code()

 data()

 message()

 t()

 t(data)

 Functions

 put_data(reply, data)

 Types

 code()

 @type code() :: non_neg_integer()

 data()

 @type data() :: nil | map() | struct()

 message()

 @type message() :: binary()

 t()

 @type t() :: %Bingex.API.Reply{
 code: code() | nil,
 data: any(),
 message: message() | nil,
 payload: nil | map()
}

 t(data)

 @type t(data) :: %Bingex.API.Reply{
 code: code() | nil,
 data: data,
 message: message() | nil,
 payload: nil | map()
}

 Functions

 put_data(reply, data)

Bingex.Socket behaviour

Provides an abstraction over WebSocket connections for BingX.

 Summary

 Types

 event()

 message()

 state()

 Callbacks

 handle_call(message, from, state)

 handle_cast(message, state)

 handle_connect(state)

 handle_disconnect(details, state)

 handle_event(event, state)

 handle_info(message, state)

 Functions

 call(dest, message, timeout \\ 5000)

 Sends a synchronous message.

 cast(dest, message)

 Sends an asynchronous message.

 send(dest, message)

 Sends a message to the process to the specified PID.

 start(url, module, state, options \\ [])

 Starts a WebSocket process.

 start_link(url, module, state, options \\ [])

 Starts a WebSocket process linked to the current process.

 whereis(dest)

 Returns the pid of a Socket process, nil otherwise.

 Types

 event()

 @type event() :: term()

 message()

 @type message() :: binary()

 state()

 @type state() :: term()

 Callbacks

 handle_call(message, from, state)

 (optional)

 @callback handle_call(message(), from :: pid(), state()) ::
 {:reply, message :: term(), state()} | {:ok, state()} | {:disconnect, state()}

 handle_cast(message, state)

 (optional)

 @callback handle_cast(message(), state()) ::
 {:send, message(), state()} | {:ok, state()} | {:disconnect, state()}

 handle_connect(state)

 (optional)

 @callback handle_connect(state()) :: {:ok, state()}

 handle_disconnect(details, state)

 (optional)

 @callback handle_disconnect(
 details :: WebSockex.connection_status_map(),
 state()
) :: {:stop, state()} | {:reconnect, state()}

 handle_event(event, state)

 @callback handle_event(event(), state()) :: {:ok, state()} | {:disconnect, state()}

 handle_info(message, state)

 (optional)

 @callback handle_info(
 message(),
 state()
) :: {:send, message(), state()} | {:ok, state()} | {:disconnect, state()}

 Functions

 call(dest, message, timeout \\ 5000)

Sends a synchronous message.

 cast(dest, message)

Sends an asynchronous message.

 send(dest, message)

Sends a message to the process to the specified PID.

 start(url, module, state, options \\ [])

Starts a WebSocket process.

 start_link(url, module, state, options \\ [])

Starts a WebSocket process linked to the current process.

 whereis(dest)

 @spec whereis(dest :: atom() | pid()) :: pid() | nil

Returns the pid of a Socket process, nil otherwise.

Bingex.HTTP.Error exception

Represents an HTTP error (based on Mint.HTTPError).

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bingex.HTTP.Error{__exception__: true, reason: term()}

Bingex.HTTP.Request

Represents HTTP request payload for the BingX API.

 Summary

 Types

 body()

 headers()

 method()

 options()

 params()

 path()

 t()

 url()

 Functions

 auth_headers(headers \\ [], api_key)

 build_url(path \\ "/", params \\ [], options \\ [])

 new(method, url, headers, body)

 set_recv_window(params, value \\ 5000)

 set_signature(params, secret_key)

 set_timestamp(params)

 Types

 body()

 @type body() :: nil | binary()

 headers()

 @type headers() :: [{binary(), binary()}]

 method()

 @type method() :: :get | :put | :post | :delete

 options()

 @type options() :: [{:sign, nil | binary()}]

 params()

 @type params() :: [{binary(), term()}]

 path()

 @type path() :: binary()

 t()

 @type t() :: %Bingex.HTTP.Request{
 body: nil | binary(),
 headers: [{binary(), binary()}],
 method: method(),
 url: binary()
}

 url()

 @type url() :: binary()

 Functions

 auth_headers(headers \\ [], api_key)

 @spec auth_headers(headers(), api_key :: binary()) :: headers()

 build_url(path \\ "/", params \\ [], options \\ [])

 @spec build_url(path(), params(), options()) :: url :: binary()

 new(method, url, headers, body)

 @spec new(method(), url(), headers(), body()) :: t()

 set_recv_window(params, value \\ 5000)

 @spec set_recv_window(params(), value :: non_neg_integer()) :: params()

 set_signature(params, secret_key)

 @spec set_signature(params(), secret_key :: binary()) :: params()

 set_timestamp(params)

 @spec set_timestamp(params()) :: params()

Bingex.HTTP.Response

Represents an HTTP response from the BingX API.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Bingex.HTTP.Response{
 body: nil | binary(),
 headers: [{binary(), binary()}],
 status: non_neg_integer()
}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

